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Abstract  

A familiar defense of Personalist or Subjective Bayesian theory is that, under a variety of 

sufficient conditions, asymptotically – with increasing shared evidence – almost surely, each 

non-extreme, countably additive Bayesian opinion, when updated by conditionalization, 

converges to certainty that is veridical about the truth/falsity of hypotheses of interest.  Then, 

with probability 1 over possible evidential histories, personal probabilities track the truth.  In this 

note we examine varieties of failures of these asymptotics.  In an extreme case, conditional 

probabilities are deceptive when they converge to certainty for a false hypothesis.   We establish 

that proposals for so-called “modest” credences, offered by Elga (2016) and by Nielsen and 

Stewart (2019) in response to a concern about Bayesian orgulity raised by Belot (2013), instead 

support deceptive credences.  We argue that deceptive credences are not modest, but for a reason 

different than Belot adduces.  

 

1. Introduction.  

In this note we continue an old discussion of some familiar results about the asymptotics of 

Bayesian updating (aka conditionalization1) using countably additive2 credences.  One such 

result (due to Doob (1953), with details reported in Section 2) asserts that, for each hypothesis of 

interest H, with the exception of a probability 0 “null” set of data sequences, the Bayesian 

agent’s posterior probabilities converge to the truth value of H.  Almost surely, the posterior 

                                                
1 To model changes in personal probability when learning evidence e, Bayesian conditionalization requires using 
the current conditional probability function P(× | × , e) as the updated conditional probability P’(× | × ) upon learning 
evidence e. 
2 We use the languages of events to express these conditions.  Let P(×) be a probability function.  Let E1, …, Ek be k-
many pairwise disjoint events and E their union:  Ei Ç Ej = Æ if i ¹ j, and E = Èi Ei.   Finite additivity requires: P(E) 
= ∑ P(𝐸%&

%'( ).   Let E1, …, Ek, … be countably many pairwise disjoint events and E their union:  Ei Ç Ej = Æ if i ¹ j, 
and E = Èi Ei.   Countable additivity requires: P(E) = ∑ P(𝐸%+

%'( ).   
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credences converge to the value 1 if H is true, and to 0 if H is false.  So, with probability 1, this 

Bayesian agent’s asymptotic conditional credences are veridical: they track the truth of each 

hypothesis under investigation.  This feature of Bayesian learning is often alluded to in a 

justification of Bayesian methodology, e.g., Lindley (2006, chapter 11) and Savage (1972, 

section 3.6): Bayesian learning affords sound asymptotics for scientific inference.  

 

In Section 3, we explore the asymptotic behavior of conditional probabilities when these 

desirable asymptotics fail and credences are not veridical.  We identify and illustrate five 

varieties of such failures, in increasing severity.  An extreme variety occurs when conditional 

probabilities approach certainty for a false hypothesis.  We call these extreme cases episodes of 

deceptive credences, as the agent is not able to discriminate between becoming certain of a truth 

and becoming certain of a falsehood.3  Result 1 establishes a sufficient condition for credences to 

be deceptive.  In Appendix A, we discuss four other, less extreme varieties when conditional 

probabilities are not veridical.   

 

In Section 4 we apply our findings to a recent exchange prompted by Belot’s (2013) charge that 

familiar results about the asymptotics of Bayesian updating display orgulity: an epistemic 

immodesty about the power of Bayesian reasoning.  In rebuttal, Elga (2016) argues that orgulity 

is avoided with some merely finitely additive credences for which the conclusion of Doob’s 

theorem is false.  Nielsen and Stewart (2019) offer a synthesis of these two perspectives where 

some finitely additive credences display what they call (understood as a technical term) 

reasonable modesty, which avoids the specifics of Belot’s objection.  Our analysis in Section 4 

shows that these applications of finite additivity support deceptive credences .  We argue that it is 

at least problematic to call deceptive credences “modest” in the ordinary sense of the word  

‘modest’ when deception has positive probability. 

 

                                                
3  Deceptive credence is a worse situation for empiricists than what James (1896, Section 10) notes, where he 
famously writes, 

But if we are empiricists [pragmatists], if we believe that no bell in us tolls to let us know for certain when truth is in 
our grasp, then it seems a piece of idle fantasticality to preach so solemnly our duty of waiting for the bell. 

It is not merely that the investigator fails to know when, e.g., her/his future credences for an hypothesis remain 
forever within epsilon of the value 1.  With deceptive credences, the agent conflates asymptotic certainty of true 
statements with asymptotic certainty of false statements.  The two cases become indistinguishable!   
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2. Doob’s (1953) strong law for asymptotic Bayesian certainty. 

For ease of exposition, we use a continuing example throughout this note.  Consider a Borel 

space of possible events based on the set of denumerable sequences of binary outcomes from 

flips of a coin of unknown bias using a mechanism of unknown dynamics.  The sample space 

consists of denumerable sequences of 0s (tails) and 1s (heads).  The nested data available to the 

Bayesian investigator are the growing initial histories of length n, hn, arising from one 

denumerable sequence of flips, which corresponds to the unknown state.  The class of 

hypotheses of interest are the elements of the Borel space generated by such histories.   

