Clark Glymour,
David Madigan, Daryl Pregibon,

and Padhraic Smyth

Statistical Inference

dll

Mins

DATA MINING AIMS TO DISCOVER SOMETHING NEW FROM THE FACTS RECORDED
in a database. For many reasons—encoding errors, measurement
errors, unrecorded causes of recorded features—the information
in a database is almost always noisy; therefore, inference from data-
bases invites applications of the theory of probability. From a sta-
tistical point of view, databases are wusually uncontrolled
convenience samples; therefore data mining poses a collection of
interesting, difficult—sometimes impossible—inference problems,
raising many issues, some well studied and others unexplored or at
least unsettled.

Data mining almost always involves a search architecture requir-
ing evaluation of hypotheses at the stages of the search, evaluation
of the search output, and appropriate use of the results. Statistics
has little to offer in understanding search architectures but a great
deal to offer in evaluation of hypotheses in the course of a search,

in evaluating the results of a search, and in understanding the

appropriate uses of the results.
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Here we describe some of the
central statistical ideas relevant
to data mining, along with a
number of recent techniques
that may sometimes be applied.
Our topics include features of
probability distributions, estima-
tion, hypothesis testing, model
scoring, Gibb’s sampling, ratio-
nal decision making, causal
inference, prediction, and
model averaging. For a rigorous
survey of statistics, the mathe-
matically inclined reader should
see [7]. Due to space limita-
tions, we must also ignore a
number of interesting topics,
including time series analysis
and meta-analysis.

Probability Distributions

The statistical literature con-
tains mathematical characteriza-
tions of a wealth of probability
distributions, as well as proper-
ties of random variables—func-
tions defined on the “events” to
which a probability measure
assigns values. Important rela-
tions among probability distrib-
utions include marginalization
(summing over a subset of val-
ues) and conditionalization
(forming a conditional proba-
bility measure from a probabili-
ty measure on a sample space
and some event of positive prob-
ability.  Essential  relations
among random  variables
include independence, condi-
tional independence, and vari-
ous measures of
dependence—of which the
most famous is the correlation
coefficient. The statistical litera-
ture also characterizes families
of distributions by properties
useful in identifying any particu-
lar member of the family from
data, or by closure properties
useful in model construction or
inference (e.g., conjugate fami-
lies closed under conditionaliza-
tion and the multinormal family
closed under linear combina-
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procedures,
which abound in
machine learning
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have no
guarantee of
ever converging
on the right
answer.
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tion). Knowledge of the properties of
distribution families can be invalu-
able in analyzing data and making
appropriate inferences.

Inference involves the following
features:

e Estimation

¢ Consistency

¢ Uncertainty

¢ Assumptions

e Robustness

® Model averaging

Many procedures of inference can
be thought of as estimators, or func-
tions from data to some object to be
estimated, whether the object is the
values of a parameter, intervals of
values, structures, decision trees, or
something else. Where the data are a
sample from a larger (actual or
potential) collection described by a
probability distribution for any given
sample size, the array of values of an
estimator over samples of that size
has a probability distribution. Statis-
tics investigates such distributions of
estimates to identify features of an
estimator related to the information,
reliability, and uncertainty it pro-
vides.

N important feature of

an estimator is consisten-

cy; in the limit, as the

sample size increases

without bound, esti-
mates should almost certainly con-
verge to the correct value of whatever
is being estimated. Heuristic proce-
dures, which abound in machine
learning (and in statistics), have no
guarantee of ever converging on the
right answer. An equally important
feature is the uncertainty of an esti-
mate made from a finite sample.
That uncertainty can be thought of
as the probability distribution of esti-
mates made from hypothetical sam-
ples of the same size obtained in the
same way. Statistical theory provides
measures of uncertainty (e.g., stan-
dard errors) and methods of calcu-
lating them for various families of



estimators. A variety of resampling and simulation
techniques have also been developed for assessing
uncertainties of estimates [1]. Other things (e.g.,
consistency) being equal, estimators that minimize
uncertainty are preferred.

