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1 Self assembly

Lipid membranes are quasi-two-dimensional structureskwviirm by spontaneous aggregation of
lipid molecules in aqueous solution. Such a process is ampbeeof what is termedelf-assembly

It can be found frequently in nature, whenever a large nurmobenolecules form a condensed
aggregate of some nontrivial structure, driven by the filgyito lower the free energy in doing
so. Strictly speaking, even the formation of a sodium-gtecrystal may thus be viewed as a
self-assembly process, but the terminology is usuallyictetl to cases in which supramolecular
aggregates of somewhat more complicated structure arg fimimed — in particular, when due to



== Box 1 (Hydrophobm effect) ]

The insertion of a molecule into water occurs spontaneously when it leads to a lowering of the
overall free energy. Recall that this involves not only the question whether there exists a favorable
interaction energy (say, of van der Waals or electrostatic type), but also whether the process
is entropically favorable. Ligquid water has a great deal of entropy, related to the translational
or rotational degrees of freedom of water. However, particularly the latter are restricted by the
fact that water just loves to form hydrogen bonds with itself, i.e., point an H-atom of one H;O
molecule towards the O-atom of another. The resulting network of hydrogen bonds is a delicate
balance between energy and entropy, and the insertion of other molecules might locally disturb
this network, thereby also influencing the water entropy. A good rule of thumb is that if a molecule
is also able to efficiently take part in hydrogen bonding (such as glucose or sucrose), it will tend to
dissolve easier than a molecule which is unable to do this (such as oil). Generally, polar molecules
(i.e., molecules with local electrical dipole moments) blend more readily into the hydrogen bond
network. Around the very non-polar surface of a hydrocarbon chain water molecules can only
form hydrogen bonds with themselves, but since these molecules have fewer neighbors, they have
fewer possibilities to do so, leading thereby to lower entropy in the water layer adjacent to a non-
polar surface, which in turn works against solubilization. What may sound intuitively appealing,
is in fact much more complicated and remains partially disputed even today. The difficulty is that
certain energy-entropy compensation effects make it impossible to “attribute” certain effects in an
unambiguous way to either energy or entropy. The interested reader will find some useful material
in Refs. [10, 18, 22, 23].

the aggregation process entities appear which are charactdy the emergence of new length
scales. Self-assembly is thus a classical route by whidfatgiically structured materials form,
and it is thus of great interest to physicists and engindés.aAnd since Nature has the well-
deserved reputation of having engineered the best machiaesly walking this planet, self-
assembly is indeed one of its close allies, and it is thus @htgnterest for biologists, too. Fluid
lipid bilayers of course belong to the class of systems whadd an obvious biological relevance.
In this introductory section we first want to familiarize ealves a bit with some of the idiosyn-
crasies of lipid self assembly, before we turn to propentiethe structures which form in this
process — lipid membranes.

1.1 Lipids

Lipids are Nature’s sophisticated version of surfactafisey are amphiphilic molecules which
consist of one part, called theead which is hydrophilic — “in love with water”, and another par
termedtail, which is hydrophobic — “afraid of water”. Whether a moleaustructure or a part
of it likes or dislikes water depends on its detailed cheirficéldup, and it is closely related to
the question of whether this structure could be solubilimedater. Sugar for instance dissolves
readily in water, oil doesn’'t — see also Box 1

Lipids come in many different kinds in nature, and this isthet place to classify them (the reader
will find a bit more detail in Ref. [16, Chap. 1]. | only want taysa bit more about the most
common ones — glycerophospholipids. Their hydrophobit gamsists of (normally) two simple
hydrocarbon chains, having a (typically even) number ot@ve (typically between 12 and 24)
and maybe some (typically cis-) double bonds. These chamsqusly belonged to the corre-
sponding fatty acid, for instance palmitic acid, and twolsabains are linked via ester bonds



to two of the OH groups of a molecule of glycerol. Its third Okbgp is esterified to a phos-
phate group, which carries the terminal head group of thd,lfpr which again there exist many
possibilities, for instance a choline group. A sophisecafand partly intimidating) terminology
has been developed to communicate the relevant detailssodrithitecture. For instance, palmi-
toyloleoylphosphatidylcholine — abbreviated POPC — igallivhich has one hydrocarbon chain
derived from palmitic acid (a saturated fatty acid with 18bcans and no double bond), another
chain coming from oleic acid (an unsaturated fatty acid witlk cis double bond at position 9 and
18 carbons), and a phosphate link to a choline group. Or dstoyiphosphatidylserine — abbre-
viated DMPS — has two chains stemming from myristic acid {ars#ed fatty acid with 14 carbon
atoms and no double bond) — linked again via a phosphate tntineo acid serine. Some more on
structure and naming conventions can be found in the Boxesl 3aAs physicists we can permit
ourselves to neglect much of the detail, but some key ponetsvarth paying attention to:

e The length of the fatty acids. The longer they are, the modedphobic is the lipid (and the
thicker will the membrane be later).

e Are there double bonds? If yes, the tails tend to be more diesed, and this increases the
fluidity of the forming membranes (more precisely, it in@esithe temperature of the “main
transition” between “fluid” and “gel” phase) [16, Chap. 5].

¢ Isthe head group charged? Note that the phosphate itssdidglicarries one negative charge.
For neutral lipids the group attached to the phosphate nmusst ¢arry a positive counter
charge (as choline does, but for instance not serine).

1.2 The morphology of surfactant aggregates

The hydrophobic parts of amphiphilic molecules do not likelissolve in water. But what if they
have to, because we put them in water anyways? The trick ighibg can develop a coopera-
tive strategy in which many of them combine to an aggregatetwshields its hydrophobic part
against the surrounding water by using the hydrophilic.@ddrphologically such aggregates can
for instance be spheres, with all the tails in the inside &edhtads on the surface. Such objects are
called (spherical) “micelles” (from the Latin word “micajrain). One could also imagine cylin-
drical aggregates with the hydrophobic tails in the insidé the heads again on the surface; these
are called cylindrical or wormlike micelles. And finally olan also imagine a double-layer in
which the hydrophobic tails are sandwiched between twogdar hydrophilic head groups. This
is the lipid bilayer membrane that will keep us busy latert Before we look at it in any greater
detail, we would like to understand what aspect of the antplagletermines the morphology that
is spontaneously being formed.

Possibly the simplest answer to this question has been gwkmaelachvili, Mitchell, and Ninham

in a famous paper from 1976, and it is a wonderful example afhgle geometry argument [13].
Here’s how it goes: Assume that the particular amphiphilideoule has a head that needs an area
a inside an aggregate, and that it has a volunaad a tail length. Let’s try to form a spherical
aggregate of radiug out of N such molecules. Of course, we then must héaw&? = Na and
%wa” = Nw. By forming the ratio of these two equations the aggregatelbrar/V drops out and

we find for the radius 3
v
Rsphere: ; . (1)
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# carbon saturated 1-fold unsaturated  2-fold unsaturated  4-fold unsaturated 6-fold unsaturated
12 Lauroyl
13 Tridecanoyl
) Myristoleoyl (9-cis)
14 Myristoyl Myristelaidoyl (9-trans)
15 Pentadecanoyl
. Palmitoleoy! (9-cis)
16 Palmitoyl Palmitelaidoyl (9-trans)
17 Heptadecanoyl
Petroselinoyl (6-cis)
18 Stearoyl Oleoyl (9-cis) Linoleoy] ((9,12)-cis)
Elaldoyl (9-trans)
19 Nonadecanoyl This is the "famous”
Omega-3 fatty acid
20 Arachidoyl Eicosenoyl (11-cis) Arachidonoyl ((5,8,11,14)-cis)
21 Heniecosanoyl
22 Behenoyl Erucoyl (13-cis) Docosahexaenoyl ((4,7,10,13,16,19)-cis)
24 Lignoceroyl Nervonoyl (15-cis)

Symmetric Fatty Acid lipids: 1,2-Diacyl-sn-Glycero-3-Phosphocholine
e.g. 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (16:0-PC, DPPC)

Asymmetric Fatty Acid lipids: 1-Acyl-2-Acyl-sn-Glycero-3-Phosphocholine
e.g. 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (16:0-18:1-PC, POPC)
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Figure 1. A sequence of aggregate shapes driven by the aspect ratisirapéfied modelam-
phiphile. a) three-dimensional droplet, b) bilayer, c)lmtaed cylindrical micelles, d) unbranched
cylindrical micelles, e) spherical micelles. Taken front.R4).

