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Abstract 

For nearly as long as the word “correlation” has been part of statistical 

parlance, students have been warned that correlation does not prove 

causation, and that only experimental studies, e.g., randomized clinical 

trials, can establish the existence of a causal relationship. Over the last few 

decades, somewhat of a consensus has emerged between statisticians, 

computer scientists, and philosophers on how to represent causal claims 

and connect them to probabilistic relations. One strand of this work studies 

the conditions under which evidence accumulated from non-experimental 

(observational) studies can be used to infer a causal relationship.  In this 

paper, I compare the typical conditions required to infer that one variable 

is a direct cause of another in observational and experimental studies. I 

argue that they are essentially the same.  
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1. Introduction 

Philosophers, statisticians, and computer scientists, at least those who have abandoned 

the goal of producing a reductive account of causation, have come to largely agree on 

how to represent qualitative causal claims and how to connect such claims to statistical 

evidence through probabilistic independence and dependence (Glymour and Cooper 

1999; Pearl 2000; Spirtes, Glymour and Scheines 2000; Woodward 2003).1  Included in 

this scheme is a method for representing experimental interventions, and for clarifying 

what sorts of assumptions we must make about interventions in order to consider them 

“ideal.” With this apparatus, it is easy to show that if we have ideally intervened 

experimentally upon (X), then an association between X and Y entails that X is a cause of 

Y.   Inferring that one variable is a cause of another is what I call “causal inference.” 

With this apparatus, Spirtes, Glymour, and Scheines (2000), Pearl (1988, 2000) and 

others have developed algorithms for determining the set of causal structures that are 

consistent with the independence relations assumed to hold over a set of measured 

variables in a non-experimental, or observational study, even causal structures that 

include latent, or unmeasured variables.  In some instances all the causal structures in an 

equivalence class agree on some subset of the causal relations, and in some cases they all 

agree that one variable X is a cause or direct cause of another Y. In these cases we can, 

using basically the same assumptions as are made in experimental studies, infer that X is 

a cause of Y.   

Although we have no general characterization of the conditions under which a causal 

inference to X  Y can be made in observational studies, it turns out that when the 

inference is possible it is often driven by the existence of what I call a detectible 
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instrumental variable that stands in the same relationship to X and Y in the observational 

study as does the ideal intervention on X in the experimental study.   In what follows, I 

briefly sketch the key ideas behind the representational system, I show how an 

experimental causal inference works in this system, how the typical observational causal 

inference works involving detectible instrumental variables, and the parallel between 

detectible instrumental variables and experimental interventions.  

2. Representing Causation 

2.1 Causal Graphs, Probability Distributions, and the Causal Markov Axiom 

Recently from computer science, but as far back as Sewall Wright in the early 20th 

century (Wright 1934), the fundamental representational device for causal systems is the 

directed graph.  A directed graph is simply a collection of vertices and directed edges 

over pairs of these vertices. In a directed graph interpreted as a causal graph, each 

directed edge (or arrow) from one vertex X to another Y is taken to assert that X is a 

direct cause of Y relative to the set of vertices in the graph. For example, Figure 1 

represents a graph G = <V,E>, with vertices V = {Exposure, Infection, Symptoms}, and 

edges E = {<Exposure, Infection>, <Infection, Symptoms>}.  We further assume that the 

vertices in such a graph can be interpreted as random variables with some probability 

distribution P, and that causal processes situated in some definite background context 

generate probability distributions over these varables. 
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 Exposure Infection Symptoms 
 

 

Figure 1: Causal Graph 

 

A causal graph is assumed to be representationally complete in the following sense: if 

two variables in the graph are effects of a common cause C, then C is included in the 

graph. This does not require us to include all the causes of a variable in the graph, it only 

requires that we include all the common causes.  To be clear, this is a representational 

assumption, not one concerning which variables we will measure when the goal is 

inference. The key assumption connecting causal graphs to probability distrubtions is an 

axiom that constrains the set of probability distributions that a given causal graph can 

generate (Spirtes, et. al. 2000):   

 

Causal Markov Axiom: In any probability distribution P generated by a given 

causal graph G, each variable X is probabilistically independent of the set Y 

consisting of all variables that are not effects of X, conditional on the direct 

causes of X. That is, ∀X ∈ G, X _||_ Non-effects of X | Direct Causes of X, in P. 

