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Abstract. Students can use an educational system’s help in unexpected
ways. For example, they may bypass abstract hints in search of a concrete
solution. This behavior has traditionally been labeled as a form of gaming
or help abuse. We propose that some examples of this behavior are not
abusive and that bottom-out hints can act as worked examples. We create
a model for distinguishing good student use of bottom-out hints from bad
student use of bottom-out hints by means of logged response times. We
show that this model not only predicts learning, but captures behaviors
related to self-explanation.

1 Introduction

There are many reasons to measure a student’s affective and metacognitive state. These
may include adapting instruction to individual needs or designing interventions to change
affective states. One technique is to build classification models with tutor interaction data,
often using student response times as an independent variable[4, 6, 7, 13]. Several lines
of research using this approach have targeted tutor help abuse as a behavior negatively
correlated with learning[4, 13], but these classification rules for help abuse can be quite
broad and thus proscribe behaviors that may be good for learning. For example, students
who drill down to the most detailed hint may not be ”gaming” the system, but instead
searching for a worked example. The goal of this work is to show that a simple response
time-based indicator can discern good bottom-out hint behaviors.

Such an indicator has several primary uses. It may be indicative of general traits, such as
good metacognitive self-regulation. It might also be useful as a proxy for student affective
states. The indicator, however, might be most useful in improving the design of computer-
based educational scaffolding. There is significant evidence to suggest that optimal learning
comes from a mix of worked examples and scaffolded problems[11]. A response time indi-
cator for self-explanation behavior can help determine the conditions under which worked
examples or scaffolded problems are better.

In this paper, we will discuss the background literature, with a focus on the potential
discrepancy between existing tutor models and research in the worked example and self-
explanation literature. We will then describe the data used, with an emphasis on the timing
information available in the logs. We then focus on a simple student model that leads to
an equally simple indicator for good bottom-out hint behaviors. We will demonstrate that
the indicator has high correlation with learning gain in the forementioned data, and show
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that that study’s experimental condition provides strong evidence that the indicator does
capture some form of reasoning or self-explanation behaviors.

2 Background

Generally, a response time is the time required for a subject to respond to a stimulus. For
educational systems, this is often detailed at the transactional level. How long does it take
a student to perform a task, such as request help or enter an answer? The limitations of
log data means that many details are obscure, such as the student’s thought process or the
presence of distractions. The student’s actions may have been triggered by an event outside
the systems’ purview or the student may be engaging in other off-task behavior. While a
limitation, it is exactly this off-task aspect of response times that make them so valuable
for measuring students’ affective states[7].

There is prior work on response time-based models for affective and metacognitive states.
Beck et. al. modeled student disengagement using a response time-based model[7]. Their
work is particulary relevant because, like this study, they use a combination of model build-
ing and elimination of irrelevant examples to construct their detector. There are also a num-
ber of help-seeking models that utilize response times in their design to better detect ”gam-
ing” behavior, particularly behaviors that involve drilling through scaffolding or repeatedly
guessing[4, 13]. Still, we have found no examples of models that can detect help abuse
aimed at soliciting a worked example. Indeed, one rule shared by many of these models is
that bypassing traditional scaffold structure to retrieve the bottom-out hint (which is often
the final answer) is considered an undesirable behavior[4]. There are models that attempt
to distinguish between positive forms of help abuse and forms of help abuse that negatively
impact learning[6]. They do not, however, operate under the same assumptions as this
study: that good help abuse potentially involves worked examples and self-explanation.

In the literature on worked examples, particularly in the literature for self-explanation, hint
abuse is not always bad for learning. If a student truly needs a worked example, drilling
down through the help system may be the easiest available means of getting one. Not only
is there plenty of research on worked examples to suggest that this is true[11, 12], there
have been attempts to use worked examples in computerized educational systems[5, 10].
Nevertheless, for this study, the focus is on considering worked examples as improving
learning through the self-explanation mechanism. Thus, the self-explanation literature pro-
vides our hypothesis as to how bottom-out hints might improve learning. In the original
self-explanations studies, students were given worked examples and then asked to explain
the examples to themselves[8]. Later interventions resulted in improved pre-post gain[9],
but extending the self-explanation effect to computerized educational systems has not been
straightforward[10]. Using self-explanation interventions in other situations, such as with
students explaining their own work, has found some success in computerized systems[3].
This suggests that a more complicated mechanism relates self-explanation behavior to
learning in computer tutors. Indeed, a specific connection between bottom-out hints and
self-explanation has actually been suggested before[1].
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3 Data

