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Abstract We argue that current discussions of criteria for actual causation are
ill-posed in several respects. (1) The methodology of current discussions is by induc-
tion from intuitions about an infinitesimal fraction of the possible examples and coun-
terexamples; (2) cases with larger numbers of causes generate novel puzzles; (3)
“neuron” and causal Bayes net diagrams are, as deployed in discussions of actual
causation, almost always ambiguous; (4) actual causation is (intuitively) relative to
an initial system state since state changes are relevant, but most current accounts
ignore state changes through time; (5) more generally, there is no reason to think that
philosophical judgements about these sorts of cases are normative; but (6) there is a
dearth of relevant psychological research that bears on whether various philosophical
accounts are descriptive. Our skepticism is not directed towards the possibility of a
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correct account of actual causation; rather, we argue that standard methods will not
lead to such an account. A different approach is required.

Keywords Actual causation · Bayesian networks · Combinatorics · Intervention ·
Intuitions

Once upon a time a hungry wanderer came into a village. He filled an iron caul-
dron with water, built a fire under it, and dropped a stone into the water. “I do like
a tasty stone soup” he announced. Soon a villager added a cabbage to the pot,
another added some salt and others added potatoes, onions, carrots, mushrooms,
and so on, until there was a meal for all.

1 The theses

One philosophical goal is analysis: the provision of necessary and sufficient condi-
tions for a concept, or for the possession or application of a concept. The Western
historical source of the goal is Plato’s discussion of the concept of “virtue” in the
Meno, but the Meno is also the source of a method: conjecture an analysis, seek
intuitive counterexamples, reformulate the conjecture to cover the intuitive exam-
ples of the concept and to exclude the intuitive non-examples; repeat if necessary.
Much of contemporary philosophy attempts the same strategy for many concepts:
knowledge, belief, reference, causation, and so on. Addressing analyses of “refer-
ence,” Mallon et al. (in press) argue that psychological investigation suggests that
intuitions about reference are so varied that no uniform analysis can capture the
discrepancies.

Our concern is about analyses of a scientifically and morally important notion,
“actual causation”—about proposed necessary and sufficient conditions for one event
to cause another. For an inference to a general analysis from intuitions about cases
to be credible, more than psychological consensus is required. The intuitive cases
used to justify an analysis must somehow be representative of the possible cases of
actual causation or its absence. What is particularly interesting about “actual causa-
tion” is that the possible cases can in some sense be enumerated, and the enumeration
can be used to show that consideration of intuitive examples is not representative,
and apparently cannot be. Our argument first provides principles for enumerating
the number of possible, structurally isomorphic examples of actual causal relations,
without regard to the content of the related events. We show that even with very
strong equivalence relations, and even considering only the number of events typi-
cal of examples in the philosophical literature, the number of possible cases is quite
large. Second, we note that the number of equivalence classes grows exponentially
as more events are considered. And, third, we show by example that as more events
are added, novel kinds of ambiguous cases, or counterexamples to proposed analyses,
emerge.

The question of when one event or circumstance causes another has been the subject
of two recent collections of philosophical essays, (Dowe and Noordhof 2004; Collins
et al. 2004), of a lengthy chapter in a prize-winning book (Woodward 2003), of a
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connected pair of articles amounting to a short book (Halpern and Pearl 2005a, b), as
well as of several other recent articles (Gilles 2005; Spohn 2005; Hiddleston 2005).
Most of the literature is roughly Socratic and inductive: analyses are considered and a
handful of “intuitive” story examples are considered in evidence. Some formal struc-
ture has been frequently imposed by reconstructing stories as Bayes net causal models:
directed acyclic graphs (DAGs), with vertices that are variables and directed edges
marking functional dependencies—truth functions or other deterministic relations, or
conditional probability relations. A “causal model” then consists of a graph and a set
of appropriate functional dependencies; a state is an assignment of values to the vari-
ables, and counterfactual claims refer to the results of exogenous interventions in the
system.1 Within this framework, the various formal accounts of actual causation are
justified by agreement of intuition; they are generally not derived from first principles,
or justified pragmatically.

The graphical or “neuron diagram” representation permits a counting, or at least
determination of lower bounds, of the number of inequivalent graphs, and thus, a lower
bound on the number of possible different actual causation scenarios for any interpre-
tation of the nodes of the diagram. Using the counts these representations permit, we
argue that the inductive strategy for finding or testing a characterization of actual cau-
sation by intuitions about causal Bayes net cases may be futile because the number of
cases potentially presenting distinct challenges to theories is unsurveyably large even
with small numbers of potential causes. We consider a number of different restrictions
on the space of possible cases, and argue that they are insufficient to make the problem
tractable. One response might be to argue that cases with small numbers of variables
suffice to determine the correct theory of actual causes. We argue, however, that inter-
esting, novel distinctions and challenges arise for proposals for actual causation when
we consider four- and five-cause systems, and so it is not plausible that all problems
of interest are realized by cases with three or fewer potential causes. We further argue
that the common graphical representation of actual causation is systematically ambig-
uous, largely because it ignores the potential relevance of the system state at previous
times. We conclude with a positive proposal, using a different, less Platonic strategy:
one can use causal Bayes nets (Spirtes et al. 1993) to unambiguously represent actual
causal relations concerning changes from one initial state to another consequent on
interventions, but this requires a significant shift in the typical understanding of actual
causation. We do not claim the causal Bayes net framework solves all important ques-
tions about actual causation; most notably it does not address when absences are and
are not causes. Finally, we consider the sparse but growing psychological literature on
lay judgments of actual causation.

2 Counting graphs and truth functions

Many of the deterministic examples in discussions of actual causation implicitly pre-
suppose formal structures of the following kind:

1 See, for example: Lewis (1986), Hitchcock (2001), Woodward (2003), and Halpern and Pearl (2000,
2005a), among many others.
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(1) Events are represented by variables (usually taking two values but in principle
without limit), possibly with one value (e.g., “0”) marked for absences.

(2) Qualitative causal relations are represented by a directed acyclic graph (DAG)
with the variables as vertices.

(3) Laws are given by deterministic or stochastic functions for each variable specify-
ing its values as a function of the values (which may be probability distributions
in the stochastic case) of its graphical parents. The functions are defined on all
mathematically possible values of the potential causes, including combinations
of values that may be jointly inconsistent with the laws. For example, the laws
A = B, C = f (B,A) = B • A, are jointly inconsistent with A= 1, B = 0, but
f (B,A) is defined for these values.2

(4) A realization of the system is an assignment of values to the variables, and a
legal realization is an assignment consistent with the laws.

(5) A counterfactual realization α of realization ρ with respect to a proper subset V
of the variables is a realization of the same system, differing from ρ for the vari-
ables in V, assigning all variables that are not descendants of V their ρ values;
the laws determine all other value assignments in α.

