Chain-Selective Isotopic Labeling for NMR Studies of Large Multimeric Proteins: Application to Hemoglobin

Virgil Simplaceanu, Jonathan A. Lukin, Tsuei-Yun Fang, Ming Zou, Nancy T. Ho, and Chien Ho
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 USA

ABSTRACT Multidimensional, multinuclear NMR has the potential to elucidate the mechanisms of allostery and cooperativity in multimeric proteins under near-physiological conditions. However, NMR studies of proteins made up of non-equivalent subunits face the problem of severe resonance overlap, which can prevent the unambiguous assignment of resonances, a necessary step in interpreting the spectra. We report the application of a chain-selective labeling technique, in which one type of subunit is labeled at a time, to carbonmonoxy-hemoglobin A (HbCO A). This labeling method can be used to extend previous resonance assignments of key amino acid residues, which are important to the physiological function of hemoglobin. Among these amino acid residues are the surface histidyls, which account for the majority of the Bohr effect. In the present work, we report the results of two-dimensional heteronuclear multiple quantum coherence (HMQC) experiments performed on recombinant 15N-labeled HbCO A. In addition to the C2-proton (H$_{\alpha}$) chemical shifts, these spectra also reveal the corresponding C4-proton (H$_{\delta}$) resonances, correlated with the Ne$_{\alpha}$ and N$_{\delta}$ chemical shifts of all 13 surface histidines per $\alpha\beta$ dimer. The HMQC spectrum also allows the assignment of the H$_{\delta\alpha}$, H$_{\epsilon\alpha}$, and Ne$_{\epsilon}$ resonances of all three tryptophan residues per $\alpha\beta$ dimer in HbCO A. These results indicate that heteronuclear NMR, used with chain-selective isotopic labeling, can provide resonance assignments of key regions in large, multimeric proteins, suggesting an approach to elucidating the solution structure of hemoglobin, a protein with molecular weight 64.5 kDa.

INTRODUCTION

Human normal adult hemoglobin (Hb A) serves as a model or paradigm for multimeric, allosteric proteins and is perhaps the most studied of all proteins. Extensive research efforts have been devoted to elucidating the relationship between the structure of Hb A and its physiologically important properties, including the cooperative binding of oxygen, and the allosteric interactions of oxygen- and hydrogen ion-binding (i.e., the Bohr effect). However, the detailed molecular basis of these properties is not fully understood and some aspects remain controversial (Ho and Lukin, 2000). The structure-function relationship of Hb in solution under near-physiological conditions can be investigated directly using NMR spectroscopy. One-dimensional (1D) 1H-NMR spectroscopy has been used extensively to study the behavior of Hb in solution by following the response of assigned 1H resonances to varied conditions, and to modifications of the protein provided by site-directed mutagenesis and chemical modifications (Ho, 1992, 1995; Ho and Perussi, 1994).

Although 1D 1H-NMR spectroscopy has proven to be a valuable technique in the study of Hb, a full picture of the structure and dynamics of this protein in solution would require the assignment of multinuclear, multidimensional spectra of isotopically labeled protein samples. Labeling of Hb A with 2H, 15N, and 13C has become feasible through the development of a bacterial expression system for this protein (Shen et al., 1993, 1997). The NMR assignment of a protein as large as Hb A (64.5 kDa) presents a challenge, as its slow rate of tumbling in solution leads to rapid decay of the resonance signals, corresponding to broad NMR lines. The problem of resonance overlap is exacerbated by the high α-helical content (about 77%) of Hb, which causes the amide backbone cross-peaks to appear in a small, crowded region of the (1H,15N) plane. We have found that this problem can be greatly reduced by performing separate NMR experiments on selectively labeled samples of tetrameric Hb A, where only one type of subunit (α or β) is isotopically labeled. In this paper, we present 2D (2H,15N) heteronuclear single quantum coherence (HSQC) spectra of chain-selectively labeled Hb A which illustrate this technique. We also discuss heteronuclear multiple quantum coherence (HMQC) spectra, which complete the assignment of imidazole ring resonances for all 38 histidines in Hb A (i.e., 19 in each $\alpha\beta$ dimer; Dickerson and Geis, 1983).

