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ABSTRACT
We analyze log-data generated by an experiment with Math-
tutor, an intelligent tutoring system for fractions. The ex-
periment compares the educational effectiveness of instruc-
tion with single and multiple graphical representations. We
extract the error-making and hint-seeking behaviors of each
student to characterize their learning strategy. Using an
expectation-maximization approach, we cluster the students
by their strategic profile. We find that a) experimental con-
dition and learning outcome are clearly associated b) ex-
perimental condition and learning strategy are not, and c)
almost all of the association between experimental condition
and learning outcome is found among students implement-
ing just one of the learning strategies we identify. This class
of students is characterized by relatively high rates of error
as well as a marked reluctance to seek help. They also show
the greatest educational gains from instruction with multiple
rather than single representations. The behaviors that char-
acterize this group illuminate the mechanism underlying the
effectiveness of multiple representations and suggest strate-
gies for tailoring instruction to individual students. Our
methodology can be implemented in an on-line tutoring sys-
tem to dynamically tailor individualized instruction.

1. INTRODUCTION
Multiple Graphical Representations (MGRs) are used ex-
tensively in middle-school fraction instruction. Fractions
can be alternately presented as pie and rectangle graphs,
number lines, or discrete sets of objects. The educational
psychology literature suggests that MGRs support transfer

because requiring students to translate between represen-
tations makes them more likely to create deep knowledge
structures [6]. Nevertheless, the experimental results are
somewhat ambiguous [1] and the mechanisms through which
multiple representations influence student achievement are
not well understood [2].

Because user interaction with intelligent tutoring systems
(ITSs) generates large amounts of behavioral and outcome
data, these systems are well-suited for conducting exper-
iments on the effect of MGRs on learning outcomes [13].
Machine learning methods can be profitably applied to iden-
tify the kinds of students that are successful and the fac-
tors mediating their success [18]. We are particularly con-
cerned with designing adaptive educational environments
that support effective learning behaviors. This may involve
encouraging students to reflect on the material with self-
explanation prompts [16] or detecting ineffective strategies
and implementing interventions on-the-fly. Work in the lat-
ter area ranges from detecting abuse of the ITS hint system
and other “gaming” behaviors [8, 7] to providing sponta-
neous help to students lacking the meta-cognitive skills to
know when they could use a hint [3, 5, 4].

Prior work conducted on middle-school students working
with a Cognitive Tutor for fractions found that multiple rep-
resentations, in conjunction with self-explanation prompts,
contribute to improved learning outcomes [16]. Subsequent
studies examining error-rate, hint-use and time-spent in tu-
tor’s log failed to identify variables that mediate the effec-
tiveness of multiple representations [15]. The mechanisms by
which multiple representations improve learning outcomes
remain poorly understood.

We conjecture that previous efforts to identify mediating fac-
tors were frustrated by heterogeneity in the problem-solving
habits and behaviors of the student population under inves-
tigation. Using a mixture modeling technique, we cluster
students by the patterns of interaction with the tutor in the
log-data that characterize their learning strategy. Cluster-



ing based on student characteristics has proved successful
in grouping students into meaningful subpopulations across
both collaborative [14] and individual [12] educational envi-
ronments.

Four strategic profiles emerge from our analysis, each with
a natural interpretation. Two of the profiles are character-
ized by a low propensity to seek help from the tutor. In
one of these the students are simply confident: they make
few errors, solicit little help and don’t seem to need any.
In the other they are stubborn: they make a relatively large
number of mistakes but make little use of the support mech-
anisms the tutor provides. A third class is highly interactive:
they make many mistakes, seek assistance readily and fre-
quently exhaust the hints available in a given problem. Stu-
dents in the fourth class occupy a middle ground between the
interactive and the stubborn: they make an average num-
ber of mistakes and will eventually seek help when they are
having trouble.

