
Mesoscopic membrane simulations with mbtools

Tristan Bereau, Mingyang Hu, Patrick Diggins, and Markus Deserno
Department of Physics

Carnegie Mellon University
Pittsburgh, PA USA

October 27, 2011

1 Introduction

This tutorial introduces the mbtools package contained in Espresso. It imple-
ments the mesoscopic membrane model of Cooke et al.1 While of low resolution,
this three-bead-lipid, solvent-free coarse-grained model can self-assemble fluid
bilayers as well as reproduce physically meaningful large-scale parameters of
the membrane.2 This tutorial will illustrate some of the capabilities of the
coarse-grained model: bilayer self-assembly, bending modulus and line tension
coefficients determination, and energetics of spontaneous vesicle formation.

1Cooke, I. R., Kremer, K. and Deserno, M. (2005): Tuneable, generic model for fluid bilayer
membranes. Phys. Rev. E. 72 - 011506

2For a review, see Deserno, M. (2009): Mesoscopic Membrane Physics: Concepts, Simula-
tions, and Selected Applications. Macromol. Rapid Commun. 30 - 752-771

1

2 Background

Lipid membranes form the barriers that compartmentalize the cell. They consist
of two thin layers of lipids. These amphiphilic molecules (i.e. which possess both
hydrophilic and hydrophobic properties) can self-assemble into large structures
in order to minimize the exposition of their hydrophobic tails to the (polar) sol-
vent. The main structures that lipids form in solution include micelles (spherical
shape where all tails point to the center), bilayer sheets, and vesicles.

At a mesoscopic level (∼ 10 nm−10µm) the structure and energetics of mem-
branes are often modeled using continuum elastic theory. To bridge the gap
between continuum theory and molecular details, coarse-grained simulations of
lipids have become increasingly popular. Here we will use a model that coarse-
grains away most of the chemical details of a lipid, but, as will be shown in
the tutorial, can self-assemble into membranes as well as reproduce physically
meaningful large-scale parameters.

One molecule is represented by only three beads. This allows us to define two
different types of beads (i.e. hydrophobic, hydrophilic), as well as to reproduce
a fair lipid aspect ratio. The model does not contain any explicit solvent. While
this largely increases the computational efficiency of the model, it requires some
care when parametrizing the interactions between the lipid beads. Hydropho-
bicity in an implicit solvent model can be represented by an effective attraction
between nonpolar beads. While the use of Lennard-Jones interactions allows the
formation of lipid bilayers under proper conditions, the stabilized system con-
sists of a solid (gel) phase, rather than a (biologically relevant) fluid bilayer. In
the model considered here, lipid tails interact via potentials that have a longer
attractive range. Tuning the range of this interaction as well as the temperature
allows for the self-assembly of a fluid bilayer. Additionally, the model is capable
of reproducing important energetic aspects of continuum theory, such as bend-
ing and stretching moduli. In this tutorial, two of these large-scale parameters
will be calculated by simulating simple systems.

2.1 Outline

The tutorial presented here will first introduce the main property of the force-
field: the ability to self-assemble lipids into a stable bilayer. Then the line
tension and the bending modulus—two important large-scale parameters of the
membrane—will be extracted by simulating a semi-periodic bilayer and an edge-
less cylindrical vesicle, respectively. Finally, these parameters will be applied
in the context of spontaneous vesicle formation from curved bilayers, which is
the essential part of a method to measure the Gaussian bending modulus of the
bilayer.

2

3 Getting started

This tutorial assumes that the reader is already familiar with the basics of molec-
ular dynamics (MD) simulations. We will be using ESPResSo 3 4 MD package
for our simulations, where the membrane package mbtools has already been
implemented. The programming language for ESPResSo is Tcl.5 In addition,
VMD6 will be used for visualisation.

3.1 Prerequisites

All files required for this tutorial can be found in the tarball: mbtools_tutorial.tar.gz
In many cases, one would have to install a separate library tcllib. Once

done, one will probably need to create (or add to) the ~/.espressorc file (in
your home directory):

lappend auto_path "/usr/share/tcl/tcllib1.9"

or wherever tcllib is installed. Please see Section A for more details on
ESPResSo configuration.

