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Abstract

Of the many proposals for inferring genetic regulatory structure from microarray measurements
of mRNA transcript hybridization, several aim to estimate regulatory structure from the asso-
ciations of gene expression levels measured in repeated samples. The repeated samples may be
from a single experimental condition, or from several distinct experimental conditions; they may
be ”"equilibrium” measurements or time series; the associations may be estimated by correlation
coefficients or by conditional frequencies (for discretized measurements) or by some other statis-
tic. This paper describes an elementary statistical difficulty for all such procedures, no matter
whether based on Bayesian updating, conditional independence testing, or other machine learn-
ing procedures such as simulated annealing or neural net pruning. The difficulty obtains if a

number of cells from a common population are aggregated in a measurement of expression levels.

1 Introduction

Two fundamentally different strategies have been proposed to determine networks of regulatory
relationships among genes. One strategy (Yuh, et al., 1998; Ideker, et al., 2001; Davidson, et al.,
2002) experimentally suppresses (or enhances) the expression of one or more genes, and measures
the resulting increased or decreased expression of other genes. The method, while laborious,

has proved fruitful in unraveling small pieces of the regulatory networks of several species. Its
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chief disadvantage is that each experiment provides information only about the effects of the
manipulated gene or genes. A single knockout of gene A resulting in changed expression of
genes B and C, for example, does not of itself provide information as to whether A regulates
both B and C directly, or whether A regulates B which in turn regulates C, etc. The requisite
statistical procedures are essentially confined to the estimation of the expression level of each
gene considered in each experiment, and of the uncertainties of those estimates.

A second strategy relies on the natural variation of expression levels of the same gene in
different cells. The proposal is to measure—typically with microarrays—the expression levels
in repeated samples from the same tissue source, or similar sources, and to infer the regulatory
structure from the statistical dependencies and independencies among the measured expression
levels (Akutsu, 1998; D’hasseleer, 2000; D’hasseleer, et al., 2000; Friedman, 2000; Hartemink,
2001; Liang, et al., 1998; Shrager, et al., 2002; Yoo et al., 2002). The apparent advantage
of the strategy is that it offers the possibility of determining multiple relationships without
separate experimental interventions. If, for example, gene A regulates gene C only by regulating
gene B which in turn regulates C, the expression level of A should be independent, or nearly
independent, of the expression level of gene C conditional on the expression level of gene B. In
principle, if adequate sample sizes were available, the method could also be used as a supplement
to gain additional information from experiments in which the expression of particular genes are
experimentally suppressed or enhanced. The requisite statistical procedures for this strategy
are more elaborate, and require direct or indirect (e.g., implicit in the posterior probabilities)
estimates of conditional probability relationships among expression levels.

There are many statistical obstacles to the second strategy including: the joint influence
of unmeasured factors (e.g., unmeasured gene expressions or extra-cellular factors), a variety
of sources of measurement error, an unknown family of probability distributions governing the
errors, and functional dependencies for the expression of any gene that may be Boolean for some
regulating genes and continuous for other regulators. Some of these difficulties—in particular
the presence of latent common causes—have, in principle, been overcome. (Spirtes, et al, 2001).
We describe a more elementary statistical difficulty with the second strategy that calls its value

into question and raises a set of important research problems.
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Figure 1: A simple gene regulatory network

2 Directed Acyclic Graphs and Markov Factorization

Qualitative regulatory relationships among genes are often represented by directed graphs. Each
vertex is a random variable whose values represent levels of expression of a particular gene. Each
directed edge from a variable X to a variable Y in such a graph indicates that X produces a
protein that regulates Y. In principle, the graph may be cyclic or acyclic, and may even have
self-loops—a directed edge from a variable to itself—but most proposed search methods have
been confined to acyclic graphs. In the simplest case, one assumes an acyclic graph with noises
and random measurement errors for each measurement of each gene that are independent of
those for any other gene.

