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In dynamic learning, a rational agent must revise their credence about a question of 
interest in accordance with the total evidence available between the earlier and later 
times. We discuss situations in which an observable event F that is sufficient for the 
total evidence can be identified, yet its probabilistic modeling cannot be performed in 
a precise manner. The agent may employ imprecise (IP) models of reasoning to account 
for the identified sufficient event, and perform change of credence or sequential decisions 
accordingly. Our proposal is illustrated with four case studies: the classic Monty Hall 
problem, statistical inference with non-ignorable missing data, frequentist hypothesis 
testing, and the use of forward induction in a two-person sequential game.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Let Crt (·) be an unconditional probability function, called a rational Credence function that depicts some idealized agent’s 
uncertainty at time t . Carnap’s Principle of Total Evidence [2] requires that

Crt (·) = Cred (· | At) ,

where Cred (· | ·) is a conditional probability function and At is all the observational knowledge that the agent knows at 
time t . This implies the Bayesian rule of temporal updating, that if between an earlier time t1 and a later time t2 the agent’s 
total knowledge changes by the observational report F , then

Crt2 (·) = Crt1 (· | F ) .

This Carnapian account of idealized Bayesian learning may be limiting. Sometimes, it is difficult to see how the agent’s 
total evidence at the later time may be represented by a proposition, At2 , that reports all the observational knowledge 
accumulated prior to t2. By observational knowledge, we mean the information is acquired by the agent, either through 
their own perception or the aid of measurement instruments. Observational knowledge constitutes only a portion of all 
knowledge available to the agent. Specifically, the agent’s updated credence at the latter time t2 should reflect not only the 
observational knowledge At2 , but also the epistemic fact that they have learned At2 .
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Denote by Kt,M (F ) the event that the agent learns at time t by method M that event F obtains. The agent’s corpus of 
knowledge at time t consists of the joint event

F & Kt,M (F ) . (1)

Then, the agent’s credence function at t2 should be

Crt2 (·) = Cred
(· | At1 & F & Kt2,M (F )

)
,

which may or may not agree with the assertion

Crt2 (·) ?= Cred
(· | At1 & F

)
. (2)

Indeed, the question-marked equality in (2) will not hold, if the event F and its attainment Kt2,M(F ) become epistemologi-
cally entangled. That is, the meaning of the observational report F depends on the context of its attainment, Kt2,M(F ), in a 
non-trivial fashion.

As an illustration, let us recall the classic Monty Hall problem [28,27,31], which Section 2 analyzes in greater detail. The 
setting of the problem is as follows. A valuable prize is hidden at random behind one of three enumerated doors: A, B, or 
C. The other two doors hide no prize. The Contestant makes a first move by designating one of the three doors. The game’s 
moderator Monty Hall then opens one of the other two doors to reveal an empty door. Last, the Contestant decides whether 
she would like to stay with the designated door as her final choice, or switching to the third and remaining closed door. 
She wins if her final choice door hides the prize. Without loss of generality, suppose that the Contestant designated door A
as her initial door at t1, and Monty reveals door B as empty. What is the Contestant’s credence at t2 about door A being 
the prize door?

The observational knowledge that the Contestant acquires between t1 and t2 is that door B is empty. However, one 
would be mistaken to think that this is the only source of evidence that influences her credence at t2 about A being the 
prize door. The total evidence available to the Contestant is not only that door B is empty (the event) but also that she learned 
it to be so (the attainment), as the two are epistemologically entangled with one another.

In order to update their credence from t1 to t2 under epistemological entanglement, the agent will have to specify at the 
outset a rational credence function in relation to their corpus of knowledge (1), i.e.

Cred
(

F & Kt,M (F )
)
.

In the Monty Hall problem, this amounts to requiring the Contestant to model her own learning jointly with the game’s 
outcome. In most situations, this can be a daunting requirement for two reasons. First, the rational credence function Cred(·)
needs to be well-defined for all F , t and M . These aspects together span an enormous state space, on which probabilistic 
specification can be difficult, if not impossible. Second, for a general observable event F , the epistemological information of 
its attainment Kt,M(F ) is typically unobservable. Such is true even when granted that the agent satisfies the KK-thesis, i.e. 
whenever they know F , they know that they know it.

To circumvent the epistemological entanglement and maintain the feasibility of uncertainty reasoning using probabilities, 
we argue that the agent may cleverly identify an observable event that nevertheless meets the Total Evidence condition, i.e. 
some special F such that (2) holds with equality. This requires a concept of sufficiency of an observable with respect to a 
corpus of knowledge, put forward by Definition 1.

Definition 1. An event F observable between times t1 and t2 is said to be sufficient for 
(

F , Kt2 (F )
)

with respect to a 
question {E, Ec} asked at t2, provided that

Cred
(

Kt2 (F ) | At1 & F & E
) = Cred

(
Kt2 (F ) | At1 & F

)
. (3)

The notion of sufficiency in Definition 1 is analogous to the notion of statistical sufficiency in likelihood theory. If Cred(· | ·)
describes a statistical model, F is statistically sufficient for 

(
F , Kt2 (F )

)
with respect to the question E , so long as Kt2 (F )

does not provide further statistical information about E .
The observable sufficient reduction F in Definition 1 may inhabit a richer state space than that of the underlying ob-

servational knowledge alone. By construction, F disentangles the observational knowledge from its attainment, and helps 
alleviate the modeling burden on the agent’s part. Following Definition 1, Lemma 2 ensures that when F is sufficient for 
the total evidence gained between times t1 and t2, then Carnap’s rule of conditionalization may be satisfied in the temporal 
updating of the agent’s credence.