We proceed to explore how the experimental conditions af-
fect post-test outcomes. Confirming previous results, we find
that students in the multiple-representation condition had
greater learning gains than those in the single-representation
condition. Multiple representations seem to have a robust
and positive effect on long-term knowledge consolidation.
We then explore the effect of multiple representations in the
sub-populations defined by each strategic profile. We first
establish independence between learning strategy and ex-
perimental condition. This suggests that we are detecting
pre-existing learner profiles, rather than artifacts of the ex-
perimental setup. Most interestingly, we discover that learn-
ing gains from MGRs depend heavily on cluster member-
ship. Students exhibiting a “stubborn” profile profited sub-
stantially from instruction with multiple rather than single
representations. For the remaining students, experimental
condition and learning gain were independent. We conjec-
ture that “stubborn” students lack the meta-cognitive skills
to judge when their learning strategies are failing. These
students are the most sensitive to pedagogical decisions be-
cause they are the least equipped to structure and manage
their own learning.

Section 2 of what follows describes the initial experiment and
elaborates on the differences between the representational
conditions. We describe our feature extraction process and
modeling decisions in Section 3. Section 4 summarizes the
results of the model estimation and statistical analysis of the
effects of multiple representations at the population and sub-
population levels. We suggest profitable future directions in
Section 5.

2. EXPERIMENT
In the Spring of 2010, Rau conducted an experiment wherein
290 4th and 5th grade students worked with an interactive
fractions tutor for about 5 hours of their mathematics in-
struction. Students were randomly assigned to one of five
experimental conditions, which varied by the frequency with
which students would be presented with a new fraction rep-
resentation (see Figure 1). Students in the Single repre-
sentation condition worked exclusively with either a number
line, a circle or a rectangle. Students in the Fully Inter-
leaved condition would see a different representation with

every new problem. Students in the intermediate conditions
would go longer before they were presented with a different
representation.

Figure 1: A partial ordering of experimental condi-
tions by the frequency with which a new represen-
tation is presented.

When interacting with different graphical representations of
fractions, students were able to drag-and-drop slices of a pie
graph, for example, into separate areas. They were also able
to experiment with changing the number of subdivisions in
each graphical representation. Students received a pre-test
on the day before they began working with the tutor and an
immediate post-test on the day after they finished. Students
also took a delayed post-test a week after the first. Previous
investigation found that students in the multiple represen-
tation conditions significantly outperformed students in the
single representation condition on the delayed post-test [15,
17].

3. METHOD
We proceed in three stages: (1) we extract features char-
acterizing error and hint-seeking behavior from the data
logs, (2) we transform the longitudinal log data into a cross-
sectional form, with one observation per student, and (3)
we estimate a mixture model to identify sub-populations of
students, using AIC and BIC to select the number of classes.

Once we have clustered our students by their learning strat-
egy, we investigate the interaction between the strategies
and the experimental conditions. We construct a contin-
gency table binning the experimental conditions into the
clusters estimated by the mixture model. We then run a Chi-
squared test for independence between experimental condi-
tion and learning strategy. Chi-squared tests are also run to
investigate dependence between pre-test outcome and strat-
egy, strategy and post-test outcome and the conditional de-
pendence of outcome and experimental condition, given a
strategic profile.

3.1 Extracting Features
The Cognitive Tutor captures a detailed log of each student’s
interactions with the tutor. It stores a time series of correct
and incorrect answers, hint requests, interface selections and
durations between interactions. Previous analysis [15] ex-
tracted the average number of errors made per step, the aver-
age number of hints requested per step, and the average time
spent per step from the log data. Similarly, we include the
average number of hints requested (HintsRequested) and



Figure 2: The x-axis represents the nth interaction with the tutor across all problems. The y-axis is the total
number of hints requested at the nth step.

number of errors (NumErrors) made per problem by each
student. We also extract the average number of bottom-
out hints (NumBOH) per student per problem – this is the
average number of times a student exhausts the available
hints in a given problem. We also note that it is not always
the average of these features that best characterizes a stu-
dent. For example, examination of the distribution of hints
requested per step across experimental condition, shows a
telling picture.

