Neil Donahue-Chemical Engineering - Carnegie Mellon University

Neil Donahue

Professor of Chemical Engineering, Chemistry, and Engineering and Public Policy

Office: Doherty Hall 2116
Phone: 412-268-4415
Fax: 412-268-7139

Bio

Prof. Neil Donahue received a B.A. in Physics from Brown University in 1984 and a PhD in Meteorology and Atmospheric Chemistry from MIT in 1991. His thesis was "Non-methane Hydrocarbon Chemistry in the Remote Marine Atmosphere" and his advisor was Ronald G. Prinn. Prof. Donahue was a Postdoc and Research Scientist at Harvard from 1991 - 2000 with James G. Anderson and thereupon joined Carnegie Mellon University. He is currently Professor of Chemistry and Chemical Engineering and the Director of the Steinbrenner Institute for Environmental Education and Research.

Education

Postdoctoral Research and Research Scientist, 1991-2000, Harvard University (Chemistry)
PhD. 1991, Massachusetts Institute of Technology (Meteorology)
A.B. 1985, Brown University (Physics)

Research

Research in Professor Donahue's laboratory focuses on four interrelated topics: the oxidation pathways of reduced compounds throughout the atmosphere, formation and behavior of organic aerosols, measurement of atmospheric free radicals and stable molecules, and the fundamental quantum mechanics and dynamics controlling reactivity and causing variation in reactivity among related chemical systems.

Atmospheric Oxidation Mechanisms

Reduced compounds react in the atmosphere with oxidants including hydroxyl (OH), ozone (O3), and nitrate (NO3). Their oxidation products include oxygenated organics (aldehydes, ketones, organic acids, carbon monoxide, and carbon dioxide), ozone, and organic aerosols. We directly observe the mechanisms connecting these reactants and products by initiating the oxidation in a flow-tube and observing the reaction downstream. The time scale of these experiments allows us to observe mechanisms step-by-step while permitting us to study interactions typical of the real atmosphere.

Organic Aerosols

We study organic aerosols over longer timescales (minutes to hours) in the CMU smog chamber and in the CLOUD chamber at CERN. We can observe and constrain secondary aerosol formation as well as the chemical processing of condensed-phase organics by gas-phase oxidants. We also study the phase partitioning thermodynamics of low-volatility organic mixtures. The broad objective is to understand how oxidation mechanisms and their products, including ozone and aerosols, change with changing atmospheric composition.

Fundamental Reactivity

Chemical reactivity can evolve dramatically among a series of related reactions. Reactivity can differ by a factor of a million or more, and similar reactions can have qualitatively different reaction products. This has profound consequences for atmospheric chemistry, combustion, and all other systems involving complex mechanisms. It also indicates that observation without fundamental understanding is dangerous. A major objective of our work is to understand the fundamental quantum mechanics and reaction dynamics describing this evolution.
Ambient Measurement
In our lab we employ multiple methods, including spectroscopy, mass-spectrometry, and gas chromatography to measure both the short-lived intermediates involved in atmospheric oxidation chemistry as well as the longer-lived precursors and products of that chemistry. The objective is to test with in-situ observation the oxidation mechanisms developed in our laboratory studies.

Research Websites

Center for Atmospheric Particle Studies
Energy Science and Engineering
Envirochemical Engineering

Highlights

  • Research team member of the CLOUD experiment at CERN on new-particle formation.  Experiments led to publications in Nature and the Proceedings of the National Academy of Sciences in 2013.
  • Completed sabbatical leave in June 2009, supported by a grant from the European Union EUROCHAMP chamber network. Coordinated a multiple chamber organic aerosol aging experiment at the Paul Scherrer Institute, Switzerland, Karlsruhe Institute of Technology, Germany, and Forschunszentrum Jülich, resulting in six publications including one in the Proceedings of the National Academy of Sciences.  Also served as a visiting professor at the University of Utrecht during Spring 2009.
  • Major collaborator and co-author on a paper published in Science in Dec 2009 discussing organic aerosol observations around the globe. Neil’s contribution was to develop a theoretical framework describing those data.
  • PI for a successful $700k MRI grant ($210k from the Wallace Research Foundation, $490k from NSF) to obtain 2 mass spectrometers for the CAPS Air-Quality and Mobile laboratories.
  • Served as associate editor for the Journal of Geophysical Research, Atmospheres and Atmospheric Chemistry and Physics.
  • Served on the board of directors of the American Association for Aerosol Research.

Awards and Honors

  • NASA Graduate Student Research Fellowship (1985-1988)
  • DOE Global Change Distinguished Postdoctoral Fellow (1991-1993)
  • Carnegie Institute of Technology 2009 Outstanding Research Award
  • Fellow of the American Geophysical Union, 2012
  • Thomson Reuters Highly Cited Researcher, 2014.

Publications

Representative Publications
Full Publications

Representative Publications

[21] Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences 110, 17223–17228 (S. Schobesberger, H. Junninen, F. Bianchi, G. L¨onn, M. Ehn, K. Lehtipalo, J. Dommen, S. Ehrhart, I. K. Ortega, A. Franchin, T. Nieminen, F. Riccobono, M. Hutterli, J. Duplissy, J. Almeida, A. Amorim, M. Breitenlechner, A. J. Downard, E. M. Dunne, R. C. Flagan, M. Kajos, H.  Keskinen, J. Kirkby, A. Kupc, A. K¨urten, T. Kurt´en, A. Laaksonen, S. Mathot, A. Onnela, A. P. P. L. Rondo, F. D. Santos, S. Schallhart, R. Schnitzhofer, M. Sipil¨a, A. Tom´e, G. Tsagkogeorgas, H. Vehkam¨aki, D. Wimmer, U. Baltensperger,
K. S. Carslaw, J. Curtius, A. Hansel, T. Pet¨aj¨a, M. Kulmala, N. M. Donahue, and D. R. Worsnop) 2013.

[20] How do organic vapors contribute to new-particle formation? Faraday Discussions 16, 91–104 (N. M. Donahue, I. K. Ortega, W. Chuang, I. Riipinen, F. Riccobono, S. Schobesberger, J. Dommen, U. Baltensperger, M. Kulmala, D. R. Worsnop, and H. Vehkamaki) 2013.

[19] Mixing of individual organic aerosol particles via gas-phase exchange. Journal of Physical Chemistry A 117, 13935–13945 (E. S. Robinson, R. Saleh, and N. M. Donahue) 2013.