We consider a simplest case: the true, but unknown regulatory structure can be represented
by a directed acyclic graph, with independent errors. Consider, for example, four genes, X, Y,
Z, W whose regulatory connections can be represented by figure 1

Suppose that the measured values of X, Y, Z, W satisfy:

= f(Y,W)+e,
Y = g(X)+e (1)

= h(X) + ey

Where f, g, h are any functions and €, , €, €, are independently distributed noises. It

follows that the joint probability density of Z, Y, W, X admits a Markov factorization



d(X,Y,Z,W) =d(Z|Y,W)d(Y|X)d(W|X)d(X) (2)

The Markov factorization implies that Y, W are independent conditional on X, and that X,
Z are independent conditional on Y, W, and is in fact equivalent to specifying that these two
relationships hold. More generally, assuming each random variable has an independent noise
source but is otherwise a deterministic function of its parents in the graph, the system described
by any directed acyclic graph has a density that admits a Markov factorization that can be
written of as the product, over all variables, of the density of each variable conditional on its
parent variables in the graph. Markov equivalent graphs imply the same independencies and
conditional independencies. In the example of figure 1, the Markov equivalence class consists
of the graph shown and the graphs obtained by reorienting exactly one of the edges from X
to Y or X to W. Absent extra knowledge from other sources, the Markov equivalence class
represents the most information that could be obtained from conditional independencies among
the variables.

Where data are obtained in a time series, regulatory relationships can still be represented by
a directed acyclic graph and probabilities admitting a Markov factorization, but with vertices

appropriately labeled by gene and time.

3 Sums of Variables and Preservation of Conditional Indepen-
dence

The aim is to discover the regulatory structure in individual cells, but measurements are typically
of relative concentrations of mRNA transcripts obtained from thousands, or even millions, of
cells. Such measurements are not of variables such as X in the graph above, but are instead,
ideally, of the sum of the X values over many cells. We will denote such measured sums over n
cells by Y7 | X;.

The difficulty with the second strategy for regulatory structure inference, which relies on
the statistical dependencies among the gene expression levels, is that the conditional depen-
dencies/independencies among the gene expression levels of a single cell in general are not the
same as those among the sums of gene expression levels over a number of cells. For example,

if the variables in figure 1 are binary, and each measurement is of the aggregate of transcript
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concentrations from two or more cells, X, Z are not independent conditional on Y, W, and the
associations obtained from repeated samples will not therefore satisfy the Markov factorization
(Danks and Glymour, 2001).

Interestingly, there are some special cases where the conditional independencies are invariant
under aggregation. For example, if binary regulatory relations among genes X, Y and Z are
described by a singly connected graph, ie., X — Y — Zor X «— Y ¢— Z or X —
Y — Z, then the implied conditional independence of X, Z given Y holds as well for sums of
independent measurements of X, Y and Z respectively (Danks and Glymour, 2001).

Linear, normal distributions have special virtues for invariance. Whatever the directed
acyclic graph of cellular regulation may be, if the noise terms, as in equations 1, are normally
distributed and each variable is a linear function of its parents and an independent noise, then the
Markov factorization holds for the summed variables. For in that case, conditional independence
is equivalent to vanishing partial correlation, and the partial correlation of the two variables, each
respectively composed of the sum of n like variables, will be the same as the partial correlation
of the unsummed variables.

Two less restrictive sufficient conditions for conditional independence of variables to be the
same as the conditional independence of their sums, are given in the following two theorems. The
general setting is an acyclic graph such that each node is a function—not necessarily additive—of

its parents and an independent noise term.

Theorem 1 (Local Markov Theorem) Given an acyclic graph G representing the causal re-
lations among a set V of random variables. Let Y, X', .- X¥ € V, and X = {X',--- | X*} be
the set of parents of Y in G. Suppose Y =c"X +¢, ! where c” = (c',---,c¥), and € is a noise
term independent of all non-descendents of Y. Then Y is independent of all its non-parents,

non-descendents conditional on its parents X, and this relation holds under aggregation.

Proof:
Let U be the set of the variables in V that are neither parents nor descendents of Y. That
Y is independent of U conditional on its parents X is a direct consequence of the local Markov

condition for acyclic graphs (Spirtes, et al, 2001).

Tn this and the next theorems, we shall use the same bold face symbol to represent both a set of variables,
and a vector of that set of variables.



Let Yj, €;, X;, and U; be the i i.i.d. copy of Y, €, X, and U respectively, we have,

ZY Zc X; + €) —CTZX —i—ZeZ
=1

Clearly, (€1, - -, €,) is independent of (Xy,---,X,,Uy,---,Uy). This means that > . ;¢ is
independent of (3" ; U;, > | X;), which again implies that > , €; is independent of Y1 |, U;
conditional on Y | X;. Consequently, ¢ >°" | X; + 3" | ¢; is independent of > | U; given
S X;. (Note that ¢I' 3"  X; is a constant conditional on 1 | X; = x, where x is an
arbitrary constant vector.)

O

The above theorem states that, under the local linearity condition, the conditional indepen-
dence relation between a random variable and its non-descendent and non-parent is invariant
under aggregation. In the next theorem, we give another sufficient condition for the conditional

independence relation to be invariant under aggregation.

