
 
 
 
 

Expert Statistical Testimony and Epidemiological Evidence: 
The Toxic Effects of Lead Exposure on Children1 

 
 

                                                

 
Stephen E. Fienberg 

Department of Statistics  
Carnegie Mellon University  
Pittsburgh, PA 15213-3890 

 
and 

 
Clark Glymour and Richard Scheines 

Department of Philosophy 
Carnegie Mellon University  
Pittsburgh, PA 15213-3890 

 
 

Abstract 
 
The past two decades have seen a dramatic growth in the use of statisticians and 
economists for the presentation of expert testimony in legal proceedings.  In this 
paper, we describe a hypothetical case modeled on real ones and involving 
statistical testimony regarding the causal effect of lead on lowering the IQs of 
children who ingest lead paint chips.  The data we use come from a well-known 
pioneering study on the topic and the analyses we describe as the expert 
testimony are similar to ones that can be found in major scientific journals. The 
battle of the experts in this hypothetical case resembles that which many 
encounter as expert witnesses.  The paper concludes with some observations and 
advice. 
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1 An earlier version of the material in this paper was developed for use as a case study for the Federal Judicial 
Center and presented at the Fourth International Conference on Forensic Statistics, Raleigh, NC, December, 1999.   

  



1. Introduction 
 
  Because statistics is used in so many different fields, statisticians appear as expert 
witnesses in diverse litigation contexts, ranging from the reliability of forensic evidence, DNA 
fingerprinting, mass torts, and discrimination cases, to confidentiality of scientific research data, 
cheating on examinations, drug smuggling, voting fraud, and the adjustment of the U.S. 
decennial census. For a wide variety of examples of the role of this testimony in specific cases 
see DeGroot, Fienberg, and Kadane (1986), Evett and Weir (1998) Fienberg  (1989, 1997a),  
Finkelstein and Levin (2001), Gastwirth (1989, 2000), and Zeisel and Kaye (1997).  
 

In many legal contexts the central issue is causal. In some, the causes of a single event 
are under dispute. Did the leading driver’s sudden stop to avoid hitting a dog cause the accident, 
or was it the failure of the anti-lock braking system in the trailing driver’s car?  In others, a 
causal generalization is at issue.  Does chronic low-level exposure to asbestos cause lung cancer?  
Does the level of radiation received by workers at a nuclear power plant cause leukemia?  If so, 
how strong is the effect, i.e., what is the dose - response relationship? 

 
In most cases where a causal generalization lies at the core of a legal action, for practical 

or ethical reasons, no experimental evidence is available.  On occasions where experimental 
evidence is available, it usually involves laboratory animals and the results are very difficult to 
extrapolate to humans. As a result, causal generalizations are typically supported (or refuted) by 
non-experimental statistical evidence. In this article, we lay out a prototypic case in which 
statistical and epidemiological evidence is brought to bear by opposing experts on a causal 
claim: does chronic exposure to low levels of lead cause cognitive deficits in children?   Using 
actual data sets, and a fictitious exchange between a plaintiff’s and a defendant’s expert, based in 
large part on published exchanges in the statistical literature, we illustrate several classic 
argumentative strategies used by econometric, epidemiological and statistical expert witnesses to 
establish or refute causal generalizations from non-experimental statistical evidence.   
 

After briefly describing the case background, we present the core of the plaintiffs’ expert 
testimony.  The expert begins by showing a “raw” association between the putative cause and the 
effect, articulates possible confounders (covariates or exogenous variables in statistical or 
econometric language), measures them, and then statistically selects the ones that are worthy of 
further study. The expert then uses multiple regression to show that the “raw” association 
between cause and effect does not disappear after controlling for such confounders.  The same 
strategy is used not only in tort cases but also in litigation involving discrimination as well as 
other areas of the law. 
 

The defendant’s expert responds by challenging the validity of the initial presentation of 
evidence.  The defendant’s expert argues that the plaintiffs’ expert has omitted important 
confounders from consideration, and has neglected to take into account measurement error, 
especially in the confounders. The defendant’s expert then presents a sensitivity analysis 
showing that there is indeed no effect of low levels of lead on IQ for “reasonable” ranges of 
measurement error. 
 

On rebuttal, the plaintiffs’ expert shows that the way in which the defendant’s expert has 
included the supposedly omitted variables is wholly unreliable and conveniently misleading. He 

  



demonstrates that measurement error in the confounders can be taken into account, even 
modelled statistically, and that doing so only strengthens the conclusions he drew. 
 