3.2 Using ESPResSo

There are two ways of using ESPResSo : interactive and noninteractive. The
interactive mode works as a tcl shell, which can be initiated by simply calling
ESPResSo from command line:

$ESPRESSO_DIR/Espresso

where $ESPRESSO_DIR is the directory where ESPResSo has been installed. Un-
der this mode, one can check the version and features of ESPResSo on the
current machine by command

code_info

For the purpose of this tutorial, the noninteractive mode of ESPResSo will
be used. Making Espresso the shorthand notation of the ESPResSo binary,
$ESPRESSO_DIR/Espresso, the basic syntax is

Espresso main.tcl some_parameter.tcl

where main.tcl is the main script to feed to ESPResSo. One can find it in the
scripts subdirectory of the tutorial package. Throughout the tutorial, there
will be NO need to change this main script.

3Hans-Jörg Limbach, Axel Arnold, Bernward A. Mann and Christian Holm. ”ESPResSo
- An Extensible Simulation Package for Research on Soft Matter Systems”. Comput. Phys.
Commun. 174(9) (704-727), 2006.

4http://espressomd.org
5http://www.tcl.tk/
6http://www.ks.uiuc.edu/Research/vmd/

3

http://espressomd.org
http://www.tcl.tk/
http://www.ks.uiuc.edu/Research/vmd/

some_parameter.tcl contains the specific parameters for each simulation
and will be sourced by main.tcl. If MPI is correctly installed, a parallel version
of ESPResSo can be used as

mpirun -np N Espresso main.tcl -n N parameter.tcl

where N is the number of CPUs one would like to use.
After a simulation is finished, one can cd into the result directory and visu-

alize the result with VMD. Make sure a plugin vmd_plg.tcl can be found by
VMD (See in Section A.3).

Throughout the tutorial, participants are highly encouraged to write their
own scripts based on the example provided in Section 4. More detailed sample
codes can also be found in the tutorial materials for reference.

4 Self assembly

The first exercise will consist of simulating 320 randomly-placed lipids and
watching them self-assemble into a lipid bilayer. The following parameter script
describes all the necessary commands to setup such a system:

############################

set ident "self_assembly320"; # job name

set tabledir "./forcetables/"; # forcetable directory (unused)

set outputdir "./$ident/"; # folder name

set topofile "$ident.top"; # topology name

set use_vmd "offline"; # interactive VMD?

set moltypes [list { 0 lipid { 0 1 2 } { 0 1 } }]; # molecule topology

set geometry { geometry random }; # define geometry

set n_molslist { n_molslist { { 0 320 } } }; # number of molecules

Add the bilayer to the total system

lappend system_specs [list $geometry $n_molslist]

set setbox_l { 14. 14. 14. }; # system size

------ Warmup parameters ----------------------#

set warm_time_step 0.002

set free_warmsteps 0

set free_warmtimes 1

------ Integration parameters -----------------#

set main_time_step 0.01 ;# integration time step

set verlet_skin 0.4 ;# verlet skin

set systemtemp 1.1 ;# temperature

set langevin_gamma 1.0 ;# Langevin thermostat "gamma" for warmup

4

set thermo "DPD" ;# DPD thermostat

set dpd_gamma 1.0 ;# DPD thermostat parameter "gamma"

set dpd_r_cut [expr 1.12 + 1.8] ;# D_Rc should be > Rc + wc

set int_steps 200 ;# number of integration steps per cycle

set int_n_times 1000 ;# number of integration cycles

set write_frequency 1 ;# frequency of config files

set analysis_write_frequency 1 ;# frequency of analysis output

Bonded and bending Potentials

lappend bonded_parms [list 0 FENE 30 1.5]

lappend bonded_parms [list 1 harmonic 10.0 4.0]

Non Bonded Potentials

set lj_eps 1.0; set lj_cutoff 2.5; set ljshift 0.0;

set ljoffset 0.0; set lj_sigmah 0.95; set lj_sigma 1.0

Define the interaction matrix

lappend nb_interactions [list 0 0 lennard-jones $lj_eps $lj_sigmah \

[expr 1.1225*$lj_sigmah] [expr 0.25*$lj_eps] $ljoffset]

lappend nb_interactions [list 0 1 lennard-jones $lj_eps $lj_sigmah \

[expr 1.1225*$lj_sigmah] [expr 0.25*$lj_eps] $ljoffset]

lappend nb_interactions [list 0 2 lennard-jones $lj_eps $lj_sigmah \

[expr 1.1225*$lj_sigmah] [expr 0.25*$lj_eps] $ljoffset]

lappend nb_interactions [list 1 1 lj-cos2 $lj_eps $lj_sigma $ljoffset 1.6]

lappend nb_interactions [list 1 2 lj-cos2 $lj_eps $lj_sigma $ljoffset 1.6]

lappend nb_interactions [list 2 2 lj-cos2 $lj_eps $lj_sigma $ljoffset 1.6]

