
March 7, 2012

Characterization of Proper and Strictly Proper Scoring Rules for
Quantiles

Mark J. Schervish, Joseph B. Kadane, and Teddy Seidenfeld
Carnegie Mellon University

Abstract

We give necessary and sufficient conditions for a scoring rule to be proper
(or strictly proper) for a quantile if utility is linear, and the distribution is un-
restricted. We also give results when the set of distributions is limited, for
example, to distributions that have first moments.
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1. Introduction. In subjective Bayesian practice, elicitation is a critical matter (Sav-
age, 1971; O’Hagan, 1998; O’Hagan et al., 2006; Garthwaite, Kadane, and O’Hagan,
2005). Many papers (Kadane et al., 1980 and Garthwaite and Dickey, 1985, 1988) rely
on elicitation of quantiles even if the parametric forms they target are expressed in terms of
moments. There are two good reasons for this. First, moments are not easy to understand.
Second, moments are sensitive to extreme outliers, and may even not exist. Quantiles, on
the other hand, always exist and are more intuitive.

There are two principal methods of eliciting quantiles, the direct method and by use of
scoring rules. In the direct method, the expert or other person being elicited is asked, for
example, “what value would leave you indifferent between betting that the outcome will
be greater than the value you name and less than the value you name?”, to obtain a median
(see Dey and Liu, 2007). Other values are then obtained by bisection.

Scoring rules, by contrast, give the expert an explicit penalty that is a function of the
elicited quantile and the outcome. (Some authors, such as Gneiting and Raftery, 2007,
define scoring rules to be gains to the expert rather than penalties, in which case a minus
sign will convert results from one definition to the other.) The implicit assumption is that
the expert’s utility is linear in the score. For example, absolute error is often thought of as a
scoring rule for the median. A scoring rule is called proper if it is minimized at the desired
quantile. It is strictly proper if it is minimized only at the desired quantile. Gneiting and
Raftery (2007), following Cervera and Munoz (1996), propose a specific class of scoring
rules that they prove to be proper for a certain restricted class of distributions. Additionally
they write “We do not know whether [this class] provides the general form of proper scoring
rule for quantiles.”

To address this issue, there are three problems to overcome. The first is that the condi-
tion that a scoring rule be proper is too weak to be useful. For example, a constant function
is a proper scoring rule (because the desired quantile minimizes it), but so does every other
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possible elicited value. Hence the main focus has to be on strictly proper scoring rules.
Second, quantiles are not necessarily unique. For example, the pdf

f(x) =


1/2 0 < x < 1
1/2 2 < x < 3
0 otherwise

has the whole interval [1,2] as medians. Finally, to be valid no matter what the underlying
distribution is, one has to be careful about infinite expected scores. For example, absolute
error under a Cauchy distribution has infinite expected score for all choices of median,
making it not strictly proper.

In response to these challenges, we focus on strictly proper scoring rules (although we
find a characterization of proper scoring rules as well). We define quantiles in a way that
yield a closed interval in general (and specializes to a point in the case of an absolutely
continuous distribution with positive density at the quantile). We extend the notion of
proper scoring rule to mean that every point in this closed interval minimizes expected
score, and the notion of strictly proper scoring rule to mean that only these points do so.
Finally, our main result is valid for the class of all distributions, although we also give
results for classes of distributions having certain finite moments.

2. Characterization of proper scoring rules. In this section, we give a characteri-
zation of (strictly) proper scoring rules for a single quantile in Theorem 1. Throughout this
discussion, 0 < α < 1, P is a probability distribution over a set X of real numbers, and X
is a random variable whose distribution is P . Let F (x) = P (X ≤ x) stand for the c.d.f. of
X , and let G(x) = P (X ≥ x) be the symmetrically defined function for the upper tail. It
is useful to note that, for all a < b,

P (a < X < b) = 1−G(b)− F (a).(1)

We use the functions F and G to define quantiles.

DEFINITION 1. Let 0 < α < 1. Every real number q such that

F (x) ≥ α, and G(x) ≥ 1− α,(2)

is called an α quantile of P and an α quantile of X .

There are other definitions of quantiles, some of which provide for a unique α quantile for
each α, others of which allow for multiple quantiles, as does Definition 1. We choose the
definition above because it is symmetric with respect to the two tails of the distribution.
That is, q is an α quantile of X if and only if −q is a 1 − α quantile of −X . Some results
are easier to state or understand in terms of random variables while others are easier to state
or understand in terms of distributions. This is why Definition 1 defines quantiles both for
random variables and for distributions. If h is an extended-real-valued function defined on
IR, we use the symbols P [h(X)] and

∫
h(x)dP (x) interchangeably depending on whether

or not an explicit random variable X is understood from context.
The following lemma summarizes some useful facts about quantiles.
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LEMMA 1. Let X be a random variable with distribution P . The set of α quantiles of
X is a nonempty closed interval [qα, qα]. Also,

• If qα > qα, then G(q) = 1− α for all q ∈ (qα, q
α] and F (q) = α for all q ∈ [qα, q

α).

