Some strategic aspects of forecasting with strictly proper scoring rules Teddy Seidenfeld

Based on joint work with M.J.Scherivsh and J.B.Kadane:

Exchange Rates, Phil. Sci. (2013) 80: 504-532

Outline

- 1. Some familiar, strategic aspects of coherent₁ strategies in (de Finetti's) *Prevision Game*.
- 2. Avoiding such strategic aspects with coherent₂ strategies in (de Finetti's) *Forecasting Game*.
- 3. The role of the *numeraire* and under-determination of the canonical SEU representation.
- 4. Strategic aspects of coherent₂ strategies in the *Forecasting Game*, which are absent in the *Prevision Game*. See §6 of *Exchange Rates*.
- 5. Concluding thoughts: Strategic aspects in units of "accuracy"?

Call an agent's choices *coherent* when they respect *simple dominance* relative to a (finite) partition.

 $Ω = {ω_1, ..., ω_n}$ is a finite partition of the sure event: a set of *states*. Consider two acts A_1, A_2 defined by their outcomes relative to Ω.

	ω1	ω_2	ω3	• • •	ω_n
A_1	<i>0</i> ₁₁	012	013	•••	0 1n
A_2	<i>0</i> 21	0 22	023	•••	0 2n

Suppose the agent can compare the desirability of different outcomes at least within each state. Suppose that in each state ω_j , outcome o_{2j} is (strictly) preferred to outcome o_{1j} , j = 1, ..., n.

Then A_2 <u>simply dominates</u> A_1 with respect to Ω .

• *Coherence*: When A_2 simply dominates A_1 in some finite partition, then A_1 is inadmissible in any choice problem where A_2 is feasible.

Background on de Finetti's two senses of coherence

De Finetti (1937, 1974) developed two games and two senses of *coherence* (*coherence*₁ and *coherence*₂), which he extended also to infinite partitions. The games focus on assessing random variables:

Let $\Omega = \{\omega_1, ..., \omega_n, ...\}$ be a countable partition of the sure event: a finite or denumerably infinite set of *states*.

Let $\chi = \{X_i: \Omega \rightarrow \Re; i = 1, ...\}$ be a countable class of (bounded) real-valued random variables defined on Ω .

That is, $X_i(\omega_j) = r_{ij}$ and for each $X \in \chi$, $-\infty < inf_\Omega X(\omega) \le sup_\Omega X(\omega) < \infty$.

Part 1: The Prevision Game.

In game 1, the *Prevision Game*, the random variables are commodities, identified with their associated numerical outcomes.

	ω1	ω_2	ω3	•••	ω_n	•••
X_1	<i>r</i> ₁₁	<i>r</i> ₁₂	<i>r</i> ₁₃	•••	r_{1n}	•••
X_2	<i>r</i> ₂₁	r 22	r ₂₃	•••	r_{2n}	•••
:	:	•	÷	÷	:	•
X_i	<i>r</i> _{i1}	r _{i2}	r _{i3}	•••	r _{in}	•••
:	:	:	÷	÷	:	:

*Coherence*₁: de Finetti's (1937) the *Prevision Game* – pricing variables. In order to highlight issues of *strategic pricing*, game #1 is formulated as a 2-person, 0-sum, sequential game.

The players in the *Prevision Game*:

- The *Bookie* (or *Merchant*) for each random variable X in χ, the *Bookie* plays first and announces a *prevision* (a *fair price*), *P(X)*, for buying/selling X.
- The *Gambler* (or *Customer*) plays second and makes finitely many (non-trivial) contracts with the *Bookie* at the *Bookie*'s announced prices.

The *Bookie* first announces the price P(X) for buying/selling X.

The *Gambler* then fixes the term α_X that determines the direction of the sale and the quantity of X traded.

