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Abstract 
The Gibbs sampler can be used to obtain samples of arbitrary size from the 
posterior distribution over  the parameters of a structural equation model (SEM) 
given covariance data and a prior distribution over the parameters. Point 
estimates, standard deviations and interval estimates for the parameters can be 
computed from these samples. If the prior distribution over the parameters is 
uninformative, the posterior is proportional to the likelihood, and asymptotically 
the inferences based on the Gibbs sample are the same as those based on the 
maximum likelihood solution, e.g., output from LISREL or EQS. In small 
samples, however, the likelihood surface is not Gaussian and in some cases 
contains local maxima. Nevertheless, the Gibbs sample comes from the correct 
posterior distribution over the parameters regardless of the sample size and the 
shape of the likelihood surface. With an informative prior distribution over the 
parameters, the posterior can be used to make inferences about the parameters of 
underidentified models, as we illustrate on a simple errors-in-variables  model. 
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1. Introduction 

With modern computers and the Gibbs sampler, a Bayesian approach to structural 

equation modeling (SEM) is now possible. Posterior distributions over the parameters of 

a structural equation model can be approximated to arbitrary precision with the Gibbs 

sampler, even for small samples. Being able to compute the posterior over the parameters 

allows us to address several issues of practical interest. First, prior knowledge about the 

parameters may be incorporated into the modeling process. Second, we need not rely on 

asymptotic theory when the sample size is small, a practice which has been shown to be 

misleading for inference and goodness-of-fit tests in SEM (Boomsma, 1983; Hoogland & 

Boomsma, in press).  Third, the class of models that can be handled is no longer 

restricted to just-identified or over-identified models. Whereas each identifying 

assumption must be taken as given in the classical approach, in a Bayesian approach 

some of these assumptions can be specified with perhaps more realistic uncertainty. Each 

of these practical advantages is illustrated with data in section 3. 

The paper is organized as follows. In the remainder of this section, we review 

maximum likelihood estimation (ML), Bayesian statistical inference, and introduce 

notation. In section 2 we explain how the Gibbs sampler can be applied to obtain a 

sample from the posterior distribution over the parameters of a SEM. We present 

statistics that can be used to summarize marginal posterior densities, as well as model 

checks using posterior predictive p-values. In section 3 we illustrate these techniques 

with two examples, the classic Stability of Alienation model (Wheaton, Muthén, Alwin, 

and Summers, 1977) and the effect of cumulative environmental lead exposure on IQ in 

children.  We use the Alienation model to compare classical and Bayesian estimation on 

large and small samples, and we use the lead and IQ example to illustrate how a Bayesian 

strategy handles underidentified models. In the final section of the paper, we discuss 

general  methodological issues. 

1.1  Maximum Likelihood Estimation 

The Gibbs sampler is not the only way to compute an approximation of the posterior 

distribution over the parameters of a SEM. One can also use normal distributions based 
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on maximum likelihood (ML) estimates. In what follows we compare both statistical 

approaches and evaluate their merits for SEM.  As an introduction and for notation, we 

briefly review ML-estimation and Bayesian statistical inference. 

Let  X = (x1, ..., xN)’ be a set of N normally and independently distributed random 

variables x = (x1, ..., xp)’, with expectation m and variance-covariance matrix Σ = Σ(q). 

The matrix Σ(q) is a continuously differentiable matrix valued function of the parameter 

vector q = (θ1 , ..., θt)', whose elements qj are the values of t ≤ p(p+1)/2 unknown 

parameters. Σ(q) represents the structural equation model in the population. Without loss 

of generality, we have no interest in first order moments. In that case, the sample 

covariance matrix S (p x p) is a sufficient statistic for estimation, where S is an unbiased 

estimate of Σ based on a sample of observations X (N x p). Hereafter, all densities and 

probabilites that are a function of X will be written as a function of S, the sufficient 

statistic for X. Under these assumptions, the maximum likelihood estimate     ̂  qML of the 

unknown parameter vector q can be obtained. 

Let p(S|q) denote the joint probability density function of S. If p(S|q) is regarded as 

a function of q, given the observations S, it is called the likelihood function of q given S, 

i.e., L(q|S) = p(S|q). Given the sample covariance matrix S, the log-likelihood can be 

expressed as 

  log L(q|S)  = -(N-1)/2 {log|Σ(q)| + tr[SΣ-1(q)]}  , (1) 

and thus in standard ML-estimation the following function of the log-likelihood is 

minimized: 

 FML[S,Σ(q)] = log|Σ(q)| + tr[SΣ-1(q)] - log|S| - p  . (2) 

Programs like LISREL (Jöreskog & Sörbom, 1993) calculate   ̂  qML and estimates of the 

observed information matrix I(    ̂  qML|S), and thus estimates of asymptotic standard errors 

of each parameter estimate     ̂ q j,ML, denoted as SE(   ̂ q j,ML).  
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1.2 Bayesian Statistical Inference 

In a Bayesian framework statistical inferences are associated with different values of 

parameters which could have given rise to the fixed set of data which has actually 

occurred (cf. Box & Tiao, 1973, p. 72). In that context the focus is on the posterior 

density of q given the sample covariance matrix S, which, for normal variables is defined 

as 

 p(q|S) = p(S|q) p(q) / ∫ p(S|q) p(q) dq   ∝    p(S|q) p(q)  . (3) 

Here p(q) is the prior distribution of q, expressing what is known about q before any 

knowledge of S. In constrast, the posterior distribution p(q|S) expresses the result of 

changing p(q) to take the sample data  into account. Given that L(q|S) = p(S|q), it 

follows that (3) can be expressed as 

 p(q|S) ∝ L(q|S) p(q)  . (4) 

