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The statistical community has brought logical rigor and mathematical precision to the problem of 
using data to make inferences about a model’s parameter values. The TETRAD project, and 
related work in computer science and statistics, aims to apply those standards to the problem of 
using data and background knowledge to make inferences about a model’s specification. We 
begin by drawing the analogy between parameter estimation and model specification search. We 
then describe how the specification of a structural equation model entails familiar constraints on 
the covariance matrix for all admissible values of its parameters; we survey results on the 
equivalence of structural equation models, and we discuss search strategies for model 
specification. We end by presenting several algorithms that are implemented in the TETRAD II 
program. 
 

1. Motivation 

A principal aim of many sciences is to model causal systems well enough to provide 
sound insight into their structures and mechanisms, and to provide reliable predictions 
about the effects of policy interventions. In order to succeed in that aim, a model must be 
specified at least approximately correctly. Unfortunately, this is not an easy problem. 
When some of the causes are unknown and/or unobserved, there are an infinity of 
possible causal models and it is not obvious how to go about constructing plausible ones. 
To make matters worse, there may be many models that are compatible with background 
knowledge and the data, but which lead to entirely different causal conclusions. 

The process of statistical modeling is typically divided into at least two distinct 
phases: a model specification phase in which a model (with free parameters) is specified, 
and a parameter estimation and statistical testing phase in which the free parameters of 
the specified model are estimated and various hypotheses are put to a statistical test. Both 
model specification and parameter estimation can fruitfully be thought of as search 
problems. Parameter estimation can be thought of as a search through a large space for a 
particular vector of values that satisfies a given set of constraints. For example, it is a 
search problem to find a vector of parameter values that maximize the likelihood of the 
data given the model. Statisticians have fruitfully investigated a number of parameter 
estimation problems under a variety of background assumptions, e.g., normal and non-
normal distributional assumptions, recursive or non-recursive models, etc. Even though 
model specification affects parameter estimation (Kaplan, 1988) and predictions about 
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the effects of adopting different policies (Strotz & Wold, 1960; Spirtes, et al., 1993), the 
great bulk of theoretical attention on statistical causal models has been devoted to 
estimating their parameters, to developing statistics for testing individual parameters and 
overall model fit (Bollen and Long, 1993), and to techniques for making minor 
respecifications of models that fit data poorly (Kaplan, 1990; Saris, et al., 1987; Sorbom, 
1989; Bentler, 1986; Jöreskog and Sörbom, 1993). 

We believe the problem of model specification is in many respects analogous to the 
problem of parameter estimation, and that the same kind of rigor brought to the 
development and evaluation of algorithms for parameter estimation can and should be 
applied to algorithms for model specification. In a model specification problem a class of 
models is searched, and various models assessed. Our concern is with structuring such 
searches so as to have guarantees of reliability analogous to those available for parameter 
estimators.  

This is not to say that it is our intention to replace well-founded theoretical sources 
of model specification with automatic procedures. Where theory and domain knowledge 
provide justified constraints on model specification, those constraints should be used, and 
one of the important desiderata for model search procedures is that they make use of 
whatever domain knowledge is available. But rarely, if ever, is social scientific theory 
and background knowledge sufficiently well confirmed and sufficiently strong to entail a 
unique model specification. There are typically many theoretically plausible alternatives 
to a given model, some of which support wholly different causal conclusions and thus 
lead to different conclusions about which policies should be adopted. 

Just as in the case of parameter estimation, the results we will present here do not 
free one from having to make assumptions; instead, they make rigorous and explicit what 
can and cannot be learned about the world if one is willing to make certain assumptions 
and not others. If, for example, one is willing to assume that causal relations are 
approximately linear and additive, that there is no feedback, that error terms are i.i.d and 
uncorrelated, and that the Causal Independence and Faithfulness assumptions (explained 
in detail in sections 3.1 and 3.2) are satisfied, then quite a lot can be learned about the 
causal structure underlying one’s data. If one is only willing to make weaker 
assumptions, then less can be learned, although what can be learned may still be useful. 
Our aim is to make precise exactly what can and cannot be learned in each context. As 
with proofs of properties of estimators, the results are mathematical, not moral: they do 
not say what assumptions ought to be made. 

1.1 Structural Equation Models and Directed Graphs 

Many of the results and procedures we will describe are very general and apply to 
models of categorical as well as continuous data, but for the sake of concreteness we will 
illustrate them with linear structural equation models (hereafter, SEMs) (Bollen, 1989; 
James, Mulaik, and Brett, 1982). SEMs include linear regression models (Weisberg, 
1985), path analytic models (Wright, 1934), factor analytic models (Lawley & Maxwell, 
1971), panel models (Blalock, 1985; Wheaton, et al., 1977), simultaneous equation 
models (Goldberger & Duncan, 1973), MIMIC models (Bye, et al., 1985), and multiple 
indicator models (Sullivan, et. al., 1979). This section introduces the terminology we will 
use throughout the rest of the paper.  
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The variables in a SEM can be divided into two sets, the “error variables” or “error 
terms,” and the substantive variables. Corresponding to each substantive variable Xi is a 
linear equation with Xi on the left hand side of the equation, and the direct causes of Xi 
plus the error term εi on the right hand side of the equation. Since we have no interest in 
first moments, without loss of generality each variable can be expressed as a deviation 
from its mean. 

Consider, for example, two SEMs S1 and S2 over X = {X1, X2, X3}, where in both 
SEMs X1 is a direct cause of X2 and X2 is a direct cause of X3. The structural equations2 
in Figure 1 are common to both S1 and S2. 
 

X1 = ε1 

X2 = β1 X1 + ε2 
X3 = β2 X2 + ε3 

Figure 1: Structural Equations for SEMs S1 and S2 

In these equations, β1 and β2 are free parameters ranging over real values, and ε1, ε2 and ε3 
are unmeasured random variables called error terms. Suppose that ε1, ε2 and ε3 are 
distributed as multivariate normal.  In S1 we will assume that the correlation between 
each pair of distinct error terms is fixed at zero. The free parameters of S1 are θ = <β, P>, 
where β is the set of linear coefficients {β1, β2} and P is the set of variances of the error 
terms. We will use ΣS1(θ1) to denote the covariance matrix parameterized by the vector θ1 
for model S1, and occasionally leave out the model subscript if the context makes it clear 
which model is being referred to. If all the pairs of error terms in a SEM S are 
uncorrelated, we say S is a SEM with uncorrelated errors.  

Let S2 contain the same structural equations as S1, but in S2 allow the errors between 
X2 and X3 to be correlated, i.e., make the correlation between the errors of X2 and X3 a 
free parameter, instead of fixing it at zero, as in S1. In S2 the free parameters are θ = <β, 
P’>, where β is the set of linear coefficients {β1,β2} and P’ is the set of variances of the 
error terms and the correlation between ε2 and ε3. If the correlations between any of the 
error terms in a SEM are not fixed at zero, we will call it a SEM with correlated errors.3 

It is possible to associate with each SEM with uncorrelated errors a directed graph 
that represents the causal structure of the model and the form of the linear equations. For 
example, the directed graph associated with the substantive variables in S1 is X1→ X2 → 
X3, because X1 is the only substantive variable that occurs on the right hand side of the 
equation for X2, and X2 is the only substantive variable that appears on the right hand 
side of the equation for X3. We generally do not include error terms in our path diagrams 
of SEMs unless the errors are correlated. We enclose measured variables in boxes, latent 
variables in circles, and leave error variables unenclosed. 
 

                                                 
2 We realize that it is slightly unconventional to write the trivial equation for the exogenous variable 

X1 in terms of its error, but this serves to give the error terms a unified and special status as providing all 
the exogenous source of stochastic variation for the system. 

3We do not consider SEMs with other sorts of constraints on the parameters, e.g., equality constraints. 

  3



X1 X2 X3

ε2 ε3

 

Figure 2. SEM S2 with correlated errors 

The typical path diagram that would be given for S2 is shown in Figure 2. This is not 
strictly a directed graph because of the curved line between error terms ε2 and ε3, which 
indicates that ε2 and ε3 are correlated. It is generally accepted that correlation is to be 
explained by some form of causal connection. Accordingly, if ε2 and ε3 are correlated we 
will assume that either ε2 causes ε3, ε3 causes ε2, some latent variable causes both ε2 and 
ε3, or some combination of these. In other words, curved lines are an ambiguous 
representation of a causal connection. In section 3.1, for each SEM S with correlated 
errors we will show how to construct a directed acyclic graph G with latent variables that 
represents important causal and statistical features of S. 

Finally, a directed graph is acyclic if it contains no directed path from a variable 
back to itself. A SEM is said to be recursive (an RSEM) if its directed graph is acyclic. 

 

1.2 Causal Structure: Predicting the Effects of Manipulations 

In this section we will consider the causal interpretation of RSEMs (Strotz & Wold, 
1960). The causal interpretation of non-recursive SEMs is not well understood and we 
will not discuss it here.  Consider the following hypothetical situation. For each member 
of a population it is recorded how many cigarettes they have smoked in the last month (S) 
and how yellow their fingers are (Yf). Let us suppose that the correct causal description 
of this system is given by RSEM M in Figure 3. 

 

Yf = a S + εYf 
S = εS 

ρ(εYf, εS) = 0,  mean(εY) = 0, mean( εYf) = 0, var(εS) = 1, var(εYf) = 1 - a2 

 

 

Figure 3. RSEM M 

The graph of this RSEM is asymmetric because it contains an arrow from S to Yf, 
but not from Yf to S.  What consequences does the causal asymmetry have? 

The causal asymmetry is reflected in the predictions that M makes about the effects 
of interventions on the values of the random variables S and Yf respectively.4 The 
                                                 

4 The causal asymmetry is also reflected in the quite different statistical relationships between εs and 
Yf on the one hand, and εYf and S on the other hand. From the Causal Independence assumption introduced 
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prediction of the effect of an intervention on a system is a counterfactual prediction, that 
is, it is a prediction not about the existing population, but about a population that does not 
exist and might never exist. Of course, how an actual intervention would affect other 
variables would depend upon how we intervened in the system. We will consider theories 
that predict the effects of a kind of ideal intervention in which the only variables in the 
system affected directly are those that we manipulate by setting their value. For example, 
suppose we intervene ideally in the population originally described by M to eliminate 
smoking, i.e., we set S = 0. Then the new causal system that is the result of this ideal 
intervention would be described by model MS (Figure 4), in which the only change is that 
the equation for S in M is replaced by a new equation in which all of the coefficients 
relating S to other variables (in this case just εS) are set to 0, and S is set equal to a 
constant.5 

Yf = a S + εYf 
S = 0 

ρ(εYf, εS) = 0,  mean(εS) = 0, mean( εYf) = 0, var(εS) = 0, var(εYf) = 1 - a2 
 

 

Figure 4. RSEM MS 

 
If, for an arbitrary parameterization of MS, fS is the density function according to MS 

(and similarly for M and fM) then the effect on Yf of ideally intervening to set S to 0, i.e., 
fS(Yf | S = 0),  is equal to the density, in RSEM M, of Yf conditional on S = 0, i.e., fM(Yf 
| S = 0).  