The scheme of definitions amounts to treating a causal counterfactual of the kind “if
a had not happened . . .” as an intervention, without backtracking, on a node whose
values are a and not-a. An obvious variant would allow that counterfactual interven-
tions in a stochastic system specify precise values for the variables directly intervened
upon, rather than probability distributions.

In the deterministic case, with binary variables, these conditions amount to assum-
ing an acyclic graphical causal model, in which the laws—the value of a child given
its graphical parents—are given by truth functions. The same formalism lurks behind
various probabilistic accounts of actual causation, only differing in making each child
variable a stochastic function of the values of its parents. The intervention interpreta-
tion of counterfactuals (condition 5) is justified by two facts: (i) interventions satisfy
the Lewis axioms for counterfactuals;3 and (ii) almost (but not quite) all philosophical
discussion of cases with explicit diagrammatic and truth functional representations
make counterfactual judgements corresponding to interventions (e.g., if A causes B,
on the supposition that the value of B is contrary to fact, it does not follow that the
value of A is contrary to fact).4

2 Italicized upper case letters denote variables; lower case italized letters denote values of variables of the
same lexicographic type; bold face words and letters denote sets. A \ B denotes the members of A that are
not members of B.
3 Lewis’ axioms do not imply that A V B !→ C |=A !→ C V B !→ C, which Pearl (2000) suggests
is required by interventions (and Nute (1976) thinks is required by counterfactuals).
4 For example, Lewis (1986), Hitchcock (2001), Woodward (2003), Hall (2004), Ramachandran (2004a, b),
Kvart (2004a, b), Noordhof (2004), and Halpern and Pearl (2005a, b), Hiddleston (2005). Menzies (2004)
describes qualitatively all of the elements of the representation without mentioning it. The stochastic ver-
sion of the framework is essentially a Bayes net, with distributions satisfying the causal Markov condition
(Spirtes et al. 1993). Kvart’s conditions, for example, are finely constructed to take advantage of the con-
straints the causal Markov condition imposes on relations between probability and an acyclic binary relation
representing causes, but he does not specify the Markov constraint explicitly. The construal of the anteced-
ent in counterfactuals as an intervention result is not always consistent in these papers. Hall, for example,
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Analyses of actual causation for deterministic cases have assumed that the relation
obtains between values of variables representable in such networks. A method for
determining actual causal relations thus depends on the actual values of variables, and
truth functions for each directed edge in the graph. So, for example, we have the story
of a hiker walking along a path, a boulder that rolls down the mountain above her, caus-
ing her to duck, resulting in her survival, and the question: what caused her survival?
The representation as a causal model and actual values is shown below, and the cen-
tral question can be expressed precisely as: “Is Boulder rolls = true, Hiker ducks =
true, both, or neither, the actual cause of Hiker survives = true?”

Boulder rolls(true/false)     Hiker ducks (true/false)      Hiker survives (true/false)

Causal graph:

Laws:

Hiker ducks = Boulder rolls; Hiker survives = ~Boulder rolls v Hiker ducks.  

Actual values:

Boulder rolls = true; Hiker ducks = true; Hiker survives = true.

Many cover stories obviously have the same formal structure; for example,
“B throws a ball at a window S but H catches the ball” has the same structure as the
Boulder/Hiker/Survival case. If we group together these obviously equivalent cases,
then the philosophical literature discusses about a baker’s dozen examples (see Sect. 4).
Our first concern is whether this is an adequate sample of the number of possible cases,
and whether an adequate sample of cases is possible at all (if each must be subjected
to philosophical “intuition”). Consider the number of cases for the highly restricted
case with: (i) 3 binary potential causes; (ii) 1 binary effect; and (iii) deterministic
laws. Any subset of the three potential causes can be a cause of the effect (i.e., have
a C → E edge in the graph), and so there are eight possible graphs: 1 graph with no
causal connections; 3 graphs with one edge; 3 graphs with two edges; and 1 graph with
all three edges. For each one-edge graph, there are 22 possible truth functions for the
effect; for each two-edge graph, there are 24 truth functions; for the three-edge graph,
there are 28 truth functions; and we treat the no-edge graph as just one case, since the
truth “functions” are just constants. Altogether, there are 317 possible structures over
the three potential causes and the effect.

This calculation does not yield all of the possible structures, however, since there
can be causal relations among the potential causes (e.g., the Boulder → Hiker ducks
connection). There are 25 distinct causal graphs over only the possible causes: 1
no-edge graph; 6 one-edge graphs; 6 three-edge graphs; 3 two-edge graphs in which
both edges are directed into the same variable (a collider); and 9 other two-edge graphs.
For each one-edge graph, there are 22 truth functions; for each two-edge graph—both
collider graphs and non-colliders—there are 24 truth functions; and for each three-edge

Footnote 4 continued
seems to need an intervention account (which prevents backtracking) for some of his arguments (Hall 2004,
pp. 261–262) but writes in terms of more general counterfactuals that allow them.
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graph, there are 24 × 22 = 26 possible truth functions. If we again treat the no-edge
graph as just one case, then there are 601 causal models over the three potential causes.
Since any causal model among the potential causes can be paired with any structure
for the effect, there are 190,517 possible causal models altogether. And the number of
cases (not structures) is much larger: each possible structure corresponds to 2C cases,
where C is number of exogenous (i.e., no parent) variables in that structure. (Until
further notice, we hereafter count only possible structures under various restrictions,
bearing in mind that the number of cases will be much larger.5) Intuition obviously
has too much to survey, and the standard cases clearly form an insufficient sample.

This analysis is of course a “worst-case” analysis: it assumed that the variable names
matter (rather than just graphical structure), all possible laws/truth functions, and so
on. One might hope that various natural restrictions on the set of possible structures
could lead to a tractable number of cases; that hope will turn out to be in vain. The
remaining parts of this section consider multiple plausible restrictions, and show that
they are neither individually nor jointly sufficient to reduce the search space to a trac-
table size. We make no claims of completeness in this survey; there may be additional
restrictions that would suffice, though we doubt that this is the case. This survey of
plausible restrictions does, however, shift the burden of proof onto the proponent of a
Socratic strategy, as the reliability of such a strategy depends directly on the number
of possible causal models and cases.

