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When a particle immersed in a dissipative environment and subject to thermal noise reaches an
equilibrium state, a relation between the relative strength of friction and noise must hold. Such
relations go under the name “fluctuation-dissipation theorem”, and Brownian motion exemplifies
one of the simplest cases.

Assume that a macroscopic particle resides in a
medium in which it is subject to (i) random kicks by
smaller particles and (ii) a friction force. Its momen-
tum p may then be described by the following stochastic

differential equation:

dp

dt
= −Γp + f(t) . (1)

Here f(t) is a stochastic force or “noise”, i. e., a random
variable, and Γ is a friction constant. It is easy to see
that the Green function of the homogeneous differential
equation is given by

pG(t) = I e−Γt Θ(t) . (2)

A particular solution of Eqn. (1) results from the con-
volution of the stochastic force (i. e., the inhomogeneity)
with the Green function:

p(t) = [pG ∗ f ](t)

=

∫ ∞

−∞

dt′ Θ(t′)e−Γt
If(t − t′)

=

∫ ∞

0

dt′ e−Γt′

f(t − t′) . (3)

Let the following two relations hold for the average and
the covariance of the noise:

〈f(t)〉 = 0 , (4a)

〈f(t1) · f(t2)〉 = C(t1 − t2) . (4b)

Note in particular that we assume the covariance only to
depend on the difference of the times t1 and t2.

1 Also,
C must be an even function, since the left hand side of
Eqn. (4b) is symmetric in t1 and t2. For the expectation
value of the momentum we find:

〈p2〉 =

〈
∫ ∞

0

dt1 e−Γt1f(t − t1)

∫ ∞

0

dt2 e−Γt2f(t − t2)

〉

=

∫ ∞

0

dt1

∫ ∞

0

dt2 e−Γ(t1+t2) C(t1 − t2) . (5)

The form of the integrand suggests that it is useful to
transform to the following new time-variables:

t− = t1 − t2
t+ = 1

2 (t1 + t2)
⇒

∂(t−, t+)

∂(t1, t2)
=
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FIG. 1: Transformation of the range of integration under the
substitution from Eqn. (6): The region t1, t2 ≥ 0 is mapped
onto the region t+ ≥ 1
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It is important to note that the range of integration for
t+ and t− is different from the range for t1 and t2. This
is illustrated in Fig. 1. The integral in Eqn. (5) now
becomes

〈p2〉 =

∫ ∞

−∞

dt− C(t−)

∫ ∞

|t−|/2

dt+ e−2Γt+

=
1

2Γ

∫ ∞

−∞

dt− C(t−) e−Γ|t−|

=
1

Γ

∫ ∞

0

dt− C(t−) e−Γt− . (7)

In the last step we used the fact that C is even. If we
denote the Laplace-transform of C with C∗, Eqn. (7) is
briefly written as

〈p2〉 =
C∗(Γ)

Γ
. (8)

If the random kicks and the friction are to model a canon-
ical thermal heat bath, the equipartition theorem must
hold, which implies

〈p2〉

2m
=

d

2
kBT, (9)

where d is the dimension of space. Inserting this into
Eqn. (8) yields

Γ =
C∗(Γ)

dmkBT
. (10)

This is the relation that we were looking for, and it is an
example of a fluctuation-dissipation-theorem: The corre-
lation function of the fluctuating force is related to the
friction coefficient, i. e., to the dissipation.
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In many cases the time for the fluctuation function
C(t) to decay is much smaller than the typical relaxation
time 1/Γ.2 When computing the Laplace-integral, C(t)
has decayed to zero long before e−Γt has significantly
changed from 1. Hence, one may evaluate the Laplace-
transform at Γ = 0:

Γ ≈
C∗(0)

dmkBT
=

1

2dmkBT

∫ ∞

−∞

dt C(t) (11)

Special case: For δ-correlated stochastic forces3 Eqn. (11)
can be simplified even further. Assuming that the corre-
lator can be written as

C(t) = C0 δ(t), (12)

an evaluation of the integral gives

Γ =
C0

2dmkBT
⇒ C0 = 2dΓmkBT. (13)

In molecular dynamics simulations this relation is some-
times used to thermostat the system. If a stochastic force
and a friction coefficient are introduced which satisfy
Eqn. (13), the system will converge toward the canon-
ical state with temperature T .

1 One says that the stochastic process is “homogeneous”.
2 This is e. g. true if the mass of the Brownian particle is

much larger than the mass of the little molecules that push

it.
3 This is sometimes called “white noise”.