MS is a correct theory of the results of the kind of ideal intervention in which the 
only variable in the system that is directly affected is S. Of course, whether some 
particular course of action is an ideal intervention of this kind is an empirical question 
that is outside the scope of M or MS. For example, we could try and force people not to 
smoke (in such a way that the only variable directly affected is smoking) by passing a 
law against smoking. If the law is effective, and it does not directly affect the values of 
other variables, then MS is the correct description of the new system; otherwise it is not. 

Suppose now that we were to perform an ideal intervention on yellowed fingers (Yf) 
in the system described by M, i.e. we were to intervene in such a way that the only 
change to the system is that the equation for Yf in M is replaced by a new equation in 
which all of the coefficients relating Yf to other variables are set to 0, and Yf is set equal 
to a constant. Call this new theory MYf. Note that we have removed the edge from S to Yf 
in the graph of MYf, because variations in S no longer cause variations in Yf and hence 
the coefficient of S in the equation for Yf is set to zero.  

 
Yf = 0 

                                                                                                                                                 
in section 3, it follows that in M, εYf and S are uncorrelated, but it does not entail that εS and Yf are 
uncorrelated. 

5 In this example, the constant is zero, but we could of course just as easily have an ideal intervention 
which set S to any other value. 
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S = εS 
ρ(εYf, εS) = 0,  mean(εS) = 0, mean( εYf) = 0, var(εS) = 0, var(εYf) = 1 - a2 

 

 

Figure 5. RSEM MYf 

One consequence of the causal asymmetry in M is that if we perform an ideal 
intervention on S in M, then fM(Yf) changes, but when we perform an ideal intervention 
on Yf in M, f M(S) does not change (because Yf is not a cause of S). It is also important to 
note that the distribution of smoking conditional on Yf  = 0, i.e., fM(S | Yf = 0), is not the 
same as the distribution of S when an ideal intervention is performed on Yf, i.e., fYf(S | 
Yf = 0). In the case of any ideal intervention on Yf, fYf(S | Yf = c) = fYf(S). 

Given an RSEM M in which all parameters are identified, and information about 
how an intervention affects a given variable in the system, predicting the effects of ideal 
interventions is easy; one can simply make the suitable changes to M in the manner 
described above. The problem is much more difficult if M is only partially specified (e.g. 
the directions of only some of the arrows in the graph of M are known), or if M contains 
latent variables and not all of the parameters are identifiable. A theory of interventions 
for linear models of the kind described here was given in Strotz and Wold (1960). A 
general theory of representing interventions in causal systems (not limited to RSEMs) in 
a graphical framework, and of predicting the effects of interventions  for a partially 
specified model is presented in Spirtes, et al. (1993), chapter 7. Examples of making 
predictions from a partially specified model will be presented in section 5. Robins (1986) 
made important advances on the problem of predicting the effects of interventions in 
models with latent variables. Pearl (1995) gives a more general solution of the problem of 
predicting the effects of interventions in models with latent variables using the graphical 
representations of interventions presented in Spirtes, et al. 1993. 

1.3 Parameter Estimation and SEM Specification  

Having clarified the objects under discussion, we now return to our analogy between 
parameter estimation and model specification search. Ideally, there are four properties 
that an estimation procedure should have: 

•  Identification. An estimation procedure should be able to determine whether or 
not a parameter is identifiable, i.e. determine whether or not there is a unique 
estimate that satisfies the given constraints.  

•  Consistency. If a parameter is identified, it should be the case that as the sample 
size grows without limit, the probability approaches one that the difference 
between the true value and the estimated value approaches zero. 

•  Error Probabilities. The sampling distribution of the estimator should be 
known. 

•  Practical Reliability. The estimation procedure should be reliable on samples 
of realistic size, and relatively robust against small violations of the operative 
assumptions.  
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We will examine each of these desiderata in more detail, and point out analogies 
(and some disanalogies) between parameter estimation and model specification 
procedures. To see how the analogy extends to model specification procedures, we will 
consider for the sake of concreteness properties of the PC algorithm, which is a model 
specification search procedure implemented in the Build module of TETRAD II 
(described in sections 5.1.1 and 8.2). For the points we make in this section, it is not 
necessary to know the details of the PC algorithm. The only features relevant to this 
section are that it takes as input: 1) a sample covariance matrix (under the assumption of 
multivariate normality, and 2) background knowledge, and it outputs a graphical object 
called a pattern that represents a class of RSEMs without latent variables or correlated 
errors that are  statistically equivalent (in a sense we make precise in section 4 below). 
Again, for concreteness, we will use maximum likelihood (ML) estimation and the 
algorithms that implement it as the example of a parameter estimator. 

1.3.1 Identifiability 
If there is a unique ML estimate of a parameter in a SEM, then the parameter is said 

to be identifiable. When a parameter is not identifiable, it has more than one value for 
which the likelihood of the data is maximal given the model. Although many special 
cases have been solved (e.g., see Becker, et al., 1994), necessary and sufficient conditions 
for SEM parameter identifiability are not known. 

In the case of SEM specification procedures there is a problem analogous to 
parameter non-identifiability. There are many pairs of RSEMs R1 and R2 that have the 
same set of measured variables, and no latent variables or correlated errors, that are 
covariance equivalent in the following sense: for every parameterization θi of R1 there is 
a parameterization θj of R2 such that ΣR1(θi) = ΣR2(θj), and vice versa. When R1 and R2 
have no latent variables or correlated errors, then covariance equivalence has the 
following consequence:  for any covariance matrix over the measured variables, if R1 and 
R2 are both parameterized by the respective ML estimates of their free parameters 
ΣR1(θML) and ΣR2(θML), then the p-values of the χ2 likelihood ratio test for R1 and R2 will 
be identical. Thus the data cannot help us distinguish between R1 and R2. This is a kind 
of “causal underidentification.” 

The slogan that “correlation is not causation” expresses the idea that from data 
including only the existence of a single significant correlation between variables A and 
B, the causal structure governing A and B is underidentified. That is, a correlation 
between two variables A and B could be produced by A causing B, B causing A, a latent 
variable that causes both A and B, or some combination of these. But just as a single 
example of an underidentified SEM does not show that parameters are always 
underidentified, or that parameter estimation is always impossible or useless, the 
existence of a single example of covariance equivalent SEMs does not show that 
specification search for SEMs is always impossible or useless. 

For some SEMs, certain parameters may be identifiable while others are not. 
Similarly, certain features of an RSEM R might be common to every R’ that is 
covariance equivalent to R. We will show examples in which a covariance equivalence 
class of RSEMs all share the feature that some variable A is a (possibly indirect) cause of 
B; we will show other examples in which none of the members of a covariance 
equivalence class is A (even indirectly) a cause of B. As explained in detail in section 4, 

  7



for various special cases, necessary and sufficient, or necessary conditions for various 
kinds of statistical equivalence are known. Because of the problem of covariance 
equivalence, the output of our algorithms will generally not be a single RSEM. Instead 
the output will be an object that represents a class of RSEMs consistent with the 
assumptions made and which marks those features shared by all of the members of the 
RSEMs output. 

By outputting a representation of covariance equivalence class of RSEMs, rather 
than a single SEM, the PC algorithm addresses the problem that there may be many 
different structural equation models that are compatible with background knowledge and 
fit the data equally well (as measured by a p-value, for example). However, it may be the 
case that there are SEMs which are not covariance equivalent, but nonetheless fit the data 
almost equally well; ideally an algorithm should output all such models, rather than 
simply choose the best. This problem could be addressed by outputting multiple patterns, 
rather than a single pattern. Devising an algorithm (or modifying the PC algorithm) to 
output representations of all models that fit the data well and are compatible with 
background knowledge is an important area of future research.  

1.3.2 Consistency and Correctness 
A SEM parameter estimation algorithm takes as input a sample covariance matrix S 

and distributional assumptions about the population from which S was drawn, and 
produces as output an estimate θest of the population parameters θpop. If the measured 
variables are indeed multivariate normal, and the specified model holds in the population, 
then asymptotically, as the sample size goes to infinity, the sampling distribution of θML  
goes to N(θpop, J-1(θ)), where J(θ) is the Fisher information matrix (cf. Tanner, 1993, p. 
16). So θML is a consistent estimator in the sense that as the sample size grows without 
bound the difference between θpop and θML will, with probability 1, converge to zero. 

The PC algorithm takes as input a sample covariance matrix S, the assumption that S 
is drawn from a multivariate normal population described by an RSEM Rpop with no 
latent variables or correlated errors, and produces as output a pattern which represents a 
class of RSEMs that are covariance equivalent to Rpop (see section 4).6 Let MPC be the 
pattern output by the PC algorithm, and Mpop be the pattern that represents the class of 
RSEMs covariance equivalent to Rpop. Since there is no obvious metric to express the 
difference between MPC and Mpop, we will not follow the analogy with parameter 
estimation and say that the PC algorithm is consistent.  We can, however, state and prove 
a closely related property which we call correctness.  The PC algorithm is correct in the 
following sense: if the Causal Independence, Faithfulness and distributional assumptions 
are satisfied, then, as the sample grows without bound, the probability that MPC = Mpop 
converges to one.7   

                                                 
6 In some cases the input to the PC algorithm is not consistent with the assumptions made. In these 

cases it is possible that the output of the PC algorithm is not strictly a pattern. 
7 The PC algorithm performs a series of statistical tests of zero partial correlations; the asymptotic 

results assume that we systematically lower the significance level as the sample size increases, in order to 
decrease the probabilities of both type I and type II errors to zero.  
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1.3.3 Sampling Distribution 
In a SEM, to estimate the sampling distribution of θML on finite samples, we have 

two choices. First, if the sample size is reasonably large we can use θML as an estimate of 
θpop, and then use the asymptotic theory described above (θML ~ N(θpop, J-1(θ))) as an 
estimate of the sampling distribution of θML. Second, we can approximate the sampling 
distribution of θML empirically by Monte Carlo techniques (Boomsma, 1982). We can do 
this by assuming Σ(θML) = Σ(θpop). We can then repeatedly sample from Σ(θpop), and 
calculate the ML estimate for each sample (Figure 6). Although for small N the sampling 
distribution of θML is not multivariate normal (Boomsma, 1982), it can be still be usefully 
summarized by the standard deviation (standard errors) and the mean.  
 

  .  .  .  .  .  .   θML(S n)  θML(S 2)  θML(S 1)

S nS 2  S 1   .  .  .  .  .  .