2.1 Restricting the laws

Lewis (1986) restricted truth functions for his “neuron diagrams” to the form E =
(A1v · · · vAn) & (∼B1& · · · &∼Bk) , but he did so only for the purposes of illustra-
tion, without any claim or suggestion that causal dependencies are so restricted. Cheng
(1997) proposed that people use a psychological model of causation that, in the deter-
ministic case, implies that the only causal models available to human judgement are
isomorphic to neuron diagrams (Glymour 2003). Novick and Cheng (2004) subse-
quently considerably generalized this framework. Hiddleston (2005) adapts Cheng’s
(1997) earlier account to provide a theory of actual causation. For deterministic sys-
tems, his proposal yields the following: a causal model is a DAG with binary variables;
for each variable Y , and each parent Vi of Y , the directed edge from Vi to Y is labeled
either “generative” or else “preventative with respect to Vj · · ·Vr” where

{
Vj · · ·Vr

}
is

some other set of parents of Y . The value of Y is 1 if and only if at least one generative
parent, Vk, of Y has the value 1 and no parent of Y that is preventative for Y for Vk has
the value 1. A value X = 1 is an actual cause of a value Y = 1 if there is a directed path
from X to Y such that every vertex on the path has value 1 and every edge is generative.
Without notice or justification, Hiddleston’s proposal excludes many elementary truth
functions—exclusive or for example, and any truth functions that represent voting. For
these and many other cases, edges cannot be unambiguously marked as “generative”

5 Ternary variables have played a role in discussions, but we can make our point without counting them.
Adding a ternary cause considerably increases the counts.
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Table 1 Numbers of truth
functions

Number of parents Number of
truth functions

Number of truth
functions with test
pairs

1 4 2

2 16 10

3 256 218

4 65,536 64,594

5 >4 × 109 >4 × 109

or “preventative.” Understanding is not advanced by excluding, for no good reason,
causal structures that are clearly possible and morally or scientifically relevant.

Restrictions on the truth functions should be based in general principles that are
so central (but not necessary and sufficient) to the idea of causation that they need
no inductive justification. The most natural such restriction is that a cause must (in
some sense) actually matter for its effect in some condition. Every example of actual
causation in the literature that uses graphical causal models to display the laws of the
system implicitly uses a precise version of this restriction on truth functions:

(6) For each parent X of a variable Y , the function Y = f (Parents(Y )) allows a test
pair for X with respect to Y : two (not necessarily legal) realizations, α and β, such
that (i) for all variables Z in Parents(Y )\X,α(Z) = β(Z); (ii) β(X) $= α(X);
and (iii) f (α(Parents(Y )) $= f (β(Parents(Y )).

The test pair condition is logically independent of the much discussed Markov
property—the direct causes of a variable or event screen it off from variables or events
that are not its effects—since the Markov condition formally allows a parent variable
in a graph that is independent of its child. Given the Markov assumption, however, the
test pair condition is implied by, but strictly weaker than, the Minimality condition
(i.e., no proper subgraph of a graph satisfies the Markov condition for the probability
distribution). Imposing the test pair condition reduces the number of allowable truth
functions, but not much. Table 1 shows the counts.6

For a three-edge graph on three variables, one variable will have a single edge into
it, with 2 possible test pair functions, and another will have 2 edges into it, with 10
possible truth pair functions; there are thus 20 possible truth functions meeting the test
pair condition for each three-edge graph. Similar reasoning for the different graphi-
cal possibilities yields 199 possible causal structures over three potential causes (see
Table 2).

Consider now the ways that the effect variable can depend on the three potential
causal variables in each of these 199 structures. There is 1 (trivial) test pair truth func-
tion for the no-edge case; 2 test pair truth functions for each of the three one-edge

6 A closed form counting formula for truth functions satisfying the test pair condition for n variables is
∑n

k=0 (−1)k
nCk2(2n−k). A counting formula, recursive in the number n of arguments, for truth functions

meeting the test pair condition is: F(0) = 2, and F(n) = 22n − ∑n
i=1

(
n
n−i

)
F(n − i).
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Table 2 Counting graphs with
test pairs

Number of graphs of form… × Number of test
pair truth functions
per graph

= Number of
structures

1 disconnected graph 1 1

6 graphs of the form -> 2 12

6 graphs of the form -> -> 2 × 2 = 4 24

3 graphs of the form <- -> 2 × 2 = 4 12

3 graphs of the form -> <- 10 30

6 graphs of the form  -> -> 2 × 10 = 20 120

cases (i.e., 6 possible structures); 10 permissible truth functions for the three two-edge
cases (i.e., 30 possible structures); and 218 test pair truth functions for the single three-
edge case. There are thus 255 possible structures (assuming the test pair condition)
over the three potential causes and effect. Since every structure among the causes is
consistent with every structure between the potential causes and the effect, we have
255×199 = 50, 745 structures on three potential binary causes and one binary effect.
The test pair restriction eliminates nearly 75% of the possible causal models, but that
is not nearly reduction enough for intuition to survey the cases. Moreover, the com-
binatorics rapidly get much worse as the number of potential causes increases. The
“simple” situation of five causes (i.e., all have C → E) with no causal connections
among them, and where we impose the test pair condition, corresponds to more than
4 billion possible structures.

2.2 Unlabeled graphs and other restrictions

We can additionally consider restrictions on the space of possible graphs. The idea
with graphical models is that structure alone is considered, not the names given to
variables or the substantive content of the events. In the absence of specific informa-
tion about the meaning of variables, X → Y is structurally identical to X ← Y . If we
group together directed acyclic graphs that are identical except for the variable names,
then there are only six possible structures over three potential causes:

* * * 
* * *  
*  * * 
* * * 
* * * 
* * * 

The middle column of Table 2 shows the number of test pair truth functions for each
of these six graphs. The counts of structures involving the effect are more complicated
if variable names do not matter. For example, if X → Y ← Z among the potential
causes, then X, Y as the causes of E is equivalent to Z, Y being the causes of E; notice
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Table 3 Counting unlabeled graphs with test pairs

0 causes 1 cause 2 cause 3 cause = Number of
test pair truth
functions for
row structure

* * * 1 2 10 218 231

* → * * 1 3 × 2 3 × 10 218 255

* → * → * 1 3 × 2 3 × 10 218 255

* ← * → * 1 2 × 2 2 × 10 218 243

* → * → * 1 2 × 2 2 × 10 218 243

Three-edge 1 3 × 2 3 × 10 218 255

that X, Z being causes is not equivalent to the other two. Table 3 shows the number of
test pair truth functions for E for all combinations of potential cause structure (rows)
and number of causes of the effect (column). For cells with two numbers, the first
number indicates the number of distinct graphical structures involving the effect when
the potential causes are distinguishable only by their structural role (relative to the
other potential causes).

We can compute the total number of causal models by multiplying the right-most
column of Table 3 by the relevant number of test pair truth functions over the potential
causes, and then summing together. Ignoring variable names, combined with the test
pair condition, results in 10,263 possible causal structures. Smaller, but still a busy
time for intuitions.

