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An algorithm is described which generates a sequence of random numbers r1, r2, . . . with the following two
properties: (i) each individual ri is a Gaussian deviate with zero mean and unit variance; (ii) the autocorrelation
function of the sequence decays exponentially with a predetermined decay time τ . A correlated random walk is
discussed as a simple application.

I. THE ALGORITHM

Let gn be a sequence of independent Gaussian deviates with
zero mean and unit variance, i. e.

prob(gn = x) =
1√
2π

e−x2/2 ∀n ∈ N0, (1)

and in particular 〈gn〉 = 0 and 〈g2
n〉 = 1. Such numbers can

be generated quite easily on a computer [1, 2], and we will not
discuss this issue any further.

Let τ > 0 be a real number and introduce the correlation
coefficient f as

f := e−1/τ . (2)

Now define the sequence of numbers rn recursively via

r0 := g0 ; rn+1 := f rn +
√

1 − f2 gn+1. (3)

This can also be written in a closed expression as

rn = fng0 +
√

1 − f2

n∑

i=1

gif
n−i. (4)

Theorem 1 The random numbers rn are Gaussian deviates
with zero mean and unit variance.

Proof: Since each rn is the sum of Gaussian deviates, it is
also a Gaussian deviate. By construction r0 has zero mean
and unit variance, and by induction we have

〈rn+1〉 = f 〈rn〉
︸︷︷︸

=0

+
√

1 − f2 〈gn+1〉
︸ ︷︷ ︸

=0

= 0.

and

〈r2
n+1〉 = f2 〈r2

n〉
︸︷︷︸

=1

+
(
1 − f2

)
〈g2

n+1〉
︸ ︷︷ ︸

=1

= 1,

where the cross-term 〈rngn+1〉 vanishes because rn and gn+1

are independent and thus uncorrelated. We also used the
result for the variance of a linear combination of independent
random variables [4]. 2

We now look at the autocorrelation coefficient c(n;m) of
the sequence rn, which we shall define by

c(n;m) :=
〈rmrm+n〉 − 〈rm〉〈rm+n〉

〈(rm − 〈rm〉)2〉1/2〈(rm+n − 〈rm+n〉)2〉1/2
.

(5)

Theorem 2 The autocorrelation coefficient c(n;m) is inde-
pendent of m (i. e., the corresponding stochastic process is
stationary) and is given by

c(n;m) ≡ c(n) = fn = e−n/τ . (6)

Proof: The rn have zero mean and unit variance, therefore
c(n;m) reduces to 〈rmrm+n〉. We now simply have to calcu-
late:

〈rmrm+n〉 =
〈

rm

(

fnrm +
√

1 − f2

m+n∑

i=m+1

gif
m+n−i

)〉

∗

= fn 〈r2
m〉 = e−n/τ .

At the key step ∗ we used the fact that the Gaussian deviates
gi are not correlated with the number rm, since i > m. 2

Since correlation coefficients are invariant under (affine)
linear transformations of random variables, X → a + bX ,
we have the

Corrolary 1 The random numbers

r̃n := µ + σrn (7)

are Gaussian with mean µ and variance σ2, and their corre-
lation time is also τ .

Remarks:

1. The sequence rn of random numbers is a Markov pro-
cess [3]. Eqn. (3) specifies precisely the two necessary
ingredients: (i) the initial state and (ii) the transition
probability. The latter is obviously given by a Gaussian
with mean (f − 1)rn and variance 1 − f2.

2. The above prescription for getting correlated random
numbers is closely related to the following method of
getting two correlated Gaussian random numbers. Let
a be a Gaussian random variable with mean µa and vari-
ance σ2

a. Let g be a Gaussian random variable with zero
mean and unit variance. Then it is easily checked that

b := f
σb

σa

(
a − µa

)
+
√

1 − f2σbg + µb (8)

is a Gaussian random variable with mean µb and vari-
ance σ2

b , which has a correlation coefficient f with the
random variable a.
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FIG. 1: Comparison between a (rescaled!) Gaussian random walk
GN (fine solid line) and a correlated random walk RN (bold solid
line) for a correlation time of τ = 10.

II. APPLICATION: CORRELATED RANDOM WALK

By adding up the Gaussian deviates gn or the correlated
deviates rn, we can create so called “random walks”:

GN :=

N∑

n=0

gn , RN :=

N∑

n=0

rn. (9)

All increments for GN are independent, so this is again
Markov process. But the increments in RN are strongly back-
wards correlated and this is no Markov process any more.
However, it can be made into a Markov process by suitably
extending the “phase space” and including the increments rn,
since we then have
(

Rn+1

rn+1

)

=

(
1 1
0 f

)(
Rn

rn

)

+
√

1 − f2

(
0

gn+1

)

.

(10)
In this form the process evidently possesses the Markov prop-
erty. This just illustrates that Markov processes can also have
some sort of memory – even though the kind of memory is
limited to special forms.

We will now investigate how these two random walks are

related to each other. A straightforward calculation gives

RN =
N∑

n=0

[

fng0 +
√

1 − f2

n∑

i=1

gif
n−i

]

= g0

1 − fN+1

1 − f
+
√

1 − f2

N∑

i=1

gi

N∑

n=i

fn−i

= g0

1 − fN+1

1 − f
+

√

1 − f2

1 − f

[ N∑

i=1

gi − f

N∑

i=1

gif
N−i

]

.

The first sum in the bracket is GN − g0, and using Eqn. (4)
the second sum can be re-expressed by rN . We thus get

RN =

√

1 + f

1 − f
GN − f

1 − f
rN +

1 −
√

1 − f2

1 − f
g0. (11)

The first term is a Gaussian random walk with a prefactor, it
will thus on average grow with time. The second and third
term do not grow, since they are just Gaussian deviates with
prefactors (the third is a constant anyway). For sufficiently
large N the first term hence dominates the expression. Rewrit-
ing f in terms of the correlation time τ we then get the approx-
imate relation

RN ∼
√

coth
1

2τ
GN ≈







GN : τ ¿ 1

√
2τ GN : τ À 1

(12)

It can hence be seen that the correlated Gaussian random walk
is “faster” than the uncorrelated random walk, even though
in both cases the increments are Gaussian deviates with zero
mean and unit variance! More precisely, the mean square dis-
placement of the correlated walk will grow stronger – in the
case τ À 1 by a factor of 2τ . Persistence gives distance!

As an illustration, Fig.1 shows a comparison between GN

and RN for a correlation time τ = 10. It is clearly visible that
the correlated random walk is smoother on time scales smaller
or equal to τ , but for longer times it follows the same large-
scale motion as the Gaussian random walk (only the amplitude
is larger by a factor of about

√
2τ ). The difference in short-

term “wiggliness” between both random walks is due to the
second term in Eqn. (11). Another way of looking at this is
the following: The correlated random walk can be generated
from the uncorrelated one by a specific “filtering process”,
which suitably combines the previous values (over essentially
a distance τ ). This also “explains” why the coarse grained
random walk lags behind.
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