[18] Molecular understanding of amine-sulphuric acid particle nucleation in the atmosphere. Nature 502, 359–363 (J. Almeida, S. Schobesberger, A. K¨urten, I. K. Ortega, O. Kupiainen, A. P. Praplan, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, N. M. Donahue, A. Downard, E. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, A. Hansel, H. Junninen, M. Kajos, H. Keskinen, A. Kupc, T. Kurt´en, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lepp¨a, V. Loukonen, V. Makhmutov, S. Mathot, M. J. McGrath, T. Nieminen, , T. Olenius, A. Onnela, T. Pet¨aj¨a, F. Riccobono, I. Riipinen, L. Rondo, F. D. Santos, S. Schallhart, R. Schnitzhofer, J. H. Seinfeld, M. Sipil¨a, Y.  Stozhkov, F. Stratmann, A. Tom´e, G. Tsagkogeorgas, Y. Viisanen, A. Vrtala, P. E. Wagner, E. Weingartner, H. Wex, D. Wimmer, P. Ye, T. Yli-Juuti, K. S. Carslaw, M. Kulmala, J. Curtius, U. Baltensperger, D. R. Worsnop, H. Vehkam¨aki, and J. Kirkby) 2013 (1).

[17] A two-dimensional volatility basis set - part 2: Diagnostics of organic-aerosol evolution. Atmospheric Chemistry and Physics 12, 615–634 (N. M. Donahue, J. H. Kroll, A. L. Robinson, and S. N. Pandis) 2012 (28).

[16] Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proceedings of the National Academy of Sciences 109, 13503–13508 (N. M. Donahue, K. M. Henry, T. F. Mentel, A. K. Scharr, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, A. Wahner, H. Saathoff, K. H. Naumann, O. M¨ohler, T. Leisner, L. M¨uller, M.-C. Reinnig, T. Hoffmann, K. Salow, M. Hallquist, M. Frosch, M. Bilde, T. Tritscher, P. Barmet, A. P. Praplan, P. F. DeCarlo, J. Dommen, A. S. H. Pr´evˆot, and U. Baltensperger) 2012 (24).

[15] Contribution of organics to atmospheric nanoparticle growth. Nature Geoscience 5, 453–458 (I. Riipinen, T. Yli-Juuti, J. R. Pierce, T. Pet¨aj¨a, D. R. Worsnop, M. Kulmala, and N. M. Donahue) 2012 (21).

[14] Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nature Chemistry 3, 133–139 (J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. Kessler, M. R. Canagaratna, K. Wilson, K. E. Alteri, L. R.  Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, and D. R. Worsnop) 2011 (97).


[13] Adventures in ozoneland: Down the rabbit-hole. Physical Chemistry Chemical Physics 13, 10848– 10857 (N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll) 2011 (14).

[12] Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry. Atmospheric Chemistry and Physics 9, 4625–4641 (N. L. Ng, M. R. Canagaratna, Q. Zhang, J. L. Jimenez, J. Tian, I. M.  Ulbrich, J. H. Kroll, K. S. Docherty, P. S. Chhabra, R. Bahreini, S. M. Murphy, J. H. Seinfeld, L. Hildebrandt, N. M. Donahue, P. F. DeCarlo, V. A. Lanz, A. S. H. Prevot, E. Dinar, Y. Rudich, and D. R. Worsnop) 2010 (168).

[11] Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Pr´evˆot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. D. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, C. E. Kolb, U. Baltensperger, and D. R. Worsnop) 2009 (532).

[10] Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 315, 1259– 1263 (A. L. Robinson, N. M. Donahue, M. K. Shrivastava, A. M. Sage, E. A.Weitkamp, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis) 2007 (484).

[9] Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environmental Science & Technology 40, 2635 – 2643 (N. M. Donahue, A. L. Robinson, C. O. Stanier, and S. N. Pandis) 2006 (265).

[8] Investigation of -pinene + ozone secondary organic aerosol formation at low total aerosol mass. Environmental Science & Technology 40, 3536–3543 (A. A. Presto and N. M. Donahue) 2006 (74).

[7] Critical factors determining the variation in SOA yields from terpene ozonolysis: A combined experimental and computational study. Faraday Disc. 130, 295–309 (N. M. Donahue, K. E. Huff Hartz, B. Chuong, A. A. Presto, C. O. Stanier, T. Rosenørn, A. L. Robinson, and S. N. Pandis) 2005 (48).

[6] Cycloalkene ozonolysis: Collisionally mediated mechanistic branching. J. Am. Chem. Soc. 126, 12363–12373 (B. Chuong, J. Zhang, and N. M. Donahue) 2004 (30).

[5] Gas-phase ozonolysis of alkenes: formation of OH from anti carbonyl oxides. J. Am. Chem. Soc. 124, 8518–8519 (J. H. Kroll, V. J. Cee, N. M. Donahue, K. L. Demerjian, and J. G. Anderson) 2002 (43).

[4] Mechanism of HOx formation in the gas-phase ozone-alkene reaction: 2. Prompt versus thermal dissociation of carbonyl oxides to form OH. J. Phys. Chem. A 105, 4446–4457 (J. H. Kroll, S. R. Shahai, J. Anderson, K. L. Demerjian, and N. Donahue) 2001 (93).

[3] Direct observation of OH production from the ozonolysis of olefins. Geophys. Res. Lett. 25, 59–62 (N. M. Donahue, J. H. Kroll, J. G. Anderson, and K. L. Demerjian) 1998 (102).

[2] Predicting radical-molecule barrier heights: The role of the ionic surface. Journal of Physical Chemistry A 102, 3923–3933 (N. M. Donahue, J. S. Clarke, and J. G. Anderson) 1998 (66).

[1] High-pressure flow study of the reactions OH + NOx ! HONOx: Errors in the falloff region. Journal of Geophysical

Full Publications

[150] Volatility and aging of atmospheric organic aerosols. Topics in Current Chemistry 339, 97–144 (N. M. Donahue, A. L. Robinson, E. R. Trump, I. Riipinen, and J. H. Kroll) 2014.


[149] Mixing of individual organic aerosol particles via gas-phase exchange. Journal of Physical Chemistry A 117, 13935–13945 (E. S. Robinson, R. Saleh, and N. M. Donahue) 2013.


[148] Atmospheric organic aerosols: Insights from the combination of measurements and chemical transport models. Faraday Discussions 165, 9–24 (S. N. Pandis, N. M. Donahue, B. N. Murphy, I. Riipinen, C. Fountoukis, E. Karnezi, D. Patoulias, and K. Skyllakou) 2013.


[147] How do organic vapors contribute to new-particle formation? Faraday Discussions 16, 91–104 (N. M. Donahue, I. K. Ortega, W. Chuang, I. Riipinen, F. Riccobono, S. Schobesberger, J. Dommen, U. Baltensperger, M. Kulmala, D. R. Worsnop, and H. Vehkamaki) 2013.


[146] Secondary organic aerosol formation from photo-oxidation of unburned fuel: Experimental results and implications for aerosol formation from combustion emissions. Environmental Science & Technology 47, 12886–12893 (S. H. Jathar, M. A. Miracolo, D. S. Tkacik, N. M. Donahue, P. J. Adams, and A. L. Robinson) 2013.


[145] Atmospheric nanoparticles and climate change. AIChE Journal 59, 4006–4109 (P. J. Adams, N. M. Donahue, and S. N. Pandis) 2013.


