Spyros Pandis-Chemical Engineering - Carnegie Mellon University

Spyros Pandis

Research Professor, Chemical Engineering

Office: Doherty Hall 2113
Phone: 412- 268-3531
Fax: 412-268-7139

Bio


Professor Pandis received his M.S. and Ph.D. in Chemical Engineering (1991) from the California Institute of Technology after earning the Dipl. Ing., Chemical Engineering from the University of Patras, Greece. He held a joint appointment in the Department of Chemical Engineering and the Department of Engineering and Public Policy at Carnegie Mellon University, achieving the rank of Professor, until 2004, when he returned to Greece at the University of Patras. Dr. Pandis continues to hold the position of Research Professor at Carnegie Mellon University while serving as the Deputy Director of the Institute of Chemical Engineering, FORTH, Greece.

Education


PhD ChemE 1991, California Institute of Technology

MS ChemE 1988, California Institute of Technology

BS ChemE University of Patras, Greece

Research

Research in air pollution, atmospheric chemistry, and aerosol science.

Professor Pandis' research areas include the study of multiphase atmospheric chemistry as it relates to photochemical smog and acid deposition, as well as topics related to global climate change.

Control Strategies for Atmospheric Ozone, Particulate Matter, and Acidity

Air pollution problems have been traditionally treated separately from each other, often resulting in sub-optimal choices of emission control strategies. The air pollution group is developing comprehensive mathematical models describing the interplay of pollutant emissions, atmospheric homogeneous and heterogeneous chemistry, dispersion, and removal processes leading to major air pollution problems. After evaluation against observations, these tools are used for the identification of cost-effective emission controls for the reduction of damages caused by multiple pollutants.

Atmospheric Chemistry and Global Climate Change

The interactions between the anthropogenic perturbations of the atmospheric chemical composition and climate are investigated in a number of projects. These include studies of the role of atmospheric aerosols in the earth's radiative balance, changes in the oxidative capacity of the atmosphere, the anthropogenic perturbations in the remote marine atmosphere, and the long range transport of atmospheric trace components.
Properties of Atmospheric Aerosols. The partitioning of semi-volatile atmospheric aerosol components between the gas and particulate phases is investigated. The role of the organic aerosol components on the ability of atmospheric particles to absorb water is a major focus of this research.

Highlights

* The group participated in the PEGASOS field campaign in Europe investigating the interactions between air pollution and climate change.
* Developed the new version of our three-dimensional Chemical Transport Model, PMCAMx that integrates the work of CAPS.
* Has been awarded grants by the Environmental Protection Agency to study the atmospheric lifetime and optical properties of Black Carbon and the interactions between anthropogenic and biogenic pollutants.
* The work of the group has now received more than 10,000 citations.

Research Websites

Center for Atmospheric Particle Studies
Energy Science and Engineering
Envirochemical Engineering
Research Group Site

Awards and Honors

* Thomson Reuters Highly Cited Researcher, 2014.
* Fellow, American Association for Aerosol Research, 2012.
* European Research Council, Advanced Investigator IDEAS Award, 2011.
* Environmental Science and Technology journal, Best Environmental Policy Paper, 2007.
* Book of the Year, American Meteorological Society, 2006.
* Kun Li Award for Excellence in Chemical Engineering Education, CMU, 2004.
* Vaughn Lectureship, Caltech, 2004.
* Ken Whitby Award, American Association for Aerosol Research, 2000.
* Benjamin Teare Award for Excellence in Engineering Education, 1999.
* G. Elias Professorship, 1999.
* National Science Foundation, CAREER award, 1996.
* George Tallman Ladd Outstanding Young Faculty Award, CMU, 1995.

Publications

Recent Publications

Selected Publications

Full Publications

Recent Publications

Donahue N. M., A. L. Robinson, and S. N. Pandis (2009) Atmospheric organic particulate matter: From smoke to secondary organic aerosol, Atmos. Environ., 43, 97-109.

Asa-Awuku A., G. J. Engelhart, B. H. Lee, S. N. Pandis, and A. Nenes (2009) Relating CCN activity, volatility, and droplet growth kinetics of b-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9, 795-812.

Pierce J. R., G. Theodoritsi, P. J. Adams, and S. N. Pandis (2009) Parameterization of the effect of sub-grid scale aerosol dynamics on aerosol number emission rates, J. Aerosol Science, 40, 385-393.

Dawson J. P., P. N. Racherla, B. H. Lynn, P. J. Adams, and S. N. Pandis (2009) Impacts of climate change on regional and urban air quality in the Eastern US: the role of meteorology, J. Geophys. Res., 114, D05308, doi:10.1029/2008JD009849.

Kulmala M., A. Asmi, H. K. Lappalainen, K. S. Carslaw, U. Pöschl, U. Baltensperger, Ø. Hov, J. L. Brenquier, S. N. Pandis, M. C. Facchini, H. C.

Hansson, A. Wiedensohler, and C. D. O’Dowd (2009) Introduction: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 9, 2825-2841.

Murphy B. N. and S. N. Pandis (2009) Simulating the formation of semivolatile primary and secondary aerosol in a regional chemical transport model, Environ. Sci. Tech., 43, 4722-4728.