Our presentation attempts to illustrate the technical aspects of the “battle of experts” that 
an economist or statistician can expect to experience in a legal context (for some related 
discussions on strategic and other non-technical aspects see Fienberg, 1997b, Fisher, 1986 and 
Meier, 1986). It also illustrates the difficulties of making causal inferences from non-
experimental data, how such evidence can be legitimately challenged and where it cannot.   

 
In comments on an early draft of this paper, reviewers expressed some surprise at the 

“unsophisticated” and simplistic nature of some of the “evidence” presented by the experts in 
this fictitious case.   Our response is that this is precisely how evidence is presented in real cases.  
The expert’s job is to educate the trier of fact, either a judge or a jury, and to do so by building 
up from easily understood statistical ideas to more complex ones (Fisher, 1986; Fienberg, 1989; 
Fienberg, Krislov, and Straf, 1995).  Thus, while econometricans, if left to their own devices, 
might begin with simultaneous equations models involving carefully selected instrumental 
variables and perhaps a fully Bayesian analysis replete with Markov chain Monte Carlo methods, 
most expert testimony at trial begins instead with correlation coefficients, 2×2 contingency 
tables, and perhaps Fisher’s exact test (see Good, 2001). The more complete and intellectually 
justifiable analyses typically come later in the case, if at all. 
 
2. The Hypothetical Case: Lead and IQ  
 
 The fictional case that we describe here draws on actual epidemiological data concerning 
the effects of exposure to lead on children’s IQ scores. Empirical studies in this area have had an 
important influence on national policy and have been the focus of a series of scientific disputes.  
The case arises under a tort claim raised by the residents of a tenement dwelling and brought 
against the landlord.  The plaintiffs claim that the landlord has failed to meet his responsibility to 
maintain a safe and healthy dwelling and protect his tenants from undue exposure to lead.  We 
have base the “facts” of the case on a somewhat disguised tort case described by Frank (1992) as 
“The Case of Sam Brown.”  The focus of Frank’s analysis is the economic calculation of 
damages on the basis of  (1) medical costs of roughly $40,000,  (2)  losses in lifetime earnings--
estimated to be $189,000, and intangible factors-- $70,000.  These calculations involved the use 
of statistics through regression analysis, etc.  We address none of these issues here.   
 
 Rather we cast the individual case of Sam Brown in the context of a hypothetical lawsuit 
brought by multiple plaintiffs, for which the evidence in the case of Sam Brown is illustrative.  
Our focus is on the testimony by statistical experts intended to establish or to contradict proof as 
to the effect of low-level lead exposure on cognitive function. Only if convincing proof of such a 
causal effect is presented to the court can the issue move to the assessment of damages.   
 
 

  



2.1 Basic Facts 
 
 “Samuel Brown was hospitalized at age 7 for severe lead intoxication (blood level of 
over 70 mg/dl).  Samuel was hospitalized in a tertiary care hospital, where chelation therapy was 
administered.  The duration of the hospital stay was 4 weeks.  A psychological evaluation was 
performed subsequent to hospital discharge and it concluded that Samuel had suffered an 18 
point IQ loss, from 109 Weschler full scale IQ to 91” (see Frank, 1992, pp. 262-263).  The other 
plaintiffs are children who lived in the same building and were exposed to low-level quantities of 
lead through lead paint that had once been used throughout the building.  Information on health 
and behavioral problems that are seemingly linkable to substantial lead exposure is also available 
and not in dispute; however, there is a dispute regarding the implications of low-level lead 
exposure.  All of the children have current IQs below 100 and evidence available to indicate that, 
at least in several instances their IQs are lower than when measured several years earlier. 
 
 In support of their claims, the plaintiffs present a case based on testimony of a statistical 
expert with background in epidemiology.  In actual cases, it is more likely that there would be 
multiple experts, e.g., an epidemiologist who might have conducted a study of the effects of low 
level lead exposure, as well as the statistician who analyzed the data, and perhaps others to 
testify as to the extent to which the evidence is consistent with other studies. In the case of the 
effects of lead on IQ, there is an extensive epidemiological and statistical literature that on which 
the experts could opine, e.g., see Needleman and Gatsonis (1990), Pocock, Smith, and Baghurst 
(1994), and Waternaux, Laird, and Ware (1989). 
 
