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Abstract 
Instrumental Variable (IV) estimation is a 
powerful strategy for estimating causal 
influence, even in the presence of confounding.  
Standard IV estimation requires that the 
relationships between variables is linear.  Here 
we relax the linearity requirement by 
constructing a piecewise linear IV estimator.  
Simulation studies show that when the causal 
influence of X on Y is non-linear, the piecewise 
linear is an improvement. 

 
1 INTRODUCTION  
 
In non-experimental settings, estimating the causal 
influence of one variable X on another Y is difficult 
primarily because of confounders (unmeasured common 
causes of X and Y). Several strategies for dealing with 
confounders have been suggested.  The first is to identify 
the possible confounders, measure them, and then 
statistically control for them.  This approach, although the 
most common in practice, is far from optimal. First, we can 
never be sure we have identified all the confounders, and 
second, we might have measured some of them badly.  
Either problem will leave us with a biased estimate of the 
effect of X on Y.  Another strategy is to do a sensitivity 
analysis [Rosenbaum, 1995] in which the estimate of X's 
effect on Y is bounded relative to a parameter that 
expresses how much of the association between X and Y is 
due to confounding.  This strategy supposes that one can 
sensibly parameterize the "amount of confounding," but, as 
Spirtes [1999] has pointed out, one can only do so in very 
limited circumstances. A third strategy [Spirtes and 
Cooper, 1999] is to find a "causal instrument" Z such that 
Z is prior to X and Y, Z is associated with X, but Z and Y 
are independent conditional on X.   If one assumes that the 
causal model underlying the data is Markov and faithful to 
the population it describes [Spirtes, Glymour, and 
Scheines, 2000], then these two conditions eliminate the 

possibility that X and Y are confounded, thus the non-
experimental, observed association between X and Y is 
the appropriate estimator of the causal dependence of Y 
on X.   

The disadvantage of the Spirtes-Cooper strategy is that 
X and Y must be unconfounded.  In cases where X and 
Y are confounded, their strategy will return "no 
estimator found." A fourth strategy that allows for X 
and Y to be confounded is instrumental variables 
[Bowden & Turkinton, 1984].  In their typical form, 
instrumental variable (IV) estimators require several 
assumptions in order to give consistent estimates of the 
effect of X on Y.   The work we present here is aimed 
at generalizing the IV framework by relaxing the 
requirement of linearity.  In what follows, we sketch 
linear IV-estimation and discuss the assumptions it 
requires.  We then sketch our improvement, which 
involves creating a piecewise linear IV-estimator.  In 
the final section, we describe an experiment comparing 
regular regression, linear IV-estimation, and piecewise 
linear IV-estimation on simulated data. 
  
2 IV ESTIMATION  
 
Classical linear IV-estimation works on causal models 
like the one pictured in Figure 1. 
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Figure 1: IV estimation model 



Z, X, and Y are measured variables, T is an aggregated 
variable that includes all the unmeasured common causes 
of X and Y (the confounding), εx and εy are "error terms," 
and α, β, γ1, and γ2 are real valued linear coefficients.  Z, 
T, εx, and εy are assumed to be pair wise independent, and 
the "structural equations" which define this model are: 

X = αZ + γ1T + εx 

Y = βX + γ2T + εy 

As Spirtes, et. al (2000) and Pearl (2000) have discussed 
at length, the coefficient β in this model represents the 
causal effect of X on Y.  Assuming, without loss of 
generality, that Z, X, and Y are standardized to have mean 
0 and variance 1, then according to this model, ρXY = β + 
γ1γ2Var(T), so unless γ1 or γ2 or Var(T) equal 0, in which 
case there is no confounding, the association between X 
and Y is not a reliable guide to the causal effect of X on 
Y.  Because Z (the instrument) is independent of the 
confounder T in this model and not an effect of X, the 
association between Z and X and between Z and Y does 
not involve  γ1 or γ2 at all: ρZX = α, ρZY = αβ. 

Thus, β = ρZY / ρZX, and if the model is correctly 
specified, then the sample correlations rho(Z,Y) and 
rho(Z,X) are all we need to consistently estimate β, the 
causal effect of X on Y. 