1H-NMR spectroscopy is ideally suited to the study of histidine residues in proteins, and in particular to investigating the contribution of these residues to the Bohr effect of Hb A (Ho and Russu, 1987; Russu et al., 1989; Busch et al., 1991; Sun et al., 1997; Fang et al., 1999). The contribution of each histidine residue to the Bohr effect can be calculated from the change in its pH value upon binding oxygen (or CO) to deoxy-Hb A. These pH values can be determined very accurately by measuring the chemical shift of the His H$_{\epsilon}$ (C2 proton) resonances as a function of pH. Although the H$_{\epsilon}$ resonances of histidyl residues are well separated from those of other carbon-bound protons, they overlap with the amide and aromatic regions of the protein’s 1H-NMR spectrum and are broadened in H$_2$O solutions.
Thus, the He\textsubscript{1} peaks can be resolved in the 1D 1H-NMR spectrum of Hb only if the amide protons are exchanged by using D\textsubscript{2}O as a solvent. The development of a bacterial expression system for unmodified Hb A (Shen et al., 1993, 1997) has enabled us to label this protein with 15N, making it possible to acquire 2D-(1H, 15N) HSQC and HMQC spectra in either H\textsubscript{2}O or D\textsubscript{2}O solutions. These experiments are capable of resolving the histidine cross-peaks of a protein dissolved in H\textsubscript{2}O, because 15N\textsubscript{d} and 15N\textsubscript{e} of His resonate at characteristic chemical shifts far removed from those of the backbone amides and other amino-acid side chains (Markley and Kainosho, 1993). These chemical shifts are indicative of the tautomeric state of each histidyl (Pelton et al., 1993), i.e., when one of the imidazole-ring nitrogens is protonated, it typically resonates at \approx\text{168 ppm}, while the non-protonated nitrogen resonates at \approx\text{250 ppm}. When both nitrogens are protonated (i.e., at pH below the pK of the histidyl), they both resonate at \text{178 ppm}. A detailed 15N-NMR study of histidine (Blomberg et al., 1977) revealed that the 2- and 3-bond couplings between the carbon-bound protons and the nitrogens of the imidazole ring range from \text{-2 to \text{-10 Hz}. These couplings result in observable cross-peaks in the HMQC spectrum (Stockman et al., 1989; Oh et al., 1990). The expected HMQC spectra of the three possible tautomeric states of histidine are shown schematically in Fig. 1. Similarly, one- and two-bond J couplings in tryptophan result in a cross-peak between 15N\textsubscript{e} and 1H\textsubscript{d}, as well as its directly-bonded proton.

FIGURE 1

A straight line with a slope showing the expected (1H, 15N)-HMQC spectrum of the imidazole-ring for each of the three possible protonation states of a histidine residue. Large, medium, and small black circles indicate strong, medium, and weak cross-peaks, respectively. Note that, for the charged species (C), either of the nitrogens could resonate downfield of the other; the assignment must be made based on the relative weakness of the (N\textsubscript{d}, H\textsubscript{d}) cross-peak.

MATERIALS AND METHODS

Expression of isotopically labeled Hb A

Uniformly 15N-labeled, or (15N, 2H)-labeled, or (15N, 2H, 13C)-labeled recombinant Hb A (rHb A) was obtained by expression from the plasmid pHE2, which contains synthetic \(\alpha\)- and \(\beta\)-genes of human Hb and the \textit{Escherichia coli} methionine aminopeptidase (MAP) gene under tac promoter control (Shen et al., 1993). \textit{E. coli} JM109 harboring this plasmid was grown in a 2- or 5-liter Bioflo bench-top 3000 fermentor controlled by an AFS-BioCommand unit (New Brunswick Scientific, Edison, NJ). The growth medium for isotopic labeling was DM minimal medium (Looker et al., 1994) with modifications: 1 liter of medium contains 2.0 g KH\textsubscript{2}PO\textsubscript{4}, 3.6 g KH\textsubscript{2}PO\textsubscript{4}, 2.0 g NH\textsubscript{4}Cl, 1.5 g Ca\textsubscript{3}H\textsubscript{4}O\textsubscript{7}-2H\textsubscript{2}O, 0.154 g MgSO\textsubscript{4}•7H\textsubscript{2}O, 3.0 ml of trace metal solution, 10.0 g glucose, and 2.5 ml vitamin mixture (8.5 g/l NaCl, 0.1 g/l D-capantenotenate, 0.1 g/l choline chloride, 0.1 g/l folic acid, 0.2 g/l inoosintol, 0.1 g/l nicotinamide, 0.1 g/l pyridoxal-HCl, 0.01 g/l riboflavin, and 0.1 g/l thiamine-HCl). Depending on the desired isotope labeling, NH\textsubscript{4}Cl, D-glucose, and H\textsubscript{2}O were replaced by 15NH\textsubscript{4}Cl (98% 15N), D-glucose-13C (99% 13C), and D\textsubscript{2}O (99.9% 2H), respectively, from Cambridge Isotope Laboratories (Andover, MA).