[144] Molecular understanding of amine-sulphuric acid particle nucleation in the atmosphere. Nature 502, 359–363 (J. Almeida, S. Schobesberger, A. K¨urten, I. K. Ortega, O. Kupiainen, A. P. Praplan, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, N. M. Donahue, A. Downard, E. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, A. Hansel, H. Junninen, M. Kajos, H. Keskinen, A. Kupc, T. Kurt´en, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lepp¨a,
V. Loukonen, V. Makhmutov, S. Mathot, M. J. McGrath, T. Nieminen, , T. Olenius, A. Onnela, T. Pet¨aj¨a, F. Riccobono, I. Riipinen, L. Rondo, F. D. Santos, S. Schallhart, R. Schnitzhofer, J. H. Seinfeld, M. Sipil¨a, Y. Stozhkov, F. Stratmann, A. Tom´e, G. Tsagkogeorgas, Y. Viisanen, A. Vrtala, P. E. Wagner, E. Weingartner, H. Wex, D. Wimmer, P. Ye, T. Yli-Juuti, K. S. Carslaw, M. Kulmala, J. Curtius, U. Baltensperger, D. R. Worsnop, H. Vehkam¨aki, and J. Kirkby) 2013 (1).


[143] Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences 110, 17223–17228 (S. Schobesberger, H. Junninen, F. Bianchi, G. L¨onn, M. Ehn, K. Lehtipalo, J. Dommen, S. Ehrhart, I. K. Ortega, A. Franchin, T. Nieminen, F. Riccobono, M. Hutterli, J. Duplissy, J. Almeida, A. Amorim, M. Breitenlechner, A. J. Downard, E. M. Dunne, R. C. Flagan, M. Kajos, H. Keskinen, J. Kirkby, A. Kupc, A. K¨urten, T. Kurt´en, A. Laaksonen, S. Mathot, A. Onnela, A. P. P. L. Rondo, F. D. Santos, S. Schallhart, R. Schnitzhofer, M. Sipil¨a, A. Tom´e, G. Tsagkogeorgas, H. Vehkam¨aki, D. Wimmer, U. Baltensperger, K. S. Carslaw, J. Curtius, A. Hansel, T. Pet¨aj¨a, M. Kulmala, N. M. Donahue, and D. R. Worsnop) 2013.


[142] Light absorption properties of brown carbon from fresh and photo-chemically aged biomass burning emissions. Atmospheric Chemistry and Physics 13, 7683–7693 (R. Saleh, C. J. Hennign, G. R. McMeeking, W. K. Chuang, H. Coe, N. M. Donahue, and A. L. Robinson) 2013.


[141] Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics 12, 5587–5600 (H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy, S. Schobesberger, M. Gysel, F.  iccobono, J. G. Slowik, F. Bianchi, T. Yli-Juuti, K. Lehtipalo, L. Rondo, M. Breitenlechner, A. Kupc, J. Almeida, A. Amorin, E. M. Dunne, A. J. Downward, S. Ehrhart, A. Franchin, M. Kajos, J. Kirkby, A. K¨urten, T. Nieminen, V. Makhmutov, S. Mathot, P. Miettinen, A. Onnela, T. Pet¨aj¨a, A. Praplan, F. Santos, S. Schallhart, M. Sipil¨a, Y. Stozhkov, A. Tom´e, P. Vaattovaara, D. Wimmer, A. Prevot, J. Dommen, N. M. Donahue, R. Flagan, E. Weingartner, Y.Viisanen, I. Riipinen, A. Hansel, J. Curtius, M. Kulmala, D. R.Worsnop, U. Baltensperger, H. Wex, F. Stratmann, and A. Laaksonen) 2013.


[140] Time scales for gas-particle partitioning equilibration of secondary organic aerosol formed from alpha-pinene ozonolysis. Environmental Science & Technology 47, 5588–5594 (R. Saleh, N. M. Donahue, and A. L. Robinson) 2013.


[139] Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environmental Chemistry 10, 151–157 (N. M. Donahue,W. K. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis) 2013 (2).


[138] Photo-oxidation of pinonaldehyde at low NOx: from chemistry to organic aerosol formation. Atmospheric Chemistry and Physics 13, 3227–3236 (H. J. Chacon-Madrid, K. M. Henry, and N. M. Donahue) 2013.


[137] Functionalization and fragmentation during ambient organic aerosol aging: Application of the 2-D volatility basis set to field studies. Atmospheric Chemistry and Physics 12, 10797–10816 (B. N. Murphy, N. M. Donahue, C. Fountoukis, M. Dall’Osto, C. O’Dowd, A. Kiendler-Scharr, and S. N. Pandis) 2012 (7).


[136] Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust. Atmospheric Chemistry and Physics 12, 9025–9040 (S. H. Jathar, M. A. Miracolo, A. A. Presto, N. M. Donahue, P. J. Adams, and A. L. Robinson) 2012 (1).


[135] Volatility of organic molecular markers used for source apportionment analysis: measurements and atmospheric implications. Environmental Science & Technology 46, 12435–12444 (A. A. May, R. Saleh, C. J. Hennign, N. M. Donahue, and A. L. Robinson) 2012 (3). [134] Organic aerosol yields from -pinene oxidation: Bridging the gap between first-generation yields and aging chemistry. Environmental Science & Technology 46, 12347–12354 (K. M. Henry and N. M. Donahue) 2012 (2).


[133] Simulations of smog-chamber experiments using the two-dimensional-volatility basis set: linear oxygenated precursors. Environmental Science & Technology 46, 11179–11186 (H. J. Chacon-Madrid, B. N. Murphy, S. N. Pandis, and N. M. Donahue) 2012 (2).


[132] Secondary organic aerosol formation from intermediate-volatility organic compounds: Cyclic, linear, and branched alkanes. Environmental Science & Technology 46, 8773–8781 (D. S. Tkacik, A. A. Presto, N. M. Donahue, and A. L. Robinson) 2012 (8).


[131] Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proceedings of the National Academy of Sciences 109, 13503–13508 (N. M. Donahue, K. M. Henry, T. F. Mentel, A. K. Scharr, C. Spindler, B. Bohn, T.  Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, A. Wahner, H. Saathoff, K. H. Naumann, O. M¨ohler, T. Leisner, L. M¨uller, M.-C. Reinnig, T. Hoffmann, K. Salow, M. Hallquist, M. Frosch, M. Bilde, T. Tritscher, P. Barmet, A. P. Praplan, P. F. DeCarlo, J. Dommen, A. S. H. Pr´evˆot, and U. Baltensperger) 2012 (24).


[130] MRCISD studies of the dissociation of vinylhydroperoxide, CH2CHOOH: There is a saddle point. Journal of Physical Chemistry A 116, 6823–6830 (T. Kurt´en and N. M. Donahue) 2012 (4). [129] Contribution of organics to atmospheric nanoparticle growth. Nature Geoscience 5, 453–458 (I. Riipinen, T. Yli-Juuti, J. R. Pierce, T. Pet¨aj¨a, D. R. Worsnop, M. Kulmala, and N. M. Donahue) 2012 (21).