• If F (q) = α and t > qα, then P [q < X < t] > 0.

• If G(q) = 1− α and t < qα, then P [t < X < q] > 0.

PROOF. Define A = {x : F (x) ≥ α} and B = {x : G(x) ≥ 1−α}. Define qα = inf A
and qα = supB. Since F (x) ≥ F (qα), for all x > qα, it follows that F (qα) ≥ α. Similarly,
G(qα) ≥ 1− α. Note that both A and B are semi-infinite intervals, and both qα and qα are
finite. Every x < qα is in B and every x > qα is in A, so that qα ≤ qα. The set of quantiles
is A ∩B, which is a closed and bounded interval.

For the first bullet, if F (qα) > α, no number greater than qα is in B, hence a necessary
condition for qα > qα is F (qα) = α. Similarly, a necessary condition for qα > qα is
G(qα) = 1 − α. For every t < u in the open interval (qα, qα), F (t) = F (qα) and G(u) =
G(qα), hence the first bullet holds.

For the second bullet, it is clear that G(t) < 1− α for all t > qα. Then (1) implies

P (q < X < t) = 1−G(t)− F (q) > 1− (1− α)− α = 0.

The third bullet is proven in similar fashion, since F (t) < α for all t < qα. �
Let gα : X × R → IR be a function, where R is the set of allowed values for the

quantile of interest, e.g., the convex hull of X , or even its closure. Suppose that we want to
use gα(x, q) as the penalty to an elicitee for giving q as the α quantile of P when X = x is
observed. If the goal is to elicit an α quantile, we would like the penalty to incentivize the
elicitee to provide an α quantile for the answer.

DEFINITION 2. Let P0 be a collection of distributions over IR. We say that gα is a
proper scoring rule for the α quantiles of P0 if the following holds. For every P ∈ P0 and
for each α quantile q∗ of P , P [gα(X, q)] exists and is minimized by q = q∗. We say that gα
is strictly proper if the α quantiles of P are the only values of q that minimize P [gα(X, q)].

EXAMPLE 1. Let P0 consist of all distributions for random variables with finite mean.
It is well known that g1/2(x, q) = |x− q| is a strictly proper scoring rule for the medians of
P0.

A necessary condition for gα to be a (strictly) proper scoring rule for the α quantiles of
a set P0 is that it be (strictly) proper for the α quantiles of each subset of P0, in particular,
those distributions inP0 that are supported on at most two values, if any. Another necessary
condition for gα to be strictly proper is that, for every P ∈ P0 there exists q such that
P [gα(X, q)] <∞.

LEMMA 2. Let P0 consist of all distributions supported on the set X = {a, b}. A
scoring rule gα : X × [a, b]→ IR is proper for the α quanitles of P0 if and only if
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• there is a number d(a, b, α) such that

gα(b, q) = d(a, b, α)− α

1− α
gα(a, q),(3)

for all q ∈ [a, b], and

• gα(a, a) ≤ gα(a, b).

The scoring rule is strictly proper for the α quantiles of P0 if and only if, in addition to the
above conditions, gα(a, a) < gα(a, b).

PROOF. Let Pα be the distribution such that Pα(X = a) = α. Every number in the
interval [a, b] is an α quantile of X . A necessary condition for gα to be proper is that
Pα[gα(X, q)] be constant as a function of q. Trivially,

Pα[gα(X, q)] = αgα(a, q) + (1− α)gα(b, q).(4)

This is constant in q if and only if there is a number d(a, b, α) such that (3) holds for all
q ∈ [a, b]. Another way to understand (3) is that, aside from a shift of level, αgα(a, ·)
and (1 − α)gα(b, ·) are curves with slopes that are negatives of each other for all q ∈
[a, b]. Another necessary condition for gα to be proper comes from consideration of Pp, the
distribution such that Pp(X = a) = p.

Pp[gα(X, q)] = pgα(a, q) + (1− p)gα(b, q)

= pgα(a, q) + (1− p)
[
d(a, b, α)− α

1− α
gα(a, q)

]
= gα(a, q)

[
p− (1− p)α

1− α

]
+ (1− p)d(a, b, α).

