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If under simple periodic boundary conditions one wants to compute the pair distribution function g(r) beyond
half the simple cubic box length, minimum image issues require an extension of the standard procedure. These
notes summarize the required modifications.

The pair correlation function g(r) may be defined as the
probability density of finding a particle a distance r away
from another particle, divided by the probability density for
the same event in a noninteracting system. Equivalently, we
can take the number N(r) of particles within a distance range
between r and r + dr and divide it by the number Nid(r)
within the same interval in an ideal system. If ρ is the average
particle density, we evidently have

Nid(r) = ρ × 4πr2 dr . (1)

In other words, apart from a trivial prefactor ρ, we essentially
divide N(r) by the surface area of a sphere of radius r. This
of course takes care of the fact that the farther away we go
from the central particle, the more possibilities one has to put
another particle at a distance r.

However, this simple reasoning does not work under peri-
odic boundary conditions. Or, more precisely, it only works
provided that r ≤ 1

2
L – where we assume that we have a cu-

bic box with box length L. The reason is quite obvious: Once
r becomes bigger than 1

2
L, there are certain directions along

which the minimum image distance between two particles is
shorter than r. Or, in other words, even for an ideal system
the number of particles at a distance r does not keep increas-
ing like 4πr2.

There are two solutions to this problem: A plain one and a
clever one. The plain one is: don’t plot g(r) beyond r = 1

2
L.

This is acceptable, but may be a waste of information.
The clever solution is to find out, what the actual number

of particles at a given minimum image distance r is. This ba-
sically can be reduced to the following problem:

Given a cubic simulation box of side length 1,
what is the probability density p(r) for having a
particular minimum image distance r?

The answer to this question is

p(r) =



















4πr2 , 0 < 2r ≤ 1

2πr(3 − 4r) , 1 < 2r ≤
√

2

2r
[

3π − 12f1(r) + f2(r)
]

,
√

2 < 2r ≤
√

3

,

(2)
where we used the abbreviations

f1(r) = arctan
√

4r2 − 2 (3a)

f2(r) = 8r arctan
2r(4r2 − 3)√

4r2 − 2 (4r2 + 1)
(3b)

������� �	��
�

�

�

����
�

�� � ��� � ����

�

�

�

�

FIG. 1: Probability density p(r) for the minimum image distance
between two points randomly picked from the unit cube—Eqn. (2).

The graph of p(r) is sketched in Fig. 1. The required modi-
fication now is simply to divide the number of particles N(r)
within a certain minimum image distance between r and r+dr
by the following modified normalization number:

Ñid(r) = ρ × p(r/L) L2 dr . (4)

Sometimes it is useful to also know the integrated probabil-
ity density, i.e., the probability distribution

D(r) :=

∫

r

0

dr̄ p(r̄) , (5)

for instance if bins are wide and one needs a better expression
for their volume V = D(r+∆r)−D(r) = p(r)∆r+O(∆r2).
Luckily, the integration can be done analytically:

D(r) =































4π

3
r3 , 0 < 2r ≤ 1

− π

12
(3 − 36r2 + 32r3) , 1 < 2r ≤

√
2

−π

4
+ 3πr2 +

√
4r2 − 2 +

(1 − 12r2)f1(r) + 2

3
r2f2(r)

,
√

2 < 2r ≤
√

3

(6)
After these modifications g(r) can be plotted up to 1

2

√
3 L,

respectable 73% farther than the trivial range. Beyond this
value it finally ceases to exist, because there simply is no
larger minimum image separation available in a cubic box.