Our data is a log of student interactions with the Geometry Cognitive Tutor[2]. In the tutor,
students are presented with a geometry problem and several empty text fields. A step in
the problem requires filling in a text field. The fields are arranged systematically on each
problem page and might, for example, ask for the values of angles in a polygon or for
the intermediate values required to calculate the circumference of a circle. In the tutor,
a transaction is defined as: interacting with the glossary, requesting a hint, entering an
answer, or pressing ”done”. The done transaction is only required to start a new problem,
not to start a new step.

The data itself comes from Aleven et. al.[2] They studied the addition of required explana-
tion steps to the Geometry Cognitive Tutor. In the experimental condition, after entering a
correct answer, students were asked to justify their answer by citing a theorem. This could
be done either by searching the glossary or by directly inputting the theorem into a text
field. The tutor labeled the theorem as correct if it was a perfect, letter-by-letter match for
the tutor’s stored answer. This type of reasoning or justification transaction is this study’s
version of self-explanation (albeit with feedback).

The hints for the tutor are arranged in levels, with each later level providing a more specific
suggestion on how to proceed on that step. Whereas the early hint levels can be quite
abstract, the bottom-out hint does everything shy of entering the answer. The only required
work to finish a step after receiving a bottom-out hint is to input the answer itself into the
text field. This type of transaction is the study’s version of a simple worked example.

There were 39 students in the study that had both pre- and post-test scores. They were split
20-19 between the two conditions. All times were measured in 100th’s of a second. The
other details of the data will be introduced in the discussion of results.

4 Model

The core assumption underlying this work is that bottom-out hints can serve as worked
examples. In our data, a bottom-out hint is defined to be the last hint available for a given
step. The number of hints available differs from step to step, but the frequency of bottom-
out hint requests suggests that students were comfortable drilling down to the last hint.

Assuming that bottom-out hints might sometimes serve as worked examples, there are a
couple ways to detect desirable bottom-out hint behaviors. The first method is to detect
when a student’s goal is to retrieve a worked example. This method is sensitive to properly
modeling student intentions. The second method, which is the focus of this work, is to
detect when a student is learning from a bottom-out hint. We assume that learning derives
from a mechanism similar to self-explanation and that the time spent thinking about a hint
is a sufficient measure for that learning. Thus, this approach is applicable regardless of
whether the student’s intention was to find a worked example or to game the system.

To detect learning from bottom-out hints, our model needs estimates for the time students
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Table 1: TER Model
N Transaction Cognition Observed T
1 Request Hint Think (1) 2.5

2 Try Step
Reflect (1)

4.3Think (2)
Enter Answer (2)

3 Try Step
Reflect (2)

9.3Think (3)
Enter Answer (3)

Table 2: Hypothetical Student Transactions
(Observed Data, Unobserved Data)

Step Transaction Observed T Cognition Actual T
Step 1 Request Hint 0.347 ... ...

Step 1 Enter Answer 15.152

Thinking About Hint 3
Looking at Clock 2

Thinking About Date 9
Typing Answer 1.152

Step 2 Enter Answer
4.944

Thinking About Last Step 2
Thinking About Next Step 1

Typing Answer 1.944

spend thinking about those hints. Call the hint time HINTt, where HINTt is the time spent
thinking about a hint requested on transaction t. Estimating HINTt is nontrivial. Students
may spend some of their time engaged in activities unobserved in the log, such as chatting
with a neighbor. However, even assuming no external activities or any off-task behavior
whatsoever, HINTt is still not directly observable in the data.

To illustrate, consider the following model for student cognition. On an answer transaction,
the student first thinks about an answer, then they enter an answer, and then they reflect on
their solution. Call this model TER for Think-Enter-Reflect. An illustration of how the
TER model would underly observed data is shown in Table 1. Notice that the reflection
time for the second transaction is part of the logged time for the third transaction. Under
the TER model, the reflection time for one transaction is indistinguishable from the thinking
and entry time associated with the next transaction. Nevertheless, we need an estimate for
the Think and Reflect times to understand student learning from bottom-out hints.