  Σ(θpop)

 

Figure 6. Monte Carlo approximation of the sampling distribution for θML 

On samples from a given model with specified parameters, the sampling distribution 
of  MPC is well defined. However, MPC is not a vector of real valued parameters as θML 
is, but rather a graphical object (see section 5.1.1) that represents an equivalence class of 
RSEMs. Hence MPC is a categorical variable with no meaningful ordering of the 
categories. Thus the variance and mean are not very useful summaries of features of the 
distribution. We do not know how to calculate an analytic approximation of the sampling 
distribution for MPC on finite samples. But we can apply empirical techniques parallel to 
those mentioned above for ML parameter estimation. To approximate the sampling 
distribution for MPC on finite samples, consider Figure 7, which is analogous to Figure 6. 

 

  ΜPC(S 1)   .  .  .  .  .  .   ΜPC(S n)  ΜPC(S 2)

  .  .  .  .  .  . S nS 2  S 1

  Σ(θpop)

 

Figure 7. Monte Carlo approximation to sampling distribution for MPC 
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A slight disanalogy occurs in estimating Σ(θpop). In the maximum likelihood setting, 
Σ(θML) is used as an estimate of Σ(θpop). To obtain Σ(θML) from our sample S and MPC, 
we can pick an arbitrary member Mi of the equivalence class of RSEMs represented by 
MPC and then calculate θML for Mi and S. (The resulting covariance matrix ΣMi(θML) is 
the same regardless of which member Mi of MPC we choose.) We can then use ΣMi(θML) 
as an estimate of Σ(θpop). 

1.3.4 Practical Reliability 
Finally, we want to know if the estimation procedure is reliable in practice. θML has, 

by definition, the property that there is no θi ≠ θML s.t. p(S|θi) > p(S|θML). On samples of 
realistic size, however, iterative procedures that search the parameter space such as those 
implemented in LISREL (Jöreskog, 1993) and EQS (Bentler, 1995) cannot guarantee that 
they will find θML. They must begin, for example, from some starting point in the 
parameter space and hill climb, and the likelihood surface might have local maxima 
(Scheines, Hoijtink, & Boomsma, 1995). We can investigate the practical reliability of an 
ML estimation procedure at a given sample size by 1) drawing an RSEM R from a 
distribution over RSEMs, 2) drawing a parameterization θi from a distribution over the 
parameters of R to give a population ΣR(θi), and 3) drawing a sample S from ΣR(θi). We 
can then use S as the input to the implemented estimator E, finally comparing ΣR(θE) to 
ΣR(θi) or just θE to θi. 

We can investigate the reliability of model specification algorithms in an analogous 
way.  The PC algorithm performs statistical tests of vanishing partial correlations, and if 
it cannot reject the null hypothesis at a significance level set by the user, then the 
procedure accepts the null hypothesis. If the null hypothesis is wrongly accepted or 
rejected, the output of the procedure can be incorrect. On finite samples, the reliability of 
the model specification algorithms depends upon the power of the statistical tests, the 
significance level used in the tests, the distribution over the models, and the parameters 
of the models.  

In (Spirtes, et al., 1993), and in (Scheines, et al., 1994), we report on systematic 
Monte Carlo simulation studies to approximate features of the sampling distribution over 
the PC algorithm (and a variety of our other RSEM specification algorithm) by 1) 
drawing an RSEM R from a distribution over RSEMs, 2) drawing a parameterization θi 
from a distribution over the parameters for R, 3) drawing a sample S from the 
multivariate normal population ΣR(θi), and then using S as input to the PC algorithm. 
Finally, we compare MPC to Mpop. 

These tests indicate that the PC algorithm is reliable with respect to determining 
which variables are adjacent in the population causal graph as long as the sample sizes 
are on the order of 500 and the population RSEM is not highly interconnected (i.e. that 
not everything is either a cause or an effect of everything else). For example, at sample 
size 500 for sparsely connected RSEMs with 50 variables, the PC algorithm incorrectly 
hypothesized an adjacency less than once in 1,000 times such a mistake was possible, and 
incorrectly omitted an adjacency approximately 10% of the time, with the accuracy 
improving as the sample size grows (see page 155 of Spirtes, et. al., 1993).  We should 
note, however, that these simulation tests satisfied all the distributional assumptions 
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underlying the algorithm and did not allow parameter values close to 0.  We have not yet 
systematically explored the effect of small violations of these or other assumptions. 

1.4 Difficulty of Search 

In practice, model specification problems are very difficult for (at least) the 
following reasons: 

• Data sets may fail to record variables (confounders) that produce associations 
among recorded variables. 

• When no limitation is placed on the  number of "latent variables," the number of 
alternative SEMs may be literally infinite. 

• Many distinct SEMs may produce the same, or nearly the same distributions of 
recorded variables. 

• Natural and social populations may be mixtures of SEMs with different causal 
graphs. 

• Values of quantities recorded for some units in a data set may be missing for 
other units. 

• There may be “selection bias”--that is, a measured variable may be causally 
connected to whether an individual is or is not included in the sample. 

• The causal structure may involve feedback loops. 
• The functional relations between causes and their effects may be non-linear.  
• Actual distributions may not be closely approximated by any well known 

probability distributions. 
 
In the last fifteen years a movement in computer science and statistics has made 

theoretical progress on a number of these issues,8 progress that has led to computer based 
methods to aid in model specification. These results and the methods that implement 
them appear to be little known and rarely used in the social science communities. This 
paper is an introductory description of some of the more important theoretical ideas and 
of some of the computational procedures that have arisen out of these discoveries, offered 
in the hope that social and behavioral scientists will make more use of these methods and 
help to improve them. (Mathematical details and related results can be found in Pearl, 
1988; Spirtes, et al., 1993; Scheines, et al., 1994). 

1.5 Search Procedures 

Two approaches to RSEM specification have been pursued in the statistics and 
computer science literature. The first focuses on searching for the RSEM or RSEMs that 
maximize some score.9  The second approach focuses on searching for the RSEMs that 

                                                 
8 Some of this literature is published in the annual proceedings of the conferences on Uncertainty in 

Artificial Intelligence, Knowledge Discovery in Data Bases, and the bi-annual conference on Artificial 
Intelligence and Statistics.  Examples of important papers in this tradition include: (Buntine 1991; Cooper 
& Herskovits, 1992; Geiger, 1990; Geiger & Heckerman, 1991, 1994; Geiger, Verma, and Pearl, 1990, 
Hand, 1993; Lauritzen, et al., 1990; Lauritzen & Wermuth, 1984; Pearl, 1988; Pearl & Dechter, 1989; 
Pearl and Verma, 1991; Robins, 1986; Spiegelhalter, 1986). 

9 For example, the Bayesian Information Criterion (Raftery, 1993), or the posterior probability, 
(Geiger & Heckerman, 1994). 
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satisfy a set of constraints judged to hold in the population (e.g., Spirtes, et al., 1993). 
(See Richardson (1996) for a correct algorithm for searching for non-recursive SEMs 
without latent variables.) Searches based on maximizing a score have been developed for 
RSEMs with no latent variables (e.g., Geiger & Heckerman, 1994; Cooper & Herskovits, 
1992); typically they are either stepwise forward (they add edges), stepwise backward 
(they take away edges), or some combination of stepwise forward and backward. Most 
regression searches are of this type, although they are restricted to searching a very 
restricted class of RSEMs. The “modification index” searches based on the Lagrange 
Multiplier statistic (Bentler, 1986; Kaplan, 1989, 1990; Jöreskog & Sörbom, 1993; 
Sörbom, 1989) in LISREL and EQS are restricted versions of this strategy. They 
typically begin with a given SEM M and perform a stepwise forward search (EQS can 
also perform a stepwise backward search). One difficulty with searches that maximize a 
score is that no proofs of correctness are yet available. A more difficult problem is that 
there are as of now no feasible score-maximization searches that include SEMs with 
latent variables. The modification index searches cannot suggest adding or removing a 
latent variable, for example. Also, these searches output a single SEM, rather than an 
equivalence class of SEMs.  Another search strategy based upon maximizing a score is to 
search not RSEMs themselves, but covariance equivalence classes of RSEMs (Spirtes 
and Meek, 1995). 

In contrast to a score maximization search, a constraint search uses some testing 
procedure for conditional independence, vanishing partial correlations, vanishing tetrad 
differences, or other constraints on the covariance matrix.  One advantage of this kind of 
search is that there are provably correct search algorithms for certain classes of RSEMs. 
For example, we will later discuss correct algorithms for multivariate normal RSEMs 
even when the population RSEM may contain latent variables (Spirtes, et al. 1993).  

In order to understand model specification search procedures based on constraints, 
one must first understand how SEMs entail constraints on the covariance matrix. Various 
equivalence relations between SEMs also need to be explained. We turn to those topics in 
the next sections. 

2. Constraints Entailed by SEMs 

We use two kinds of correlation constraints in our searches: zero partial correlation 
constraints, and vanishing tetrad constraints. 

2.1 Zero Partial Correlation Constraints 

In a SEM some partial correlations may be equal to zero for all values of the model’s 
free parameters (for which the partial correlation is defined). (See Blalock 1962; Kiiveri 
& Speed, 1982). In this case we will say that the SEM entails that the partial correlation 
is zero.10 For example, in SEM S1 (Figure 1), where all of the error terms are 
uncorrelated, ρX1,X3.X2 = 0 for all values of the free parameters of S1. 

                                                 
10 Correlations and partial correlations are zero exactly when the corresponding covariances and 

partial covariances are zero. While there may be important different statistical properties of partial 
correlations and partial covariances, they are not germane to the discussion of the constraints entailed by a 
SEM. 

  12



Judea Pearl (1988) discovered a fast procedure that can be used to decide, for any 
partial correlation ρA,B.C and any RSEM with uncorrelated errors, whether the RSEM 
entails that ρA,B.C is zero. Pearl defined a relation called d-separation that can hold 
between three disjoint sets of vertices in a directed acyclic graph. A simple consequence 
of theorems proved by Pearl, Geiger, and Verma shows that in an RSEM R with 
uncorrelated errors a partial correlation ρA,B.C is entailed to be zero if and only if {A} and 
{B} are d-separated by C in the directed graph associated with R (Pearl 1988). More 
details about their discovery, which is considerably more general than the description 
given here, are given in section 8.1. Spirtes (1995) showed that these connections 
between graphical structure and vanishing partial correlations hold as well for non-
recursive SEMs, i.e. in a SEM with uncorrelated errors a partial correlation ρA,B.C is 
entailed to be zero if and only if {A} and {B} are d-separated given C. (The if part of the 
theorem was shown independently in Koster (forthcoming)). 

There is also a way to decide which partial correlations are entailed to be zero by a 
SEM with correlated errors, such as S2 (Figure 2). This is done by first creating a directed 
graph G with latent variables and then applying d-separation to G to determine if a zero 
partial correlation is entailed. The directed graph G (with latent variables but without 
correlated errors) that we associate with a SEM S with correlated errors is created in the 
following way. Start with the usual graphical representation of S, that contains undirected 
lines connecting correlated errors (e.g. SEM S2 in Figure 2). For each pair of correlated 
error terms εi and εj, introduce a new latent variable Tij, and edges from Tij to Xi and Xj. 
Finally replace εi and εj with uncorrelated errors εi’ and εj’. When this process is applied 
to SEM S2, the result is shown in Figure 8.  