We can impose further plausible restrictions on the space of possible graphs, though
they could conflict with some theories of actual causation.7 All of the various accounts
of actual causation agree that C = c cannot be an actual cause of E = e if there is
no directed path from C to E. Moreover, if there is a directed path from C to E, and
there is no directed path from B to E, then whether or not C = c is an actual cause of
E = e cannot depend on whether or not B = b. Various models are thus dispensable or
equivalent with respect to testing an account of actual causation. For example, suppose
E is a function of a single variable and * → * → * holds among the potential causal
variables. The only distinct structure is the one in which E depends on the terminal
star. If E depends on the middle variable, then it is equivalent to ∗ → ∗ · · · ∗ over the
potential causes, since the last variable cannot be an actual cause, and cannot affect
whether the other two variables are actual causes (by the above principles involving
directed paths). If E depends on the first variable, then it replicates a case counted
among those with ∗ · · ·∗ · · · ∗ as the relevant substructure on the causal variables. This
restriction results in 20 distinct graphical structures over the three potential causes and
E, distributed as shown in the central cells of Table 4. The relevant number of test
pairs for the structures among the potential causes (rows) and involving the effect
(columns) are also shown in Table 4.

7 For example, that C is a cause of E if and only if C and E = 1 and the probability that E = 1 is higher
given C = 1 than given C = 0.

123



Synthese

Table 4 Counting unlabeled, minimal graphs with test pairs

TF multiplier for causes Graph Number of edges to E Total graphs

1 2 3

1× * * * 1 1 1 3

2× *–>* * 1 2 1 4

4× *–>*–>* 1 2 1 4

4× *<–*–>* 0 1 1 2

10× *–>*<–* 1 1 1 3

20× *–>*<–* 1 2 1 4

TF Multiplier For edges to E ×2 ×10 ×218

Table 5 Possible non-trivial truth functions

X Y G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

1 1 1 0 1 0 1 0 0 1 1 0

0 1 1 0 1 0 0 1 1 0 0 1

1 0 1 0 0 1 1 0 1 0 0 1

0 0 0 1 1 0 1 0 1 0 1 0

There are 9,682 causal models in all. Restrictions on the possible graphs and possi-
ble truth functions have significantly reduced the number of possible causal models,
but there are still far too many to examine using intuition alone, and the number of
models still grows super-exponentially with the number of variables.

2.3 Symmetries

Actual causation may also have symmetry relations that can be used to reduce the
number of possible structures. Say that one truth function Gi is a value negation of
another Gj if they have the same argument variables and, for all valuations of the
argument variables, Gi and Gj have opposite outputs. For example, Table 5 shows
the 10 test pair truth functions for two arguments; the value negation partition clas-
ses are: {G1,G2} , {G3,G4} , {G5,G6} , {G7,G8}, and {G9,G10}. For every value of
X, Y,G1 and G2 have opposite values, and so each is a value negation of the other.

Value negation obviously defines a partition of the set of truth functions into two-
member classes, and it preserves the test pair condition. If we consider truth functions
to be equivalent to their value negations, then the number of test pair truth functions
is cut in half: there are 5 functions for 2 arguments, 109 for 3 arguments, but, unfor-
tunately, more than 2 billion for 5 arguments.

We might further assume that actual causation is symmetric with respect to inter-
change of true and false in all arguments: truth functions Gi and Gj are argument nega-
tion equivalent if Gi (X) = Gj

(
Xt/f

)
for all valuations of X, where Xt/f
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Table 6 Example of truth
function invariance under
variable permutation

X Y Z = G1 Z = G2

T T F F

F T T F

T F F T

F F T T

substitutes F for T and T for F in X. Equivalence under argument negation also
preserves the test pair property and partitions the truth functions. The resulting clas-
ses for functions of two variables meeting the test pair condition (Table 5) are:
{G1,G7} , {G2,G8} , {G3,G5} , {G4,G6} , {G9}, and {G10}. This partition has more
classes than with value negation, and the result is a smaller reduction in the search
space. The numbers can be further reduced if we take as equivalent any truth functions
that are equivalent under value negation or argument negation. This yields a three-
class partition of the test pair truth functions: {G1,G2,G7,G8}, {G3,G4,G5,G6},
and {G9,G10}. Combined with the other restrictions, the number of cases for three
potential causes begins to seem surveyable. These symmetry restrictions do not, how-
ever, change the fundamentally exponential growth of the number of acceptable truth
functions.

One further potential formal symmetry principle deserves remark. Consider the
structure X → Z ← Y , and the two possible truth functions shown in Table 6. Since
the labels of variables are not meaningful, we might argue that G1 and G2 in Table 6
are really the same truth function, since G1 becomes G2 when we permute the X, Y

values; that is, G1 (Y,X) = G2 (X, Y ) and G1 (X, Y ) = G2 (Y,X). Any permutation
of argument columns in the truth tables takes a truth function either into itself or into
another truth function. The number of truth function equivalence classes that result is
the original number of truth functions divided by N ! There are redundancies with the
classes obtained from value negation and argument negation; for N = 2, for example,
permuting arguments results in no additional reduction of classes. Nonetheless, unlike
the other restrictions, permutation equivalence yields an exponential (as a function of
N ) reduction in the number of “equivalent” truth functions. But, again, the number of
test pair cases grows super-exponentially. Thus, for 5 arguments, 4 billion plus truth
functions are reduced to about 35 million classes by permutation equivalence.

We can (by computer) calculate the number of distinct equivalence classes (at least
up to N = 4; after that, the computer takes days) of truth functions on N variables if
we combine the test pair condition with value negation, argument negation, and per-
mutation of arguments, i.e., two truth functions are equivalent if they are equivalent
under any of these relations. There is 1 class for N = 1; 3 classes for N = 2; 26
classes for N = 3; and 1,579 classes of allowable truth functions for N = 4. These
counts are only for the number of truth functions; we must again consider all of the
different graphical structures, and then determine the number of cases for each possi-
ble structure. The number continues to grow exponentially in the number of variables.
All of these restrictions have helped, but they are not sufficient to make a extensional
Socratic strategy viable.
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As we suggested above, the proponent of a Socratic strategy might propose still
more restrictions, though we doubt that this strategy will ultimately prove worthwhile.
A different way to save the Socratic strategy would be to argue that cases with few
variables suffice. That is, extra variables present nothing new, and so the exponential
growth is irrelevant. We disprove that line of response by examples, but doing so
requires consideration of particular accounts of actual causation. We thus detour in
the next section to consider two recent theories.

3 Four theories and their examples

For purposes of illustration, we focus on two theories in the literature that are definite
enough to apply to all cases, and supplement them with two additional simple theo-
ries that are more less direct statements of the test pair condition plus a minimality
assumption. A number of other possibilities are described in Glymour and Wimberly
(2007) and in Glymour (2005), but our point is simply that interesting cases arise for
four and more potential causes. The combinatoric explosion cannot be avoided.