The medium was inoculated with 1 liter of overnight seed culture and incubated at 30°C. The oxygen concentration was maintained above 20% with respect to air saturation by oxygen pulse purging and agitation at 400 rpm. The pH of the medium was maintained at 6.8 with a feed of 0.8 to 1.0 M Na\textsubscript{2}HPO\textsubscript{4}. When the culture reached OD\textsubscript{600} = 4.5 to 5.0, expression of rHbA and MAP was induced with 0.2 mM isopropyl 1-thio-\(\beta\)-D-galacto-pyranoside and 25 mg/l hemin. Cells were harvested 6 h after induction and stored at \textasciitilde 80°C until further processing. rHbA was purified as previously described using Q-Sepharose chromatography and fast protein liquid chromatography (FPLC) (Shen et al., 1997).

Chain separation

\(\alpha\)- and \(\beta\)-chains of Hb A were separated following the method of Bucci (1981) with slight modifications. rHbCO A in 20 mM monobasic phosphate and saturated NaCl was reacted with p-mercuribenzoate (PMB) overnight at 4°C. The next day, chain separation was checked by electrophoresis to ensure that the reaction had been completed. The product was then centrifuged to eliminate the precipitate formed during the reaction, and put through a gel-filtration column to equilibrate it for the ion exchange column (Whatman DE-52 resin). The resin was equilibrated with 10 mM sodium phosphate at pH 8.0. The \(\alpha\)-chain (\(\alpha\)-PMB) elutes first, the unreacted Hb A moves slowly down the column, and the \(\beta\)-chain (\(\beta\)-PMB) remains bound to the resin. After the \(\alpha\)-PMB has been collected, the unreacted rHbCO A continues to move down the column. When the \(\alpha\)-PMB is far enough from the \(\beta\)-PMB, the resin with the bound \(\beta\)-PMB is gently dug out into another column and quickly eluted with 50 mM sodium phosphate at pH 7.0. Purity was again checked by electrophoresis.

The PMB was removed from the SH groups by reaction with 2-mercaptoethanol. The \(\alpha\)-PMB and \(\beta\)-PMB were incubated for 1–2 h at room temperature in 50 mM 2-mercaptoethanol in 0.1 M phosphate buffer at pH 7.5. After incubation, the \(\alpha\)- or \(\beta\)-chain was put through a gel filtration column with the same buffer. The eluted chain was then immediately put through another gel filtration column using 0.1 M phosphate buffer at pH 7.5 only. SH titration was performed to be sure that the PMB was removed.

Chain-selectively labeled hemoglobin formation

Chain-selectively labeled hybrid Hb A was prepared by mixing equal molar quantities of either isotopically labeled \(\alpha\)-chain or \(\beta\)-chain with the complementary unlabeled chain. The chain-selectively labeled Hb A was then equilibrated with the appropriate buffer for NMR studies.
NMR spectroscopy

All NMR experiments were performed on a Bruker AVANCE DRX-600 spectrometer at 29°C. A 5-mm TBI triple resonance inverse probe with triple axis gradient was used, with the broad-band tuneable channel tuned to 15 N. Two-dimensional HMQC spectra were obtained in water (90% H2O, 10% D2O) using a modified version of the flip-back HMQC described by Gruschus and Ferretti (1998). An extra two-step phase cycle was added on the 15 N pulse for improved water suppression, and no 15 N decoupling was used during proton signal acquisition. Thus, all protons directly bonded to a 15N appear as intense, broad doublets in the proton dimension, whereas the protons coupled to 15N via two or three bonds show an incompletely resolved multiplet structure.