Analysis Parameters

lappend analysis_flags energy ;# calculate energy

############################

Any such parameter script must be fed into the main.tcl script of mbtools,
a sample file can be found in scripts/. This mbtools script is itself fed into
Espresso, such that one can run the simulation by simply invoking

Espresso main.tcl self_assembly.tcl

assuming all files are accessible from the current directory (and the parameter
file was called self_assembly.tcl). NOTE: the same main.tcl is also needed
for the other exercises in this tutotial.

To visualize the simulation, use the front-end workstation, and copy over the
files from the newly created directory self_assembly320 and type

vmd -e vmd_animation.script

Initial and final conformations of a system consisting of 320 randomly-placed
lipids is shown on Fig. 1. The box dimensions were set to 14σ × 14σ × 14σ.

The simulation time required to self-assemble the system may vary depend-
ing on the initial conformation and the overall kinetics. For example, simulating
320 lipids for 2000 τ as in our sample code will take around 15 minutes with a

5

Figure 1: Initial (left) and final (right) conformations of a 320-randomly-placed-
lipid simulation.

single CPU. If at the end of the simulation, the lipids are stuck in some inter-
mediate structure due to the periodic boundary conditions, then you can either
ask for assistance on how to continue a stopped simulation, or call it a bad day
and go ahead to the next section.

If interested, you may check how the simulation time depends on system
size by changing the number of lipids. Note that changing the number of lipids
will require you also to change the box size, such that the new bilayer is still
neither too compressed nor too stretched across the periodic system. This can
be tuned by keeping the area per lipid constant (i.e. box length squared divided
by number of lipids in one leaflet, assuming all box sides are equally long). A
DPD thermostat was used here to speed up the dynamics.

5 Line tension measurement

In this section, we will extract the line tension of a semi-periodic flat bilayer at
constant temperature and area. The simulation will consist of a bilayer spanning
half of the x − y plane, such that the bilayer is periodic only along the y axis
(see Fig. 2). The open edges of the bilayer will give rise to a pulling force that
is precisely imbalanced by twice the line tension of the system:

γ =
1
2

(σxx − σyy)LxLz, (1)

where σxx and σyy are the diagonal components of the stress tensor along x
and y, respectively; Lx and Ly are the box dimensions along the axes, and the
factor of 1/2 accounts for the two open-edges of the system.

6

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

x

y

Figure 2: Top view of semi-periodic bilayer, lipids are only placed whithin the
gray region. The open edges along the y axis give rise to a pulling force.

Adapt the script given in Section 4 to create the system represented in Fig.
2 using:

• 320 lipids, but a large box size of 20σ×20σ×20 (Remember that we need
open edges, so a larger box that the lipids cannot cover completely.)

• the correct initial geometry can be set using the following command

set geometry { geometry "flat -fixz -half" }

• additional warmup to avoid initial steric clashes by adding

set warmsteps 100
set warmtimes 20

• a reduced main time step to accurately measure components of the stress
tensor (use δt = 0.002 in time units of the system)

• this time we’ll use a Langevin thermostat. Remove the command thermo
"DPD" and the variables dpd_gamma and dpd_r_cut and replace them with

set langevin_gamma 1.0
set systemtemp 1.1

• any observable that is analyzed during the simulation will be measured
every int_steps * main_time_step. Given the aforementioned value of
the time step, set int_steps such that a measurement is output every 2 τ ,
where τ is the unit of time of the system (main_time_step is expressed
in units of τ).

7

• add stress_tensor to the list of analysis_flags.

Before measuring the line tension γ, make sure the system that you are
simulating corresponds to what you expect by inspecting it with VMD.

Equation 1 requires the measurement of the diagonal components of the
stress tensor along x and y. The absence of off-diagonal components is due to
the symmetry of the system. There will be no stress along the x and z directions
because in x direction there are open edges and in z direction the bilayer is not
periodic. Eq. 1 involves the difference between σyy and σxx in order to subtract
the stress due to the solvent, absent in this model.

