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Fluid interfaces approach solid surfaces at a particular wetting angle, determined from a balance
between the involved interfacial free energies. This generally implies a deformation of the interface
close to the solid, which is termed “meniscus”. The prototypical case of an asymptotically horizontal
surface in contact with a vertical plane is studied in these notes.

Angle–arc-length description

Consider a straight fluid meniscus as illustrated in
Fig. 1. The interface between two incompressible liquids
of density ρ> and ρ< < ρ> rises at a vertical plane to
an equilibrium height y0, since it wants to establish some
prescribed wetting angle α. We want to derive simple
equations describing the shape of this meniscus.

Far away from the vertical plane the interface is flat,
and there is no pressure difference across it. However,
near the vertical plane the interface has risen a distance
y above the asymptotic level, and a hydrostatic excess
pressure ∆P = (ρ> − ρ<)gy acts on its upper surface
(g is the gravitational acceleration). According to the
Young-Laplace law this excess pressure must equal twice
the interfacial tension σ times the mean curvature of the
surface. Using the parameterization indicated in Fig. 1,
which specifies the angle ψ(s) against the horizontal as
a function of the arc-length s along the profile, the mean
curvature is (up to the purely conventional sign) readily

seen to be 1
2 ψ̇, where the dot indicates a derivative with

respect to s. Choosing the sign such that the excess
pressure acts indeed on the concave side, we arrive at the
following two differential equations for the profile:

ψ̇ = −
y

`2
, (1a)

ẏ = − sinψ , (1b)

where we also introduced the so-called capillary length

` :=

√

σ

g (ρ> − ρ<)
. (2)

For the water-air interface we have σ ' 80mN/m, which
gives ` ' 2.8mm.

From the chain rule we have ψ̇ = dψ
dy ẏ. Eqns. (1a, 1b)

can thus be rewritten as y = `2 dψ
dy sinψ, a single differ-

ential equation which can easily be solved by separation
of variables. Integrating from the asymptotic boundary,
where ψ = 0 and y = 0, we find y2 = 2`2(1 − cosψ).
Hence, as long as 0 ≤ ψ ≤ 2π, we get

y(ψ) = 2` sin
ψ

2
. (3)

At contact we have ψ(s = 0) = ψ0 = π
2 − α, from which

we readily get the height of the meniscus:

y0
`

= 2 sin
π − 2α

4

(

α→0−→
√

2
)

. (4)
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FIG. 1: Parameterization of a simple planar meniscus in terms
of the angle ψ against the horizontal as a function of arc length
s along the profile (s = 0 at contact).

In order to completely solve the shape equations, we dif-
ferentiate Eqn. 3 with respect to s:

−2 sin
ψ

2
cos

ψ

2
= − sinψ

(1b)
= ẏ

(3)
= 2` cos

ψ

2

ψ̇

2
. (5)

This differential equation can again be solved easily by
separation of variables. The solution is

ψ(s) = 4 arctan
[

tan
ψ0

4
e−s/l

]

. (6)

This formula gives the angle ψ(s) of the profile as a func-
tion of the arc-length s. To get the actual position x and
y, one needs to integrate cosψ(s) and − sinψ(s) from the
contact up to the arc-length in question:

x(s)

`
=

s
` cosh s

` + ( s` cos ψ0

2 − (1 − cosψ0)) sinh s
l

cosh s
l + cos ψ0

2 sinh s
`

(7a)

y(s)

`
=

2 sin ψ0

2

cosh s
l + cos ψ0

2 sinh s
`

. (7b)

x versus y

Equations (7a) and (7b) constitute a parametric re-
presentation of the meniscus. If one wishes a description
entirely in terms of x and y, one needs to eliminate s be-
tween them. This is unfortunately a bit tricky, but it can
be accomplished in the following (a bit convoluted) way:
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We first specialize these equations for the case ψ0 = π,
in which case they simplify considerably:

x(s, ψ0 = π)

`
=

s

`
− 2 tanh

s

`
, (8a)

y(s, ψ0 = π)

`
= 2 sech

s

`
. (8b)