The proton carrier frequency was set on the water resonance, and the nitrogen carrier was set at 160 ppm. Spectral widths employed were typically 22 ppm for 1H and 240 ppm for 15N. Usually 80 scans were averaged in 240 to 256 complex points in the indirect 15N dimension, resulting in a total experiment time of 15 to 18 h. The 1H time-domain acquisition size was 2K or 8K data points. The refocusing delay was kept short, at 5.5 ms, to preserve the signals from the 1H directly attached to 15N.

The water flip-back HMQC experiment generally provides a strong signal, but suppresses the signal of protons at chemical shifts near the water. In order to detect such signals, we performed an echo anti-echo HMQC experiment (Hurd and John, 1991; Tolman et al., 1992) which uses pulsed-field gradients for coherence selection, suppressing the solvent signal in the process without the need for selective pulses at the solvent frequency. The pulse program for this experiment was obtained by eliminating 15N decoupling from the pulse program “inv4etf3gp” provided with Bruker’s XWIN-NMR software, version 2.5.

Two-dimensional HSQC spectra were obtained using a pulse program adapted from the optimized 3D-NOESY-HSQC sequence of Talluri and Wagner (1996) and Briercheck et al. (1996). Single pulse carbon decoupling during 15N evolution time was used for the samples triple labeled with 15N, 13C, and 1H. The 15N carrier frequency was set at 125 ppm, and the 1H spectral width was 60 ppm. Thirty-two scans were averaged in 256 complex points acquired in the indirect 15N dimension. Experimental parameters for the 1H dimension were the same as those given above for the HMQC experiments.

Data were processed using both commercial (Bruker XWIN-NMR 2.5) and noncommercial software (nmPipe; Delaglio et al., 1995), on either an SGI Indy 5000 or a Dell Precision Workstation 410 computer. Squared cosine windows were used in both dimensions, and a small amount of exponential line broadening was used in the proton dimension to smooth out the unresolved long-range multiplet structure. Standard one-level zero filling was used in each dimension before the Fourier transform.

Chemical shifts are reported from 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) for the proton dimension, using 4.76 ppm from DSS as the reference point. For the nitrogen dimension, the default referencing provided by the Bruker software was used. This assigns a value of 0.101329150 to the chemical shift of water at 29°C and a temperature coefficient of 0.01 ppm/°C. For the nitrogen dimension, the default referencing provided by the Bruker software was used. This assigns a value of 0.101329118.

RESULTS

The 600-MHz (1H,15N) HSQC spectra of (2H,15N,13C) hybrid chain labeled HbCOA are shown in Fig. 2. These spectra were acquired at 29°C on samples dissolved in 90%H2O/10%D2O with 0.05 M phosphate at pH 6.5. Cross-peaks of tetrameric Hb A (α2β2) with labeled α-chains and unlabeled β-chains are shown in blue; those of a sample with labeled β-chains and natural-abundance α-chains are shown in red. From this figure, it is clear that the degree of overlap between these two spectra would render the assignment of the fully labeled Hb A tetramer extremely difficult if not impossible. However, by labeling one type of subunit at a time, we can resolve most of the expected cross-peaks.

A total of 119 and 145 peaks were picked from the α- and β-chain labeled spectra, respectively. Each α-chain of Hb A consists of 141 amino acid residues, including 7 Pro, 4 Asn, 1 Gln, 1 Trp, and 3 non-exchangeable His (see Discussion). Thus, excluding the N-terminal backbone amide along with Lys and Arg sidechains, we expect to see a maximum of 147 cross-peaks in the (1H,15N) spectrum of an α-chain of Hb A. Each β-chain of Hb A consists of 146 amino acid residues, including 7 Pro, 6 Asn, 3 Gln, 2 Trp, and 1 non-exchangeable His, leading to a maximum of 159 expected cross-peaks. Thus, we are able to resolve approximately 81% and 91% of the expected resonances in the 2D-HSQC spectra of hybrid α- and β-chain (2H,15N,13C)-labeled HbCO A, respectively.

A sample of 15N-labeled HbCO A grown in H2O and then dissolved in D2O continued to exhibit cross-peaks in HSQC spectra (results not shown) for several weeks. This indicates that several amide protons are sufficiently protected so that they exchange very slowly with the solvent. Conversely, several of the deuterated amides of the D2O-grown sample dissolved in H2O may not have exchanged with protons. This, and a certain degree of overlap in the HSQC spectra, could account for some of the missing number of peaks in the spectra shown in Fig. 2.