Note that students who received only one representation
start out requesting the fewest hints, but students in the
moderate condition eventually need fewer (see Figure 2).
Such considerations motivated our interest in the temporal
distribution of hint behavior at the student level. We fit geo-
metric distributions to the number of steps taken before the
first hint request (FirstHintGeometric) and to the num-
ber of errors before the first hint (StubbornGeometric).
The estimated parameter is used to characterize the stu-
dent’s hint-seeking propensity in general and hint-seeking
propensity when faced with adversity. For example, students
in the first quintile of StubbornGeometric seek help soon
after making a mistake, whereas students in the fifth quintile
don’t change their hint-seeking behavior even after making
a large number of errors. Students in the first quintile of
FirstHintGeometric are likely to request hints early in a
problem, whereas students in the fifth quintile are unlikely
to request hints at any point.

3.2 Expectation-Maximization Clustering
Expectation-Maximization (EM) clustering is a modeling
technique that determines subtypes based on multinomial
distributions. We use the model to categorize students into
subpopulations using discretized versions of the features de-
scribed above. Table 1 shows summary statistics and cut-off
points for the extracted features. The model maps a set of

observed categorical variables onto a set of inferred classes.

We note that the categorical nature of the model has the
potential to add some noise, since we must select numeric
cutoffs to transform our variables into nominals. However,
categorical models can offer greater interpretability by al-
lowing us to organize our data into a small set of variables,
which forms the basis for categorizing students into a small
set of meaningful homogenous groups. Furthermore, it is
not unreasonable to suspect that our variables are in some
sense “truly” categorical [9, pp8–9].

Note that unlike some common clustering algorithms (e.g.,
k-means), EM produces“fuzzy”clusters (i.e., probability dis-
tributions over features for each class). We use these prob-
ability distributions in our qualitative discussion about the
subpopulations (Section 4.1), however we ultimately need to
identify each student’s most likely class. For each student s
and class c we calculate

arg max
c

P (S = s | L = c) (1)

where the probabilities are determined by the EM algorithm.

Note that still need to fix C, the number of classes. We
use two complexity-penalized log-likelihood scores to select
an appropriate C: Akaike information criterion (AIC) and
Bayesian information criterion (BIC). Plotting these statis-
tics as we increment the number of classes, we look for a
“knee” where both statistics either bottom-out or level off to
identify the optimal value of C. To run analysis, we used
poLCA, a freely available R package1.

4. RESULTS
1http://userwww.service.emory.edu/~dlinzer/poLCA/



Table 1: Summary Statistics for Variables Used in Clustering

mean sd median min max 20% 40% 60% 80% 100%

HintsRequested 0.78 1.27 0.34 0 11.22 0.06 0.19 0.5 1.31 11.22

NumErrors 2.21 1.27 1.92 0.34 8.39 1.15 1.7 2.18 3.19 8.39

FirstHintGeometric 0.35 0.27 0.27 0.04 1 0.13 0.2 0.33 0.57 1

Stubborn Geometric 0.36 0.21 0.31 0.07 1 0.19 0.27 0.38 0.47 1

NumBOH 0.04 0.08 0 0 0.62 0 0 0.01 0.05 0.63

In the sections that follow we analyze the results of our clus-
tering algorithm. We describe the strategic profiles that
were generated and characterize the students fitting each
profile. We then consider the relationships between our vari-
ables of interest: (a) adjusted delayed post-test score, (b) ex-
perimental condition (the graphical representation condi-
tion), and (c) learning strategy. Specifically, we run a se-
ries of Chi-squared tests for independence to determine how
each variable interacts with the others, commenting on the
importance of each comparison. Finally, we explore the sta-
bility of these classes, which bears on whether future systems
could categorize student strategic profiles in real time.

4.1 Exploring the Learning Strategies
Figure 3 shows the parameter selection process described
in Section 3.2. Note that we chose to model four classes
because BIC bottoms out and AIC levels off at that point.

Figure 3: AIC and BIC over increasing number of
clusters. BIC bottoms out and AIC levels off at four
clusters, so we conclude that four clusters best fits
the data.

After selecting the appropriate C parameter, we extract
membership probabilities for the individual students. Given
a strategic profile, we know the probability distribution over
each feature, and use Equation 1 to identify the most likely
profile for each student.