Since we don’t want to leave a hole in the inner bit of the nié;ehe tail length has to be at least
as big as this value,e. ! > Rspnere Which we can write as

P .= % < % (spherical aggregates) (2)
where the dimensionless combinatiénis referred to as thpacking parameterThis condition
says that spherical aggregates form if the packing paransetenaller than}.

Let’s repeat the same argument watflindrical aggregates of (average) length Let's assume
that they are long enough such that we can ignore end effeetsl. > R. Now, N amphiphiles
forming an aggregate have to satisfy the two conditnBL = Na andmR?L = Nv, implying

by again taking the ratio
2v
Rcylinder = ; . (3)

Since agailf > Reyiinder Must hold, we find that cylinders form i < ;. But wait, if P < § we
know that spheres form. This tells us that the proper camdlitor cylindrical aggregates is

<P< (cylindrical aggregates) (4)

N

1
3

Doing all this again for planar structures, we finally find

IN

P<1 (planar aggregates) (5)

N —

Notice that the packing parameter essentially tells us sungabout theaspect raticof the am-
phiphile. A small packing parameter corresponds to “loteedid with little tail”, comparable to
an ice-cone, where the ball of ice cream is the head and theisdhe tail. Unsurprisingly such
amphiphiles would aggregate into spheres. In contragfe lealues of the packing parameter look
more cylindrical, and it makes sense that such amphipmbsad pack in two-dimensional planar
aggregates. A sequence of self-assembled aggregate shilpstrated in Fig. 1 Notice that lipids
typically look cylindrical — and they owe a fair amount ofglproperty to the fact that they have
two tails.



While the argument sounds irresistibly nice at first sights upon closer inspection not as pre-
dictive as it might seem. Suppose you get ambushed by sons¢esilboking guy in some dark
alley at midnight, who forces you at gun-point to tell him taé volume of, say, DOTAP — what
would you say? Getting actual numbers in ordecatculate P and thus predict the structure is a
whole different question, and it shall not be addressed h#weever, it should be pointed out that
this almost obscenely naive scenario can nevertheless peadguantitatively to model lipids for
which one would never believe that a simplistic ansatz susctihig would lead to anything. The
sceptical reader is encouraged to peek into Ref. [4], wheikeshown how the sequence from
Fig. 1 can be related t5.

2 Membrane elasticity

A physical description of a membrane requires us to know hlewriergychanges when we do
something to it. But what can we do that would change the gf®eFpr obvious reasons, overall
translations and rotations of a piece of bilayer don'’t cleatige energy at all — unless of course
there exist external (possibly position dependent) fidids$ touple to the membrane, and we will
assume that this is not the case.

2.1 Stretching and shearing

Classical elasticity theory studies energy changes dwstrétchingor shearing so let’s look at
such deformations, buéstricted to the membrane plane

Stretching does indeed cost energy. Assume that we haveca pfenembrane which at zero
external stress has an ardg, and we now stretch it to a sizé > A,. To lowest order we can

write the energy change as
1 (A— Ap)?

Estretch - 5 K stretchT ) (6)

where the modulu& syetch €nters as the proportionality constant between a quadtatiation of

the area from its unstressed state and the respective efiémgydditional /A, is a conventiort.
What is the lateral stress, thensionX, under which the membrane is when we subject it to such
a strain? Per definition, it is the derivative of energy wibkpect to area:

_ aEstretch _ A— AO

DA stretch———— = Kstretctil (7)

>
Ay

where we have defined the dimensionlsgainu = A/A, — 1. What we have thus recovered is
Hooke’s law for membrane stretching: Stress is proportitmatrain, and the constant of propor-
tionality is the stretching modulus syetch

The stretching modulu& geich Can be measured experimentally, for instance in microfepex-
periments [8, 19]. There, part of the surface of giant unddan vesicles (“lipid-bilayer bubbles in
water”) is being sucked into much smaller micropipetteshsihat the vesicle gets under tension.

IHow can physics be a convention? Well, we have not yet speeifieat exactly we mean by the stretching modulus!
You could define your own stretching modull{§jematve = Kstretcy Ao, @nd end up with an alternative stretching
energyFstretch = %Kanemanve(/l — Ap)? which of course describes exactly the same physics. HowEger (6) is
preferable for reasons that will become clear in a second.



The area change can be measured quite accurately by the aofauembrane which ends up
in the micropipette, the tension can be inferred from theéclkesadius and the suction pressdre.
A linear stress-strain relation is indeed confirmed, angfarspholipid membranes one typically
finds values of{gyercharound250 mN/m [19]. Once the membrane stresexceeds a few mN/m,
the lipid bilayer suddenly fails and ruptures without muekrponition. Using Eqn. (7) we see
that the corresponding rupture strain is only of the ordea d&éw percent. So, in that respect
membranes are not particularly stretchable.

What about shear? In order to have a relation analogous to(Eprelating a shear stress with a
shear strain, the membrane would of course need to be abigposg a shear strain in the first
place. However, the fluid lipid bilayers which we will be cenced with here are unable to do this,
preciselybecausedhey are fluid. For the same reason that water does not haveaa stodulus,
fluid lipid membranes dont.Hence, static shear is no deformation which costs a fluid maneb
energy; in fact, it cannot even loefined

2.2 Bending

In a three-dimensional chunk of material small elasticsstes always give rise to smaler-

all deformations of the material. This is markedly differenthié material is not ‘really” three-
dimensional, because it is “thin” in one direction (a platekven two directions (a rod). Plates
and rods can bbentin the directions away from the dimension in which they areeded, and
these deformations lead to substantial overall changesatenal shape without requiring exces-
sive stresses. We have seen this already for polymers irotitexd of the wormlike-chain model.
The same is true for membranes. On sufficiently large lenggiles membranes can be considered
as essentially two-dimensional surfaces that can be benthe third dimension.
Characteristically, weak bending is a deformation whicstssignificantly less energy than stretch-
ing. Think of a sheet of paper. Its stretching modulus isergly high, so you will have a hard
time rupturing it bystretchingrather thartearing* Yet, bendingis something that we can do very
easily, because the concomitant local volume strain is sergll. Let's see how this works out
quantitatively. (The subsequent calculation is a bit sifigal, in particular since it neglects issues
such as the Poisson ratio, which is defined in Box. 4. The reaitldind a more careful treatment
in Ref. [15].)

Take a quadratic sheet of paper of side lengtand curve it in one direction such that it has a
radius of curvaturd? (see Fig. 2). The outside of the paper is stretched a littleuhile the inside

is compressed a little bit. In the middle of the paper will region which is not strained at all, the
so calledneutral surface What is the total stretching energy? If we assume ltilly the paper
material follows a simple elastic relation in analogy to E@), namely

V —Vp)?

1 , . o ,
FEstretch= §Y( 7 (three dimensions, uniaxial extensian) 9)
0

2A spherical surface of radiuB and surface tensioR must have an excess internal pressBrelt can easily be
worked out to be? = 23 /R — a relation known as theoYing-Laplace law.

3Water has a sheatscosity though, telling us how much stress results from a givenrsiz¢@ The analogue of this
also exists for membranes, but we will not worry about suahedlyical phenomena here.

“4In the paper industry the tensile strength of paper is sonestiquantified by thereaking length which is the
maximum length a hanging sheet of paper can have withoutirmgt under its own weight. Good paper has a
breaking length in the range of makifometers This corresponds to a tensile strength in exced9bN/m.



=== Box 4 (Poisson ratio)
The Poisson ratio v quantifies how a uniaxial strain of some material gives rise to a change
in sample dimensions perpendicular to the direction of strain. For instance, think of a bar
of length L and width w which is stretched (or compressed) to a length L' and changes
its thickness accordingly to w’. Define Aw = w' — w, AL = L' — L and the dimensional
strain e = AL/L. Then the Poisson ratio v is defined from the equation

Aw
w

=—ve. (8)

For instance, for a perfectly incompressible material we would have Lw? = L'w’, or Lw? =
(L+ AL)(w+ Aw)?, which up to lowest order in the changes implies 2LwAw +w*AL = 0,
from which we readily find v = % which is indeed the largest value possible.

stretching

compression Figure 2 When a piece of mate-

/ rial is bent, the outer side is stretched,
“h while the inner side is compressed.
Using our knowledge of the elastic
behavior, we can thus predict its re-
sistance tdending

neutral surface

whereY is referred to as th#¥oung modulusf uniaxial extension (or compression), and when we
assume that the paper has a thickrniggben we find théoending energy per area

oo B 1 /L/L/h/2 1y((1+}%)dxdydz—dxdydz)2
end — -
L? L2 Jo Jo Jonge 2 drdydz

1 h/2 2\ 2 1. h3
- Y Az (Z) = —v—. 10
2 /_m Z(R) 21" R (10)

Notice the very strong cubic dependence of the bending gramghickness. If we make our
membrane thinner, the bending energy goes desvgrapidly.

