Frederick Lanni -Department of Biological Sciences - Carnegie Mellon University

Frederick Lanni

Associate Professor

294C Mellon Institute
Department of Biological Sciences
Carnegie Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213
Phone: 412-268-3460
Fax: 412-268-7129


Ph.D., Harvard University
Postdoctoral Appointment, Syracuse University


Composite Figure showing principal strains produced during migration of a 3T3 fibroblast through a collagen gel matrixThe mechanical activities of non-muscle cells drive many processes in embryonic development, tissue maintenance and healing, immune cell migration and function, neuronal circuit formation, and progression of certain diseases. Our understanding of these processes at the multicellular level requires a foundation of knowledge on the behavior of single cells. This research group studies the mechanics of single fibroblasts through experimental comparison of the arrangement of key cytoskeletal and adhesive proteins to the traction patterns generated by the cell. Our fundamental aim is to answer the following questions: What cytoskeletal machinery is assembled by a fibroblast to carry out a native task? Where is that machinery located within the cell, when does it operate, what is its effect under native conditions, and how is it regulated? A key part of our investigation is the growth of cells in a 3D collagen gel which serves as a model tissue-like extracellular matrix (ECM). In our experiments, the gel also serves as an elastic in-situ "strain gauge", the deformations of which can be read out by timelapse optical-sectioning microscopy. Using methods adapted from materials science, strain and other measures of mechanical action can be derived through digital image processing and matched to fluorescence images showing specific cytoskeletal proteins such as actin, alpha-actinin, or zyxin. We developed and maintain a web site through which researchers anywhere may analyze timelapse image sequences showing ECM deformation caused by a cell ( In a parallel approach, we are experimenting with molecular methods to analyze activation in cytoskeletal signal-transduction pathways with speed and moderate spatial resolution in single cells. Our secondary aim is to understand the short-term and long-term "rules of engagement" between a fibroblast and its matrix, including neighboring cells. Rules of engagement undoubtedly differ between cell types, and reflect the epigenetic programming that accompanies differentiation. We plan to use this knowledge as a model for understanding and predicting cell responsivity and mechanics in native tissue, and as a design tool in the engineering of tissues.

Composite figure showing principal strains (contraction = red, extension = blue) produced during migration of a 3T3 fibroblast through a collagen gel matrix, along with the concentration of GFP-tagged alpha-actinin (grayscale) in an optical section through the cell. From Lagerholm, et al (2003). Meth. Enzymol. 361: 175-197.


Lim JK, Tan DX, Lanni F, Tilton RD and Majetich SA. Optical imaging and magnetophoresis of nanorods. J. Magnetism Mag. Mater. 321: 1557-1562, 2009.

Lim JK, Eggeman A, Lanni F, Tilton RD and Majetich SA. Synthesis and single-particle optical detection of low-polydispersity plasmonic-superparamagnetic nanoparticles. Adv. Mater. 20: 1721-1726, 2008.

Levitan ES, Lanni F and Shakiryanova D. In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction. Nature Protocols 2: 117-1125, 2007.

Nauman JV, Campbell PG, Lanni F and Anderson JL. Diffusion of insulin-like growth factor-I and ribonuclease through fibrin gels. Biophys. J. 92:4444-4450, 2007.

Lanni F, Pane DA, Weinstein SJ and Waggoner AS. Compact flashlamp-based fluorescence imager for use under ambient-light conditions. Rev. Sci. Instr. 78:033702, 2007.

Lanni F. Fluorescence grating imager systems for optical-sectioning microscopy. In: Imaging in Neuroscience and Development. R.M. Yuste and A. Konnerth, eds. Cold Spring Harbor Laboratory Press, 2005. pp805-813 (Chapter 101), 2005.

Vanni S, Lagerholm BC, Otey C, Taylor DL and Lanni F. Internet-based image analysis quantifies contractile behavior of individual fibroblasts inside model tissue. Biophysical Journal, 84:2715-2727, 2003.

Lagerholm, B.C., S. Vanni, D.L. Taylor and F. Lanni. Cytomechanics applications of optical sectioning microscopy. Meth. Enzymol. 361:175-197, 2003.