The feature distributions over each profile are represented
graphically in Figure 4. Note that each feature is listed
along the horizontal x-axis, the value each variable takes

is along the front-to-back y-axis, and the probability that
the feature takes that value is given along the vertical z-
axis. For example, consider the HintsRequested feature
(average hints requested per problem) in Class 2. In that
class, with high probability, students requested many hints
(i.e., the highest categorical value for hints) per problem on
average. As another example, students in Class 1 are more
likely to make a moderate number of errors, though other er-
ror levels also occur with nontrivial probabilities. Note that
lower values of FirstHintGeometric and StubbornGe-
ometric indicate a steep geometric slope, corresponding to
a higher hint-seeking propensity and stubbornness, respec-
tively.

How do we interpret cluster membership? Students in Class
1 are “Moderate”, they ask for a moderate number of hints,
make a moderate number of errors, and are moderately re-
sponsive to the interface. Students in Class 2 are “Interac-
tive”, they make a lot of errors, but respond by requesting
many hints. These students are proactive in asking for help
and are not shy about using the resources the cognitive tutor
makes available. Students in Class 3 are “Confident”, they
don’t ask for hints, but they don’t seem to need them (since
they make few errors). Finally, we call students in Class 4
“Stubborn”because they are fairly mixed in error-profile but
they don’t respond to mistakes with hint-requests. These
students are not using all the resources that the cognitive
tutor makes available.

4.2 Condition and Outcome
We use normalized learning gain at the delayed post-test as
our measure of student improvement.

Adjusted Post-Test = PostTest−PreTest
1−PreTest

We then construct terciles of the Adjusted Delayed Post-
Test Score and run a Chi-squared test for independence of
outcome from experimental condition. Confirming previous
results, we reject independence at a p-value of .024 (see Table
2). As expected, students in the multiple representation
conditions were more likely to be in the second or third
tercile of adjusted delayed post-test score, whereas students
in the single representation condition were more likely to be
in the first.

4.3 Learning Strategy and Test Scores



Figure 4: Visualization of feature distributions for each learning profile. The left-to-right x-axis identifies
each feature, the front-to-back y-axis identifies which value that feature takes, and the top-to-bottom z-axis
describes the probability that the feature takes the value. Thus, given a feature and a class, the z-axis also
describes the probability distribution over that feature in that class.

33% 66% 99%

blocked 14 29 20

increased 22 20 20

interleaved 13 21 18

moderate 18 13 22

single 30 13 17

X 2 = 17.65, df = 8, p-value = 0.024

Table 2: Experimental Condition by Tercile of Ad-
justed Delayed Post-Test Score.

We would expect that a student’s learning strategy would
predict (and perhaps cause) their ultimate educational out-
come. To test this intuition, we calculate a Chi-squared
statistic for independence of learning strategy from normal-
ized delayed post-test gain. We reject independence at a
p-value of .0075 (see Table 3). The behaviors encoded by
strategic profile seem highly relevant to knowledge consoli-
dation in the long run. Students in the moderate class are
found mostly in the second and third tercile. These students
are implementing a subtle but effective strategy. Their mod-
eration in hint-seeking indicates a level of self-reflectiveness
that we would expect from students with highly developed
meta-cognitive skills. Students in the interactive class are
characterized by a high number of errors, so we are not sur-
prised to find them represented mostly in the first and sec-
ond terciles. These students are the most likely to exhaust
all the hints available in a given problem. If one were look-
ing for students engaging in “gaming” behavior this would
be the class to search. As one would expect, the confident
students are likely to end up in the third tercile. The stub-
born students are clustered at the extremes: they are more
likely to end up in the first or third tercile than the second.



