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An agorithm is described which generates a sequence of random numbers 1, 72, . .

. with the following two

properties: (i) each individua r; is a Gaussian deviate with zero mean and unit variance; (ii) the autocorrelation
function of the sequence decays exponentially with a predetermined decay time 7. A correlated random walk is

discussed as a simple application.

I. THEALGORITHM

Let g,, be a sequence of independent Gaussian deviates with
zero mean and unit variance, i. e.
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prob(g, = z) = T e Vn € N, (1)
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and in particular (g,,) = 0 and (g2) = 1. Such numbers can
be generated quite easily on a computer [1, 2], and we will not
discuss this issue any further.

Let 7 > 0 be a real number and introduce the correlation
coefficient f as

f o= e T (2)
Now define the sequence of numbers r,, recursively via
1—f2g9n41. ()
This can also be written in a closed expression as
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Theorem 1 The random numbers r,, are Gaussian deviates
with zero mean and unit variance.

Proof: Since each r,, is the sum of Gaussian deviates, it is
also a Gaussian deviate. By construction r, has zero mean
and unit variance, and by induction we have

<7'n+1> = f<r7l> +v1- f2 <gn+1> = 0.
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and

<TZ+1> = f2<\7“¢2}_>/+(1_f2) <972L+1> = 1,
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where the cross-term (r,,g,+1) vanishes because r,, and g,,+1
are independent and thus uncorrelated. We also used the
result for the variance of a linear combination of independent
random variables [4]. O

We now look at the autocorrelation coefficient ¢(n;m) of
the sequence r,,, which we shall define by

(TmTman) = (Tm) (Pman)

((rm = () DY 2{(Pman = (Pman)) D2
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Theorem 2 The autocorrelation coefficient ¢(n;m) is inde-
pendent of m (i.e., the corresponding stochastic process is
stationary) and is given by

c(n;m) = ¢(n) = f* = e T, (6)

Proof: The r,, have zero mean and unit variance, therefore
¢(n; m) reduces to (ry,7m+n). We now simply have to calcu-
late:

m—+n

(rntmin) = {rm (£ + VIZFE 30 ™))

i=m+1

= frrm) = e

At the key step = we used the fact that the Gaussian deviates
g; are not correlated with the number r,,,, since i > m. |

Since correlation coefficients are invariant under (affine)
linear transformations of random variables, X — a + bX,
we have the

Corrolary 1 The random numbers
Tn = p+ory, (7

are Gaussian with mean p and variance o2, and their corre-
lation time is also .

Remarks:

1. The sequence r,, of random numbers is a Markov pro-
cess [3]. Eqgn. (3) specifies precisely the two necessary
ingredients: (i) the initial state and (ii) the transition
probability. The latter is obviously given by a Gaussian
with mean (f — 1)r,, and variance 1 — f2.

2. The above prescription for getting correlated random
numbers is closely related to the following method of
getting two correlated Gaussian random numbers. Let
a be a Gaussian random variable with mean ., and vari-
ance o2. Let g be a Gaussian random variable with zero
mean and unit variance. Then it is easily checked that

b = f%(a—ua)-i- L — f2op9 + 1o €))

a
is a Gaussian random variable with mean p; and vari-
ance o7, which has a correlation coefficient f with the
random variable a.
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FIG. 1. Comparison between a (rescaled!) Gaussian random walk
Gn (fi ne solid line) and a correlated random walk Ry (bold solid
line) for a correlation time of 7 = 10.

II. APPLICATION: CORRELATED RANDOM WALK

By adding up the Gaussian deviates g,, or the correlated
deviates r,,, we can create so called “random walks”:

N N
= Z gn ) = Z Tn- (9)
n=0 n=0

All increments for G are independent, so this is again
Markov process. But the increments in R are strongly back-
wards correlated and this is no Markov process any more.
However, it can be made into a Markov process by suitably
extending the “phase space” and including the increments r,,

since we then have
(o) =G p) () = v (W)
Tn41 0 f Tn Gn+1

(10)

In this form the process evidently possesses the Markov prop-

erty. This just illustrates that Markov processes can also have

some sort of memory — even though the kind of memory is

limited to special forms.

We will now investigate how these two random walks are

related to each other. A straightforward calculation gives
N n ]
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The first sum in the bracket IS GN — go, and usmg Eqgn. (4)
the second sum can be re-expressed by r . We thus get
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The first term is a Gaussian random walk with a prefactor, it
will thus on average grow with time. The second and third
term do not grow, since they are just Gaussian deviates with
prefactors (the third is a constant anyway). For sufficiently
large NV the first term hence dominates the expression. Rewrit-
ing f in terms of the correlation time 7 we then get the approx-
imate relation

1 Gn Tkl
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It can hence be seen that the correlated Gaussian random walk
s “faster” than the uncorrelated random walk, even though
in both cases the increments are Gaussian deviates with zero
mean and unit variance! More precisely, the mean square dis-
placement of the correlated walk will grow stronger — in the
case T > 1 by a factor of 27. Persistence gives distance!

As an illustration, Fig.1 shows a comparison between G y
and Ry for a correlation time 7 = 10. It is clearly visible that
the correlated random walk is smoother on time scales smaller
or equal to 7, but for longer times it follows the same large-
scale motion as the Gaussian random walk (only the amplitude
is larger by a factor of about /27). The difference in short-
term “wiggliness” between both random walks is due to the
second term in Eqn. (11). Another way of looking at this is
the following: The correlated random walk can be generated
from the uncorrelated one by a specific “filtering process”,
which suitably combines the previous values (over essentially
a distance 7). This also “explains” why the coarse grained
random walk lags behind.
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