Lemma 2. If between times t1 and t2 the total evidence that the agent gains is the conjunction 
(
F , Kt2 (F )

)
, then

Crt2 (E) = Crt1 (E | F )

if and only if F is sufficient for 
(

F , Kt2 (F )
)

with respect to the question {E, Ec}.
22
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We discuss situations in which the agent is capable of identifying an observable event F that is sufficient for the total 
evidence, but cannot perform its probabilistic modeling in a precise manner. The identified event F offers more information 
than a mere observational report the agent can obtain between the earlier and later times. Indeed by sufficiency, F is meant 
to encode not only the observational report, but also the means through which the agent obtains the report. Therefore, the 
agent may not have a non-ambiguous probability model to account for F . We utilize imprecise probabilities to analyze 
an agent’s change of credence as a dynamic learning process. In what follows, we illustrate our proposal using four case 
studies: the Monty Hall problem following the introduction (Section 2), statistical inference with non-ignorable missing data 
(Section 3), frequentist hypothesis testing (Section 4), and the use of forward induction in a two-person sequential game 
(Section 5). In each of these case studies, we demonstrate how an event and its attainment may become epistemologically 
entangled under a certain framing, discuss possible observable sufficient reductions to disentangle them, and showcase how 
IP may be employed to facilitate learning from the total evidence. Section 6 concludes with a discussion on the operational 
necessity of our proposal.

2. The Monty Hall problem

Continuing the Monty Hall problem described in Section 1, the Contestant knows, prior to the start of the game at t1, 
that the prize was placed uniformly randomly behind one of the three doors. No further information was supplied to her at 
this stage of the game. Letting E denote the prize door, we have that the Contestant’s credence about E at t1 is uniform:

Crt1 (E) = 1

3
,

and with her designating door A,

Crt1 (E | designate A) = 1

3
,

for all E ∈ {A,B,C}. Furthermore, we have that

Crt1 (E = A | designate A, D) = 1/3

1/3 + 1/3
= 1

2
, (4)

for D ∈ {B,C} denoting the door that would be revealed to the Contestant as empty. That is, the Contestant’s conditional 
credence for door A to be the prize door would become 1/2, upon knowing either door B or door C to be empty.

However, the Contestant’s credence about whether A is the prize door at time t2, Crt2 (E = A), is not represented by the 
quantity in (4). As alluded to earlier, the total evidence available to the Contestant at t2 is not just that door D is empty, 
but also that she learned it. As a matter of fact, Monty Hall revealed door D ∈ {B, C} to be empty, and it is through and only 
through Monty’s reveal that the Contestant learns door D to be empty. Therefore, the observable event F that is sufficient 
(in the sense of Lemma 2) for the Contestant’s total evidence is

MHReveals (D) ,

which in the eyes of the Contestant satisfies

Crt1

(
Kt2(D) iff MHReveals (D) iff Kt2 (MHReveals (D))

) = 1.

Having identified the observable event sufficient for her total evidence, the Contestant’s credence about the prize door 
at time t2 retains an element of imprecision. In the case the designated door, A, were indeed the prized door, Monty would 
have the liberty to choose between either door B or door C to reveal to the Contestant, as either door would be empty. As 
the Contestant has no information about Monty’s inclination to reveal either door when he has that choice, her conditional 
credence function for the joint event (E,MHReveals (D)) given that she designated door A is represented by an imprecise 
probability. Table 1 specifies this imprecise probability, in which E represents the true door behind which the prize stands, 
D the door that Monty reveals to be empty, and x ∈ [0, 1] Monty’s inclination to reveal door B over door C when he has 
the liberty to do both. This implies that

Crt1

(
E = A | designate A,MHReveals (D = B)

) = x/3

x/3 + 1/3
∈ [0,1/2], (5)

Crt1

(
E = A | designate A,MHReveals (D = C)

) = (1 − x)/3

(1 − x)/3 + 1/3
∈ [0,1/2]. (6)

Taking into account the total evidence available at t2, the Contestant’s credence Crt2 (E = A) is equal to either (5) in case 
Monty revealed door B to her, or (6) in case Monty revealed door C to her. Therefore, her latter credence Crt2 (E) is 
represented by the set of probabilities
23
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Table 1
Crt1 (E,MHReveals (D) | designate A), where E ∈ {A,B,C} is the true door 
to the prize, and D ∈ {A,B,C} the door that Monty Hall Reveals to the Con-
testant, given that the Contestant designated door A as her initial choice.

