One-dimensional diffusion on a finite region

Markus Deserno
Department of Chemistry and Biochemistry, UCLA, USA
(Dated: December 10, 2004)

Abstract

We study the problem of simple diffusion of one particle on a finite line with reflecting boundaries. Probability density and variance are expressed as an expansion in eigenmodes of the Fokker-Planck operator for a particle which starts to diffuse in the middle of the line. We find the well known short-time behavior $\sigma^{2}(t)=2 D t$, but the full solution also yields precise asymptotics for long times.

I. THE DIFFUSION EQUATION

We want to solve the diffusion equation

$$
\begin{equation*}
\frac{\partial}{\partial t} P(x, t)=D \frac{\partial^{2}}{\partial x^{2}} P(x, t) \tag{1}
\end{equation*}
$$

where $P(x, t)$ is the probability density of finding a particle at position x at time t and D is the diffusion constant. The factorization ansatz

$$
\begin{equation*}
P(x, t)=\varphi(x) \mathrm{e}^{-\lambda t} \tag{2}
\end{equation*}
$$

leads to the eigenvalue equation

$$
\begin{equation*}
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\omega^{2}\right] \varphi(x)=0 \quad \text { with } \quad \omega^{2}=\frac{\lambda}{D} \tag{3}
\end{equation*}
$$

We want to find a solution of the diffusion problem on the line $[-L / 2 ; L / 2]$. The eigenfunctions of the harmonic oscillator type equation (3) are sine and cosine functions. In the present case the eigenfunctions can additionally be classified by the symmetry of the mode:

$$
\begin{equation*}
\varphi_{\mathrm{o}, n}(x)=\sin \left(\omega_{\mathrm{o}, n} x\right) \quad, \quad \varphi_{\mathrm{e}, n}(x)=\cos \left(\omega_{\mathrm{e}, n} x\right) \tag{4}
\end{equation*}
$$

The eigenvalues $\omega_{\mathrm{o}, n}$ and $\omega_{\mathrm{e}, n}$ follow from the boundary conditions. We will assume reflecting boundaries and hence set the probability current at $\pm L / 2$ to zero [1]:

$$
\begin{equation*}
0 \stackrel{!}{=}-D \frac{\partial}{\partial x} P(x, t) \quad \Rightarrow \quad \varphi^{\prime}(\pm L / 2)=0 \tag{5}
\end{equation*}
$$

This determines the eigenvalues

$$
\begin{equation*}
\omega_{\mathrm{o}, n}=\frac{2 \pi(n+1 / 2)}{L} \quad, \quad \omega_{\mathrm{e}, n}=\frac{2 \pi n}{L} \tag{6}
\end{equation*}
$$

From there we get $\lambda_{n}=D \omega_{n}^{2}$ for odd and even modes. We now can write down the spatial part of the solution:

$$
\begin{equation*}
\varphi(x)=\sum_{n=0}^{\infty}\left[A_{\mathrm{e}, n} \cos \frac{2 \pi n x}{L}+A_{\mathrm{o}, n} \sin \frac{2 \pi(n+1 / 2) x}{L}\right] \tag{7}
\end{equation*}
$$

The normalization condition

$$
\begin{align*}
1 & \stackrel{!}{=} \int_{-L / 2}^{L / 2} \mathrm{~d} x\left[A_{\mathrm{e}, n} \cos \frac{2 \pi n x}{L}+A_{\mathrm{o}, n} \sin \frac{2 \pi(n+1 / 2) x}{L}\right] \\
& =A_{\mathrm{e}, 0} L \tag{8}
\end{align*}
$$

fixes $A_{\mathrm{e}, 0}=1 / L$, but leaves all other amplitudes unspecified.

FIG. 1: Time evolution of the probability density $P(x, t)$ from Eqn. (10) for the time steps $D t / L^{2}=0.0001,0.0002,0.0005$, $0.001, \ldots, 1.0$.