The full problem, including external factors, is illustrated in Table 2, which shows a series
of student transactions on a pair of problem steps, along with hypothetical, unobserved
student cognition. Entries in italics are observed in the log while those in normal face
are unobserved, and ellipses represent data not relevant to the example. The time the stu-
dent spends thinking and reflecting on the bottom-out hint is about 6 seconds, but the only
observed durations are 0.347, 15.152, and 4.944. In a case like this, the log data’s ob-
served response times includes a mixture of Think and Reflect times across multiple steps.
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Table 3: TER Model With Estimators
Transaction Cognition Notation

Hint ... ...

Enter Answer
Think About Step Kt

Off-Task
Enter Answer Et

Enter Answer

Reflect on Previous Rt

Think About New Step Kt+1

Off-Task
Enter Answer Et+1

Unfortunately, while the reflection time is important for properly estimating HINTt, it is
categorized incorrectly. The reflection time for transaction t is actually part of the logged
time for transaction (t+1). Teasing those times apart requires estimating the student’s time
not spent on the hint.

The first piece of our model separates out two types of bottom-out hint cognition: Think
and Reflect. Thinking is defined as all hint cognition before entering the answer; reflecting
is all hint cognition after entering the answer. Let Think time be denoted Kt and Reflect
time be denoted Rt. We define HINTt = Kt + Rt.

The task then reduces to estimating Kt and Rt. As shown earlier, this can be difficult for
an arbitrary transaction. However, we focus only on bottom-out hints. Table 3 provides
an example of how bottom-out hints differ from other transactions. Note the absence of a
Reflect time Rt−1 in the bottom-out case. Except for time spent on answer entry and time
spent off-task, the full time between receiving the hint and entering the answer is Kt. A
similar, but slightly more complicated result applies to Rt. For now, assume off-task time
is zero - it will be properly addressed later. Let the answer entry time be denoted Et. Let
the total time for a transaction be Tt. Then the equation for HINTt becomes

HINTt = Kt + Rt (1)
= (Tt − Et) + Rt (2)
= (Tt − Et) + (Tt+1 − (Kt+1 + Et+1)) (3)

where Tt and Tt+1 are observed in the log data. The first term consists of replacing Kt with
measured and unmeasured times from before the answer is submitted. The second term
consists of times from after the answer is submitted. If we have an estimate for Et, we can
now estimate Kt. Similarly, if we have an estimate for Kt+1 and Et+1, we can estimate Rt.

Constructing reliable estimates for any of the above values is impossible on a per transac-
tion basis. However, if we aggregate across all transactions performed by a given student,
then the estimators become more reasonable. There are two other important points regard-
ing the estimators we will use. First, response times, because of their open-ended nature,
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are extremely prone to outliers. For example, the longest recorded transaction is over 25
minutes in length. Thus, we will require our estimators be robust. Second, some students
have relatively few (≈ 10) bottom-out hint transactions that will fit our eventual criteria.
Thus, our estimators must converge quickly.

Now we need some new notation. We will be using the s subscript, where s represents
a student. We will also use the Ês notation for estimators and the m(Et) notation for
medians. You can think of m(Et) as approximating the mean, but we will always be using
the median because of outliers. Es, the per student estimator, will represent some measure
of the ”usual” Et for a student s. Also let A be the set of all transactions and As be the set
of all transactions for a given student. Let A1

s be the set of all correct answer transactions by
a student s where the transaction immediately follows a bottom-out hint. Similarly, let A2

s

be the set of all transactions that follow a transaction t ∈ A1
s. For convenience, we will let

T 1
s = mt∈A1

s
(Tt) be the median time for transactions t ∈ A1

s and T 2
s = mt∈A1

s
(Tt+1) be the

median time for transactions t ∈ A2
s. These two types of transactions are generalizations of

the last two transactions shown in Table 3. This gives an equation for our estimator ˆHINTs,

ˆHINTs = (T 1
s − Es) + (T 2

s − (K2
s + Es)) (4)

Here, K2
s = mt∈A2

s
(Kt) is the thinking time that takes place for transaction t ∈ A2

s.

Consider Ês, the median time for student s to enter an answer. It always takes time to type
an answer, but the time required is consistently short. If we assume that the variance is
small, then Ês ≈ mint∈As(Et). That is, because the variance is small, Et can be treated
as a constant. We use the minimum rather than a more common measure, like the mean,
because we cannot directly observe Et. Instead, note that if Kt ≈ 0, then the total time
spent on a post-hint transaction is approximately Et. Thus, the minimum time student s
spends on an answer step is a good approximation of mint∈As(Et). In practice, the observed
Ês is about 1 second. With Ês, we can now estimate Kt for t ∈ A1

s.