In state ω , the contract has an *outcome* to the *Bookie* (and the opposite-valued outcome to the *Gambler*) of

 $\alpha_{\mathbf{X}}[X(\boldsymbol{\omega}) - \boldsymbol{P}(\boldsymbol{X})] = \boldsymbol{O}_{\boldsymbol{\omega}}(X(\boldsymbol{\omega}), \boldsymbol{P}(\boldsymbol{X}), \boldsymbol{\alpha}_{\mathbf{X}}).$

When $\alpha_X > 0$, the *Bookie* buys α_X -many *X* from the *Gambler*.

When $\alpha_X < 0$, the *Bookie* sells α_X -many *X* to the *Gambler*.

The *Gambler* may choose finitely many non-zero ($\alpha_x \neq 0$) contracts.

The *Bookie*'s net *outcome* in state ω is the sum of the payoffs from the finitely many non-zero contracts: $\sum_{X \in \chi} O_{\omega}(X(\omega), P(X), \alpha_X) = O(\omega)$.

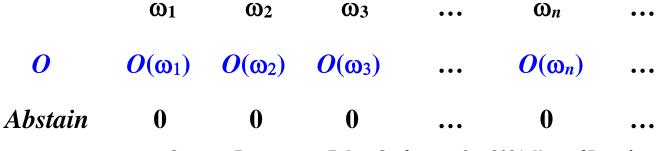
*Coherence*₁: The *Bookie*'s previsions {P(X): $X \in \chi$ } are *coherent*₁ provided that there is no strategy for the *Gambler* that results in a sure (uniform) net loss for the *Bookie*.

 $\neg \exists (\{\alpha_{X_1}, ..., \alpha_{X_k}\}, \varepsilon > 0), \forall \omega \in \Omega \quad \sum_{X \in \chi} O_{\omega}(X, P(X), \alpha_X) \leq -\varepsilon.$

Otherwise, the *Bookie*'s previsions are *incoherent*₁.

The net outcome *O* is just another random variable.

The *Bookie*'s *coherent*₁ previsions do not allow the *Gambler* contracts where the *Bookie*'s net-payoff is uniformly dominated by *Abstaining*.



Strategic Forecasting – **EpImp** Conference, Oct. 2021, Univ. of Bristol

Theorem (de Finetti, 1937):

A set of previsions $\{P(X)\}$ is *coherent*₁.

if and only if

There exists a (finitely additive) probability P such that the previsions are the P-Expected values of the corresponding variables

 $\mathbf{E}_{\mathbf{P}}[X] = \mathbf{P}(X).$

<u>Corollary</u>: When the variables are 0-1 indicator functions for events, e.g., $A(\omega) = 1$ if $\omega \in A$ and $A(\omega) = 0$ if $\omega \notin A$, then de Finetti's theorem asserts:

Coherent prices agree with the values of a (finitely additive)

probability distribution over these same events.

Otherwise, they are incoherent.

Example 1:

Consider pricing the two events $\{A, A^c\}$ – pricing their indicator functions. *A Bookie*'s two previsions, $\{P(A)=.6; P(A^c)=.7\}$, are incoherent₁ The *Bookie* has overpriced the two variables.

A *Book* is achieved against these previsions with the *Gambler*'s strategy $\alpha_A = \alpha_{Ac} = 1$, requiring the *Bookie* to buy each variable at the announced price.

The net payoff to the *Bookie* is -0.3 regardless which state ω obtains.

Two examples where the Bookie engages in *strategic pricing*.

Common theme: the *Bookie* anticipates the *Gambler*'s fair-prices. <u>*Example*</u> 2: Regarding event A, the *Bookie* has a *straightforward* fair price (a *credence*) $P_B(A) = p$, but models the *Gambler* as having a higher fair-price, $P_G(A) = q > p$.

Knowing this, the Bookie offers a strategic "fair-price" P(A) = (p+q)/2.

The *Gambler* will find this price attractive and will buy *A* from the *Bookie* (i.e., *Gambler bets on* A: $\alpha_A < 0$) at the elevated price, (p+q)/2 > p.

So, the *Bookie* does better by *strategic* pricing – gets paid more and pays out less – compared with *straightforward* pricing.

• Strategic pricing dominates straightforward pricing, given the *Bookie*'s model of the *Gambler*.