Echo anti-echo HMQC spectra were acquired separately for the two types of chain-selective 15N-labeled HbCO A.

Biophysical Journal 79(2) 1146–1154

Simplaceanu et al.
The histidine/tryptophan regions of these spectra are superimposed in Fig. 3, using the same color scheme as in Fig. 2. Because these spectra were acquired without 15N decoupling, a doublet is observed at the ($^{1}H \delta_{1},^{15}N \delta_{1}$) or ($^{1}He_{2},^{15}Ne_{2}$) chemical shift coordinates of histidyl residues, which are not exposed to solvent. These comprise α_{122} and α_{103}, which are involved in hydrogen bonds in the $\alpha_{i}B_{i}$ interface, and the proximal histidines α_{87} and β_{92}. As discussed above, this spectrum also correlates the imidazole 15N chemical shifts with carbon-bound protons, $^{1}He_{1}$ and $^{1}He_{2}$, which are identified for the interfacial histidines α_{122} and α_{103}, the proximal histidines α_{87} and β_{92}, and the distal histidines α_{58} and β_{63}. The assignments were aided by spectra of deoxy-Hb A as well as isolated 15N-labeled α-chains of Hb A (results not shown). The upper left region of Fig. 3 reveals cross-peaks correlating $^{15}Ne_{1}$ of each tryptophan residue with $^{1}He_{1}$ and $^{1}He_{2}$ through one- and two-bond couplings, respectively. The $^{1}He_{1}$ resonances of the β-chain Trp residues were assigned with the aid of HSQC spectra of deoxy-Hb A, in which the chemical shift of Trp37 He_{1} changes as it becomes involved in an interfacial H-bond.

For histidyl residues at the surface of the protein, the side-chain 15N-bonded protons are in rapid exchange with the solvent, so they are not detected in the HMQC spectrum. However, the carbon-bound protons coupled to the nitrogen nuclei through two or three bonds yield sharp cross-peaks, which appear within the dashed rectangle in Fig. 3. Fig. 4 shows the corresponding region of the water flip-back HMQC spectrum of a different sample: fully 15N-labeled HbCO A in 0.1 M phosphate buffer at pH 6.86. These conditions were chosen to closely match those of Russu et al. (1989), who reported the 300 MHz 1H spectrum of HbCO A dissolved in D$_2$O. In spite of the different field strengths and solvents used, the $^{1}He_{1}$ (C2 proton) chemical shifts of our 2D-HMQC spectrum agree very well with

![Figure 3](image-url)
those of the 1D spectrum of Russu et al. (1989); see Fig. 5. The assignment of these resonances, traditionally labeled A, B, . . . , L, were obtained earlier from 1H-NMR studies (see Sun et al., 1997, Fang et al., 1999, and references therein), except for resonance H. The 2D-NMR spectrum shown in Fig. 4 renders obvious the assignment of each 1H resonance by its correlation with the 1H chemical shift of the same histidyl residue. Here, 1H and 1H resonances are identified for six α-chain and seven β-chain surface histidyls. Together with the two proximal, two distal, and two interface residues discussed above, they account for all 19 histidyls per αβ dimer of the hemoglobin molecule (Dickerson and Geis, 1983). The assignments of all histidine and tryptophan side-chain 1H and 15N chemical shifts observed in HbCO A are listed in Tables 1 and 2.

FIGURE 4 Surface histidines region of the 600-MHz (1H,15N)-HMQC spectrum of HbCO A in water with 0.1 M phosphate at pH 6.86 and 29°C. Lines connect cross-peaks originating from the same residue; solid and dashed lines are used for α- and β-chain residues, respectively.

DISCUSSION

Isotope labeling strategy for hemoglobin

As is shown in Fig. 2, the degree of overlap in the HN HSQC spectra of the α-and β-chains would make any multinuclear, multidimensional study of hemoglobin extremely difficult, if not impossible, on a Hb sample fully labeled in both α- and β-chains. These spectra were obtained on samples partially (about 80%) deuterated, which makes the lines narrower in both H and N dimensions. If no deuteration is employed, the resolution is significantly poorer, making the use of nondeuterated samples impossible for a fully labeled protein, save for a few resonances separated from the main amide region. The spectral resolution can be further improved using recently developed transverse relaxation optimized spectroscopy (TROSY; Pervushin et al., 1997), especially for deuterated rHb. In a sensitivity-enhanced TROSY-HSQC spectrum (Pervushin et al., 1998; and results not shown) of (15N,2H) α-labeled HbCO A, the 1H and 15N linewidths are reduced to approximately 60% and 50% of their respective values in the conventional HSQC spectrum.