You will need to take measurements in order to gather statistics of the stress
tensor components. These measurements should be taken only after the system
has had time to equilibrate. Estimating the equilibration time is always diffi-
cult and somewhat arbitray. One can plot the time dependence of the energy
time_vs_energy_tmp 7 and start measuring observables sufficiently long after
the energy has relaxed. Bear in mind this does not assure equilibrium in any
way (in fact it can only tell you the opposite: a signal that is still strongly
varying is out-of-equilibrium). The 9 components of the stress tensor are stored
in time_vs_stress_tensor_tmp. The first column is time, and the other ones
are the σij components as described at the top of the file. For example, the 6th
column is the diagonal term σyy. Plot the time dependence of σxx, σyy, and
σzz. Calculate the average and the error of the mean for the equilibrated part
of the simulation only. The error of the mean is σ/

√
n, where σ is the standard

deviation of the distribution and n is the sample size.8 First make sure that
σxx and σzz average to 0 (up to error bars), and then calculate σyy.

You can now estimate the line tension γ of the bilayer by the simple formula
γ = −σyyLxLz/2, where Lx and Lz are the box dimensions (look them up
in the parameter script you used). You can also provide error bars to your
calculation of γ by using the error made on σyy. The units of γ are ε/σ, where
ε ' kBTroom/1.1 and σ ' 1 nm.

6 Extracting the bending modulus from actively
bent membranes

This simulation shows a very simple and efficient way of calculating the bend-
ing modulus κ of a bilayer from an actively bent membrane system. It does
not rely on analyzing the power spectrum of the fluctuations of a flat bilayer
(as it is usually done) but rather the force exerted by a cylindrical membrane
along its periodic axis. More details can be found elsewhere.9 A representative
conformation of the system is shown in Fig. 3.

7See Section A.4 for some basic uses of Gnuplot, such as plotting a time sequence and
fitting a function, in case your favorite maths software is not installed here in the cluster.

8In order to calculate accurate errors, one should really consider correlation times. This
is a measure of the characteristic time over which data points are correlated. One can, for
instance, use a blocking error analysis routine.

9V. A. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)

8

Figure 3: Equilibrated conformation of the cylinder system described in Sec. 6.

To simulate such a system, adapt the script given in Sec. 4 in the following
way:

• 1, 000 lipids

• set the box size to {40 40 20}

• the correct initial geometry can be set using the following command

set geometry { geometry "cylinder -shuffle" }

• reduce the main time step to δt = 0.002 τ

• set the thermostat to Langevin

• analyze the system every 2 τ , and take at least 100 measurements

• add the following analysis scripts:

– stress_tensor

– cylinder_radius

The reference provided above showed that the bending modulus can be ex-
tracted by measuring the force along the axis of the cylinder Fz, as well as the
cylinder’s radius R: κ = FzR/(2π). Similarly to Sec. 5, the force along z can be
obtained from measuring the σzz component of the stress tensor: Fz = σzzLxLy.

9

As in the previous exercise, you will need to first estimate the time to reach equi-
librium, and then calculate the average value and error of the mean of σzz in
order to extract the force Fz (with error bars). The radius of the cylinder can
be extracted in a similar fashion from time_vs_cylinder_radius_tmp (use the
second column which displays the average radius between the inner and outer
leaflets of the bilayer, the third and fourth column show the inner and outer
contributions). Calculate the bending modulus κ = FzR/2π including error
bars. κ has units of ε.

7 Spontaneous vesicle formation

7.1 Theory

In in Helfrich theory,10 the free energy of a patch of lipid bilayer with an open
edge is

E[P] =
∫
P

dA
{

1
2
κ(K −K0)2 + κKG

}
+
∮

∂P
ds γ . (2)

Here, K = c1 + c2 is the total curvature (the sum of the two local principal
curvatures c1 and c2) and KG = c1c2 is the Gaussian curvature. The two
previous exercices have allowed us to extract estimates for the line tension γ
(Sec. 5) and the bending modulus κ (Sec. 6). The only material parameter
left is the Gaussian bending modulus κ, with the assumption that the bilayer is
symmetric, and thus has no spontaneous curvature K0.

Due to the Gauss-Bonnet Theorem in differential geometry, the surface in-
tegral over the Gaussian curvature remains constant if there is no change in
boundary or topology. Thus it’s difficult to measure κ in experiments and in
simulations because of the lack of control over boundary and topology.