Depending on the amount of prior knowledge relative to the sample information, the 

posterior distribution can be dominated by the likelihood or by the prior. If an 

uninformative ('improper') prior p(q) = c is used, where c is a real constant, the posterior 

distribution is proportional to the likelihood function, i.e., p(q|S) ∝ L(q|S). If on the other 

hand an informative prior distribution is used, and in this paper it is assumed throughout 

that in such a case p(q) has a multivariate normal distribution N(m0,Σ0) truncated below 

zero for variances, in small samples the posterior distribution p(q|S) is not proportional to 

the likelihood function L(q|S).  Note that, for each variance, a normal truncated below 

zero is similar to an inverse chi-square, and allows the user to specify approximately the 

same prior knowledge. 

Asymptotically, the posterior density p(q|S) converges to the likelihood, which, 

under appropriate regularity conditions, is proportional to the multivariate normal density 

N(    ̂  qML, I-1(    ̂  qML|S)) (cf. Tanner, 1993). 

  To summarize, there are at least two types of approximations to the posterior 

distribution over the parameters of a SEM: 1) a normal-based maximum likelihood 

approximation, i.e., N(    ̂  qML, I-1(   ̂  qML|S)), which can be obtained from LISREL, for 
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example, and 2) an approximation based on a sample from p(q|S) computed by the Gibbs 

sampler. 

1.3 Finite Sample Size 

The ML-estimation theory used in SEM is asymptotic theory. The same holds for other 

estimation methods, like generalized least squares (GLS) and weighted least squares 

(WLS). Thus, for making proper statistical inferences the sample size N must be large. 

Several robustness studies show that sample size matters for the behaviour of SEM 

estimators, see for instance Bearden, Sharma and Teel (1982), Boomsma (1982, 1983), 

Baldwin (1986), Chou, Bentler and Satorra (1991), Hu, Bentler and Kano (1992),Yung 

and Bentler (1994), and Hoogland and Boomsma (in press). From such research it may 

roughly be concluded that, in order to obtain proper parameter estimates, the behaviour 

of ML, GLS and WLS is not robust for small N. More importantly, the (co)variances of 

parameter estimates are often incorrectly estimated in small sample studies, especially by 

the WLS method. As a consequence, for small N the sampling distribution of 

(standardized) parameter estimates is unknown, and often cannot be estimated well by 

applying formulas based on asymptotic theory. Further, the distribution of likelihood-

ratio fit statistics is not known for small N. For almost any sample size the distribution of 

many fit indices that happen to be available is almost completely unknown; see Hu and 

Bentler (1995) or Boomsma (1996), for an overview. 

In summary, it is not appropriate to use asymptotic estimation theory in SEM when 

the sample size is small. One strategy is to use the posterior distribution over the 

parameters instead of the asymptotic sampling distribution of the ML-estimator.  

1.4 The Gibbs Sampler and ML-approximations 

Joint and marginal posterior distributions, p(q|S) and p(q|S), can be numerically 

approximated to arbitrary precision, for any finite sample size N, with Markov Chain 

Monte Carlo (MCMC) methods, and in particular with a single-component Metropolis-

Hastings algorithm, a specific case of which is the Gibbs sampler (Geman & Geman, 

1984; Chib & Greenberg, 1995, p. 332). 
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If the sample size is large, the limiting normal approximation of the likelihood (i.e., 

the approximation of L(q|S) by N(   ̂  qML, I-1(   ̂  qML|S)) is a legitimate approximation of 

p(q|S), even with an informative prior distribution, because “as  N → ∞, the likelihood 

dominates the prior distribution, so we could just use the likelihood alone to obtain the 

mode and curvature for the normal approximation.” (Gelman, Carlin, Stern, & Rubin, 

1995, p. 92) 

As the sample size N increases, the ML-estimate   ̂ q j,ML converges numerically to the 

mode of the marginal posterior density, and its estimated standard error, SE(    ̂ q j,ML), 

converges to the standard deviation of qj in the posterior normal density, denoted as 

SD(qj). 

Thus in large samples the Gibbs sampler and the normal theory ML-approximation 

of the posterior density (likelihood) should produce almost exactly the same numerical 

quantities for corresponding statistics, though their interpretation will be different (cf. 

Box & Tiao, 1973). We expect these quantities to diverge as sample size decreases, 

however. 

In comparing both approaches it will be clear from the examples that Gibbs' 

sampling has a number of advantages over the normal ML-approximation.  

a.  Asymptotic inference is not needed. We do not have to rely on normal 

approximations of the posterior. The procedure works for all sample sizes. 

b.  Knowing the posterior density allows inspection of the fit of the model by  

posterior predictive p-values (see Gelman, Meng & Stern, 1996; Rubin & Stern, 

1994; Meng, 1994). 

c.  Prior knowledge can be incorporated flexibly. Inequality restrictions can be 

implemented in the sampling procedure in such a way that not only the parameter 

estimates, but the estimated standard errors and interval estimates as well, are 

bound to those restrictions. 

d.  The user may get information about multimodality in marginal posterior 

densities, which is undetectable by standard procedures. 
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e.  The posterior for the parameters of an underidentified model can be obtained by 

using the Gibbs sampler with an informative prior, but not with a normal ML-

approximation. 