 

X1 X2 X3

T23
 

Figure 8. SEM S2’: Correlated Errors in S2 Replaced by Latent Common Cause 

In a SEM like S2, with correlated errors, one can decide whether ρX1,X3.X2 is entailed 
to be zero by determining whether {X1} and {X3} are d-separated given {X2} in the 
graph in Figure 8. In this way the problem of determining whether a SEM with correlated 
errors entails a zero partial correlation is reduced to the already solved problem of 
determining whether a SEM without correlated errors entails a zero partial correlation. 
(In general if S is a SEM with correlated errors, and G is the latent variable graph with 
uncorrelated errors associated with S, it is not the case that for every linear 
parameterization θ1 of S there is a linear parameterization θ2 of G such that ΣS(θ1) = 
ΣG(θ2). We are making the weaker claim that d-separation applied to G correctly 
describes which zero partial correlations are entailed by S. For the proof, see Spirtes, et. 
al, 1996.) 
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X1 X2 X3 X4

Intelligence

 

Figure 9. Factor Model of Intelligence 

 

2.2 Vanishing Tetrad Constraints 

In SEMs containing latent variables, zero partial correlation constraints among the 
measured covariances Σ are often uninformative. For example, consider Figure 9 in 
which Intelligence is a latent variable. The only correlations entailed to be zero by this 
SEM are those that are partialed on at least Intelligence. Since Intelligence is 
unmeasured, however, our data will only include partial correlations among the measured 
variables X = {X1, X2, X3, X4}, and there is no partial correlation involving only 
variables in X that is entailed to be zero by this SEM.  

The vanishing tetrad difference (Spearman, 1904), however, can provide extra 
information about the specification of this model. A tetrad difference involves two 
products of correlations, each of which involve the same four variables but in different 
permutations. In the SEM of Figure 9 there are three tetrad differences among the 
measured correlations that are entailed to vanish for all values of the free parameters (for 
which the correlations are defined): 
 

ρX1,X2 ρX3,X4 – ρX1,X3 ρX2,X4 

ρX1,X2 ρX3,X4 – ρX1,X4 ρX2,X3 

ρX1,X3 ρX2,X4 – ρX1,X4 ρX2,X3 
 

If a SEM S entails that ρX1,X2 ρX3,X4 – ρX1,X3 ρX2,X4 = 0 for all values of its free 
parameters we say that S entails the vanishing tetrad difference. The tetrad differences 
that are entailed to vanish by a SEM without correlated errors are also completely 
determined by the directed graph associated with the SEM. The graphical 
characterization is given by the Tetrad Representation Theorem (Spirtes, 1989; Spirtes, et 
al. 1993; Shafer et al., 1993), which leads to a general procedure for computing the 
vanishing tetrad differences entailed by a SEM, implemented in the Tetrads module of 
the TETRAD II program (Scheines, Spirtes, Glymour and Meek, 1994). Bollen and Ting 
(1993) discuss the advantages of using vanishing tetrad differences in SEM analysis, e.g. 
they can be used to compare underidentified SEMs. 
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3. Assumptions Relating Probability to Causal Relations 

3.1 The Causal Independence Assumption 

The most fundamental assumption relating causality and probability that we will 
make is the following: 
 

Causal Independence Assumption: If A does not cause B, and B does 
not cause A, and there is no third variable which causes both A and B, 
then A and B are independent. 

 
This assumption provides a bridge between statistical facts and causal features of the 

process that underlies the data.  In certain cases the assumption allows us to draw a 
causal conclusion from statistical data and lies at the foundation of the theory of 
randomized experiments. If the value of A is randomized, the experimenter knows that 
the randomizing device is the sole cause of A. Hence the experimenter knows B did not 
cause A, and that there is no other variable which causes both A and B. This leaves only 
two alternatives: either A causes B or it does not. If A and B are correlated in the 
experimental population, the experimenter concludes that A does cause B, which is an 
application of the Causal Independence assumption. 

The Causal Independence assumption entails that if two error terms are correlated, 
such as ε2 and ε3 in S2 (see Figure 2), then there is at least one latent common cause of the 
explicitly modeled variables associated with these errors, i.e., X2 and X3. 

 

Tax 
Rate

Economy

Tax 
Revenues

β1

β2

β3

 

Figure 10. Distribution is Unfaithful to SEM when β1 = –(β2β3) 

3.2 The Faithfulness Assumption 

In addition to the zero partial correlations and vanishing tetrad differences that are 
entailed for all values of the free parameters of a SEM, there may be zero partial 
correlations or vanishing tetrad differences that hold only for particular values of the free 
parameters of a SEM. For example, suppose Figure 10 is the directed graph of a SEM 
that describes the relations among the Tax Rate, the Economy, and Tax Revenues. 

In this case there are no vanishing partial correlation constraints entailed for all 
values of the free parameters. But if β1 = –(β2β3), then Tax Rate and Tax Revenues are 

  15



uncorrelated. The SEM postulates a direct effect of Tax Rate on Revenue (β1), and an 
indirect effect through the Economy (β2β3). The parameter constraint indicates that these 
effects exactly offset each other, leaving no total effect whatsoever. In such a case we say 
that the population is unfaithful to the SEM that generated it. A distribution is faithful to 
SEM M (or its corresponding directed graph) if each partial correlation that is zero in the 
distribution is entailed to be zero by M, and each tetrad difference that is zero in the 
distribution is entailed to be zero by M. 
 

Faithfulness Assumption: If the directed graph associated with a SEM M 
correctly describes the causal structure in the population, then each partial 
correlation and each tetrad difference that is zero in ΣM(θpop) is entailed to 
be zero by M.  

   
The Faithfulness assumption is a kind of simplicity assumption. If a distribution P is 

faithful to an RSEM R1 without latent variables or correlated errors, and P also results 
from a parameterization of another RSEM R2 to which P is not faithful, then R1 has fewer 
free parameters than R2. 

The Faithfulness assumption limits the SEMs considered to those in which 
population constraints are entailed by structure, not by particular values of the 
parameters. If one assumes Faithfulness, then if A and B are not d-separated given C, 
then ρA,B.C ≠ 0, (because it is not entailed to equal zero for all values of the free 
parameters.) Faithfulness should not be assumed when there are deterministic 
relationships among the substantive variables, or equality constraints upon free 
parameters, since either of these can lead to violations of the assumption. Some form of 
the assumption of Faithfulness is used in every science, and amounts to no more that the 
belief that an improbable and unstable cancellation of parameters does not hide real 
causal influences. When a theory cannot explain an empirical regularity save by invoking 
a special parameterization, most scientists are uneasy with the theory and look for an 
alternative. 

It is also possible to give a personalist Bayesian argument for assuming Faithfulness. 
For any SEM with free parameters, the set of parameterizations of the SEM that lead to 
violations of Faithfulness are Lebesgue measure zero. Hence any Bayesian whose prior 
over the parameters is absolutely continuous with Lebesgue measure assigns a zero prior 
probability to violations of Faithfulness. Of course, this argument is not relevant to those 
Bayesians who place a prior over the parameters that is not absolutely continuous with 
Lebesgue measure and assign a non-zero probability to violations of Faithfulness. All of 
the algorithms we have developed assume Faithfulness, and from here on we use it as a 
working assumption. 

The Faithfulness assumption is necessary to guarantee the correctness of the model 
specification algorithms used in TETRAD II. It does not guarantee that on samples of 
finite size the model specification algorithms are reliable.11 
 

                                                 
11 One issue that would be interesting to investigate is how to characterize the sorts of priors over 

models that make the use of the Faithfulness assumption in finite samples a reasonable approximation to 
Bayesian inference. 
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4. SEM Equivalence 

Two SEMs S1 and S2 with the same substantive variables (or their respective directed 
graphs) are covariance equivalent if for every parameterization θi of S1 with covariance 
matrix ΣS1(θi) there is a parameterization θj of S2 with covariance matrix ΣS2(θj) such 
that ΣS1(θi) = ΣS2(θj), and vice versa. Two SEMs with the same substantive variables (or 
their respective directed graphs) are partial correlation equivalent if they entail the 
same set of zero partial correlations among the substantive variables.  

If two SEMs contain latent variables, and the same set of measured variables V, we 
may be interested if they are equivalent on the measured variables. Two SEMs S1 and S2 
(or their respective directed graphs) are covariance equivalent over a set of measured 
variables V if for every parameterization θi of S1 with covariance matrix ΣS1(θi) there is 
a parameterization θj of S2 with covariance matrix ΣS2(θj) such that the margin of 
ΣS1(θi) over V = the margin of ΣS2(θj) over V, and vice versa. Two SEMs are partial 
correlation equivalent over a set of measured vertices V if they entail the same set of 
zero partial correlations among variables in V. 

 

X3X2 X1 X4 X3 X2 X1  X4  X3X2X1  X4

T1
T1

(iii)(ii)(i)

T2
T1 T2

 

Figure 11. Three SEMs 

We illustrate the difference between equivalence and equivalence over a set V with 
the models in Figure 11. Models i and ii do not share the same set of substantive 
variables, so they are not covariance or partial correlation equivalent. Models ii and  iii 
share the same substantive variables, but are not covariance equivalent or partial 
correlation equivalent because, for example, model iii entails ρX2,X3.T2 = 0 while model ii 
does not. For V = {X1, X2, X3, X4}, however, the situation is quite different. All three 
models are partial correlation equivalent over V, and models i and ii are covariance 
equivalent over V. Models ii and iii are not covariance equivalent over V because, for 
example, model ii entails that ρX1,X2 ρX3,X4 = ρX1,X3 ρX2,X4 while model iii does not. The 
next four subsections will outline what is known about these various kinds of equivalence 
in both recursive and non-recursive SEMs. 

4.1 Covariance and Partial Correlation Equivalence in Recursive SEMs 

In this section we consider equivalence over RSEMs with no correlated errors. For 
two such RSEMs, covariance equivalence holds if and only if zero partial correlation 
equivalence holds (Spirtes et al. 1993). In RSEMs, only two concepts need to be defined 
to graphically characterize covariance (or partial correlation) equivalence: adjacency and 
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unshielded collider. Two variables X and Y are adjacent in a directed graph G just in 
case X → Y is in G, or Y→ X is in G.  
 

X

Z

Y X

Z

Y

Unshielded Collider Shielded Collider

 

Figure 12. 

A triple of variables <X,Z,Y> is a collider in G just in case X → Z ← Y is in G, and Z is 
an unshielded collider between X and Y just in case <X,Z,Y> is a collider and X and Y 
are not adjacent (Figure 12). The first theorem stated below is a simple consequence of a 
theorem proved in Verma and Pearl (1990), and in Frydenberg (1990).  
 