2.2 The Massachusetts Study  
 
 

                                                

In the hypothetical case we take as the principal data used for statistical analyses to 
support the plaintiffs’ claim come from an observational study of 270 children in Massachusetts 
(Needleman, Geiger, and Frank, 1979).  Each child in the study had just lost baby teeth which 
were measured for concentrations of lead. Unlike blood levels of lead, which can fluctuate 
widely over a 24 hour period and thus are poor measures of cumulative exposure, the deposit of 
lead in baby teeth is a slow and stable response to the lead a child has been exposed to over the 
course of his or her entire childhood.   
 
Each child’s IQ was also measured, along with a variety of physical and social factors, including 
weight, height, head circumference, sex, etc.  Several measures of parental status were also 
collected, e.g., time from conception to delivery of the child, number of previous live deliveries 
by child’s mother, the mother’s IQ, socioeconomic status and education.2 Values for some of the 
variables are missing for some of the children.  The data are non-experimental, that is, the 
exposure to which each child was subject was not under the control of scientific investigators.   
 

 
2 We are indebted to Dr. Herbert Needleman of the University of Pittsburgh for providing us with his original data, 
which we have used in these illustrative analyses. Because of different choices of variables and our use of different 
statistical analysis packages, the results we obtained from various statistical procedures do not strictly agree with 
those he has published, and are not intended to do so.  See Needleman, et al.  (1979) and Needleman, Geiger, and 
Frank (1985).  

  



3. Plaintiffs’ Statistical Case 
 
3.1 The Raw Association Between Lead Exposure and IQ 
 
 By various standard statistical measures, for the children in the study sample, the 
concentration of lead in teeth is negatively associated with IQ. One measure of dependency is 
obtained by introducing a cutoff between high and low lead concentrations and a cutoff between 
high and low IQ. In the absence of a good reason for another value, a natural threshold is the 
median or middle value. The plaintiffs’ statistical expert begins by following the epidemiological 
approach and presents the numbers of children who are high in both features (lead concentration 
and IQ), high in one but not the other, or low in the form of a 2 × 2 contingency table: 
 

Table 1 Here 
 
Note that there are a total of 229 observations in this table, not 270, the number of children in the 
study. That is because the table is based on all complete cases with no missing observations for a 
subset of the variables including IQ and lead concentration.  Discarding observations with 
missing data is not usually considered good statistical practice (e.g., see Little and Rubin, 1987), 
but it is often done on practical grounds and in the present instance this simplification does not 
changes the inferences reached by the expert (c.f., Kadane and Terrin, 1997). 
 
 The dependency between binary valued variables can be measured by the cross-product 
or odds ratio, which in this case equals 0.58, indicating a negative association between high 
levels of lead and high IQ, and is significant at a p-value = .042.  The choice of different cutoff 
or threshold values in this particular data set will produce different cross product ratio values. 
But almost any choice of cutoff the sample data yields a significant cross product ratio.  The 
sample correlation coefficient between lead and IQ is – 0.253, which is significant at p < .01.  
The expert explains that these analyses show that, even at low levels, lead exposure and IQ are 
negatively associated to a degree that cannot be explained by chance. 
 
3.2 Confounders 
 
 The association between lead concentrations in children’s teeth and their IQs is clearly 
not “logical”--one variable isn’t an aspect of the meaning of the other. There is nothing in the 
measurement process, or in the way children were selected for the sample, that suggests that the 
association is an artifact of measurement or sample selection.   

 
Variables that influence both a possible cause and its supposed effect are said in the 

epidemiological literature to be confounders.  In statistics they are often referred to as covariates 
and in econometrics as exogenous variables.) The plausible alternatives therefore are these: 

  



 
1. The association found in the sample is due to the influence of Lead on IQ (Fig. 1 a). 
2. The association found in the sample is due to the influence of other variables 

(confounders) on both Lead Exposure and IQ (Fig. 1 b). 
3. The association found in the sample is due to the influence of other variables 

(confounders) on both Lead Exposure and IQ, and also to to the influence of Lead on IQ 
(Fig. 1 c). 

 
Figure 1 Here 

 
If either of alternatives 2 or 3 hold, then the raw association between Lead and IQ is not a 

reliable guide to the strength of the causal effect of Lead on IQ.   The expert explains to the court 
that there are two basic strategies for dealing with this problem: randomly assign treatment (in 
this case Lead Exposure), or Measure the confounders and statistically control for them.  By 
randomly assigning treatment, we eliminate the influence of any possible confounder on the 
putative cause, and thus create a situation in which the resulting raw association is the 
appropriate measure of the causal effect.  In the present instance, and many others, however, 
randomly assigning the level of lead exposure would have been neither ethical nor practical.   
The expert explains that this leaves us with the second strategy to pursue.   
 