2. Posterior Inference Based on the Gibbs Sampler 

The Gibbs sampler is an iterative procedure that, after it has converged, renders a 

dependent sample from p(q|S).  In each iteration m=1,...,M, each parameter is sampled 

from its posterior conditional on the current values of the other parameters, the inequality 

constraints appropriate for the parameter at hand, and the sample covariance matrix S. An 

accessible but detailed introduction to the Gibbs sampler can be found in Casella and 

George (1992), more elaborate discussions in Gelfand and Smith (1990), Gilks, 

Richardson, and  Spiegelhalter (1996), Tierney (1993), and Smith and Roberts (1993). 

The parameter vectors in the Gibbs sample can be used to compute characteristics of 

the marginal posterior density. Among other things, expected a posteriori estimates, 

median a posteriori estimates, posterior standard deviations, central credibility intervals, 

and the posterior covariance matrix of the parameters may be computed. 

2.1 Initial Values 

The iterative process begins by assigning an initial value (m=0) to the model parameters 

q. We use a subscript to index the parameter, and a superscript to index the iteration. 

Thus, the jth parameter in the mth iteration is written as  j
mq . If the prior distribution is 

informative (in which case it is a multivariate normal truncated below zero for variance 

parameters), then the mean in the prior is used as the starting value, i.e., q0  = m0. If the 

prior is uninformative, then initial values may be chosen relatively arbitrarily, e.g., zero 

for a path coefficient, and one for a variance.  

2.2 Sampling the Conditional Posterior of Each Parameter 

In each iteration, each parameter is sampled in a fixed order from its posterior conditional 

upon the current values of the other parameters and the data. Parameter θj in iteration m, 

for example is sampled from: 
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 p(θj | .) =       , (5) 1
mp( jθ |θ ,..., j−1

mθ , j+1
m−1θ ,..., t

m−1θ , jLB , jUB ,S)

where LBj and UBj are lower and upper bounds for qj, respectively. This is what Chib 

and Greenberg (1995, p. 332) call the Gibbs sampler. Note that (5) is conditional upon 

the current values of the other parameters, which for some parameters is the value 

sampled in iteration m and for others the value sampled in the previous iteration (m-1).  

“Fixed parameters” are left at their initial value and never updated, although they are 

still conditioned on when evaluating (5) for a free parameter. Parameters may be 

subjected to inequality constraints with respect to constants or with respect to each other. 

A few examples: if a parameter is a variance, the lower bound is zero and the upper 

bound is ∞. If parameter 2 has to be larger than parameter 1 and smaller than parameter 3, 

the lower and the upper bounds are and  respectively. If a parameter is 

unconstrained, the lower and upper bounds are -∞ and ∞, respectively. 

1
mθ 3

1m−θ

The conditional posterior (5) is similar to (4) with all parameters fixed at their 

current values except θj, i.e., 

 p(qj|.) ∝ L      1
m(q ,..., j−1

mq , jq , j+1
m−1q ,..., t

m−1q | S) p(qj)   (6) 

The likelihood in (6) corresponds to (1), and this is the part of our use of MCMC that is 

specific to SEM. Since the SEM version of the conditional posterior in (6) is not 

necessarily proportional to a commonly used distribution like a normal or a chi-squared, 

it cannot be sampled from by using standard computational procedures. We draw samples 

from (6) by using a combination of inverse probability sampling and rejection sampling 

(Gelman, et al., 1995, pp. 302-305). The idea is to first approximate (6) by a standard 

distribution (in our case a normal) that can be sampled using standard procedures, and 

then to adjust this distribution by rejecting draws in proportion to how the approximation 

differs from (6).  
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2.3 Inverse Probability and Rejection Sampling 

2.3.1 The Approximating Distribution 

The first step in rejection sampling is the choice of a distribution that is approximately 

proportional to (6), and from which a pseudo-random sample can be easily obtained. We 

use a normal distribution with mean (denoted as Mode) equal to the mode of (6) and 

variance equal to cV, where V is computed as the inverse of the observed Fisher 

information evaluated at Mode, and c is the “stretch,” which will be explained below. 

This distribution will be denotod by prox(θj |Mode,cV). We compute the mode of (6) 

with Brent's method in one dimension (Press, Teukolsky, Vetterling and Flannery, 1992, 

pp. 395-398). The variance V is computed as  

 V = 
.00005

  log p(Mode| .) -  log p(Mode+.01| .)
  .                          (7) 

This formula can be obtained by approximating (6) using a second order Taylor 

expansion around Mode (see Gelman, et al., 1995, p. 95). 

2.3.2 Rejection Sampling 

In our current implementation of the Gibbs sampler as described here, which is available 

in TETRAD III1 and was used for the illustrations in this paper, we repeatedly sample 

from the normally distributed prox(θj|Mode,cV) until a “draw” is within the bounds 

imposed by LBj and UBj. 

After a draw v from prox(θj|Mode,cV) ~ N(Mode,cV) is within the upper and lower 

bounds, we then correct for the approximation by keeping v with probability proportional 

to the ratio of the real and appropriately normalized approximating distributions, 

evaluated at v. This is valid only when the approximating distribution “covers” the true 

distribution (see the figure presented by Gelman, et al., 1995, p. 304). We insure this in 

two ways. First, the variance of the approximating distribution is multiplied with a 

“stretch factor” c (experience untill now indicates that c=2 is usually fine). Second, the 

                                                 
1 TETRAD III is available at: http://hss.cmu.edu/philosophy/TETRAD/tetrad.html 
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approximating distribution is multiplied by the ratio of the conditional posterior (6) and 

the approximating distributions evaluated at Mode. This ensures that the true conditional 

posterior density and the approximating density are equal at the mode. 