RSEM Partial Correlation Equivalence Theorem: Two RSEMs with 
the same variables and no correlated errors are partial correlation 
equivalent if and only if their respective directed graphs have the same 
adjacencies and the same unshielded colliders. 
 
RSEM Covariance Equivalence Theorem: Two RSEMs with the same 
variables and no correlated errors are covariance equivalent if and only if 
their respective directed graphs have the same adjacencies and the same 
unshielded colliders. 
 

By the first theorem, if two RSEMs with the same variables and no correlated errors 
have the same adjacencies and unshielded colliders, then they are partial correlation 
equivalent. It is easy to show that for any RSEM M without correlated errors or latents, 
and any correlation matrix C in which satisfies the partial correlation constraints entailed 
by M, there is a θ such that ΣM(θ) = C. Hence two RSEMs that are partial correlation 
equivalent are also covariance equivalent. (A complete proof is given in (Spirtes, 
Richardson, and Meek 1997). 

4.2 Covariance and Partial Correlation Equivalence Over the Measured Variables in 
RSEMs 

We now consider the case where there may be latent variables and/or correlated 
errors, and the question is whether two SEMs are covariance equivalent or partial 
correlation equivalent over a set of measured variables V. Since an RSEM with 
correlated errors is partial correlation equivalent to another RSEM with a latent variable 
but no correlated errors, the problem of deciding partial correlation equivalence over the 
measured variables when there are correlated errors reduces to the problem of deciding 
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partial correlation equivalence over the measured variables when there are no correlated 
errors.  

Covariance equivalence over the measured variables entails partial correlation 
equivalence over the measured variables, but the converse does not hold. Consider the 
directed graphs i and ii in Figure 13, where the set of measured variables V = {X1, X2, 
X3, X4} and the errors are uncorrelated. Although these graphs are partial correlation 
equivalent over V (neither entails any partial correlations among the measured variables), 
they are not covariance equivalent over V, since model i but not model ii entails that 

ρX1,X2 ρX3,X4 = ρX1,X3 ρX2,X4 = ρX1,X4 ρX2,X3  

 
 

X4 X3 X2 X1

X4

 X3X2X1

  T

(ii) (i)
 

Figure 13: Two graphs that are partial correlation equivalent over {X1, X2, X3, X4}, 
but not covariance equivalent over {X1, X2, X3, X4}. 

Spirtes, Meek, and Richardson (1995) have given a polynomial (in the number of 
variables in the two RSEMs) time algorithm for deciding when two RSEMs with 
uncorrelated errors are partial correlation equivalent over the measured variables. The 
algorithm is too complex to present here, but some examples of partial correlation 
equivalence are given in section 5.1. A feasible algorithm for deciding covariance 
equivalence over a set of measured variables is not known. 

4.3 Covariance and Partial Correlation Equivalence in Non-recursive SEMs 

Assuming uncorrelated errors, Richardson (1994, 1995) has given an algorithm for 
deciding when two non-recursive SEMs are partial correlation equivalent that is 
polynomial in the number of variables in the two SEMs. Partial correlation equivalence 
does not entail covariance equivalence in this case. 
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Figure 14. Partial Correlation Equivalent Cyclic SEMs 

 
One noteworthy corollary of Richardson’s theorem is that for every SEM with a 

directed cycle, there is another partial correlation equivalent SEM with a cycle reversed 
in direction. And while partial correlation equivalent RSEMs without correlated errors 
always have the same adjacencies, partial correlation equivalent SEMs without correlated 
errors can have directed cyclic graphs with different adjacencies. For example, the two 
SEMs in Figure 14 are partial correlation equivalent but do not have the same 
adjacencies. 

4.4 Covariance and Partial Correlation Equivalence over the Measured Variables in 
Non-recursive SEMs 

No feasible general algorithm for deciding either partial correlation or covariance 
equivalence over a set of measured variables is known for non-recursive SEMs when the 
measured variables are a proper subset of the substantive variables in the SEM.  

 

5. Search Algorithms in TETRAD II 

In this section we describe some of the constraint based, provably correct (in the 
large sample limit) search procedures that we have implemented in TETRAD II. Our 
approach is to design algorithms that search for all RSEMs consistent with background 
knowledge that entail constraints on the covariance matrix that are judged to hold in the 
population. Depending on the type of background knowledge, and what kind of RSEM is 
sought, we use either vanishing partial correlation constraints or vanishing tetrad 
constraints. Because in many cases the number of possible constraints is too large to 
examine exhaustively, some of the algorithms we describe make sequential decisions 
about constraints and thus test only a subset of the possible constraints during the search 
process.  These sequential procedures are still correct in the sense we defined in section 
1.3.2, but might not be optimal on realistic samples because mistakes about constraints 
made early in the sequence can ramify into mistakes made later.   

5.1 The Build Algorithm 

The Build module12 of TETRAD II takes as input: 
1. sample data (either raw, or as a covariance matrix) and 

                                                 
12 The Build module is documented in (Scheines, et al., 1994), and its algorithms described in detail 

in (Spirtes, et al, 1993). 
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2. background knowledge that constrains RSEM specification,  
 

and gives as output: 
 

1. a representation of the partial correlation equivalence class of RSEMs that is 
consistent with the background knowledge, and 

2. a set of features that this class of RSEMs has in common. 
 

Build performs statistical tests of hypotheses that specific partial correlations vanish 
in the population, and if it cannot reject the null hypothesis at a significance level set by 
the user, then the procedure accepts the null hypothesis (see the appendix in Scheines, et 
al., 1994). Because Build uses only information about which partial correlations are zero, 
it cannot distinguish between any members of a partial correlation equivalence class; 
hence its output is a representation of a partial correlation equivalence class of RSEMs 
consistent with background knowledge. In order to achieve enough efficiency to be 
practical for large numbers of variables (up to 100), the algorithms in Build use the 
results of tests of lower order partial correlation (i.e., correlations conditional on small 
sets of variables) to restrict the tests it needs to perform on partial correlations of higher 
order. 

The algorithms are correct in the sense of section 1.3.2. The background knowledge 
a user enters may include assumptions about: 

1. whether the population RSEM contains correlated errors, or latent common 
causes; 

2. time order among the variables; 
3. known causal relationships among the variables; 
4. causal relationships among the variables known not to hold. 

5.1.1 Build for RSEMs Without Correlated Errors or Latent Common Causes 
If you assume that the generating RSEM contains no latent common causes, then 

Build runs the PC algorithm, which is documented and traced in the appendix, and in 
(Spirtes, et. al, 1993; Scheines, et. al, 1994). The output of the PC algorithm is a pattern, 
(Verma and Pearl, 1990) which is a compact representation of a partial correlation (and 
covariance) equivalence class of RSEMs without correlated errors or latent common 
causes. A pattern contains a mixture of directed and undirected edges. If a pattern 
contains an edge A → B, then the directed graph of every RSEM represented by the 
pattern contains the edge A → B. If a pattern contains an edge A  B then A and B are 
adjacent in the directed graph of every RSEM represented by the pattern, but the graphs 
of some RSEMs represented by the pattern may contain the edge A → B, and others may 
contain the edge A ← B.  If a pattern contains no adjacency between A and B, then in 
every RSEM represented by the pattern A and B are not adjacent. 

Suppose we measure only two variables A and B and find that they are significantly 
correlated. There are two RSEMs without correlated errors or latent variables containing 
just A and B that are compatible with A and B being correlated in the population: A → B, 
and A ← B. The output of Build in this case is the pattern A  B, which represents the 
two RSEMs in this equivalence class. This illustrates the slogan “correlation is not 
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causation”, because the statistical information is not sufficient to predict the results of an 
ideal intervention on A or B. 

In this example the output of Build is not useful for predicting the effects of ideal 
interventions. The next example shows how the output of Build can in some cases 
provide more useful causal knowledge. Suppose that for four measured variables, A, B, 
C, and D, from sample data we conclude that in the population, ρA,B = 0, ρA,D.C = 0, and 
ρB,D.C = 0, but that no other partial correlations (other than those entailed by those listed) 
vanish. In that case the output of Build is the pattern in Figure 15, which represents an 
equivalence class of RSEMs with only one member, also shown in Figure 15.13 
 

A B

C

D

A B

C

D

Equivalence
Class
Represented
by the Pattern

Pattern

 

Figure 15 

In this case, the output of Build is sufficient to predict the results of ideally 
intervening on A, B, C, or D. Of course, the assumption of no correlated errors or latent 
variables is a very strong one, and in the next section we consider what happens when it 
is abandoned. 

5.1.2 Build for RSEMs with Correlated Errors 
If you allow that the RSEM that generated the data might have correlated errors or 

latent common causes, then Build runs the FCI algorithm, which is documented in 
(Spirtes, et. al., 1993, chapter 6). The output of the FCI algorithm is a partial ancestor 
graph (PAG).14 A is an ancestor of B in a directed graph when there is a directed path 
from A to B. Just as patterns represent features common to a partial correlation 
equivalence class of RSEMs without latent variables, PAGs represent features common 
to a set of RSEMs that are partial correlation equivalent over the measured variables. (In 
this section, for the sake of brevity, we will refer to the PAG simply as an equivalence 
class.) We will illustrate with the two examples from the previous section. 

Again, suppose we measure two variables A and B, and find that they have a 
significant correlation and conclude that they are correlated in the population. The output 
of Build in this case is the partial ancestor graph shown in Figure 16. Because we have 
                                                 

13 See the appendix for an example in which the equivalence class is larger. 
14 In fact the output is described in (Spirtes, et. al., 1993, and Scheines, et. al., 1994) as a POIPG, or 

partially oriented inducing path graph. POIPGs can, without loss of generality, be interpreted much more 
naturally as PAGs. In cases where the input is not consistent with the assumptions made, the output may 
not be a POIPG.  
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placed no limit on the number of distinct latent variables, the equivalence class 
represented by the output is actually infinite, and we have shown only a few members of 
the equivalence class in Figure 16. The presence of a “o” at both ends of an edge in a 
PAG makes no claim about the ancestor relationship common to every member of the 
equivalence class. Note that in some of the RSEMs represented by the PAG (e.g. (i) and 
(iv) of Figure 16), A is an ancestor of B, and in others (e.g. (ii) and (iii) of Figure 16) it is 
not. Similarly, in some of the members of the equivalence class (e.g. (ii) of Figure 16) B 
is an ancestor of A, and in others (e.g. (i), (iii) and (iv) of Figure 16) it is not. Thus this 
PAG shows us that we cannot predict the results of ideally intervening to change either A 
or B from this data without further background knowledge. 
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Figure 16 

Whereas the pattern A  B informed us that either A is a cause of B or B is a cause 
of A, the PAG A oo B informs us that either A is a cause of B, B is a cause of A, there 
is a latent common cause, or there is some combination of these causal connections 
responsible for the correlation. The next example shows how PAGs output by Build can 
be used to predict the effects of some ideal interventions. Consider the example from 
Figure 15 again, where there are four measured variables A, B, C, and D, and we 
conclude from the data that in the population ρA,B = 0, ρA,D.C = 0, and ρB,D.C = 0, but that 
no other partial correlations vanish. Assuming that correlated errors might exist in the 
generating RSEM, the output of Build is the PAG in the left hand side of Figure 17. 

