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If you haven’t figured that out by now,
you should ask for your money back.

Why coarse-graining?

No, seriously.
Why coarse graining?



Efficiency

Why coarse-graining?

Insight



Efficiency

Does that mean just 
“bigger systems”?

No.  Not  just.



Lindahl, E. & Edholm, O. Mesoscopic undulations 
and thickness fluctuations in lipid bilayers
from molecular dynamics simulations.
Biophys. J. 79, 426-433 (2000).

All-atom lipid bilayer
20nm×20nm, 1024 lipids, 10ns

What if we want a boxlength of L=200nm? 
How does computing effort scale with L?

effort ~ L2 × L4 ~ L6

Equilibration timeAmount of material

Efficiency



20nm 200nm
Million times more 

computationally 
expensive!

20 doublings of computer power!

20 x 2 years

40 years

(Moore’s law)

I’ll be retired by then!
(best case scenario)

Efficiency



Efficiency

Stated differently:

The amount of material scales with the 
membrane area A.  Using a domain 

decomposition scheme, this can (in the best 
case) be compensated by increasing the 

number of processors proportional to A.

But the simulation time towards equilibration 
scales like A3.  This still leaves an 

uncompensated factor of A2 that you must do 
more work or have faster chips or better ideas.



Efficiency

Coarse graining cannot just help you to 
look at much bigger systems. It can help 

you to get well equilibrated data for 
somewhat bigger systems.

If someone offers you 1000 times more 
computational power, you should make 
your membrane length ~3 times bigger 

and simulate it for ~100 time longer!



Efficiency

Coarse graining cannot just help you to 
look at much bigger systems. It can help 

you to get well equilibrated data for 
somewhat bigger systems.

(Unfortunately, the latter 
doesn’t look as obviously sexy.)

(Is it better to have non-equilibrated data of an impressively 
big or complex system, or to rather have equilibrated data of 

a system that is not accurate or big enough?)



Insight
“The purpose of 

computation is insight, 
not numbers.”

Richard W. Hamming (1915-1998)



Insight
Assume that there’s some biophysical problem 
that can only be solved by sifting through many 

Terabytes of all-atom simulation trajectories.

This of course might happen!
But if it does, how much have we understood of 

the problem, after we have done the simulation?

As scientists we ought to be curious about how 
many Terabytes of detail we can throw away 

before we begin to model the system.

Because our brains are finite.
(Engineering, on the other hand, might be a whole 

different issue.  Numbers often matter!)



Insight
Coarse graining is the art of throwing such 

supposedly unnecessary detail away.

(In fact, I believe that Physics is the art of 
throwing unnecessary detail away)

It’s an art.
There’s no sure-fire way of getting it right.

You throw the wrong stuff away, you’re doomed!

Well, not really: If you make sure that your 
simulation is correct, then you have a 
falsifiable result!  So you’re scientific!



Today:
I’ll illustrate a way to 
treat the mesoscopic 
regime in an efficient 

and insightful way.
(OK, that’s a tall order.)

• Generic top-down bead-spring
• solvent free
• only pair forces
• robust & physically meaningful

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);
I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).
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Today:
Physics based?

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);
I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Definitely Yes!

But is there room for 
physical reasoning or 

physics-based effects in 
biology?

Definitely Yes!I think:



Why is “solvent free” good?

membrane surface

solvent bulk

Unless you’re careful, you might end 
up simulating a finite size effect!



Example membrane surface

solvent bulk

16,000 DPD lipids 4 beads per lipid.

M. Laradji & P.B. Sunil Kumar
Phys. Rev. Lett. 93, 198105 (2004).

64,000 degrees of freedom for lipids.

But in total 1,536,000 particles in box!

96% of simulation time 
spent with solvent!
(They had a good reason for doing this. But do you, too?)



Difficulties
Implicit solvent models are incredibly common and 
useful in polymer physics.

Why has it taken so long for them to appear in the 
field of membrane research?

☞  Polymers don’t first have to self assemble!

One needs additional cohesion to 
make the lipids come together.

☞  Fluidity has proven to be the major challenge.



Difficulties
Implicit solvent models are incredibly common and 
useful in polymer physics.

Why has it taken so long for them to appear in the 
field of membrane research?

☞  Polymers don’t first have to self assemble!

One needs additional cohesion to 
make the lipids come together.

☞  Fluidity has proven to be the major challenge.

weak attraction  ➠  gas phase

strong attraction  ➠   solid (gel) phase

no fluid phase inbetween !?!?



Link three beads

Make lipid stiff

Nonbonded

Our model



attraction range

te
m

pe
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re

unstable

fluid phase

gel-phase(s)

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);
I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Long-ranged attractions “save” the system some entropy!

Overall phase behavior

LJ
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I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005);
I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).

Long-ranged attractions “save” the system some entropy!