  The value v drawn from the approximating distribution is thus accepted as a draw 

from (6) with probability 

   

  

p(v | .)

prox(v | Mode,cV) 
p(Mode | .)

prox(Mode | Mode,cV)

  .                          (8) 

Note that (8) can only be interpreted as a probability if it is less than or equal to 1.0, 

which is not always the case. Rejection sampling undersamples from those regions of v in 

which (8) exceeds 1.0. To minimize this, one always accepts v as a draw when (8) 

exceeds 1.0 and tries to form an approximating distribution such that the regions in which 

(8) exceeds 1.0 are small and far out in the tails of both the approximating and real 

distributions. 

2.4 Convergence and Dependence 

In practice there is no generally agreed upon method to decide whether a Gibbs sequence 

has converged or not. See, for example, Gelman and Rubin (1992) and subsequent 

discussions, e.g., MacEachern and Berliner (1994). 

We use the following procedure to assess convergence. First, we retain only every 

25th or 50th iteration from the original sequence (q1,..,qM) described above (the rationale 

behind this step will be explained below). These iterations are indexed qk, k=1,...,K. We 

inspect the mean, median, standard deviation, and 5th and 95th percentile of the sample 

from the marginal posterior distribution over each parameter across each of four 

sequences of K/4 iterations. If the resulting numbers are similar, we judge the sampler to 

have converged, if they are dissimilar or are mildly dissimilar but show an increasing or 

decreasing trend we judge the sampler to have not converged.  All the examples in 

section 3 converged quickly and solidly. 

The Gibbs sampler usually requires a “burn in” period before it converges in 

distribution to the true posterior. In our examples (see section 3), burn in was always 
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almost instantaneous. When the initial segment of a Gibbs sequence has not burned in, 

the obvious solution is to discard the initial segment of iterations occurring prior to 

convergence, and analyze only the draws after burn-in. 

The Gibbs sampler does not render independent draws from the posterior. It is clear 

from the sampling scheme described above that the draws in each iteration depend on the 

draws obtained in the previous iterations.  Currently it is not clear if this dependence is a 

problem with respect to making inferences about the posterior.  See, for example, 

Gelman, et al., (1995, p. 330).  Some authors propose to use only every 50th iteration to 

achieve approximate independence (Zeger & Karim, 1991). Our experience on SEM 

models is that, as long as a sequence has converged and the number of iterations retained 

is substantial, it makes no practical difference if we keep all or every 25th or every 50th 

iteration.  To be safe, however, in all our examples we use every 25th or 50th.  

2.5 Posterior Inference 

The marginal posteriors can be used to make inferences with respect to the parameters of 

the SEM under investigation. For each parameter θj, the mean (expected a posteriori, 

θj,EAP) or the median (median a posteriori, θj,MDAP) can be used as point estimates, and the 

posterior standard deviation (SD(θj,EAP)), or the 95% central credibility interval (θj,.025 - 

θj.975) can be used as a measure of our uncertainty about these point estimates.  Since we 

do not have the posterior directly but only a Gibbs sample from it, these quantities cannot 

be computed directly, but can be closely approximated (the quality of the approximation 

depends on the number of retained iterations K) by calculating their sample analogues, 

i.e., the Gibbs sample mean     ̂  q j,EAP, sample median   ̂  q j,MDAP, sample standard deviation 

SD(    ̂  q j,EAP), and the 95% sample credibility interval (   ̂  q j,.025 -   ̂  q j,.975). Furthermore, the 

posterior covariance matrix may be estimated by computing the covariance matrix of the 

sample of K parameter vectors. Note finally, that plots of univariate marginal 

distributions are easily constructed. 

The mode of the marginals in the posterior (the maximum a posteriori, or θj,MAP) is 

the only important quantity that cannot be easily estimated from the Gibbs sample. In the 
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case where the prior distribution is uninformative or “swamped” by the likelihood, then 

    ̂  q j,MAP can be obtained using standard SEM software like LISREL. 

2.6 Goodness-of-Fit Statistics From Posterior Predictive p-values 

The likelihood ratio goodness-of-fit statistic for SEM: 

 LR[S, Σ(q)] = (N-1) [log|Σ(q)| + tr[SΣ-1(q)] - log|S| - p ]   , (9) 

is known to be distributed as χ2 only asymptotically, and can be substantially non χ2 for 

finite samples (Bollen, 1989). Thus p-values (tail-area probabilities) for the goodness-of-

fit statistic based on the χ2  distribution can also be way off. In this section we explain 

how posterior predictive p-values (Rubin, 1984; Meng, 1994; Gelman, Meng and Stern, 

1996) can be used in SEM to evaluate the likelihood ratio goodness-of-fit statistic 

without relying on asymptotics. The classical p-value based on (9) is 

 p-value = p{LR[S, Σ(q)] < LR[S(q), Σ(q)] | H,q } ,  (10) 

where S(q) denotes a covariance matrix drawn randomly, with appropriate N, from Σ(q), 

and H denotes the null hypothesis, i.e., the SEM specified holds in the population. 

Because the population parameters q are in practice unknown, and are thus “nuisance 

parameters,” it is not possible to evaluate (10) (see Meng, 1994). 