Since bending thus only leads to uniaxial extension (or gesgion) of the little volume elements
within the membrane plane, the three-dimensional modulus uniaxial extension can be re-
expressed using the two-dimensional stretching modiilysc,defined in Egn. (6), namely by

Kstretch: Yh s (11)
leading to
_ L (ﬁ)2 (12)
€bend = o1 stretch R .

Now, the ratioh/L can bevery small indeed, even for significant deformations. A notideab
bending of a piece of paper would have &rof, say,10 cm, while the thicknesa is on the order



of 0.1 mm, hencgh/R)? ~ 10~%! Even if the stretching moduluE syeichis Very large, this factor
reduces the concomitant bending energy down to much snvallees. If you think about it, this is
in fact how every spring made out of metal or some other madteith a very high Young modulus
works?>

There is yet a different way in which Eqn. (12) can be writtbiat makes it look even more similar
to expressions such as Eqn. (6). Let us defindotimaling modulus according to

1 . .
K= ﬁKstretcihz (single elastic sheet) (13)
Then we can write the bending energy per area as
1 1
€bend = 5 R ﬁ . (14)

This looks very much like the bending energy density for amlike chain, only that in this case
it's meant per area and not per length, and thus the moduhes the dimension of an energy
and not of an energy times a length. But the spirit is the sahhe: energy, per area, is locally
proportional to the square of the curvature. Quadraticature elasticity, again.
It must be pointed out that the relation (14) expresses a tdueniversality which doesot hold
for the connection between Young modulus and bending msd@gn. (13). The latter ought
not to be taken too seriously due to the approximations theaitwto our calculations (neglect
of the Poisson-ratio, certain implicit assumptions abawt the stress distributes along the paper
cross-section, etc.). Yet, there is one correction to Ef). that we should still make, since it goes
back to a quite fundamental difference between an elaséetséind a lipid bilayer, namely the
fact that the latter of course consiststeb sheets. If these sheets can laterally move with respect
to each other, something which is not too hard to imagine, lths quite dramatic consequences
for their extent to resist bending. Technically speakinfgeat elastic sheet has to support shear
across its thickness, which is of course how stretching antpcession are communicated between
outer and inner side. However, if we slice the elastic sh&ettwo stacked sheets that can slide
past each other, no shear can be transmitted between thente Her all intents and purposes
bending them is equivalent to independently bénd sheets of half the thickne§sLet’'s now
look first at Egn. (10) and ask how the energy changes if we beadheets of half the original
thickness. First, bending two sheets gives a prefactor NEXt, the Young modulu¥’ is of course
independent of sheet thickness, since it is simply a mafégerty. Andh would change taé /2,
so the termh? is reduced in magnitude by a factor of 8. All in all we thus de& the bending
energy of the double layer is reduced by a factor of 4 comp@aradgingle elastic sheet of the same
thickness. Finally, there is no change in Eqn. (11), sinedating involves no sliding. Combining
these insights, we arrive at the modified relation betweggtcting and bending modulus, as it
should more likely apply to bilayers:

1

K= 4—8Kstretcrl12 (two uncoupled elastic sheets) (15)

5Steel has a Young modulus of abaift'® N/m?. The bending energy density for a thin steel plate)afmm
thickness bentto a radius of curvature 0fcm is thusepeng = 55 x 1019 N/m? % (0.0005 m)3 /(0.1 m)? = 5.2 J/n¥.
This means that we can easily bend samples which are notrigm la

6Just imagine the following experiment: Take two sheets gipan top of each other and bend them together, but
permit sliding. Now do the same experiment again but thig tijiue the sheets together at several points. You will
readily see that the second arrangement will display a ealbly different bending resistance.

10



This relation can indeed be found in the literature quitemftand it it sometimes even used to
determine the bending modulus by way of measufiig Yet, we have seen that the derivation
of Eqn. (15) still relies on some continuum approximatiorscll may not be very appropriate for
actual lipid bilayers. For instance, the regular arrangemé lipids perpendicular to the bilayer
plane very vividly illustrates that the “material” rot isotropic. Moreover, doing the elastic cal-
culation leading to Eqn. (10) properly [15] shows that theit be an additional factoil — 1/

in the denominator, where is the Poisson ratio(see Box 4). The thermodynamically permitted
values for the Poisson ratio arel < v < 0.5, but materials having a negative value (so called
“auxetics”) are extremely rare. For perfectly incomprbkssubstances = 0.5, and most “or-
dinary” materials have = 0.3...0.5.” Hence, assuming perfect incompressibility, the factor 48
in the denominator is reduced 48(1 — 0.5%) = 36. Finally, it ought not to be overlooked that
it is not entirely obvious which value far should be used when calculatingrom Eqn. (15) —

is it the phosphate-phosphate distance in phospholippdsnétance, or merely the width of the
hydrophobic region? Sindeenters quadratically, small differences may well mattes. ttis see
that Eqn. (15) may serve as a reason@skemateor the bending rigidity of a lipid membrane, but
ought not to be trusted to within, say, a factor of 2. Moreatele experimental approaches avoid
the somewhat tricky relation between Young modulus and ingnehodulus and either directly
measure the energy required to impose some bending, orontimérmal fluctuations opposed by
the bending rigidity.

Let us finally ask the question: How big is the bending modwiusiembranes? Without even
doing a single measurement we can readily determine the ofd@agnitude: x has the units
of energy. What is the characteristic energy for a struciulieeh emerged from self-assembly?
Answer: the thermal energys; 7! In fact, since the structure should have some stabilityexmect
the modulus to be somewhat bigger than thermal energy. $ige¢a different consideration: The
core of lipid membranes consists of dense hydrocarbon shaimd the characteristic length scale
is about5 nm (the bilayer thickness). This reminds us strongly of¢tgbpolymer materials, and
we thus expect the Young modulus to be somewhere betweeerrabl plastic — say0” N/m?.
Using Eqgn. (15) witth = 5nm, we end up at ~ & x 10" N/m* x (5nm)® ~ 10" J ~ 6 kgT.
Quite remarkably, this is again fairly close (maybe a bit)lda/typical values for phospholipid
membranes [16, Chap. 8]. A good rule of thumb is a few terig;@f, and20 kg7 usually appears
as an agreeable value if one needs to put in some numbers.

Notice that a few tens ofg 7" is a very remarkable energy: It is big enough such that treeyéil
will not fluctuate into pieces when it is “flapping in the theabbreeze®. Yet it is not outrageously
bigger than thermal energy, hence nanoscopic sources afye(gich as ATP molecules, or the
energy released by some other self-assembly process @inmspwvill be enough to deform the
bilayer. Lipid membranes are therefore ideal material for nanotechnologyThis sometimes
appears not to be fully appreciated by nano-scientistast Inot the ones who haunt us with
glossy illustrations that picture shiny stuff made out oftahe However, this wonderful mixture
of properties cannot be achieved with metal. Just take E@).dnd turn it around: Require a
modulus of25 kT, but this time make the material of ste®l,= 10'° N/m?. You find a thickness

h = 0.5nm, and such a thin metal sheet will basically fall apart. @ra@most inclined to conclude
that nanotechnology is invariably soft matter physics. Wl least the nanotechnology which

"Cork has a value close to zero, which means that upon latet@hsion or compression it does not change its
dimensions in the perpendicular direction. This is of cewrat makes it a useful material to close bottles with.
8A phrase coined by David Needham.
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Nature has been perfecting since more than 4 billion yedrassd on soft matter physics.

3 Surface curvature

While we have committed a few crimes of sloppiness that ansidered venial sins (at least from
the point of view of a soft matter physicist), there is onaaide aspect we have glossed over fairly
quickly that really requires a more careful treatment. Tikithe notion of curvature. While a
semiflexible polymer is locally sufficiently well charadtexd by a single radius of curvature, the
same is not true for a membrane. Being a two-dimensionahsesthere is an awful lot of weird
bending that could be going on at a single point, and we nekmbkoat this in a bit more detail.
Unsurprisingly, the mathematical language in which thiprigperly discussed idifferential ge-
ometry Sadly, though, there is a certain “activation barrier” &odvercome before one can really
see the elegance and beauty that goes along with such apdiesgrand we do not have the time
to master it now. Instead, we will only have a qualitatived@t a few general aspects, and then
use a specific surface parametrization to write down a fewmftifaéive formulas. A more advanced
treatment can be found elsewhere [5, 6, 7, 14].