Prize door E Monty Hall Reveals D

A B C

A 0 x/3 (1 − x) /3
B 0 0 1/3
C 0 1/3 0

P = {P : P (A) ∈ [0,1/2]} ,

regardless of which door Monty Hall reveals to her.
It is worth noting that in this analysis, since we assume that the Contestant has no information whatsoever about 

Monty’s inclination x, her latter credence exhibits dilation [26] when compared to her former credence Crt1 (E). For the 
same E , the range of values that Crt2 (E) may take strictly contains that of Crt1 (E) regardless of which event in the partition 
of the total evidence space realizes between t1 and t2, that is, regardless of which (not-E) door Monty Hall reveals to the 
Contestant. Dilation occurs when the agent’s credence function entertains the possibility of statistical independence between 
the focal event and the total evidence, such that whichever outcome is realized, it may either strengthen or weaken the 
credence about the focal event [26, Theorems 2.1–2.3]. The dilation phenomenon is further examined by [10] in the context 
of both the Monty Hall problem and its variant, the Three Prisoners problem [4,5].

3. Non-ignorable missing data

Suppose an experiment is designed to address questions about some feature pertaining to the N members of a popula-
tion, N being potentially infinite. For each member i of the population, let Xi denote the true state of their feature. At time 
t1, a simple random sample of n members of the population was surveyed. By time t2, however, only nobs < n observations 
responded, whereas nmis = n − nobs values are missing. Letting Xobs denote the collection of nobs observed responses, it is 
widely understood that the conditional credence

Crt1 (· | Xobs)

is not necessarily the correct credence that the investigator should endorse at t2. It does not take into consideration the 
total evidence available to the investigator, which should include the fact that a specific fraction of the sampled members 
did not respond.

The explicit accounting for the nonresponse requires the introduction of an additional binary observable random variable 
D = (D1, . . . , Dn). If the surveyed individual i responded then Di = 1, and Di = 0 if they did not respond. The observed and 
missing observations can respectively be denoted as

Xobs = {Xi : i = 1, . . . ,n, Di = 1} ,

Xmis = {Xi : i = 1, . . . ,n, Di = 0} ,

and accordingly nobs = ∑n
i=1 Di and nmis = ∑n

i=1(1 − Di). The investigator’s total evidence at time t2 is

(Xobs, D) . (7)

The observable event (7) is sufficient for the investigator’s credence for θ if and only if

Cr2 (θ) = Crt1 (θ | Xobs, D) . (8)

The assertion (8) lies at the foundation of the missing data literature, and is key to avoiding epistemic entanglement using 
observable evidence. To update their credence for the scientific question of interest despite partially missing observations, 
the investigator must be able to supply some kind of knowledge about the nonresponse mechanism. This requirement may 
well be hard to satisfy. A most challenging type of nonresponse mechanism to model is the non-ignorable mechanism [19]. 
Non-ignorability refers to the case when the response probabilities depend nontrivially on the values of the missing data. 
By definition, then, any observed and partially missing dataset contains only limited (if any) information about the non-
ignorable mechanism. This is precisely why modeling non-ignorability is difficult in practice. The investigator often must 
conduct post-survey coverage studies in order to gain the needed insight.

As a concrete example, suppose Xi ∈ {0, 1} is a binary feature for an individual, and the investigator is interested in 
studying θ , the population proportion of individuals possessing the positive feature. Further suppose that the positive feature 
Xi = 1 is associated with an adverse health or social perception, e.g. that a person smokes. Therefore, an individual who 
possesses this positive feature is less likely to respond to the survey. (For simplicity, we do assume that if an individual 
24
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responds, then they respond truthfully.) For a real study on non-ignorability in opinion surveys concerning smoking, see 
[23].

The investigator posits a parametric sampling model

Xi | θ ∼ Ber (θ) ,

and a nonresponse mechanism such that for some constant γ ∈ [0, 1),{
Di ∼ Ber (γ )

Di = 1

if Xi = 1,

if Xi = 0.

That is, all surveyed individuals with a negative feature responded, whereas individuals with a positive feature only respond 
with probability γ < 1. This nonresponse mechanism is non-ignorable, because the response indicators D are dependent on 
the values of the missing data Xmis .

To proceed with the analysis, we note that the likelihood function for θ is a marginal likelihood function, integrating out 
the unobserved missing responses Xmis . Writing sobs = ∑n

i=1 Xi Di , the sum of observed positive responses, the likelihood 
function takes the form

P (Xobs, D | θ) =
∑

Xmis∈{0,1}nmis

P (Xobs, Xmis | θ) P (D | Xobs, Xmis)

= (θγ )sobs (1 − θ)nobs−sobs [θ (1 − γ ) + (1 − θ)]nmis .