The solution implemented in standard SEM software like LISREL and EQS is to use 

    ̂  qML for q, which gives an approximation of (10) that is asymptotically correct.  The 

posterior predictive p-value replaces (10) by (11): 

                  p-value =  p(LR[S, Σ(q)] < LR[S(q), Σ(q)] | S, H ) 

          =   (LR[S, Σ(q)] < LR[S(q), Σ(q)] | H,q ) p(q|S) dq     .  (11) p
θ
∫

By using p(q|S) the nuisance parameter q from (10) is integrated out of (11). Note that 

(11) is not an asymptotic approximation. The p-value defined in (11) can be 

approximated from the Gibbs sample with (12): 
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 p-value ≈ Σ p{LR(S,Σ(q
k

K

=1

k)) < LR(S(qk),Σ(qk))} / K          

 ≈ I
k

K

=1
Σ

z

Z

=1
Σ kz/KZ,  (12) 

where the indicator variable IKZ = 1 if LR(S,Σ(qk)) < LR(Sz(qk),Σ(qk)), and 0 otherwise. 

The integral in (11) is approximated using a summation over K values of q sampled from 

p(q|S), where K is the number of values of q sampled from p(q|S). The inequality p(.<.) 

in (11) and (12) is approximated by the proportion observed in z = 1,..,Z sample 

covariance matrices Sz(qk) drawn pseudo-randomly from the population determined by 

qk.  All standard SEM software can now draw psuedo-random covariance matrices from 

a parameterized SEM or a given population covariance matrix. For a detailed account of 

how we implemented this, see (Scheines, et al., 1994, chapter 13). 

3. Examples 

This section discusses examples in which the Gibbs sampler implemented in 

TETRAD III is used to draw a sample from the posterior distribution over the parameters 

of a structural equation model. We use a classic LISREL model of the stability of social 

alienation to compare maximum likelihood estimates with estimates based on the Gibbs 

sample when N is large and small.  We then consider an example in which we specify an 

informative prior distribution over the amount of measurement error in an 

“underidentified” errors-in-all-variables model of the effect of lead exposure on the IQ of 

children, concluding that lead’s effect is indeed deleterious. 

3.1 The Stability of Alienation 

Consider a classic longitudinal structural equation model developed by Wheaton, 

Muthén, Alwin, and Summers, (1977) to investigate the stability of social alienation 

(Figure 1), where measured indicators are boxed and latent variables are enclosed in 

ovals. Anomia and powerlessness are scales constructed from survey questions, 

education is years of school, and SEI a socio-economic index constructed from several 

factors, e.g., income, job status, etc. 
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Figure 1: The Stability of Alienation model. 

The purpose of this study was to estimate the effect that a given level of social 

alienation in 1967 (Alienation 67) had on the level of social alienation in 1971 

(Alienation 71), controlling for socioeconomic status (SES). Measurement models were 

constructed for the latent variables, and the central purpose of the study was to estimate 

the parameter β. Using the sample covariance matrix S reported in Wheaton, et al.’s 

paper, we compared estimates obtained first with EQS (Bentler, 1995) and second from 

the Gibbs sampler in TETRAD III. 

Assuming that the observed variables are multivariate normal (which is done in the 

original analysis), and using an improper “flat” prior p(q) = c, in which case p(q|S) ∝ 

L(q|S), we computed a Gibbs sample of size M=25,000 from p(q|S), using initial values 

equal to the ML-estimates, i.e., q0 =   ̂  qML. We kept every 25th iteration to produce an 

approximately independent 1,000 final draws (K=1,000). Table 1 gives, for each 

structural parameter, a point estimate   ̂  q j,EAP and a measure of the marginal posterior 

diffusion SD(    ̂  q j,EAP) for the retained subsample of 1,000 draws, as well as the 

corresponding quantities calculated from asymptotic theory by EQS. The relevant 

properties of the posterior are nearly identical to those computed by EQS from the 

normal approximation to the posterior using   ̂  qML and SE(   ̂  qML).  
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Table 1. Gibbs vs. ML-estimates for the Stability of Alienation Model.  M=25,000, 
K=1,000, and N=932.  

      ̂  q j,EAP   ̂ q j,ML SD(   ̂  q j,EAP) SE(   ̂ q j,ML) 

γ1 -0.579 -0.575 0.057 0.056 

γ2 -0.226 -0.227 0.055 0.052 

 ̂ b  0.608 0.607 0.052 0.051 

 

As we discussed in section 2.6, the Gibbs sample can be used to compute a posterior 

predictive p-value based on the likelihood ratio goodness-of-fit statistic. To again 

compare results based on the Gibbs sample to those calculated by the standard LISREL 

or EQS approach, we calculated the posterior predictive p-value (with Z=5) and the p-

value for the χ2 goodness-of-fit statistic as computed by EQS.  Using the sample 

covariance matrix S reported in Wheaton, we consider the full model in Figure 1 above, 

and also a submodel of Figure 1 in which all error terms are uncorrelated. For the full 

model, EQS gave p(χ2) = 0.315, whereas the posterior predictive p-value was 0.447. For 

the uncorrelated error model, EQS gave a p-value based on the χ2 of 0.00, and the 

posterior predictive p-value was also 0.00.  

We repeated the study with N set artificially to 20,000, and the estimates, standard 

errors, and p-values became virtually identical. 

As Boomsma (1983) has shown (in fact using the Wheaton et al., model), inferences 

based on SE(    ̂ q ML) can be wildly overconfident in the small sample. The reason for this is 

that at small sample sizes the asymptotic approximation of the likelihood surface is 

sometimes quite different from the actual likelihood. To illustrate, we repeated the study 

above with a pseudo-random sample S50 (N=50) drawn by TETRAD III from the 

population defined by Σ(    ̂  qML) for Wheaton et al.,’s original data and model (Table 2).  