The idea of separating the α- and β-chains and recombining them is not new, as demonstrated by the fact that well established procedures for chain separation have been perfected; see, e.g., Bucci (1981) and references therein. Here, we demonstrate the power of this approach in simplifying the crowded NMR spectra of multimeric proteins. As another illustration of the usefulness of this approach, we report the completion of proton and nitrogen assignments of the imidazole side-chain resonances for all histidine residues in HbA, as well as of key indole side-chain resonances of all tryptophan residues.

Interfacial histidines

The x-ray structure of hemoglobin shows that there are two histidines in the αiβi interface, α103His and α122His.
Dickerson and Geis, 1983). The HSQC and HMQC spectra show clearly that the exchangeable proton resonances at 12.1 ppm and 12.9 ppm belong to imidazole H^e_2 and N^e_2 resonances of histidines from α-chains (see Figs. 1 and 3). The resonance at 12.1 ppm from DSS (7.4 ppm from H_2O) was assigned to a H-bond between $\alpha_{103}His$ and $\beta_{108}Asp$ (Russu et al., 1987) based on NMR results and the available x-ray structures of Hb. However, a recent high-resolution x-ray structure of deoxy-Hb obtained by Tame and Vallone (1998) differs from the earlier structure (Fermi et al., 1984) by a 180° rotation of $\alpha_{103}His$, which suggests that N^e_2 forms a H-bond with the side-chain oxygen of $\beta_{131}Gln$. Further evidence for the involvement of $\beta_{131}Gln$ is provided by 1H-NMR of mutant rHb ($\beta_{35}Tyr→Phe$). This assignment appeared to be consistent with 300-MHz 1H nuclear Overhauser (NOE) spectra (Russu et al., 1987). However, a recent study (Nakatsukasa et al., 1998) of rHb ($\beta_{35}Tyr→Phe$) obtained by site-directed mutagenesis showed that this mutant Hb has a 1H-NMR peak at approximately 13 ppm, and exhibits oxygen-binding cooperativity and affinity inconsistent with those reported for Hb Philly. These results cast doubt on the supposed amino-acid substitution in Hb Philly as well as the assignment of the 12.9 ppm 1H-NMR peak. The 2D-(1H, 15N)-HMQC spectrum shown in Fig. 3 clearly demonstrates that this resonance originates from the H^e_2 proton of a histidine (see Fig. 1B). The presence of this cross-peak indicates that the proton is protected from exchange with solvent, while its absence from the spectrum of a sample with natural abundance α-chains and ^{15}N-labeled β-chains shows that it comes from a histidine in an α-chain. The only possible candidate is $\alpha_{122}His$. This residue is in the $\alpha_1\beta_1$ interface, within 6 Å of $\alpha_{126}Asp$ and $\beta_{35}Tyr$ (Baldwin, 1980); thus, the arguments from NOE results supporting the previous assignment of the 12.9 ppm peak do not contradict its assignment to $\alpha_{122}His$. The proximity to the aromatic ring of $\beta_{35}Tyr$ would explain the pronounced upfield shift of the carbon-bound H^e_1 proton at 7.29 ppm. Furthermore,

Table 1 Histidyl imidazole ring 1H and ^{15}N chemical shift assignments for HbCO A in H_2O, 0.1 M sodium phosphate at pH 6.86 and 29°C