In this form Eqn. (8b) can be solved for s, with the result
s
` = arcosh 2`

y . Reinserting into Eqn. (8a) gives

x(y, ψ0 = π)

`
= arcosh

2`

y
− 2

√

1 −
( y

2`

)2

. (9)

At the maximum height y/` =
√

2 (see Eqn. (4)) the

right hand side has the value arcosh
√

2 −
√

2. Hence,
subtracting this value shifts the x position to zero, and
thus describes the profile for a wetting angle of α = 0.
Other profiles are then obtained by simply shifting the
x-coordinate relative to the complete wetting case. After
rewriting arcosh(x) = log

[

x+
√
x2 − 1

]

we find

x(y) − x0

`
= log

2`
y −

√

(

2`
y

)2

− 1
√

2 − 1
−2

√

1 −
( y

2`

)2

+
√

2 .

(10)
Why is this funny trick allowed? Eqn. (6) shows that the
influence of ψ0 on the shape is rather limited: Looking
at ψ(s) over the entire parameter range −∞ < s < +∞
shows that it describes one unique curve, and ψ0 merely
specifies the angle which is reached at the particular pa-
rameter value s = 0. Since we want to eliminate s any-
way, we can choose ψ0 as convenient as we wish, and later
shift the curve to the correct location (thereby also using
translational invariance in the x direction).

In any case, it appears quite obvious that the profile de-
scription of Eqn. (10) is still rather complicated, and not
much appears to be gained compared to the rather ex-
plicit parametric description (7a, 7b), let alone the angle–
arc-length description from Eqn. (6).

Two mathematical close relatives

There is a close correspondence between the shape
of a meniscus and a well known problem from classi-
cal mechanics: the planar mathematical pendulum. A
Lagrangian for this system is given by

L
′ =

1

2
m(Lψ̇)2 −mgL cosψ , (11)

where m is the pendulum mass, L its length, g the
gravitational acceleration, ψ the angle of the pendulum
against the vertical (here measured from the unstable di-
rection pointing upward), and where the dot indicates a
derivative with respect to time. By rescaling the energy
and introducing the classical low amplitude frequency

ω :=
√

g/L, we can rewrite the problem in terms of a

dimensionless Lagrangian L := L
′

mgL = ψ̇2

2ω2 − cosψ. The

momentum canonically conjugate to ψ is y := ∂L

∂ψ̇
=

ψ̇/ω2, and the Hamiltonian corresponding to L is

H := ψ̇y − L =
1

2
ω2y2 + cosψ . (12)

Its equations of motion are

ψ̇ =
∂H

∂y
= ω2y , (13a)

ẏ = −
∂H

∂ψ
= sinψ . (13b)

Up to an irrelevant overall sign (which we can get rid of
by reversing the direction of time) these equations are
exactly the same as Eqns. (1a, 1b), with the (inverse)
frequency ω replacing the capillary length, and (negative)
time replacing arc-length.

There’s also a second system which can be brought
into correspondence with the meniscus, and this is an
elastic rod. Kirchhoff pointed out first that the equa-
tions governing the equilibrium shape of elastic rods are
equivalent to the equations of motion of a spinning top in
a gravitational field. We have just seen that the menis-
cus problem is equivalent to a pendulum (which is just
a “non-spinning” top). “No rotation” maps to “no twist
elasticity”, and in this case planar solutions exist. In fact,
Eqns. (7a, 7b) precisely describe the shape of a twist-
free infinitely long elastic rod with bending modulus A
which is pulled at its two ends at a constant force F and
which is planar and has precisely one loop (see the il-
lustration in Fig. 2). The characteristic length is in this

case ` =
√

A/F . In the pendulum language this corre-
sponds to the degenerate motion in which the pendulum
starts at time t = −∞ in the position pointing upwards,
swinging once, passing downwards at t = 0, and reaching
upwards at t = +∞.

FIG. 2: Correspondence between the simple planar meniscus
(solid line) and the elastic rod with bending stiffness A, which
is pulled at its ends at a constant force F and which has
exactly one loop (doted curve). The shapes overlap if the

capillary length ` equals
p

A/F .