 

For example, an hypothesis of interest H might be that, with the exception of some finite initial 

history, the observed relative frequency of 1’s remains greater than 0.5, regardless whether or not 

there is a well defined limit of relative frequency for heads.  Doob’s result, which we review 

below, asserts that for the Bayesian agent with countably additive credences P over this Borel 

space, with the exception of a P-null set of possible sequences, her/his conditional probabilities, 

P(H | hn) converge to the truth value of H. 

 

Consider the following, strong-law (countably additive) version of the Bayesian asymptotic 

approach to certainty, which applies to the continuing example of denumerable sequences of 0s 

and 1s.4  The assumptions for the result that we highlight below involve the measurable space, 

the hypothesis of interest, and the learning rule. 

 

 The measurable space <X, B>.  Let Xi (i = 1, …) be a denumerable sequence of sets, each 

equipped with an associated, atomic s-field Bi, where if xi Î Xi then {xi} Î Bi.  That is, the 

elements of Xi are the atoms of Bi.   Xi is the state-space and Bi is the set of the measurable events 

for the ith experiment.  Form the infinite Cartesian product X = X1 ´ X2 ´ … of all sequences x = 

(x1, x2, …), where xi Î Xi.  The s-field B is generated by the measurable rectangles from X: the 

sets of the form A = A1 ´ A2 ´ … where Ai Î Bi and Ai = Xi for all but finitely many values of i.  B 

                                                
4 See, also, Theorem 2, Section IV of Schervish and Seidenfeld (1990). 
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is the smallest s-field containing each of the individual Bi.  As {xi} Î Bi for each xi Î Xi, also B 

is atomic with atoms the sequences x.  

Each hypothesis of interest H is an element of B.  That is, in what follows, the result 

about asymptotic certainty applies to an hypothesis H provided that it is “identifiable” with 

respect to the s-field, B, generated by finite sequences of observations.5  These finite sequences 

constitute the observed data. 

  

We are concerned, in particular, with tracking the nested histories of the initial n experimental 

outcomes:             hn = (x1, …, xn), for n = 1, 2, …  

That is, for x = (x1, x2, … ) Î X, let hn(x) = (x1, …, xn) be the first n-terms of x.    

 

The probability assumptions.  Let P be a countably additive probability over the 

measurable space <X, B>, and assume there exist well-defined conditional probability 

distributions over hypotheses H Î B, given the histories hn: P( H | hn), n = 1, … .  

 

The learning rule for the Bayesian agent: Consider an agent whose initial (“prior”) joint 

credences are represented by the measure space <X, B, P >.  Let Pn be this agent’s (“posterior”) 

credences over <X, B> having learned the history hn.   

Bayes’ Rule for updating credences requires that  Pn(H) = P( H | hn). 

 

The result in question, which is a substitution instance of Doob’s (1953 T.7.4.1), is as follows: 

For H Î B, let IH: X ® {0,1} be the indicator for H.  IH(x) = 1 if xÎ H and IH(x) = 0 if xÏ H.  

The indicator function for H identifies the truth value of H.   

• Asymptotic Bayesian Certainty:  For each H Î B,   

P{x: limn®¥ Pn(H) = IH(x)} = 1. 

                                                
5 See Schervish and Seidenfeld (1990), Examples 4a and 4b for illustrations where H is not an element of B and 
where the asymptotic certainty result fails. 
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In words, subject to the conditions above, the agent’s credences satisfy asymptotic certainty 

about the truth value of the hypothesis H.  For each measurable hypothesis H, and with respect to 

a set SH of infinite sequences x that has “prior” probability 1, for each x in SH her/his sequence of 

“posterior” opinions about H, P(H| hn(x)), converges to probability 1 or 0, respectively, about the 

truth or falsity of H.   

 

To summarize: For each x in SH, as n ® ¥, the sequence of conditional probabilities, P(H| hn(x)), 

asymptotically correctly identifies the truth of H or of Hc by converging to 1 for the true 

hypothesis in this pair.  In this sense, asymptotically, the Bayesian agent learns whether H or Hc 

obtains.   

Definition: Call such states veridical about the truth of H versus Hc.6   

In other words, the non-veridical states constitute the failure set for Doob’s result. 

 

3. Veridical versus Deceptive states and their associated credences.   

Next, we examine details of conditional probabilities given elements of the failure set, even 

when the agent’s credences are countably additive and the other assumptions in Doob’s result 

obtain.  Specifically, consider the countably additive Bayesian agent’s conditional probabilities, 

P(H|hn), in sequences of histories that are generated by points x in the failure set, 𝑆-𝐜  – the 

complement to the distinguished set of veridical states.  It is important, we think, to distinguish 

different varieties of non-veridical states within the failure set. 