Hildebrandt L., N. M. Donahue, and S. N. Pandis (2009) High formation of secondary organic aerosol from the photo-oxidation of toluene, Atmos. Chem. Phys., 9, 2973-2986.

Kostenidou E., B. H. Lee, G. J. Engelhart, J. R. Pierce, and S. N. Pandis (2009) Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol, Environ. Sci. Tech., 43, 4884-4889.

Wagstrom K. M. and S. N. Pandis (2009) Determination of the age distribution of primary and secondary aerosol species using a chemical transport model, J. Geophys. Res., 114, D14303.

Bougiatioti A., C. Fountoukis, N. Kalivitis, S. N. Pandis, A. Nenes, and N. Mihalopoulos (2009) Cloud condensation nuclei measurements in the eastern Mediterranean marine boundary layer: CCN closure and droplet growth kinetics, Atmos. Chem. Phys., 9, 7053-7066.

Tsimpidi A. P., V. A. Karydis, M. Zavala, L. Molina, I. Ulbrich, J. L. Jimenez, and S. N. Pandis (2010) Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525-546.

Riipinen I., J. R. Pierce, N. M. Donahue, and S. N. Pandis (2010) Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics, Atmos. Environ., 44, 597-607.

Karydis V. A., A. P. Tsimpidi, C. Fountoukis, A. Nenes, M. Zavala, W. Lei, L. T. Molina, and S. N. Pandis (2010) Simulating the fine and coarse inorganic particulate matter concentrations in a polluted Megacity, Atmos. Environ, 44, 608-620.

Selected Publications

Seinfeld J. H. and Pandis S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edition, J. Wiley, New York.

Seinfeld J. H. and Pandis S. N. (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 1st edition, J. Wiley, New York.

Pandis S. N. and Pilinis C. (1995) In Situ-Particle Formation/Reaction Mechanisms in The Handbook of Environmental Chemistry, ed. O. Huntzinger,

Springer Verlag, Heidelberg 35-68.

Pilinis C. and Pandis S. N. (1995) Physical, Chemical and Optical Properties of Aerosols in The Handbook of Environmental Chemistry ed. O. Huntzinger, Springer Verlag,, Heidelberg, 99-124.

Pandis S. N. and C. Davidson (1998) Developing exposure estimates, in Exposure to Contaminants in Drinking Water: Estimating Uptake through the Skin and by Inhalation, ed. S. S. Olin, CRC Press, Baton Rouge, Florida.

Pandis S. N. (2000) Controlling Urban Smog, in Engineering and the Environment, ed. E. Rubin and C. Davidson, McGraw Hill.

Pandis S. N. (2004) Atmospheric aerosol properties, in Particulate Matter Science for Policy Makers, ed. P. H. McMurry, Cambridge University Press, Cambride.

Full Publications

I. Books

Seinfeld J. H. and Pandis S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edition, J. Wiley, New York.

Seinfeld J. H. and Pandis S. N. (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 1st edition, J. Wiley, New York.

II. Book Chapters

Pandis S. N. and Pilinis C. (1995) In Situ-Particle Formation/Reaction Mechanisms in The Handbook of Environmental Chemistry, ed. O. Huntzinger, Springer Verlag, Heidelberg 35-68.

Pilinis C. and Pandis S. N. (1995) Physical, Chemical and Optical Properties of Aerosols in The Handbook of Environmental Chemistry ed. O. Huntzinger, Springer Verlag,, Heidelberg, 99-124.

Pandis S. N. and C. Davidson (1998) Developing exposure estimates, in Exposure to Contaminants in Drinking Water: Estimating Uptake through the Skin and by Inhalation, ed. S. S. Olin, CRC Press, Baton Rouge, Florida.

Pandis S. N. (2000) Controlling Urban Smog, in Engineering and the Environment, ed. E. Rubin and C. Davidson, McGraw Hill.

Pandis S. N. (2004) Atmospheric aerosol properties, in Particulate Matter Science for Policy Makers, ed. P. H. McMurry, Cambridge University Press, Cambride.

Pandis S. N. (2006) Air Quality Engineering, University of Patras Press, Patra (in Greek).

III. Journal Papers

1. Pandis S.N. and Seinfeld J. H. (1989) Sensitivity Analysis of a Chemical Mechanism for Aqueous?Phase Atmospheric Chemistry, Journal of Geophysical Research, 94, 1105?1126.

2. Pandis S.N. and Seinfeld J. H. (1989) Mathematical Modeling of Acid Deposition due to Radiation Fog, Journal of Geophysical Research, 94, 12911?12923.

3. Pandis S.N., Seinfeld J. H. and Pilinis C. (1990) Chemical Composition Differences in Fog and Cloud Droplets of Different Sizes, Atmospheric Environment, 24A, 1957?1969.

4. Pandis S. N. and Seinfeld J. H. (1990) On the Interaction between Equilibration Processes and Wet or Dry Deposition, Atmospheric Environment, 24A 2313-2327.