Building from earlier proposals by several authors, James Woodward (2003,
pp. 83–84), makes the following proposal.

W: “Consider a particular directed path P from X to Y and those variables V1 . . . Vn
that are not on P. Consider next a set of values v1 . . . vn, one for each of the
variables Vi. The values v1 . . . vn are in what Hitchcock calls the redundancy
range for the variables Vi with respect to the path P if, given the actual value
of X, there is no intervention in setting the values of Vi to v1 . . . vn that will
change the actual value of Y. . . .

To determine whether X = x actually causes Y = y, first apply AC.
AC: AC1 The actual value of X = x and the actual value of Y = y.

AC2 There is at least one route [directed path] R from X to Y for which an
intervention on X will change the value of Y , given that other direct causes Z

of Y that are not on the route have been fixed at their actual values.”
If AC yields an actual cause, then stop; otherwise go to AC′1 and AC′2 below.8

“AC′1 The actual value of X = x and the actual value of Y = y.
AC′2 For each directed path P from X to Y , fix by interventions all direct
causes Zi of Y that do not lie along P at some combination of values within
their redundancy range. Then determine whether for each path from X to Y and
for each possible combination of values for the direct causes Zi of Y that are
not on this route and that are in the redundancy range of Zi , whether there is
an intervention on X that will change that value of Y . AC′2 is satisfied if the
answer to this question is “yes” for at least one route and possible combination
of values within the redundancy range of the Zi.

8 Eric Hiddleston (in commentary on the paper at FEW 2007) suggested that the lexicographic ordering
over AC and AC′ should be applied on a per-variable basis (i.e., for each variable, if AC does not apply, then
use AC′), rather than over all variables as we do here (i.e., if AC applies for any variable, then stop). The
relevant passages in Woodward (2003) are ambiguous, but Woodward (personal communication) indicated
that our interpretation was his intended account.
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Halpern and Pearl (2005a) have recently made a different proposal:
HP2005: “(M, u) |= [X←x]φ” abbreviates ‘φ is true in structure M for legal
realization u if u is possibly altered by an intervention setting X to value x.’
X = x is an actual cause of φ in (M, u) if and only if:

AC1: (M, u)|= (X = x) and φ

AC2: There exists a partition (Z, W) of V with X ⊆ Z and some setting (x′, w′) of
the variables in (X,W) such that if (M, u)| = Z = z• for all Z ∈ Z then both
of the following conditions hold:
(a) (M, u)|= [X ← x′, W ← w′]∼φ

(b) (M, u)|= [X ← x.W′ ← w′, Z′ ← z•]φ
for all subsets W′ of W and for all subsets Z′ of Z. In words, setting any subset
of variables in W to their values in w′should have no effect on φ, as long as X
is kept at its current value x, even if all the variables in an arbitrary subset of Z
are set to their original values in the context u.9

AC3: X is minimal; no [proper] subset of X satisfies conditions AC1 and AC2.
AC4: X = x and ∼ φ is consistent.”

Both of these accounts of actual causation are, in part, justified by their fit with
our intuitions on salient cases. Failures (by simpler versions) to fit our intuitions are
responsible for much of the complexity in both of these accounts. This Socratic strat-
egy is largely driven by a relatively standard set of stories. Each of these cases—14
presented below, but variants are all over the literature—corresponds to a set of truth
functional relations among propositional variables and a valuation of the variables.
The cover stories are (or should be) irrelevant, as the truth functional relations and
valuations can be realized with switches and lights in electrical circuits, or indeed
in any present-day computer. We provide the W and HP2005 predictions for each
example.

(1) A and B each fire a bullet at a target, simultaneously striking the bullseye (D).
What caused the bullseye to be defaced?

A→ D ← B D = A + B;A = B = D = 1

W, HP2005: Actual causes of D = 1 are A = 1 and B = 1
(2) A and B each fire a bullet at a target. A’s bullet travels faster, knocking out the

bullseye (D), which B’s bullet would have knocked out a moment later (D’)
otherwise. What caused the event D = 1, of the bullseye’s removal?

B → D′ ← A→ D;D = A,D′ = B(1 − A);A = B = D = 1;D′ = 0

W, HP2005: The actual cause of D = 1 is A = 1.

9 For unexplained reasons, Halpern and Pearl restrict the scope of their definition to variables that have
positive indegree, or in econometric terms, are endogenous. Any causal model can be expanded by add-
ing, for each exogenous variables, a new variable with zero indegree and unit outdegree, directed into the
originally exogenous variable, with becomes endogenous, with the variable values related by the identity
function. We will therefore ignore the restriction in what follows, as do they in discussing examples.
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(3) A and B each fire a bullet that would have missed the target, except that the
bullets collide (C = 1) and A’s bullet ricochets through the bullseye. What
caused the bullseye to be hit (D = 1)?

A C    B

D

C = A • B; D = C; A = B = C = D = 1.

W, HP2005: The actual causes of D = 1 are A = 1, B = 1, and C = 1.
(4) A, a perfect marksman, is about to fire at the bullseye; B is about to jostle A

to prevent A from hitting the bullseye; C shoves B out of the way.A fires and
hits the bullseye (D). What caused the bullseye to be hit?

C → B → A→ D; D = A; A = (1 − B); B = (1 − C);
A = D = C = 1, B = 0.

W, HP2005 : The actual causes of D = 1 are A = 1, C = 1, and B = 0
(5) A, an imperfect marksman, is about to fire at the target, but his aim is too low.

B standing at the back of the crowd, could push his way through to A and
lift the rifle barrel just the right amount, but B does no such thing. A’s bullet
misses the bullseye. What caused the bullseye to be missed (D = 0)?

B A D D = (1 − A),A = (1 − B). B = 0, A = 1,D = 0.

W, HP2005: The actual causes of D = 0 are B = 0 and A = 1
(6) A, the perfect marksman, aims (A) at the target, but fails to cock his gun (C),

and pulls the trigger (P ). The gun does not fire and the target is untouched.
Which event caused the gun not to fire (F = 0)?

A C

P 

F D = A • C • P = F ; A= P = 1; C = F = 0.

W, HP2005: The actual cause of D = 0 is C = 0
(7) A gun has a safety mechanism: the gun will not fire unless the hammer is

cocked and the round is chambered and the trigger is pulled. Pulling the trigger
causes a round to be chambered but prevents the hammer from being cocked.
The trigger is pulled. The gun does not fire. What caused the gun not to fire
(F = 0)?

T
H C

F
H = (1−T ), C = T , F =H • C; T = C = 1,H = F = 0.