A and C are adjacent in the PAG because the correlation of A and C conditional on 
every subset of the measured variables does not vanish (i.e. ρA,C, ρA,C.B, ρA,C.D, ρA,C.BD do 
not vanish.) The “o” at the A end of the edge between A and C entails neither that A is an 
ancestor of B in every member of the equivalence class nor that A is not an ancestor of B 
in every member of the equivalence class. The “>” at the C end of the edge between A 
and C in the PAG means that C is not an ancestor of A in any RSEM in the partial 
correlation equivalence class. Similarly, C is not an ancestor of B, and D is not an 
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ancestor of C in any RSEM in the partial correlation equivalence class. Finally, a “—” at 
the C end of the edge between C and D means that C is an ancestor of D in every RSEM 
in the equivalence class.  

From this PAG we can make predictions about the effects of some ideal 
interventions, but not others. For example, it is not possible to determine if an ideal 
intervention on A will affect C, because in some members of the equivalence class A is a 
cause of C, and in others it is not. On the other hand, it is possible to determine that an 
ideal intervention on C will affect D, because C is a cause of D in every RSEM in the 
equivalence class. (And given the distributional assumption, it is also possible to 
determine the size of the effect that an ideal intervention on C will have on D. See 
Spirtes, et al. 1993, chapter 7). 

 

(ii)

(iii) (iv)

(i)

 PAG

Examples  from the
Equivalence Class

Represented by the
PAG

 D

 C

 B A

 D

 C

 B A

D

C

BA
T1

 D
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T1

D
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BA
T1 T2

 

Figure 17 

The partial correlation equivalence class in Figure 17, which includes RSEMs with 
latent variables, is much larger (in fact it is infinite) than the partial correlation 
equivalence class in Figure 15, which does not include models with latent variables. This 
in turn means that the conclusions that we can draw are weaker than if we assume that the 
generating RSEM has no correlated errors or latent common causes. For example, with 
this assumption we can conclude that A is a cause of C; without it we cannot. With the 
assumption we can estimate the size of the effect that an ideal intervention on A will have 
on C; without it we cannot. While the conclusions that can be drawn even without the 
assumption of no latent variables are weaker than when the assumption is made, they are 
not trivial. Asymptotically, we can reliably conclude that C is a cause of D, and we can 
estimate the size of the effect an ideal intervention on C will have on D.  

It should also be noted that even though in general not all of the members of the 
partial correlation equivalence class are covariance equivalent, this does not affect the 
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reliability of the conclusions. It simply means that there may be stronger conclusions that 
could be drawn if we used more information than simply which partial correlations 
vanish.  

Finally, we note that there are examples in which there is no RSEM without latent 
variables that is compatible with a correlation matrix, but there are RSEMs with latent 
variables that are. Suppose that we measure A, B, C, and D and from the data conclude 
that in the population, ρA,C = 0, ρA,D = 0, and ρB,D = 0, but that no other partial 
correlations (other than those entailed by these three) vanish. In that case the output of 
Build is A o→ B ↔ C ←ο D. The double headed arrow between B and C means that in 
every member of the equivalence class represented by the PAG B is not an ancestor of C 
and C is not an ancestor of B. This is only possible in an RSEM with a latent variable 
causing both B and C, so every member of the equivalence class contains a latent 
variable.  

5.1.3 What Can Go Wrong 
In general, the correctness of Build’s output depends upon several factors: 
 

1. The correctness of the background knowledge input to the algorithm. 
2. Whether the recursiveness condition holds, i.e., that there are no feedback loops. 
3. Whether the Causal Independence assumption holds. 
4. Whether the Faithfulness assumption holds. 
5. Whether the distributional assumptions made by the statistical tests hold. 
6. The power of the statistical tests against alternatives. 
7. The significance level used in the statistical tests. 

 
In the case of Build under the assumption of no latent variables, it is not difficult to 

take the output pattern which represents a partial correlation equivalence class (and a 
covariance equivalence class) of RSEMs, and use it to find a single RSEM in the 
equivalence class. A sketch of this process is described in the TETRAD II manual and 
can be automated (Meek, 1995). Once this is done, the user can estimate and test the 
selected RSEM using such programs as EQS, or LISREL. (All RSEMs in the partial 
correlation equivalence class parameterized by their respective ML parameter estimates 
have the same p-value.) In addition, the user can approximate the sampling distribution 
using the method described in section 1.3.3. The user should keep in mind however, that 
the sampling distribution of the output may show that even when the RSEMs suggested 
by TETRAD II fit the data very well, it is possible that there are other RSEMs that will 
also fit the data well and are equally compatible with background knowledge, particularly 
when the sample size is small. This suggests that further research on the search is needed, 
and that Build might be improved by outputting multiple patterns--something which can 
be done in a limited way in the present implementation by varying the significance level 
used in the procedure. Also, at large sample sizes, even slight deviations from normality 
or linearity can lead to the rejection of an otherwise correct RSEM. Finally, if a model 
produced by search is tested on the data used to find the model specification, the p-value 
of the test is not a measure of the error probability of the model specification procedure. 
For a discussion of the meaning of such p-values, see Glymour, et al. (1987). Where 
possible, models generated from one sample should be cross-validated on others. 
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In the case of Build under the assumption of latent variables, more research is 
needed to find out how to construct (efficiently) from the PAG which represents the 
entire partial correlation equivalence class a single, representative RSEM. In this case the 
output partial correlation equivalence class is not a covariance equivalence class, so that 
different RSEMs represented by the output can have different p-values when 
parameterized by their ML parameter estimates. More research is needed on estimating 
and testing the output of Build under the assumption of latent variables. Spirtes, et al. 
1993 describes some algorithms that can be used for predicting the effects of some policy 
interventions from a given PAG.  

5.2 Specification Search for Latent Variable RSEMs: Purify and MIMbuild 

In many applications of structural equation modeling, the focus of interest is the 
causal relationships among latent variables. In many such cases the latent variables are 
measured with multiple indicators, and the output of Build on data for these indicators is 
correct but uninformative; the correct RSEM entails no zero partial correlation 
constraints on the indicators alone and the output of Build on the indicators is completely 
connected and completely undirected, whether it is a pattern or a PAG. In these cases the 
Purify and MIMbuild modules of TETRAD II can help in RSEM specification. Purify 
helps locate unidimensional measurement models (Anderson, Gerbing, & Hunter, 1987; 
Anderson & Gerbing, 1988; Scheines, 1993). The basic idea of unidimensionality is that 
each indicator measures exactly one latent and all error terms are uncorrelated (the exact 
definition is more complicated, and presented in section 8.3 of the appendix). Finding a 
unidimensional measurement model is one way in which the correlations among the 
latent variables may be estimated consistently. Also, given a unidimensional 
measurement model, the MIMbuild module uses vanishing tetrad constraints to search 
the space of structural models, i.e., RSEM models containing only the latent variables. 

5.2.1 Purify 
We make our explanation of both Purify and MIMbuild concrete by accompanying it 

with an example taken from the user's manual to TETRAD II (Scheines, et al, 1994, 
chapter 9). The example shows how Purify can aid in finding a unidimensional 
measurement model and why it is important to do so. The population RSEM is shown in 
Figure 18. Our data for the example consist of the correlations among the X variables in a 
pseudo-random multivariate normal sample drawn from a random parameterization of 
this RSEM (N=2,000). 
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T1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

T2 T3

1ε 2ε
 

Figure 18: Population RSEM 

Suppose our interest is in the causal relationships between the three latent variables 
T1, T2, and T3. The part of the RSEM specifying the relationships between the latent 
variables is called the structural model; the rest is called the measurement model. In this 
case the population structural model is shown in Figure 19, and the population 
measurement model is shown in Figure 20. 
 

T1                         T2                         T3  

Figure 19: Population Structural Model  

 
T1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

T2 T3

1ε 2ε
 

Figure 20: Population Measurement Model 

 
One approach to this problem is to use background knowledge to build a 

measurement model for each latent variable, and then perform a specification search for 
the structural model constrained by background knowledge and aided by a computer, 
e.g., the Search  module of TETRAD II, or the modification indices of LISREL, or the 
Lagrange Multiplier statistic of EQS. There are several problems with this approach. 
First, while background knowledge may often be sufficient to construct part of the 
population measurement model (i.e. we may know which of the latent variables each 
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indicator variable is a measure of), background knowledge is seldom detailed enough to 
completely specify the full population measurement model (e.g. an indicator may be a 
measure of several latent variables, or indicator variables may have correlated errors). 
This means that the specification search must also seek to correct the hypothesized 
measurement model, as well as discover the structural model. Because there are often a 
large number of indicator variables, this search space is astronomically large. Moreover, 
a search that at each step chooses to add the edge (free the parameter) that will most 
improve the fit can easily go wrong for several reasons. First, it may be that freeing a 
number of different parameters improves the fit to the same degree, so there is no way to 
choose which parameter to free at that point in the search. In addition, there may be pairs 
of parameters which if freed will greatly improve the overall fit, even though freeing 
either parameter by itself does not improve the fit much. Also, when the initial RSEM to 
be modified is far from the population RSEM, the parameter estimates may be far from 
their population values, which can affect the estimates of the Lagrange multipliers, or 
may prevent the estimation algorithms from converging at all. 

 
T1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

T2 T3

 

Figure 21: Hypothesized Measurement Model 

The Purify module represents a different approach to the problem that is a provably 
correct15 algorithm for finding unidimensional measurement models (Scheines, 1993). 
Instead of searching for parameters to free, i.e., edges to add, Purify searches for a 
submodel of the originally specified measurement model that contains a subset of the 
indicators originally specified, but that is correctly specified as unidimensional. Such a 
submodel can be used to find consistent estimates of the correlations between the latent 
variables, and thus aid in the search for structural models.16 

For example, the measurement model in Figure 20 is not unidimensional because of 
the edges and correlated errors that are in boldface. But note that the population model 
does contain a unidimensional submodel, shown in Figure 22, which is obtained by 
simply removing X1, X7, X12, and X13 from the model. 
 

                                                 
15 Purify is a correct search procedure in the following sense. Given that there are correctly specified 

unidimensional submodels of the initially specified measurement model with at least three indicators for 
each latent, then as the sample grows without bound and the significance level is adjusted properly, the 
probability that Purify will find one of the unidimensional submodels converges to one. 