5. Pandis S. N., Pilinis C. and Seinfeld J. H. (1990) The Smog?Fog?Smog Cycle and Acid Deposition, Journal of Geophysical Research, 95, 18489?18500.

6. Paulson S. E., Pandis S. N., Baltensperger U., Seinfeld J. H., Flagan R. C., Palen E. J., Allen D. T., Schaffner C., Giger W. and Portmann A. (1990) Characterization of Photochemical Aerosols from Biogenic Hydrocarbons, J. Aerosol Sci., 21, S245?S248.

7. Pandis S. N., Paulson S. E., Flagan R. and Seinfeld, J. H. (1991) Aerosol Formation in the Photooxidation of Isoprene and b-pinene, Atmospheric Environment, 25A, 997?1008

8. Pandis S. N., Baltensperger U., Wolfenbarger K. J. and Seinfeld J. H. (1991) Inversion of Aerosol Data from the Epiphaniometer, J. Aerosol Sci., 22, 417-428.

9. Pandis S. N. and Seinfeld J. H. (1991) Should Bulk Cloudwater or Fogwater Samples Obey Henry's Law? Journal of Geophysical Research, 96, 10,791?10,798.

10. Palen E. J., Allen D. T., Pandis S. N., Paulson S. E., Seinfeld J. H. and Flagan R. C. (1992) FTIR Analysis of Aerosol Formed in the Photooxidation of Isoprene and b?pinene, Atmospheric Environment, 26A, 1239?1251.

11. Pandis S. N. and Seinfeld J. H. (1992) One More Reason for the Deviation of Bulk Cloudwater or Fogwater Samples from Henry's Law Equilibrium. J. Geophys. Res., 97, 6079?6081.

12. Pandis S. N., Seinfeld J. H. and Pilinis C. (1992) Heterogeneous Sulfate Production in an Urban Fog, Atmospheric Environment, 26, 2509?2522.

13. Pandis S. N., Harley R. A., Cass G. R. and Seinfeld J. H. (1992) Secondary Organic Aerosol Formation and Transport, Atmospheric Environment, 26, 2266?2282.

14. Sievering H., Boatman J., Gorman E., Kim Y., Anderson L., Ennis G., Luria M. and Pandis S. N. (1992) Removal of sulfur from the marine boundary layer by ozone oxidation in sea?salt aerosols, Nature, 360, 571?573.

15. Palen E. J., Allen D. T., Pandis S. N., Paulson S. E., Seinfeld J. H. and Flagan R. C. (1993) FTIR Analysis of Aerosol Formed in the Photooxidation of 1?Octene, Atmospheric Environment, 27A, 1471?1477.

16. Pandis S. N., Wexler A. and Seinfeld J. H. (1993) Secondary Organic Aerosol Formation and Transport. II. Predicting the Ambient Secondary Aerosol Size Distribution, Atmospheric Environment, 27A, 2403-2416.

17. Pandis S. N., Russell L. M. and Seinfeld J. H. (1994) The Relationship Between the DMS Flux and the CCN Concentration in Remote Marine Regions, J. Geophys. Res,. 99, 16945-16957.

18. Russell L. M., Pandis S. N. and Seinfeld J. H. (1994) Aerosol Production and Growth in the Marine Boundary Layer, J. Geophys. Res., 99, 20989-21004.

19. Seinfeld J. H., J. M. Andino, F. M. Bowman, H. J. L. Foster and S. N. Pandis (1994) Tropospheric Chemistry, Adv. Chem. Engng., 19, 325-407.

20. Pandis S. N., Wexler A. S. and Seinfeld J. H. (1995) Dynamics of tropospheric aerosol, J. Phys. Chem., 99, 9646-9659.

21. Pilinis C., J. H. Seinfeld, and S. N. Pandis (1995) On the Sensitivity of Direct Climate Forcing by Atmospheric Aerosols, J. Geophys. Res., 100, 18,739-18,754.

22. Bergin M. H., J. L. Jaffrezo, C. I. Davidson, J. E. Dibb, S. N. Pandis, R. Hillamo, W. Maenhaut, H. D. Kuhns and T. Makela (1995) The Contribution of Snow, Fog and Dry Deposition to the Summer Flux of Anions and Cations at Summit, Greenland, J. Geophys. Res., 100, 16,275-16,288.

23. Bergin M. H., C. I. Davidson, J. E. Dibb, J. L. Jaffrezo, H. D. Kuhns, and S. N. Pandis (1995) A simple model to estimate atmospheric concentrations of aerosol chemical species based on snow core chemistry at Summit, Greenland, Geophys. Res. Lett., 22, 3517-3520.

24. Bergin M. H., S. N. Pandis, C. I. Davidson, J. L. Jaffrezo, J. E. Dibb, A. G. Russell, and H. D. Kuhns (1996) Mathematical Modeling of Fog Processing of Trace Species at Summit, Greenland, J. Geophys. Res., 101, 14,465-14,478.

25. Gurciullo C. S. and S. N. Pandis (1997) The effect of composition variations in cloud droplet populations on Aqueous-Phase Chemistry, J. Geophys. Res., 102, 9375-9386.