 

This entails, for example, that Exposure is independent of Symptoms conditional on 

Infection in any probability distribution that the causal graph in Figure 1 can generate.  In 

acyclic causal graphs, the Causal Markov Axiom is equivalent to a graphical relation 

called d-separation (Pearl 1988).  If X and Y are d-separated by Z, then the Causal 

Markov Axiom entails that X and Y are independent conditional on Z.  
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2.2 Interventions 

To model experimental interventions on a causal system, we add a new variable 

representing the intervention, connect it to the graph in a particular way, and make an 

assumption about how ideal interventions change the causal graph (Spirtes, et. al 2000; 

Pearl 2000).  

For simplicity we restrict interventions to act only on one variable at a time. Let an 

intervention on X be called IX, and model this by adding IX to the graph as a direct cause 

of only X, and the effect of no variable. For example, to model an experimental 

intervention on Infection in the causal graph in Figure 1, we build the graph in Figure 2.  

 

 Exposure Infection Symptoms 

IInfection  
Figure 2: Modeling an Intervention 

 

Modeling an intervention as a direct cause makes explicit the fact that this account of 

causation does not attempt to reduce causation to intervention.  It goes to the other 

extreme, it reduces intervention to the idea of a direct cause. Direct cause is left 

undefined, but connected to probability through the Causal Markov Axiom. 

Finally, we say an intervention is “ideal” if it totally determines the probability 

distribution of its target.  For example, a medical trial assessing the effect of St. John’s 

Wort on depression might assign either of two treatments: St. John’s Wort or placebo, by 

flipping a fair coin to randomly assign subjects to one of these two treatments.  This 
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intervention is ideal if the coin flip totally determines the treatment, leaving no influence 

from the subject’s disposition to take alternative medicines, etc.   

 

 Exposure Infection Symptoms 

IInfection  
Figure 3: Modeling an Ideal Intervention 

 

If IX is an ideal intervention on X, then we eliminate, or “x-out” any arrows in the 

original causal graph that point into X (Figure 3). This represents the idea that our ideal 

intervention has taken over X’s probability distribution, overwriting any influence its 

direct causes might have had prior to our intervention. In contrast, we do not x-out arrows 

coming out of X. So ideal interventions on X annihilate the relationship between X and 

its direct causes, but leave intact the relationship between X and its direct effects.2  

3. Causal Inference in Experimental Studies 

The problem of causal inference from association is underdetermination. If two 

variables X and Y are associated in a non-experimental study, then many different causal 

graphs can explain the association. In general, three kinds of causal connection3 (Figure 

4) can produce an association (probabilistic dependence) between two variables X and Y: 

 

1. A path4 from X to Y 

2. A path from Y to X 
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3. A pair of paths, one from some third variable C (possibly latent) to X and one 

from C to Y. 

 

 

X 
Latent 

Y 

X Y X Y 
 

 

Figure 4:  Causal connections which explain an association between X and Y 

 
Consider the same problem after an ideal intervention on X, however.  The 

intervention  eliminates the influence of all the direct causes of X in the original graph, 

thus all causal connections save paths from X to Y are destroyed (Figure 5). 

 
 

X 
Latent 

Y 

X Y X Y 

IX 

IX IX 

 
 

Figure 5: Causal connections after an ideal intervention on X 

 

The result is incredibly simple, but incredibly powerful.  If X and Y are associated 

after an ideal intervention on X, then X is a cause of Y.  Further, the quantitative degree 
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of association can be used to estimate the size of the effect of X on Y (Pearl, 2000).  The 

key to this type of simple experimental inference is that the intervention is: 

 

i) a direct cause of X, and  

ii) not adjacent to Y, and  

iii)  ideal.   

 

Consider why it is desirable that it satisfy these conditions.  First, if the intervention is a 

direct cause of X, but also of Y or some other cause of Y,5 then X and Y will be 

associated in virtue of the intervention, not in virtue of the effect of X on Y (Figure 6). 

 

 

X Y 

IX 

X Y 

IX 
Z 

(a) (b)  
Figure 6: Fat-hand Interventions 

 

It is possible to handle the second form of fat-hand intervention (Figure 6-b) by looking 

not just at whether X and Y are associated but also at whether X and Y are associated 

conditional on Z. The first type of fat-hand intervention (Figure 6-a), in which IX is a 

direct cause of Y is fatal to causal inference.   

Similarly, the intervention must itself not be an effect of any other variable, a problem 

I will call treatment-bias (Figure 7).  Again, in such cases X and Y would be associated 
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after an intervention, but not because of an effect of X on Y.  Again, we could handle the 

second form of treatment-bias (Figure 7-b) by conditioning on Z, but the first form 

(Figure 7-a) is fatal. 