Strategic Forecasting – EpImp Conference, Oct. 2021, Univ. of Bristol

Example 3: Betting against an "expert."

The *Bookie* has to price the indicator A for event A, but believes that the *Gambler* already knows which of {A, A^c} obtains.

If the *Bookie* announces a prevision 0 < P(A) < 1, then the *Bookie* anticipates that the *Gambler* will choose α_A so that *Gambler* wins and *Bookie* loses: $\alpha_A < 0$ if A obtains, and $\alpha_A > 0$ if A^c obtains. Then, though the *Bookie* loses for sure, she/he is not *incoherent*₁.

If *p*_A is the *Bookie*'s "*straightforward*" fair-price (her/his credence) the *Bookie* plays *strategically* and announces:

P(A) = 1 if $p_A > .5$ P(A) = 0 if $p_A < .5$ either P(A) = 1 or P(A) = 0 if $p_A = .5$.

Then *Bookie* assigns a subjective probability, $max\{p_A, (1-p_A)\} \ge .5$ to breaking-even, rather than losing for sure.

• Bold play is optimal in an unfavorable game!

Strategic Forecasting - EpImp Conference, Oct. 2021, Univ. of Bristol

An historical observation: De Finetti – a radical operationalist – was concerned that issues relating to *strategic pricing* undermined his theory of Subjective probability. Because, then strategic "*fair-prices*" offered by the *Bookie* in the *Prevision Game* are not the *Bookie*'s subjective expectations for those same random variables.

• What the *Booki*e announces depends upon who is the *Gambler*.

We can appreciate the problem of strategic pricing even without endorsing de Finetti's radical operationalism:

• *Strategic* play by the *Bookie* in the *Prevision Game* corrupts the elicitation of the *Bookie*'s subjective expectations.

For instance, in *Example* 3, all one learns from the *Bookie*'s announced price, "P(A) = 1," is that the *Bookie*'s credence, p_A , is at least .5.

<u>Part 2</u>: Starting in about 1960, de Finetti switched to a *Forecasting Game*, in order to mitigate problems for his theory of Subjective Probability, posed by strategic pricing in the *Prevision Game*.

Game #2: de Finetti's (1974) *Forecasting Game* (with Brier Score) There is only the one player in the *Forecasting Game*, the *Forecaster*.

The *Forecaster* – for random variable X in χ announces a real-valued *forecast* F(X), subject to a squared-error loss outcome.

In state ω , the *Forecaster* is penalized $-[X(\omega) - F(X)]^2 = O_{\omega}(X, F(X))$.

The *Forecaster*'s net score in state ω from forecasting finitely variables {*F*(*X_i*): *i* = 1, ..., *k*} is the sum of the *k*-many individual losses:

$$\sum_{i=1}^{k} O_{\boldsymbol{\omega}}(X, \boldsymbol{F}(X_{i})) = \sum_{i=1}^{k} -[X_{i}(\boldsymbol{\omega}) - \boldsymbol{F}(X_{i})]^{2} = O(\boldsymbol{\omega}).$$

Strategic Forecasting - EpImp Conference, Oct. 2021, Univ. of Bristol

*Coherence*₂: The *Forecaster*'s forecasts {F(X): $X \in \chi$ } are *coherent*₂ provided that there is no finite set of variables, { $X_1, ..., X_k$ } and set of rival forecasts { $F'(X_1), ..., F'(X_k)$ } that yields a uniform smaller net loss for the *Forecaster* in each state.

$$\neg \exists (\{F'(X_{I}), ..., F'(X_{k})\}, \varepsilon > 0), \forall \omega \in \Omega$$

$$\sum_{i=1}^{k} -[X_{i}(\omega) - F(X_{i})]^{2} \leq \sum_{i=1}^{k} -[X_{i}(\omega) - F'(X_{i})]^{2} - \varepsilon$$

Otherwise, the *Forecaster*'s forecasts are *incoherent*₂.

