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The uncertainty principle substantiates the notion of incompatibility between two observables by bounding
the product of their variations from below by means of the commutator. The correlation coefficient between the
observables can be used to obtain an even stronger version.

PRELIMINARIES

Quantummechanical observables are represented by self-
adjoint operators (on some Hilbert space). Quantummechani-
cal states correspond to self-adjoint operators which are ad-
ditionally positive and have trace 1: W † = W ≥ 0 and
Tr(W ) = 1 (since probabilities are positive and normalized to
unity). Moreover, pure states are even projectors (W 2 = W ),
expressible via statevectors |ψ〉: W = |ψ〉〈ψ|. The more gen-
eral mixed states are convex combinations of pure states.

The operation of forming the trace defines a scalar product
on the Hilbert space (A;B) := Tr(A†B). The expectation
value of an observable A in a state W is given by 〈A〉W :=
Tr(AW ) = (A;W ). Most often the label W in 〈A〉W is left
out.

VARIATION AND CORRELATION

The variation ∆A of an observable A (in a state W ) is de-
fined as

∆A :=

√
〈

(A− 〈A〉)
2
〉

. (1)

The correlation coefficient cAB of two observables A and B
is defined by

cAB :=
〈 1

2
(AB +BA)〉 − 〈A〉〈B〉

∆A∆B
. (2)

Since generallyA and B need not commute, the symmetrized
expression is used in the nominator. Otherwise this definition
corresponds exactly to the usual one: covariance divided by
the product of the variations. One always has |cAB | ≤ 1.

CAUCHY-SCHWARZ SAVES THE DAY

Let now A and B be two observables and W a state. We’ll
first study the special case 〈A〉 = 〈B〉 = 0. For the square of
the variation of A we have
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Here, 1 follows from Eqn. (1) and 〈A〉 = 0, 2 from the def-
inition of the expectation value, 3 from the fact that you can
take the square root from a positive operator, 4 from the cyclic
invariance of the trace, 5 from the self-adjointness of A and
W , and finally 6 from the definition of the scalar product.

For the product of the squared variations of A and B we
therefore get
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At the crucial step 7 the Cauchy-Schwarz inequality has been
used, which holds for positive semi-definite scalar products.
Again, 8 is the definition of this scalar product and 9 follows
by performing the steps 2, 3, 4 and 5 in reverse order.

THE UNCERTAINTY RELATION

Let us now rewrite the expression |〈AB〉|2:
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Since A and B are Hermitian, so is AB + BA, and its ex-
pectation value must be real. However, AB − BA is anti-
hermitian, with a purely imaginary expectation value. Hence,
the modulus-squared can be simplified to
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At 10 the definition of the commutator [A,B] := AB − BA

and the correlation coefficient from Eqn. (2) have been in-
serted. Together with the inequality (4) this gives
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|〈[A,B]〉|2 ≤ (∆A∆B)2 (1 − c2AB) , (7)

and by taking the square root one finally obtains a
strong version of the uncertainty relation:
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This inequality provides a lower bound to the product of
the variations of two observables A and B. The commutator
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thus proves to be a suitable measure of incompatibility. If
the observables commute, the right hand side is zero and the
bound is trivial. Indeed, in this case both observables can both
be measured exactly, since the corresponding operators can be
diagonalized simultaneously.

Remarkably, for 100% correlated (or anticorrelated) ob-
servables (i.e. cAB = ±1) the left hand side of (8) vanishes.
Since the right hand side is clearly nonnegative, the expecta-
tion value of the commutator must thus vanish.

Notice that from (7) we also obtain
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which for [A,B] 6= 0 is a nontrivial bound for the correlation
coefficient.

The presented uncertainty relation remains valid for ob-
servables with a nonvanishing expectation value, i.e. for non-
centered observables which do not satisfy 〈A〉 = 〈B〉 = 0.
This can be seen in the following way: Since A′ := A − 〈A〉
and B′ := B − 〈B〉 are centered by construction, the un-
certainty relation (8) holds for them. However, ∆A′ = ∆A
and ∆B′ = ∆B; also, [A′, B′] = [A,B] and cA′B′ = cAB .
Therefore the general uncertainty relation follows directly
from the one specialized to centered observables – essentially
by leaving out the primes.

THE SIMPLER RELATION

The inequality (8) can be softened a bit (but thus made
considerably more handy): Since |cAB | ≤ 1, we also have

0 ≤
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AB

≤ 1, and therefore the left hand side of (8)
can be be further bounded by
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Evidently both inequalities coincide for cAB = 0 (i.e. for un-
correlated observables).

FINALLY: THE UNCERTAINTY PRINCIPLE

Many textbooks only treat the very special case A = P

(momentum) and B = Q (position). Since [P,Q] = −i~,
relation (10) then yields Heisenberg’s traditional uncertainty
principle:

∆P ∆Q ≥
~

2
. (11)
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