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There are two qualitatively different ways in which we could try to achieve equidistribution of
points on a surface. One is to randomly place them in such a way that the probability of ending
up in some particular region is proportional to the area of that region (two-dimensional Poisson
statistics). This gives equidistribution on average. The second is to regularly place points such
that their distance in two orthogonal directions is locally always the same. This gives typically a
better result (no fluctuations and no accidental overlap), but the emerging partial crystallinity could
sometimes be undesirable. For the case of a sphere an example for both strategies is presented.

I. SPHERICAL COORDINATES

The most straightforward way to create points on the
surface of a sphere are classical spherical coordinates, in
which a point is addressed via its two angular coordi-
nates, the polar angle ϑ ∈ [0; π] and the azimuthal angle
ϕ ∈ [0, 2π]. If the sphere has radius r, the Cartesian
coordinates of that point are given by
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 . (1)

II. RANDOM PLACEMENT

When one wants to evenly place points on the sur-
face of a sphere, it is important to realize that it is not

correct to simply choose the spherical angles ϑ and ϕ
equidistributed from their permissible intervals. In order
to find out what has to be done instead, it is helpful to
have a look back at the area element. Notice that it can
be written as

dA = r2 sinϑ dϑ dϕ = r d(r cosϑ) dϕ = r dz dϕ . (2)

We thus see that it is correct to choose ϕ equidistributed
from [0; 2π] and to also choose z equidistributed from
[−r; r]. This then gives the following algorithm for plac-
ing N randomly equidistributed points on the surface of
a sphere of radius r:

repeat N times {
Choose z equidistributed from [−r; r].
Choose ϕ equidistributed from [0; 2π].

Set x =
√

r2 − z2 cosϕ.
Set y =

√
r2 − z2 sin ϕ.

}

The result of such an algorithm is illustrated in Fig. 1a.

III. REGULAR PLACEMENT

Regular equidistribution can be achieved by choosing
circles of latitude at constant intervals dϑ and on these
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FIG. 1: Illustration of the two algorithms for putting points
equidistributed onto the surface of a sphere discussed in these
notes. In both cases N = 5000, case (a) is the random place-
ment, case (b) the regular one. In the latter the algorithm
actually could only place 4999 points.

circles points with distance dϕ, such that dϑ ' dϕ and
that dϑdϕ equals the average area per point. This then
gives the following algorithm:

Set Ncount = 0.
Set a = 4πr2/N and d =

√
a.

Set Mϑ = round[π/d].
Set dϑ = π/Mϑ and dϕ = a/dϑ.
For each m in 0 . . .Mϑ − 1 do {

Set ϑ = π(m + 0.5)/Mϑ.
Set Mϕ = round[2π sinϑ/dϕ].
For each n in 0 . . .Mϕ − 1 do {

Set ϕ = 2πn/Mϕ.

Create point using Eqn. (1).
Ncount += 1.

}
}

At the end of this algorithm Ncount points have been
placed, with Ncount very close to N . The result of such
an algorithm is illustrated in Fig. 1b.

Note that the regular placement is far more even: nei-
ther local clustering (points almost sitting on top of each

other) nor global
√

N fluctuations occur. For setting up
a liquid state the second algorithm thus appears more
favorable.


