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We present two alternative derivations for the rotation matrix corresponding to a specific rotation
vector. The first is based on simple geometric considerations, the second uses the representation of

a rotation matrix by its infinitesimal generator.

I. GEOMETRIC DERIVATION

Let the vector a describe a rotation in the following
way: The modulus o = || describes the rotation an-
gle and the direction describes the rotation axis which
is supposed to pass through the origin of the coordinate
system. Let us denote the corresponding unit vector by
& = a/a. What is the matrix M(a) corresponding to
this rotation?

Fig. 1 shows a sketch from which we can determine this
matrix using geometrical considerations. Let some vector
r be rotated into the vector '. We can write r’ as the
sum of three contributions: Start with r, which leads one
to the circular plane. Next, one moves towards the axis
until one hits the base-point of the vertical which starts
at 7. Finally, move towards r’. Let us first determine
the directions of the second and third step. Define the
vector p as the radius vector which points from the center
of the circle towards the endpoint of r. Obviously we
have &rcosf + p = r. Since cosf = & - r/r, we have
p=1—a& &-r. Let us further call the direction of
the second step n. Apparently this is in the direction of
the cross-product of the vectors & and » (in this order!).
Thus we have n = & x r/|& x r| = & x r/(rsinf).

Next we have to know how far to move in steps 2 and 3.
From Fig. 1 we see easily that in step 2 we have to move
a distance p(1 — cosa) and in step 3 a distance psina.

FIG. 1: Sketch of the geometrical relations that permit the
determination of the rotated vector r’.

Thus we get
r =r—(r—é&aaéa-r)(l—cosa)+é&xrsina
= M(a)r (1)

with the rotation matrix [1]
Ma) =T-(I-a®&)(l —cosa)+ C(a)sina, (2)
and the cross-product-matrix C(é&) defined by [2]
0 —da3 &

Cla) = az 0 =41 | (3)
-Gy & 0

II. ALGEBRAIC DERIVATION

We can also derive the general rotation matrix in an
algebraic way. For this we first define the three generator
matrices L; by

00 O 0 01

L, = 00 —1 , Ly = 0 00

01 0 -100
0-10
and L3 = 1 0 0
0 0 O

Using the totally antisymmetric epsilon-tensor we can
concisely write this as

(Lz)mn = —Eimn- (4)

Note that the L; satisfy an angular momentum algebra
[Li, L;] = €ijxLi. From quantum mechanics we know that
these matrices generate rotations. In fact, they can be
used to very concisely write the rotation matrix:

M(a) = exp{e-L}, (5)

where L = (Ly,Lo,L3)". We now want to evaluate the
exponential function explicitly. For this we first need to
find the even powers of « - L. The (m,n) component of
the square is given by

(a-L)2, = (o Ll L = (aili)me(asl;)kn
5in5jm,)
= —*([ - &® &)mn. (6)

= QGOGEimkEjkn = *Oéiaj((sij(smn*



The matrix in brackets is a projector, which means it
reproduces itself upon squaring. Hence we have for all
even powers (a - L)?" = (—=1)"a?"(I — & ® &) except for
n = 0, where we of course get the identity matrix.

We are now in the position to evaluate the exponential
function:

exp{a-L} = Z (- L)®

n!
n=0

> (_1)na2n
(2n)!

= [-a®da&)cosa+ a® &
+d~L{(H—d®d)sina+d®a}. (7)
The second term simplifies further since

by virtue of the usual symmetry-antisymmetry argument.
We thus obtain for the rotation matrix

M(a) = exp{ea-L}
=I1-I-a®&)(1 —cosa)+ &-Lsina, (8)

which is easily seen to coincide with Eqn. (2), since ob-
viously C(&) = & - L.

There is one more check we can do: Calculating the
trace of the rotation matrix:

Tr(M(et)) = 3@7 Tr(l— & ® a)(1 —cosa)
=3 =2
+Tr(&-L)sina
=0

=3-2(1—-cosa) = 1+2cose, (9)

which is the expected result for a rotation matrix with
rotation angle a. (Since the trace is invariant under a
similarity transformation, we can just imagine a simple
rotation about the z-axis with an angle a and we see that
this is true.)

[1] It should be clear from the derivation that M(a) corre-
sponds to an active rotation. The corresponding passive
rotation is given by the inverse matrix M~ (a) = M(—a).

[2] The matrix C(&) has eigenvalues 0, i, and —i. The eigen-
vector corresponding to the eigenvalue 0 is &. Since
a xr =C(&) r and & x & = 0 this is obvious. The two

other eigenvalues indicate that any vector in the plane or-
thogonal to & is rotated about & by 90°. Hence, C(&) does
something “similar” to a rotation matrix: it combines a
rotation about 90° with a projection into the plane per-
pendicular to the rotation axis.