3.1 Directional curvature and principal curvatures

What is the difference between the curvature of a curve aatidha surface? Consider, for
instance, some curved surface, and a curve winding on ittHeosake of a picture, think of it as
the path of an all-terrain vehicle in a mountainous envirenth The path will not be a straight
line. Why? There are two fundamentally different reasomgtfat. First, the terrain is hilly, so the
vehicle will go up and down, and may also get deflected sidet®dny the curved underground.
This is something the driver cannot do anything about, héeihas to live with the terrain that is
given. However, the driver could also actively turn the stepwheel, which will give his or her
path a curvature that has nothing to do with the local growmtitions. Specifically, it could even
lead to a curved path on a completely flat terrain. Hence, vibeking at a curve on a surface,
one cannot readily identify the curvature of the curve wité turvature of the surface. First one
has to disentangle these two different contributions. Hoestthat work?

The trick is to look at two (unit) vectors: One is the local mai vectorn of the surface, and the
other is the principal norma of the curvej. e., the direction in which the curve locally curves.
The key point is that these vectors need not coincide — se8Fay the following. Think on the
one hand of a vehicle driving along the equator of a sphere.ldd¢al normal vector of the sphere
points locally upwarét, while the principal normal of the curve points towards teater of the
sphere. Hence, both vectors are collinear. Indeed, in ttiaten the driver drives as straight as
possible, the steering wheel is not turned at all. Now thinkhee other hand of a driver driving in
a circle on a flat ground. The local normal of the undergroumidts upward, while the principal
normal of the driver’s path points horizontally towards ttenter of the circle; the two vectors
now make an angle ¢f0°. In this case the curvature of the driver’s path is 100% dubedact
that the steering wheel is turned and has nothing to do wittasel curvature (which in this case

%No trees, though. We want a smooth surface!
0vou don't see how a sideways deviation can occur withoutitigrthe wheel? Then think for a minute what the
path of the vehicle would look like if it crosses a valley whis deeper to the right than to the left.
Hwhether it points “upward” or “downward” is a convention wefree to choose for every (orientable) surface.
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Figure 3: Disentanglement of the curvature of a curve and that of tlierlying surface by the
angle between the principal nornjaland the surface normai. Both Figures show a circle of
radiusR and curvaturd /R. However, in a) this curvature is entirely due to the surfheecircle
rests on (a car on this path would not have to turn its steavimegel), while in b) the curvature is
entirely due to the curve (the driver would have to turn tleeghg wheel to the left).

is even zero). Indeed, it may be shown that the latavature of the curvenultiplied by the
scalar product between the two normal vectgrsn, is a curvature that no longer depends on any
property of the curvegxcept its directioi14].1? This resulting curvature is called tliérectional
curvatureor normal curvaturanto the local direction of the curve, and we may write thisrially
as

Csurface, direction of = Ccurvey p-n = Ceurvery cos v , (16)

whered is the angle betweep andn. Incidentally, the combinatiotye, sin v can be identified
as the counterpart of the directional curvature. It is the@am of curvature which is exclusively
due to the curve alone,e. due to the turning of the steering wheel. It is called ge®desic
curvature This completes the disentanglement we have sought for.

At every point a surface thus has a directional curvatur@aahelirection. Since there are infinitely
many directions, there may also be infinitely many curvaurBut don't fret, the situation is
much less unpleasant than it might initially seem. It turastbat there are always two directions,
and they are even orthogonal (but not necessarily unigaeyhich the directional curvatures are
extremal These directions are callgatincipal directions and the corresponding curvatures are
calledprincipal curvatures Once we know these directions and the corresponding ausstwe
can calculateverydirectional curvature by means of a formula derived first byeE[14]:

c(a) = ¢;cos® a + cysin® o (17)

whereq is the angle between the chosen direction and the principadtibn belonging to curva-
turec;. It thus suffices to know only two curvatures and maybe somextibnal information.

Incidentally, this curvature coincides with the local catwe of the cross-cut curve which originates when we
intersect our surface with a plane spanned by the localsairfarmal and the surface direction in question.

13As a side note: Curves on a surface whose geodesic curvatnishes everywhere are callgeodesicsThese are
the generalization of what straight lines are on a plane. §phare they are for instance great circles. Fig. 3 also
illustrates, how a circle of radiug, which has a simple curvatuig’ R when viewed as a curve embeddedrif
can have anything between geodesic curvature 0 — if viewedcasve on a sphere of radilis(a great circle) —
or geodesic curvature/ R — if lying in a flat plane. Geodesics play a fundamental rol&é@neral Relativity, since
the paths of all particles as well as of light rays are geaddnispacetime.
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Let us finally define two more quantities:

extrinsic curvature: K := ¢;+ ¢y, (18a)
Gaussian curvature: Kg := c¢j¢o . (18b)

Sometimes one also find§ := K/2, the so-callednean curvatureand in more differential
geometry flavored texts one finds:= 2 K¢, the so-calledRicci scalar curvature

3.2 Monge parametrization

It is all well to talk in geometrical terms about surface aires. However, what if we want to
actually calculatethem? Well, in this case we first have to solve a more fundamh@noblem,
namely: How do we describe the surface to begin with?

There are many answers to the question of how to describéees@mbedded in three-dimensional
space. Some more sophisticated, some less. Some pafjicadiapted to special symmetries,
some not. We will not go into any deeper detail here and ratfedr only one particular surface
description, the so-calleMlonge parametrization It is not the most general one, and it is not
even the most convenient one for many applications. Butfairsto say that it is the one which
one encounters most frequently in the literature. It isadlé for surfaces which on average are
horizontal and which don’t have any “overhangs”. In such secthe surface can evidently be
described by specifying its heightabove some arbitrarily chosen horizontal reference plkine.

is the two-dimensional position vector in that plane, thén) is the corresponding height.

We now want to calculate the curvatukewithin Monge gauge. Box 5 shows a very elementary
way for how this is done in one dimension. The calculatiorefsurface is a fair bit more involved,
and itis advisable to use proper differential geometribmégues for its derivation which we do not
want to introduce here (see Ref. [6] for more details). Havel turns out that the final formula
can be expressed very compactly in a way which resemblegtioad expression in Egn. (19). It

is given by
K=V- ( Vir) ) VA Ah(r) | (20)

14+ (Vh(r))?

whereV andA are the nabla- and Laplace-operatorthe base planeespectively. The approx-
imation in the second step is evidently good when the gradesm V /1 has a magnitude small
compared to one, and it is thus referred to asstinall gradient approximatian

It should be remembered, once more, thatdigm of K is a matter of convention. In the present
choice a surface bending “up” has a positive curvature.

4 Helfrich theory

It is time to finally come back to membranes and their cuneaalasticity. In this section we want
to study the complete version of curvature elasticity, ofchitwe have already seen a preliminary
version in the form of Eqn. (14). We then want to look at a fem@e consequences that can be
derived from this theory.
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=== Box 5 (Curvature of a planar curve given in Monge parametrization) =——
y n2(x)

ny1(x)

Given a function f(z), we want to determine 4
the local curvature at the point P = (xg, f(x0)).
Let’s first find the center of the circle of curva-
ture touching at P. It must lie somewhere on the
normal n;(x) through the point P, which has the
equation

If we deviate a tiny bit dz away from z(, we can vy,
construct a slightly different normal na(z). Since
we are interested in the touching curvature cir-
cle, all neighboring normals should to first order
in dx go through the center of the curvature circle

touching at P. The equation for such a neighbor- = ~dx *
ing normal ny () is X
T —xo—do r—xo—do
ng(z) = f(zo+dz) — . ~ fot fode — ———

f'(@o + da) fo+ fildz

The z-position z,. of the curvature circle must thus satisfy nj(x.) = na(z.) up to first order in dz.
Solving this equation readily leads to the center coordinates

f/ 1+f/2 1+f/2
Te = xo—w and Yo = n(ze) = fo+ //0
/ 0

Hence, the radius of curvature p of the touching curvature circle satisfies

12\3
p2 = (xc—$0)2+(yc—f0)2 = %’
0

and the local curvature K at any point with horizontal coordinate x is thus given by

L f"(@) _ f'(z) / IS e
K= p (14 f'(2)2)3/2 ( 1+f’(:13)2> f(z) . (19)

4.1 The Helfrich Hamiltonian

We have seen in Sec. 2.2 that the curvature energy densitigecamitten as a bending modulus
times the local curvature squared. Since then we have leafar bit more about curvature. In
which way does this help us to write down a complete energgtfonal — a Hamiltonian?