For the purpose of illustration, suppose that the investigator’s prior credence function Crt1 (θ) is characterized by the 
Beta(α, β) family of distributions, with density

B−1 (α,β) θα−1 (1 − θ)β−1 ,

where B(a, b) is the Beta function. Writing αobs = sobs + α and βobs = nobs − sobs + β , by (8) we have that the investigator’s 
posterior credence function Crt2 (θ) has density

fγ (θ) = c−1
γ θαobs−1 (1 − θ)βobs−1 [θ (1 − γ ) + (1 − θ)]nmis , (9)

where the normalizing constant

cγ = B (αobs, βobs)R ((αobs, βobs) , (1 − γ ,1) ,−nmis) ,

where R (b, Z ,−d) is Carlson’s multiple hypergeometric function [6], which has been previously studied in the Bayesian 
modeling of censored categorical data [7,14] to represent the expectation of marginal linear combinations of Dirichlet ran-
dom variables. In particular,

R ((αobs, βobs) , (1 − γ ,1) ,−nmis) = (1 − γ )nmis
2 F1 (−nmis, βobs;αobs + βobs;γ / (γ − 1)) ,

where 2 F1(u1, u2; l1; z) is the generalized hypergeometric function.
The posterior credence function Crt2 (θ) depends on the response probability γ for the positive feature. It remains for the 

investigator to determine what values of γ is reasonable. With γ left unspecified, the posterior credence function Crt2 (θ)

in (9) induces a set of probability functions

P =
⎧⎨
⎩P : P (A) =

∫
A

fγ (θ)dθ, γ ∈ [0,1)

⎫⎬
⎭ . (10)

Fig. 1 depicts Crt2 (θ) for different values of γ , for a hypothetical sample with (n,nobs, sobs) = (10,5,2). Prior credence 
Crt1 (θ) is uniform on [0, 1], corresponding to α = β = 1. Note that the triple (n,nobs, sobs) is a reduction of the sufficient 
observable event in (7), and is minimally sufficient for the posterior credence Crt2 (θ) in the usual sense of the phrase. As 
is clear from Fig. 1, the posterior credence function Crt2 (θ) exhibits large differences depending on the value of γ . If γ is 
small, it suggests that individuals with Xi = 1 are much less likely to respond. Therefore, the fact that half of the surveyed 
individuals did not respond should be taken as strong indication that there are more people with a positive feature Xi = 1
that are unobserved, and the investigator should put higher posterior credence for θ on the larger values. Whereas if γ is 
large, individuals with Xi = 1 are not much less likely to respond, and the posterior credence for θ tend towards the smaller 
values.

We remark that the IP treatment presented here for the case of non-ignorable missing data has close ties to the literature 
of partial identification in econometrics; see e.g. Chapter 1 of [22]. Indeed, the investigator’s updated credence is partially 
identified, in the sense that the observed data (Xobs, D) do not provide enough discerning information to pin down Cr2(θ) as 
25
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Fig. 1. Posterior credence function Crt2 (θ) in (9) for different values of γ , the individual response probability with positive feature, for a hypothetical 
observation with (n,nobs, sobs) = (10,5,2). Prior credence Crt1 (θ) is uniform on [0, 1].

a unique probability, even if a precise prior credence Cr1(θ) is specified. The identification region of Cr2(θ) is precisely the 
set of probabilities specified by (10). If the investigator would like to avoid partial identification, he or she may adopt a “full” 
Bayesian approach by further imposing a precise prior credence function on γ , the probability of missing the observation 
given a positive feature. However, since the observed data do not provide identifying information about γ , the investigator’s 
future credences about the primary question of interest θ may be sensitive to the prior specification for γ , which calls 
for careful deliberation. In practice, for a chosen family of priors on γ , the investigator may employ an empirical Bayes
approach to construct posterior estimates based on the implied marginal distribution of the data that uses, for example, 
plug-in estimators for θ . See [29,24] for a demonstration of small-area estimation using Bayesian hierarchical models for 
non-ignorable missing data, with applications to the National Crime Survey.

4. Frequentist hypothesis testing: the null hypothesis and the reference class

The previous section demonstrates how the IP construction provides a meaningful Bayesian statistical analysis in the 
presence of non-ignorable missing data, which are typically challenging to model precisely. In statistical inference, the 
virtue of IP extends beyond the context of Bayesian modeling. In this section, we discuss how one may appeal to the IP 
tools to identify the level of significance of an experiment in frequentist hypothesis testing, in a way that is appropriate for 
the total evidence available to the statistician. As the total evidence changes, many aspects of the testing procedure change 
as well, including the sample space, the null hypothesis, the reference class, the level of significance, as well as the final 
conclusion. A version of this example is discussed by Barnard [1], which we adapt here for an extended illustration.

A bag of chrysanthemum seeds are known to produce either white or purple blooms, and a statistician wishes to study 
the relative proportion of either color. His plan is to conduct an experiment by asking a lab scientist to sow a random 
selection of seeds from the bag, and he would record the colors of the flowers once they bloom. Based on the result 
of the experiment, the statistician would calculate the level of significance, defined as the maximum probability derivable 
under a null hypothesis H0 of a reference class, a set consisting of potentially realizable experimental outcomes under the 
experimental design, which are considered as significant or more significant than the observed one:

argmaxP∈H0
P (R F ) , (11)

where F is the observed outcome, and the reference class R F consists of events deemed as of matching or exceeding 
significance compared to F . The shorthand “P ∈ H0” indicates that when calculating (11), every probability distribution P
compatible with the null hypothesis H0 is contemplated. The choice of P is unique when H0 is simple, and plural when H0
is composite. In what follows, we present three scenarios in which the total evidence available to the statistician varies in 
richness.