 

At the opposite pole from the veridical states, the states in SH – states whose conditional 

probabilities converge to the truth about H – are states whose histories create conditional 

probabilities that converge to certainty about the false hypothesis in the pair {H, Hc}.  

Define x as a deceptive state for hypothesis H if P(H|hn(x)) converges to 1 - IH(x).   

 

For deceptive states, the agent’s sequence of posterior probabilities also creates asymptotic 

certainty.  This sense of certainty is introspectively indistinguishable to the investigator from the 

                                                
6 For ease of exposition, where the context makes evident the hypothesis H in question, we refer to states as 
veridical or deceptive simpliciter. 
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asymptotic certainty created by veridical states, where asymptotic certainty identifies the truth.  

Thus, to the extent that veridical states provide a defense of Bayesian learning – the observed 

histories hn(x) move the agent’s subjective “prior” for H towards certainty in the truth value of H 

– deceptive states move the agent’s subjective credences towards certainty for a falsehood.  

Thus, for the very reasons that states in SH underwrite a Bayesian account of Bayesian learning 

of H, deceptive states frustrate such a claim about H.  Then, Doob’s result serves a Bayesian’s 

need provided that the Bayesian agent is satisfied that, with probability 1, the actual state is 

veridical rather than deceptive with respect to the hypothesis of interest.    

 

When the failure set for an hypothesis H is deceptive, then the investigator’s credences about H 

converge to 0 or to 1 for all possible data sequences.  But this convergence is logically 

independent of the truth of H since the investigator is unable to distinguish veridical from non-

veridical data histories.   

 

Less problematic than being deceptive, but nonetheless still challenging for a Bayesian account 

of objectivity, is a non-deceptive state x where for each e  > 0, infinitely often  

|P(H|hn(x)) - IH(x)|  >  1-e. 

Then, with respect to hypothesis H, infinitely often x induces non-veridical conditional 

probabilities that mimic those from a deceptive state.   

Definition: Call such a state intermittently deceptive for hypothesis H. 

 

Consider a non-veridical state where, for each e  > 0, infinitely often |P(H|hn(x)) - IH(x)| < e. 

Definition: Call such a state intermittently veridical for hypothesis H. 

 

Within the failure set for an hypothesis, the following partition of non-veridical states appears to 

us as increasingly problematic for a defense of Bayesian methodology, in the sense that seeks 

asymptotic credal certainty about the truth value of the hypothesis driven by Bayesian learning.  

In this list, we prioritize avoiding deception over obtaining veridicality.7: 

                                                
7 We note in passing that the categories may be further refined by considering sojourn times for events that are 
required to occur infinitely often.  Also, the categories may be expanded to include, d-veridical and d-deceptive, 
where for some d > 0,  conditional probabilities, P(H|hn(x)), accumulate (respectively) to within d of IH(x) and to 
within d of 1 - IH(x).  We do not consider these variations here. 
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(A) states that are intermittently veridical but not intermittently deceptive; 

(B) states that are neither intermittently veridical nor intermittently deceptive; 

(C) states that are both intermittently veridical and intermittently deceptive8; 

(D) states that are intermittently deceptive but not intermittently veridical; 

(E) states that are deceptive.  

 

We find it helpful to illustrate these categories within the continuing example of sequences of 

binary outcomes.   Consider the set of denumerable, binary sequences: X = {x: N+ ® {0,1} }.  

That is, in terms of the structural assumptions in Doob’s result, Xi = {0,1}; each Bi  is the 4-

element algebra {Æ, {0}, {1}, {0,1} }, for i = 1, 2, …; and the inclusive s-field B is the Borel s-

algebra generated by the product of the Bi.     

 

First, if H is defined by finitely many coordinates of x (a finite dimensional rectangular event) 

then Pn(H) converges to the indicator function for H, IH, after only finitely many observations.  

Then SH = X and all states are veridical.  That is, there is no sequence where the conditional 

probabilities Pn(H) fail to converge to IH.  Moreover, this situation obtains regardless whether P 

is countably or merely finitely additive, provided solely that P(E | hn) is a conditional probability 

that satisfies the following propriety condition: P(B|A) = 1 whenever Æ ¹ A Í B.         

 

Next,  consider an hypothesis that is logically independent of each finite dimensional rectangular 

event, an hypothesis that is an element of the tail s-sub-field of B.   For instance, note that each 

sequence x has a well-defined lim inf and lim sup of the relative frequency for the digit 1.  Let 

L(x)= l be this lim inf and U(x) = u be this lim sup.  Then the set of ordered pairs {<l,u>: 0 £ l £ u 

£ 1} partitions X into B-measurable events.  Each ordered pair <l,u> corresponds to a B-

                                                
8 Our understanding is that case (C) satisfies the conditions for what Belot (2013) calls a “flummoxed” credence.  
Weatherson (2015) discusses varieties of “open minded” credences, including those that are “flummoxed,” in 
connection with Imprecise Probabilities.  Here, we focus on failures of veridicality for coherent, precise credences. 
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measurable subset of X with cardinality of the continuum.   Figure 1, below, graphs these points 

in the isosceles right triangle with corners <0,0>, <1,1> and <0,1>. 