In 1970 Canham [3] proposed that we should generalize Edi.iflthe following way: Fyeng =
gnlc%%@cg, where the; are the principal curvatures and thehe corresponding elastic moduli.
However, if the material issotropic x; and k. should be identical, since bending in the two
different directions should not be observable as an endaffgrehce. Canham thus proposed the
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bending energy density [3]
1

€pend,Canham = 5:‘?(0% + Cg) (21a)
1
= iﬂ(Kz —2Kg) (21b)

Still, we clearly have two independent curvatures, wouldm also expect two moduli?
In 1973 Helfrich [12] proposed a slightly different energgndity:

1

€bend,Helfrich = §H(01 +co — 00)2 + Kcico (22a)
1

= 5/{([( — C0)2 + RKG . (22b)

It features two modulix andk, termed the “bending modulus” and the “saddle splay modulus
respectively. It also contains a characteristic curvatyrecalled the “spontaneous curvature”.
If it is nonzero, this means that the membrane would like tesbentaneously curved into one
direction, which is of course only possible if the membrameaat up-down symmetrig, e, if it
has two different sides. This, for instance, occurs wherihe compositions in the two leaflets
is different, as it is frequently the case in biology [16, §h#&]. However, in the following we will
only look at the simpler cases in which = 0.
We now have two expressions for the energy density. Whichiomight? As it turns out, the
answer is that in most casesth are right How can that be — they clearly look different! The
answer is that there exists a subtle and beautiful theorem #ifferential geometry — called the
Gauss-Bonnet-Theorem —which states that the surfaceahtager the Gaussian curvatukg; can
be written as a boundary tetfrand a topological constant [5, 7, 14]. But since the total ineme
energy of course involves a surface integral over (21) o), {22 K terms in these equations will
both only lead to constants which don't influence the subsetphysics. And what remains — in
the case, = 0 —isin both case§/-fK2. So modulo boundary terms both Hamiltonians agree — and
indeed only one relevalttelastic constant appears. However, the Helfrich expradsiasually
preferred over Canham’s equation, because it nicely ssnglé the Gaussian curvature — which,
as we have just seen, has this Gauss-Bonnet specialty.
So, let us for completeness write down the total bendingggneira symmetric membrane in the
Helfrich picture:

FEpend= / dA {L@KQ + Kqu} . (23)

m

embrane

The integral extends over the entire membrane, @Ads the area elemerdn the membrane
Box 6 explains that in Monge parametrization it is givendoy = dx dy+/1 + (Vh)2.

In small gradient approximatiohA = (1 + %(Vh)%dx dy. Hence, if we also want to add a term
which penalizesrea increasedue to the curving of the surface, it would enter in small ggat
approximation by a densit}/E(Vh)z, whereX: is the surface tension. Hence, in this approximation
the Helfrich Hamiltonian — including bending and tensiomg @xcluding the Gaussian term — can

1This boundary term involves trgeodesic curvature
SThis is really a bit simplified. There are of course instanglsre boundary and/or topology changes occur, and
thenk also plays arole. For a nice example, see Ref. [1].
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== Box 6 (Area element in Monge parametrization) = — — ——
Take some point P on a surface with coordinates (x,y, h(z,y)). A point P, a distance dx in x-
direction has the coordinates (z + dx,y, h(x + dz,y)) =~ (x + dx,y, h(z,y) + he(x,y)dz), where
h, = Oh/0z. So the vector P—P; from P to P, is approximately (1,0, h,)dz. We can do the same

consideration for a point P, a distance dy in y direction. The vectors PP, and PP, span a little
parallelogram, whose area is equal to the modulus of the cross product between these vectors.

Since
1 0 —hy
0 dz x 1 dy = —hy | dzdy,
hy hy, 1

we thus obviously get

dA = ‘P—RZxP—P;( — J1+R2+h2dedy = 1+ (Vh)2dady.

be written as )
Eoana = 5 [ dudy {n(an)? + (V) (24)
b

ase plane

It is this form in which one probably finds the Helfrich Haroiftian most often. But recall that in
this version it is already a small gradient approximation.

4.2 The shape equation of linear theory

Assume that we have an essentially flat membrane, which & ¢rethere perturbed in such a
way that it slightly deviates from its flat state, in which vigently would have the lowest energy
— namely zero. The membrane will try to assume a shape in whighiesulting energy, even
though not zero, is at least as small as possible. Which stagsethe membrane therefore have to
assume?

4.2.1 Variation of the energy functional

The question we just encountered is a classical problem fhemalculus of variations Given a
(scalar) expression — here the enefgy which depends on a whole function — here some integral
over differentiated terms of the shape functfor find that function which minimizes the scalar
expression. This is not nearly as complicated as it seenespolly has to proceed patiently.

Let’'s assume we perform a small variation of the height fiam;taccording to

h(z,y) — h(x,y) + oh(z,y) . (25)

What is the concomitant change in the bending energy? Using ®4), and working only in first
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order of the small quantity., we can calculate

6 Epend = %/dx dy {R(Ah + ASh)? +3B(Vh + V(Sh)z} — %/dx dy {K(AW + 2(Vh)2}
= /dx dy {FLAh Adh + XV h - V(Sh}
- / dz dy {m[v - (ARVSh) — (VAR) - Véh} +2[V - (Vhoh) — (Ah)ah]} . (26)

In the last step we have created two divergence teWhs(some vector. We will later turn them
into boundary terms with the help of the divergence theorEime. whole point of this exercise is to
get rid of terms which contain derivatives & in the integral. (As we’ll see soon, we don’t mind
these derivatives in the boundary terms). Since there isrmre none-divergence-term containing
a derivative obh, let's repeat this trick once more:

Epend = / da dy { — W(VAR) - Voh — S(AR)Sh + V- [mhvah + ZVhéh]}
- / dz dy { - K[V- ((VAR) - 6h) — (AAR) 5h] — S(AR)Sh
+ V- [kARVOR + TV hh| }
- / da dy {[H AAh — EAh} Sh + V- [(mh) Voh + (EVh - wm) 5h”
- /dxdy [mAAh—EAh] Sh
+ ]{ dsl - [(mh) Voh + <2Vh . mVAh) 5}4 . @27)

In the last step we finally used the divergence theorem andotewhe area integral ovév -
(some vectoras a closed line integral along the curve surrounding theeaeoriginally integrated
over. Withl we denote the unit vector which lies in they-plane and locally pointgerpendicular
to the curve encircling the (projected) membrane area adidestedoutward'®.
Recall that for a stationary solution we watyeng = 0. This means thaboththe area integral
as well as the line integral have to vanish. Let’s look at tfeaantegral first. Since the variation
dh(x,y) was a completely arbitrary function (well, small and diffietiable, but arbitrary other-
wise), the above calculation tells us that the term in sqbeaekets has to vanish. This gives us a
differential equation- the so-called Euler-Lagrange equation — whidias to satisfy in the lowest
energy state:

kAAh—3Ah = 0. (28a)

This is a fourth order linear partial differential equatioit is called theshape equation By
introducing the length := /x /%, we can also rewrite it as

AA-NX2h =0, (28b)

8We assume orientability here, which is not trivial. Howewee do not want to potter around with technicalities.
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“direct” boundary condition “alternative” boundary cotidn
first condition fixh require(A — A\"?)V, h =0

second condition i h requireAh =0

Table 1: Possible choices of boundary conditions for the diffeedraguation (28). For each of
the two rowsonecondition needs to be fulfilled. Recall the definition of treemal derivative at
the boundaryyV | =1- V.

Since the operator& andA — \~? evidently commute, the differential equation (28) is sdlby
their eigenfunctions to the eigenvalue 0. This is a ned litisight, because it means that we only
have to look for solutions afvo second ordedifferential equations. But finding these functions
is only a part of the problem, often the easier one. What maydut to be a real pain is getting
theboundary conditionsight.