More generally, if we have t observations on a vector of K 
regressors X, a vector of K instruments Z (one for each X 
∈ X), and an outcome Y, then the linear IV-estimator for 
the unbiased regression of X on Y is: b* = (Z'X)-1Z'Y, 
where Y is a 1 x t matrix, X and Z are (1+K) x t matrices 
with the first column all "1"s, and b* is the vector of 
unbiased regression coefficients [Goldberger, 1972].   
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Figure 2: Generalized error term ε 

 

Assuming that T is an aggregated variable that includes 
all the common causes of X and Y, and that ε is an 
aggregated variable that includes all the direct causes of Y 
except for X  (Figure 2), the conditions sufficient for  b* 
to be an unbiased estimator of the causal influence of X 
on Y are: 

 
1) Y is not a cause of X 
2) Z and ε are independent 
3) ρZ,X ≠ 0 
4) All effects are linear functions of their causes 
and error.  

 

The IV-estimator works because the associations 
between Z and Y and between Z and X do not involve 
T, which by assumption we cannot measure. That these 
associations do not involve T follows from the above 
conditions and the assumption that causal structures are 
Markov and faithful [Spirtes, et al., 2000]. The 
independence of Z and ε entails that Z and T have no 
causal connection, which in turn entails that X is not a 
cause of Z, which we represent by drawing Z o  X in 
Figure 2. If X was a cause of Z, then T would be an 
indirect cause of Z and thus not be independent of it. 
Thus X is a collider on any undirected path between Z 
and Y going through T.1  If assumption 4 holds, i.e., the 
model is linear, then no undirected path between Z and 
Y going through T produces any association between Z 
and Y [Spirtes, et al., 2000].   

The only other causal feature that is entailed by these 
assumptions and that is required is that Z and Y are not 
adjacent.  This is a consequence of how ε is defined: 
"all other direct causes of Y except for X."  If Z were a 
direct cause of Y, then it would be included in ε and 
thus not independent of ε, contrary to assumption 2.  If 
there was an unmeasured common cause U of Z and Y, 
then U would be included in ε and then Z and ε would 
not be independent. Finally, if Y were a direct cause of 
Z, then ε would be an indirect cause of Z and thus not 
independent of it.  

The fourth assumption, linearity, can be relaxed to 
exclude the unmeasured confounder T.  That is, as the 
model is usually given: 

X = αZ + γ1T + εx 
Y = βX + γ2T + εy 

so X is a linear function of Z, T, and error , and Y is a 
linear function of X, T and error.  It turns out that 
neither X nor Y must depend linearly on T.  That is, for 
arbitrary functions f and g, if:  

X = αZ + f(T) + εx 

Y = βX + g(T) + εy 

                                                           
1 If the terms "collider" and "undirected path," or "Markov" 
and "faithful" are not familiar, see [Spirtes, et al., 2000], 
chapter 2 and 3. 



then ρZY / ρZX is still a consistent IV estimator of β.2   
This is an important generalization, because we can 
examine the data to confirm that X depends linearly upon 
Z, we cannot inspect X's dependence on T. Similarly for 
Y's dependence on X and T.  

 
3 PIECEWISE LINEAR IV ESTIMATION 
 
Clearly the consistency of the IV estimator still depends on 
linearity in the remaining part of the model.  That is, X 
must depend linearly on Z, and Y must depend linearly on 
X.  Our idea is to take advantage of the fact that the 
functional form of the dependence of X and Y on T, aside 
from being additive with the other causes, is irrelevant - 
and to break up the X,Y,Z 3-space into regions3 such that 
in each region the dependencies among X, Y, and Z are 
approximately linear.  

Our strategy is a simple extension of piecewise linear 
regression (Figure 3), where one partitions the X,Y space 
with cuts in X such that the dependence of Y on X is 
linear within each partition. Our strategy is to search for 
partitions of the X,Y,Z-space defined by cuts in Z and in 
X such that X is a linear function of Z, and Y a linear 
function of X within each partition. 
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Figure 3: Piecewise linear regression 

 
Since the dependence of X on T and of Y on T need not 
be linear, or even the same function, in each of these 
regions, the IV estimator can be applied separately in each 
region.   

Finding the "best" set of regions is a classic problem in AI 
and Statistics.  The smaller we make each region, the 
more approximately linear the relations within the region, 
but the smaller the sample size and the worse the 
statistical properties of the IV estimator in the region.  
Thus, the problem is how to best trade off linearity for 

sample size.  Put another way, the complexity of the 
model increases with the number of regions.  The trade 
off is thus between the complexity of the model and its 
fit overall. 

