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The van der Waals equation is the best known example of an equation of state that exhibits a
first-order phase transition with a critical end point. Since clearly the pressure remains a mono-
tonic function of the volume in experiment, the van der Waals equation is amended by a Maxwell
construction, in which the famous “equal area” cut of the van der Waals loop replaces that loop.
This equal area construction is equivalent to replacing the corresponding van der Waals Helmholtz
free energy by its convex envelope. In fact, the relation between these two, as well as the associated
Gibbs free energy, is also the perfect example and opportunity to understand how typical features
of phase transitions appear in thermodynamic potentials and their Legendre transforms.

I. SCALED SPECIFIC FREE ENERGY

The Helmholtz free energy of the van der Waals gas can
be written as follows:

F (T, V,N) = −NkBT

[

1 + log
(V −Nb′)T 3/2

Nc′

]

−
a′N2

V
,

(1)
where a′, b′, and c′ are constants (i.e., independent of T ,
V , and N). We will first re-express this equation in the
following way:

1. Volume and free energy are divided by N , thus
making them intensive. In other words, we revert
to specific volume and a specific free energy:

V → v = V/N , (2a)

F → f = F/N . (2b)

2. We know that the van der Waals equation has a
critical point. We will measure temperature in
units of the critical temperature Tc, specific free en-
ergy in units of kBTc, and specific volume in units
of the critical specific volume vc:

T → T̃ = T/Tc , (3a)

f → f̃ = f/kBTc , (3b)

v → ṽ = v/vc . (3c)

To accomplish these replacements, we also need to
know (or check for ourselves—see below) that Vc =
3b′ and kBTc = 8a′/27b′.

after these replacements we find

f̃(T̃ , ṽ) = −T̃

[

1 + log
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3
)T̃ 3/2
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]
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8ṽ
, (4)

with a new (dimensionless) constant c′′. Changing its

numerical value adds a term proportional to T̃ to the
specific free energy, and hence proportional to T̃N to
the free energy. Since in the following we will only be
interested in derivatives with respect to volume, we can
set c′′ ≡ 1 without any effects.

The scaled pressure p̃ := p/pc := 8pvc/3kBTc is now

p̃ = −
8

3

(

∂f̃

∂ṽ

)

T̃

=
8 T̃

3ṽ − 1
−

3

ṽ2
(5)

To check whether we got the critical point right, let us
calculate

∂p̃

∂ṽ
= −

24T̃

(1− 3ṽ)2
+

6

ṽ3
, (6a)

∂2p̃

∂ṽ2
= −

144T̃

(1− 3ṽ)3
−

18

ṽ4
. (6b)

At the critical point we must have ∂p̃
∂ṽ = ∂2p̃

∂ṽ2 = 0,

which immediately gives ṽc = t̃c = 1, as we have ar-
ranged. This also shows that at the critical point we have
p̃c = p̃(1, 1) = 1, thus explaining the extra factor 8

3
we

introduced above in the definition of the scaled pressure.

II. SCALED GIBBS FREE ENERGY

The specific Gibbs free energy follows from the specific
Helmholtz free energy via a Legendre transformation:

g̃(T̃ , p̃) = min
ṽ

{

f̃(T̃ , ṽ) + p̃ṽ
}

. (7)

This always works, even when for T̃ < T̃c = 1 the
Helmholtz free energy ceases to be a convex function
of the specific volume by developing a local concave
“bump”. It is precisely this bump which gives rise to
the van der Waals loop in the pressure, and replacing f̃
by its convex envelope is equivalent to the well-known
equal-area Maxwell construction—as can be seen as fol-
lows: If the Maxwell loop starts at ṽ1 and ends at ṽ2,
p̃ = −∂f̃/∂ṽ implies

0 =

∫ ṽ2

ṽ1

dṽ
[

p̃(ṽ)− p̃eq
]

⇒ −p̃eq =
f̃(ṽ2)− f̃(ṽ1)

ṽ2 − ṽ1
. (8)

Since p̃eq = p̃(ṽ1,2) = −∂f̃/∂ṽ|1,2, this condition shows
that the equal-area construction on p̃(ṽ) is equivalent to

a double tangent construction on f̃(ṽ), i.e., making f̃(ṽ)
convex.
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FIG. 1. This triple-plot links the specific Helmholtz
free energy f̃(ṽ), the pressure p̃(ṽ) and the spe-
cific Gibbs free energy g̃(p̃) for the van der Waals

gas at a particular temperature T̃ = 0.75 below
the critical point. Notice that the double tangent
construction on f̃(ṽ) translates to the Maxwell con-
struction in p̃(ṽ), which again translates to the kink

in g̃(p̃). The part in f̃(ṽ) which is eliminated by
the double tangent construction (the non-convex
bit) corresponds to the bow-tie attached to g̃(p̃)
at the kink, which is eliminated by the “min” pre-
scription in the Legendre transform. The blue lines
therefore indicate the binodal of the phase transi-
tion; the red lines correspond to the (mean field)

spinodal, at which the second derivative of f̃(ṽ)
(and hence the compressibility) turns negative (or,
equivalently, the second derivative of the “hidden”
piece of g̃(p̃) turns positive).
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We know that the Legendre transform g̃(p̃) will be
concave even if the function we started with does not
necessarily have a positive second derivative everywhere.
In fact, we know that if we were to replace f̃(ṽ) by its
convex envelope we would get the same Legendre trans-
form. Moreover, the Legendre transform of a linear re-

gion transforms into a kink (and vice versa!), and all
the non-convexity vanishes from the description. Where
does it go? It is eliminated by the “min” procedure lead-
ing to the definition of g̃, and hence we do lose infor-
mation if we Legendre transform functions that are not
fully convex (or fully concave). However, we can illus-
trate where it is “hiding”: take the definition of the Leg-
endre transform and write it parametrically in the follow-

ing way: Each pair {p̃ , g̃(p̃)} can evidently be written as

{−∂f̃
∂ṽ , f̃(ṽ)− ∂f̃

∂ṽ ṽ}, which can be viewed as a parametric

representation of the graph of g̃(p̃) with ṽ as the parame-
ter. Plotting this, we see that—without insisting on tak-
ing the minimum value—the locally non-convex pieces in
f̃(ṽ) reappear as a curiously shaped “bow-tie” attached
to the graph of the proper Legendre transform. The two
pieces where f̃(ṽ) already deviates from its convex en-
velop but still has a positive derivative simply continue
the two branches of the graph of g̃(p̃) on both sides of the

kink. The piece in f̃(ṽ) where even the second derivative
is negative connects these two extensions via two cusps.
All of this is jointly illustrated in Fig. 1.