The *Forecaster*'s *coherent*₂ previsions do not allow rival forecasts that uniformly dominate in Brier Score (i.e., squared-error).

Strategic Forecasting – EpImp Conference, Oct. 2021, Univ. of Bristol

Theorem (de Finetti, 1974):

A set of previsions $\{P(X)\}$ is *coherent*₁.

if and only if

The same *forecasts* {F(X): F(X) = P(X)} are coherent₂.

if and only if

There exists a (finitely additive) probability P such that these quantities are the P-Expected values of the corresponding variables

 $\mathbf{E}_{\mathbf{P}}[X] = \mathbf{F}(X) = \mathbf{P}(X).$

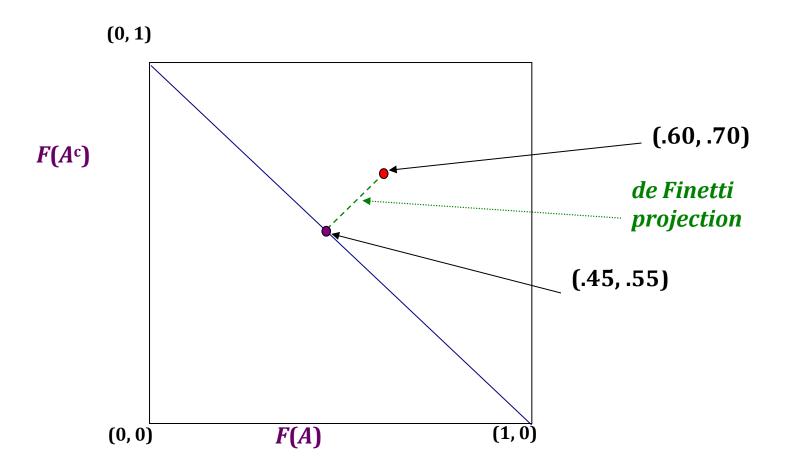
Example 1 (continued) – slides 16-18 may be skipped.

A Bookie's two previsions, {P(A)=.6; $P(A^c)=.7$ }, are incoherent₁ The *Bookie* has overpriced the two variables.

A *Book* is achieved against these previsions with the *Gambler*'s strategy $\alpha_A = \alpha_{Ac} = 1$, requiring the *Bookie* to buy each variable at the announced price.

The net payoff to the *Bookie* is -0.3 regardless which state ω obtains.

In order to see that these are also *incoherent*₂ forecasts, review the following diagram, which follows de Finetti's reasoning (1974, §3.4.1).



If the forecast previsions are not coherent₁, they lie outside the probability simplex. Project these incoherent₁ forecasts into the simplex. As in the *Example*, (.60, .70) projects onto the coherent₁ previsions depicted by the point (.45, .55). By elementary properties of Euclidean projection, the resulting coherent₁ forecasts are closer to each endpoint of the simplex. Thus, the projected forecasts have a dominating (smaller) Brier score regardless which state obtains. This establishes that the initial forecasts are incoherent₂. Since no coherent₁ forecast set can be so dominated, we have coherence₁ of the previsions if and only coherence₂ of the corresponding forecasts.

De Finetti's interest in *coherence*₂, avoiding dominated forecasts under squared-error loss (Brier-score), was prompted by an observation due to G.W.Brier (1950).

<u>Theorem</u> (Brier, 1950) A SEU forecaster whose forecasts are scored by the (finite) sum of squared error losses in utility units, uniquely maximizes expected utility by announcing her/his expected value for each variable.

• Brier Score is a (strictly) proper scoring rule.

Recall: The expected value of the indicator A is the probability P(A).

That is, squared error loss provides the incentives for an SEU forecaster to be entirely straightforward with her/his forecasts.

As we saw, wagering (as in the *Prevision Game*) does <u>*not*</u> ensure the right incentives are present for the *Bookie* always to announce her/his expected $E_P(X)$ value as the "fair price" P(X) for variable X.

By contrast, according to Brier's observation, a strictly proper scoring rule incentivizes straightforward forecasting!