A.P. Gast, C.K. Hall, and W.B. Russel,
J. Coll. Interface Sci. 96, 251 (1983);

M.H.J. Hagen, D. Frenkel,
J. Chem. Phys. 101, 4093 (1994);
A.A. Louis, Phil. Trans. R. Soc.

Lond. A 359, 939 (2001).

Shape of CG potential is qualitatively important!

Overall phase behavior



Self assembly



Properties

Are these things 
really lipid 

membranes?



Bending modulus
Fluctuation spectrum from continuum theory

total 
curvature

surface 
tension “linearized Monge gauge”



Bending modulus
Fluctuation spectrum from continuum theory

total 
curvature

surface 
tension “linearized Monge gauge”

Fourier expansion and equipartition theorem

zero surface tension

determine 
bending 

modulus!



tension 

bending 

protrusions… 

Bending modulus
Fluctuation spectrum from continuum theory



tension 

bending 

protrusions… 

Bending modulus
Fluctuation spectrum from continuum theory

simulate at 
zero tension

simulate
big systems

beware of 
spectral mesh 

damping!



Bending modulus
However...

Equilibration time of Fourier modes scales 
like q-4 (remember?)
Large bending modulus (κ) from small 
perturbation (kT)  ➔ small signal!
Result relevant for strong bending?



Bending modulus
However...

Equilibration time of Fourier modes scales 
like q-4 (remember?)
Large bending modulus (κ) from small 
perturbation (kT)  ➔ small signal!
Result relevant for strong bending?

Maybe we need an 
alternative technique?



Bending modulus
...from actively bent membranes
first implementation:
W.K. den Otter and W.J. Briels, J. Chem. Phys. 118, 4712 (2003)
Enforce large undulation mode, measure constraining force.

Simpler way: Stretch a membrane tether!

V. A. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)



Bending modulus
...from actively bent membranes

Energy:

Force:

R 

L 

Bending modulus:

what about fluctuations?

goes up goes down 

V. A. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)



Bending modulus
...from actively bent membranes

Results:

Result from 
fluctuation 

analysis

Within the limits of our resolution no 
stiffening (or softening) of the membrane 

at (very!) large curvatures is observed.



Stretching modulus

membrane 
buckles

pore opens

I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005)



Stretching modulus
Simple theory for this:
Farago, JCP, 2003; Tolpekina/den Otter/Briels, JCP 2004; Cooke/Deserno, JCP 2005

Membrane stretching 
plus line energy

rescaling of energy:

equilibrium condition 
for pore radius:

Only one length scale, only one dimensionless driving parameter!



Stretching modulus

Three fitting parameters:

• zero tension area
• stretching modulus
• line tension

but you 
cannot 

tune the 
jump 

height!

I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005)



Line tension
However, if all you want is the line tension, 
there’s a simpler way of doing this:

Simulate a periodically 
half-connected bilayer 
in a box.

Stress tensor will be 
imbalanced precisely 
by twice the line 
tension!



! 

"
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= P
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"yy = P # 2$ /LxLz
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Line tension
However, if all you want is the line tension, 
there’s a simpler way of doing this:

x

y γ γ

γγ

(Notice that P = 0 in the 
solvent free case!)



Vesicles
After having measured bending rigidity and line tension, 
we can make a prediction about the size of certain vesicles.

“The size of bilayer vesicles generated by sonication”,
W. Helfrich, Physics Letters A, Volume 50, Issue 2, p. 115-116

Sonicate vesicle solution, rip vesicles into bits and pieces!
These (flat!) pieces will merge and grow bigger.

At what point will they again close up and form vesicles?

Why would they close up in the first place?



Vesicles
After having measured bending rigidity and line tension, 
we can make a prediction about the size of certain vesicles.

R

! 

Epancake = 2"R#

! 

E
vesicle

= 4" 2# +# ( )
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Vesicles
After having measured bending rigidity and line tension, 
we can make a prediction about the size of certain vesicles.

R

! 

Epancake = 2"R#

! 

E
vesicle

= 4" 2# +# ( )
(real stability analysis: 2 → 4)

}
Energies are equal, if

! 

Rpancake =
2 2" +" ( )

#
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$ 32nm

Vesicles
What values do we expect?

This is then also 
the diameter of 
the vesicles we 
expect to find!

Very little is 
known about 

this value!
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∆E(x, ξ)
8πκ + 4πκ̄

= ∆Ẽ(x, ξ) = x + ξ
[√

1− x− 1
]

x = (Rc)2

ξ =
γR

2κ + κ̄

R =
√

A

4π

How we measure κ̄
The energy of a partially curved patch can be calculated as:

ξ=2

ξ=1.5

ξ=1ξ=00.3

0.2

0.1

0

−0.1

∆Ẽ

1

x
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ξ=1ξ=00.3

0.2

0.1
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∆Ẽ

1

x



How we measure κ̄

∆Ẽ

x

This is called the 
“splitting probability”

...and it can be calculated 
analytically if the energy 

barrier is known!