 
FIGURE 1 

    U(s) 

         <0,1>                              <1,1> 

 

 

 

        <0,0>                                   L(s) 

                      

Isosceles right triangle with corners <0,0>, <1,1> and <0,1> 

 

Let H be the subset of X of sequences with a well-defined limit of relative frequency for the digit 

1.   In Figure 1, H corresponds to the set of ordered pairs <l,u> with l = u, the (blue) line of 

points along the main diagonal.   

 

For a countably additive personal probability that satisfies de Finetti’s (1937) condition of 

exchangeability, this subset H of X has personal “prior” probability 1, P(H) = 1.  Also, assume 

for convenience that this probability P is not extreme within the class of exchangeable 

probabilities: 0 < P({1}) < 1.  Then for each sequence x in X, P(hn(x)) > 0, and trivially, also 

P(H|hn(x)) = 1.  For the result on asymptotic Bayesian certainty, then SH = H.  However, on the 

complementary set, for x Î 𝑆-/ 	the conditional probabilities satisfy: P(H | hn(x)) = 1; hence, each 

x Î 𝑆-/  is deceptive: category (E).  Moreover, under these conditions, when a state is not 

veridical then it is deceptive: the posterior probability converges to 1- IH(x).    

Definition:  Call a failure set 𝑆-/ 	deceptive if each state in the failure set is deceptive for H.    

        Also, in this case we say that the associated credence is deceptive for H. 

 

We summarize this elementary finding as follows:  
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Result 1  Suppose that the credence function treats each possible initial history hn as not 

“null”: P(hn(x)) > 0. Then for each hypothesis H (¹ W) for which P(H) = 1, the failure-set 

for H is not empty and deceptive.  

Moreover, if the space is uncountable, so that there is an uncountable partition of the space each 

of whose elements is an uncountable set, as depicted in Figure 1, then we have the following as 

well: 

Corollary:  For each finitely additive probability P on a space of denumerable sequences 

of (logically independent) random variables, where each initial history hn is not “null,” 

there exists an hypothesis H, with P(H) = 1, whose failure set 𝑆-/ 	is an uncountable set, 

and that failure set is deceptive. 

 

The non-veridical states, x Î 𝑆-/ , can populate each of the other four categories, (A) – (D).  We 

discuss these in Appendix A.   

 

4.  Reasonably modest but deceptive failure sets.  

Next, we apply these finding to a recent debate about what Belot (2013) alleges is mandatory 

Bayesian orgulity.  We understand Belot’s meaning as follows.  For a Bayesian agent who 

satisfies, e.g., the conditions for Doob’s result, the set of samples where the desired asymptotic 

certainty fails for an hypothesis H (the so-called “failure set” for H) has probability 0.  

Nonetheless, this failure set may be a “large” or “typical” event when considered from a 

topological perspective.  Specifically, the failure set may be comeager with respect to a 

privileged product topology for the measurable space of data sequences.  As we understand 

Belot’s criticism, such a Bayesian suffers orgulity because she/he is obliged by the mathematics 

of Bayesian learning to assign probability 0 to the possible evidence where the desired 

asymptotic result fails, even when this failure set is comeager.  

 

In a (2016) reply to Belot’s analysis, A. Elga focuses on the premise of countable additivity in 

Doob’s result.  Countable additivity is not required in either Savage’s (1972) nor de Finetti’s 

(1974) theories of Bayesian coherence.  Elga gives an example of a merely finitely additive (and 

not countably additive) probability over denumerable binary sequences and a particular 

hypothesis H where with positive probability (in fact, with probability 1) the investigator’s 
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posterior probability fails to converge to the indicator function for H.  So, not all finitely additive 

coherent Bayesians display orgulity.  

 

M. Nielsen and R. Stewart (2019) extend the debate by explicating what they understand to be 

Belot’s rival account of reasonable modesty of Bayesian conditional probabilities. They offer a 

reconciliation of Elga’s rebuttal and Belot’s topological perspective.   For Nielsen and Stewart, a 

credence function is modest for an hypothesis H provided that it gives (unconditional) positive 

probability to the failure set for the convergence of posterior probabilities to the indicator 

function for H.  By this account, each credence in the class of countably additive credences is 

immodest over all hypotheses that are the subject of the asymptotic convergence result but have 

non-empty failure sets.  Since requiring modesty for all such hypotheses is too strong of a 

condition even for (merely) finitely additive credences – as per the Corollary to Result 1, above – 

Nielsen and Stewart propose a standard of reasonable modesty. This condition requires modesty 

solely for failure sets that are typical in the topological sense, for some privileged topology. 