3.3 Confounder Selection 
 

The expert explains that it is well understood in the statistical literature that confounders 
that can substantially bias an estimate of a causal effect, if they are not measured and statistically 
controlled for, are those variables that are highly associated with the putative cause and the 
effect. Thus the Massachusetts study research team focused on measuring variables that are 
plausibly common causes of the putative cause (Lead) and the effect (IQ), and that are highly 
associated with both—they identified and measured over 40 potential confounders.  At this 
point, the expert presents to the court a brief synopsis of multiple regression and controlling for 
confounders (which the readers of this journal need not receive). 
 
 Simply measuring every possible confounder one can think of and sticking it into a 
multiple regression is by no means optimal, however.  For one, if two variables are redundant 
measures of the same basic confounder, and are themselves highly correlated, then the statistical 
estimation can become unstable and hence unreliable.  For another, one pays a price in statistical 
power with every extra variable included in a regression - thus the apparent relationship between 
cause and effect might come out numerically the same in two regressions, but it might appear 
significant relative to one set of confounders and insignificant relative to another.  (This is a 
lesson often lost in the presentation of regression results in some economics journals.) 
 

Having explained the statistical methodology, with data from the Leand and IQ study, the 
expert then presents the result of a multiple linear regression of IQ on 18 of the 40 confounder 
variables (Table 2): 

 
Table 2 Here 

 
 

  



 
The coefficient for lead in this regression equatin is -0.15169, indicating that IQ falls 
approximately 0.15 points for every extra unit change in lead concentration found in baby teeth, 
even controlling for all the other confounders. All of the regressors together account for 35.4% 
of the variance of IQ in the sample. The coefficient for lead is significant at the .06 level but not 
at the .05 level (p =.056).   
 

Several of the confounders in this regression are far from being significant predictors of 
IQ, however, and thus cost us in the power for detecting whether the estimated effect of lead on 
IQ is truly significant.  Further, several are themselves highly correlated, making the regression 
results unstable.  A more reasonable strategy is to conceive of and measure as many confounders 
as is practical, but then to select those that are important with one of the many variable selection 
procedures available, and then estimate the effect using the set of variables selected. 

 
 Using backwards-stepwise regression, Needleman, Frank, and Geiger (1985) found that 
the following confounders should be controlled for when estimating the effects of Lead on IQ: 
 

Mab - mother’s age at birth 
Fab - father’s age at birth 
Med - mother’s level of education in years   
Nlb - number of live births previous to the sampled child 
Piq - parent’s IQ scores 

 
The correlations among these variables and lead and IQ, as well as the p-values of these 
correlations (in parens) are pictured in Table 3. 
 

Table 3 Here 
 
 
Performing the multiple regression using Lead and only these confounders, we get the results in 
Table 4. 
 

Table 4 Here 
 
 
In this case, the coefficient for the effect of lead on IQ is quite similar, -.163, but now 
statistically signficant (p =  .022).    
 

Variations on the set of confounders controlled for in fact make little difference in the 
estimate of the effect of Lead on IQ, an important piece of evidence in this case.   Using 
TETRAD’s PC algorithm to select the confounders (see Spirtes, Glymour, and Scheines, 2000, 
or Scheines, Spirtes, Glymour, and Meek, 1994) the expert testifies that he included only a 
subset of the five found by Needleman et. al. (1985): 
 

Med - mother’s level of education in years   
Piq - parent’s IQ scores 

 

  



The resulting regression, given in standardized form, with t-statistics in parentheses, is as 
follows: 
 
IQ =  − .177 lead + .251 med + .253 piq  
              (2.89)         (3.5)           (3.59) 
 
All coefficients are significant (p < .05).  The expert summarizes his testimony by reminding the 
court that, in almost every case described by these regression results, a child can expect to lose 
approximately 1 and ½ IQ points for every extra unit of lead exposure.   This, he claims, is 
strong evidence that lead has a deleterious effect on the cognitive capacities of children even at 
low levels, and those who expose children to it should be help responsible. 
 