Scenario 1 Suppose a few months after the seeds are sown, the statistician observes nine blooming chrysanthemum flowers, 
all of which are white in color. Let n be the number of blooming chrysanthemum flowers, and r be the number (out of n) 
of white ones in excess over purple. The observational report can be summarized as

F : n = 9, r = 9. (12)

Under the null hypothesis that white and purple colors are equally likely, the statistician presumes the experiment as a 
Binomial trial

H0 :
(

n + r
,

n − r
)

∼ Bin(n,
1
).
2 2 2

26
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Fig. 2. Left: the sample space in Scenario 1 expressed in terms of (n, r), and the reference class R F ((13); solid black dots); Right: the sample space in 
Scenarios 2 and 3, and the reference classes R F ′ and R F ′′ (R F ′ = R F ′′ ).

Following Barnard [1], the reference class R F of events that match or exceed the significance of the observation F in (12) is 
defined as

R F = {(
ñ, r̃

) : r̃ ≥ |r| + min
(
0, ñ − n

)
or r̃ ≤ −|r| − max

(
0,n − ñ

)
, ñ ≤ n,

∣∣r̃∣∣ ≤ ñ
}

(13)

which simplifies to {(9,9), (9,−9)}, or obtaining all nine white flowers (as observed) or all nine purple. The left panel of 
Fig. 2 showcases the sample space and the reference class R F . The reference class encodes a sense of deviation [see e.g. 
3, Chapter 4] between the null hypothesis and the empirical law governing the observation F . In general, the choice of 
the reference class need not be unique, as it reflects the statistician’s judgment about which outcomes are deemed more 
scientifically significant. Barnard [1] motivates why R F takes the form of (13). For simplicity, we follow Barnard’s choice 
throughout this section and omit the discussion on alternative choices of R F , with the understanding that a different R F

may lead to different numerical conclusions from what we present here. According to (11), the corresponding level of 
significance of the experiment is equal to P (R F ) = 2 × (1/2)9 ·= 0.39%.

Scenario 2 There’s more to the story than meets the eye of the statistician. What the lab scientist did not reveal to the 
statistician is that he sowed not nine, but in total N = 10 seeds, and one of them did not reach the flowering stage. The 
lab scientist did not fully disclose the reason why one of the seeds failed. He noted that the seed did germinate, but as a 
young plant was prematurely destroyed under certain unforeseen circumstances. The statistician now gathered a fuller set 
of evidence:

F ′ : n = 9, r = 9, N = 10, “premature plant destruction”,

and must now revise both his null hypothesis and the reference class. In particular, let nw and np denote the respective 
numbers of white and purple flowers to result from the destroyed plant. Each of nw or np is unobserved, but their total 
nw + np = N − n is observed. The statistician presumes a Multinomial trial as the null hypothesis:

H ′
0 :

(
n + r

2
,nw ,

n − r

2
,np

)
∼ Multinomial

(
N,

(
pw

2
,

1 − pw

2
,

pp

2
,

1 − pp

2

))
,

where pw , pp ∈ [0, 1] are respectively the probabilities for plants bearing white and purple flowers to be destroyed. Note 
that since the values of pw and pp are under-determined, the null hypothesis H ′

0 is a composite one, encompassing a class 
of sampling distributions for the experimental outcome. Following Barnard’s construction of the reference class as defined 
in (13), the reference class for F ′ becomes

R F ′ = {(ñ, r̃, ñw , ñp
) : r̃ ≥ |r| + min

(
0, ñ − n

)
or r̃ ≤ −|r| − max

(
0,n − ñ

)
,

ñ ≤ N,
∣∣r̃∣∣ ≤ ñ, ñw + ñp = N − n}

= {(9,9,1,0), (9,9,0,1), (9,−9,1,0), (9,−9,0,1), (10,10,0,0), (10,−10,0,0)} .
27
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Under the null hypothesis H ′
0, the probability of the reference class, P (R F ′ ), belongs to a set of probabilities{(

10pp + 9pw + 1

2

)(
1 − pw

2

)9

+
(

10pw + 9pp + 1

2

)(
1 − pp

2

)9

; (
pw , pp

) ∈ [0,1]2

}
(14)

The set (14) reaches a minimum of 0 when pw = pp = 1, and a maximum of approximately 1.07% when pw = 0, pp = 1 or 
pp = 0, pw = 1. The latter, being the highest among all models contemplated under the null hypothesis H ′

0, is taken to be 
the level of significance of the observed experiment.

Scenario 3 Further suppose that the lab scientist finally reveals the story behind the young plant’s demise. One day while 
running errands, he carelessly trod over it, causing its unfortunate death. This is an important piece of information. It allows 
the statistician to rule out the possibility of a linkage, genetic or environmental, between the destruction propensities of the 
plant and the color of its flower. Without knowing the precise cause of the plant’s destruction, the statistician suspected that 
one color of the chrysanthemum is more susceptible of certain pests or diseases, hence allowing for differing destruction 
probabilities, pw and pp , in the formulation of his previous null hypothesis H ′

0. Now, the statistician’s total evidence can be 
stated as

F ′′ : n = 9, r = 9, N = 10, “premature plant destruction due to a color-agnostic reason”.