 

With their Propositions 1 and 2, Nielsen and Stewart point out that there exist a class of merely 

finitely additive credences (with cardinality of the continuum) such that each credence function 

in this class assigns unconditional positive probability (even probability 1) to each comeager set.  

Then, such a credence displays reasonable modesty for each failure set that is “typical.”   

 

Below, we show that the reasonably modest credences that Nielsen and Stewart point to with 

their Proposition 1, nonetheless, mandate deceptive failure sets for specific hypotheses.  And as 

we explain (in Appendix B), Nielsen and Stewart’s Proposition 2 provide reasonably modest 

credences in their technical sense at the price of making it impossible to learn about hypotheses 

that concern unobserved parameters, in all familiar statistical models.   

 

First we argue that this sense of “modesty” is mistaken when deception is not a null event, 

regardless whether the modesty is reasonable or not.  When the investigator’s credences are 

merely finitely additive, with respect to a particular hypothesis the failure set for Doob’s result 
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may have positive prior probability, as is well known.9  In such cases, the investigator’s 

credences are called modest according to Nielsen and Stewart.  Suppose, further, that such a 

modest credence also has a deceptive failure set.  Then, each state is either veridical or 

deceptive.  But the investigator behaves just as though asymptotic certainty tracks the truth.  That 

is, the fact that the set of deceptive states (for a particular hypothesis) has positive probability – 

P(𝑆-𝐜 ) > 0  rather than  P(𝑆-𝐜 ) = 0 – the fact that the investigator’s credence is “modest,” is 

irrelevant to the investigator’s decision making.  Here is why. 

 

Let H be an hypothesis, and suppose that each state is either veridical for H or deceptive for 

H.  Then, for each state x, the sequence {P(H | hn(x)): n = 1,2,…} converges to 1 if and only if 

either x is veridical and in H, or if x is deceptive and in Hc.  And {P(H | hn(x)): n = 1,2,…} 

converges to 0 if and only if x is veridical and in Hc, or if x is deceptive and in H.  Hence, the 

investigator becomes asymptotically certain about the truth of H no matter what data are 

observed.  This analysis holds regardless of what prior probability the investigator assigns to H 

and regardless how probable is the failure set.  The modesty of P for H, namely that P(𝑆-𝐜 ) > 0, is 

irrelevant to this conclusion.  And so too, it is irrelevant to this conclusion whether the modesty 

of P for H is reasonable or not. It is irrelevant whether 𝑆-𝐜  is a comeager set or not. 

 

To put this analysis in behavioral terms, suppose the Bayesian investigator faces a sequence of 

decisions.  These decisions might be practical, with cardinal utilities that reflect economic or 

legal, or ethical consequences.  Or, these decisions might be cognitive with epistemically 

motivated utilities, e.g., for desiring true hypotheses over false ones, or for desiring more 

informative over less informative hypotheses.  Or, these might form a mixed sequence of 

decisions, with some practical and some cognitive.  Suppose each decision in this sequence rides 

on the probability for one specific hypothesis H and, regarding the corresponding sequence of 

Bayesian conditional probabilities for H that parallel these decisions, the investigator’s credence 

is deceptive for H.  Then, asymptotically, the investigator’s sequence of decisions will 

be determined by the asymptotic certainty – the conditional credence for H of 0 or 1 – that 

surely results, no matter which sequence of observations obtains.  But if also the investigator has 

                                                
9 Moreover, when credences are merely finitely additive, the investigator may design an experiment to insure 
deceptive Bayesian reasoning.  For discussion see Kadane et al. (1996). 
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a positive unconditional probability for deception, this “modesty” plays no role in 

her/his sequence of decisions.  The “modesty” reported by her/his unconditional probability 

of deception, P(𝑆-𝐜 ) > 0, be it a large or a small positive probability, is irrelevant to the sequence 

of decisions that she/he makes.  When a failure set is both deceptive and non-null, the Bayesian 

investigator ignores this in her/his decision making, treating all certainties alike.  Just as if P(𝑆-𝐜 ) 

= 0.  We do not agree, then, that the investigator’s credences are modest for hypothesis H when 

the failure set is deceptive and P(𝑆-𝐜 ) > 0. 

 

One example in which the conditions of this analysis hold was given by Elga (2016) and is an 

instance of our continuing example about binary sequences.  In Elga’s example, H is the 

hypothesis that the binary sequence satisfies L(x) = U(x) = .9.  In his example the failure set 𝑆-/  is 

deceptive with probability 1, i.e., P{x: x is deceptive for H} = 1.10    

 

A large class of examples of this kind arise by using Proposition 1 of Nielsen and Stewart.   Here 

is how Proposition 1 applies to the continuing example of the Borel space, B, of binary sequences 

on {0,1}.  Let P1 be a non-extreme, exchangeable countably additive probability.  That is, in 

addition to being an exchangeable probability, for each finite initial history, i.e., for each of the 

2n possible sequences hn, and for each n = 1, 2, …, then P1(hn) > 0.  By Doob’s result, P1 is not 

modest (in Nielsen and Stewart’s sense) because, for each hypothesis H its failure set is P1-null, 

P1(𝑆-/ ) = 0.   Let P2 be a finitely additive, 0-1 (“ultrafilter”) probability with the property that if E 

is a comeager set in B, then P2(E) = 1.11   Fix 0 < y < 1 and define P = yP1 + (1-y)P2, the y:(1-y) 

mixture of these two probabilities.   