[128] OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber. Atmospheric Measurement Techniques 5, 647–656 (P. Barmet, J. Dommen, P. F. Decarlo, T. Tritscher, A. P. Praplan, S. M. Platt, A. S. H. Pr´evˆot, N. M. Donahue, and U. Baltensperger) 2012 (4).


[127] Nature of the chemical bond in transition: Dissection of radical-molecule reactivity. Journal of Physical Chemistry A 116, 6303–6311 (H. A. Rypkema, N. M. Donahue, and J. G. Anderson) 2012. [126] Photochemical aging of -pinene secondary organic aerosol: effects of OH radical sources and photolysis. Journal of Physical Chemistry A 116, 5932–5940 (K. M. Henry and N. M. Donahue) 2012 (7).


[125] Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging. Atmospheric Chemistry and Physics 12, 1483–1496 (L. M¨uller, M.-C. Reinnig, K. H. Naumann, H. Saathoff, T. F. Mentel, N. M. Donahue, and T. Hoffmann) 2012 (16).

[124] A two-dimensional volatility basis set - part 2: Diagnostics of organic-aerosol evolution. Atmospheric Chemistry and Physics 12, 615–634 (N. M. Donahue, J. H. Kroll, A. L. Robinson, and S. N. Pandis) 2012 (28).


[123] Sources and atmospheric processing of organic aerosol in the Mediterranean: Insights from aerosol mass spectrometer factor analysis. Atmos. Chem. Phys. 11, 12499–12515 (L. Hildebrandt, E. Kostenidou, V. A. Lanz, A. S. H. Pr´evˆot, U. Baltensperger, N. Mihalopoulos, A. Laaksonen, N. M. Donahue, and S. N. Pandis) 2011 (3).


[122] Volatility of secondary organic aerosol during OH radical induced ageing. Atmos. Chem. Phys. 11, 11055–11067 (K. Salo, M. Hallquist, A° . M. Jonsson, H. Saathoff, K.-H. Naumann, C. Spindler, R. Tillmann, H. Fuchs, B. Bohn, F. Rubach, T. F. Mentel, L. M¨uller, M. Renning, T. Hoffmann, and N. M. Donahue) 2011 (15).


[121] Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. Atmos. Chem. Phys. 11, 11477–11496 (T. Tritscher, J. Dommen, P. F. DeCarlo, P. B. Barmet, A. P. Praplan, E.Weingartner, M. Gysel, A. S. H. Pr´evˆot, N. M. Donahue, and U. Baltensperger) 2011 (16).


[120] Fragmentation vs. functionalization: Chemical aging and organic aerosol formation. Atmos. Chem. Phys. 11, 10553–10563 (H. J. Chacon-Madrid and N. M. Donahue) 2011 (15). [119] Relating cloud condensation nuclei activity and oxidation level of -pinene secondary organic aerosols. J. Geophys. Res. A 116, D22212 (M. Frosch, M. Bilde, P. F. DeCarlo, Z. Jur´anyi, T. Tritscher, J. Dommen, N. M. Donahue, M. Gysel, E. Weingartner, and U. Baltensperger) 2011 (11).


[118] Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmospheric Chemistry and Physics 11, 9019–9036 (J. R. Pierce, I. Riipinen, M. Kulmala, M. Ehn, T. Pet¨aj¨a, H. Junninen, D. R. Worsnop, and N. M. Donahue) 2011 (25).


[117] Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set. Atmos. Chem. Phys. 11, 7859–7873 (B. N. Murphy, N. M. Donahue, and S. N. Pandis) 2011 (14). [116] Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles. Geophysical Research Letters 38, L16801 (N. M. Donahue, E. R. Trump, I. Riipinen, and J. R. Pierce) 2011 (15).



[115] Evaluating the mixing of organic aerosol components using high-resolution aerosol mass spectrometry. Environ. Sci. Technol. 45, 6329–6335 (L. Hildebrandt, K. M. Henry, J. H. Kroll, D. R. Worsnop, S. N. Pandis, and N. M. Donahue) 2011  (7).


[114] Understanding evolution of product composition and volatility distribution through in-situ GCxGC analysis: a case study of longifolene ozonolysis. Atmos. Chem. Phys. 11, 5335–5346 (G. Isaacman, D. R. Worton, N. M. Kreisberg, C. J. Hennigan, A. P. Teng, S. A. Hering, A. L. Robinson, N. M. Donahue, and A. H. Goldstein) 2011 (11).


[113] Particle-phase chemistry of secondary organic material: Modeled compared to measured O:C and H:C elemental ratios provide constraints. Environ. Sci. Technol. 45, 4763–4770 (Q. Chen, Y. Liu, N. M. Donahue, J. E. Shilling, and S. T. Martin) 2011 (34).


[112] Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber. Atmos. Chem. Phys. 11, 4135–4147 (M. A. Miracolo, C. J. Hennigan, M. Ranjan, N. T. Nguyen, T. D. Gordon, E. M. Lipsky, A. A. Presto, N. M. Donahue, and A. L. Robinson) 2011 (13).


[111] Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics 11, 3865–3878 (I. Riipinen, J. R. Pierce, T. Yli- Juuti, T. Nieminen, S. H¨akkinen, M. Ehn, H. Junninen, K. Lehtipalo, T. Pet¨aj¨a, J. Slowik, R. Chang, N. C. Shantz, J. P. D. Abbatt, W. R. Leaitch, V.-M. Kerminen, D. R. Worsnop, S. N. Pandis, N. M. Donahue, and M. Kulmala) 2011 (53).


[110] Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. J. Phys. Chem. A 115, 4381–4387 (G. T. Drozd and N. M. Donahue) 2011 (8).


[109] A two-dimensional volatility basis set: 1. Organic mixing thermodynamics. Atmos. Chem. Phys. 11, 3303–3318 (N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson) 2011 (45).

[108] Secondary organic aerosol coating of synthetic metal-oxide nanoparticles. Environ. Sci. Technol. 45, 4689–4695 (J. Lee and N. M. Donahue) 2011 (1).

[107] Adventures in ozoneland: Down the rabbit-hole. Physical Chemistry Chemical Physics 13, 10848– 10857 (N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll) 2011 (14).


[106] Water content of aged aerosol. Atmos. Chem. Phys. 11, 911–920 (G. J. Engelhart, L. Hildebrandt, E. Kostenidou, N. Mihalopoulos, N. M. Donahue, and S. N. Pandis) 2011 (17).


[105] A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmos. Chem. Phys. 11, 321–343 (C. R. Hoyle, M. Boy, N. M. Donahue, J. L. Fry, M. Glasius, A. Guenther, A. G. Hallar, K. E. Huff Hartz, M. D. Petters, T. Pet¨aj¨a, T. Rosenoern, and A. P. Sullivan) 2011 (38).