26. Cruz C. N. and S. N. Pandis (1997) A study of the ability of secondary organic aerosol to act as cloud condensation nuclei, Atmos. Environ., 31, 2205-2214.

27. Lurmann F. W., A. S. Wexler, S. N. Pandis, S. Musarra, N. Kumar, and J. H. Seinfeld (1997) Modeling urban and regional aerosols: II. Application, Atmos. Environ., 31, 2695-2715.

28. Bowman F., J. Odum, S. N. Pandis, and J. H. Seinfeld (1997) A new adsorption/absorption model for the formation of secondary atmospheric aerosol, Atmos. Environ., 31, 3921-3931.

29. Capaldo K. and S. N. Pandis (1997) Evaluation of sulfur chemistry mechanisms for the remote marine atmosphere, J. Geophys. Res., 102, 23251-23267.

30. Pandis S. N. (1997) Formation and Properties of Secondary Atmospheric Aerosol: From the Laboratory to the Super-computer, J. Aerosol Sci., 28, S367-370.

31. Nenes T., C. Pilinis, and S. N. Pandis (1998) ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosol, Aqua. Geochem., 4, 123-152.

32. West J., C. Pilinis, A. Nenes, and S. N. Pandis (1998) The marginal direct radiative forcing of atmospheric aerosols, Atmos. Environ, 32, 2531-2542.

33. Weber R. J., M. R. Stolzenburg, S. N. Pandis, and P. H. McMurry (1998) Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nano-particle (3 to 10 nm) size distributions, J. Aerosol Sci., 29, 601-615.

34. Cruz C. N. and S. N. Pandis (1998) Activation of multicomponent organic and inorganic aerosols in ambient clouds, J. Geophys. Res., 103, 13111-13123.

35. Ansari A. and S. N. Pandis (1998) Response of inorganic particulate matter concentrations to precursor concentrations, Environ. Sci. Technol., 32, 2706-2714.

36. Ansari A. and S. N. Pandis (1999) Prediction of multicomponent inorganic atmospheric aerosol behavior, Atmos. Environ., 31, 745-757.

37. Ansari A. and S. N. Pandis (1999) An analysis of four models predicting the partitioning of semivolatile inorganic aerosol components, Aerosol Sci. Tech., 31, 129-153.

38. Gurciullo C. S., H. Sievering, and S. N. Pandis (1999) Heterogeneous sulfate production in the remote marine environment, J. Geophys. Res., 104, 21,719-21,731.

39. Capaldo K., P. Kashibhatla, and S. N. Pandis (1999) Is aerosol production within the remote marine boundary layer sufficient to maintain observed concentrations?, J. Geophys. Res., 104, 3483-3500.

40. Nenes T., C. Pilinis, and S. N. Pandis (1999) Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models, Atmos. Environ., 33, 1553-1560.

41. Corbett J., P. S. Fishbeck, and S. N. Pandis (1999) Global nitrogen and sulfur emission inventories for oceangoing ships, J. Geophys. Res., 104, 3457-3470.

42. Dassios K. and S. N. Pandis (1999) The mass accommodation coefficient of ammonium nitrate aerosol, Atmos. Environ., 33, 2993-3003.

43. Capaldo K., J. J. Corbett, P. Kasibhatla, P. Fischbeck, and S. N. Pandis (1999) Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean, Nature, 400, 743-746.

44. Cruz C. and Spyros N. Pandis (1999) Condensation of organic vapors on an externally mixed aerosol population, Aerosol Sci. Technol., 31, 392-407.

45. West J., A. Ansari, and S. N. Pandis (1999) Marginal PM2.5 - Nonlinear aerosol mass response to sulfate reductions, J. Air Waste Man. Assoc., 49, 1415-1424.

46. Hoag K. J., Collett J. Jr., and S. N. Pandis (1999) The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs, Atmos. Environ., 33, 4817-4832.

47. Collett J. Jr., K. J. Hoag, X. Rao, and S. N. Pandis (1999) Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing, Atmos. Environ., 33, 4833-4847.

48. Lillis D., C. Cruz, J. Collett Jr., L. W. Richards, and S. N. Pandis (1999) Production and removal of aerosol in a polluted fog layer. Model evaluation and fog effect on PM, Atmos. Environ., 33, 4797-4816.

49. Strader R., F. Lurmann and S. N. Pandis (1999) Evaluation of secondary organic aerosol formation in winter, Atmos. Environ., 33, 4849-4863.

50. Ansari A. S. and S. N. Pandis (2000) Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior, Environ. Sci. Technol., 34, 71-77.

51. Ansari A. and S. N. Pandis (2000) The effect of metastable equilibrium states on the partitioning of nitrate between the gas and aerosol phases, Atmos. Environ., 34, 157-168.

52. Pilinis C., K. Capaldo, A. Nenes, and S. N. Pandis (2000) MADM- A new multicomponent atmospheric aerosol dynamics model, Aerosol Sci. Tech., 32, 482-502.

53. Capaldo K., C. Pilinis, and S. N. Pandis (2000) A computationally efficient hybrid approach for the simulation of dynamic gas/aerosol transfer in air quality models, Atmos. Environ., 34, 3617-3627.