                                                           

                                                          

2 We include a proof in the Appendix. 

 

Fortunately, this problem and others like it have been 
investigated by statisticians and econometricians under 
the nomenclature: "Change Point Analysis."4  
Assuming that there is a partition of the independent 
variable, possibly empty, such that each region in the 
partition contains at least 5 points and the dependent 
variable is a linear function of the independent variable 
plus noise in each region, Chen and Gupta [2000] give 
a consistent O(N2) procedure, N the sample size, for 
locating the change points that partition the independent 
variable. 

If we order the sample points k=1 to n according to the 
independent variable Z in the regression of X on Z, for 
example, then the null hypothesis of no change points 
is: 

H0: µXi = β0 + β1Zi, for i = 1 to n 

An alternative to the null is that there is one change 
point: 

Halt:  µXi = β1
0 + β1

1Zi, for i = 1 to k, and  
 µXi = β∗

0 + β∗
1Zi, for i = k+1 to n 

 
where β1

0  ≠ β∗
0 and  β1

1 ≠ β∗
1.   

Chen and Gupta compare H0 and Halt using the Schwarz 
Information Criteria (SIC).5  SIC(H0) is computed 
directly from a regression of Y on X: 

SIC(H0) = n log(2π) + n log[ - b∑
=

n

i 1
i(Y 0 - b1Xi)2

 ] +  

n + 3 log(n) - n log(n)  
 

while the SIC for Halt at each change point k is:  

SIC(k) = n log(2π) + n log[∑ - b
=

k

i 1
i(Y 1

0 - b1
1Xi)2

  + 

∑
+=

n

ki 1
i(Y - b*

0 - b*
1Xi)2

 ]  + n + 5 log(n) - n log(n) 

Accept Halt if, over k between 2 and n-2, min[SIC(k)] < 
SIC(H0), otherwise accept the null H0. Vostrikova 
(1981) proved that repeating this procedure recursively 

 
4 We thank Teddy Seidenfeld for pointing us to this literature. 
5 The formulas for SIC(H0) and SIC(k) given here are slight 
corrections of those given in Chen and Gupta [2000], pp. 113 
and 114.  Changwon Yoo found and corrected the errors, and 
Drs. Chen and Gupta confirmed Yoo's version as correct. 



within the two regions defined by the change point until 
the null hypothesis is accepted within each region is a 
consistent O(N2) procedure for detecting the number of 
change points and their location simultaneously. 

The overall piecewise linear IV-estimation procedure, 
PL-IV, is: 

1. Use SIC to find the change-points in Z such that 
X's dependence on Z is approximately piece-wise 
linear. 

2. Use SIC to find the change-points in X such that 
Y's dependence on X is approximately piece-wise 
linear. 

3. For each region R(Z,X) defined by the change-
points in Z and X, use only sample points in the 
region to estimate: IVR(Z,X) = (Z'X)-1(Z'Y). 

 

A  slight modification of this procedure, which we will 
call PL-IV* is to leave out step 1 from PL-IV: 

1. Use SIC to find the change-points in X such that 
Y's dependence on X is approximately piece-wise 
linear. 

2. For each region R(X) defined by the change-points 
in X, use only sample points in the region to 
estimate: IVR(Z,X) = (Z'X)-1(Z'Y). 

 

4 CAUSAL PREDICTION 
   
In our setting, the causal effect of X on Y must be 
estimated from training data generated by an instantiation 
of the causal model in Figure 1.  
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Figure 4: Ideal Intervention on X 

We will consider two test contexts for causal prediction, 
one in which we choose a value for X at random and 
ideally manipulate X to take on that value, and another in 
which we first observe X and then randomly choose the 
value of some variable ∆, which we then add to the 
observed value of X.   

In the first context, the intervention completely 
determines the value of X, and thus breaks the arrows 
into X (Figure 4), making X independent of both Z and 
T in the test context. 

In the second the context, we do not ideally intervene 
on X, but only contribute some value ∆ to the X 
observed.  For example, if X was monthly income, we 
might run a study in which, for each subject, we picked 
a number between 0 and 2,000, and then added that 
number of dollars to a subject's monthly income.   
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Figure 5: Changing X by ∆ 

In this context we do not determine the subject's 
monthly income - it is still a function of the same 
variables it was before our intervention - rather we 
contribute an extra influence ∆ to it, where ∆ is 
independent of T and Z. Thus the causal model 
describing this test context is Figure 5, not Figure 4.  
The important difference is that in the ideal intervention 
context of Figure 4, the X after manipulation is 
independent of Z and T, but in Figure 5 it is still 
associated with Z and T, although because of ∆ not as 
associated as it was in the training context. 