 

 

X Y 

IX 

X Y 

IX 
Z 

(a) (b)  
Figure 7: Treatment-Bias Interventions 

   

Generally then, an intervention on X can be fat-hand or treatment-biased without 

making causal inference impossible, but IX cannot be adjacent6 to Y in the causal graph. 

Need the intervention be ideal? Is causal inference still possible in cases in which the 

intervention on X does not fully determine X’s probability distribution and thereby x-out 

the influence of all other direct causes on X?  For the argument as I have sketched it 

above, clearly yes, but in general the answer is no.   

In cases where we know something about the parametric form of the dependence of 

effects on their causes, for example linear structural equation models (Bollen 1989), 

interventions need not be ideal. In linear structural equation models each effect is a linear 

combination of its direct causes plus Gaussian noise, and in certain such models 

instrumental variable estimators (Bowden and Turkington 1974) can be used to estimate 

the strength of causal influence even in the presence of latent common causes. In Figure 

8, for example, IX is an instrumental variable for X  Y, and the quantity ρIX,Y / ρIX,X = 
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αβ / α = β is a consistent estimator of the effect of X on Y, even though X and Y are 

confounded by a latent  common cause.  

 

 

α 

X Y 

IX 

β 

Latent 

 
Figure 8: Instrumental Variable IX 

 

If IX is an intervention, but not an ideal intervention, as in Figure 8, and the 

dependencies are linear, then the instrumental variable estimator can be used to do causal 

inference; we simply statistically test whether β = 0.  Whether or not the instrumental 

variable Z is an intervention,  

i) Z must be adjacent to X but not an effect of X,7 and    

ii) Z may not be adjacent to Y 

 

To summarize, in experimental settings causal inferences concerning whether X is a 

cause of Y are driven by interventions on X which are: 

 

i) direct causes of X, and 

ii) not adjacent to Y, and 

iii) ideal (they totally determine the probability of X) 
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4. Causal Inference in Non-Experimental Studies 

In non-experimental studies, we have no intervention variable with known 

relationships to the variables under study.  We have only a set of measured variables 

governed by some causal structure that we assume satisfies the Causal Markov Axiom, 

but which might include unmeasured common causes of the variables we have measured. 

To set aside statistical difficulties, we will assume that we can determine which 

probabilistic independence relations hold over the measured variables with perfect 

reliability.  Finally, we will assume that the probability distribution P is Faithful8 to the 

causal graph (Spirtes, et. al 2000). That is, we assume that all independence relations that 

hold in P are entailed by the Causal Markov Axiom, thereby ruling out independence 

relations holding in P in virtue of particular settings for the probabilities in P.  

In this setting, the underdetermination of causation can be characterized with an 

equivalence class of causal graphs, each member of which is a causal graph that entails 

all and only those independence relations observed to hold in some distribution PO over 

the set of observed variables O.  As you would expect, when we allow the equivalence 

class to include graphs that have unobserved common causes, that is, variables not in O, 

then the class is infinite.  Spirtes and Richardson (1996) describe a graphical object called 

a Partial Ancestral Graph or PAG, to compactly represent equivalence classes that 

include latent common causes. 

 Fortunately, it is sometimes the case that all members of the equivalence class 

represented by a PAG share features of a causal relationship between two variables in O.  

For example, if we have measured three variables, Z1, Z2, and X, and find Z1 and Z2 to be 
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unconditionally independent, then the PAG and some of the members of the equivalence 

class it represents are pictured in Figure 9. 

 

 

Z1 _||_ Z2 

PAG Independencies 

Z1 
X 

Z2 

Z1 
X 

Z2 

Latent 

Some Members of the Equivalence Class 

Z1 

X 

Z2 

Z1 
X 

Z2 
Latent 

Z1 
X 

Z2 

Latent 

Latent  
Figure 9: Equivalence Class 

Even though X is associated with both Z1 and Z2, in no member of this equivalence 

class is X a cause of either Z1 or Z2. We can’t, from three variables and no extra 

background knowledge make a positive causal inference, but we can make two negative 

ones: X is not a cause of Z1 nor is it a cause of Z2. With four variables we can actually 

make a positive causal inference. Adding Y, and assuming that Y is unconditionally 

associated with all the other variables but independent of Z1 and Z2 conditional on X, the 