The null hypothesis is also updated by equating pw with pp to a common (and unknown) probability p:

H ′′
0 :

(
n + r

2
,nw ,

n − r

2
,np

)
∼ Multinomial

(
N,

(
p

2
,

1 − p

2
,

p

2
,

1 − p

2

))
.

With the reference class remaining the same as before, R F ′′ = R F ′ , its probability under the null H ′′
0 again belongs to a set 

of probabilities

P (R F ′′) ∈
{

2

[
10p + 1 − p

2

](
1 − p

2

)9

; p ∈ [0,1]

}
(15)

As the common destruction probability p varies between [0,1], P (R F ′′ ) in (15) reaches a minimum of 0% (obtained when 
p = 1) and a maximum of approximately 0.24% (obtained when p = 1/19). Again, the latter is taken to be the level of 
significance of the experiment, for it is the highest derivable under the class of models implied by the null hypothesis H ′′

0 . 
This last portion of the analysis agrees with Barnard’s.

The three scenarios illustrated above concern the same physical experiment, but due to a difference in the total evidence, 
they are accompanied by three different suites of hypothesis tests. Recognizing what constitutes the total evidence impacts 
the construction of the test in more than one way. It may change the null hypothesis the statistician finds reasonable to 
entertain, as well as the realized reference class of events deemed as significant or more significant than the evidence at 
hand. The change in the latter is the result of a changing sample space, necessitated by the total evidence which suggests 
the total number of potentially observable flowers. The change in the reference class would happen, even if the observed 
numbers of flowers of either color remain the same, and the statistician employs the same definition of reference classes 
throughout the different scenarios.

Comparing across the three scenarios, we see that their respective bodies of total evidence increase in richness. F ′ of 
Scenario 2 provides information additional to F of Scenario 1 about the existence of a destroyed plant, and F ′′ of Scenario 3 
further adds to F ′ by describing the condition of its destruction. The statistical models entailed by the three null hypotheses 
are nested, in the sense that the binomial model associated with H0 is marginally implied by the multinomial model of H ′′

0 , 
which is in turn a parameter-restricted special case to the multinomial model of H ′

0 . Furthermore, the analyses yielded three 
levels of significance, 0.39%, 1.07% and 0.24%, which are similar in value but convey distinct substantive meanings, because 
each corresponds to the maximum probability of a distinct reference class derivable under a distinct set of probability 
models under the null hypotheses. Using ≺ to loosely denote the respective ordering as described above, we see that none 
of these aspects are aligned or indicative of one other:

• Richness of total evidence: Scenario 1 ≺ Scenario 2 ≺ Scenario 3;
• Generality of null hypothesis: Scenario 1 ≺ Scenario 3 ≺ Scenario 2;
• Level of significance attained: Scenario 3 ≺ Scenario 1 ≺ Scenario 2.

Thus, richer total evidence does not entail a more general (or more specific) null hypothesis, nor does it necessarily result 
in a higher (or lower) assessment of level of significance.

Even though the total evidence may explicitly acknowledge the presence of unobserved data, we do not advocate for the 
statistical modeling of arbitrary unknown information. After all, any rational agent can only know so much, their knowledge 
would almost certainly be dwarfed by their ignorance. The total evidence is amenable to statistical modeling, just in case 
there exists an observable sufficient reduction in the sense of Definition 1. In the second and third scenarios examined in 
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Fig. 3. A two-person, two-stage extensive form sequential game, in which one player (Sidney) chooses which subgame for both players to play at the second 
stage.

this section, the sufficiency of F ′ and F ′′ is exemplified by the fact that they both provide information specific enough to 
determine the appropriate sample space, definitive and finitely sized, as well as about the destruction mechanism to allow 
for a meaningful IP description. In practice, the agent may seek additional, attainable information which they know can aid 
the sufficient reduction of total evidence. As an example, to adjust for complex patterns of undercounts in the population 
census, the United States Census Bureau conducts post-enumeration surveys (PES) to measure the extent of omission using 
stratified random samples; see e.g. [13]. We return to this point again in Section 6.

5. Forward induction with imprecise probabilities

In this section, we consider two-person sequential games in which each player is required to specify a grand plan for 
action at each node of the game tree where the player needs to make choices. A game-theoretic criterion that dictates 
what kind of grand plans should be deemed as acceptable is subgame perfection; see e.g. [12]. Under subgame perfection, 
a grand plan is said to be acceptable if and only if it yields acceptable strategies within each sub-game of the larger game. 
However, since players who adhere to subgame perfection must treat each subgame as a separate game irrespective of all 
other aspects of the larger game, including choices that have been made by their opponents, they can violate total evidence 
in devising their grand plans for the game.

To take into account the total evidence, the player may endorse instead the criterion of forward induction [16], by recog-
nizing and utilizing what they observe from the preceding plays that lead them into the subgame. That is, at the beginning 
of each subgame, the player works with the total evidence which includes not only their uncertainty model about their 
opponents, but also the fact that the dynamic of the sequential game has lead both of them to this particular subgame.

In addition to adopting forward induction reasoning in the sequential game, we also assume that the players employ 
imprecise probability models of uncertainty, represented by a set P of personal probability functions, rather than by a single 
such function, P . The literature has demonstrated the value, and indeed the necessity, of using IP models of uncertainty in 
game theory [e.g. 9,30,20].