The minimum of this expression, as a function of q, occurs at the minimum or maximum
for gα(a, ·) depending on whether the coefficient p−(1−p)α/(1−α) is positive or negative
respectively. The coefficient is positive if and only if p > α, and it is negative if and only
if p < α. Hence, a necessary condition for gα to be proper is gα(a, a) ≤ gα(a, b) with strict
inequality being necessary for strict propriety. The steps used to prove that the conditions
are necessary also show that the conditions are sufficient. �

Now, let P0 contain all distributions supported on two-points (and possibly other dis-
tributions). A necessary condition for gα to be (strictly) proper for the α quantiles of P0

is that the conditions stated in Lemma 2 hold simultaneously for all a < b. If, for each
P ∈ P0, P [gα(X, q)] has the same value (whether finite or infinite) for all q, then gα is
trivially a proper scoring rule. In particular, a function that does not depend at all on q is a
proper scoring rule.

Of course, functions of the form gα(x, q) = f(x) (including constant functions) will
be proper for every set P0 of distributions P such that P [f(X)] is defined. Such scoring
rules are not strictly proper, and they are about as uninteresting as one could imagine.
Nevertheless, such rules will be special cases of the following theorem (with s(·) being a
constant function.)
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THEOREM 1. Let P0 be a collection of probability distributions on a subset X of IR
such that, for every a, b ∈ X , P0 contains every distribution concentrated on {a, b}. Let
gα be a real-valued function defined on X ×R, where R is the convex hull of X . Then gα
is a (strictly) proper scoring rule for the α quantiles of P0 if and only if for each P ∈ P0

P [gα(X, q)] exists (is finite), and there exists a (strictly) increasing function s such that

gα(x, q)− gα(x, x) =
{
α[s(x)− s(q)] if x > q,
(1− α)[s(q)− s(x)] if x < q.(5)

PROOF. First, we prove necessity by assuming that gα is (strictly) proper for the set
of all two-point distributions. This allows us to assume that gα satisfies the two bullets in
Lemma 2. Define g∗(x, q) = gα(x, q) − gα(x, x). The second bullet of Lemma 2, namely
that gα(a, a) ≤ gα(a, b), when applied to all a < b implies, among other things, that
gα(a, q) and g∗(a, q) are monotone increasing in q for q > a and monotone decreasing in
q for q < a (with strict monotonicity in the strictly proper case). From this it follows that
g∗(x, q) ≥ 0 for all x, q.

Rewrite (3) as
d(a, b, α) = gα(b, q) +

α

1− α
gα(a, q),(6)

for all a ≤ q ≤ b. Substitute q = a and q = b on the right side of (6) and set the two results
equal to each other to obtain

gα(b, a) +
α

1− α
gα(a, a) = gα(b, b) +

α

1− α
gα(a, b),(7)

which can be rewritten as
(1− α)g∗α(b, a) = αg∗α(a, b).(8)

In other words, specifying g∗α(x, q) for x > q determines its values for x < q by (8).
Let r(q) = g∗α(0, q), which we have already shown is (strictly) increasing for q > 0 and

(strictly) decreasing for q < 0. It is more convenient to work with a monotone function
such as

s(q) =

{
r(q)
1−α if q ≥ 0,
− r(q)

α
if q < 0,

(9)

which is (strictly) increasing. Next, set the right sides of (6) and (7) equal to each other:

gα(b, q) +
α

1− α
gα(a, q) = gα(b, b) +

α

1− α
gα(a, b),

which rearranges to become

g∗α(b, q) =
α

1− α
[g∗α(a, b)− g∗α(a, q)],(10)

for a ≤ q ≤ b. Hence, for 0 ≤ q ≤ x, we have from (10) (with a = 0 and b = x),

g∗α(x, q) =
α

1− α
[r(x)− r(q)] = α[s(x)− s(q)].
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For q ≤ 0 ≤ x, we have from (10),

g∗α(x, 0) =
α

1− α
[g∗α(q, x)− g∗α(q, 0)],

Rearranging terms and using (8) and (9), we get

g∗α(x, q) = α[s(x)− s(q)].

For q ≤ x ≤ 0, we have from (10),

g∗α(0, x) =
α

1− α
[g∗α(q, 0)− g∗α(q, x)],

from which it follows that
g∗α(x, q) = α[s(x)− s(q)].(11)

Hence, we see that (11) holds whenever x ≥ q. When x < q, we apply (8) to get

g∗α(x, q) = (1− α)[s(q)− s(x)].(12)

The condition that P [gα(X, q)] exists is part of the defintion of proper scoring rule. If gα is
strictly proper, it is necessary that the minimum of P [gα(X, q)] occur only at α quantiles,
hence it is neither possible for P [gα(X, q)] = ∞ for all q nor possible for P [gα(X, q)] =
−∞ for all q. For each real t, define h∗t (x, q) = gα(x, q)− gα(x, t). Then

h∗t (x, q) =


(1− α)[s(q)− s(t)] if x ≤ min{t, q},
s(x)− αs(q)− (1− α)s(t) if q < x < t,
(1− α)s(q) + αs(t)− s(x) if t < x < q,
α[s(t)− s(q)] if x ≥ max{t, q}.