This section provides the essential part of a new method to measure this
parameter κ by studying the spontaneous vesicle formation process. During
such process, the line tension will try to shrink the boundary in order to reduce
the energy, while on the other hand it will also curve the patch and induce higher
bending energy. Thus, it’s a competition between line tension and bending,
which prefers vesicle and flat bilayer as the final state, respectively.

By the assumption that during the folding process, the shape of a circular
bilayer stays as a part of a sphere (which means one curvature is enough to
describe the evolution of the system), one can write down the analytical expres-
sion of free energy as a function of curvature c. Given the γ and κ measured
in the previous sections, together with a reasonable estimation of κ ' −κ, one
can show that for a patch of around 1000 lipids, the vesicle state is globally
stable, yet there is a barrier between the flat and the vesicle state at the critical
curvature

c∗ =
1
R

=

√
4π
A
− γ2

4(2κ+ κ̄)2
. (3)

10W. Helfrich, Zeitschrift für Naturforschung C 28, 693 (1973).

10

Thus, if c∗ can be obtained, then κ becomes available.

7.2 Method

A good way to get c∗ is to simulate a piece of bilayer starting from different
initial curvatures and measure the probability of folding into vesicles, Pfold.
Near c∗ is the top of the barrier where Pfold is around 1/2 and has the steepest
slope. 11 Pfold provides a much more clear signal of the transition than some
complicated free energy calculation when c∗ is the target.

Figure 4: Initial conformation of the curved pancake system described in Sec.
7.

Because of the time limitation here, we cannot afford a seriously search for
c∗. Instead, what we will do is a rough test of a broadly used estimation on
κ ' −κ. Let’s focus on a spherical cap system of 1000 lipids.

First estimate the c∗ according to Eq. 3, with κ ' −κ. Here the area of the
patch can be approximated as A = (1.20σ2/lipid) × (# of lipids/2). Second,
set up a spherical cap of a curvature c∗ and check if it closes up into a vesicle
or expands into a flat patch. In the end, results from all participants will
be collected together and thus the folding probability Pfold can be calculated.
NOTE: for a more meaningful result on Pfold, please check the results in Section
8 before you start the folding simulation.

7.3 Simulation

Here are the changes to the script in Sec. 4 you need to apply:
11This folding probability follows the theory of splitting probability. A careful calculation

shows at c∗, the Pfold is not exactly 0.5, but not far from it.

11

• change the number of lipids to 1000

• set a large enough box size to avoid any periodicity in the membrane (e.g.
{100 100 100})

• set the initial radius of curvature to be r = 1/c∗ by the following script:

set geometry { geometry "sphere_cap -c {$center} -r $r" }

$center is the position of the center of the sphere where the cap is sitting
on. Make sure you substitute $center with numbers. Otherwise you have
to use subst command outside the first curly-brackets in order to expand
$center variable into its values.

• you may keep a time step of δt = 0.01 τ for this simulation

• keep a DPD thermostat

Does the initial configuration relax to a vesicle, or go back to a flat bilayer?

8 Solutions

Note that the simulations carried out here in the tutorial have been set to
extremely small simulation times. This strongly affects the accuracy of certain
observables, especially the stress tensor statistics. The results are subject to
non-negligible errors. The reader is advised to repeat the present simulations
with longer simulation times, thus allowing better statistics.

Section 8.1 and 8.2 will give some sample simulations results as demonstra-
tion. More accurate measurements will be applied to Section 8.3 in order to get
a better estimation on the critical curvature c∗.

8.1 Line tension measurement

Parameters used in a sample simulation:

• 2, 000 lipids

• total time t = 2, 100 τ

• box size L = 50σ

Diagonal stress tensor components:

• σxx = 0.0008± 0.0021 ε/σ3 → 0

• σyy = −0.011± 0.0018 ε/σ3

• σzz = 0.0023± 0.003 ε/σ3 → 0

This allows us to obtain the line tension:

γ =
1
2

(σxx − σyy)LxLz = 3.4± 0.3ε/σ (4)

12

8.2 Bending modulus from cylindrical membrane

Parameters used in a sample simulation:

• 1, 000 lipids

• total time t = 200 τ

• box size {60 60 20}σ

Measurements:

• Stress tensor component: σzz = −0.0042± 0.0008 ε/σ3.