We now describe the setting of the game. Two players, Sidney and Isaac, are about to play a two-stage extensive form 
sequential game. In the first stage of the game, Sidney chooses between their playing either the Concert Game, or playing 
the Lecture Game. In the Concert game, they coordinate on attending either (A) a Bruch violin concerto, played by Itzhak 
Perlman, or (B) a Dolly Parton concert. In the Lecture game, they coordinate on attending (C ) a lecture by Chomsky, or 
(D) a lecture by Ellsberg. In these subgames, Sidney is Column player and Isaac is Row player. The setting of the game is 
illustrated in Fig. 3. The goal of both players is to arrive at a precise action plan at the end of the iterative game, while at the 
same time maximizing their own utility outcome to the extent possible. We pay particular attention to the interpretation 
of players’ strategies and the utility outcomes from Isaac’s point of view, whose application of forward induction highlights 
the impact of total evidence in guiding his subgame decision as the Row player.

In either the Concert or Lecture subgames, we allow the two players to adopt an extreme IP model that reflects maximal 
uncertainty about the other player’s choices. That is in each subgame, each player uses the set P of all probabilities for 
what the other player might choose from among all his mixed strategies. For instance, without additional evidence, Isaac is 
maximally uncertain about which strategy Sidney will use in the Lecture Game. That is,

P Isaac
Lecture {xAs ⊕ (1 − x) Bs} = {P : 0 ≤ P (xAs ⊕ (1 − x) Bs) ≤ 1} , ∀x ∈ [0,1],

where A ⊕ B denotes a direct sum of the two games A and B . The two subgames each have the following three Nash 
equilibria pairs, two are pure and one is mixed. In the Concert Game:

• 〈AI , A S 〉 yields utility outcome (1, 2);
• 〈B I , B S 〉 yields utility outcome (2, 1);
• 〈(1/3)AI ⊕ (2/3)B I , (2/3)A S ⊕ (1/3)B S 〉 yields utility outcome (2/3, 2/3).

In the Lecture Game:
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• 〈C I , C S 〉 yields utility outcome (1.5, 4);
• 〈D I , D S 〉 yields utility outcome (4, 1.5);
• 〈(3/11)C I ⊕ (8/11)D I , (8/11)C S ⊕ (8/11)D S 〉 yields utility outcome (12/11, 12/11).

One complication with the analysis of games represented by IP models is that there exists a variety of applicable decision 
rules. A different choice of rules may yield different action plans and different consequences [25,21]. In the current two-
stage game, both players aim to arrive at one precise action plan, and the IP decision rule that they employ must be 
conducive to this goal. Thus in this example, the IP decision rule that both players employ restricts admissibility to those 
options that maximize minimum expectation with respect to the set P of probabilities, i.e. options that are �-maximin [8], 
among those options that maximize expected utility for some probability P in the set P , i.e. options that are E-admissible 
[17]. This is Levi’s lexicographic rule [18] that uses E-admissibility as the primary consideration, and �-maximin as the 
secondary (or security) consideration for admissibility. A brief discussion about the choice of IP decision rules appears at the 
end of this section.

Since each player has a maximally uncertain IP model for which strategy the other payer chooses in these games, each 
of these three Nash pairs also are pairs of E-admissible options, because each of these three strategies maximizes expected 
utility against the other’s matching strategy. More significant, in each game, in the light of the “equalize” mixed strategy 
Nash equilibrium pair, each mixed strategy that Isaac might choose also is E-admissible against that mixed strategy for 
Sidney. For instance, in the Lecture Game, each mixed strategy that Isaac might play, xC I ⊕ (1 − x)D I , is E-admissible 
against Sidney’s equalizer mixed strategy, (8/11)C S ⊕ (3/11)D S .

Next, we turn to considerations of security maximization. In the Concert Game:

• Isaac’s mixed strategy, (2/3)AI ⊕ (1/3)B I secures a minimum expectation of 2/3, and that is the maximum security 
possible for Isaac among his (E-admissible) strategies.

• Likewise, by the symmetries of the game, Sidney’s mixed strategy (1/3)A S ⊕ (2/3)B S secures a minimum expectation 
of 2/3, and that is the maximum security possible for Sidney relative to all his (E-admissible) strategies.

In the Lecture Game, the security maximizers are

• For Isaac, (8/11)C I ⊕ (3/11)D I secures 12/11 utility, and
• For Sidney, (3/11)C S ⊕ (8/11)D S secures 12/11 utility.

Here is how we apply forward induction with these IP decision rules in the two-stage game between Isaac and Sidney, 
where Sidney plays first to choose which subgame they play. We use the following hypothetical “cheap talk” dialogue to 
make explicit the steps in the IP decision making.