 

                                                
10 By contrast, in Cisewski et al’s (2018) version of Elga’s example, for the same hypothesis H, the failure set, 𝑆-/  = 
X, is the whole space; whereas, for each x and for each n, P(H|hn(x)) = ½ = P(H).  Then the failure set generates 
solely indecisive conditional credences: each state is neither intermittently veridical nor intermittently deceptive – 
category (B). 
  
11 Existence of such 0-1 finitely additive probabilities is a non-constructive consequence (using the Axiom of 
Choice) that the comeager sets form a filter: They have the finite intersection property and are closed under 
supersets. 



 

 13 

Nielsen and Stewart’s Proposition 1 establishes that P is reasonably modest, since for each 

hypothesis H, if the failure set 𝑆-/  is comeager, then P(𝑆-/ ) > 0.  However, as we show next, 

Proposition 1 creates reasonably modest credences that, in the Continuing Example, have failure 

sets for specific hypotheses that have positive probability, are comeager, and are deceptive.  

 

Result 2  In the continuing example, let H be the hypothesis that the binary sequence 

belongs to the set of maximally chaotic relative frequencies, corresponding to the (red) 

point <0,1> in Figure 1.  This is the set of sequences with lim inf (rel freq “1”) = 0 and 

lim sup (rel freq “1”) = 1.  Then the failure set for H under P, 𝑆-𝐜 , has positive probability, 

P(𝑆-𝐜 ) = (1-y) > 0, is comeager, and is deceptive. 

 

Proof:  Because both P1(H) = 0 and for each history hn, P1(hn) > 0, then P1(H | hn) = 0.   

Under P2 there is a distinguished binary sequence 𝑥23in the following sense.  The finite initial 

histories form a binary branching tree: for each n there are 2n distinct histories hn.  Because P2 is an 

“ultrafilter” distribution, then for each n and for each possible finite initial history hn of length n, 

P2(hn) = 0 or P2(hn) = 1.  So, there is one and only one sequence 𝑥23where, for each n,  

P2( hn(𝑥23) ) = 1.12  That is, for each sequence x’ ¹ 𝑥23 there exists an m such that for all n > m,  

P2( hn(x’) ) = 0.  Thus, for each x’ ¹ 𝑥23there exists an m such that for all n > m,  

P(H |hn(x’) ) = P1(H |hn(x’) ) = 0.13 

Specifically, the failure set 𝑆-𝐜  is either the set H – {𝑥23} (if the sequence 𝑥23 belongs to H), or it is 

the set H È {𝑥23} (if the sequence 𝑥23 belongs to Hc).  In either case, the failure set 𝑆-𝐜   is 

deceptive for H.  According to Cisewski et al. (2018) H is a comeager set.  Evidently then, 𝑆-𝐜  is a 

comeager set where P(𝑆-𝐜 ) = (1-y)P2(𝑆-𝐜 ) = (1-y)P2(H) = (1-y) > 0.14QED 

 

                                                
12 Note well that P2 is merely finitely additive as P2(𝑥23) = 0, since each unit set {x}, each denumerable sequence x, 
is a meager set.  
13 More generally, if x’ ¹ 𝑥23 the agent’s conditional probabilities become and stay immodest, as they become the 
sequence of countably additive conditional probability function, P1(× |hn(x’) ).  So, though P is modest, with P-
probability 1 its conditional credences become and stay immodest.  
14 Similarly, Result 2 applies to each hypothesis H of a comeager set whose complement includes the support of 
the countably additive, immodest probability P1.  
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We emphasize that certainty with deception is indistinguishable from certainty that is veridical.  In 

the context of Result 2, the investigator can tell when the observed history hn differs from the 

history that would be observed in the one distinguished sequence, hn(𝑥23).  But that recognition 

provides no basis for altering the certainty, P(H | hn) = 0, that results once the observed history 

departs from the distinguished one, once hn ¹ hn(𝑥23).  Regardless the magnitude of the 

(unconditional) probability of deception, P(𝑆-𝐜 ), the investigator cannot identify when certainty is 

deceptive rather than when it is veridical.  Her/his conditional credence function, P(× | hn), already 

takes into account the total evidence available.  Certainty is certainty, full stop. 