So, de Finetti thought that playing the *Forecasting Game* with a strictly proper scoring rule that fixes losses (e.g. Brier score).

- preserved the central theme that coherent play requires playing in accord with the theory of Subjective expectations, and
- sidestepped the concerns about strategic play in the *Prevision Game*.

Part 3: The role of the *numeraire* in these games.

Begin with a result about *equivalent* SEU representations.

Suppose an SEU agent's > preferences over acts on $\Omega = \{\omega_1, ..., \omega_n\}$ is represented by prob/<u>state-dependent</u> utility pair (*P*; *U_j*: *j* = 1, ..., *n*).

	ω_1	ω_2	ω3	• • •	ω_n	
A_1	0 11	012	<i>0</i> 13	•••	0 _{1n}	
A_2	<i>0</i> 21	022	023	•••	O_{2n}	
	$A_2 > A_1$	if and on	ly if \sum_{j}	$P(\omega_j)U_j(a)$	$(p_{2j}) > \sum_j P(\omega_j)$	Uj(01j).

Let Q be a probability on Ω that agrees with P on null events: $P(\omega) = 0$ *if and only if* $Q(\omega) = 0$. Let V_i be defined as $c_j U_j$, where $c_j = P(\omega_j)/Q(\omega_j)$.

Then, trivially, we have the following – a variant of *Radon-Nikodem Thrm*. <u>*Basic Proposition*</u>:

 $(\mathbf{P}; \mathbf{U}_j)$ represents > if and only if $(\mathbf{Q}; \mathbf{V}_j)$ represents >.

Strategic Forecasting - EpImp Conference, Oct. 2021, Univ. of Bristol

In words: Coherent preferences <u>underdetermine</u> the separation of credences and values when *state-dependent* utilities are entertained.

Example 4: The role of a *numeraire* in pricing random variables. Let the state-space have three points $\Omega = \{\omega_1, \omega_2, \omega_3\}$.

Consider two currencies, **\$** US dollars and **€** EU euros.

Suppose that (*the agent believes*) the state-dependent exchange rates are:In state ω_1 ω_2 ω_3 $\$1 \equiv €(2/3)$ $\$1 \equiv €1$ $\$1 \equiv €2$

Let $\langle x, y, z \rangle$ represent a gamble that rewards x in state ω_1 , y in state ω_2 , and z in state ω_3 .

Suppose that the agent is indifferent among these three dollar gambles,

< \$1, \$0, \$0 > ~ < \$0, \$1, \$0 > ~ < \$0, \$1 >.

These are the indicator functions for the three states, using dollars as the unit for monetizing the random variables.

In the *Prevision Game*, these indifferences compel the coherent pricing $P_{(\omega_1)} = P_{(\omega_2)} = P_{(\omega_3)} = 1/3$

when random variables are monetized in dollars.

Strategic Forecasting – EpImp Conference, Oct. 2021, Univ. of Bristol

The agent judges those three dollar gambles equivalent, respectively, to these three Euro gambles, which then are indifferent under the agent's preferences:

 $\langle \epsilon(2/3), \epsilon(0), \epsilon(0) \rangle \sim \langle \epsilon(0), \epsilon(1), \epsilon(0) \rangle \sim \langle \epsilon(0), \epsilon(0), \epsilon(2) \rangle$

The indifferences among these three gambles requires the following coherent pricing in the *Prevision Game* when random variables are monetized in Euros,

 $P_{\epsilon}(\omega_1) = 1/2$ $P_{\epsilon}(\omega_2) = 1/3$ $P_{\epsilon}(\omega_3) = 1/6$.

By the *Basic Proposition*, $(\mathbf{P}_{\$}; U_j)$ is SEU equivalent to $(\mathbf{P}_{\$}; V_j)$

where U_j treats dollars as state-independent in value but not euros,

and V_j treats euros as state-independent in value but not dollars.

• The marginal exchange rate is equal between the two currencies!

 $\$1 = <\$1, \$1, \$1 > \sim < €1, €1, €1 > = €1$

This is easy to verify in either of two ways.