• radius of the cylinder: R = 5.171± 0.004σ

We can now extract the bending modulus:

κ =
FzR

2π
= 12± 3 ε (5)

8.3 Vesicle formation

Following the half-bilayer methods described in Section 5, a set of more serious
simulations present a more accurate γ = 3.35± 0.07 ε/σ. Also, a set of cylinder
simulations around a meaningful radius of curvature give κ = 13.7± 0.3 ε.

Assuming κ ' −κ, the critical curvature is estimated as

c∗ =

√
4π
A
− γ2

4(2κ+ κ̄)2
= 0.077 /σ (6)

where the area A = 0.5 × 1.20 × 1000σ2. Idealy, when setting up the initially
curved bilayer, the radius should be r∗ = 1/c∗ = 13.0σ. However, as it turns
out that κ is slightly above −κ (∼ −0.9κ), r∗ is actually close to

r∗ = 1/c∗ = 11.5σ. (7)

Thus, for this tutorial, two r∗ values are recommended: 10.5σ and 12.5σ.
This will give a bracket on the actual value of r∗, and thus a rough estimation
of κ.

A Software Setup

A.1 ESPResSo

This section will provide basic instructions for those who want to experience
ESPResSo and the mbtools on other computers. You can find the latest version
of the ESPResSo package at http://espressomd.org/wiki/Download. De-
tailed installation instructions is available in the package.

13

http://espressomd.org/wiki/Download

One of the useful ideas of ESPResSo is that one only needs to compile those
features that are needed. For instance, if someone is trying to study a system
without any explicit charges, all the features related to electrostatics can be left
aside.

Thus, for the purpose of this tutorial, the first step is to make sure the
following ESPResSo features are activated in the myconfig.h file and compiled:

#define EXTERNAL_FORCES
#define DPD
#define LENNARD_JONES
#define TABULATED
#define LJCOS
#define LJCOS2
#define LENNARD_JONES_GENERIC

A.2 mbtools

The mbtools package is contained within ESPResSo in the subdirectory

$ESPRESSO_DIR/packages/mbtools

it includes all the necessary Tcl routines required to run the package (e.g., create
initial configurations, setup the particles and interactions, run the analysis).

mbtools needs several specific Tcl libraries that are contained in the package
tcllib. To check whether this library is installed and recognized by ESPResSo
, start ESPResSo and type

package require cmdline

If a number (e.g., 1.3.x) appears then tcllib is properly installed and linked to
the main Tcl library. Otherwise, one can download and install the library from

http://www.tcl.tk/software/tcllib/

Recompile ESPResSo after installing the package. In case ESPResSo does
not automatically find the library, it is possible to manually source it when
ESPResSo starts. Assuming tcllib was installed in directory /usr/local/tcllib,
create (or add to) ~/.espressorc file (in your home directory):

lappend auto_path "/usr/local/tcllib/lib"

A.3 VMD

The final step is to link a VMD script available in ESPResSo that allows to
load many trajectory files at once. In your home directory, edit (or create) the
configuration file ~/.vmdrc and add

source $ESPRESSO_DIR/tools/vmd_plg.tcl

assuming ESPResSo was installed in $ESPRESSO_DIR/.

14

A.4 Gnuplot

Gnuplot12 is a very powerful tool to make scientific plots and do some data
analysis. Here we only give a couple of examples that are useful for the purpose
of this tutorial.

• Plot column i as a function of column j over the range of [xa, xb]:

plot [xa,xb] ’file_name’ using j:i

• Define and fit function F(x) to data in column i and j:

#Just an example of a straight line
F(x) = a * x + b
fit [xa,xb] F(x) ’file_name’ using j:i via a,b

After this, you will get the values of the fitting parameters and their
approximated errors. You can also check the fitting by

plot [xa,xb] ’file_name’ using j:i, F(x)

12http://www.gnuplot.info/

15

http://www.gnuplot.info/

	Introduction
	Background
	Outline

	Getting started
	Prerequisites
	Using ESPResSo

	Self assembly
	Line tension measurement
	Extracting the bending modulus from actively bent membranes
	Spontaneous vesicle formation
	Theory
	Method
	Simulation

	Solutions
	Line tension measurement
	Bending modulus from cylindrical membrane
	Vesicle formation

	Software Setup
	ESPResSo
	mbtools
	VMD
	Gnuplot