[104] Effect of the OH radical scavenger hydrogen peroxide on secondary organic aerosol formation from -pinene ozonolysis. Aerosol Science and Technology 45, 686–690 (K. M. Henry and N. M. Donahue) 2011 (9).


[103] Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nature Chemistry 3, 133–139 (J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. Kessler, M. R. Canagaratna, K. Wilson, K. E. Alteri, L. R.  Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, and D. R. Worsnop) 2011 (97).


[102] 2,3-dimethyl-2-butene (TME) ozonolysis: Pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides. J. Phys. Chem. A 115, 161–166 (G. T. Drozd, J. H. Kroll, and N. M. Donahue) 2011 (12).


[101] Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments. Geophys. Res. Lett. 37, L23801 (L. Hildebrandt, E. Kostenidou, N. Mihalopoulos, D. R. Worsnop, N. M. Donahue, and S. N. Pandis) 2010 (10).


[100] Functionalization vs fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation. Phys. Chem. Chem. Phys. 12, 13975–13982 (H. J. Chacon-Madrid, A. A. Presto, and N. M. Donahue) 2010 (14).


[99] Ozonolysis of cyclic alkenes as surrogates for biogenic terpenes: Primary ozonide formation and decomposition. J. Phys. Chem. A 114, 7509–7515 (S. A. Epstein and N. M. Donahue) 2010 (3).


[98] Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry. Atmospheric Chemistry and Physics 9, 4625–4641 (N. L. Ng, M. R. Canagaratna, Q. Zhang, J. L. Jimenez, J. Tian, I. M. Ulbrich, J. H. Kroll, K. S. Docherty, P. S. Chhabra, R. Bahreini, S. M. Murphy, J. H. Seinfeld, L. Hildebrandt, N. M. Donahue, P. F. DeCarlo, V. A. Lanz, A. S. H. Prevot, E. Dinar, Y. Rudich, and D. R. Worsnop) 2010 (168).


[97] Updating the conceptual model for fine particle mass emissions from combustion systems. J. Am. Waste Manage. Assoc. 60, 1204–1222 (A. L. Robinson, A. P. Grieshop, N. M. Donahue, and S. W. Hunt) 2010 (22).


[96] Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008. Atmos. Chem. Phys. 10, 4167–4186 (L. Hildebrandt, G. J. Englehardt, C. Mohr, E. Kostenidou, V. A. Lanz, A. Bougiatioti, P. F. DeCarlo, A. S. H. Pr´evˆot, U. Baltensperger, N. Mihalopoulos, N. M. Donahue, and S. N. Pandis) 2010 (33).


[95] Aerosol analysis using a thermal-desorption proton-transfer-reaction mass spectrometer (TD-PTRMS): a new approach to study processing of organic aerosols. Atmos. Chem. Phys. 9, 2257–2267 (R. Holzinger, J. Williams, F. Hermann, J. Lelieveld, N. M. Donahue, and T. R¨ockmann) 2010 (24).

[94] Secondary organic aerosol formation from high-NOx photo-oxidation of low volatility precursors: n-alkanes. Environ. Sci. Technol. 44, 2029–2034 (A. A. Presto, M. A. Miracolo, N. M. Donahue, and A. L. Robinson) 2010 (28).


[93] The HOOH UV spectrum: Importance of the transition dipole moment and torsional motion from semi-classical caluclations on an ab-initio potential energy surface. J. Chem. Phys. 132, 084304 (G. T. Drozd, A. Melnichuk, and N. M. Donahue) 2010 (1).


[92] Photo-oxidation of low-volatility organics found in motor vehicle emissions: Production and chemical evolution of organic aerosol mass. Environ. Sci. Technol. 44, 1638–1643 (M. A. Miracolo, A. A. Presto, A. T. Lambe, C. J. Hennigan, N. M. Donahue, J. H. Kroll, D. R.Worsnop, and A. L. Robinson) 2010 (22).


[91] Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics. Atmos. Environ. 44, 597–607 (I. Riipinen, J. R. Pierce, N. M. Donahue, and S. N. Pandis) 2010 (35).


[90] Organic aerosol formation in citronella candle plumes. Air Quality, Atmosphere and Health 3, 131– 137 (M. Bothe and N. M. Donahue) 2010 (2).


[89] A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol. Environ. Sci. Technol. 44, 743–748 (S. A. Epstein, I. Riipinen, and N. M. Donahue) 2010 (25).


[88] Humidity influence on gas-particle phase partitioning of -pinene + ozone secondary organic aerosol. Geophys. Res. Lett. 37, L01802 (N. Prisle, G. J. Engelhart, M. Bilde, and N. M. Donahue) 2010 (14).

[87] Organic aerosol speciation: Intercomparison of thermal desorption aerosol GC/MS (TAG) and filterbased techniques. Aerosol Sci. Technol. 44, 141–151 (A. T. Lambe, H. J. Chacon-Madrid, N. T. Nguyen, E. A. Weitkamp, N. M. Kreisberg, S. V. Hering, A. H. Goldstein, N. M. Donahue, and A. L. Robinson) 2010 (3).

[86] Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Pr´evˆot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. D. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I.Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, C. E. Kolb, U. Baltensperger, and D. R. Worsnop) 2009 (532).


[85] Effective rate constants and uptake coefficients for the reactions of organic molecular markers (nalkanes, hopanes and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals. Environ. Sci. Technol. 43, 8794–8800 (A. T. Lambe, M. A. Miracolo, C. J. Hennigan, A. L. Robinson, and N. M. Donahue) 2009 (40).


[84] High time resolved measurements of organic air toxics in different source regimes. Atmos. Environ. 43, 6205–6217 (J. L. Logue, K. E. Huff Hartz, A. T. Lambe, N. M. Donahue, and A. L. Robinson) 2009 (6).


[83] Mixing and phase partitioning of primary and secondary organic aerosols. Geophys. Res. Lett. 36, L15827 (A. Asa-Awuku, M. A. Miracolo, J. H. Kroll, A. L. Robinson, and N. M. Donahue) 2009 (14).


[82] The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics 10, 5155–5236 (M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J.  Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler- Scharr, W. Maenhaut, G. McFiggans, T. F. Mentel, A. Monod, A. S. H. Pr´evˆot, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, and J. Wildt) 2009 (600).


[81] High formation of secondary organic aerosol from the photo-oxidation of toluene. Atmos. Chem. Phys. 9, 2973–2986 (L. Hildebrandt, N. M. Donahue, and S. N. Pandis) 2009 (57). [80] Reactivity of oleic acid in organic particles: changes in oxidant uptake and reaction stoichiometry with particle oxidation. Phys. Chem. Chem. Phys. 11, 7951–7962 (A. M. Sage, A. L. Robinson, and N. M. Donahue) 2009 (10).


