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When a particle immersed in a dissipative environment and subject to thermal noise reaches an
equilibrium state, a relation between the relative strength of friction and noise must hold. Such
relations go under the name “fluctuation-dissipation theorem”, and Brownian motion exemplifies

one of the simplest cases.

Assume that a macroscopic particle resides in a
medium in which it is subject to (¢) random kicks by
smaller particles and (i) a friction force. Its momen-
tum p may then be described by the following stochastic
differential equation:
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Here f(t) is a stochastic force or “noise”, i.e., a random
variable, and I is a friction constant. It is easy to see
that the Green function of the homogeneous differential
equation is given by

pa(t) = Le T O(1) . (2)

A particular solution of Eqn. (1) results from the con-
volution of the stochastic force (i. e., the inhomogeneity)
with the Green function:
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Let the following two relations hold for the average and
the covariance of the noise:

(f(t) =0, (4a)

(f(t1) - f(t2)) = Ct1 —ta) . (4b)

Note in particular that we assume the covariance only to
depend on the difference of the times ¢; and ¢,.' Also,
C must be an even function, since the left hand side of

Eqn. (4b) is symmetric in ¢; and to. For the expectation
value of the momentum we find:
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The form of the integrand suggests that it is useful to
transform to the following new time-variables:
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FIG. 1: Transformation of the range of integration under the
substitution from Eqn. (6): The region t1,t2 > 0 is mapped
onto the region t4 > 2|t_|.

It is important to note that the range of integration for
t+ and t_ is different from the range for ¢; and to. This
is illustrated in Fig. 1. The integral in Eqn. (5) now

becomes
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In the last step we used the fact that C is even. If we
denote the Laplace-transform of C' with C*, Eqn. (7) is
briefly written as

(p*) = —5—- (8)

If the random kicks and the friction are to model a canon-
ical thermal heat bath, the equipartition theorem must
hold, which implies

(p*) d
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where d is the dimension of space. Inserting this into

Eqn. (8) yields
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This is the relation that we were looking for, and it is an
example of a fluctuation-dissipation-theorem: The corre-
lation function of the fluctuating force is related to the
friction coefficient, i. e., to the dissipation.



In many cases the time for the fluctuation function
C(t) to decay is much smaller than the typical relaxation
time 1/T.2 When computing the Laplace-integral, C(t)
has decayed to zero long before e~ has significantly
changed from 1. Hence, one may evaluate the Laplace-
transform at I' = 0:
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Special case: For é-correlated stochastic forces® Eqn. (11)
can be simplified even further. Assuming that the corre-
lator can be written as

O(t) = Co8(t), (12)

an evaluation of the integral gives

r— %o =
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In molecular dynamics simulations this relation is some-
times used to thermostat the system. If a stochastic force
and a friction coefficient are introduced which satisfy
Eqn. (13), the system will converge toward the canon-
ical state with temperature 7.

1 One says that the stochastic process is “homogeneous”.
2 This is e.g. true if the mass of the Brownian particle is
much larger than the mass of the little molecules that push

it.
3 This is sometimes called “white noise”.



