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We study the problem of simple diffusion of one particle on a finite line with reflecting boundaries.
Probability density and variance are expressed as an expansion in eigenmodes of the Fokker-Planck
operator for a particle which starts to diffuse in the middle of the line. We find the well known
short-time behavior o2 (t) = 2Dt, but the full solution also yields precise asymptotics for long times.

I. THE DIFFUSION EQUATION

We want to solve the diffusion equation
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where P(z,t) is the probability density of finding a parti-
cle at position z at time ¢ and D is the diffusion constant.
The factorization ansatz

P(z,1), (1)

Pla,t) = pla)e ™ (2)
leads to the eigenvalue equation
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We want to find a solution of the diffusion problem on
the line [—L/2; L/2]. The eigenfunctions of the harmonic
oscillator type equation (3) are sine and cosine functions.
In the present case the eigenfunctions can additionally be
classified by the symmetry of the mode:

Con(x) =sin(won®) , @en(r)=cos(wenz) (4)

The eigenvalues w, ,, and we , follow from the boundary
conditions. We will assume reflecting boundaries and
hence set the probability current at £L/2 to zero [1]:
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This determines the eigenvalues
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From there we get A\, = Dw? for odd and even modes.
We now can write down the spatial part of the solution:
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The normalization condition
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fixes Ae g = 1/L, but leaves all other amplitudes unspec-
ified.
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FIG. 1: Time evolution of the probability density P(x,t) from
Eqn. (10) for the time steps Dt/L? = 0.0001, 0.0002, 0.0005,
0.001, ..., 1.0.

II. START IN THE MIDDLE
A. Probability density

We now want to find the particular solution for the
symmetric initial condition P(x,0) = é(x), i.e., a par-
ticle starting to diffuse in the middle of the line. Since
d(z) is an even “function”, all A, , must vanish. Fur-
thermore, on the interval [—L/2; L/2] the delta function
can be represented as

Lé(z) = 1+2ZCOS
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The right hand side is actually periodic with period L,

but this does not matter since we are only interested

in its values within [—L/2; L/2]. Comparing coefficients

with Eqn. (7) shows that A, = 2/L for n > 0. The full

time-dependent solution of the diffusion problem is thus
4m2n2 Dt

Z cos —Ir } (10)

An illustration of the time evolution of this probability
density is given in Fig. 1.
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FIG. 2: Variance o2(t) from Eqn. (11) and some of its asymp-
totics and approximations.

B. Variance

Using the integral ff:n dyy?cos(y) = 4mn(—1)" for
n € Ny, we can compute the time-dependent variance of
the distribution function P(x,t) from Eqn. (10):
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This can be viewed as an expansion for large times, but
it is valid for all ¢. The lowest nontrivial order is

o2(t) if%ex {JWDt}, (12)
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To get the asymptotic behavior at small ¢ is a little
bit more tricky: A naive expansion of the exponential
exp{—4n?n?Dt/L*} for small t is barred by the fact that
n? will always become large during the course of perform-
ing the sum [3]. Instead, we will use the Euler-Maclaurin
summation formula [2], which is a controlled way for re-
placing a sum by an integral. It reads
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Using this, we can rewrite the sum entering the expres-
sion of P(z,t) as
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from which by inserting into Eqn. (10) we get
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This is obviously a Gaussian with variance o2(t) = 2Dt.

A plot of the variance o%(t) and a few of its asymptotics
and approximations is shown in Fig. 2.
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