4. The Defendant’s Expert Response 
 
 The defendant’s expert begins by explaining that the scientific case presented by the 
plaintiffs’ experts, which is thin statistically even assuming their models are correct, rests on two 
assumptions that are clearly false.  First, although they have considered several possible 
confounders, they have omitted a few that have been shown in previous studies to be crucial.  
Second, although they are using multiple regression to control for confounders, they neglect to 
model the measurement error for the confounders.  When one corrects for these assumptions, 
first by imputing the missing confounder and second by doing a sensitivity analysis on the levels 
of potential measurement error, the expert claims that the effect of low level lead on IQ vanishes 
(c..f., Marais and Wecker, 1998).   Here are some of the details. 
 
4.1 Omitted Variables 
 

Although the plaintiffs’ experts measured several properties of the mother and the child, they 
omitted the father’s IQ, a crucial confounder that will surely bias the results if not controlled for 
statistically.  As a consequence of his review the literature on lead exposure and IQ, the expert 
claims that it is clear that the following factors are correlated with lead exposure and also play a 
significant role in determining IQ: mother’s IQ, father’s IQ, and quality of the home 
environment. 
 

The data used by the plaintiffs’ experts does not include either the father’s IQ, and uses 
the mother’s educational level as a proxy for the Home environment, which is dubious at best.  
By omitting the father’s IQ, the plaintiffs’ experts have performed an analysis in which the effect 
of lead on IQ will be estimated with omitted variable bias.  Since the correlation between 
father’s IQ and lead is negative, and since the correlation between father’s IQ and the child’s IQ 
is positive, then omitting father’s IQ will most likely result in a negative bias. That is, the 
estimate of the effect of lead on IQ in a model that omits father’s IQ will be more negative than 
it should.  The same is true for the quality of the home environment (Home). In the plaintiffs’ 
expert analysis, it might well be that the bias from omitting the father’s IQ and Home is big 
enough to account for the entire estimated negative effect.  
 
In order to explore these issues, the expert has used other studies in the literature to impute, or 
fill in, the correlations between father’s IQ, Home, and the variables used by the plaintiffs in 
order to statistically examine the nature of the plaintiffs' omitted variable bias. He began with the 

  



correlation matrix shown in Table 5, where the only values we have are from the study used by 
the plaintiffs. 
 

Table 5 Here 
 

For the remaining values, he used the mean value of other published studies in which 
these variables are measured, or we use reasonable scientific background knowledge.  For 
example, in order to impute the correlation between home and lead, we found seven published 
studies that include this correlation.  The median of these published correlations is -0.470.   In 
order to impute the correlation between the father’s and child’s IQ, he claims to use the theory of 
genetics, which tells us that the contribution of the father and mother to the child’s genome is on 
average equal.  He thus imputes a value close to 0.477.   In similar fashion, he arrives at the 
correlation matrix in Table 6: 

 
Table 6 Here 

 
 
4.2 Measurement Error 
 

In the statistical model described by the plaintiffs’ expert, the estimates of the effect of lead on 
IQ were obtained with multiple linear regression.  In a regression analysis, the variables are 
usually separated into the outcome (in this case the child’s IQ), and the regressors (lead, momiq, 
faiq, home, etc.). As is well known in the statistical and economics community, the estimates 
from such an analysis are biased if the regressors are measured with error.  That is, if the 
absolute value of the correlation between the real confounder and the variable used to measure it 
is less than 1, then there is measurement error.  The lower this correlation, the more 
measurement error.  Since the test-retest correlation of IQ scores is in between .9 and .95, we 
know that the IQ regressors are measured with error.  We also have data on the lead 
measurements, as well as the home score.  The defendant’s expert explains that we can correct 
the results from multiple linear regression to take the measurement error into account, but the 
plaintiffs’ expert neglected to do so.    
 
4.3 Sensitivity Analysis 
 

Rather than commit ourselves to a single value for the imputed correlations or the exact 
amount of measurement error in each regressor, the defendant’s expert performed 10,000 
analyses, each of which slightly perturbed the original values that we took as our best guess.  He 
sampled values for each correlation that we had to impute from a low of 1/2 of our best guess to 
twice our best guess.  He also did similar perturbations for a wide range of measurement errors.   
For each of the 10,000 analyses performed, he stored an estimate of the effect of lead on IQ and 
of the significance level of the estimates.   In none of the 10,000 did he find a significant effect 
of lead on IQ.  Therefore, when omitted variables and measurement error are taken into account, 
he claims that there is no scientific evidence to support the claim that low-levels of lead has a 
deleterious effect on IQ.   
 