Learning Gain Pre-Test

33% 66% 99% 33% 66% 99%

moderate 20 35 29 30 32 22

interactive 33 26 14 37 27 9

confident 13 15 22 5 14 31

stubborn 31 20 32 26 22 35

Learning Gain: X 2 = 17.52, df = 6, p-value = 0.0075
Pre-Test: X 2 = 42.3764, df = 6, p-value = <0.001

Table 3: Learning Strategy by Tercile of Normalized
Delayed Post-Test and Pre-Test Score

Although we implicitly account for the pre-test scores in
our learning gain metric, we also investigate the relationship
between learning strategy and pre-test scores (Table 3). As
expected, we reject independence between strategic profile
and pre-test score, further supporting our conclusion that
these profiles are meaningful descriptions of our students.

We note that although pre-test score and strategic profile
are dependent, the average pre-test score for the “stubborn”
students does not differ significantly from the rest of the
population2. Pairwise t-test between the four profiles show
significant differences in mean pre-test score for all pairs ex-
cept stubborn and moderate. This analysis suggests that
the dependence we detect between experimental condition
and outcome for the “stubborn” students does not hinge es-
sentially on pre-test score. The stubborn students do not
occupy a preparedness“sweet-spot”that makes multiple rep-
resentations uniquely effective. Rather, it seems to be their
unique strategic profile that accounts for the effectiveness of
MGRs.

4.4 Condition and Learning Strategy
We may also worry that experimental condition is inducing
learning strategy. If this were the case, we would suspect
that we were picking up on artifacts of the experimental de-
sign rather than pre-existing student profiles. However, us-
ing the Chi-squared test, condition and cluster membership
appear independent3 (see Table 4). To anticipate Simpson’s
paradox-type worries, we collapse all four multiple repre-
sentation conditions into one and continue to find indepen-
dence4. These results suggest that our method is detecting
genuine student profiles, independent of experimental con-
dition.

4.5 Condition, Outcome and Strategy
Finally, we explore the relationship between learning out-
come and experimental condition for each of the strategic
profiles we have identified. Interestingly, we find that learn-
ing outcome is independent of condition for all students but
those in the “stubborn” group (see Table 5). Note that most
students in perform in the second and third tercile when

2Student’s T-test: t = 0.9978, df = 139.602, p-value =
0.3201
3We fail to reject independence at a p-value of .38.
4X 2 = 1.1517, df = 3, p-value = 0.7646

mod. inter. conf. stub.

blocked 13 15 10 25

increased 21 16 10 15

interleaved 17 18 7 10

moderate 18 10 12 13

single 15 14 11 20

X 2 = 12.85, df = 12, p-value = 0.38

Table 4: Experimental Condition by Learning Strat-
egy

given multiple graphical representations, but are overwhelm-
ingly in the first tercile when given a single representation.

Students in the other three classes are not significantly af-
fected by their representation condition. The learning strate-
gies that these students implement seem to make them re-
silient to representational choice, at least in this experimen-
tal regime. Recall that students exhibiting the “stubborn”
profile rarely requested hints, even when they encountered
difficulty. We speculate that they lack the meta-cognitive
skills to judge when their learning strategies are failing, and
thus are not seeking help at appropriate times [4]. They
are the most sensitive to pedagogical decisions because they
are the least equipped to structure and manage their own
learning.

An adaptive learning environment ought to ensure that these
students are targeted with multiple representations, and per-
haps other forms of metacognitive support. While not all
“stubborn” students improve when given multiple represen-
tation, the vast majority of them do. An ITS might help
scaffold effective learning behaviors by spontaneously offer-
ing hints to these students when they appear to need them
the most. A teacher informed that a student exhibits this
learning profile may try to encourage the student to ask
for help and target their metacognitive skills more gener-
ally. Moreover, studying this sub-population seems to be a
promising avenue for illuminating the mechanism by which
multiple representations improve learning outcomes. Fu-
ture experiments could test the effect of offering spontaneous
hint-support to students that fit the “stubborn” profile.