4.2.2 Boundary conditions

Speaking of boundary conditions — where do they come fromIP, W still have the boundary in-
tegral which has to vanish, too! How can we make sure thahtpgens? Looking at the boundary
term in Eqn. (27) we see that one way is for instance to dentaatcbbth the variationh as well

as the normal component of its gradieht,Vih =: V,dh, vanishes everywhere on the bound-
ary. If we do not permit these two to vary, this basically metrat we want them to always have
specific values for all possible surfaces we “test out” infilmgctional variation. In other words,
we fixh and V  h at the boundaryand have thus found a permissible set of boundary conditions
However, this recipe is not thanly possibility by which we can ensure that the boundary integra
vanishes. For instance, we might alternatively decideamfx the value ofV | i and can still make
the boundary integral vanish if we instead demand that tipeession by which it is multiplied,
namelyAh, vanishes everywhere on the boundary. Or we might permihéhght/ to vary and
rather set its prefactor to zero, giving the conditidv , h = «V Ah. These possibilities are
summarized in Table 1.

If you have never encountered this line of reasoning, youhirig a bit shocked here. Regret-
tably often the treatment of variational problems (whichuynay or may not have come across
before) blissfully ignores the boundary terms. One typycthds either the statement “we push
the boundaries to infinity” (as if it's always clear that thegpuld not pick up some contribution
there) or the disarmingly honest phrase “we assume the laoyterms to vanish”. What is missed
in this sloppy way is the quite beautiful insight thihe requirement of vanishing boundary terms
gives us the appropriate boundary conditibr&nce there are indeed cases where it is not at all
clear what the correct conditions would be, this formal eautay even be extremely valuable.

4.2.3 A few worked out examples

Before things get too abstract it is recommendable to takemIsack and look, what we have
accomplished and what we can do with it. This section worksaoiew examples of shape de-
termination that illustrate how the shape equation (28)thadorresponding boundary conditions
from Table 1 are used. Not all examples are directly relaveftiid membranes. However, now
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Figure 4: A fluid membrane is laid over a step edge of

ho heighthy and attaches a distanéeaway from the edge to
the lower-level substrate. What is the shape the membrane
will assume?

that we have understood how to handle bending problems, \gbtnuist as well have a bit more
fun with it.

1. Membrane spread over a step-edge

Assume we want to calculate the shape of a membrane thatBlyoovers a step-edge of height
ho and touches the lower level a distanteway, as illustrated in Fig. 4. Since the membrane
shape changes only irtdirection, we have a one-dimensional problere,, a functionf(z) to
find, and the Laplacian is simply equal to the second derivative/d=>. Two independent eigen-
functions belonging to the eigenvalQeare 1 andz, and for the eigenvalud—2 we conveniently
takecosh(z/\) andsinh(x/)\). The shape equation (28) becomy@é(x) — f”(x)/\? = 0, and
defining the scaled variablés:= = /X and? := L/, we can write its general solution as

f(z) = A+ BZ + C cosh(z) + D sinh(Z) , (29)

where the integration constamds . . D are determined by the four obvious boundary conditions

ho = f(0) = A+C, (30a)
0 = f(0)=B+D, (30b)
0 = f(L) = A+ Bl+ C cosh({) + D sinh(?) , (30c)
and 0 =M\f(L) = B+ C sinh(¢) + D cosh(?) . (30d)

From Eqgn. (30a) followsd = hy — C', and from Eqgn. (30b) follows#3 = —D. Inserting this into
the remaining two equations (30c) and (30d) yields a sim@gimnequation foi” and D,

(" wa) (6) - () e

which can be readily solved by matrix inversion. We thus fimelgolution of our shape problem. It
can be expressed in the following way — not fully simplifiedt this way it's a bit more revealing:

flx) [cosh(¢) — 1] [ cosh(Z) — 1] — sinh(¢) [ sinh(z) — Z]
hy b [ cosh(€) — 1] [ cosh(¢) — 1] — sinh(¢) [ sinh(¢) — ¢] (32)
=) () e
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f(x) l
g
- Figure 5: lllustration of the shape of an elastic

sheet which is clamped horizontally at one end
and hangs under its own weight.

For ¥ > 0 there are two characteristic length scales in the problénand L, and the shape
looks qualitatively different depending on which of these is the bigger ond, e., depending on
whether/ is small or large compared tq as the interested reader might want to check.

What determineg4.? In the simplest case the substrate becomes “sticky” andistaaway from
the step and pins the membrane there. A more complicatestisitiarises when the substrate has
a uniform adhesion energy per area, and the membrane dacideat which distancé. to detach.
For smallZ. much adhesion energy will be gained, but the membrane hantbdlot. Conversely,

if L is chosen very large, bending will be weak, but a lot of adivesinergy is sacrificed. At
some optimal distance the energy is minimal. It can be shdbrgl2, prob. 6] that this leads to
another boundary condition — this time for thving boundary. — that in the present situation
readsf”(L) = 1/p., wherep. = \/k/2w is the contact radius of curvature. Using Eqn. (32b)
this results in the transcendental equaﬂmmthg — 2 = hgp./A\? for ¢, whose solution is easily
determined numerically. FOt — 0 (i. e. A — o0) it can be solved exactly. = /6hgp..

2. Paper bending under its own weight

Assume you have a strip of paper which you hold horizont&iyder its own weight it will bend
down, as illustrated in Fig. 5. Which shape will the papeetak

Since the strip only bends because its weight pulls it dowayity must somehow be included.
How is that done? The easiest way is to again start with thetifumal. Let's say the strip has a
width w, a lengthL, and a mass per unit areapfDescribe its location by the functigi{z). Then
the energy of the bent piece of paper is given by

E = w/Ode {%,‘-c(f”(x))2 +pgf(93)} : (33)

Notice that we have cheated slightly: If the projected largjtthe strip isL, then its actual length
is generally longer. In other words, the integral shouldedlly go up toL. However, for small
bending this is an effect of higher order which we will igntwere!’
We first need to do the variation of this functional. Now, thstfterm we know how to deal with,
and the second term is extremely easy: The variatiof{of is d f(z) and that’s that. Hence, we
end up at the shape equatiefi”’(z) + pg = 0, or in a nicer way:

FrE) 3 =0 with 8= (34)

P9

where we introduced the lengthfor convenience. This is a fourth order linear inhomogeseou
differential equation. The solution of the homogeneousaéiqn f”’(z) = 0 can be written as

70One has to be careful with such approximations, though:lcase of Euler buckling, to be discussed in Example
3, this difference between total length and projected lenggkes all the difference in the world.
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a+ bx + cx? + dz?, and an obvious particular solutionf$r) = —x*/(24¢3). Hence, the general
solution is

1 4
2405
Two boundary conditions are obvious, namg(y) = 0 (from which followsa = 0) andf'(0) = 0
(from which followsb = 0). However, neitherf nor f” have any obvious values at the other end
of the strip. But peaking at Table 1, we see that since thdsewvare unspecified, we rather have
to demandf”(L) = 0 and (L) = 0 (recall thatX = 0 here)!® The latter condition gives
d = L/(6¢), which together with the former leads to= —L?/(4¢3). If we define the scaled
variablesf = f/L,{ = (/L, andz = /L, we see that the final solution can be written as

f(z) =a+bx + cx® + da® - (35)

~ 7t — 433 + 622
7)) = — - . 36
f(@) ST (36)
Up to a scaling prefactor the shape of the solution is thuaydwhe same, unlike in the case of the
membrane spreading over a step edge in Example 1, where raoslecmth scale existed, and
its relation to the lengtth, mattered beyond a simple amplitude scaling. )
The solution (36) in particular shows that the total sag efdtrip isf(1) = —(2¢)~3, or

LA B ng4
83 8k
This relation is quite interesting, since it permits theedetination of the bending modulus of
paper from a fairly simple measurement. Moreover, usingelteion between stretching modulus

Kqreteh @and bending modulus of an isotropic elastic sheet, as worked out earlier, weinlata
estimate of the stretching modulus of paper:

IF(D)] =

(37)

i @) 12 3pgL*
stretch — 72 - 2|f(L)‘h27

(38)

where/ is the thickness of the paper. Let’s think of a typical papghw = 80g/m? andh =
0.1 mm. If we let a strip ofL = 10cm hang over the edge of a table, it would droop down by
maybe2 cm. Hence, the stretching modulus is

3% 0.08 7% x 10 % x (0.1m)*
2 % 0.02m x (0.0001 m)?

Kstretech ~

~ 0.6 x 106% . (39)

3. Euler buckling

Take a slender elastic rod. Under which compressional ferité buckle?

Assuming that such a rod is again described by curvaturé@tgagjust as the strip of paper in the
previous problem was), we will approach the problem in tvepst We first ask ourselves: What is
the bending energy of such a rod of lengthf its ends are forced to a separatibn= L—AL < L
(see Fig. 6). In a second step we will then change to an ensewli¢re this compression is
achieved by an externally applied force.