 

We have argued above that a credence P is not epistemically modest where there is an hypothesis 

H that has a deceptive failure set 𝑆-𝐜 	that is not P-null.  Then, in the continuing example, each 

probability P created according to Proposition 1 fails this test of epistemic modesty. 

 

In Summary, it is our view that having a positive probability over non-veridical states is not 

sufficient for creating an epistemically modest credence because categories (D) or (E) may have 

positive prior probability as well.  Indeed, in the continuing example, each probability P created 

according to Proposition 1 fails this test of epistemic modesty. 

 

5. We summarize the principal conclusion of this note: 

• When the failure set for an hypothesis is deceptive and not null, that is in conflict with an 

attitude of epistemic modesty about learning that hypothesis.   

Regarding the asymptotics of Bayesian certainties, e.g. Doob’s result, neither of Nielsen and 

Stewart’s concepts of modesty, nor reasonable modesty distinguishes deceptive from other 

varieties of failure sets.  According to Result 2, in the Continuing Example each credence P that 

satisfies Nielsen and Stewart’s Proposition 1 admits an hypothesis whose failure set is P-non-

null, comeager, and deceptive.  
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Appendix A 

 

Here, we discuss and illustrate categories (A) – (D) of failure sets using the continuing example.  

Restrict the exchangeable “prior” probability P so that, in terms of de Finetti’s Representation 

Theorem, the “mixing prior” for the Bernoulli parameter is smooth, e.g. let it be the uniform  

U[0, 1].  Choose 0 < c < d < 1 and consider the hypothesis H = {x: c £ L(x) £ U(x) £ d}.  So, with 

the “uniform” prior, P(H) = d-c; so, 1 > P(H) > 0.   

 

The set of veridical states for this credence and hypothesis includes each sequence where,  

either c < L(x) £ U(x) < d – in which case H obtains and  limn ® ¥ P(H | hn)  = 1, 

or, either U(x) < c or L(x) > d – in which case Hc obtains and limn ® ¥ P(H | hn)  = 0.15 

 

The non-veridical states (the failure set) 𝑆-/ , the set of sequences where P(H | hn(x)) does not 

converge to the indicator IH(x), include states x such that L(x) < c < U(x) or L(x) < d < U(x).  For 

such a state x, P(H|hn(x)) fails to converge and 

lim inf  P(H|hn(x)) = 0 and lim sup  P(H|hn(x)) = 1. 

Then x is both intermittently veridical and intermittently deceptive for H – category (C). 

 

In order to illustrate the other three categories of non-veridical states, (A), (B), and (D), the 

following adaptation of the previous construction suffices. Depending upon which category is to 

be displayed, consider a state x such that the likelihood ratio      

     P(hn(x)|H) / P(hn(x)|Hc) 

oscillates with suitably chosen bounds, in order to have the sequence of posterior odds,  

Pn(H) / Pn(Hc) 

oscillate to fit the category.  This method succeeds because, as is familiar, the posterior odds 

equals the likelihood ratio times the prior odds: 

Pn(H) / Pn(Hc)  =  [P(hn(x)|H) / P(hn(x)|Hc)] ´ [P(H) / P(Hc)]. 

 

                                                
15  When either c = L(x) and U(x) < d, or c < L(x) and U(x) = d, or c = L(x) and U(x) = d, then the behavior of  
limn ® ¥ P(H | hn) is not determined.  This issue is relevant to the illustration of case (A), with clause (ii), below. 
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We illustrate category (A) using the same hypothesis H = {x: c £ L(x) £ U(x) £ d} and credence 

as above.  For a non-veridical state in category (A), consider a sequence x such that both: 

(i) c < U(x) < d.  Then x is intermittently veridical as, infinitely often, the relative 

frequency of ‘1’ falls strictly between c and d, and 

(ii) L(x) = c  but there exists 0 < r < ¥,  where for only finitely many values of n,  

P(hn(x)|H) / P(hn(x)|Hc)]  <  r – so that x is not intermittently deceptive, 

and infinitely often P(hn(x)|H) / P(hn(x)|Hc)] = r – so that x is not veridical. 
 
 

Appendix B 
 

In this appendix we consider Nielsen and Stewart’s Proposition 2, and related approaches for 

creating a reasonably modest credence, P’.  We adapt Proposition 2 to the continuing example of 

the Borel space of denumerable binary sequences.  Consider a finitely additive probability P’ on 

the space of binary sequences in accord with Nielsen and Stewart’s Proposition 2, where 

(i) P’(hn) > 0  for each possible finite initial history;  

and (ii) P’(E) = 1, whenever E comeager.  

 

Nielsen and Stewart’s Proposition 2 asserts that, however P’ is defined on the field of finite 

initial histories, which space we denote by A , A Ì B, then P’ may be extended to a finitely 

additive probability that is extreme with respect to the field of comeager and meager sets in B.  

