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We study the problem of simple diffusion of one particle on a finite line with reflecting boundaries.
Probability density and variance are expressed as an expansion in eigenmodes of the Fokker-Planck
operator for a particle which starts to diffuse in the middle of the line. We find the well known
short-time behavior σ2(t) = 2Dt, but the full solution also yields precise asymptotics for long times.

I. THE DIFFUSION EQUATION

We want to solve the diffusion equation

∂

∂t
P (x, t) = D

∂2

∂x2
P (x, t), (1)

where P (x, t) is the probability density of finding a parti-
cle at position x at time t and D is the diffusion constant.
The factorization ansatz

P (x, t) = ϕ(x) e−λt (2)

leads to the eigenvalue equation
[

d2

dx2
+ ω2

]

ϕ(x) = 0 with ω2 =
λ

D
. (3)

We want to find a solution of the diffusion problem on
the line [−L/2;L/2]. The eigenfunctions of the harmonic
oscillator type equation (3) are sine and cosine functions.
In the present case the eigenfunctions can additionally be
classified by the symmetry of the mode:

ϕo,n(x) = sin(ωo,nx) , ϕe,n(x) = cos(ωe,nx) (4)

The eigenvalues ωo,n and ωe,n follow from the boundary
conditions. We will assume reflecting boundaries and
hence set the probability current at ±L/2 to zero [1]:

0
!
= −D

∂

∂x
P (x, t) ⇒ ϕ′(±L/2) = 0. (5)

This determines the eigenvalues

ωo,n =
2π(n + 1/2)

L
, ωe,n =

2πn

L
. (6)

From there we get λn = Dω2
n for odd and even modes.

We now can write down the spatial part of the solution:

ϕ(x) =

∞
∑

n=0

[

Ae,n cos
2πnx

L
+ Ao,n sin

2π(n + 1/2)x

L

]

.

(7)
The normalization condition

1
!
=

∫ L/2

−L/2

dx

[

Ae,n cos
2πnx

L
+ Ao,n sin

2π(n + 1/2)x

L

]

= Ae,0L (8)

fixes Ae,0 = 1/L, but leaves all other amplitudes unspec-
ified.
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FIG. 1: Time evolution of the probability density P (x, t) from
Eqn. (10) for the time steps Dt/L2 = 0.0001, 0.0002, 0.0005,
0.001, . . ., 1.0.

II. START IN THE MIDDLE

A. Probability density

We now want to find the particular solution for the
symmetric initial condition P (x, 0) = δ(x), i. e., a par-
ticle starting to diffuse in the middle of the line. Since
δ(x) is an even “function”, all Ao,n must vanish. Fur-
thermore, on the interval [−L/2;L/2] the delta function
can be represented as

Lδ(x) = 1 + 2

∞
∑

n=1

cos
2πnx

L
. (9)

The right hand side is actually periodic with period L,
but this does not matter since we are only interested
in its values within [−L/2;L/2]. Comparing coefficients
with Eqn. (7) shows that Ae,n = 2/L for n > 0. The full
time-dependent solution of the diffusion problem is thus

P (x, t) =
1

L
+

2

L

∞
∑

n=1

cos
2πnx

L
exp

{

−
4π2n2Dt

L2

}

. (10)

An illustration of the time evolution of this probability
density is given in Fig. 1.
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FIG. 2: Variance σ2(t) from Eqn. (11) and some of its asymp-
totics and approximations.

B. Variance

Using the integral
∫ πn

−πn
dy y2 cos(y) = 4πn(−1)n for

n ∈ N0, we can compute the time-dependent variance of
the distribution function P (x, t) from Eqn. (10):

σ2(t)

L2
=

1

L2

∫ L/2

−L/2

dx x2 P (x, t)

=
1

12
+

1

π2

∞
∑

n=1

(−1)n

n2
exp

{

−
4π2n2Dt

L2

}

. (11)

This can be viewed as an expansion for large times, but
it is valid for all t. The lowest nontrivial order is

σ2(t)

L2
=

1

12
−

1

π2
exp

{

−
4π2Dt

L2

}

. (12)

To get the asymptotic behavior at small t is a little
bit more tricky: A naive expansion of the exponential
exp{−4π2n2Dt/L2} for small t is barred by the fact that
n2 will always become large during the course of perform-
ing the sum [3]. Instead, we will use the Euler-Maclaurin
summation formula [2], which is a controlled way for re-
placing a sum by an integral. It reads

n
∑

k=1

f(k) =

∫ n

0

dk f(k) −
1

2

[

f(0) + f(n)
]

+
1

12

[

f ′(n) − f ′(0)
]

−
1

720

[

f ′′′(n) − f ′′′(0)
]

± · · · (13)

Using this, we can rewrite the sum entering the expres-
sion of P (x, t) as

∞
∑

n=1

cos
2πnx

L
exp

{

−
4π2n2Dt

L2

}

=

∫ ∞

0

dn cos
2πnx

L
exp

{

−
4π2n2Dt

L2

}

−
1

2

=
exp{−x2/4Dt}

4
√

πDt/L2
−

1

2
, (14)

from which by inserting into Eqn. (10) we get

P (x, t)
Dt¿L2

=
1

√

2π(2Dt)
exp

{

−
x2

2(2Dt)

}

. (15)

This is obviously a Gaussian with variance σ2(t) = 2Dt.

A plot of the variance σ2(t) and a few of its asymptotics
and approximations is shown in Fig. 2.
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P

∞
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