 
 

  



5. The Plaintiffs’ Expert Rebuttal 
 
5.1 Omitted Variables  
 

Although the defense has applied a lot of energy in trying to negate two decades of 
evidence on the effect of lead on IQ, there are several problems with their analysis (Waternaux, 
Petkov, and DuMouchel, 1998).  On rebuttal, the plaintiffs’ expert describes these problems, the 
most important of which is the flawed reasoning with respect to imputing “missing” correlations.  
The defendant’s expert made it appear that his analysis was robust to small errors of imputation 
by doing a sensitivity analysis in which he varied the imputed correlation values by a factor of 
two both up and down. The plaintiffs’ expert then claims that he will show that this range is 
much to narrow and that in the most important cases the results were way off in a direction that, 
unsurprisingly, benefited instead of weakened the defendant’s case. 
 

The expert points out that, whereas it seems almost negligent for his study and previous 
ones to have omitted the father’s IQ, there is a good reason that they did so: namely, that in the 
population of children who are typically exposed to significant lead, the fathers are not around to 
take an IQ test.  In fact, in many instances the father is unknown! The defendant’s expert 
imputed correlations between the father’s IQ and the other variables in the study by 1) using 
other studies in which father’s IQ and any other variable in their analysis occurs, or 2) by 
reasoning from background theory.  The problem with this first strategy is that correlations are 
population specific.  That is, the correlation between the father’s IQ and the amount of lead his 
child was exposed to might be very different in a middle class suburban population than it is in a 
poor inner city.  By using studies from different domains to impute correlations into the 
Massachusetts study, the expert neglected this basic fact of sampling.  In several of the 
correlations that he imputed, the other studies cited vary considerably depending on the 
population studied, and in fact varied over a larger range than he used in his sensitivity analysis.   
 

After scrutinizing these external sources more carefully, the plaintiffs’ expert made more 
reasonable guesses as to the correlations to be imputed, and then repeated the analyses. His 
results (Table 7) were completely at odds with the ones presented by the defendant’s expert, in 
particular, linked to two imputed correlations: home and momiq, and home and lead. 

 
Table 7 Here 

 
 By using the defendant’s expert values, the home variable’s correlation with lead and its 
correlation with IQ make it an omitted variable that, when included, accounts for most of the 
association between lead and IQ, rendering the estimate of the direct effect of lead on IQ 
insignificant.  By using reassessed values, which he claims are much more plausible for the 
population under study, the expert argues that the reverse is true: the home variable does not 
account for enough of the association to make the effect of lead on IQ fall below standard levels 
of significance.  
 
5.2 Measurement error 
 

The expert goes on to agree with his counterpart that the regressors are probably 
measured with error. What he then argues is that the defendant’s expert neglected to mention that 

  



measurement error can often attenuate the apparent effect estimated by multiple regression.  In 
this case, measurement error might make the effect of lead on IQ appear closer to zero than it is 
in reality.  He concludes his testimony by describing an attempt to include measurement error in 
his model.  He does this by imposing particular values on the amount of measurement error 
present in each regressor, a technique which does not allow for any uncertainty over the amount 
of measurement error.  By varying how much measurement error is assumed to exist in their 
sensitivity analysis, they include uncertainty, but only qualitatively.  The analysis by the 
defendant’s expert simply imposed a range on the amount of measurement error on each 
regressor, but no information about what the likely value is, i.e., they put no probability 
distribution over how much measurement error exists for each regressor.  

 
The alternative he explains is to do a fully Bayesian analysis to incorporate the entire 

distribution rather than simply consider the endpoints of an interval. He goes on to describe such 
an analysis in which the regressors included lead, mother’s IQ, head circumference, number of 
prior pregnancies, and father's education (e.g., see Scheines, Hoijtink, and Boomsma, 1999, for a 
more complete description of the model and its specification).  The histogram in (Fig. 2) shows 
the posterior distribution over the causal strength of the effect from lead to IQ.  The median in 
the posterior is -0.175, the mean -0.1723, and the standard deviation in the posterior is 0.148.  
Although there are some values in the posterior over this effect that are positive, the bulk of the 
mass is negative, indicating that lead has a deleterious influence on IQ. Almost all of the 
posterior probability is assigned to values that imply lead exposure reduces IQ.    