W, HP2005: The actual cause of F = 0 is H = 0.
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(8) The right hand of the ambidextrous perfect marksman is bitten by a dog; he
pulls the trigger with his left hand and hits the bullseye. What caused the marks-
man to pull the trigger with his left hand? What caused the bullseye to be hit?
B → H → D

H = 2 if B = 1; H = 1 otherwise; D = 1 if H = 1 or 2; D = 0 if H = 0.
B = 1,H = 2,D = 1.
W, HP2005: B = 1 caused the left-handed shot (H = 2)
W, HP2005: H = 2 caused the bullseye hit (D = 1); B = 1 did not cause it

(9) A boulder slides (B = 1) toward a hiker, who, seeing it, ducks (D = 1). The
boulder misses him and he survives (S = 1). Did the boulder sliding cause his
survival?

B D S S = (1 − B) + D; S = B = 1

W, HP2005: The actual cause of S = 1 is D = 1.
(10) A and B, both perfect marksman, shoot at the target at almost the same time.

The ejected shell from A’s pistol deflects B’s bullet (C = 1), which would
otherwise have hit the target bullseye. A’s bullet hits the bullseye. What caused
the bullseye to be hit (H = 1).

A B 

C 

H

C =B • A,H = B • (1−C)+A. A= B = H = C = 1

W, HP2005: the actual cause of H = 1 is A = 1
(11) A and B, both perfect marksmen, pull their triggers on similar guns at the

same time. B loaded her rifle (Lb = 1) and hits the bullseye (H = 1). A has
forgotten to load his rifle (La = 0). What caused the hit?

H = A • La + B • Lb A = B = Lb = H = 1;La = 0

W, HP 2005: The actual causes of H = 1 are B = 1 and Lb = 1
(12) A, B, C, D and E fire at and simultaneously hit a target that will fall over if at

least 3 bullets hit it. The target falls over (F = 1). What caused the target to
fall over?
W, HP 2005: The actual causes of F = 1 are A = 1, B = 1, C = 1,D = 1,
and E = 1.

(13) A woman takes birth control pills (B = 1) which prevent a pregnancy (P = 0)
that, had it occurred, would have caused the actual thrombosis (T = 1) caused
by taking the birth control pills.
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B P T 

P = (1 − B); T = B + P.B = T = 1, P = 0

W, HP2005: The actual cause of T = 1 is B = 1
(14) A and B have three mutually exclusive choices, to vote for C, or for D, or not

to vote. An option wins if A votes for it, or if B votes for it and A does not
vote. A and B both vote for C(A,B = c).
W: A = c is the actual cause of C winning .
HP2005: A = c, B = c are the actual causes of C winning.

W and HP agree in every case except 14, where W’s judgement seems (to us) the
more plausible. In this case, and in others such as case 10, the analysis of the W account
depends critically on stopping when condition AC is satisfied. There are alternative,
simpler proposals that agree with the judgments of both W and HP2005 on many of
these cases, but differ on others. As examples, consider the following two proposals,
neither of which we endorse.

Simple: The actual value x of a variable X is an actual cause of the actual value
y of a variable Y in a state s of a system if and only if there is a value
y′ $= y for Y , and X is a member of a set X of variables (not having Y

as a member, of course) with actual values x, and there exist alternative
values x′, none of which equal the corresponding values in x, such that
an intervention on the system in state s that fixes X = x′ entails Y = y′,
and no proper subset Z of X with actual values z is such that there exist
alternative values z′, none of which equal the corresponding values in z,
such that an intervention on the system in state s that fixes Z = z′ entails
Y = y′.

SimpleJ: Replace ‘no proper subset’ in Simple by “no set of lower cardinality.”

For case 10, the Simple theories both say that the actual causes of H = 1 are the
members of the set {A = 1, B = 1}: if A and B are changed to 0 by intervention, and
C changes to 0 and H changes to 0, but H is not 0 if either A or B alone changes to 0.
For case 13, the Simple theories both say that there are no actual causes of thrombosis.
For case 14, the Simple theories both agree with W.

4 Looking further

The enormous space of alternative causal structures would be of little interest to the
discussion if it contained no puzzling cases that raise issues not already present with
three or fewer potential causes, or that reshuffle the alliances among proposed anal-
yses. Cases 8 and 14 above, the latter of which separates the two main proposals,
already involve variables with three values. We will show that new actual causation
“phenomena” occur when more potential causes are allowed, in cases with three val-
ued variables and in cases with only binary variables. We cannot say how many such
novel puzzles there are, and that is the point.

Consider Woodward’s account W of actual causation. For any system in which
AC1 and AC2 of W apply, we can make them not apply (and so force consideration
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of AC′1 and AC′2) by the introduction of a new, overdetermining cause, and thereby
change judgments about variables. In particular, an event that is not an actual cause
in some scenario can become one simply through the addition of an additional, com-
pletely unrelated cause. As an example, consider case 10, but now with an extra,
overdetermining cause D.

(10a) A and B, and D, all perfect marksman, shoot at the target at almost the same
time. The ejected shell from A’s pistol deflects B’s bullet (C = 1), which would
otherwise have hit the target bullseye. A’s bullet hits the bullseye at the same
time as D’s bullet. What caused the bullseye to be hit (H = 1)?

A B 

C 

H D 

C = B • A,H = B • (1 − C) + A + D
A = B = D = H = C = 1

In the original case 10, A = 1 was the only actual cause of H = 1 on all of the analy-
ses; B = 1 was not an actual cause, which is intuitively correct since A’s shot preempts
B. When D is added to the system, however, AC1 and AC2 of W no longer apply, and
so we must apply AC′1 and AC′2. The redundancy set {D = 0, C = 0, A = 0} for
the B → H path then implies that B = 1 is an actual cause of H = 1 in case 10a.
Case 14 behaves similarly if an extra potential cause, F , is added with two possible
values (F = c, or no vote), and where F = c is sufficient for C to win. If actually
F = c, then B = c becomes an actual cause of C’s victory. It is easy to see why adding
an additional cause might change an actual cause into a non-cause; this instability is
troubling precisely because it involves a non-cause becoming an actual cause.10 This
instability cannot be seen, however, in structures with only three variables.

Cases with more variables create new difficulties for HP2005 as well. Consider an
example with five variables.

(15) A ranch has five individuals: Cowboy C, Ranger R, Wrangler W , and two Hands
H1,H2. Everyone votes either for staying around the campfire (0), or for going
on a round-up (1). A complicated rule is used to decide the outcome O: (a) if
C = R, then O = R; (b) if R differs from the other four, then O = R; and (c)
otherwise, majority rules. Suppose C = R = 1 and W = H1 = H2 = 0 (and so
O = 1). Was W = 0 an actual cause of O = 1?