[79] Apportioning black carbon to sources using highly time-resolved ambient measurements of organic molecular markers in Pittsburgh. Atmos. Environ. 43, 3941–3950 (A. T. Lambe, J. M. Logue, N. M. Kreisberg, S. V. Hering, D. R. Worton, A. H. Goldstein, N. M. Donahue, and A. L. Robinson) 2009 (10).


[78] Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: Mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy. Phys. Chem. Chem. Phys. 11, 7810–7818 (C. S. Maksymiuk, C.  Gayathri, R. R. Gil, and N. M. Donahue) 2009 (20).


[77] Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: Analysis of Aerosol Mass Spectrometer data. Atmos. Chem. Phys. 8, 2227–2240 (A. P. Grieshop, N. M. Donahue, and A. L. Robinson) 2009 (54).


[76] Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements. Environ. Sci. Technol. 43, 4750–4756 (A. P. Grieshop, M. A. Miracolo, N. M. Donahue, and A. L. Robinson) 2009 (38).


[75] Intermediate-volatility organic compounds: A potential source of ambient oxidized organic aerosol. Environ. Sci. Technol. 43, 4744–4749 (A. A. Presto, M. A. Miracolo, N. M. Donahue, A. L. Robinson, J. H. Kroll, and D. R. Worsnop) 2009 (32).


[74] Rate constants of nine C6-C9 alkanes with OH from 230-379 K: Chemical tracers for [OH]. J. Phys. Chem. A 113, 5030–5038 (M. M. Sprengnether, K. L. Demerjian, T. J. Dransfield, J. S. Clarke, J. G. Anderson, and N. M. Donahue) 2009 (4).


[73] Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution. Atmos. Chem. Phys. 8, 1263–1277 (A. P. Grieshop, J. M. Logue, N. M. Donahue, and A. L. Robinson) 2009 (106).


[72] Atmospheric organic particulate matter: From smoke to secondary organic aerosol. Atmos. Environ. 43, 94–106 (N. M. Donahue, A. L. Robinson, and S. N. Pandis) 2009 (82).


[71] The kinetics of tetramethylethene ozonolysis: Decomposition of the primary ozonide and subsequent product formation in the condensed phase. J. Phys. Chem. A 112, 13535–13541 (S. A. Epstein and N. M. Donahue) 2008 (16).


[70] Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model. Atmos. Environ. 42, 7439–7451 (T. E. Lane, N. M. Donahue, and S. N. Pandis) 2008 (73).


[69] Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust. Environ. Sci. Technol. 42, 7950–7956 (E. A. Weitkamp, A. T. Lambe, N. M. Donahue, and A. L. Robinson) 2008 (32).


[68] Constraining particle evolution from wall losses, coagulation, and condensation-evaporation in smogchamber experiments: optimal estimation based on size distribution measurements. Aerosol Sci. Technol. 42, 1001–1015 (J. R. Pierce, G. J. Engelhart, L. Hildebrandt, E. A. Weitkamp, R. K. Pathak,S. N. Pandis, N. M. Donahue, A. L. Robinson, and P. J. Adams) 2008 (18).


[67] Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. J. Geophys. Res. A 113, D18301 (M. K. Shrivastava, T. E. Lane, N. M. Donahue, S. N. Pandis, and A. L. Robinson) 2008 (48).


[66] Effect of NOx on secondary organic aerosol concentrations. Environ. Sci. Technol. 42, 6022–6027 (T. E. Lane, N. M. Donahue, and S. N. Pandis) 2008 (30).


[65] Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for meat cooking emissions. Environ. Sci. Technol. 42, 5177–5182 (E. A. Weitkamp, K. E. Huff Hartz, A. M. Sage, N. M. Donahue, and A. L. Robinson) 2008 (11).


[64] Ozonolysis of-pinene: Temperature dependence of secondary organic aerosol mass fraction. Environ. Sci. Technol. 42, 5081–5086 (R. K. Pathak, N. M. Donahue, and S. N. Pandis) 2008 (16).


[63] Parameterization of secondary organic aerosol mass fractions from smog chamber data. Atmos. Environ. 42, 2276–2299 (C. O. Stanier, N. M. Donahue, and S. N. Pandis) 2008 (26).


[62] Evolving mass spectra of the oxidized component of organic aerosol: Results from Aerosol Mass Spectrometer analyses of aged diesel emissions. Atmos. Chem. Phys. 8, 1139–1152 (A. M. Sage, E. A. Weitkamp, A. L. Robinson, and N. M. Donahue) 2008 (41).


[61] Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ. Sci. Technol. 41, 6969–6975 (E. A. Weitkamp, A. M. Sage, J. R. Pierce, N. M. Donahue, and A. L. Robinson) 2007 (61).


[60] Ozonolysis of -pinene: Parameterization of secondary organic aerosol mass fraction. Atmos. Chem. Phys. 7, 3811–3821 (R. K. Pathak, A. A. Presto, T. E. Lane, C. O. Stanier, N. M. Donahue, and S. N. Pandis) 2007 (54).


[59] Insights into the primary-secondary and regional-local contributions to organic aerosol and PM2.5 mass in Pittsburgh, Pennsylvania. Atmos. Environ. 41, 7414–7433 (R. Subramanian, N. M. Donahue, A. Bernardo-Bricker, W. F. Rogge, and A. L. Robinson) 2007 (30).


[58] Is the gas-particle partitioning in -pinene secondary organic aerosol reversible? Geophys. Res. Lett. 34, L14810 (A. P. Grieshop, N. M. Donahue, and A. L. Robinson) 2007 (47).


[57] Secondary organic aerosol from limona ketone: Insights into terpene ozonlysis via synthesis of key intermediates. Phys. Chem. Chem. Phys. 10, 2991–2998 (N. M. Donahue, J. E. Tischuk, B. J. Marquis, and K. E. Huff Hartz) 2007 (16).


[56] Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 315, 1259– 1263 (A. L. Robinson, N. M. Donahue, M. K. Shrivastava, A. M. Sage, E. A. Weitkamp, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis) 2007 (484).


[55] Controlled OH radical production via ozone-alkene reactions for use in aerosol aging studies. Environ. Sci. Technol. 41, 2357–2363 (A. T. Lambe, J. Zhang, A. M. Sage, and N. M. Donahue) 2007 (43).


[54] Ozonolysis of -pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields). J. Geophys. Res. 112, D03201 (R. K. Pathak, C. O. Stanier, N. M. Donahue, and S. N. Pandis) 2007 (48).


[53] Laboratory measurements of the oxidation kinetics of organic aerosol mixtures using a relative rate constants approach. J. Geophys. Res. 112, D04204 (K. E. Huff Hartz, E. A. Weitkamp, A. M. Sage, N. M. Donahue, and A. L. Robinson) 2007 (17).


[52] Aging of organic aerosol: bridging the gap between laboratory and field studies. Annual Reviews of Physical Chemistry 58, 321–352 (Y. Rudich, N. M. Donahue, and T. F. Mentel) 2007 (183).