The importance of uncertainty assessments can be
illustrated in many ways. For example, in recent
research aimed at predicting the mortality of hospi-
talized pneumonia patients, a large medical database
was divided into a training set and a test set. (Search
procedures used the training set to form a model,
and the test set helped assess the predictions of the
model.) A neural net using a large number of vari-
ables outperformed several other methods. However,
the neural net’s performance turned out to be an
accident of the particular train/test division. When a
random selection of other train/test divisions (with
the same proportions) were made and the neural net
and competing methods trained and tested accord-
ing to each, the average neural net performance was
comparable to that of logistic regression.

Estimation is almost always made on the basis of a
set of assumptions, or model, but for a variety of rea-
sons the assumptions may not be strictly met. If the
model is incorrect, estimates based on it are also
expected to be incorrect, although that is not always
the case. One aim of statistical research is to find ways
to weaken the assumptions necessary for good esti-
mation. Robust statistics looks for estimators that
work satisfactorily for larger families of distributions;
resilient statistics [3] concern estimators—often
order statistics—that typically have small errors when
assumptions are violated.

A more Bayesian approach to the problem of esti-
mation under assumptions emphasizes that alterna-
tive models and their competing assumptions are
often plausible. Rather than making an estimate
based on a single model, several models can be con-
sidered, each with an appropriate probability, and
when each of the competing models yields an esti-
mate of the quantity of interest, an estimate can be
obtained as the weighted average of the estimates
given by the individual models [5]. When the proba-
bility weights are well calibrated to the frequencies
with which the various models obtain, model averag-
ing is bound to improve estimation on average. Since
the models obtained in data mining are usually the
result of some automated search procedure, the
advantages of model averaging are best obtained if
the error frequencies of the search procedure are
known—something usually obtainable only through
extensive Monte Carlo exploration. Our impression
is that the error rates of search procedures proposed
and used in the data mining and statistical literatures

are rarely estimated in this way. (See [10] and [11]
for Monte Carlo test design-for-search procedures.)
When the probabilities of various models are entirely
subjective, model averaging gives at least coherent
estimates.

Hypothesis Testing

Hypothesis testing can be viewed as one-sided estima-
tion in which, for a specific hypothesis and any sam-
ple of an appropriate kind, a testing rule either
conjectures that the hypothesis is false or makes no
conjecture. The testing rule is based on the condi-
tional sampling distribution (conditional on the
truth of the hypothesis to be tested) of some statistic
or other. The significance level « of a statistical test
specifies the probability of erroneously conjecturing
that the hypothesis is false (often called rejecting the
hypothesis) when the hypothesis is in fact true. Given
an appropriate alternative hypothesis, the probability
of failing to reject the hypothesis under test can be
calculated; that probability is called the power of the
test against the alternative. The power of a test is obvi-
ously a function of the alternative hypothesis being
considered.

INCE statistical tests are widely used, some of

their important limitations should be noted.

Viewed as a one-sided estimation method,
hypothesis testing is inconsistent unless the

alpha level of the testing rule is decreased
appropriately as the sample size increases. Generally,
a level «a test of one hypothesis and a level «a test of
another hypothesis do not jointly provide a level « test
of the conjunction of the two hypotheses. In special
cases, rules (sometimes called contrasts) exist for
simultaneously testing several hypotheses [4]. An
important corollary for data mining is that the alpha
level of a test has nothing directly to do with the prob-
ability of error in a search procedure that involves test-
ing a series of hypotheses. If, for example, for each
pair of a set of variables, hypotheses of independence
are tested at o = 0.5, then 0.5 is not the probability of
erroneously finding some dependent set of variables
when in fact all pairs are independent. That relation
would hold (approximately) only when the sample
size is much larger than the number of variables con-
sidered. Thus, in data mining procedures that use a
sequence of hypothesis tests, the alpha level of the
tests cannot generally be taken as an estimate of any
error probability related to the outcome of the search.
In many, perhaps most, realistic hypothesis spaces,
hypothesis testing is comparatively uninformative. If a
hypothesis is not rejected by a test rule and a sample,
the same test rule and the same sample may very well
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also not reject many other hypothe-
ses. And in the absence of knowledge
of the entire power function of the
test, the testing procedure provides
no information about such alterna-
tives. Further, the error probabilities
of tests have to do with the truth of
hypotheses, not with approximate
truth; hypotheses that are excellent
approximations may be rejected in
large samples. Tests of linear models,
for example, typically reject them in
very large samples no matter how
closely they seem to fit the data.

Model Scoring
HE evidence provided by
data should lead us to
prefer some models or
hypotheses to others and
to be indifferent about
still other models. A score is any rule
that maps models and data to num-
bers whose numerical ordering cor-
responds to a preference ordering
over the space of models, given the
data. For such reasons, scoring rules
are often an attractive alternative to
tests. Indeed, the values of test statis-
tics are sometimes themselves used
as scores, especially in the structural-
equation literature. Typical rules
assign to a model a value deter-
mined by the likelihood function
associated with the model, the num-
ber of parameters, or dimension, of
the model, and the data. Popular
rules include the Akaike Informa-
tion Criterion (AIC), Bayes Informa-
tion Criterion (BIC), and Minimum
Description Length. Given a prior
probability distribution over models,
the posterior probability on the data
is itself a scoring function, arguably a
privileged one. The BIC approxi-
mates posterior probabilities in
large samples.

There is a notion of consistency
appropriate to scoring rules; in the
large sample limit, the true model
should almost surely be among
those receiving maximal scores. AIC
scores are generally not consistent
[8]. The probability (p) values
assigned to statistics in hypothesis
tests of models are scores, but it does

When the
probabilities of

various models
are entirely
subjective, model
averaging gives
at least
coherent
estimates.
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not seem to be known whether
and under what conditions they
form a consistent set of scores.
There are also uncertainties asso-
ciated with scores, since two dif-
ferent samples of the same size
from the same distribution can
yield not only different numerical
values for the same model but
even different orderings of
models.

For obvious combinatorial rea-
sons, it is often impossible when
searching a large model space to
calculate scores for all models;
however, it is often feasible to
describe and calculate scores for
a few equivalence classes of mod-
els receiving the highest scores.

In some contexts, inferences
made using Bayes scores and pos-
teriors can differ a great deal
from inferences made with
hypothesis tests. (See [5] for
examples of models that account
for almost all of the variance of
an outcome of interest and that
have very high posterior or Bayes
scores but are overwhelmingly
rejected by statistical tests.)

Of the various scoring rules,
perhaps the most interesting is
the posterior probability, because,
unlike many other consistent
scores, posterior probability has a
central role in the theory of ratio-
nal choice. Unfortunately, poste-
riors can be difficult to compute.

Gibbs Sampling

Statistical theory typically gives
asymptotic results that can be
used to describe posteriors or
likelihoods in large samples.
Unfortunately, even in very large
databases, the number of cases
relevant to a particular question
can be quite small. For example,
in studying the effects of hospital-
ization on survival of pneumonia
patients, mortality comparisons
between those treated at home
and those treated in a hospital
might be wanted. But even in a
very large database, the number
of pneumonia patients treated at



home and who die of pneumonia complications is
very small. And statistical theory typically provides few
or no ways to calculate distributions in small samples
in which the application of asymptotic formulas can
be wildly misleading. Recently, a family of simulation
methods—often described as Gibbs sampling after the
great American physicist Josiah Willard Gibbs
1839-1903, have been adapted from statistical
mechanics, permitting the approximate calculation of
many distributions. A review of these procedures is in

[9].

Rational Decision Making and Planning

The theory of rational choice assumes the decision
maker has a definite set of alternative actions, knowl-
edge of a definite set of possible alternative states of
the world, and knowledge of the payoffs or utilities of
the outcomes of each possible action in each possible
state of the world, as well as knowledge of the proba-
bilities of various possible states of the world. Given
all this information, a decision rule specifies which of
the alternative actions ought to be taken. A large lit-
erature in statistics and economics addresses alterna-
tive decision rules—maximizing expected utility,
minimizing maximum possible loss, and more. Ratio-
nal decision making and planning are typically the
goals of data mining, but rather than providing tech-
niques or methods for data mining, the theory of
rational choice poses norms for the use of informa-
tion obtained from a database.

The very framework of rational decision making
requires probabilities for alternative states of affairs
and knowledge of the effects alternative actions will
have. To know the outcomes of actions is to know
something of cause-and-effect relations. Extracting
such causal information is often one of the principal
goals of data mining and more generally of statistical
inference.

Inference to Causes
Understanding causation is the hidden motivation
behind the historical development of statistics. From
the beginning of the field, in the work of Bernoulli
and Laplace, the absence of causal connection
between two variables has been taken to imply their
probabilistic independence [12]; the same idea is
fundamental in the theory of experimental design. In
1934, Sewell Wright, a biologist, introduced directed
graphs to represent causal hypotheses (with vertices
as random variables and edges representing direct
influences); these graphs have become common rep-
resentations of causal hypotheses in the social sci-
ences, biology, computer science, and engineering.
In 1982, statisticians Harry Kiiveri and T. P. Speed
combined directed graphs with a generalized con-
nection between independence and absence of

causal connection in what they called the Markov
condition—if Yis not an effect of X, then Xand Yare
conditionally independent, given the direct causes of
X. Kiiveri and Speed showed that much of the linear
modeling literature tacitly assumed the Markov con-
dition; the Markov condition is also satisfied by most
causal models of categorical data and of virtually all
causal models of systems without feedback. Under
additional assumptions, conditional independence
provides information about causal dependence. The
most common—and most thoroughly investigated—
additional assumption is that all conditional inde-
pendencies are due to the Markov condition's being
applied to the directed graph describing the actual
causal processes generating the data, a requirement
with many names (e.g., faithfulness). Directed graphs
with associated probability distributions satisfying the
Markov condition are called by different names in
different literatures (e.g., Bayes nets, belief nets,
structural equation models, and path models).

AUSAL inference from uncontrolled con-

venience samples is liable to many

sources of error. Three of the most

important are latent variables (or con-

founders), sample selection bias, and
model equivalence. A latent variable is any unrecord-
ed feature that varies among recorded units and
whose variation influences recorded features. The
result is an association among recorded features not
in fact due to any causal influence of the recorded
features themselves. The possibility of latent variables
can seldom, if ever, be ignored in data mining. Sam-
ple selection bias occurs when the values of any two
of the variables under study, say X and Y, themselves
influence whether a feature is recorded in a database.
That influence produces a statistical association
between X and Y (and other variables) that has no
causal significance. Datasets with missing values pose
sample selection bias problems. Models with quite
different graphs may generate the same constraints
on probability distributions through the Markov con-
dition and may therefore be indistinguishable with-
out experimental intervention. Any procedure that
arbitrarily selects one or a few of the equivalents may
badly mislead users when the models are given a
causal significance. If model search is viewed as a
form of estimation, all of these difficulties are sources
of inconsistency.

Standard data mining methods run afoul of these
difficulties. The search algorithms in such commer-
cial linear model analysis programs as LISREL select
one from an unknown number of statistically indis-
tinguishable models. Regression methods are incon-
sistent for all of the reasons listed earlier. For
example, consider the structure: Y= aT + ey; XI = bT
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+cQ+ el; X2=dQ + €2, where T
and Q are unrecorded. Neither
X1 nor X2 has any influence on
Y. For all nonzero values of «, b,
¢, d, however, in sufficiently
large samples, regression of Y on
X1, X2 yields significant regres-
sion coefficients for X1 and X2.
With the causal interpretation
often given it, regression says
that XI and X2 cause of Y.
Assuming the Markov and faith-
fulness conditions, all that can
be inferred correctly (in large
samples) from data on XI, X2,
and Yis that X1 is not a cause of
X2 or of Y; X2is not a cause of Y,
Yis not a cause of X2; and there
is no common cause of Yand X2.
Nonregression algorithms imple-
mented in the TETRAD II pro-
gram [6, 10] give the correct
result asymptotically in this case
and in all cases in which the
Markov and faithfulness condi-
tions hold. The results are also
robust against the three prob-
lems with causal inference noted
in the previous paragraph [11].
However, the statistical decisions
made by the algorithms are not
really optimal, and the imple-
mentations are limited to the
multinomial and multinormal
families of probability distribu-
tions. A review of Bayesian
search procedures for causal
models is given in [2].

Prediction
Sometimes one is interested in using
a sample, or a database, to predict
properties of a new sample, where it
is assumed the two samples are
obtained from the same probability
distribution. As with estimation, pre-
diction is interested in accuracy and
uncertainty, and is often measured
by the variance of the predictor.
Prediction methods for this
sort of prediction problem always
assume some regularities—con-
straints—in the probability distri-
bution. In data mining contexts,
the constraints are typically either
supplied by human experts or

Understanding
causation is the
hidden motivation
behind the
historical
development of
statistics.
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automatically inferred from the data-
base. For example, regression
assumes a particular functional form
for relating variables or, in the case of
logistic regression, relating the values
of some variables to the probabilities
of other variables; but constraints are
implicit in any prediction method
that uses a database to adjust or esti-
mate the parameters used in predic-
tion. Other forms of constraint may
include independence, conditional
independence, and higher-order
conditions on correlations (e.g.,
tetrad constraints). On average, a
prediction method guaranteeing sat-
isfaction of the constraints realized in
the probability distribution is more
accurate and has a smaller variance
than a prediction method that does
not. Finding the appropriate con-
straints to be satisfied is the most dif-
ficult issue in this sort of prediction.
As with estimation, prediction can be
improved by model averaging, pro-
vided the probabilities of the alterna-
tive assumptions imposed by the
model are available.

Another sort of prediction
involves interventions that alter the
probability distribution—as in pre-
dicting the values (or probabilities)
of variables under a change in man-
ufacturing procedures or changes in
economic or medical treatment
policies. Making accurate predic-
tions of this kind requires some
knowledge of the relevant causal
structure and is generally quite dif-
ferent from prediction without
intervention, although the same
caveats about uncertainty and
model averaging apply. For graphi-
cal representations of causal
hypotheses according to the Markov
condition, general algorithms for
predicting the outcomes of inter-
ventions from complete or incom-
plete causal models were developed
in [10]. In 1995, some of these pro-
cedures were extended and made
into a more convenient calculus by
Judea Pearl, a computer scientist. A
related theory without graphical
models was developed in 1974 by
Donald Rubin, a statistician, and



others, and in 1986 by James Robins.

Well-known studies by Herbert Needleman, a
physician and statistician, of the correlation of lead
deposits in children’s teeth and the children’s IQs
resulted, eventually, in removal of tetraethyl lead
from gasoline in the U.S. One dataset Needleman
examined included more than 200 subjects and mea-
sured a large number of covariates. In 1985, Needle-
man and his colleagues reanalyzed the data using
backward stepwise regression of verbal IQ on these
variables and obtained six significant regressors,
including lead. In 1988, Steven Klepper, an econo-
mist, and his collaborators reanalyzed the data assum-
ing that all the variables were measured with error.
Klepper’s model assumes that each measured num-
ber is a linear combination of the true value and an
error and that the parameters of interest are not the
regression coefficients but the coefficients relating
the unmeasured true-value variables to the unmea-
sured true value of verbal 1Q.

These coefficients are in fact indeterminate—or, in
econometric terminology, unidentifiable. However,
an interval estimate of the coefficients that is strictly
positive or negative for each coefficient can be made
if the amount of measurement error can be bounded
with prior knowledge by an amount that varies from
case to case. For example, Klepper found that the
bound required to ensure the existence of a strictly
negative interval estimate for the lead-to-IQ coeffi-
cient was much too strict to be credible; thus he con-
cluded that the case against lead was not nearly as
strong as Needleman’s analysis suggested.

Allowing the possibility of latent variables, Richard
Scheines in 1996 reanalyzed the correlations with the
TETRAD II program and concluded that three of the
six regressors could have no influence on 1Q. The
regression included the three extra variables only
because the partial regression coefficient is estimated
by conditioning on all other regressors—just the right
thing to do for linear prediction, but the wrong thing
to do for causal inference using the Markov condition
(see the example at the end of the earlier section Infer-
ence to Causes). Using the Klepper model—but with-
out the three irrelevant variables—and assigning to all
of the parameters a normal prior probability with
mean zero and a substantial variance, Scheines used
Gibbs sampling to compute a posterior probability dis-
tribution for the lead-to-IQ) parameter. The probabili-
ty is very high that lead exposure reduces verbal 1Q.

Conclusion

The statistical literature has a wealth of technical pro-
cedures and results to offer data mining, but it also
offers several methodological morals:

® Prove that estimation and search procedures used

in data mining are consistent under conditions
reasonably thought to apply in applications;

¢ Use and reveal uncertainty—don’t hide it;

¢ Calibrate the errors of search—for honesty and to
take advantages of model averaging;

* Don’t confuse conditioning with intervening, that is,
don’t take the error probabilities of hypothesis tests
to be the error probabilities of search procedures.

Otherwise, good luck. You’ll need it. &
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