How we measure κ̄

ξ=2

ξ=1.5

ξ=1ξ=00.3
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Self assembly

Applications



Protein-induced budding
B. Antonny, Curr. Opin. 
Cell Biol. 18, 386 (2006)

Membrane-curving proteins 
can attract and drive 

membrane vesiculation

Intuitive, but no physical justification!



U(R) = 2πσ a2α2

[
K0

(R

λ

)
+

(a

λ

)
K2

2

(R

λ

)]

Protein-induced budding
Interaction potential from linearized theory
(spherical caps, radius a, detachment angle α)

[T.R. Weikl, M.M. Kozlov, W. Helfrich, PRE 57, 6988 (1998)] 

This is always repulsive!

λ =
√

κ/σcharacteristic decay length:

Goulian, Bruinsma, Pincus, 

Europhys. Lett.  22, 145 (1993) 
σ = 0 ⇒ U(R) = 8πκ α2

( a

R

)4



Protein-induced budding

36 curved caps, ~50000 lipids,
160nm side-length, total time ~1ms
no lateral tension
no explicit interaction between caps

many caps

B.J. Reynwar et al., Nature 447, 461 (2007)

(“contact lens”)



Protein-induced budding

B.J. Reynwar et al., Nature 447, 461 (2007)

Some observations:

• Caps attract collectively
• Attractive pair-forces exist?
• No crystalline structure
• Cooperative vesiculation
• No “scaffolding”
• 50-100nm length scales
• several milliseconds



Protein-induced budding

Blood and Voth, PNAS 103, 15068 (2006)



Protein-induced budding

Blood and Voth, PNAS 103, 15068 (2006)

G.S. Ayton, P.D. Blood, and 
G.A. Voth, Biophys. J. 92, 
3595 (2007)



Protein-induced budding

Blood and Voth, PNAS 103, 15068 (2006)

G.S. Ayton, P.D. Blood, and 
G.A. Voth, Biophys. J. 92, 
3595 (2007)

A. Arkhipov,
Y. Yin,
K. Schulten. 
Biophys. J. 95, 
2806 (2008)
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Lipid A-B–mixtures

B.J. Reynwar & M. Deserno, 
Biointerphases 3, FA118 (2009)



Lipid A-B–mixtures

B.J. Reynwar & M. Deserno, 
Biointerphases 3, FA118 (2009)



ideal lipid mixture non-ideal lipid mixture

Composition-induced protein aggregation

Lipid A-B–mixtures+proteins
Proteins only adsorb on blue lipids

B.J. Reynwar & M. Deserno, 
Biointerphases 3, FA118 (2009)



Pair potentials can be fitted
by simple ground state theory.

Lipid A-B–mixtures+proteins

B.J. Reynwar & M. Deserno, 
Biointerphases 3, FA118 (2009)



Peptide-induced pore formation

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Antimicrobial
Peptide

“magainin”



Peptide-induced pore formation

Example above:

Peptides:

n 
 b

ea
ds

m  beads

– peptide 

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)



Peptide-induced pore formation

breakthrough

Surface adsorbed

Monolayer contact

Sliding in

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)



Peptide-induced pore formation

Binding strength kBT=1.7 kBT=1.9

 1.5  stray  stray
 1.6  bound  bound/inserted
 1.7  inserted inserted
 1.8  inserted inserted

 1.4  stray  stray
 1.5  bound  inserted
 1.6  inserted inserted
 1.7  inserted inserted
 1.8  inserted inserted

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)

Let us now look at 
this system 

consisting of 
many of these 

peptides



Peptide-induced pore formation

• Stronger joint perturbation
• Sliding in very efficient

…of a peptide which alone does not insert within 25000τ

c) → g)  3000τ
G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)



Peptide-induced pore formation

No peptide attraction

Some peptide attraction

toroidal

barrel-stave

G. Illya & M. Deserno, Biophys. J. 95, 4163 (2008)



Lipid curvature effects
The model of Israelachvili, Mitchell and Ninham

J. Chem. Soc., Faraday Trans. 272 1525 (1976)

0 1/3 1/2 1

P

packing 
parameter V = lipid volume

L = lipid length
A = lipid head area



Lipid curvature effects
The model of Israelachvili, Mitchell and Ninham

J. Chem. Soc., Faraday Trans. 272 1525 (1976)
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packing 
parameter V = lipid volume

L = lipid length
A = lipid head area





Lipid curvature effects

50:50
mixture

Simple model gives:

Density of big headed lipids in 
the outer monolayer

Density of big headed lipids in 
the inner monolayer

Linear in 
bilayer 

curvature!

R

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)
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Density of big headed lipids in 
the inner monolayer

Linear in 
bilayer 
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R

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)



Lipid curvature effects

50:50
mixture

R

I.R. Cooke and M. Deserno, Biophys. J. 91, 487 (2006)

That’s 
small !

…for realistic membrane
curvatures the effect is

not enough to drive sorting!

Tian & Baumgart,
Biophys. J. 96, 2676 (2009)