II. START IN THE MIDDLE

A. Probability density

We now want to find the particular solution for the symmetric initial condition $P(x, 0)=\delta(x)$, i.e., a particle starting to diffuse in the middle of the line. Since $\delta(x)$ is an even "function", all $A_{\mathrm{o}, n}$ must vanish. Furthermore, on the interval $[-L / 2 ; L / 2]$ the delta function can be represented as

$$
\begin{equation*}
L \delta(x)=1+2 \sum_{n=1}^{\infty} \cos \frac{2 \pi n x}{L} \tag{9}
\end{equation*}
$$

The right hand side is actually periodic with period L, but this does not matter since we are only interested in its values within $[-L / 2 ; L / 2]$. Comparing coefficients with Eqn. (7) shows that $A_{\mathrm{e}, n}=2 / L$ for $n>0$. The full time-dependent solution of the diffusion problem is thus

$$
\begin{equation*}
P(x, t)=\frac{1}{L}+\frac{2}{L} \sum_{n=1}^{\infty} \cos \frac{2 \pi n x}{L} \exp \left\{-\frac{4 \pi^{2} n^{2} D t}{L^{2}}\right\} \tag{10}
\end{equation*}
$$

An illustration of the time evolution of this probability density is given in Fig. 1.

FIG. 2: Variance $\sigma^{2}(t)$ from Eqn. (11) and some of its asymptotics and approximations.

B. Variance

Using the integral $\int_{-\pi n}^{\pi n} \mathrm{~d} y y^{2} \cos (y)=4 \pi n(-1)^{n}$ for $n \in \mathbb{N}_{0}$, we can compute the time-dependent variance of the distribution function $P(x, t)$ from Eqn. (10):

$$
\begin{align*}
\frac{\sigma^{2}(t)}{L^{2}} & =\frac{1}{L^{2}} \int_{-L / 2}^{L / 2} \mathrm{~d} x x^{2} P(x, t) \\
& =\frac{1}{12}+\frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \exp \left\{-\frac{4 \pi^{2} n^{2} D t}{L^{2}}\right\} \tag{11}
\end{align*}
$$

This can be viewed as an expansion for large times, but it is valid for all t. The lowest nontrivial order is

$$
\begin{equation*}
\frac{\sigma^{2}(t)}{L^{2}}=\frac{1}{12}-\frac{1}{\pi^{2}} \exp \left\{-\frac{4 \pi^{2} D t}{L^{2}}\right\} \tag{12}
\end{equation*}
$$

To get the asymptotic behavior at small t is a little bit more tricky: A naive expansion of the exponential $\exp \left\{-4 \pi^{2} n^{2} D t / L^{2}\right\}$ for small t is barred by the fact that n^{2} will always become large during the course of performing the sum [3]. Instead, we will use the Euler-Maclaurin summation formula [2], which is a controlled way for replacing a sum by an integral. It reads

$$
\begin{align*}
& \sum_{k=1}^{n} f(k)=\int_{0}^{n} \mathrm{~d} k f(k)-\frac{1}{2}[f(0)+f(n)] \\
& \quad+\frac{1}{12}\left[f^{\prime}(n)-f^{\prime}(0)\right]-\frac{1}{720}\left[f^{\prime \prime \prime}(n)-f^{\prime \prime \prime}(0)\right] \pm \cdots \tag{13}
\end{align*}
$$

Using this, we can rewrite the sum entering the expression of $P(x, t)$ as

$$
\begin{align*}
\sum_{n=1}^{\infty} & \cos \frac{2 \pi n x}{L} \exp \left\{-\frac{4 \pi^{2} n^{2} D t}{L^{2}}\right\} \\
& =\int_{0}^{\infty} \mathrm{d} n \cos \frac{2 \pi n x}{L} \exp \left\{-\frac{4 \pi^{2} n^{2} D t}{L^{2}}\right\}-\frac{1}{2} \\
& =\frac{\exp \left\{-x^{2} / 4 D t\right\}}{4 \sqrt{\pi D t / L^{2}}}-\frac{1}{2} \tag{14}
\end{align*}
$$

from which by inserting into Eqn. (10) we get

$$
\begin{equation*}
P(x, t) \stackrel{D t \ll L^{2}}{=} \frac{1}{\sqrt{2 \pi(2 D t)}} \exp \left\{-\frac{x^{2}}{2(2 D t)}\right\} \tag{15}
\end{equation*}
$$

This is obviously a Gaussian with variance $\sigma^{2}(t)=2 D t$.
A plot of the variance $\sigma^{2}(t)$ and a few of its asymptotics and approximations is shown in Fig. 2.
[1] H. Risken, "The Fokker-Planck-Equation", 2nd ed., Springer, Berlin (1996).
[2] M. Abramowitz and I. A. Stegun (ed.), Handbook of mathematical functions, 9th printing, Dover, New York (1970).
[3] The only exception is $t=0$, in which case the summation formula $\sum_{n=1}^{\infty}(-1)^{n} / n^{2}=-\pi^{2} / 12$ correctly results in $\sigma^{2}(0)=0$.