(13)

Note that h∗t (x, q), which equals the difference between the scoring rule at two possible
quantiles q and t, is bounded as a function of x for each q and t. Hence, P [gα(X, q)] is
infinite for some q if and only if it is infinite (with the same sign) for all q. So, if gα is
strictly proper, then P [gα(X, q)] is finite for all q. This completes the necessity part of the
proof.

Next, we prove sufficiency by showing that all gα with the specified form are (strictly)
proper. Let X be a random variable, with probability distribution P ∈ P0. If P [gα(X, t)]
is infinite for some t, then P [gα(X, q)] is infinite (the same sign) for all q, and gα might be
proper, but not strictly proper. For the remainder of the proof, assume that P [gα(X, t)] is
finite for all t. It now sufficies to show that P [gα(X, q)] is (uniquely) minimized when q is
an α quantile of P .

Because h∗t (x, q) = gα(x, q)−gα(x, t), P [gα(X, q)] is (uniquely) minimized at α quan-
tiles of P if and only if the following are both true:

1. If q and t are both quantiles, then P [h∗t (X, q)] = 0.
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2. If q is a quantile and t is not a quantile, then P [h∗t (X, q)] ≤ 0, with strict inequality
for unique minimization.

Let q be an α quantile of X , and let t < q. Then, we can write

P [h∗t (X, q)] = [s(q)− s(t)][(1− α)F (t)− αG(q)] + [(1− α)s(q) + αs(t)]P [t < X < q]

−
∫
(t,q)

s(x)dP (x)

= s(t)[α− F (t)] + s(q)[1− α−G(q)]−
∫
(t,q)

s(x)dP (x).(14)

First, assume that t is also an α quantile of P . Because t < q, q > qα and t < qα so
that F (t) = α and G(q) = 1 − α according to Lemma 1, and P [t < X < q] = 0. This
establishes condition 1.

Next, let q be an α quantile of X , and let t < q not be an α quantile. In this case,
G(q) ≥ 1− α, and ∫

(t,q)

s(x)dP (x) ≥ s(t)[1− F (t)−G(q)].(15)

There are two cases. (i) If G(q) = 1 − α, then Lemma 1 says that P (t < X < q) > 0,
which implies that the inequality in (15) is strict. It follows that (14) is strictly less than
[1 − α − G(q)][s(q) − s(t)] = 0. (ii) If G(q) > 1 − α, then (14) is at most [1 − α −
G(q)][s(q) − s(t)] ≤ 0 with strict inequality if s is strictly increasing. This establishes
condition 2.

Next, let q be an α quantile of X , and let t > q. Then, we can write

P [h∗t (X, q)] = [s(q)− s(t)][(1− α)F (q)− αG(t)]− [(1− α)s(t) + αs(q)]P [q < X < t]

+

∫
(q,t)

s(x)dP (x)

= −s(q)[α− F (q)]− s(t)[1− α−G(t)] +
∫
(q,t)

s(x)dP (x).(16)

First, assume that t is also an α quantile of P . Because t > q, t > qα and q < qα so
that F (q) = α and G(t) = 1 − α according to Lemma 1, and P [q < X < t] = 0. This
establishes condition 1.

Finally, let q be an α quantile of X , and let t > q not be an α quantile. In this case,
F (q) ≥ α, and ∫

(q,t)

s(x)dP (x) ≤ s(t)[1− F (q)−G(t)].(17)

There are two cases. (i) If F (q) = α, then Lemma 1 says that P (q < X < t) > 0,
which implies that the inequality in (17) is strict. It follows that (16) is strictly greater than
[α−F (q)][s(t)−s(q)] = 0. (ii) If F (q) > α, then (16) is at most [α−F (q)][s(t)−s(q)] ≤ 0
with strict inequality if s is strictly increasing. This establishes condition 2. �
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EXAMPLE 2. The scoring rule g1/2(x, q) = |x−q| in Example 1 corresponds to s(x) =
2x in Theorem 1 with g1/2(x, x) ≡ 0. If desired, one could extend this example to all
distributions by setting g1/2(x, x) = −|x|. The scoring rule would no longer be |x− q|, but
g1/2(x, q)− g1/2(x, t) would be the same as it would be in Example 1 for all x, q, t.