54. Cruz C. N., K. G. Dassios, and S. N. Pandis (2000) The effect of dioctyl phtalate films on ammonium nitrate aerosol evaporation rate, Atmos. Environ., 34, 3897-3905.

55. Kasibhatla P., H. Levy II, W. J. Moxim, S. N. Pandis, J. J. Corbett, M. C. Peterson, R. E. Horvath, and D. D. Parish (2000) Do emissions from ships have a significant impact on concentrations of nitrogen oxides in the marine boundary layer?, Geophys. Res. Let., 27, 2229-2232.

56. Cruz C. N. and S. N. Pandis (2000) Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol, Environ. Sci. Technol., 34, 4313-4319.

57. Moya M., A. S. Ansari, and S. N. Pandis (2001) Partitioning of nitrate and ammonium between the gas and aerosol phases during the1997 IMADA-AVER study in Mexico City, Atmos. Environ., 35, 1791-1804.

58. Fahey K. M. and S. N. Pandis (2001) Optimizing model performance: Variable size resolution in cloud chemistry modeling, Atmos. Environ., 35, 4471-4478.

59. Bilde M. and S. N. Pandis (2001) Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of a-pinene and b-pinene, Environ. Sci. Technol., 35, 3344-3349.

60. Moya M., S. N. Pandis, M. Jacobson (2002) Is the size distribution of urban aerosol determined by thermodynamic equilibrium? An application to Southern California, Atmos. Environ., 36, 2349-2365.

61. Cabada J. C., S. N. Pandis, and A. L. Robinson (2002) Sources of atmospheric particulate matter in Pittsburgh, Pennsylvania, J. Air Waste. Man. Assoc., 52, 732-741.

62. Lipsky E., C. O. Stanier, S. N. Pandis, and A. L. Robinson (2002) Effects of sampling conditions on the size distribution of fine particulate matter emitted from a pilot-scale pulverized-coal combustor, Energy & Fuels, 16, 302-310.

63. Raymond T. and S. N. Pandis (2002) Cloud activation of single-component organic aerosol particles, J. Geophys. Res., 107, no. 4787.

64. Metzger, S. M., F. J. Dentener, J. Lelieveld, and S. N. Pandis (2002) Gas-Aerosol Partitioning I: A computationally efficient model, J. Geophys. Res., 107, no. 4312.

65. Koo B., T. M. Gaydos, and S. N. Pandis (2003) Evaluation of the equilibrium, dynamic, and hybrid aerosol modeling approaches, Aerosol Sci. Technol., 37, 53-64.

66. Koo B. Y., A. S. Ansari, and S. N. Pandis (2003) Integrated approaches to modeling the organic and inorganic atmospheric aerosol components, Atmos. Environ., 37, 4757-4768.

67. Fahey K. M. and S. N. Pandis (2003) Size-resolved aqueous-phase chemistry in a three-dimensional chemical transport model, J. Geophys. Res., 108, No. 4690.

68. Raymond T. M. and S. N. Pandis (2003) Formation of cloud droplets by multicomponent organic particles, J. Geophys. Res., 108, No. 4469.

69. Pun B., S. Y. Wu, S. Seigneur, J. H. Seinfeld, R. J. Griffin, and S. N. Pandis (2003) Uncertainties in modeling secondary organic aerosols: Three dimensional modeling studies in Nashville/Western Tenessee, Environ. Sci. Technol., 37, 3647-3661.

70. Gaydos T. M., B. Koo. S. N. Pandis and D. P. Chock (2003) Development and application of an efficient moving sectional approach for the solution of the atmospheric aerosol condensation/evaporation equation, Atmos. Environ., 37, 3303-3316.

71. Zhang Y., B. Pun, K. Vijayaraghavan, S. Y. Wu, C. Seigneur, S. N. Pandis, M. Jacobson, A. Nenes, and J. H. Seinfeld (2004) Development and application of the Model for Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID), J. Geophys. Res., 109, No. D01202.

72. Stanier C. O., A. Y. Khlystov, and S. N. Pandis (2004) Nucleation events during the Pittsburgh Air Quality Study: Description and relation to key meteorological, gas phase, and aerosol parameters, Aerosol Sci. Technol., 38S, 253-264.

73. Cabada J. C., S. N. Pandis, R. Subramanian, A. L. Robinson, A. Polidori, and B. Turpin (2004) Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method, Aerosol Sci. Technol., 38S, 140-155.

74. Stanier C. O., A. Y. Khlystov, W. R. Chan, M. Mandiro, and S. N. Pandis (2004) A method for the in-situ measurement of aerosol water content of ambient aerosols: The Dry Ambient Aerosol Size Spectrometer (DAASS), Aerosol Sci. Technol., 38S, 215-228.

75. Khlystov A., C. O. Stanier, and S. N. Pandis (2004) An algorithm for combining electrical mobility and aerodynamic size distributions when measuring ambient aerosol, Aerosol Sci. Technol., 38S, 215-228.

76. Zhou L., E. Kim, P. K. Hopke, C. O. Stanier, and S. N. Pandis (2004) Advanced Factor Analysis on Pittsburgh particle size distribution data, Aerosol Sci. Technol., 38S, 118-132.