 
Figure 2 Here 

 
 
5.3 Meta-analyses 
 

In science, replication is crucial to establishing hypotheses, and it is extremely rare that a 
single study establishes any causal mechanism firmly, especially in epidemiology.  In the case of 
lead and IQ, there have been literally dozens of studies examining the effect of low levels of lead 
exposure on a child's IQ.  For example, see Pocock, Smith, and Baghurst (1994).   
 

A few authors have gone to the trouble of systematically collecting the results of previous 
studies via a meta-analysis. In particular, Pocock et. al investigated 14 studies in which lead was 
measured by taking blood samples, and 7 in which it was measured by Needleman's (1979) 
technique of assessing its concentration in baby teeth.  In all the studies catalogued, the authors 
tried to control of parental IQ, the quality of the home, socioeconomic factors, and other 
potential confounders. They summarize the results as follows: 
 

Overall synthesis of this evidence, including a meta-analysis, indicates that a 
typical doubling of body lead burden (from 10 to 20 ug/dl (blood lead or from 5 
to 10 ug/g tooth lead) is associated with a mean deficit in full scale IQ of 1-2 IQ 
points. (p. 1189). 

   
 Testimony about this and other meta-analyses would likely be introduced at trial by other 
expert witnesses and the defense would surely have witnesses to dispute the findings! 
 

  



 
6.0 Summary  
 

We have described a hypothetical case where the expert testimony began with a variety of 
fairly standard statistical methods and progressed through multiple regression, sensitivity 
analyses, and a Bayesian approach to measurement error.  These methods cannot be relied upon 
to demonstrate causation in many instances, and so we borrowed analysis from the recent 
statistical literature to demonstrate how, in the “battle of the experts,” one can expect to see an 
escalation of the methodology and efforts to use “new results and approaches,”  ones that may 
not have been fully vetted in the professional literature.  In such circumstances, judges may now 
exclude parts of statistical and other expert testimony under the Daubert standard (for a 
description of Daubert v. Merill Dow Pharmaceuticals, 113 S. Ct. 2783 (1993), and its 
implications for statistical testimony, see Fienberg, Krislov, and Straf, 1995).  Our description 
has focused on the technical details of the expert testimony, but must always keep in mind that 
this testimony is part of an adversarial process not controlled by the experts (e.g., Fisher, 1986, 
Meier, 1986, and Fienberg, 1997b). 
 

The case study we have outlined has some lessons for statisticians and econometricians, 
whether or not they are going to be testifying experts.  In assessing arguments about the 
strengths of causes that rely on regression analysis and related statistical procedures, one must 
bear in mind that 

•    The results typically depend on the variables selected. 
•  The "statistical significance" slogan is often arbitrary and depends on details of 

distribution and sample size that are easily hidden in the argument. 

•   The reliabilities of various statistical procedures are often unstated, and often 
unknown. 

•   “Non-standard” procedures, such as alternatives to standard stepwise regression 
methods and  Bayesian techniques, are often better warranted than more conventional 
methods.  

 
It is worth noting that Bayesian methods in expert testimony are gaining increasing currency 

in the courts although the progress is slower than in the statistical and econometric literatures 
(e.g., see Evett and Weir, 1998,  Fienberg, 1997b, Kadane and Terrin, 1997).  

For judges and juries who might be faced by expert testimony of the sort outlined here we 
note that there is simply no substitute for thinking through the statistical claims and trying to 
understand the rationale behind competing claims.  This is what the Daubert decision by the 
supreme Court now demands.  

We have saved for the end our conclusions about the substance of the analyses we have 
outlined here on lead and IQ.  Most of the analyses we describe in this paper are ours, and we 
find those presented as the plaintiff’s rebuttal case quite compelling.  Moreover, the meta-
analyses referred to above are perfectly consistent with the analyses that “the plaintiffs’ expert 
reported on here.”  In virtue of such a consistent preponderance of replicable evidence, we 
believe there is little doubt as to the fact that even low levels of lead have a deleterious effect on 

  



a child’s IQ.  The implication of such a finding for the awarding of monetary damages in “The 
Case of Sam Brown” are another matter and involve economic, statistical, and legal analysis. 
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Table 1: Contingency table for IQ and Lead 
 

 High Lead Low Lead Totals 
High IQ 51 66 117 
Low IQ 64 48 112 
Totals 115 114 229 

 
 
 
 
 
 