 
5 SIMULATION STUDIES    
 
To test the performance of the estimators we have 
defined, we conducted a simulation study in which we 
generated training and both kinds of test data (Figure 4 
and Figure 5) for four versions of the causal model in 
Figure 1.  

For each version of the model in Figure 1, given below, 
we drew a pseudo-random sample of 2,000 training 
points and 500 test points.  The versions differ on 
whether X is a linear function of Z or not, and whether 
Y is a linear function of X or not. Dataset 1 is from a 
fully linear model, dataset 2 from a model in which Y is 
not a linear function of X, dataset 3 from a model in 
which X is not a linear function of Z, and dataset 4 
from a model in which Y is not a linear function of X 
and X is not a linear function of Z. 

 



Dataset 1  (no-cp) 

Training Data (N=2,000) 
P(Z,T,εx, εy) ~ normal, with means and off-diagonal 
covariances = 0, Var(Z) = Var(T) = 1.0, and Var(εx) = 
Var(εy) = 0.5. 
 
X =  0.6*Z + 0.7*T + εx 
Y =  0.8*X + 0.7*T + εY 
 
Test Data (M=500) 
Zt, Xt, Tt, εxt, εyt  distributed as above.  
Xclose = Xt = Xt + ∆,  ∆ ~U[-1/2 sd(X), +1/2sd(X)] ♣ 
Xfar  ~ U[X.05, X.95] 

♠ 
Yclose  = 0.8*Xclose + 0.7*Tt + εYt    
Yfar    = 0.8*Xfar + 0.7*Tt + εYt    
  

The variable Xfar captures the test context of an ideal 
intervention (Figure 4). We set Xfar to the draw from a 
uniform with width equal to the central 90% of the sample 
X data. We subscript it with "far" to indicate it is probably 
far from the X we would have observed if we had not 
intervened.    

The variable Xclose captures the test context of Figure 5. 
We drew ∆ from a relatively narrow uniform and added it 
to the X observed in the test data, thus creating an X that 
is probably "close" to the X we would have observed if 
we had not intervened.    

Datasets 2 through 4 are generated similarly to 1, but with 
different functional dependences between X, Y, and Z. 

Dataset 2  (X-cp) 
X =    0.6*Z + 0.7*T + εx 
Y =  { 0.8*X + 0.7*T + εY if X < 0, 
 -0.8*X + 0.7*T + εY if X ≥ 0  } 
 
Dataset 3  (Z-cp) 
X =  {  -0.6*Z + 0.7*T + εx if Z < 0,  
 1.0*Z + 0.7*T + εx if Z ≥ 0  } 
Y =    0.8*X + 0.7*T + εY 
 
Dataset 4  (X,Z -cp) 
X =  {  0.6*Z + 0.7*T + εx if Z < 0,  
 1.6*Z + 0.7*T + εx if Z ≥ 0  } 
Y =  { 0.8*X + 0.7*T + εY if X < 0, 
 -0.8*X + 0.7*T + εY if X ≥ 0  } 
 

For each of these datasets, we computed the mean-
squared error for each of the following estimators of the 
causal effect of X on Y: 
                                                           
♣sd(X) is the sample standard deviation of X in the training data. 
♠X.05 is the value of X that is greater than 5% of the training sample. 

 
• Reg: multiple regression of Y on X and Z.    
• IV: standard linear IV-estimator 
• PL-IV: piecewise linear IV-estimator with cuts 

in Z and X. 
• PL-IV*: piecewise linear IV-estimator with cuts 

only in X. 
 

For each estimator, we calculated the mean-squared 
error on both the far and the close data.  For example, 
for the standard linear IV-estimator, we computed: 

MSEclose(IV) =  
M

 )Y -)(X Ŷ( 
M  to1  i

2
closecloseIV∑

=

 
 

 

MSEfar(IV) =  
M

 )Y -)(X Ŷ( 
M  to1  

2
farfarIV

i
∑

=

 

 

 

where is the predicted value of Y for the post-
manipulation value of X, and M the sample size of the 
test data.  

(X)ŶIV

 
6 RESULTS  
 
Table 1 gives the mean-squared errors for each of the 
estimators on the test context from Figure 4, in which 
we ideally intervene on X, and Table 2 the test context 
from Figure 5, in which we contribute ∆ to X but do not 
ideally intervene on it. The parenthetical comments in 
the rows refer to whether the data generating process 
involved change-points in X, Z, or both.  The 
parenthetical comments on the columns refer to 
whether the estimator involved finding change-points in 
X, Z, or both. 