Table 2. Sample Covariance Matrix S50 
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Anomia 67 14.302      
Powerlessness 67 7.064 8.296     
Anomia 71 8.563      4.700 16.253    
Powerless 71 6.881 5.624 8.425 10.169   
Education -4.834 -4.829 -6.271 -5.838 12.894  
SEI -2.081 -2.486 -2.700 -2.563 3.417 2.808 

 

What emerged was at first disturbing but eventually illuminating. The marginal posterior 

distributions for some of the parameters had more than one mode and were very diffuse 

relative to the asymptotic approximation obtained from the ML solution. For certain 

SEMs, including Wheaton’s model, the likelihood surface indeed has more than one local 

maximum (Scheines, Boomsma, and Hoijtink, 1997), and it is for this reason that the 

approximation of the posterior by a maximum likelihood estimator is so poor. Table 3 

shows the wild discrepancy between EQS’s results and those based on a subsample 

(K=1,000 and M=10,000) values sampled from p(β|S50). 

 

Table 3.  A comparison of the estimates and standard errors of β in the Stability of 
Alienation model: Gibbs sampling vs. ML.  M=10,000, K=1,000, and N=50. 

ˆ β ML ˆ β MDAP ˆ β EAP SE( ˆ β ML) SD( ˆ β EAP) ˆ β .025 ˆ β .975 

0.493 0.830 6.650 0.228 45.701 -54.92 128.30 

 

The inferences about β from ML and Bayesian estimation are completely at odds 

when N is small, e.g., 50. What is particularly striking is that SD(  
ˆ β EAP) is approximately 

200 times larger than SE(β ˆ 
ML), even though for the original sample at N=932 these 

quantities are almost identical. The estimate ˆ β ML is over twice as big as its standard error 

SE( ˆ β ML), and thus according to asymptotic maximum likelihood estimation theory we 

can reject the null hypothesis that β is negative or 0 at a significance level of 0.05. From 

the Gibbs sample p(β|S50), however, we know almost nothing about β, let alone its sign. 
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In sum, although asymptotic ML-estimation provides a very good approximation of 

the posterior over the parameters when the sample size is large, e.g., 500, it gives a very 

poor approximation when N is small, e.g, 50. 

3.2 Underidentified Models: Lead and IQ 

In a 1985 article in Science, Needleman, Geiger and Frank reanalyzed data they had 

previously collected on the effect of lead exposure on the verbal IQ score of 221 

suburban white children. After eliminating approximately 35 potential confounders with 

backwards stepwise regression, they settled on regressing child’s IQ on lead exposure, 

controlling for measures of genetic factors, environmental stimulation, and physical 

factors that might compromise the child’s cognitive endowment.  Using the Build 

Module in TETRAD II (Scheines, et al., 1994), we were able to eliminate all the physical 

factor variables with almost no predictive loss (Scheines, 1997).  The final set of 

variables we used are as follows: 

ciq the child’s verbal IQ score 
lead the measured concentration of lead in the child’s baby teeth 
med the mother’s level of education, in years 
piq the parent’s IQ scores 
 

Standardizing all the measured variables (which we do throughout this analysis), the 

regression solution is as follows, with t-statistics in parentheses: 

cˆ i q  =  − .177 lead + .251 med + .253 piq . 
              (2.89)         (3.50)         (3.59) 

 

All coefficients are significant at 0.05, R2 = .243, and the estimates are very close to 

those obtained by including the physical factor variables (see Scheines, 1997).  

As Klepper (1988) points out, however, the measured regressor variables are really 

proxies that almost surely contain substantial measurement error. Although an errors-in-

all-variables SEM (Figure 2) seems a more reasonable specification, unless we know 

precisely the amount of measurement error for each regressor, this model is 

underidentified. 
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Figure 2: Errors-in-all-variables model for Lead’s influence in IQ. Measured 
variables are boxed, and latent variables enclosed in ovals. 

Several strategies have been discussed for handling models of this type and 

underidentified models in general. One is instrumental variable estimation (Bollen, 1989, 

p. 110), another is a sensitivity analysis (Greene & Ernhart, 1993) and still another is to 

bound parameters rather than produce a point estimate for them (Klepper & Leamer, 

1984). An additional strategy, made possible by the Gibbs sampler, is Bayesian 

estimation. In this section we illustrate the Bayesian alternative, and in section 4.1 we 

briefly discuss the different strategies. 

If we standardize the measured variables in the model shown in Figure 2, then the 

amount of measurement error for lead, which measures Actual Lead Exposure, and for 

med, which measures Environmental Stimulation, and for piq, which measures Genetic 

factors, is parameterized by Var(εlead), Var(εmed), and Var(εpiq), respectively. Since the 

model implies that Var(lead)  = Var(Actual Lead Exposure) + Var(εlead), for example, and 

we are constraining Var(lead) to unity, then if we were to set Var(εlead) = 0.25, we would 

be asserting that 25% of the variance of measured lead comes from measurement error, 

while 75% comes from Actual Lead Exposure. 

In this case, and many others like it, there is reasonable prior information about the 

amount of measurement error present, but it is not specific enough to assign a unique 

value to the parameters associated with measurement error. Needleman pioneered a 
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technique of inferring cumulative lead exposure from measures of the accumulated lead 

in a child’s baby teeth. Between 0% and 40% of the variance in Needleman’s proxy is 

probably from measurement error, with 20% a conservative best guess. For the measures 

of environmental stimulation and genetic factors, we are less confident, so we will guess 

that between 0% and 60% of the variance in med and piq is from measurement error, 

with 30% as our best guess. To translate these speculations into a prior, we specified a 

normal prior (truncated below zero) in which the mean is set to our best guess and the 

standard deviation half the distance to the extremity of our guess. 

