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We present two alternative derivations for the rotation matrix corresponding to a specific rotation
vector. The first is based on simple geometric considerations, the second uses the representation of
a rotation matrix by its infinitesimal generator.

I. GEOMETRIC DERIVATION

Let the vector α describe a rotation in the following
way: The modulus α = |α| describes the rotation an-
gle and the direction describes the rotation axis which
is supposed to pass through the origin of the coordinate
system. Let us denote the corresponding unit vector by
α̂ = α/α. What is the matrix M(α) corresponding to
this rotation?

Fig. 1 shows a sketch from which we can determine this
matrix using geometrical considerations. Let some vector
r be rotated into the vector r

′. We can write r
′ as the

sum of three contributions: Start with r, which leads one
to the circular plane. Next, one moves towards the axis
until one hits the base-point of the vertical which starts
at r

′. Finally, move towards r
′. Let us first determine

the directions of the second and third step. Define the
vector ρ as the radius vector which points from the center
of the circle towards the endpoint of r. Obviously we
have α̂r cos θ + ρ = r. Since cos θ = α̂ · r/r, we have
ρ = r − α̂ α̂ · r. Let us further call the direction of
the second step n̂. Apparently this is in the direction of
the cross-product of the vectors α̂ and r (in this order!).
Thus we have n̂ = α̂ × r/|α̂ × r| = α̂ × r/(r sin θ).

Next we have to know how far to move in steps 2 and 3.
From Fig. 1 we see easily that in step 2 we have to move
a distance ρ(1 − cos α) and in step 3 a distance ρ sin α.
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FIG. 1: Sketch of the geometrical relations that permit the
determination of the rotated vector r′.

Thus we get

r
′ = r − (r − α̂ α̂ · r)(1 − cosα) + α̂ × r sin α

= M(α) r (1)

with the rotation matrix [1]

M(α) = I − (I − α̂ ⊗ α̂)(1 − cos α) + C(α̂) sin α, (2)

and the cross-product-matrix C(α̂) defined by [2]

C(α̂) =





0 −α̂3 α̂2

α̂3 0 −α̂1

−α̂2 α̂1 0



 . (3)

II. ALGEBRAIC DERIVATION

We can also derive the general rotation matrix in an
algebraic way. For this we first define the three generator
matrices Li by

L1 =





0 0 0
0 0 −1
0 1 0



 , L2 =





0 0 1
0 0 0

−1 0 0





and L3 =





0 −1 0
1 0 0
0 0 0



 .

Using the totally antisymmetric epsilon-tensor we can
concisely write this as

(Li)mn = −εimn. (4)

Note that the Li satisfy an angular momentum algebra
[Li, Lj ] = εijkLk. From quantum mechanics we know that
these matrices generate rotations. In fact, they can be
used to very concisely write the rotation matrix:

M(α) = exp{α · L}, (5)

where L = (L1, L2, L3)
>. We now want to evaluate the

exponential function explicitly. For this we first need to
find the even powers of α · L. The (m,n) component of
the square is given by

(α · L)2mn = (α · L)mk(α · L)kn = (αiLi)mk(αjLj)kn

= αiαjεimkεjkn = −αiαj(δijδmn − δinδjm)

= −α2(I − α̂ ⊗ α̂)mn. (6)
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The matrix in brackets is a projector, which means it
reproduces itself upon squaring. Hence we have for all
even powers (α · L)2n = (−1)nα2n(I − α̂ ⊗ α̂) except for
n = 0, where we of course get the identity matrix.

We are now in the position to evaluate the exponential
function:

exp{α · L} =

∞∑

n=0

(α · L)n

n!

=

∞∑

n=0

(α · L)2n

(2n)!
+ α · L

∞∑

n=0

(α · L)2n

(2n + 1)!

= (I − α̂ ⊗ α̂)

∞∑

n=0

(−1)nα2n

(2n)!
+ α̂ ⊗ α̂

+ α̂ · L

[

(I − α̂ ⊗ α̂)
∞∑

n=0

(−1)nα2n+1

(2n + 1)!
+ α̂ ⊗ α

]

= (I − α̂ ⊗ α̂) cos α + α̂ ⊗ α̂

+ α̂ · L

[

(I − α̂ ⊗ α̂) sin α + α̂ ⊗ α

]

. (7)

The second term simplifies further since

(α̂ · L α̂ ⊗ α̂)mn = (α̂iLi)mk(α̂kα̂n) = εimkα̂iα̂nα̂k = 0

by virtue of the usual symmetry-antisymmetry argument.
We thus obtain for the rotation matrix

M(α) = exp{α · L}

= I − (I − α̂ ⊗ α̂)(1 − cos α) + α̂ · L sin α, (8)

which is easily seen to coincide with Eqn. (2), since ob-
viously C(α̂) = α̂ · L.

There is one more check we can do: Calculating the
trace of the rotation matrix:

Tr(M(α)) = Tr(I)
︸ ︷︷ ︸

=3

−Tr(I − α̂ ⊗ α̂)
︸ ︷︷ ︸

=2

(1 − cosα)

+Tr(α̂ · L)
︸ ︷︷ ︸

=0

sin α

= 3 − 2(1 − cos α) = 1 + 2 cos α, (9)

which is the expected result for a rotation matrix with
rotation angle α. (Since the trace is invariant under a
similarity transformation, we can just imagine a simple
rotation about the z-axis with an angle α and we see that
this is true.)

[1] It should be clear from the derivation that M(α) corre-
sponds to an active rotation. The corresponding passive

rotation is given by the inverse matrix M
−1(α) = M(−α).

[2] The matrix C(α̂) has eigenvalues 0, i, and −i. The eigen-
vector corresponding to the eigenvalue 0 is α̂. Since
α̂ × r = C(α̂) r and α̂ × α̂ = 0 this is obvious. The two

other eigenvalues indicate that any vector in the plane or-
thogonal to α̂ is rotated about α̂ by 90◦. Hence, C(α̂) does
something “similar” to a rotation matrix: it combines a
rotation about 90◦ with a projection into the plane per-
pendicular to the rotation axis.