Consider the first rows in both tables.  In this row, the 
mean-squared error for the IV estimators within each 
table is the same because the estimator found no 
change-points and is thus equivalent to standard IV 
estimation.  Interestingly, in the ideal intervention test 
context (table 1), IV estimation outperforms regular 
regression, but the opposite is true in the non-ideal 
intervention case (table 2). This is because the 
manipulated X and Z are independent in the data from 
table 1, but still dependent in table 2.  If the joint 
distribution in the training and test set over X, Y, and Z 
are identical, and the model is linear, then regression 
will outperform any estimator.  It is only when the test 
distribution is different than the training distribution 
that IV estimation offers an advantage.  In table 2, the 
test distribution is not identical to the training because 



of ∆, but it is apparently close enough to give naïve 
regression the advantage in table 2. 

 
Table 1: MSEfar 

  Estimator   
 Reg IV PL-IV* PL-IV 
Dataset  (no-cp) (X-cp) (X,Z-cp) 
1 (no-cp) 1.292 1.052 1.052 1.052 
2 (X-cp) 1.242 1.162 1.015 1.015 
3 (Z-cp) 1.189 0.970 0.970 1.111 
4 (X,Z - cp) 1.496 1.316 1.063 1.328 
 

Table 2: MSEclose 

  Estimator   
 Reg IV PL-IV* PL-IV 
Dataset  (no-cp) (X-cp) (X,Z-cp) 
1 (no-cp) 0.812 0.978 0.978 0.978 
2 (X-cp) 1.268 1.589 0.930 0.930 
3 (Z-cp) 0.830 0.995 0.995 0.920 
4 (X,Z - cp) 1.486 1.826 0.941 0.964 
 

The second rows in both tables correspond to a data 
generating process in which Y is non-linear in X, but X 
still linear in Z.  As expected, in table 1 IV estimation 
outperforms naïve regression, and piecewise linear IV 
estimation outperforms standard IV estimation. In table 2, 
the PL-IV estimator affords a large advantage over both 
naïve regression and standard IV.   

In the third and fourth rows, where X depends non-
linearly on Z, the relative advantage of PL-IV vs. PL-IV* 
is made apparent.  In the ideal intervention context of 
table 1, PL-IV* seems to dominate.  This is because the 
manipulated value of X is independent of Z, and the 
functional dependence of Y on X (what we are trying to 
estimate) is also independent of Z.  Using cuts in Z in the 
estimation reduces the sample size of the regions, and 
trying to use Z in the prediction introduces noise.  In the 
third row of table 2, PL-IV slightly outperforms PL-IV*, 
and this seems to be because Z and the function 
connecting X to Y are still associated in the test context, 
and in a similar way to how they are associated in the 
training context.     

Overall, PL-IV* outperforms all other estimators in table 
1, where we are predicting the effect of an ideal 
intervention.  In table 2, where we are predicting a change 
in X that is not an ideal intervention, the results depend on 
whether the functional dependence of Y on X is non-
linear.  If it is, then PL-IV* again dramatically 
outperforms both regular regression and standard IV 
estimation.   
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Appendix 
Theorem: If Z, T, εy, and εx are pairwise independent, 
Z, X, Y are normal with mean 0 and variance 1, and the 
structural equations defining the causal dependence 
among X, Z and T are: 

Y = βX + g(T) + εy 
X = αZ + f(T) + εx 

then ρZY / ρZX is still a consistent IV estimate of β 
regardless of the form of functions f and g.  

Proof 
1) ZY      =  Z (β[αZ + f(T) + εx] + g(T) + εy) 
2)            = αβZ2 + Z f(T) + Zεx+ Zg(T) + Zεy 
3) E(ZY) = αβΕ(Z2) + E(Zf(T)) + E(Zεx) + E(Zg(T)) + 
E(Zεy) 
4) E(Zf(T)) = E(Zεx) = E(Zg(T)) = E(Zεy) = 0, [if A and 
B are independent, so are any functions of A and B.]  
5) Since Ε(Z2) = Var(Z) = 1,    E(ZY) = ρZY =  αβ     
6) ZX      =  Z (αZ + f(T) + εx) = αZ2 + Z f(T) + Zεx 
8) E(ZX) = α Var(Z) = ρZX =  α 
9) ρZY / ρZX = β 



 