Sidney: Isaac, suppose I choose we to go to the Concert. What will you do?
Isaac mumbles to himself : Well, if I saw that Sid chose the Lecture Game, that would give him an E-admissible option 
with a security of 12/11. Hmm...
Isaac: Then, Sid, if you choose the Concert Game (and reject the Lecture Game) you’d be signaling to me that you expect 
at least 12/11 in the Concert Game. So, I’d choose to join you to hear Perlman play Bruch, and you’ll get 2 units utility 
while I get only 1.
Sidney: Very good. Let’s go to the Lecture!
Isaac mumbles to himself : Well, rejecting Concert means that Sid now expects at least 2 units by going to the Lecture.
Isaac: Then, Sid, I see I’m stuck going to hear Chomsky with you.
Sidney: Yes. But at least you’ll enjoy that more than you would the Bruch!

Note, the application of forward induction illustrated in this example conforms to the conjecture that players (e.g. Isaac) 
can avoid the epistemic entanglement by using observable (even hypothetical) decisions from earlier in the game to fix 
expectations later in the game, without needing to incorporate an additional epistemic random variable for current knowl-
edge. Indeed, in the first iteration of the game, Isaac chooses Perlman’s Bruch (AI ) over his preferred Dolly Parton (B I ), 
because he knows that Sidney rejected altogether the Lecture subgame (and thereby a security of 12/11), a piece of ob-
served knowledge that precedes the current Concert subgame. Similarly, in the second iteration of the game Isaac chooses 
Chompsky (C I ) over his preferred Ellsberg (D I ), because he knows that Sidney rejected the Bruch concerto (and thereby a 
certain utility outcome of 2) in the Concert subgame, which is again observed knowledge that precedes the current Lecture 
subgame.

Before concluding this section, we remark on the use of Levi’s lexicographic IP decision rule in this example. The primary 
purpose of the example is to illustrate forward induction in sequential games with ambiguity, as a means for the players 
to avoid the epistemic entanglement using sufficient observables. Given that both players possess vacuous knowledge about 
each other’s strategies, this lexicographic decision rule (i.e. E-admissibility first, with �-maximin as secondary security) 
allows the players to arrive at a unique strategy. As discussed, E-admissibility alone reduces the admissible options only to 
the infinite number of rationalizable strategies. On the other hand, if both players endorse �-maximin without consideration 
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for E-admissibility, it would hinder Isaac’s ability to perform forward induction and make use of Sidney’s suggestion for the 
Concert game as evidence to guide his own choice. In Isaac’s view, Sidney’s strategy needs not be Nash, if he is not bound 
by E-admissibility.

We do not defend the lexicographic rule as the “correct” rule for this game. Nor do we preclude the possibility that 
other IP decision rules may offer sensible alternative analyses that deliver a unique strategy at the end, and to help the 
players avoid the epistemic entanglement. In fact, one may question the merits of the lexicographic rule, on the grounds 
of information value. It is understood that the lexicographic rule does not necessarily respect the value of cost-free, new 
information [25]. The mere suggestion by Sidney that they might play the Concert game, despite being a hypothetical one, is 
enough to steer the game towards the unique outcome that maximizes Sidney’s utility globally, but not Isaac’s. The answers 
to some questions remain open for further research. For example: (i) What was Isaac’s assessment on the net value [15] of 
his total evidence? and (ii) In general, what should a player do when their total evidence incurs a negative net value?

6. Discussion

We have discussed how imprecise probabilities can help an agent to update their temporal credence with respect to the 
total evidence, in case a sufficient and observable reduction to it can be found. A question that could have been asked in the 
first place is whether the sufficiency requirement is necessary. In other words, instead of worrying about finding a sufficient 
observable event F to serve as a reduction, why don’t we consider IP models for the total evidence pair (F , Kt,M(F )) as 
in (1)?

The kind of imprecise probabilities that we employ in this paper may not be able to capture all varieties of uncertainty 
and ignorance that a rational agent may have. An IP model is a collection of probabilities defined on a common state space 
associated with a common sigma field. IP models are useful when the agent is unable to pinpoint their credence function in 
relation to their corpus of knowledge, nevertheless seeks to update their credence as new information is learned. However, 
the agent must be certain about their corpus of knowledge, for it is the basis on which to derive any credence at all, precise 
or otherwise. Expression of uncertainty that pertains to the act of knowing, such as captured by the phrase “I’m not sure if 
I know F ”, calls for constructs such as probabilities of higher types as advocated by Jack Good [11]. In contrast to IP models, 
however, higher types of probabilities are fuzzy not only in themselves, but also in the inequalities that can express them. 
They pose a different challenge in terms of their operationalization, and are therefore out of scope for this paper.

Another open question is whether it is always possible for the agent to find an observable sufficient reduction to their 
total evidence. We surmise the answer may not be categorically affirmative. In our formulation of the agent’s corpus of 
knowledge (1), the event Kt,M(F ) that signifies the attainment of the observational report F depend not only on the time of 
observation t , but also the method M through which the observation of F can be made. For certain method M , to ascertain 
the event Kt,M(F ), or any sufficient reduction of it, may well be infeasible for the agent. For example, the measurement of 
certain complex scientific phenomena is viable only in theory, or may be too costly to perform. Nevertheless, if the agent 
can identify an affordable and practically observable sufficient reduction for which only ambiguous credence is available, 
they should prefer it to an unattainable one for which precise credence is available. As demonstrated in this paper, the 
agent may avoid the epistemic entanglement and extract meaningful inference from the former, using the tools of imprecise 
probabilities.
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