We need first to consider whether W ’s vote might be strategic: sometimes a vote
superficially against is really a vote for. The ranch is not such a case. One sense of
what a vote is for is what it would rationally be if a specific outcome were desired.
Assume W wanted not to go on a round-up and W is in ignorance about how all of the

10 This kind of problem seems apposite since various forms of stability were among the criteria Woodward
considered for causal relations.
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others will vote: his priors for every vote but his are 50/50 for round-up. No matter
how W votes, cases in which C and R agree on 0 (= stay by the campfire) are equally
likely as cases in which C and R agree on 1 (= go on a round-up). Averaged over
these cases, W is as likely to get his desire if he votes 1 as if he votes 0. Ignore them.
That leaves 23 = 8 equally likely voting patterns for the other four individuals. In
two of these patterns, R stands alone and W has an equal chance (averaged over these
cases) of getting his desire if he votes 0 as if he votes 1. Ignore them. There remain
six cases in which R and C do not agree and R does not stand alone (ignoring W ’s as
yet undecided vote). They are:

Cowboy Ranger Wrangler Hand 1 Hand 2 Wrangler/Round-up

1 0 ? 1 0 0/0 1/1
1 0 ? 0 1 0/0 1/1
1 0 ? 0 0 0/0 1/0
0 1 ? 1 0 0/0 1/1
0 1 ? 0 1 0/0 1/1
0 1 ? 1 1 0/1 1/1

If W votes 0, then O = 0 in the first five cases; if W votes 1, then O = 0 in the 3rd
row only. Thus, W = 0 is a vote against a round-up; the H1 and H2 votes are similarly
non-strategic. Nonetheless, the actual causes according to the various proposals are:

W, SimpleJ: R = 1 is the only actual cause
HP2005, Simple: R = 1; W = 0; H1 = 0; H2 = 0 are all actual causes

Things come apart in a novel way in this case.11 What perplexities lurk elsewhere
among the manifold unexamined examples?

5 Whose judgment?

Even if we somehow solved the combinatoric explosion, there is reason to be con-
cerned about the reliability of the Socratic strategy. The success of that strategy (if
any) will greatly depend on the relative stability of the relevant intuitive judgments.
All instances of the Socratic strategy that we know rely on judgments of a small
group of philosophers, even for unusual cases. The presumption that philosophers’
judgments in puzzling cases are or ought to be authoritative is at once comforting
and unwarranted. There is no reason why the issues in particular cases cannot be
explained to a wide range of people, and their responses explored. One would like
to know the distribution of informed opinions about a range of cases—some simple,
some more complex—and how they differ (if at all) from philosophers’ judgments.
More radically, one would like to know what proportion of informed individuals
would reject as ambiguous the very question of actual causation in one or another

11 In HP2005, let X = Wrangler, and let W = Cowboy. Change Cowboy to 0 and Wrangler to 1. Then
the Ranger does not stand alone, and majority rules, so the Roundup = 0. Now change Wrangler back to 0,
leaving Cowboy at 0. Now the Ranger stands alone, so Roundup = 1. Returning Wrangler to his original
state thus brings about the original result, but in a different way.
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description of circumstances. One would like to know whether judgments of actual
causation depend only on the final state or on the transitions that lead to it. One
would like to know in what respects systems are sometimes too complex for people to
give more than random judgments, or none at all. And many other questions remain
unanswered.

There is an enormous psychological literature on human judgment about causation
when the joint occurrences of features are repeated (i.e., about type-level causation),
and about token causation for extremely simple “mechanical” cases (e.g., collisions
of objects, inspired by Michotte 1954), but relatively little about actual causation
in other contexts. A study by Sloman and Lagnado (2002) argues that, in causal
contexts, people do not backtrack on counterfactuals. There is also some work on
token causal judgment imbedded in morally fraught contexts (e.g., Ahn and Kalish
2000; Ahn et al. 1995; Wolff and Song 2003), and in social contexts. In particular,
Choi et al. (1999) focused on causal attributions in a variety of social situations by
participants in a range of cultures. Their major conclusion was that participants in
Asian cultures are more inclined towards situationism: they are more likely to attri-
bute people’s (token) actions to situations, rather than dispositional or personality traits
of the individual.

There is an even more limited psychological literature on the kinds of cases phi-
losophers have considered. Perhaps the most relevant piece of psychological work
is Walsh and Sloman (2005). They provided experimental participants with a range
of “standard cases” from the philosophy literature, including overdetermination, late
pre-emption, and interruptions (A is going to cause E but B intervenes by blocking
A; did A cause E not to happen? Did B cause E not to happen?). Their results were
decidedly ambiguous: except in the clearest cases—those on which the entire philo-
sophical community agrees—the modal description for each situation was provided
by 60% or fewer of the participants. Naïve intuitions were, for their study, no more
settled than those of the philosophical community. There was one clear finding in their
study: ‘prevent X’ was not equivalent to ‘cause not-X’ for their participants. Depend-
ing on the exact story, participants would sometimes think that one or the other of
these two constructions was appropriate, but they very rarely found them to be inter-
changeable. The experiments in Walsh and Sloman (2005) focus on a very limited
domain: all of their stories use people as the potential causes, and various physical
events as effects (e.g., a coin falling on heads). As they note, there is no particular jus-
tification for thinking that their results would hold if the effect were an event involving
another intentional agent, or if the claims involved social causation, or if the potential
causes were not intentional agents. No similar study of philosophical cultures is yet
available.

6 Misrepresentation and metaphysics

There is little reason to expect a Socratic strategy to succeed in finding a correct the-
ory of actual causation; there are too many cases, and intuitive judgments about the
cases are almost certainly too unstable. Rather than trying to find necessary and suffi-
cient conditions for actual causation, a “Euclidean” strategy aims to provide reliable
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indicators for discovering actual causal relations. Those indicators might provide a
definition of actual causation, but they need not. The justification of a Euclidean
account of actual causation is provided by its fruitfulness in generalization, inference,
control, and so forth. Perfect fit with intuition, or applicability in all possible situations,
are not desiderata for a Euclidean account, precisely because it does not try to provide
necessary and sufficient conditions. There are of course more and less sophisticated
versions of the Euclidean strategy, depending on both the scope of application, and
the criteria for assessing fruitfulness.

We suggest progress can be made by adopting a Euclidean strategy that searches
for reliable indicators of actual causation. In many situations, changes in variable val-
ues are identified as actual causes, or at least the important actual causes. Changes in
variable value might be neither necessary nor sufficient for something being an actual
cause, but that is the wrong standard for a Euclidean strategy.