1. Write the constant **€1** gamble in dollars as

€1 ~ <\$1.50, \$1.00, \$0.50>

and note that this random variable in dollars, has a dollar subjective expected value of 1.00 = (1/3)[1.50 + 1.00 + 0.50].

2. We get the same exchange rate if the constant \$1 gamble is written Euros:
 \$1 ~ < €(2/3), €1, €2 >

whose euro subjective expected value is

 $(1/2) \in (2/3) + (1/3) \in 1 + (1/6) \in 2 = \in 1.$

If a gamble has a $P_{\$}$ -expected value of \$k, it has a $P_{€}$ -expected value of €k.

Strategic Forecasting – EpImp Conference, Oct. 2021, Univ. of Bristol

- Note well that (straightforward) *fair*-pricing in the *Prevision Game* makes each contract indifferent to the status-quo, regardless which currency is used.
- Hence all *fair*-contracts are indifferent to each other, regardless the currency used for pricing.

That is, in the *Prevision Game*, with straightforward pricing, there is no strategic incentive to use one currency over another!

As we see, next, the same is <u>not</u> true in the *Forecasting Game*.

Part 4: Suppose the agent is asked to forecast each of these three states, $F(\omega_i)$ for $\{\omega_i\}, i = 1, 2, 3$, subject to Brier score.

Monetized in dollars, the expected Brier-score loss for each forecast is 2/9. To see why, recall $1/3 = F_{\$}(\omega_i) = P_{\$}(\omega_i) = 1/3$ for i = 1, 2, 3.

So, the expected dollar loss for each forecast is:

 $(2/3)\$(0 - 1/3)^2 + (1/3)\$(1 - 1/3)^2$ = (2/3)\$(1/9) + (1/3)\$(4/9)= \$(2/9).

Monetized in Euros, the expected Brier score loss for forecast $F_{\epsilon}(\omega_i)$ is:

for $F_{\varepsilon}(\omega_I) = 1/2$ (1/2)€(0-1/2)² + (1/2)€(1-1/2)² = expected loss €(1/4) > expected loss \$(2/9); for $F_{\varepsilon}(\omega_2) = 1/3$ (2/3)€(0-1/3)² + (1/3)€(1-1/3)² = expected loss €(2/9) = expected loss \$(2/9); and for $F_{\varepsilon}(\omega_3) = 1/6$ (5/6)€(0-1/6)² + (1/6)€(1-1/6)² = expected loss €(5/36) < expected loss \$(2/9) The agent strictly prefers forecasting ω₁ in dollars rather than in euros; is indifferent between the two currencies for forecasting ω₂; and strictly prefers forecasting ω₃ in euros, rather than in dollars.

The strategic forecasts, thus are

 $F_{\$}(\omega_1) = 1/3$ $F_{\$}(\omega_2) = 1/3 = F_{€}(\omega_2)$ $F_{€}(\omega_3) = 1/6$.

These forecast numbers < 1/3, 1/3, 1/6 > seem *incoherent*₂,

But they are *coherent*₂, as the first one is monetized in a different currency than the third.

Suppose the agent may choose only one currency to make all 3 forecasts:

The expected sum of the three dollar Brier-score losses is $3 \times (2/9) = (2/3)$. The expected sum of the three euro Brier-score losses is

 $\mathbf{\in} (1/4 + 2/9 + 5/36) = \mathbf{\in} (11/18),$

which is 1/18 euro less than the (expected) dollar Brier score loss.

Since the (*ex ante*) marginal exchange rate is 1:1 between the two currencies, these inequalities indicate a strict preference in the choice of currencies to be used for making the three forecasts.

The upshot is strategic forecasting:

The agent strictly prefers forecasting the three states with losses in Euros, forecasts < 1/2, 1/3, 1/6 >

rather than forecasting with losses in Dollars,

forecasts < 1/3, 1/3, 1/3 >

even though the two schemes are (*ex ante*) SEU equivalent representations of preferences over all *equivalent* monetized random variables.