The negatives of the scoring rules in Theorem 6 of Gneiting and Raftery (2007) have
the form given in Theorem 1.

3. The class of probability distributions. Theorem 1 is stated with minimal as-
sumptions on the the class P0 of probability distributions for which the scoring rules are
intended to be (strictly) proper. The only assumptions are that all distributions supported
on two values are included and that the proposed scoring rule is real-valued. The definition
of (strictly) proper scoring rule imposes conditions on the mean of the scoring rule. If we
make different assumptions about P0, other scoring rules can be (strictly) proper.

EXAMPLE 3. Let P0 be the collection of symmetric unimodal distributions with finite
variance. Then each P ∈ P0 has a unique median that equals the mean. Hence, g1/2(x, q) =
(x − q)2 is strictly proper for the medians of P0. Note that distributions concentrated on
two distinct values can’t be both symmetric and unimodal, so Theorem 1 does not apply to
this example.

The conditions in Theorem 1 on the mean of gα(X, q) are necessary, but some light
can be shed on them. Take, for example, the condition that P [gα(X, q)] be finite for all
P ∈ P0, which is necessary for gα to be strictly proper. In Example 2, we noticed that
|x− q| is strictly proper for the class of all distributions that have finite mean for X . What
is the entire collection of strictly proper scoring rules for this class of distributions? The
following result helps.

LEMMA 3. Let f and h be real-valued functions of a real argument. Let P0 be the set
of all probability distributions on IR that give finite mean to f(X). Then P [h(X)] is finite
for all P ∈ P0 if and only if

sup
x

|h(x)|
1 + |f(x)|

<∞.(18)

PROOF. For the “if” direction, assume that (18) is true. Let M be the supremum in (18).
Then

P [|h(X)|] ≤MP [1 + |f(X)|] =M +MP [|f(X)|],

which is finite for every P ∈ P0. For the “only if” direction, assume that (18) is false. We
will find a P ∈ P0 such that P [|h(X)|] =∞. Let x1 be such that |h(x1)|/[1+ |f(x1)] ≥ 1.
For each n > 1, let xn 6∈ {x1, . . . , xn−1} be such that |h(xn)|/[1 + |f(xn)] ≥ n. Let

P ({xn}) =
c

[1 + |f(xn)|]n2
,
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where c is chosen to make
∑∞

n=1 P ({xn}) = 1. Then

P [|f(X)|] =
∞∑
n=1

c|f(xn)|
[1 + |f(xn)|]n2

<∞,

so that P ∈ P0. Also,

P [|h(X)|] =
∞∑
n=1

c|h(xn)|
[1 + |f(xn)|]n2

≥
∞∑
n=1

cn[1 + |f(xn)|]
[1 + |f(xn)|]n2

=∞. �

Lemma 3 lets us identify all strictly proper scoring rules for classes of distributions defined
by certain means being finite.

THEOREM 2. Let F be a collection of real-valued functions defined on IR. Let P0 be
the set of all probability distributions on IR that give finite mean to f(X) for every f ∈ F .
Define H to be the set of all functions h that satisfy (18) for all f ∈ F . Then gα is a
strictly proper scoring rule for the α quantiles of P0 if and only if there exists h ∈ H and a
strictly increasing function s such that, for all real t, gα(x, q) = h(x) + h∗t (x, q), where h∗t
is defined in (13).

PROOF. First note that all distributions supported on two points are in P0, no matter
what F is. For the “if” direction, we already showed in the proof of Theorem 1 that every
h∗t of the form (13) is strictly proper for the class of all probability measures. Adding
a function that has finite mean for all P ∈ P0 produces another strictly proper scoring
rule for P0. For the “only if” direction, assume that gα is strictly proper. It follows that
P [gα(X, t)] is finite for every P ∈ P0 and every real t, hence h(x) = gα(x, t) ∈ H. In the
proof of Theorem 1, we showed that there is a strictly increasing s such that, for every real
t, gα(x, q)− gα(x, t) = h∗t (x, q) from (13). Hence gα(x, q) = h(x) + h∗t (x, q). �

4. Conclusion. This paper characterizes proper and strictly proper scoring rules for a
quantile if utility is linear in score. Kiefer (2010) following Karni (2009) finds a proper
scoring rule under more general risk-averse utility. Characterizing proper and strictly
proper scoring rules under those conditions remains open.

It is obvious that the sum of (strictly) proper scoring rules for several quantities is
(strictly) proper. But are there others? The characterization of such rules is also currently
unsolved.
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