For example, if P1 is a countably additive probability on B, then P’ might agree with P1 on A, 

while P’(E) = 1 if E is a comeager set.  Then, P’ is reasonably modest in the technical sense used 

by Nielsen and Stewart since, whenever a failure set 𝑆-𝐜  is comeager, P’(𝑆-𝐜 ) = 1. 

 

We do not know whether the conclusion of Result 2 extends also to the reasonably modest 

credences P’ created according to the technique of Proposition 2.  For instance, we do not know, 

for a general P’, when an hypothesis H has a deceptive failure set 𝑆-𝐜 	with P’(𝑆-𝐜 ) > 0.  Evidently, 

we are unwilling to grant that a credence satisfying Proposition 2 is epistemically modest about 

learning an hypothesis H merely because P’(𝑆-𝐜 ) > 0 whenever 𝑆-𝐜  is a comeager set.   
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However, there is a second issue that tells against the technique of Proposition 2 for creating 

reasonable modesty.  In Proposition 1, probability values from the immodest countably additive 

credence P1 for events in the tail field of B are relevant to the values that the reasonably modest 

credence P gives these events.  And, as P1 is countably additive, the P1 probability values for tail 

events are approximated by P1 values in A.  In short, under the method used in Proposition 1, P1 

probability values for events in A constrain the reasonably modest values of P(𝑆-𝐜 ).  However, in 

Proposition 2 the P1 values in A are not relevant to the P’-values for events in the tail field.  In 

Proposition 2, the P’ probability values are stipulated to be extreme for comeager sets, regardless 

how the P’-credences are assigned to the elements of the observable A.  The upshot is that with 

P’ credences the investigator is incapable of learning about comeager sets based on Bayesian 

learning from finite initial histories. 

 

With  respect to the continuing example, Cisewski et al. (2018) establish that the set of sequences 

corresponding to the one point <0,1> in Figure 1 is comeager.  Thus, in order to assign a prior 

probability 1 to each comeager set, this agent is required to hold an extreme credence that the 

sequence has maximally chaotic relative frequencies: P’{x: x Î <0,1>} = 1.   

 

As above, let the hypothesis of interest be H = {x: x Î <0,1>}: the hypothesis that the sequence 

has maximally chaotic relative frequencies.   Then Result 1 obtains as P’(H) = 1 and P’(H | hn) = 1 

for each n = 1, 2, … .  No matter what the agent observes, her/his posterior credence about H 

remains extreme.  With credence P’, the failure set for H is the meager set (hence a P’-null set) of 

continuum many states corresponding to each point in Figure 1 other than the corner <0,1>.   

Each point in the failure set for H	is deceptive: the failure set 𝑆-𝐜 	is deceptive!16  On what basis do 

Nielsen and Stewart dismiss the deceptiveness of 𝑆-𝐜  as irrelevant to the question whether P’ is an 

appropriate credence for investigating statistical properties of binary sequences?  We speculate 

their answer is, solely, that the failure set 𝑆-𝐜 	is meager. 

                                                
16  The Corollary to Result 1 establishes that the same phenomenon occurs when Nielsen and Stewart’s Prop. 2 is 
generalized to include finitely additive credences that assign positive probability to each finite initial history and a 
positive (but not necessarily probability 1 credence) to each comeager set of sequences. 
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Propositions 1 and 2 do not exhaust the varieties of finitely additive probabilities that assign 

positive probability to each comeager set in B.  For instance, one may recombine the techniques 

from these two Propositions as follows. 

    

Let P1 be an (immodest) countably additive probability on B that assigns positive probability to 

each finite initial history.  Let P2 be a finitely additive probability defined on B obtained by the 

technique of Proposition 2, but where P1 and P2 agree on A.  So, P2(H) = 1, for the hypothesis H 

that the sequence is maximally chaotic.  Then, in the spirit of Proposition 1, define P3 as a (non-

trivial) convex combination of P1 and P2:  let 0 < x < 1 and define P3 = xP1 + (1-x)P2.  Then P3 

avoids the difficulty displayed by the probability P’ of Proposition 2, discussed above, namely 

P3(H) = 1-x < 1.  There is no prior certainty under P3 that the sequence is maximally chaotic.    

 

But P3 has its own difficulties. Here are two.  The Corollary applies to P3 with the hypothesis H’: 

that the sequence is either maximally chaotic or has a well defined limit of relative frequency. In 

Figure 1, H’ corresponds to the sequences either in the set corresponding to the point <0,1> or in 

the set of points with well-defined limits of relative frequency, where L(x) = U(x).   The P3 failure 

set for H’ is uncountable and deceptive, though meager.  Second, P3 makes all observations 

irrelevant for learning about the hypothesis H: the sequence is maximally chaotic.  This follows 

because   P3(hn | H) = P2(hn) = P1(hn) = P3(hn).   

So, for each initial history, hn   

   P3(H| hn)  =  P3(hn | H) ´ P(H) / P3(hn) = P3(H) = (1-x) 

Independent of the history hn.  