77. Rees S. L., A. L. Robinson, A. Khlystov, C. O. Stanier, and S. N. Pandis (2004) Mass balance closure and the PM2.5 Federal Reference Method in Pittsburgh, Pennsylvania, Atmos. Environ., 38, 3305-3318.

78. Wittig A. E., S. Takahama, A. Y. Khlystov, S. N. Pandis, S. Hering, B. Kirby, and C. Davidson (2004) Semi-continuous PM2.5 inorganic composition measurements during the Pittsburgh Air Quality Study, Atmos. Environ., 38, 3201-3213.

79. Wittig A. E., N. Anderson, A. Y. Khlystov, S. N. Pandis, C. Davidson and A. L. Robinson (2004) Pittsburgh Air Quality Study overview, Atmos. Environ., 38, 3107-3125.

80. Stanier C. O., A. Y. Khlystov, and S. N. Pandis (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study, Atmos. Environ., 38, 3275-3284.

81. Cabada J. C., S. Rees, S. Takahama, A. Y. Khlystov, S. N. Pandis, C. I. Davidson, and A. L. Robinson (2004) Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh Supersite, Atmos. Environ., 38, 3127-3141.

82. Takahama S., D. Vayenas, S. N. Pandis, and C. Davidson (2004) Modeling the diurnal variation of nitrate during the Pittsburgh air quality study, J. Geophys. Res., 109, D16S06.

83. Cabada J. C., A. Khlystov, B. Wittig, C. Pilinis, and S. N. Pandis (2004) Light scattering by fine particles during PAQS: Measurements and modeling, J. Geophys. Res., 109, D16S03.

84. Tang W., T. Raymond, B. Wittig, C. Davidson, S. N. Pandis, A. Robinson, and K. Crist (2004) Spatial variations of PM2.5 during the Pittsburgh Air Quality Study, Aerosol Sci. Technol., 38, 80-90.

85. Khlystov A. Y., C. O. Stanier, and S. N. Pandis (2005) Water content of ambient aerosol during the Pittsburgh Air Quality Study, J. Geophys. Res., 110, D07S10.

86. Millet D. B., N. M. Donahue, S. N. Pandis, A. Polidori, C. O. Stanier, B. J. Turpin, and A. H. Goldstein (2005) Atmospheric VOC measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions, J. Geophys. Res., 110, D07S07.

87. Gaydos T. M., C. O. Stanier, and S. N. Pandis (2005) Modeling of in situ ultrafine atmospheric particle formation in the eastern United States, J. Geophys. Res., 110, D07S12.

88. Fahey K. M., S. N. Pandis, J. L. Collett, and P. Herckes (2005) The influence of size-dependent droplet composition on pollutant processing by San Joaquin Valley fogs, Atmos. Environ., 39, 4561-4574.

89. Khystov A., Q. Zhang, J. L. Jimenez, C. O. Stanier, S. N. Pandis, M. R. Canagaratna, P. Fine, C. Misra, and C. Sioutas (2005) In situ concentration of semi-volatile aerosol using water condensation technology, J. Aerosol Sci., 36, 866-880

90. Kanakidou M., J. H. Seinfeld, S. N. Pandis, et al. (2005) Organic aerosol and global climate modelling : A review, Atmos. Chem. Phys., 5, 1053-1123.

91. Zhou L., E. Kim, P. K. Hopke, C. Stanier, and S. N. Pandis (2005) Mining airborne particulate size distribution data by positive matrix factorization, J. Geophys. Res., 110, D07S19.

92. Zhou L. M., P. K. Hopke, C. O. Stanier, S. N. Pandis, J. M. Ondov, and J. P. Pancras (2005) Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization, J. Geophys. Res., 110, D07S18.

93. Huff Hartz K. E., T. Rosenorn, S. R. Ferchak, T. M. Raymond, M. Bilde, N. M. Donahue, and S. N. Pandis (2005) Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol, J. Geophys. Res., 110, D14208.

94. Vayenas D. V., S. Takahama, C. I. Davidson, and S. N. Pandis (2005) Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for PM2.5 control strategies, 110, D07S14.

95. Donahue N. M., K. E. Huff Hartz, B. Chuong, A. A. Presto, C. O. Stanier, T. Rosenorn, A. L. Robinson, and S. N. Pandis (2005) Critical factors determining the variation in SOA yields from terpene ozonolysis: A combined experimental and computational study, Faraday Discuss., 130, 295-309.

96. Huff-Hartz K. E., J. E. Tischuk, M. N. Chan, C. K. Chan, N. M. Donahue, and S. N. Pandis (2006) Cloud condensation nuclei activation of limited solubility organic aerosol, Atmos. Environ., 40, 605-617.

97. Jung J. G., P. J. Adams, and S. N. Pandis (2006) Simulating the size distribution and chemical composition of ultrafine particles during nucleation events, Atmos. Environ., 40, 2248-2259.

98. Takahama S., C. I. Davidson, and S. N. Pandis (2006) Semi-continuous measurements of organic carbon and acidity during the Pittsburgh Air Quality Study: Implications of acid-catalyzed organic aerosol formation, Environ. Sci Tech., 40, 2191-2199.