[51] Source apportionment of molecular markers and organic aerosol – 3. Food cooking emissions. Environ. Sci. Technol. 40, 7820–7827 (A. L. Robinson, R. Subramanian, N. M. Donahue, A. Bernardo- Bricker, and W. F. Rogge) 2006 (57).


[50] Source apportionment of molecular markers and organic aerosol – 2. Biomass smoke. Environ. Sci. Technol. 40, 7811–7819 (A. L. Robinson, R. Subramanian, N. M. Donahue, A. Bernardo-Bricker, and W. F. Rogge) 2006 (47).


[49] Source apportionment of molecular markers and organic aerosol – 1. Polycyclic aromatic hydrocarbons and methodology for data visualization. Environ. Sci. Technol. 40, 7803–7810 (A. L. Robinson, R. Subramanian, N. M. Donahue, A. Bernardo-Bricker, and W. F. Rogge) 2006 (53).


[48] Contribution of motor vehicle emissions to organic carbon and fine particle mass in Pittsburgh, Pennsylvania: Effects of varying source profiles and seasonal trends in ambient marker concentrations. Atmos. Environ. 40, 8002–8019 (R. Subramanian, N. M. Donahue, A. Bernardo-Bricker, W. F. Rogge, and A. L. Robinson) 2006 (42).


[47] Secondary organic aerosol formation from limonene ozonolysis: Homogeneous and heterogeneous influences as a function of NOx. J. Phys. Chem. A 110, 11053–11063 (J. Zhang, K. E. Huff Hartz, S. N. Pandis, and N. M. Donahue) 2006  (58).


[46] Constraining the mechanism and kinetics of OH + NO2 and HO2 + NO using the multiple-well master equation. J. Phys. Chem. A 110, 6898–6911 (J. Zhang and N. M. Donahue) 2006 (13).


[45] Investigation of -pinene + ozone secondary organic aerosol formation at low total aerosol mass. Environmental Science & Technology 40, 3536–3543 (A. A. Presto and N. M. Donahue) 2006 (74).


[44] The temperature-dependence of rapid low temperature reactions: Experiment, understanding and prediction. Faraday Disc. 133, 137–156 (I.W. M. Smith, A. M. Sage, N. M. Donahue, E. Herbst, and I. H. Park) 2006 (49).


[43] Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environmental Science & Technology 40, 2635 – 2643 (N. M. Donahue, A. L. Robinson, C. O. Stanier, and S. N. Pandis) 2006 (265).


[42] Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context. J. Geophys. Res. 111, D03302 (A. L. Robinson, N. M. Donahue, and W. F. Rogge) 2006 (69).


[41] Cloud condensation nuclei activation of limited solubility organic aerosol. Atmos. Environ. 40, 605– 617 (K. E. Huff Hartz, J. E. Tischuk, M. N. Chan, C. K. Chan, N. M. Donahue, and S. N. Pandis) 2006 (36).


[40] Deconstructing experimental rate constant measurements: Obtaining intrinsic reaction parameters, kinetic isotope effects, and tunneling coefficients from kinetic data for OH + methane, ethane and cyclohexane. J. Photochem. Photobio.  176, 238–249 (A. M. Sage and N. M. Donahue) 2005 (4).


[39] Secondary organic aerosol production from terpene ozonolysis: 2. Effect of NOx concentration. Environmental Science & Technology 39, 7046–7054 (A. A. Presto, K. E. Huff Hartz, and N. M. Donahue) 2005 (106).


[38] Secondary organic aerosol production from terpene ozonolysis: 1. Effect of UV radiation. Environ. Sci. Technol. 39, 7036–7045 (A. A. Presto, K. E. Huff Hartz, and N. M. Donahue) 2005 (73).


[37] Critical factors determining the variation in SOA yields from terpene ozonolysis: A combined experimental and computational study. Faraday Disc. 130, 295–309 (N. M. Donahue, K. E. Huff Hartz, B. Chuong, A. A. Presto, C. O. Stanier, T.  Rosenørn, A. L. Robinson, and S. N. Pandis) 2005 (48).


[36] Competitive oxidation in atmospheric aerosols: The case for relative kinetics. Geophys. Res. Lett. 32, L16805 (N. M. Donahue, A. L. Robinson, K. E. Huff Hartz, A. M. Sage, and E. A. Weitkamp) 2005 (12).


[35] Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol. J. Geophys. Res. 110, D14208 (K. E. Huff Hartz, T. Rosenørn, S. R. Ferchak, T. M. Raymond, M. Bilde, N. M. Donahue, and S. N. Pandis) 2005 (53).


[34] Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions. J. Geophys. Res. 110, D07S07 (D. B. Millet, N. M. Donahue, S. N. Pandis, A. Polidori, C. O. Stanier, B. J. Turpin, and A. H. Goldstein) 2005 (49).


[33] On the mechanism for nitrate formation via the peroxy radical + NO reaction. J. Phys. Chem. A 108, 9082–9095 (J. Zhang, T. J. Dransfield, and N. M. Donahue) 2004 (45).


[32] Ozonolysis fragment quenching by nitrate formation: The pressure dependence of prompt OH radical formation. J. Phys. Chem. A 108, 9096–9104 (A. A. Presto and N. M. Donahue) 2004 (24).


[31] Cycloalkene ozonolysis: Collisionally mediated mechanistic branching. J. Am. Chem. Soc. 126, 12363–12373 (B. Chuong, J. Zhang, and N. M. Donahue) 2004 (30).


[30] Fitting multiple datasets in kinetics: n-butane + OH ! products. Int. J. Chem. Kin. 36, 259–272 (N. M. Donahue and J. S. Clarke) 2004 (6).


[29] Hydrogen and helium pressure broadening of water transitions in the 380-600 cm−1 region. Journal of Quantitative Spectroscopy & Radiative Transfer 83, 183–191 (D. W. Steyert, W. F. Wang, J. M. Sirota, N. M. Donahue, and D. C. Reuter) 2004 (5).


[28] Reaction barriers: Origin and evolution. Chem. Rev. 103, 4593–4604 (N. M. Donahue) 2003 (29).


[27] Product analysis of the OH oxidation of isoprene and 1,3-butadiene in the presence of NO. J. Geophys. Res. A 107, 4268 (M. M. Sprengnether, K. L. Demerjian, N. M. Donahue, and J. G. Anderson) 2002 (4).


[26] Gas-phase ozonolysis of alkenes: formation of OH from anti carbonyl oxides. J. Am. Chem. Soc. 124, 8518–8519 (J. H. Kroll, V. J. Cee, N. M. Donahue, K. L. Demerjian, and J. G. Anderson) 2002 (43).


[25] Pressure broadening coefficients of rotational transitions of water in the 380-600 cm−1 range. Journal of Quantitative Spectroscopy & Radiative Transfer 72, 775–782 (D. W. Steyert, W. F. Wang, D. C. Reuter, M. Sirota, and N. M. Donahue) 2002 (12).