We note that there are competing interpretations of our re-
sults that also suggest interesting future experiments. Stud-
ies have found that well-designed feedback from errors may
be very effective for improving learning outcomes [11]. It
may be that “stubborn” students, by not shying away from
mistakes, are taking advantage of a more effective support
system than students who avoid mistakes by soliciting hints.
Since instruction with multiple representations is generally
more difficult, stubborn students in a multiple representa-
tion condition would get more of this kind of feedback on
average. This interpretation would predict that students
in the “interactive” profile would benefit if some hints were
withheld [10]. However, this hypothesis could only be tested
by subsequent experiments.



moderate 33% 66% 99%

blocked 2 8 3

increased 4 9 8

interleaved 4 9 4

moderate 4 5 9

single 6 4 5

interactive 33% 66% 99%

blocked 7 6 2

increased 9 5 2

interleaved 5 8 5

moderate 7 2 1

single 5 5 4

X 2 = 8.08, df = 8, p-value = 0.43 X 2 = 6.95, df = 8, p-value = 0.54

confident 33% 66% 99%

blocked 0 5 5

increased 3 3 4

interleaved 2 2 3

moderate 3 4 5

single 5 1 5

stubborn 33% 66% 99%

blocked 5 10 10

increased 6 3 6

interleaved 2 2 6

moderate 4 2 7

single 14 3 3

X 2 = 7.41, df = 8, p-value = 0.49 X 2 = 17.4837, df = 8, p-value = 0.025

Table 5: Condition and Tercile of Adjusted Delayed Post-Test Score, by Learning Strategy

4.6 Profile Stability
If an intelligent tutoring system could implement our classi-
fication methodology on-the-fly, it could tailor its pedagog-
ical interventions to the needs of the individual student. To
substantiate the promise of the methodology we investigate
how efficiently the algorithm stabilizes to the final classifica-
tion. To measure this, we first cluster on the entire corpus
and assign each student to their most likely profile. We
then artificially subset the data by restricting the number
of problems seen by the clustering algorithm, compute the
proportion of students who are in their “final” profile, and
then iteratively increase the size of the subset. This sim-
ulates how well our algorithm identifies student profiles as
they make their way through the material.

Figure 5 shows the percentage of total data used to esti-
mate the model plotted against the proportion of students
assigned to their final strategic profile. At each iteration, we
look at an additional 10 problems from each student and re-
estimate the cluster assignments. The regression estimates
that 63% of the data is sufficient to classify three quarters of
the students into their ultimate cluster. Thus, after seeing
about 60 problems – about two days of classroom instruc-
tion – a dynamic intelligent tutoring system might intervene
on students who fit the “stubborn” profile by ensuring that
they are presented with multiple graphical representations,
offering them spontaneous hints or targeting them with some
other form of metacognitive support.

5. CONCLUSION & FUTURE WORK
We estimated a expectation maximization clustering model
to classify students into four strategic profiles based on their
error-rates and hint-seeking behaviors. We detected an ef-
fect of experimental condition on post-test outcome only in
the class of students characterized by high-error rate and low
hint-seeking propensity. That is, students who did not seem

Figure 5: We measure the number of students who
were classified into their ultimate strategic profile
as the amount of data available to EM is increased.
We see that at about 60% of the data we can classify
about 75% of the students into their ultimate profile.



to take full advantage of the resources that the Mathtutor
offered were the ones most strongly affected by experimental
condition. These students may not have the meta-cognitive
skills required to know when to seek hints.

Our methods could be used by ITS designers to detect stu-
dents with this profile in real time. Tutoring systems could
then intervene to target these students with multiple rep-
resentations, scaffold their hint-seeking behaviors or target
them with other forms of metacognitive support. Future
research into the mediating mechanisms of multiple repre-
sentations could leverage our results to identify the relevant
student sub-populations to investigate. Our post-hoc analy-
sis is not designed to identify the cognitive processes under-
lying the student’s problem solving behavior, so interviews
or a cognitive task analysis with students who fit the “stub-
born”profile could reveal more details about their experience
than we can detect from the log data. Additional investi-
gation into different features may help further characterize
student behavior and could help us more accurately group
students into relevant subpopulations. Although our analy-
sis seems to have revealed interesting differences in student
learning strategies, more informative features constructed
from log data may do better. Constructing more informa-
tive features, for example, might allow us to separate the
“stubborn” students into those who did and did not benefit
from multiple graphical representations.
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