Theorem 2 (Markov Wall Theorem) Given an acyclic graph G representing the causal re-
lations among a set V of random wvariables. Let X = {X',--- X"} Y = {V! ... Yk}
W ={W' ... W™} and XUY UW = V. Suppose that the following three conditions hold:

1. The joint distribution of X1, ---, X" Y1 ... Y¥ is multivariate normal with nonsingular

covariance matrix.

2. Fori=1,---,k, Y is neither a parent, nor a child, of any variable W3 € W. That is,

there is no direct edge between a variable in'Y and a variable in W.

3. Fori=1,--- h, X' is not a child of any variable W7 € W. That is, if there is an edge
between a wvariable in X and a variable in W, the direction of the edge must be from the

variable in X to the variable in W.
Then conditional on X, Y is independent of W, and this relation holds under aggregation.

Proof:



The conditional independence of Y and W given X is obvious, because W can be represented

as a function of X and some other random variables independent of (X UY). 2

Now let Z = (X2,---, X", Y ..., Y¥)T suppose the joint distribution of X' and Z is:

X! N 1 o? al
Z vl a Xz
Let Z; = (X2,---, X! Y, - YF)T, which is the i'" i.i.d. copy of Z, we are going to show

that X| is independent of Y. | Z; given > i, X}. First, let us see the joint distribution of

X535 X and 3 Z;:

Xi 1 o? o ar
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We claim that conditional on Y1 | X} = nz and Y | Z; = nZ, the mean of X is z.

Note that:
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Let 8 = no? — nal (nXz)~!nd, inverting by partition, we have:
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It then can be shown that: 3
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2More precisely, these variables are the exogenous variables in W and the independent noise terms associated

with the endogenous variables in W.
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It then follows:

E

n n
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The conditional variance of X| given > | X! = nz and Y1 | Z; = nZ is:
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Thus, we have shown that both the conditional mean and the conditional variance of X{ is
constant in nZ. Given that the conditional distribution of X{ is normal, this implies that X7
is independent of Y"1 | Z; given Y . ; Xil. Note that by the same argument, we could show
that, conditional on Y." | X!, X{ is independent of 3.7 | X2,---, 3" X! Let X; be the it
copy of X, it follows that, conditional on 1 ; X, X{ is independent of >t Y. Because
the choice of Xi is arbitrary, we actually have shown that, conditional on S X, XZ is
independent of Y ;| Y; for any 1 < i < n and 1 < j < h. Moreover, the joint distribution of
Xy, +,X, and Y | 'Y; conditional on Y1 ; X; is multivariate normal, and for multivariate
normal, marginal independence relations imply the joint independence relation. % It then
follows that (Xi,---,X,,) is independent of Y " | Y; given > 7 | X;.

We note that W, the i*? copy of W, can be represented as a function of X; and some other
random variables independent of (X1, -+, X, Y, --,Y,). Thus, as a function of (Xy,---,X,)
and other random variables independent of (X1,--+,X,, Y1, -, Yy,), >.ir; W; is independent
of -7, Y, given Y ' | X;.

O

Although there are established regulatory mechanisms in which some regulators of a gene
act linearly in the presence of a suitable combination of other regulators of the same gene (Yuh,
1998), there does not appear to be any known regulatory system that is simply linear. One of the
best-established regulatory functional relations seems to be the expression of the Endol6 gene
of the sea urchin (Yuh, et al., 1998). The expression level of the gene is controlled by a Boolean

regulatory switch between two functions, each of which is a product of a Boolean function of

*Suppose X,Y, Z are multivariate normal. If X is independent of Y, and X is also independent of Z, then X
is independent of (Y, Z).



regulator inputs multiplied by a linear function of other regulator inputs. Even much simplified
versions of such transmission functions do not preserve conditional independence over sums of
variables.

Suppose in each of n cells genes X, Y, Z and W have the regulatory structure X — Y —
Z +— W withY = g(X); Z = aY W, where a is a positive real number, W is Boolean such that
P(W =1) = p, and g(X) = X2. Assume without loss of generality that a = 1. Assume X takes
values in {0, 1,2,3,4} with uniform probability. Let Y ;"  X;, >0 Y;, S"  Zyand > | W
denote the sums of values of X, Y, Z and W respectively over n = 4 cells. Z is independent of
X given Y; however, we will show that " | Z; is not independent of " | X; given ) I | Y;.