[24] Accurate, direct measurements of OH yields from gas-phase ozone-alkene reactions using an in situ LIF instrument. Geophys. Res. Lett. 28, 3863–3866 (J. H. Kroll, T. F. Hanisco, N. M. Donahue, K. L. Demerjian, and J. G. Anderson) 2001 (25).


[23] Mechanism of HOx formation in the gas-phase ozone-alkene reaction: 2. Prompt versus thermal dissociation of carbonyl oxides to form OH. J. Phys. Chem. A 105, 4446–4457 (J. H. Kroll, S. R. Shahai, J. Anderson, K. L. Demerjian, and N. Donahue) 2001 (93).


[22] Revisiting the Hammond postulate: The role of reactant and product ionic states in regulating barrier heights, locations, and frequencies. J. Phys. Chem. A 105, 1489–1497 (N. M. Donahue) 2001 (39).


[21] Near-field influence on barrier evolution in symmetric atom transfer reactions: A new model for two-state mixing. J. Phys. Chem. A 105, 1498–1506 (H. A. Rypkema, N. M. Donahue, and J. G. Anderson) 2001 (10).


[20] High pressure flow reactor product study of the reactions of HOx + NO2: The role of vibrationally excited intermediates. J. Phys. Chem. A 105, 1507–1514 (T. J. Dransfield, N. M. Donahue, and J. G. Anderson) 2001 (26).


[19] Constraining the mechanism of OH + NO2 using isotopically labeled reactants: Experimental evidence for HOONO formation. J. Phys. Chem. A 105, 1515–1520 (N. M. Donahue, R. Mohrschladt, T. J. Dransfield, J. G. Anderson, and M. K. Dubey) 2001 (42).


[18] Mechanism of HOx formation in the gas-phase ozone-alkene reaction: 1. Direct, pressure-dependent measurements of OH yields. J. Phys. Chem. A 105, 1554–1560 (J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian) 2001 (84).


[17] An experimental method for testing reactivity models: A high-pressure discharge-flow study of H + alkene and haloalkene reactions. J. Phys. Chem. A 104, 5254 – 5264 (J. S. Clarke, J. H. Kroll, H. A. Rypkema, N. M. Donahue, and J. G. Anderson) 2000 (8).


[16] Multiple excited states in a two-state crossing model: Predicting barrier height evolution for H plus alkene addition reactions. J. Phys. Chem. A 104, 4458 – 4468 (J. S. Clarke, H. A. Rypkema, J. H. Kroll, N. M. Donahue, and J. G. Anderson) 2000 (24).


[15] Fourier transform ultraviolet spectroscopy of the A23/2 X23/2 transition of BrO. J. Phys. Chem. A 103, 8935–8945 (D. M. Wilmouth, T. F. Hanisco, N. M. Donahue, and J. G. Anderson) 1999 (95).


[14] Temperature and pressure dependent kinetics of the gas-phase reaction of the hydroxyl radical with nitrogen dioxide. Geophys. Res. Lett. 26, 687–690 (T. J. Dransfield, K. K. Perkins, N. M. Donahue, J. G. Anderson, M. M. Sprengenther, and K. L.  Demerjian) 1999 (54).


[13] Testing frontier orbital control: Kinetics of OH with ethane, propane, and cyclopropane from 180 to 360 K. J. Phys. Chem. A 102, 9847–9857 (J. S. Clarke, J. H. Kroll, N. M. Donahue, and J. G. Anderson) 1998 (49).


[12] Predicting radical-molecule barrier heights: The role of the ionic surface. Journal of Physical Chemistry A 102, 3923–3933 (N. M. Donahue, J. S. Clarke, and J. G. Anderson) 1998 (66).


[11] New rate constants for ten OH alkane reactions from 300 to 400 K: An assessment of accuracy. J. Phys. Chem. A 102, 3121–3126 (N. M. Donahue, K. L. Demerjian, and J. G. Anderson) 1998 (54).


[10] Direct observation of OH production from the ozonolysis of olefins. Geophys. Res. Lett. 25, 59–62 (N. M. Donahue, J. H. Kroll, J. G. Anderson, and K. L. Demerjian) 1998 (102).


[9] Comment on: “The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN field campaign,” by Hofzumahaus et al., and “Intercomparison of tropospheric OH radical measurements by multiple folded long path laser absorption and laser induced fluorescence,” by Brauers et al. Geophys. Res. Lett. 24, 3039–3038 (E. J. Lanzendorf, T. R. Hanisco, N. M. Donahue, and P. O. Wennberg) 1997 (25).


[8] High-pressure flow study of the reactions OH + NOx ! HONOx: Errors in the falloff region. Journal of Geophysical Research Atmospheres 102, 6159–6168 (N. M. Donahue, M. K. Dubey, R. Mohrschladt, K. L. Demerjian, and J. G. Anderson) 1997 (80).


[7] Isotope specific kinetics of hydroxyl radical (OH) with water (H2O): Testing models of reactivity and atmospheric fractionation. J. Phys. Chem. A 101, 1494–1500 (M. K. Dubey, R. Mohrschladt, N. M. Donahue, and J. G. Anderson) 1997 (71).


[6] Reaction modulation spectroscopy: A new approach to quantifying reaction mechanisms. J. Phys. Chem. 100, 17855–17861 (N. M. Donahue, K. L. Demerjian, and J. G. Anderson) 1996 (16).


[5] Free-radical kinetics at high pressure: A mathematical analysis of the flow reactor. J. Phys. Chem. 100, 5821–5838 (N. M. Donahue, J. S. Clarke, K. L. Demerjian, and J. G. Anderson) 1996 (42).


[4] Ozone observations and a model of marine boundary layer photochemistry during SAGA 3. J. Geophys. Res. 98, 16955–16968 (A. M. Thompson, J. E. Johnson, A. L. Torres, T. S. Bates, K. C. Kelly, E. Atlas, J. P. Greenberg, N. M. Donahue, S. A. Yvon, E. S. Saltzman, B. G. Heikes, B. W. Mosher, A. A. Shashkov, and V. I. Yegorov) 1993 (101).


[3] In situ nonmethane hydrocarbon measurements on SAGA 3. J. Geophys. Res. 98, 16915–16932 (N. M. Donahue and R. G. Prinn) 1993 (61).


[2] Nonmethane hydrocarbon chemistry in the remote marine boundary layer. J. Geophys. Res. 95, 18387–18411 (N. M. Donahue and R. G. Prinn) 1990 (77).


[1] Relationship between peroxyacetyl nitrate (PAN) and nitrogen oxides in the clean troposphere. Nature 318, 347–349 (H. L. Singh, L. J. Salas, B. A. Ridley, J. D. Shetter, N. M. Donahue, F. C. Fehsenfeld, D. W. Fahey, D. D. Parish, E. J. Williams, S. C. Liu, G. H¨ubler, and P. C. Murphy) 1985 (80).