16 This two stage search process was also suggested by Anderson and Gerbing, (1988). 

  28



T1

x2 x3 x4 x5 x6 x8 x9 x10 x11 x14 x15 x16

T2 T3

 

Figure 22. Model with Correctly Specified Unidimensional Measurement Model 

Purify searches for unidimensional submodels in the following way. First we 
suppose that we are given as input a hypothetical measurement model which is 
unidimensional, for example, the measurement model shown in Figure 21. We assume 
the input measurement model is a submodel of the population measurement model, that 
is, every edge specified in the input measurement model exists in the population 
measurement model. However, we do not assume that the input measurement model is 
complete; the population measurement model may be non-unidimensional because a 
single indicator may be caused by multiple latents, cause other indicators, or have 
correlated errors with other variables.  

Given this input, if the population measurement model is unidimensional, it entails a 
characteristic set of vanishing tetrad differences, regardless of the population structural 
model (Scheines, 1993). For example, if the population measurement model is 
unidimensional, and X1, X2, and X3 measure a single latent, then ρX1,X2 ρX3,X4 – ρX1,X3 ρX2,X4 is 
entailed to be zero regardless of the population structural model. This means that Purify 
can test whether the specified measurement model is truly unidimensional without 
knowing the structural model. If the characteristic set of vanishing tetrad differences 
entailed by a unidimensional measurement model is judged to hold in the population, 
Purify concludes that the measurement model specified is truly unidimensional, and halts. 
If the population measurement model is the one in Figure 20, some of the tetrad 
differences entailed by the initially specified model in Figure 21, e.g., ρX1,X2 ρX3,X4 – ρX1,X3 
ρX2,X4, are not entailed to vanish, and with a representative sample Purify will conclude 
that the population measurement model among the given set of indicator variables is not 
unidimensional. Purify then begins to search for a submodel that is unidimensional by 
sequentially eliminating indicators. In general, searching all subsets of the given 
measured indicators for a set of indicators that form a unidimensional measurement 
model would take too long, due to the enormous number of subsets. But by examining 
which vanishing tetrad differences do not hold in the population, the algorithm can 
greatly narrow the search, making it feasible to handle initially specified measurement 
models with more than 50 measured variables in minutes. In this case on simulated data it 
correctly removes X1, X7, X12, and X13 from the measurement model, leaving a set of 
indicators that have a measurement model correctly specified as unidimensional. 

5.2.2 MIMbuild 
In many studies the theoretical question addressed cannot be reduced to the 

significance of a single parameter in an otherwise reliably specified model. There might 
be many latent variables, and the problem of finding a reasonable structural model is then 
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difficult. With just four latent variables there are well over 700 structural models with no 
correlated errors. Even with substantial background knowledge, this is a large space to 
search. With eight latent variables the space is astronomical. Several strategies for 
automatic structural model search are possible. One might begin with a null structural 
model and do a Lagrange Multiplier search limited to structural parameters. To the best 
of our knowledge no one has studied the behavior of this strategy. One might estimate the 
correlations among the latent variables and then apply Build to the latents as if they were 
measured.  In our experience, this works well in simulation studies at moderate to large 
sample sizes, but we do not know how to properly adjust the sample size when testing for 
vanishing partial correlations among latents that are being treated “as if” they are 
measured. A third alternative takes further advantage of the vanishing tetrad difference 
constraint. 

We have already seen that if the population measurement model is unidimensional, a 
SEM entails a characteristic set of vanishing tetrad differences, regardless of what the 
population structural model may be. But if the measurement model is unidimensional, 
there are other tetrad differences which are entailed to vanish for some structural models, 
but are not entailed to vanish for other structural models. These constraints are extremely 
easy to compute and test, and the tests are not susceptible to specification error in other 
parts of the structural model (Scheines, 1993). For example, in the model in Figure 22, 
(where the population measurement model is unidimensional) all three tetrad constraints 
involving one indicator from T1, two from T2, and one from T3 are entailed by the model 
if and only if there is no edge between T1 and T3. The MIMbuild algorithm uses tests of 
vanishing tetrad differences to construct a set of structural models that entail vanishing 
partial correlations among latent variables judged to hold in the population. 

The set of structural models that MIMbuild outputs entail the same set of 
unconditional correlations and partial correlations with only one variable in the 
conditioning set. Because it can output models which are not fully partial correlation 
equivalent or covariance equivalent, MIMbuild represents only a partial solution to the 
RSEM structural model specification problem. A “?” is attached to those parts of 
MIMbuild’s output that might change if second order or higher partial correlations 
among latent variables could be tested. Section 8.4 of the appendix details the sense in 
which MIMbuild is a correct estimator of structural models. 

 

6. Applications 

 
The TETRAD II procedures have been used to study job satisfaction among military 

personnel (Callahan & Sorensen, 1992), to develop psychiatric measures (Prigerson, et. 
al., 1995), to predict survival and death in pneumonia patients (Cooper, et. al., 1995), to 
study mechanisms in plant biology (Shipley, 1995 and 1997), to study dropout rates in 
American universities (Druzdzel & Glymour, 1994), even to recalibrate instruments on 
orbiting satellites (Waldemark & Norqvist, 1995). In this section we will illustrate the 
application of the search procedures to three data sets, two published and one simulated. 
In the case of the empirical examples we do not mean to endorse the assumptions made 
by the researchers who used the data sets, or the scales they constructed. In the first case 
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our intent is to show how the search procedures implemented in TETRAD II can be used 
to find plausible alternatives to a published model. The existence of these alternatives 
weakens the evidential support for conclusions published, but it is not our intent to claim 
that the alternatives found by TETRAD II are correct.  In the second case we ran the 
Purify and Search procedures on a published data set with the same results as those 
published, and in the third case we show how the procedures perform on a very large 
search space.  Other applications can be found in (Scheines, et. al., 1994), and in (Spirtes, 
et. al., 1993). 

6.1 Finding Alternative Models 

Before giving a proposed hypothesis any great credence, good scientific practice 
ought to try to articulate and investigate every serious alternative. A frequent objection to 
causal models in any discipline is that they are arbitrarily selected without any sound 
arguments that would exclude alternative explanations of data. That some cherished 
causal model cannot be rejected statistically is little reason to believe its causal claims: 
There might be alternatives that also cannot be rejected statistically, but that make 
contrary causal claims. Published studies may be defective in their general distributional 
assumptions, in their data collection procedures, or in their assumptions about what is 
influencing what. Here is an illustration of how TETRAD II is meant to be used to help 
search for and articulate alternative causal explanations under varying background 
assumptions. In a study published in the American Sociological Review, Timberlake and 
Williams (1984) claimed that foreign investment in Third World or "peripheral" nations 
causes the exclusion of various groups from the political process. In other words, foreign 
investment inhibits democracy. Their empirical case for this claim rests on fitting a linear 
regression.  

 
PO FI EN CV 
1.000    

-0.175 1.000   
-0.480 0.330 1.000  
0.868 -0.391 -0.430 1.000 

Table 1. Political Repression Data (N = 72) 

They develop measures of political exclusion (PO), foreign investment penetration 
(FI), energy development (EN), civil liberties (CV) (measured on an ordered scale from 1 
to 7, with lower values indicating greater civil liberties.)  We show the correlations given 
by Timberlake and Williams for these variables on 72 "non-core" countries in Table 1. 

An apparent embarrassment to their claim is that political exclusion is negatively 
correlated with foreign investment; further, foreign investment is negatively correlated 
with the civil liberties scale (and hence because of their reverse ordering of the civil 
liberties scale, positively correlated with civil liberties). To defeat this objection, 
Timberlake and Williams regress PO on the other variables on the assumption that the 
coefficient relating FI to PO is a superior measure of FI's causal influence on PO than is 
their simple correlation. A regression on the correlations above yields: 
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PO   =   .227*FI  - .176*EN  +  .880*CV + ε 
        (.058)     (.059)       (.060)     
        3.941      -2.985      14.604    
 
You can see that the crucial coefficient is positive and highly significant. Timberlake 

and Williams took this as evidence to support the claim that foreign investment causes 
more political exclusion. They do not explicitly consider any alternative models. 

But a regression model is only one among many that might describe the relations 
among these four variables. To search for alternatives, we again use TETRAD II's Build 
module, again without considering whether the linearity and normality assumptions are 
warranted.17  Without assuming that all common causes are included in the variables 
measured, and using a significance level (α) of .05 for its statistical hypothesis tests, 
Build's output is the PAG in Figure 23. 

 
FI EN PO CV

  

Figure 23. Build output at α = .05 

 
Since this structure entails that foreign investment (FI) and political exclusion (PO) are 
uncorrelated, we increase α to .15, at which point Build produces the PAG in Figure 24. 

 
FI EN PO CV

 

Figure 24. Build output at α = .15 

 
Because all of the connections in the PAG involving FI have arrowheads directed into FI, 
these data indicate that foreign investment is not a cause of any of the other variables. A 
large number of causal models are members of the equivalence class represented by the 
output in Figure 24. The model in Figure 25 is one of the simplest in this class, and is 
plausible besides. 

 

                                                 
17Because our aim is to illustrate the use of TETRAD II in finding alterantives to a given model, the 

correctness of the distribution and linearity assumptions made by Timberlake and Williams is not at issue. 
We note, however, that we were unable to reproduce their correlation matrix from the sources they cite. 
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FI EN PO CV

 

Figure 25. An Alternative to Timberlake and William’s Model 

This model asserts that EN (a measure of economic development) causes both the 
level of foreign investment and the level of political exclusion. Political exclusion causes 
the lack of civil liberties, and there is some unmeasured common cause connecting 
foreign investment and civil liberties (or in other terms, that their errors are correlated). 
Estimating this model with EQS yields a χ2 = .136 with 2 degrees of freedom, with p(χ2) 
= .934. We give the coefficients with their standard errors and t-statistics in Figure 26 
below. 

 

FI EN PO CV

(.100)
3.132

. 313 -. 479 . 861

-. 235

(.104)
-4.598

(.053)
16.304

(.062)
-3.761  

Figure 26. Estimated Alternative Model 

 
The signs of the coefficients suggest that the relation between FI and PO is negative and 
mediated by a common cause, contrary in two ways to Timberlake and Williams' 
hypothesis. We do not mean to suggest that this analysis shows our alternative to be 
correct.  At this small a sample size statistical tests have little power against alternatives, 
so it is difficult to statistically distinguish between two models even when they are not 
statistically equivalent. Our point is to show how the Build module can be used to search 
for plausible alternatives to a given model.  

6.2 Specifying Measurement Models of  Political Democracy 

Bollen (1980) studied whether a number of measures of political democracy were 
unidimensional indicators of a common feature of societies. Bollen used the following 
measures: 
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PF press freedom 
FG  freedom of group opposition 
GS government sanctions 
FE  fairness of elections 
ES executive selection 
LS  legislature selection 

 
He considered the unidimensional factor model specified in Figure 27, where it is 
understood that for each of the measured variables there is an error term. 
 