To isolate the reflection time Rs, we need an approximation for K2
s , the thinking time for

transactions t ∈ A2
s. Unfortunately, K2

s is difficult to estimate. Instead, we will estimate
a value related to K2

s . The key observation is, if a student has already thought through an
answer on their own, without using any tutor help, they presumably engage in very little
reflection after they enter their solution. To put it mathematically, let Ns be the set of
transactions for student s where they do not use a bottom-out hint. We assume that Rt ≈ 0,
∀t ∈ Ns. We can now use the following estimator to isolate Rs,

Rs = T 2
s − (K2

s + Es) (5)
= m(Tt)t∈A2

s
− (K2

s + Es) (6)
≈ m(Tt)t∈A2

s
−m(Tt)t∈Ns (7)

where the change from line 6 to line 7 derives from the assumption Rt ≈ 0, ∀t ∈ Ns.
This is the last estimator we require: Rs is approximately m(Tt −m(Tv)(u∈Ns,v=u+1))t∈As .
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Table 4: Indicator Correlations in the Control Condition
(* p < 0.10, ** p < 0.05)

Pre Post Adjusted Gain
Ks -0.11 0.37* 0.34*
Rs 0.29 0.42** 0.36*

HINTs 0.04 0.53** 0.48**

That is, we use the median time for the first transaction on a step where the prior step was
completed without worked examples. This approach avoids directly estimating K2

s and
estimates the sum (K2

s + Es) instead.

There is still the problem of off-task time. We have so far assumed that off-task time is
approximately zero. We will continue to make that assumption. While students engage
in long periods of off-task behavior, we assume that for most transactions, students are
on-task. That implies that transactions with off-task behaviors are rare, albeit potentially
of long duration. Since we use medians, we eliminate these outliers from consideration
entirely, and thus continue to assume that on any given transaction, off-task time is zero.

A subtle point is that the model will not fit well for end-of-problem transactions. At the end
of a problem there is a ”done” step, where the student has to decide to hit ”done”. Thus, the
model no longer accurately represents the student’s cognitive process. These transactions
could be valuable to an extended version of the model, but for this study, all end-of-problem
transactions will be dropped.

5 Results

We first run the model for students in the control condition. These students were not
required to do any formal reasoning steps. The goal is to predict the adjusted pre-post
gain, max( (post−pre)

(1−pre) , (post−pre)
(pre) ). We will not use the usual Z-scores because the pre-test suf-

fered from a floor effect and thus the pre-test scores are quite non-normal (Shapiro-Wilks:
p < 0.005). Two students were removed from the population for having fewer than 5
bottom-out hint requests, bringing the population down to 18. The results are shown in
Table 4.

The first result of interest is that none of the indicators have statistically significant corre-
lations with the pre-test. This suggests that they measure some state or trait of the students
that is not well captured by the pre-test. The second result of interest is that all three
indicators correlate strongly with both the post-test and learning gain. Notably, HINTs,
our main indicator, has a correlation of about 0.5 with both the post-test and the learning
gain. To the extent that HINTs does distinguish between ”good” versus ”bad” bottom-out
hint behaviors, this correlation suggests that the two types of behavior should indeed be
distinguished.

It’s possible that these indicators might only be achieving correlations comparable to time-
on-task or average transaction time. As Table 5 shows, this is clearly not the case. All three
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Table 5: Time-on-Task Correlations in the Control Condition
Pre Post Adjusted Gain

Time-on-Task -0.31 -0.10 0.23
Average Transaction Time -0.03 0.27 0.20

Table 6: Correlations in the Experimental Condition
(* p < 0.10, ** p < 0.05)

Pre Post Adjusted Gain
Ks -0.02 0.23 0.25
Rs 0.02 0.31* 0.35*

HINTs 0.00 0.38* 0.41**

hint time indicators out-perform the traditional time-on-task measures.