The Bayes net representation of causal systems (Spirtes et al. 1993) was developed
for representing causal relations among systems of variables as they are deployed
in engineering, medicine, and the natural and social sciences. It includes a charac-
terization, given a causal model, of the effects of exogenous changes in any set of
variables on any disjoint set of variables. That characterization, titled the Manipu-
lation Theorem, made no reference to a static set of variable values causing some
other set of values. The various adaptations of Bayes nets for descriptions of actual
causal relations all attempt to introduce exactly such a relation between static states;
alternative states are only referenced in the counterfactual or intervention conditions
of the analyses. Halpern and Pearl (2005a, n. 6) explicitly state that their actual causes
are not changes, but possible worlds: “Note that we are using the word ‘event’ here
in the standard sense of ‘set of possible worlds’ (as opposed to ‘transition between
states of affairs’); essentially we are identifying events with propositions.” And that is
part of the problem. None of the graphical model accounts of actual causation include
changes over time. On occasion, Bertrand Russell mocked traditional philosophers for
creating paradoxes by treating a relation as a monadic property and equivocating over
one of the relata. We suggest that something of the same kind is at work in some of
the philosophical literature on actual causation.

We tend to think of causes as changes, or happenings, but the reading of causal
graphs that we have considered so far does not encode this information. A distin-
guished value (say “1”) represents simply the occurrence of some event, and the other
value (e.g., “0”) represents the absence of that event. The event itself might be a change
of some feature of a space time-region, but it can equally well be the continuation of
an enduring condition. The absence of the event is often nothing definite at all, which
is one source of worry about the vagueness of counterfactuals and about the actual
causal relevance or irrelevance of absences.12 In some cases, the imposition of a Ba-
yes net representation on a causal story about events forces a false disambiguation
of both presences and absences, as though there were always laws constraining rela-
tions between occurrences or absences of some events and occurrences or absences of

12 If Napoleon had not been born, he would not have been defeated at Waterloo, is a true counterfactual.
Napoleon’s non-birth is a metaphysical contrary of an actual event, Napoleon’s actual birth, but there are a
great many possible events of which Napoleon’s non-birth is the metaphysical contrary.
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previous events. Even in the absence of such problems, this reading of causal graphs
fails to capture the importance of changes.

For Lewis-style “neuron diagrams,” actual causal relations typically involve at least
two total states over time, each specifying values for the variables of the system. The
between-state changes of values for some variables bring about a change in other vari-
ables, or prevent changes in other variables that would otherwise have occurred. In a
single diagram with a single value for each vertex (i.e., a single time-slice), intuitions
about what causes what may vary because people implicitly make different assump-
tions about the prior states.13 Outside of formal representations, this prior state infor-
mation gets glossed as “normal conditions” or “the causal field” or perhaps “defaults.”
In discussions of actual causation, it is generally left inexplicit, but informality is not
a solution to equivocation.

Consider a system of three nodes/variables that changes over time. Now consider
four possible transitions (from left to right) in the system state, where we use Lewis’
convention that A → B o—C means that B = A(1 − C), with A, B, C taking values
in {0,1}. Dark vertices code 1 while empty vertices code 0.

1.

2.

3.

4.

…

…

…

…

In all four cases, the final state is the same, but we wager that many people, shown
the sequences—or their equivalents in some less abstract representation of the same
structures and state relations—would not judge the causes of the final state of the
right-most node to be the same in all four cases. We expect that common judgments
would locate the cause in sequences #1, 3, and 4 to be the state changes in another
node or nodes. Whether in the second sequence anything would be commonly judged
to be the cause of the final state of the right-most node is an interesting and open
question. This focus on changes suggests representing the value changes themselves
as nodes, which provides a different representation of each of the above sequences.
For example, the changes in the third sequence above might be represented as:

13 Exactly this type of description dependence on prior state has been found in various non-causal settings,
such as descriptions of water level in a glass (e.g., McKenzie and Nelson 2003; Sher and McKenzie 2006).
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where a dark node indicates that a local change of state occurred. But the change
(or happening) graph representation has no clear functional dependencies that are
independent of the actual beginning and end states—no laws—and fails to mark the
difference between a change in a node from empty to dark, and a change of that same
node from dark to empty; each kind of change becomes a dark node. The same “change
graph” would also represent this transition:

 … 

There are other ambiguities that can arise when actual causes are not understood as
changes. In Bayes nets, any old process can be inserted between two variables related
by a directed edge: A→B can become A→ pretty-much-anything-you-want→B. The
probability relations, intervention relations, and variable causation between A and B
all remain unaltered. But in some cases the actual causation relations are arguably
changed. Hall (2004) has pointed out that the diagram and truth function:

A

E
B

E = AvB

is consistent with the mechanism:
A

C E
B

E = CvA; C = B&∼A

When A = B = E = 1, B is arguably an actual cause of E = 1 in the first causal
model, but is less obviously an actual cause in the second causal model.

These problems vanish if we consider changes produced by exogenous changes in
a particular system state. The Manipulation Theorem then gives a relation between a
system state, changes that are exogenous ideal interventions—the very interventions
traded on in the counterfactuals of the counterfactual analyses of actual causation—and
changes in other variables. The theorem is a necessary consequence of a fundamental
principle about causal models, the Markov Property, which is assumed in all of the
discussions we have mentioned. Strengthening the Markov assumption with Minimal-
ity—which implies the test pair condition— then permits an algorithm for computing
the changes an ideal intervention produces (Pearl 2000). On this Euclidean approach
based in state changes, no induction over cases is required and various problems (e.g.,
Hall’s) disappear: given the state of the system, and an intervention on a variable
(or variables), the resulting changes in other variables’ states are unambiguous.

Puzzles of course remain beyond those ambiguities inevitable in a formal represen-
tation of informal language. For example, we need an account of causal explanations
of non-changes by combinations of changes and non-changes, such as “the rains did
not flood the valley because the dam did not break.”
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7 Conclusion

Causal Bayes nets developed as a formalism for representing causal relations among
variables and for studying inferences to such relations and their use in predicting the
effects of interventions. That framework is now used more or less without comment in
several areas of science. It was natural enough then to take Bayes nets as a framework
for actual causation, but it is a mistake to take actual causation generally to be iso-
morphic to a relation among values of nodes in such a structure, just as it is a mistake
to induce vast generalizations about conditions for causal attribution from a baker’s
dozen of examples.

Our argument is not for an abandonment of formal representations of actual causa-
tion, or for promulgating more examples without formal control. We are not arguing
for abandoning neuron diagrams or Bayes nets or graphical causal models in philo-
sophical investigations of causal relations. We are not arguing against the possibility of
a correct theory of actual causation. It is instead an argument (i) against the adequacy
of the unsystematic Socratic strategy that has dominated philosophical discussion of
actual causation; (ii) against the sufficiency of Bayes net representations for actual
causation without consideration of state transitions; and (iii) against the presumption
that, in judging cases, philosophers know best.
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