T

PF FG GS FE ES LS
 

Figure 27. Initial Measurement Model of Political Democracy 

Bollen estimated this model with LISREL and found that the data reject it.18 Instead 
of attempting to locate and discard the impure indicators, Bollen elaborated his original 
model by correlating error terms (Figure 28). When estimated with EQS, this model has a 
χ2 of 6.009 based on 6 degrees of freedom, with p(χ2) = 0.42218. The Search module of 
TETRAD II, which uses vanishing tetrad differences to search for elaborations of an 
initial model, arrives at a set of factor models which contains Bollen’s model and others. 

 
T

PF FG GS FE ES LS

 ε1      ε2      ε3      ε4       ε5     ε6

 

Figure 28. Bollen’s Respecification of the Measurement Model 

Although Bollen's final measurement model of democracy fits the data well, it is not 
unidimensional. To find a unidimensional submodel, we can run Purify on Bollen's 
original model (Figure 27) and data.  Giving the initial model and the measured 

                                                 
18EQS yields a χ2 = 42.076 based on 9 degrees of freedom, with p(χ2) < 0.001. 



covariances to Purify, FG and LS are identified as impure indicators and discarded, 
resulting in the measurement model we picture in Figure 29. 

 
T

PF GS FE ES
 

Figure 29. Sub-model found by Purify  

 Estimating the resulting unidimensional measurement model (Figure 29) with EQS 
yields a χ2 = 1.687 based on 2 degrees of freedom, with p(χ2) = 0.43013. 

6.3 A Large Search Space: The Alarm Network 

By interviewing several medical experts, Beinlich, et. al., (1989) developed a large 
causal model of the probabilistic relations in emergency medicine (Figure 30).19 Using 
the directed graph associated with this model (Figure 30), called the ALARM network, 
linear coefficients with values between .1 and .9 were randomly assigned to each directed 
edge in the graph. Using a standard joint normal distribution (mean 0, variance 1) on the 
exogenous variables, three sets of simulated data were generated, each with a sample size 
of 2,000. The covariance matrix and sample size were given to the TETRAD II program. 
No information about the orientation of the variables was given to the program.  With 37 
variables, the space of possible models is astronomical,20 yet the program required less 
than fifteen seconds to return a pattern on a Decstation 3100. In each trial the output 
pattern omitted two edges in the ALARM network; in one of the cases it also added one 
edge that was not present in the ALARM network. 

 

                                                 
19 Beinlich’s network was over discrete variables, and we have run Build on a discrete version of this 

network with results similar to those we report here for a SEM interpretation of the structure.  
20 With 37 variables there are 666 pairs of variables.  Assuming that each pair <X,Y> has either 1) no 

edge between therm, or 2) an edge from X to Y, or 3) an edge from Y to X, the number of possible models 
is 3666.  The actual number to search is smaller, because some of these models will contain cycles, but the 
space remaining is still far too big to search by evaluating each member.   
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6 5 4 27 11 32 34 35 36 37

19 20 31 15 23 16

10 21 22 13

17 28 29 12 24

25 18 26 7 8 9

1 2 3 30

33 14

 

Figure 30. The ALARM Network. 

 

7. Conclusion 

The work we have described is based on assumptions that are implicit, and 
sometimes explicit, throughout scientific practice. The Causal Independence assumption, 
for example, posits a relation between the absence of causal connection and statistical 
independence that is fundamental to experimental design; the Faithfulness assumption  
states a preference for explanation by structure over explanation by coincidence that, in 
various forms, is used in every science. Consequences of these assumptions were worked 
out for special cases by many social scientists, for example by Simon (1954), by Blalock 
(1962) and by Costner (1971). 

The methods we have described are incomplete, and there is a great deal of research 
that remains to be done and that should lead to improved modeling. Important 
outstanding problems include improving the reliability of model search through better 
statistical and algorithmic procedures, deriving computationally tractable algorithms for 
testing covariance equivalence of linear, latent variable models, finding correct methods 
for clustering measured variables that share a latent common cause, completing and 
implementing known algorithms for predicting the outcomes of interventions from partial 
causal and distributional specifications, implementing searches for non-recursive models, 
and much more.  

We hope the TETRAD II procedures will become a useful part of the methodological 
toolkit used by quantitative social scientists, that the statistical and social scientific 
communities will investigate the questions we have raised, and improve the techniques 
we have suggested. 
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8.  Appendix 

8.1 D-Separation 

An undirected path between X1 and Xn in a graph G is a sequence of vertices <X1, 
..., Xn> such that for each pair of vertices Xi and Xi+1 (1 ≤ i < n) that are adjacent in the 
sequence, either there is an edge Xi → Xi+1 or an edge Xi+1 → Xi in G. A directed path 
between X1 and Xn in a graph G is a sequence of vertices <X1, ..., Xn> such that for each 
pair of vertices Xi and Xi+1 (1 ≤ i < n) that are adjacent in the sequence, there is an edge 
Xi → Xi+1 in G. X is a descendant of Y in directed graph G if and only if there is a 
directed path from Y to X or Y = X. In graph G a vertex Xi is a collider on undirected 
path U if and only if U contains a subpath Xi-1 → Xi ← Xi+1. Otherwise if Xi if on U, Xi 
is a noncollider on U. Following Pearl (1988), in a directed acyclic graph G, for disjoint 
sets of vertices X, Y, and W, X and Y are d-separated given W in G if and only if there 
exists no undirected path U between a member of X and a member of Y, such that (i) 
every collider on U has a descendent in W and (ii) no other vertex on U is in W. An 
illustration of d-separation is given in the directed acyclic graph shown in Figure 31. 

 
X U V W Y

S 1 S 2  
Figure 31 

{X} and {Y} are d-separated given the empty set 
{X} and {Y} are not d-separated given set {S1, S2} 
{X} and {Y} are d-separated given the set {S1, S2, V} 

8.2 The Build Algorithm with the Assumption of No Correlated Errors 

The Build module uses the PC algorithm (Spirtes, et al., 1993) when it is assumed 
that the RSEM that generated the data has no correlated errors or latent common causes. 
Let Adjacencies(C,A) be the set of vertices adjacent to A in a graph C.21 In the 
algorithm, the graph C is continually updated, so Adjacencies(C,A) changes as the 
algorithm progresses. A \ B is the set of members of A that are not elements of B. We 
adopt the convention that if S is the empty set, then ρX,Y.S is ρX,Y.22 
 

                                                 
21Note that C is not defined to be a directed graph, so that edges can be either directed or undirected. 
22 The simplified version of the algorithm presented here does not make all of the orientations that are 

theoretically possible, because we have found in practice that additional orientation rules, while 
theoretically correct, are in practice unreliable until the sample size is very large. 
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PC Algorithm: 
A) Form the complete undirected graph C on the vertex set V.  
B) n = 0. 

repeat 
repeat 

select an ordered pair of variables X and Y that are adjacent in C such 
that the number of vertices in Adjacencies(C,X)\{Y} is greater than or 
equal to n; 
repeat 

select a subset S of Adjacencies(C,X)\{Y} with n vertices; 
if the statistical test fails to reject ρX,Y.S = 0, then delete edge  
X  Y from C and set Sepset(X,Y) = S and Sepset(Y,X) = S; 

until every subset S of Adjacencies(C,X)\{Y} with n vertices has  
    been selected or some subset S has been found for which ρX,Y.S = 0; 

until all ordered pairs of adjacent vertices X and Y such that 
Adjacencies(C,X)\{Y} has greater than or equal to n vertices have been  
    selected; 
n = n + 1; 

until for each ordered pair of adjacent vertices X, Y, Adjacencies(C,X)\{Y}  
          has less than n vertices. 
 

C) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are 
each adjacent in C but the pair X, Z are not adjacent in C, orient X  Y  Z as  
X → Y ← Z if and only if Y is not in Sepset(X,Z). 
 
D) repeat 

 If X → Y  Z in C, and X and Z are not adjacent in C, then orient as Y → Z, 
    until no more edges can be oriented. 
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Sepset(A,D) = {B} 
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BE.CD ρ = 0 Sepset(B,E) = {C,D} 

 

Figure 32: A trace of the adjacency stage of the PC algorithm 

 
Figure 32 traces the operation of the first two parts of the PC algorithm for input 

faithful to the true graph in Figure 32. 
Although it does not in this case, stage B) of the algorithm may continue testing for 

some steps after the correct undirected graph has been identified. After stage B) has been 
completed, the undirected graph at the bottom of Figure 32 is partially oriented in step C 
of the PC algorithm. The triples of variables with only two adjacencies among them are: 
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A  B  C;  A  B  D;  
C  B  D;  B  C  E;  
B  D  E;  C  E  D; 

 
E is not in Sepset(C,D) so C  E and E  D collide at E. None of the other triples form 
colliders. The final pattern produced by the algorithm is shown in Figure 33. 
 

A B

C

D

E

 

Figure 33. Final Pattern Output by PC. 

The pattern in Figure 33 represents the partial correlation (and covariance) 
equivalence class of RSEMs we show in Figure 34. 

 

 D

E

 C

 B A

D

 E

 C

BA

 D

E

 C

 B A

D

 E

 C

BA

 

Figure 34. Equivalence Class of RSEMs represented by the Pattern in Figure 33. 

8.3 Purify 

We say that an indicator X measures T in an RSEM if there is a directed edge from 
T to X in the directed graph associated with the RSEM. If G is the directed graph of an 
RSEM with latent variables T and a measurement model with indicators X such that 
every Xi ∈ X measures some latent T in T, then Xi is a pure indicator in G if and only if 
Xi is d-separated from every other indicator by T. A measurement model is pure, or 
unidimensional, if and only if all of its indicators are pure.  
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8.4 MIMbuild 

MIMbuild takes as input a unidimensional measurement model and covariance data over 
the indicators in this model, and outputs a modified pattern Π, where the adjacencies can 
be either: →,  ,  ?→?, or  ??.  The edges labeled with a “?” indicate that the 
MIMbuild algorithm cannot determine if there is an edge in the population graph or not. 
Suppose that G is the directed graph of an RSEM with no correlated errors that has latent 
variables T and indicators X’. Then if Π is the output of MIMbuild on a correctly 
specified unidimensional measurement model for T and X ⊆ X’, and the statistical 
decisions about vanishing tetrad differences among X made on a sample from a faithful 
parameterization of G are correct, then 
 

1. If Ti and Tj are not adjacent in Π, then they are not adjacent in G. 
2. If Ti and Tj are adjacent in Π and the edge is not labeled with a "?", then Ti 

and Tj are adjacent in G. 
3. If Ti → Tj is in Π, then Tj is not an ancestor of Ti in G. 
4. If Ti → Tj is in Π and the edge between Ti and Tj is not labeled with a "?", 

then Ti → Tj is in G. 
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