Nevertheless, these results still do not show whether the indicator HINTs is actually mea-
suring what it purports to measure: self-explanation on worked examples. For that, we use
the experimental condition of the data. In the experimental condition, students are asked
to justify their correct solutions by providing the associated theorem. This changes the
basic pattern of transactions we are interested in from HINT-GUESS-GUESS to HINT-
GUESS-JUSTIFY-GUESS. We can now directly measure Rs using the time spent on the
new JUSTIFY steps. Rs is now the median time students spend on a correct justification
step after a bottom-out hint, subtracting the minimum time they ever spend on correct jus-
tifications. We use the minimum for reasons analogous to those of Ês - we only want to
subtract time spent entering the reason. In this condition, there were sufficient observations
for all 19 students. The resulting correlations are shown in Table 6.

There is almost no correlation between our indicators and the pre-test score, again showing
that our indicators are detecting something not effectively measured by the pre-test. Also,
the correlations with the post-test and learning gain are high for both Rs and HINTs. While
Rs by itself has a statistically significant correlation at p < 0.10, Ks and Rs combined
demonstrate a statistically significant correlation at p < 0.05. This suggests that while
some students think about a bottom-out hint before entering the answer and some students
think about the hint only after entering the answer, for all students, regardless of style,
spending time thinking about bottom-out hints is beneficial to learning. The corollary is
that at least some bottom-out hints are proving beneficial to learning.

Thus far, we have shown that the indicator HINTs is robust enough for strong correlations
with learning gain despite being measured in two different ways across two separate condi-
tions. The first set of results demonstrated that HINTs can be measured without any direct
observation of reasoning steps. The second set of results showed that direct observation of
HINTs was similarly effective. Our data, however, allows us access to two other interesting
questions. First, does prompting students to explain their reasoning change their bottom-
out hint behavior? Second, do changes in this behavior correlate with learning gain?
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Table 7: Changes in Behavior in the Experimental Condition
(* p < 0.10, ** p < 0.05)

Mean Var Pre Post Adjusted Gain
∆HINTs 0.56 5.06 0.41* 0.47** 0.38*

To answer both questions, we look at the indicators trained on only the first 20% of each
student’s transactions. For this, we use only the experimental condition because, when 80%
of the data is removed, the control condition has too few remaining students and too few
observations. Even in the experimental condition, only 15 remaining students still have
more than 5 bottom-out hint requests that meet our criteria. The results are shown in Table
7, with ∆HINTs representing the difference between HINTs trained on the first 20% of the
data and HINTs trained on the full data.

To answer the first question, the change in HINTs is not statistically different from zero.
The prompting does not seem to encourage longer response times in the presence of bottom-
out hints, so this mechanism does not explain the experimental results of Aleven et. al.’s
study[2]. However, some of the students did change their behaviors. As shown in Table 7,
students who increased their HINTs times demonstrated higher learning gain. The evidence
is substantial that HINTs measures an important aspect of student reasoning.

6 Conclusions and Future Work

In this study, we presented evidence that some bottom-out hint use can be good for learning.
The correlations between our indicators and pre-post learning gain represent one form of
evidence; the correlations between changes in our indicators and pre-post learning gain
represent another. Both sets of results show that thinking about bottom-out hints predicts
learning. However, extending our results to practical use requires additional work.

Our indicators provide estimates for student thinking about bottom-out hints. However,
these estimates are aggregated across transactions, providing a student level indicator.
While this is useful for categorizing students and offering them individualized help, it does
not provide the level of granularity required to choose specific moments for tutor interven-
tion. To achieve that level of granularity, a better distributional understanding of student
response times would be helpful, as would an indicator capable of distinguishing between
students seeking worked examples versus engaging in gaming. Exploring how the distri-
bution of response times differs between high learning bottom-out hint students and low
learning bottom-out hint students would go a long way to solving both problems.

That issue aside, our indicators for student self-explanation time have proven remarkably
effective. They not only predict learning gain, they do so better than traditional time-on-
task measures, they are uncorrelated with pre-test scores, and changes in our indicators over
time also predict learning gain. These indicators achieve this without restrictive assump-
tions about domain or system design, allowing them to be adapted to other educational
systems in other domains. Whether the results transfer outside of geometry or to other
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systems remains to be seen, but they have so far been robust.

The inclusion of two conditions, one without justification steps and one with justification
steps, allowed us to show that the indicators do measure something related to reasoning
or self-explanation. We estimated the indicators for the two conditions in different ways,
yet both times, the results were significant. This provides a substantial degree of validity.
However, one direction for future work is to show that the indicators correlate with other
measures of self-explanation or worked example cognition. One useful study would be to
compare these indicators with human estimates of student self-explanation.
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