For each cell i, Z; is Y; if the value of W; is 1, and zero otherwise. Hence the probability
that Z; = y; given that Y; = y; is p. Let Y1 | ¥; = > | X? = 16. There are just five possible
vector values for X = (Xi, Xo, X3, X4) consistent with > " | X? = 16: (4,0,0,0); (0,4,0,0);
(0,0,4,0); (0,0,0,4) and (2,2,2,2). The first four vectors in the list have > " | X; =4 and the
last has > | X; = 8. We show that the probability >_"" | Z; = 16 given that ) ;" , ¥; = 16 and
>i, X; = 4is not in general equal to the probability that >-" | Z; = 16 given that ) ;" | ¥; = 16
and > | X; = 8.

For example, if X = (4,0,0,0), then )" | Z; equals 16 if and only if W; = 1. The probability
that Wy = 1 is p. Similarly for the vectors (0,4,0,0), (0,0,4,0) and (0,0,0,4). Given that
Yo X, =4and Y1, Y, =Y ", X2 = 16, the set of the first four vectors has probability
1, and each individual vector of the first four has probability .25. Therefore the probability
that 1" | Z; = 16 given that > i | Y; = Y% | X? = 16 and that Y. | X; = 4 is p. On the
other hand, the probability that X = (2,2,2,2) is 1 given that » ;. , X; = 8 and ) ;| V; =
% X2 = 16. The probability that > | Z; = 16 given > | ¥; = 16 and Y1 | X; = 8 is
therefore just the probability that W; = 1 for ¢ = 1,2, 3,4, which is p*.

Although we have no general, interesting sufficient condition for invariance to fail, many of
the assumptions in the preceding example, e.g., that n = 4, that X is uniformly distributed,
that X has 5 distinct values, that Y = X2, are obviously inessential, and Y = X? was used only
because it is the simplest non-linear, non-Boolean function proposed for a regulator (Schilstra,
2002). Similar arguments would apply to a variety of non-linear dependencies of Y on X. Note

that by the previous results if the dependency of Z were linear in Y and additive in a function



of W, the conditional independence would hold for the sums of variables.

4 Conclusion

The considerations we have advanced argue that, other than by chance, inference to genetic
regulatory networks from associations among measured expression levels is possible only if the
graphical structure and transmission functions from regulator concentrations to expression con-
centrations of regulated genes preserve conditional independence relations over sums of i.i.d.
units, or if the aggregated variations from unit level conditional independence are small. The
few sufficient conditions we have provided are not biologically relevant, but, unfortunately, the
negative example based on a simplification of Endo 16 regulation is relevant. We have not as yet
found interesting, general sufficient conditions for conditional independence not to be invariant.

These results appear to conflict with many reports of successful machine learning searches
for regulatory structure. In many cases, however, the successes are with simulated data in which
the simulated values for individual cell representatives are not summed in forming the simulated
measured values, and are therefore unfaithful to the actual measurement processes. In several
other cases results with real data are not independently confirmed, but merely judged plausible.
Rarely, results are obtained that agree with independent biological knowledge; in these cases the
actual regulatory structure among the genes considered may approximately satisfy invariance
of conditional independence for summed variables, or the procedures may simply have been
lucky. Feasible, economical techniques for measuring concentrations of transcripts in single
cells could make machine learning techniques based on associations of expressions valuable in
identifying regulatory structure, but such techniques are not yet available. In the meanwhile,
absent biological evidence that regulatory dependencies have the requisite invariance over sums
of variables, there seems little warrant for thinking accurate methods for inferring regulatory
associations of microarray measurements are possible.

Of course, the situation is not entirely hopeless. For example, we know that two impor-
tant features of the joint distribution of the gene expression levels—the mean vector and the
covariance matrix—are invariant under aggregation up to a simple linear transformation. More
precisely, let G = (G1,---,G*)T be a random vector representing the expression levels of k genes

in a single cell, and G; = (G},---,GF)T be the i i.i.d. copy of G for i = 1,---,n, then it is
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trivial to see that the following two equations hold:

WE[G] = B [; G|

n
nCov(G) = Cov <Z GZ->
i=1
It is also easy to see that the independence relations between the random variables are invari-
ant under aggregation, for if G! and G? are independent, then (G1,---,GL) and (G%,---,G?)
are also independent, hence > | G} and . | G? are independent. Thus, while waiting for the
technologies capable of measuring efficiently the expression levels in single cells, in experimental
studies, we can still make valid—although probably more limited—inferences about the regula-
tory networks based only on the first two moments of the joint distribution and the independence

relations.
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