• This result obtains even if there is some extraneous method of determining which one of the equivalent SEU state-dependent utility representations uses the agent's "straightforward" subjective credence.

Part 5: Concluding thoughts.

We see that forecasting events with a strictly proper scoring rule (e.g., Brier-score loss) opens the door to a strategic choice of currencies for making those forecasts.

A popular theme in contemporary Formal Epistemology is to propose scoring rules as indices of an epistemological goal, *accuracy*.

Assess *forecasts* by their cognitive merits, where the magnitude of the loss is an index of the *inaccuracy* of the forecast.

This approach is offered in contrast with a merely (so-called) "pragmatic" assessment of *gambles*.

Gambles are assessed by appeal to the desirability of practical outcomes, which values reflect non-cognitive goals, e.g., wealth.

But what are the *units* of epistemic accuracy?

Are there counterparts to rival currencies when fixing units of accuracy?

• The Basic Proposition answers that question.

Suppose we are assessing the accuracy of credences for events in the algebra generated by the partition $\Omega = \{\omega_1, \dots, \omega_n\}$.

We use Brier-score to assess the inaccuracy of a forecast, as before.

If F(X) is the forecast for the random variable *X*, then in state ω , the *Forecaster* is penalized $-[X(\omega) - F(X)]^2$.

Suppose we agree on some state-independent unit U for indexing the cardinal utility of epistemic accuracy:

 $U_{j}(-[X(\omega_{j}) - F(X)]^{2}) = U(-[X(\omega_{j}) - F(X)]^{2}) = -[X(\omega_{j}) - F(X)]^{2}$

By de Finetti's theorem, provided the *Forecaster* is coherent₂, there exists a finitely additive probability P on Ω such that these forecast quantities are the P-Expected values of the corresponding variables:

 $\mathbf{E}_{\mathbf{P}}[X] = \mathbf{F}(X).$

Let Q be a probability on Ω that agrees with P on null events: $P(\omega) = 0$ *if and only if* $Q(\omega) = 0$. Let V_j be defined as $c_j U$, where $c_j = P(\omega_j)/Q(\omega_j)$.

<u>Basic Proposition</u> – a variant of the Radon-Nikodem Theorem

(P; U) represents > *if and only if* $(Q; V_j)$ represents > over all decision problems, regardless whether the utilities reflect economic or epistemic outcomes.

• Define a rival <u>state-independent</u> epistemic accuracy in terms of V_j units.

That is, use the Basic Proposition to define a rival "epistemic currency" that has state-independent *V* utilities.

 $V_j(-[X(\omega_j) - F(X)]^2) = V(-[X(\omega_j) - F(X)]^2) = -[X(\omega_j) - F(X)]^2$ and where coherent₂ forecasts satisfy: $F(X) = E_Q[X]$.

Then (*P*; *U*) and (*Q*; *V*) are equivalent representations of the
Forecaster's expected accuracies, using rival epistemic "currencies."
Different units of accuracy are matched with different credences over Ω.

Concluding question:

How does the interpretation of a loss function (e.g. Brier-score) as quantifying epistemic goals (e.g., inaccuracy of forecasts) avoid the problem of the strategic choice of units of accuracy?

- *Recall*: Even if by some method extraneous to the preference relations we could identify agent's *straightforward* credence function, the issue of a strategic choice of units of accuracy remains.
- The issue applies, equally, to IP decision theories that generalize SEU.

A few references

- Brier, G.W. (1950) Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review 78: 1-3.
- de Finetti, B. (1937) Foresight: Its Logical Laws, Its Subjective Sources. (translated by H.E.Kyburg Jr.) in Kyburg and Smokler (eds.) *Studies in Subjective Probability*. 1964 New York: John Wiley, pp. 93-158.
- de Finetti, B (1974) Theory of Probability, vol. 1 New York: John Wiley.
- Schervish, M.J., Seidenfeld, T., and Kadane, J.B. (2013) *The effect of exchange rates on statistical decisions. Phil Sci.* 80: 504-532.