99. Donahue N. M., A. L. Robinson, C. O. Stanier and S. N. Pandis (2006) Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Tech., 40, 2635-2643.

100. Polidori A., B. J. Turpin, H. J. Lim, J. C. Cabada, R. Subramanian, S. N. Pandis, and A. L. Robinson (2006) Local and regional secondary organic aerosol: Insights from a year of semi-continuous carbon measurements at Pittsburgh, Aeros. Sci. Tech., 40, 861-872.

101. Pinder R. W., P. J. Adams, S. N. Pandis, and A. B. Gilliland (2006) Temporally resolved ammonia emission inventories: Current estimates, evaluation tools, and measurement needs, J. Geophys. Res., 111, D16310.

102. Zhang J. Y., K. E. Huff-Hartz, S. N. Pandis, and N. M. Donahue (2006) Secondary organic aerosol formation from limonene ozonolysis: Homogeneous and heterogeneous influences as a function of NOx, J. Phys. Chem. A, 110, 11053-11063.

103. Gaydos T. M., R. Pinder, B. Koo, K. M. Fahey, G. Yarwood, and S. N. Pandis (2007) Development and application of a three-dimensional aerosol chemical transport model, PMCAMx, Atmos. Environ., 12, 2594-2611.

104. Pinder R. W., P. J. Adams, and S. N. Pandis (2007) Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the eastern United States, Environ. Sci. Tech., 41, 380-386.

105. Pathak R. K., C. O. Stanier, N. M. Donahue, and S. N. Pandis (2007) Ozonolysis of a-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields), J. Geophys. Res., 112, doi:10.1029/2006JD007436.

106. Robinson A. L., N. M. Donahue, M. K. Shrivastava, E. A. Wietkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, S. N. Pandis, and J. R. Pierce (2007) Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259-1262.

107. An W. J., R. K. Pathak, B. H. Lee, and S. N. Pandis (2007) Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol, J. Aeros. Sci., 38, 305-314.

108. Dawson J. P., P. J. Adams, and S. N. Pandis (2007) Sensitivity of ozone to summertime climate in the eastern US: A modeling case study, Atmos. Environ., 41, 1494-1511.

109. Takahama S., R. K. Pathak, and S. N. Pandis (2007) Efflorescence transitions of ammonium sulfate particles coated with secondary organic aerosol, Environ. Sci. Tech., 41, 2289-2295.

110. Stanier C. O., R. K. Pathak, and S. N. Pandis (2007) Measurements of the volatility of aerosols from a-pinene ozonolysis, Environ. Sci. Tech., 41, 2756-2763.

111. Lane T. E. and S. N. Pandis (2007) Predicted secondary organic aerosol concentrations from the oxidation of isoprene in the Eastern United States, Environ. Sci. Tech., 41, 3984-3990.

112. Lane T. E., R. W. Pinder, M. Shrivastava, A. L. Robinson, and S. N. Pandis (2007) Source contributions to primary organic aerosol: Comparison of the results of a source-resolved model and the Chemical Mass balance approach, Atmos. Environ., 41, 3758-3776.

113. Karydis V. A., A. P. Tsimpidi, and S. N. Pandis (2007) Evaluation of a three-dimensional chemical transport model (PMCAMx) in the Eastern United States for all four seasons, J. Geophys. Res., 112, D14211.

114. Dawson J. P., P. J. Adams, and S. N. Pandis (2007) Sensitivity of PM2.5 to climate in the Eastern US: a modelling case study, Atmos. Chem. Phys., 7, 4295-4309.

115. Pathak R. K., A. A. Presto, T. E. Lane, C. O. Stanier, N. M. Donahue, and S. N. Pandis (2007) Ozonolysis of a-pinene: Parameterization of secondary organic aerosol mass fraction, Atmos. Chem. Phys., 7, 3811-3821.

116. Kostenidou R., R. K. Pathak, and S. N. Pandis (2007) An algorithm for the calculation of secondary organic aerosol density combining AMS and SMPS data, Aeros. Sci. Tech., 41, 1002-1010.

117. Tsimpidi A. P., V. A. Karydis, and S. N. Pandis (2007) Response of fine particulate matter to emission changes of SO2 and NH3 in the Eastern United States, J. Air Waste Manag. Assoc., 57, 1489-1498.

118. Coz E., B. Artinano, A. L. Robinson, G. S. Casuccio, T. L. Lersch, and S. N. Pandis (2008) Individual particle morphology and acidity, Aerosol Sci. Tech., 42, 224-232.

119. Stanier C. O., N. Donahue, and S. N. Pandis (2008) Parameterization of secondary organic aerosol mass fractions from smog chamber data, Atmos. Environ., 42, 2276-2299.

120. Jung, J. G., P. J. Adams, and S. N. Pandis (2008) Evaluation of nucleation theories in a sulfur-rich environment, Aerosol Sci. Tech., 42, 495-504.

121. Pathak R. K., N. M. Donahue, and S. N. Pandis (2008) Ozonolysis of a-pinene: Temperature dependence of secondary organic aerosol mass fraction, Environ. Sci. Tech., 42, 5081-5086.