 
Table 2: Regression Results of Lead Regression 

 
Predictor     Coef       StDev       T    P-Value 
Constant   -33.10       45.54      -0.73    0.468 
lead        -0.15169     0.07879   -1.93    0.056 
ht           0.2937      0.4872     0.60    0.547 
wt          -0.0348      0.1016    -0.34    0.733 
headc        1.6797      0.6826     2.46    0.015 
sex         -1.605       1.941     -0.83    0.409 
birwt       -0.05342     0.05522   -0.97    0.335 
pregl        0.1838      0.5184     0.35    0.723 
med         -0.1166      0.8101    -0.14    0.886 
faed         0.9190      0.4906     1.87    0.063 
sesmo        0.488       1.844      0.26    0.792 
sesda       -1.015       1.213     -0.84    0.404 
numpr       -2.031       1.031     -1.97    0.051 
nlb          1.158       1.220      0.95    0.344 
schol       -0.016330    0.009905  -1.65    0.101 
teacg        0.00584     0.01304    0.45    0.655 
piq          0.35529     0.07831    4.54    0.000 
mab          0.5287      0.3616     1.46    0.145 
fab         -0.4898      0.2512    -1.95    0.053 
 
S = 12.32       R-Sq = 35.4%     R-Sq(adj) = 28.6% 

 
 

  



Table 3. Correlations & p-values (n=221) 
 

 Lead Fab Nlb Med Mab Piq Ciq 
Lead 1.00       
Fab -.08 

(.23) 
1.00      

Nlb .11 
(.10) 

.39 
(.00) 

1.00     

Med -.14  
(.04) 

.02 
(.78) 

-.18 
(.01) 

1.00    

Mab -.15  
(.02) 

.85 
(.00) 

.47 
(.00) 

.003 
(.96) 

1.00   

Piq -.06 
(.39) 

.17 
(.01) 

.03 
(.70) 

.53 
(.00) 

.16 
(.02) 

1.00  

IQ -.23 
(.00) 

-.0003 
(.99) 

-.17 
(.01) 

.41 
(.00) 

.05 
(.43) 

.40 
(.00) 

1.00 

 
 
 
 
 
 
 
 
 
Table 4. 
 

Predictor    Coef        SE Coef        T        P 
Constant     56.091       7.635        7.35    0.000 
lead         -0.16267     0.07028     -2.31    0.022 
med           1.3621      0.5158       2.64    0.009 
nlb          -1.3977      0.6277      -2.23    0.027 
piq           0.27862     0.06636      4.20    0.000 
mab           0.5948      0.2957       2.01    0.045 
fab          -0.3629      0.2116      -1.71    0.088 
 
S = 12.66       R-Sq = 26.0%     R-Sq(adj) = 24.0% 

 

  



Table 5:  Partially completed Correlation Matrix  
 
 
 iq momiq dadiq home lead 
iq 1     
momiq 0.477 1    
dadiq   1   
home    1  
lead -0.253 -0.124   1 
 
 
 
 

 
 
 
Table 6: Completed Correlation Matrix 

 
 iq momiq dadiq home lead 
iq 1     
momiq 0.477 1    
dadiq 0.5110 0.2550 1   
home 0.4500 0.2300 0.1800 1  
lead -0.253 -0.124 -0.1370 -0.4700 1 

 
 
 
 
 
 
 
 
Table 7. 
 

Correlation Defense's Imputed Values More Reasonable Estimates 
Home - momiq 0.230 0.410 
Home - lead -.470 -.100 
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Figure 1: Alternative Explanations of an Association between Lead and IQ 
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Figure 2: Posterior Distribution of the the Effectof Lead on IQ 
 

  


	Expert Statistical Testimony and Epidemiological Evidence: The Toxic Effects of Lead Exposure on Children
	Stephen E. Fienberg
	Department of Statistics
	Carnegie Mellon University
	Pittsburgh, PA 15213-3890
	and
	Clark Glymour and Richard Scheines
	Department of Philosophy
	Carnegie Mellon University
	Pittsburgh, PA 15213-3890
	Abstract
	1. Introduction
	The Hypothetical Case: Lead and IQ
	2.1 Basic Facts
	2.2 The Massachusetts Study
	3. Plaintiffs’ Statistical Case
	3.1 The Raw Association Between Lead Exposure and IQ
	3.2 Confounders
	3.3 Confounder Selection
	4. The Defendant’s Expert Response
	4.1 Omitted Variables
	4.2 Measurement Error
	4.3 Sensitivity Analysis
	5. The Plaintiffs’ Expert Rebuttal
	Omitted Variables
	Measurement error
	5.3 Meta-analyses
	6.0 Summary
	7. References

	�

