Developing a Cognitive Assistant for the Workplace �

Carnegie Mellon News Online Edition
In This Issue

Web Portal a "Digital Dashboard" for Navigating the Internet

Career Center and Post Office Move to University Center

Among the Nation's Best

A Smile a Day Keeps the Doctor Away

Gift Boosts Hispanic Recruitment at Heinz School

West Coast Campus Celebrates First Graduating Class

University Surpasses Goal, Raises $49.4 Million in 2003

Grants Help University Train the Next Generation of Statisticians

Researchers Take Large Strides Toward Creating Life-Seeking Robot

Computer Science Professor Wins Prestigious AI Award

Developing a Cognitive Assistant for the Workplace

Virtual Chem Lab Honored as Exemplary Model for Education

Can Hydrogen-Fueled Cars Really Save the Environment?

Obituary: Barbara Lazarus Worked for Inclusion and Understanding

Design Students Encourage Girls in Math and Science

News Briefs
Off to the Races

Recycling Effort Yields 56 Tons

President Approves Faculty Title Changes

Annual Andy Awards Scheduled for Sept. 29

Professors Awarded NIH Grant for Cryopreservation

Supreme Court Rules on Affirmative Action

Researchers Win Grant for Growing New Bone

Jill Watson Festival Set for September 17 - 18

Poets Open Adamson Visiting Writer Series

New Season for Regina Gouger Miller Gallery

Robot Soccer Teams Take Fourth In Italy

Reaching Out to Young Students

Skinner Edits Book of Reagan's Letters

Faculty Feats

This Issue's Front Page
Carnegie Mellon News Home
Carnegie Mellon News Services Home Page

Developing a Cognitive Assistant for the Workplace

Researchers in the School of Computer Science (SCS) received an initial $7 million this summer from the Defense Advanced Research Projects Agency (DARPA) as part of a five-year project to develop a software-based cognitive personal assistant to help people improve their workplace productivity.

The project, nicknamed "RADAR" for Reflective Agents with Distributed Adaptive Reasoning, will help humans in all fields with tasks like scheduling meetings, allocating resources, creating reports from snippets of information and managing email by grouping related messages, flagging high priority requests and automatically proposing answers to routine messages.

The goal is to develop a system that can both save time for its user and improve decision quality. RADAR will handle some routine tasks by itself, will ask for confirmation on others and will produce suggestions and drafts that its user can modify as needed. Over time, the system must learn when and how often to interrupt its busy user with questions and suggestions. To accomplish all this, the RADAR research team must employ techniques from a variety of fields, including machine learning, human-computer interaction, natural-language processing, optimization, knowledge representation, flexible planning and behavioral studies of human managers.

RADAR's principal investigators include SCS professors Daniel P. Siewiorek, director of Carnegie Mellon's Human-Computer Interaction Institute; Jaime Carbonell, director of the Language Technologies Institute; and Principal Research Computer Scientist Scott Fahlman. The project will initially focus on four tasks to illustrate how the system's learning curve increases people's productivity: email, scheduling, webmaster and space planning.

"With each task, we'll run experiments to see how well people do by themselves and make comparisons," Siewiorek said. "We will also look at people plus a human assistant and compare that to the software agent."

In addition to working on these four specific tasks, the project will develop technologies that can be used in these and other personal-assistant tasks as well, including a shared knowledge base, a module that decides when to interrupt the user with questions and a module that extracts information from email messages written in English.

"The key scientific challenge in this work is to endow RADAR with enough flexibility and general knowledge to handle tasks of this nature," said Fahlman. "Like any good assistant, RADAR must understand its human master's activities and preferences and how they change over time. RADAR must respond to specific instructions like 'Notify me as soon as the new budget numbers arrive by email' without the need for reprogramming. But the system also must be able to learn by interacting with its master to see how he or she reacts to various events. It must know when to interrupt its master with a question and when to defer."


Anne Watzman

This Issue's Headlines || Carnegie Mellon News Home || Carnegie Mellon Home