Table 4. Prior distribution over the parameters in the errors-in-all-variables model.  

Parameter Mean (µ0) Standard Deviation (σ0) 
Var(εled) 0.20 0.10 
Var(εmed) 0.30 0.15 
Var(εpiq) 0.30 0.15 

Other 10 Parameters Comparable 
Regression value

4.00 

 

For example, the mean in our prior for Var(εmed) is 0.30, and our standard deviation is 

0.15. Table 4 summarizes the marginal distributions for our mutlivariate normal prior 

(truncated below zero for variance parameters), and in our prior we assume there is no 

covariation between parameters. For all non-measurement error parameters, we used the 

comparable regression estimate as a mean in the prior, and a standard deviation of 4.0. 

For example, for β1, we used a mean in the prior of -0.177, and standard deviation of 4.0. 

With such a high standard deviation, the prior is effectively uninformative about the 10 

non-measurement error parameters. 

Using this prior, and the mean values in the prior for inital values in the Gibbs 

sequence, we produced 50,000 iterations with the Gibbs sampler in TETRAD III.  The 

sequence converged immediately. The histogram in Figure 3 shows the shape of the 

marginal posterior over β1, the crucial coefficient representing the influence of actual 

lead exposure on children’s IQ.  
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Figure 3. Histogram of relative frequency of β1 in Gibbs sample. M=50,000, 
K=1,000, and N=221 

The results support Needleman’s original conclusion, but do not require the 

unrealistic assumption of zero measurement error. The Bayesian point estimate of the 

effect of Actual Lead on IQ,β ˆ 
1,EAP, is -0.215, and since the central 95% region of its 

marginal posterior lies between -0.420 and -0.038, we conclude that exposure to 

environmental lead is indeed deleterious conditional on this model and our prior 

uncertainty as specified. 

4. Discussion 

In this section we consider some of the methodological points that arise in applying 

Bayesian estimation and testing to SEM.  

4.1 Underidentified Models 

Virtually every introductory book on SEM warns readers to ensure that all the 

parameters in their models are identifiable, i.e., uniquely determined from the measured 

data given the statistical assumptions and the discrepancy function being minimized. This 

is good practical advice, but since nature has no apparent reason to prefer systems whose 

models are identified, it is a maxim that has no obvious connection to the truth. Further, 

identification comes with a price: assumptions must be made which sometimes have little 
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theoretical justification. To make matters concrete, consider the errors-in-variables model 

of lead and IQ in Figure 2. Although our original regression model involving these 

measured variables is just identified, it seems almost certain that the measured regressors 

are in fact proxies for the real causal quantities of interest,  which are indeed measured 

with error. Incorporating this fact into the model’s specification, however, produces an 

underidentified model. 

As we noted above, several strategies have appeared in the statistical and social 

science literature for handling underidentified models, in particular errors-in-variables 

models. One solution, popular especially in econometrics, is instrumental variable 

estimation. For each true regressor Xi* measured by Xi with error, one finds another 

variable that “has no direct impact on the dependent variable, but has a correlation with 

the explanatory variable and no correlation with the disturbance term” (Bollen, 1995, p. 

110).  Such a variable will indeed allow us to consistently estimate the coefficient 

relating the true explantory variable Xi* to the dependent variable Y, but the estimator 

now depends crucially on at least two extra identifying assumptions. To use instrumental 

variable estimation on the model in Figure 2, we would need to find three such variables. 

In a sensitivity analysis (Greene & Ernhart, 1993), one fixes enough free parameters 

to identify the model. One then sets these parameters at a variety of levels, and then plots 

the estimates for the parameter of interest (and a 95% confidence interval around the 

estimate, for example) as a function of these other parameters. In the lead case, the free 

parameters might be the measurement error parameters, and the parameter of interest β1. 

One then looks for the dependence of the estimated parameter of interest (and its standard 

error) on the parameters fixed. The researcher must then decide if prior knowledge can 

reasonably bound the parameters manipulated in the analysis into regions such that the 

parameter of interest is on one side of a threshold. Just this strategy is taken by Greene 

and Ernhart (1993), and their findings are consistent with ours. A sensitivity analysis 

avoids eliciting a full prior (in fact it minimizes the amount of prior knowledge required), 

but it can be difficult to apply when the parameter of interest is a relatively complicated 

function of the parameters varied. Researchers will rarely, for example, be able to bound 

four parameters into any but the simplest sort of region in a four-dimensional parameter 
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space. Most analyses report the dependence between the parameter estimate and the 

manipulated parameters one parameter at a time, which can be substantially misleading. 

A similar strategy is to bound the parameters in an underidentified linear errors-in-

all-variables model directly. Klepper and Leamer (1984), for example, proved that in 

certain circumstances the parameters in such models can be bounded just from assuming 

that the variance-covariance matrix is positive semi-definite. In other circumstances, 

bounds on some parameters can be extracted from bounds on others, in which case this 

strategy is similar to the sensitivity analysis strategy. Klepper (1988) has extended this 

technique and made it practical by sequentially probing the user’s prior knowledge for 

the committments necessary for a bounding solution. Applying Klepper’s technique to 

Needleman’s data, we found that we must be willing to bound the measurement error of 

lead, med, and piq at 0.710, 0.465, and 0.457 respectiviely. Bounding the amount of 

measurement error for Actual Lead Exposure at 71% seems reasonable, but bounding it 

below 50% for Environmental Stimulation seems a bit suspect.  The main difficulty with 

this technique, however, is that it does not admit inference -- it applies to population data 

and thus is forced to treat the sample data as if it were population data. 