PAG in Figure 10 represents the set of causal graphs that entail all and only these 

independencies. 
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Latent 

Z1 _||_ Z2 Z1 

X 

Z2 

PAG Independencies 

Some Members of the Equivalence Class 

Y Z1 _||_ Y | X 

Z2 _||_ Y | X 

Z1 
X 

Z2 

Z1 
X 

Z2 

Latent 

Z1 
X 

Z2 

Z1 
X 

Z2 

Latent 

Latent 

Y 

Y 

Y 

Y 

 
Figure 10: PAG that gives a Causal Inference 

 

In every member of the equivalence class represented by the PAG in Figure 10, X is a 

cause of Y, and in no member of the equivalence class is there a latent common cause of 

X and Y, exactly the same conclusion we can reach by finding an association between X 

and Y in an experimental study in which we have ideally intervened upon X.  

The FCI algorithm (Spirtes, et. al 2000) computes PAGs from given independencies, 

assuming the Causal Markov Axiom, Faithfulness, and that there is a graph that 

generated the independencies given. By examining one set of conditions required by the 

algorithm in order to determine that i) X is cause of Y and ii) there is no latent common 

cause of X and Y in every member of the equivalence class, I will try to illuminate the 

similarity between causal inference in experimental and non-experimental settings. 
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The FCI algorithm proceeds in two stages.  In the first it identifies the adjacencies in 

the PAG, and in the second it orients any of these adjacencies it can. Any pair of 

variables that are not adjacent after the adjacency phase are not adjacent in any causal 

graph in the final equivalence class (Spirtes, et al. 2000). In a PAG, an unoriented 

adjacency is represented as Ao-oB.  The possible orientations and what they represent 

about the members of the equivalence class are: 

 

• A o B means that B is not a cause of A in any member of the class, but 

either A is a cause of B or they have a latent common cause.   

• A  B means that A and B have a latent common cause in every member of 

the class.   

• A  B means that A is a cause of B with no latent common cause in every 

member, and  

• A o-oBo-o C means that either i) B is a cause of A and there is no latent 

common cause of A and B, or ii) B a cause of C with no latent common cause.   

 

In the orientation phase, the algorithm looks for triples A,B,C such that A and B are 

adjacent, B and C are adjacent, but A and C are not adjacent, i.e.,  A o-o B o-o C.   If B is 

included in the set that made A and C independent,9 then we orient this triple as a “non-

collider” at B: A o-oBo-o C, else we orient the triple as a “collider” at B: A o B o C.    

We call this orientation step the “collider rule.”   
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After going through all the triples and orienting them with the collider rule, we go 

through them again, this time looking for triples in which B was oriented as a non-

collider from the triple A,B,C, but as collider from a triple A,B,D, that is Figure 11. 

 

 

A 
B 

D 
C 

non-collider 

 
Figure 11 

 

We can then combine these orientations to fully orient the Bo-oC adjacency as B  C, 

which is the only way to orient Bo-oC in order to avoid making B a collider in the A,B,C 

triple. We call this the “away-from-collider rule.”10    

Consider a concrete empirical case to illustrate. Sewall and Shah (1968) collected data 

on over 10,000 Wisconsin high school seniors in order to study the relationship between 

parental encouragement (PE) and college plans (CP). They also measured socio-

economic status (SES), Sex, and IQ.  For simplicity I omit SES. The independence 

relations that hold statistically among PE, CP, Sex, and IQ are: Sex _||_ IQ,  Sex _||_ CP | 

PE.  After the adjacency phase of FCI, we have Figure 12. 
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 Sex 
PE 

IQ 
CP 

 
Figure 12: After Adjacency Phase 

 

There are two triples that satisfy the requirements for orientation: 1) Sex o-o PE o-o IQ, 

and 2) Sex o-o PE o-o CP.  In 1, we can orient PE as a collider,11 and in 2, we can orient 

PE as a non-collider.12 So after applying the collider rule we have the orientation in 

Figure 13.  

 

 

Sex 
PE 

IQ 
CP 

non-collider 

 
Figure 13: After Applying the Collider Rule 

 

Going back through these two triples, we can apply the away-from-collider rule to the 

Sex, PE, CP triple, giving us a PAG13 in which parental encouragement is an 

unconfounded cause of college plans: 
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\ Sex 
PE 

IQ 
CP 

 
Figure 14: PAG for College Plans 

5. The Similarities 

Consider the inference to X  Y in a non-experimental setting with the away-from-

collider rule.  We need a triple Z o X o-o Y.  Besides knowing that X and Y are 

adjacent,14 this construction involves a detectible instrument Z that is: 

  

i) adjacent to X but not an effect of X,  

ii) not adjacent to Y 

 

These conditions match precisely with those required of an instrumental variable as 

used commonly in econometrics (see section 3 above), and they also match quite closely 

to the two conditions I specified for experimental studies, which I repeat here.  