BNotice that this is a perfect example for the occurrence eléls-than-obvious boundary conditions which never-
theless follow easily from the boundary terms of the fulliagon.
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f(z) Figure 6: An elastic rod of lengthL is
compressed such that its end-to-end distance
shrinks tol’ = L — AL < L and consequently
buckles perpendicular to the direction of com-

L pression. Notice that the rod ends are fixed, but

—L'/2 +L'/2 their terminal direction is not.(e., the ends are

not clamped). The compression in the picture

isd =AL/L =0.2.

For the energy we may thus use the curvature elastic formellzevgotten used to by now:

e 4 ,

E = / dz =k (f"(z))" . (40)
_L//2 2

We would like to minimize this functional, subject to the stmaint that thetotal lengthof the

rod has the fixed valué, or in other words, that the amount of compressiard,, is given. As

usual, this constraint can be fixed by a Lagrange multigiy}:, and so we have to minimize the

constrained functional

L'/2
- [ a{dsre) -2 - 5} (a1)
—1)2 2 2 L
This expression looks basically like our shape functionainf Eqn. (24), with two apparent dif-
ferences: First, there is one more constant term in the ifwmat This of course we need not
worry about (who cares about a constant in the energy?). &odrsl, the sign in front of the
(f’(:c))z-term isnegative Why is that so? The boring answer is: There is absolutelyhysipal
significance to this sign! The entire term is multiplied b thagrange multipliek:, whose value
—and thus sign! — needs to be determined later from the @nstHere we write it with a minus
sign as this will turn out to be more “convenient”. Had we aoa positive sign instead, the final
result would follow identically, albeit with one more twist thinking, as we will see soon.
Minimizing £ at constant, means minimizing?’, i. e. solving the Euler-Lagrange-equation be-
longing to the functional (41). With a glance at Eqn. (28) we that this equation will be

a2 /a1

— =4 = — 42
where we again introduced= ,/x/% and where the plus-sign stems from the sign difference just
mentioned. Once more, the general solution is given by tipendunctions of the two commuting
second order operators belonging to the eigenvalue 0, ihtchihe above fourth order differential
operator conveniently factorizes, so we can readily wtit®wn:

f(x) = a+bx+ccos§+dsin§. (43)

Guessing (correctly) that the (lowest order) buckling v&#id to a symmetric situation as depicted
in Fig. 6, we see thdtandd have to be zero. Making(L’/2) = 0 then leads to

T L

flz) = ¢ (cos 3~ eos ﬁ) . (44)

®Notice that in this case is a bending energy per unéngthrather than per unireafor obtaining a certain radius
of curvature. Therefore; has units oenergy times lengthere.
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What is the second boundary condition? As Fig. 6 suggestanagine a situation in which the
ends of the rod are merely compressedraitlampedj. e., we don’t hold them at some particular
angle. Henceh/(+L'/2) is not predetermined, and the boundary conditions coliect&able 1
then show that we have to require the second derivative tislvat the two ends:

0 = fY£L/2) = (=)= cos — . (45)
This equation is of course satisfied ok 0, i. e. for the flat rod, but it is also satisfied when the
argument of the cosine takes on the specific values
L T
5—54—7171' n—0,1,2,... (46)
It may be checked that the value= 0 is the one we're looking fot® Hence we have
Ll

™

A= (47)
Notice: Had wenot changed the sign in front of our Lagrange parameter termarctimstrained
buckling functional (41) fromt to —, we would have obtainedosh andsinh as our solutions
rather thancos andsin. Instead of the condition (45) we then would have to find sohg of
(¢/A?)cosh(L'/(2)\)) = 0, which at first sight only seems to work for= 0, sincecosh(z) >

1 for all . Right? No, wrong:cosh(x) can become zero, if its argumentimeaginary And
sincecosh(ix) = cos(x) this would then lead straight back to Eqn. (45., of course the same
physics. We should have been prepared for that, becacsetains thesquare rooof our Lagrange
multiplier X2, and if for some reason would “want” to be negative, this happens. Well, it happens
here. And this “complex detour” is avoided by taking the nsirsign out up front — something
one either has to learn by going through the calculation amckestumble over this problem, or by
thinking about it physically (as we’ll do below).

Combining Eqn. (47) with the rod shape from Eqn. (44), we baeft(0) = ¢, which means that
the remaining integration constanis nothing but themplitudeby which the rod buckles out.
We finally need to impose the condition of constant rod lengjtiis is easily done by working out
the total length of the compression and requiring it ta\e

L'/2 1 9 L'/2 ¢ ox\2 c\ 2 L'j2 . o T (47) w2c?
AL:/_L//§x§<f'($)) :/0 o (§sm3) = (3) /0 do st = g 49)

-

—1'/4
from which we get the buckling amplitude
c = ig\/L’AL : (49)
s

Of course, theignof cis still unknown, because we can't tell energetically wieethe rod buckles
up or down (or, as a matter of fact,amydirection perpendicular to the line joining the ends). &et’
just choose: > 0 for definiteness.

20The other values correspond to shapes which are “multiptkled”, i. e., they have more “waves” in it. Yet, = 1
is not the next order buckle. Why? Because the next order as@aantisymmetrishape and would correspond
to the solutiorsin(z/\) which we had eliminated above for reasons that now don'tyappl
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Figure 7. Stress-strain relation (53) for an elastic rod under cosgon.

Now that we know the shape, we can calculate the energy ofutiddx rod:

L'/2 1 9 L'/2 d T 2 H7T2AL ,{71-2 5
E = dr = " _ d a x _ _
/_L,/2$ zli(f (2)) /{/O x ()\2 cos )\) (L= AL L (=07 (50)

where we introduced the scaled compressional strain AL/L. This energy initially grows
linearly with compression, but later it increases morersghp

It is now time to think about the compressitorce We have so far looked at the situation in an
“ensemble” of constardompressiolfi. e., strain) and would now like to change to an ensemble of
constanforce(i. e., stres3. As usual, this is accomplished by a Legendre transfoonati

2

. KT 0 -
where we introduced the scaled force P2
F=—. (52)
KT
Doing the minimization, we see that we have to solve the éoprat
(1—-06)*+25(1—96) - ~ 1+6 ) 5
—F = F = = 1+4 1 e
i—0) 0 or 1= o) + 46 4+ 90 + 160° + (53)

This stress-strain relation is illustrated in Fig. 7. A pivel compression > ( requires a (scaled)
compression forcé’ > 1. The initial stress-strain relation it simply linear. One has to over-
come a certain minimal force — the buckling force — beforertitewill deflect:

K,7T2

F > Fbuckle - F

(54)

210f course, we might have guessed Eqn. (53) right away — it ising but a statement of the “obvious” fact that
F = 0F/0Axz. In some sense, the Legendre trafo shows, why this “obvifags'indeed holds.
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Eqn. (50) and its initial linear energy-compression relaghows rather vividly how strongly non-
harmonic Euler buckling is. For a usual harmonic eneigy, £ « (Ax)?, the force would
(linearly) go to zero as the compression goes to zero. Notese: hin the limit of vanishing
compression dinite force remains, the buckling force, which — conversely — firséds to be
overcome in order to compress the rod. Notice also that &ligke is exceeded the resulting
deflection is quite finite. The rod does of courss catastrophically fail once the buckling limit is
exceeded.

This scenario looks a bit like a second order “phase tramsitieven though a somewhat unusual
one: If F' is the “driving variable” and the “order parameter”, thaﬁé/aﬁ doesnot diverge
at the “critical” point but rather assumes the finite valye, while it has the valu® below the
transition?2

4.2.4 Nonlinear shape equation

Recall that the small gradient Hamiltonian (24) only was ppraximation to the full expression
(23). The full Hamiltonian can also be varied, giving risatehape equation. This variation is a bit
more tedious to perform, but it can be done exactiowever, the equation one now ends up with
is a fourth ordenonlinearpartial differential equation [11, 17]. It is outrageoudifficult to solve,
and there existeryfew exact solutions. However, many interesting problemslire membranes
which are not essentially flat, such as for instance closstthes, and a lot ohumericalresearch
has thus been devoted (in the early 1990s) to understandisgetutions of the nonlinear shape
equation. The reader will find a very good introduction testfand much more in fact) in the
review by Seifert [21].