122. Dawson J. P., P. N. Racherla, B. H. Lynn, P. J. Adams, and S. N. Pandis (2008) Simulating present-day and future air quality as climate changes, Atmos. Environ., 42, 4551-4566.

123. Engelhart G. J., A. Asa-Awuku, A. Nenes, and S. N. Pandis (2008) CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol, Atmos. Chem. Phys., 8, 3937-3949.

124. Wagstrom K. M., S. N. Pandis, G. Yarwood, G. M. Wilson, and R. E. Morris (2008) Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional Chemical Transport Model, Atmos. Environ., 42, 5650-5659.

125. Lane T. E., N. M. Donahue, and S. N. Pandis (2008) Effect of NOx on secondary organic aerosol concentrations, Environ. Sci. Tech., 42, 6022-6027.

126. Shrivastava M. K., T. E. Lane, N. M. Robinson, S. N. Pandis, and A. L. Robinson (2008) Effects of gas-particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations, J. Geophys. Res., 113, D18301.

127. Pierce J. R., G. J. Engelhart, E. A. Weitkamp, R. K. Pathak, S. N. Pandis, N. M. Donahue, A. L. Robinson, and P. J. Adams (2008) Constraining particle evolution from wall losses, coagulation and condensation-evaporation in smog-chamber experiments: optimal estimation based on size distribution measurements, Aerosol Sci. Tech., 42, 1001-1015.

128. Lane T. E., N. M. Donahue, and S. N. Pandis (2008) Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, Atmos. Environ., 42, 7439-7451.

129. Athanasopoulou E., M. Tombrou, S. N. Pandis, and A. G. Russell (2008) The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas, Atmos. Chem. Phys., 8, 5755-5769.

130. Tsimpidi A. P., V. A. Karydis, and S. N. Pandis (2008) Response of fine particulate matter to emission changes of NOx and anthropogenic VOCs, J. Air Waste Manag. Assoc., 58, 1463-1473.

131. Donahue N. M., A. L. Robinson, and S. N. Pandis (2009) Atmospheric organic particulate matter: From smoke to secondary organic aerosol, Atmos. Environ., 43, 97-109.

132. Asa-Awuku A., G. J. Engelhart, B. H. Lee, S. N. Pandis, and A. Nenes (2009) Relating CCN activity, volatility, and droplet growth kinetics of b-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9, 795-812.

133. Pierce J. R., G. Theodoritsi, P. J. Adams, and S. N. Pandis (2009) Parameterization of the effect of sub-grid scale aerosol dynamics on aerosol number emission rates, J. Aerosol Science, 40, 385-393.

134. Dawson J. P., P. N. Racherla, B. H. Lynn, P. J. Adams, and S. N. Pandis (2009) Impacts of climate change on regional and urban air quality in the Eastern US: the role of meteorology, J. Geophys. Res., 114, D05308, doi:10.1029/2008JD009849.

135. Kulmala M., A. Asmi, H. K. Lappalainen, K. S. Carslaw, U. Pöschl, U. Baltensperger, Ø. Hov, J. L. Brenquier, S. N. Pandis, M. C. Facchini, H. C. Hansson, A. Wiedensohler, and C. D. O’Dowd (2009) Introduction: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 9, 2825-2841.

136. Murphy B. N. and S. N. Pandis (2009) Simulating the formation of semivolatile primary and secondary aerosol in a regional chemical transport model, Environ. Sci. Tech., 43, 4722-4728.

137. Hildebrandt L., N. M. Donahue, and S. N. Pandis (2009) High formation of secondary organic aerosol from the photo-oxidation of toluene, Atmos. Chem. Phys., 9, 2973-2986.

138. Kostenidou E., B. H. Lee, G. J. Engelhart, J. R. Pierce, and S. N. Pandis (2009) Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol, Environ. Sci. Tech., 43, 4884-4889.

139. Wagstrom K. M. and S. N. Pandis (2009) Determination of the age distribution of primary and secondary aerosol species using a chemical transport model, J. Geophys. Res., 114, D14303.

140. Bougiatioti A., C. Fountoukis, N. Kalivitis, S. N. Pandis, A. Nenes, and N. Mihalopoulos (2009) Cloud condensation nuclei measurements in the eastern Mediterranean marine boundary layer: CCN closure and droplet growth kinetics, Atmos. Chem. Phys., 9, 7053-7066.

141. Tsimpidi A. P., V. A. Karydis, M. Zavala, L. Molina, I. Ulbrich, J. L. Jimenez, and S. N. Pandis (2010) Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525-546.

142. Riipinen I., J. R. Pierce, N. M. Donahue, and S. N. Pandis (2010) Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics, Atmos. Environ., 44, 597-607.

143. Karydis V. A., A. P. Tsimpidi, C. Fountoukis, A. Nenes, M. Zavala, W. Lei, L. T. Molina, and S. N. Pandis (2010) Simulating the fine and coarse inorganic particulate matter concentrations in a polluted Megacity, Atmos. Environ, 44, 608-620.