In the Bayesian strategy for handling underidentified models, no exact identifying 

assumptions are necessary (as in instrumental variable estimation), and no exact 

bounding levels are necessary (as in Klepper’s strategy or sensitivity analysis). One need 

only specify a prior, approximate the posterior, and make inferences based on the 

posterior as we did in the lead and IQ case. On the other hand, in many cases background 

knowledge is weak, and pretending to capture this uncertainty by elliciting a well defined 

prior probability distribution can be more wishful thinking than good science. 

If the model specified is underidentified, which is not the case in instrumental 

variable estimation, then all of these strategies attempt to leverage imperfect prior 

knowledge about some model parameters into imperfect but useful knowledge about 

others.  In the Bayesian strategy it might seem strange that we can sharpen the 

information on a parameter, e.g., β1 in the lead and IQ case, when in large samples the 

same parameter would have a flat posterior distribution (because the model is 

underidentified and because the likelihood dominates the prior in large samples). It is not 

the case, however, that the likelihood surface over an underidentified parameter need be 
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entirely flat. Rather it must have a flat region at its peak in the likelihood surface, which 

will dominate the posterior in the large sample.  Klepper and Leamer (1984) show, 

however, that the region where the likelihood is maximal is flat but bounded, and not flat 

over the entire likelihood surface. 

4.2  The Posterior Predictive Check 

The posterior predictive check that we implemented was suggested by Rubin (1984) and 

elaborated by Meng (1994) and Gelman, Meng and Stern (1996). Although not a purely 

Bayesian test of model fit, the posterior predictive p-value is a clever hybrid between a 

classical and Bayesian approach to model testing. 

In a fully Bayesian approach, one puts a prior distribution over the models under 

consideration, collects data, and computes the posterior over these models. This approach 

has been applied to SEM by Raftery and Madigan  (Madigan & Raftery, 1991; Raftery 

1993, 1994, 1996). Raftery’s thrust has been to analytically approximate posterior 

probabilities with the Bayes Information Criterion. 

In the classical approach to SEM model testing, one calculates a p-value for a model 

by computing a measure of discrepancy between the observed S and an estimate of the 

implied covariance matrix, e.g., the likelihood ratio test in (9), and comparing this 

discrepancy to a reference distribution of discrepancies, e.g., the χ2 with the appropriate 

degrees of freedom. 

There are two practical problems with the classical approach when applied to SEM. 

First, even if the population parameters q are known, the reference distribution is only 

known asymptotically. This can be overcome by simulation or bootstrap methods, 

however.  In the simulation solution, for example, one specifies q =     ̂  q and draws any 

number of pseudo-random samples from q and forms the reference distribution of 

discrepancies empirically. Several SEM programs now perform this computation for the 

likelihood ratio test, e.g., EQS. 

The second problem is that for fixed N the reference distribution of discrepancies is 

not invariant under different values of the population parameters q, i.e., the test is not 

pivotal. The posterior predictive check addresses this problem by incorporating 

uncertainty over q into the p-value. It forms a reference distribution of discrepancies by 
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mixing all the reference distributions determined by different values of q, in proportion 

to the density of q in the posterior. 

Since it produces a p-value, however, in the end the posterior predictive check 

resorts to a frequentist justification, and it is still an open question how it will fare in 

SEM when compared systematically with a large simulation study to the classical p-value 

and other alternatives.  

4.3 Multimodality, Asymptotics, and Tacit Prior Information 

In ML-estimation of SEMs from a Bayesian point of view the posterior computed from 

asymptotic theory is by definition Gaussian and thus unimodal. When the sample size is 

small, however, the actual likelihood surface and thus the posterior is for some models 

multimodal. As the sample grows large, the alternative modes become small enough to 

ignore, so techniques which assume they do not exist are perfectly reasonable.  At small 

N the possibility of multimodality cannot be ignored, however, and the quantities 

calculated from an ML solution on the basis of asymptotic theory can be wildly off. On 

the other hand, when multimodality exists and the sample size is small enough for it to 

matter, then in some cases small amounts of prior knowledge can have a big effect on 

bringing the posterior back to unimodality (Scheines, et al., 1997).  

4.4 Multivariate Normality 

Although in this paper we assume that the measured variables X are distributed as 

multivariate normal, there is no need to do so in the Bayesian approach in general and in 

the Gibbs sampler.  The only requirement for using these techniques is that one be able to 

evaluate the (conditional) likelihood L(q|X) and the prior p(q) for any value of q.  In 

SEMs with latent variables and continuous X, we know how to do this when X is 

multivariate normal but not otherwise. Extending the distributions over non-normal 

continuous X for which we can evaluate L(q|X) in SEM is therefore an important 

research topic. 

If the measured variables are discrete, but are thought to be projections of underlying 

variables distributed as multivariate normal, then we can also evaluate L(q|X); see 

Muthen (1984).  
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Another class of causal models that have received substantial attention in the last 

several years are Bayesian networks (Pearl, 1988; Spirtes, Glymour, & Scheines, 1993; 

Jensen, 1996).  If all the variables in a Bayesian network are measured, discrete and 

distributed multinomially, then the likelihood function can be evaluated (Heckerman & 

Geiger, 1994), and the Gibbs sampler used profitably. Geiger, Heckerman, and Meek 

(1996) have recently pushed the discrete variable Bayesian network technology forward 

to include latent variables. 
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