4.3 Membrane fluctuations

The fact that the small-gradient version of the Helfrich Hénian, Eqn. (24), is quadratic, im-
plies that the shape equation (28) is linear. But it also re¢laat we can rather easily treat addi-
tional thermal fluctuationsbecause the partition function of quadratic Hamiltoniears be easily
worked out. In fact, we don’t even have to do this, the equian theorem will suffice for what

we want to look at now.

We start by Fourier-expanding the membrane shdpg. For this we assume that the membrane
spans a quadratic frame of sizex L, and for convenience we assume periodic boundary condi-
tions. The shape can then be expanded in a Fourier seriesiagrto

) 2
M) = Ykt q=2 ( Zy ) . neny ez (55)
q

Since the membrane surfagér) is a real function, the complex Fourier modes must satiséy th

22If you want, the critical exponertt takes on the unusual value= 0.
23A particularly clever method, which relies on fixing the t@a$ geometrical constraints by Lagrange multiplier
functions, has recently been proposed by Guven [11].
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condition_4 = hy,. Using this, we find immediately

Vh = th ig ' (56a)

(Vh)* = Zhh ellata)r (56D)

Vih = Zh el (56¢)

(V2h)* = thhqf (q*¢?) e, (56d)
q.q

If we now make use of the Fourier representation of the Krhaet
) ) sin &
/L ; d?r e7iam = [2 /2 —qL2 = L*040 , (57)
X

2
we find upon inserting Eqgns. (56) back into the small grademetrgy (24)
i ")er 1 / 1 /
Eoend = /LXL d?r Z hghg € (a+q) {im(ch %) + 52(—q -q )}

.9

1 1
- thhq’ L’ 5q+q’,0 {5 ( ? /2) + 22( )}

q.9

= L2Zh h_q{ kgt + Eq} = L2Z|hq\2{ kgt + Eq} (58)

This tells us several things:

1. Whether a particular undulation mode costs predomipaethding energy or tension energy
is a question of the wave vector. For wave vectors smaller ¢hasover:= /2/k, i. €.0N
large length scales, tension is the dominant energy caniinidpto Eqn. (58). Conversely, for
wave vectors bigger thapossover i- €. 0N small length scales, bending dominates.

2. In Fourier space the membrane energy is diagore] the different wave vectors decouple:

<hqhq’> = <|hq|2> 5q7—q’ . (59)
3. These modes atermonic i. e., we can simply use the equipartition theorem to get

2 () {guat + 552} = JiaT (60)

Equation (60) immediately gives us the important result

kgT

L? [Hq4 + Eqﬂ ' (61)

(|hql*) =
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Eqn. (61) is thdluctuation spectruror static structure factoof a membrane. It tells us the mean-
square-amplitude of membrane modes. Since they are tHgmmalted, they are also proportional
to temperature: More fluctuations give bigger amplitudespdrtantly, the fluctuation spectrum
depends on the elastic constarand on the applied tensioih Measuring the fluctuation spectrum
and fitting to Eqn. (61) is thus a viable method to extract teleding modulus in an experiment.
The method is calletlicker spectroscopj2, 9, 20].

What kind of average undulation amplitude do we have to exfmedhe entire membrane, and
not just for a single mode? Evidently, the full membrane atugé is the sum over all individual
modes, and we can easily calculate

) = S = T (EY

- q - L2(kg* + 5¢2) o
kpT . qr (i ) w0 kT ¢ — ¢ kT
BTy G D 29 520 Pl e — i KT (62)

47TZ qmin(qgnax’% + Z) 47”{ (qmaxqmin)2 1671'3/{

/'qmz:lc 2 kBT
™
T g+ o)

Gmin

where we in the first line replaced the sum by an integral, irclvlwve introduced a large wave-
length cutoffq,,;, = 2w/ L and a small wavelength cutaff,.. = 27/a, wherea is comparable to
bilayer thickness. In the last step we negleatgd against;? .. in the numerator.

The final approximate relation gives rise to a nice rule ohtbuSince a very typical value for the
bending stiffness is = 20 kg7, inserting it we readily find

L
100

I. e, the root mean square amplitude of the membrane fluctuatiodsr vanishing tension are
typically about 1% of the lateral extension of the membrayatice the scale invariance inherent
in such a statement. Of course, if the membrane is undeotersiis value is reduced.

Ah = (B)Y? ~ (X =0,k ~ 20kgT), (63)

References

[1] J.-M. Allain, C. Storm, A. Roux, M. Ben Amar, and J.-F. dog, Fission of a multiphase membrane tyuBéys.
Rev. Lett.93, 158104 (2004).

[2] F. Brochard and J.F. Lennofrequency spectrum of flicker phenomenon in erythrogyteRhys. (Paris}6,
1035 (1975).

[3] P.B. CanhamThe minimum energy of bending as a possible explanatioredbittoncave shape of the human
red blood cell J. Theoret. Biol26, 61 (1970).

[4] I.R. Cooke and M. Deserndzoupling between Lipid Shape and Membrane CurvatBiephys. J.91, 487
(2006).

[5] F. David, in: Statistical Mechanics of Membranes and Surfaegs by D. Nelson, T. Piran, and S. Weinberg,
2nd ed., (World Scientific, Singapore, 2004).

[6] M. DesernoNotes on Differential Geometra pdf file can be downloaded here:
htt p://ww. npi p- mai nz. npg. de/ ~deserno/ scripts/diff_geom di ff_geom pdf

[7] M. Do Carmo,Differential Geometry of Curves and SurfacBsentice Hall, Englewood Cliffs (1976).

[8] E.Evansand D. Needharahysical Properties of Surfactant Bilayer Membranes: ThalrTransitions, Elastic-
ity, Rigidity, Cohesion, and Colloidal Interactionk Phys. Chenf1, 4219 (1987).

28



[9] J.F. Faucon, M.D. Mitov, P. Meleard, I. Bivas, and P. Bo#l, Bending elasticity and thermal fluctuations of

(10]
(11]

(12]

(13]

(14]
(15]
[16]

(17]

(18]

(19]

(20]

(21]
(22]

(23]

lipid-membranes — Theoretical and experimental requinets\é& Phys. (Paris)0, 2389 (1989).
G. GrazianoCavity Thermodynamics and Hydrophobicily Phys. Soc. Jap&9, 1566 (2000).

J. GuvenMembrane geometry with auxiliary variables and quadratastraints J. Phys. A: Math. Ger7,
L313 (2004).

W. Helfrich, Elastic properties of lipid bilayers — theory and possibi@erimentsZ. Naturforsch. 28, 693
(1973).

J.N. Israelachvili, D.J. Mitchell, and B.W. Ninhaniheory of self-assembly of hydrocarbon amphiphiles into
micelles and bilayers]. Chem. Soc., Faraday Trans(2 1525 (1976).

E. Kreyszig Differential GeometryDover, New York (1991).
L.D. Landau and E.M. LifshitZTheory of ElasticityButterworth-Heinemann, Oxford (1999).

R. Lipowsky and E. Sackmann (edsS}ructure and Dynamics of Membranétndbook of Biological Physics,
Vol. 1A (Elsevier, New York/North-Holland, Amsterdam, 199

Z.-C. Ou-Yang and W. HelfriclBending energy of vesicle membranes — General expressitrefast, 2nd and
3rd variation of the shape energy and applications to sphared cylindersPhys. Rev. A39, 5280 (1989).

T.A. Ozal and N.F.A. van der Veg€onfusing Cause and Effect: Energy-Entropy Compensatiche Pref-
erential Solvation of a Nonpolar Solute in Dimethyl Suléte{Water MixturesJ. Phys. Chem. B10, 12104
(2006).

W. Rawicz, K.C. Olbrich, T. McIntosh, D. Needham, andBvans,Effect of chain length and unsaturation on
elasticity of lipid bilayersBiophys. J.79, 328 (2000).

M.D. Schneider, J.T. Jenkins, and W.W. Webhermal fluctuations of large quasi-spherical bimoleciyaos-
pholipid vesiclesJ. Phys. (Paris}5, 1457 (1984).

U. Seifert,Configurations of fluid membranes and vesickdv. Phys46, 13 (1997).

N.T. Southall, K.A. Dill, and A.D.J. Haymet# View of the Hydrophobic Effeci. Phys. Chem. B06, 521
(2002).

N.F.A. van der Vegt, D. Trzesniak, B. Kasumaj, and W4 GunstererE:nergy-entropy compensation in the
transfer of nonpolar solutes from water to cosolvent/watéttures Chem. Phys. Chens.144 (2004).

29