Interventions IX on X should at a minimum: 

 

i) be direct causes of X,  

ii) not be adjacent to Y. 

 

A variable V that satisfies the first condition will also satisfy the first condition for a 

detectible instrument Z, but structurally it is not necessary for V to directly cause X.  It is 

enough that the adjacency between V and X be into X, that is, either V is a direct cause of 
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X or there is a latent common cause of V and X.  By intervening on X with IX, we ensure 

that the adjacency between IX and X is into X, but for the causal inference it is not strictly 

necessary.   

I use the word “detectible” to highlight the fact that, in a non-experimental study, the 

issue is finding a variable that detectibly satisfies the same basic conditions that we 

believe are satisfied in an experimental study.  For example, in the case study involving 

college plans and parental encouragement above, we managed to detect that the 

adjacency between Sex and PE was into PE because Sex and IQ are independent, thus 

giving us a collider oriented triple: Sex o PE o IQ.   

Suppose, however, that Sewall and Shah had not thought to measure IQ.  Just 

measuring Sex, PE, and CP, and finding only that Sex _||_ CP | PE, we would have the 

following PAG:   Sex o-o PE o-o CP, which does not support a causal inference between 

PE and CP.  Why? Because we do not know that the Sex o-o PE adjacency is into PE.   If, 

however, we add the perfectly plausible background knowledge that parental 

encouragement cannot be a cause of one’s gender, then the variable Sex would satisfy the 

conditions for a detectible instrument:  Sex is adjacent to PE but not an effect of PE (Sex 

o PE), and Sex is not adjacent to CP.    In that case would have a detectible instrument 

and could, from the Causal Markov Axiom and Faithfulness assumptions, infer that 

parental encouragement is indeed a cause of college plans with no latent common cause 

between them.  

 

The parallels between these forms of experimental and non-experimental inference are 

not complete, nor are they necessary.  They do suggest, however, that faced with a causal 
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question that does not permit, for ethical or practical reasons, an experimental 

intervention, a good causal scientist should not throw up his hands and proclaim that 

“only experimental studies can support causal conclusions.”  Rather she should seek to 

systematically combine background knowledge and statistical analysis to find detectible 

instruments for causal inference. 
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FOOTNOTES 

                                                 

1 Of course there are many important exceptions. For example, I do not believe Nancy 

Cartwright, who more than anyone showed the hopelessness of reducing causation to 

probability, would endorse this sentence (Cartwright, 2003). 

2 Woodward (2003) calls the latter “invariance,” and argues at length that it is the 

asymmetry of invariance between 1) a variable and its causes and 2) a variable and its 

effects that captures the asymmetry of causation.  

3 Hausmann (1998) defines a causal connection between X and Y as either X causes 

Y,  Y causes X, or a third variable causes both, or some combination.  

4 A path is just a sequence of arrows all pointing in the same direction. 

5 Thanks to Kevin Kelly, such interventions are called “fat-hand,” the analogy being 

reaching to move a particular piece in chess but knocking over others because of a fat 

hand.  

6 X and Y are adjacent if X is a direct cause of Y or Y a direct cause of X. 

7 Clearly if IX is adjacent to Latent or to Y, then ρIX,Y ≠ αβ.  Similarly, if IX is an effect 

of X, then again ρIX,Y ≠ αβ,  this time because there is a causal connection of IX and Y 

from the Latent common cause  which is not present when IX is a cause of X.   

8 Pearl (1988) uses the word Stable, but means the same thing. 

9 which was necessary to eliminate the adjacency between A and C 

10There are other orientation rules that can support a positive causal inference, e.g., the 

definite-discriminating-path rule, but they are too complicated to explain or characterize 

in the space I have here.   
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11 We do not need to condition on PE to make Sex and IQ independent. 

12 We do need to condition on PE to make Sex and CP independent. 

13 The orientation of the IQ - CP and IQ - PE adjacencies results from applying 

another rule I will not explain.  It is not relevant to orienting the PE  CP adjacency. 

14 which means they are associated no matter what set we condition on. 


	Introduction
	Representing Causation
	Causal Inference in Experimental Studies
	Causal Inference in Non-Experimental Studies
	The Similarities