<table>
<thead>
<tr>
<th>Residue</th>
<th>N^e_1</th>
<th>H^e_1</th>
<th>H^e_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α 20</td>
<td>188.57</td>
<td>182.19</td>
<td>7.165</td>
</tr>
<tr>
<td>α 45</td>
<td>231.03</td>
<td>173.95</td>
<td>7.241</td>
</tr>
<tr>
<td>α 50</td>
<td>193.13</td>
<td>184.30</td>
<td>7.060</td>
</tr>
<tr>
<td>α 58</td>
<td>250.55</td>
<td>153.78</td>
<td>4.512</td>
</tr>
<tr>
<td>α 72</td>
<td>186.77</td>
<td>182.69</td>
<td>7.422</td>
</tr>
<tr>
<td>α 87</td>
<td>163.23</td>
<td>218.24</td>
<td>0.998</td>
</tr>
<tr>
<td>α 32</td>
<td>191.36</td>
<td>181.18</td>
<td>7.113</td>
</tr>
<tr>
<td>α 100</td>
<td>253.84</td>
<td>163.76</td>
<td>6.763</td>
</tr>
<tr>
<td>β 2</td>
<td>207.52</td>
<td>179.45</td>
<td>7.011</td>
</tr>
<tr>
<td>β 3</td>
<td>249.99</td>
<td>155.23</td>
<td>4.576</td>
</tr>
<tr>
<td>β 7</td>
<td>215.90</td>
<td>177.67</td>
<td>7.388</td>
</tr>
<tr>
<td>β 92</td>
<td>244.32</td>
<td>174.21</td>
<td>0.903</td>
</tr>
<tr>
<td>β 116</td>
<td>186.28</td>
<td>177.44</td>
<td>7.098</td>
</tr>
<tr>
<td>β 117</td>
<td>227.75</td>
<td>172.58</td>
<td>7.226</td>
</tr>
<tr>
<td>β 143</td>
<td>202.02</td>
<td>179.58</td>
<td>6.990</td>
</tr>
<tr>
<td>β 146</td>
<td>197.16</td>
<td>182.45</td>
<td>6.944</td>
</tr>
</tbody>
</table>

Table 2 Tryptophan 1H and ^{15}N chemical shift assignments for HbCO A in H_2O, 0.1 M sodium phosphate at pH 6.86 and 29°C

<table>
<thead>
<tr>
<th>Residue</th>
<th>N^e_1</th>
<th>H^e_1</th>
<th>H^e_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α 14</td>
<td>129.53</td>
<td>10.40</td>
<td>7.28</td>
</tr>
<tr>
<td>β 15</td>
<td>127.66</td>
<td>10.14</td>
<td>7.12</td>
</tr>
<tr>
<td>β 37</td>
<td>133.81</td>
<td>10.66</td>
<td>7.39</td>
</tr>
</tbody>
</table>
as N\(\delta_1\) of \(\alpha_{122}\)His is packed tightly against \(\beta_{30}\)Arg (Baldwin, 1980), it cannot be protonated without causing a steric clash; thus, the observed cross-peak must originate from \(He_2\).

Heme pocket histidines

The resonances of the proximal and distal histidines were unambiguously assigned in this work using hybrid samples of HbCO A labeled with \(^{15}\)N at either the \(\alpha\)- or \(\beta\)-chains. These cross-peaks were absent in the spectra of deoxy-Hb A (results not shown), because of the proximity of these histidines to the paramagnetic iron. The NH single-bond cross-peaks at 9.4/163.4 ppm belong to an imidazole N\(\delta\), as the complete pattern looks like Fig. 1 A. This pattern and the extreme upfield shift of \(He_1\) and H\(\delta_2\) are consistent with the proximal histidines, whose Ne\(1\) is bound to the heme iron. The assignment of the \(He_1\) of the distal histidine in isolated \(\alpha\)-chains in the CO form was first carried out by Dalvit and Ho (1985) by means of truncated-driven NOE measurements. By using phase-sensitive 2D-\(^1\)H-NMR techniques, Dalvit and Wright (1987) extended the assignments of the distal histidine and assigned resonances in the vicinity of the heme, including those of the imidazole proton resonances of the proximal histidine in isolated \(\alpha\)-chains of Hb A in the CO form at 36°C and pH 5.3. Here, we confirm those assignments and add the assignment of the imidazole protons of the distal and proximal histidines of the \(\beta\)-chains of HbCO A. Our \(^1\)H assignments of the proximal and distal histidines in the \(\alpha\)-subunits agree to within 0.1 ppm with those reported by both Dalvit and Wright (1987) and by Martineau and Craescu (1992) for isolated \(\alpha\)-chains of HbCO A under slightly different buffer and temperature conditions. It is noteworthy that, although the N\(\delta_2\) chemical shift of the distal histidines indicates a protonated state, no single-bond NH can be detected for either \(\alpha\)- or \(\beta\)-chains, presumably due to exchange with a water molecule trapped in the distal heme pocket.

Surface histidines

Previous work from our laboratory has assigned the \(He_1\) (C2) resonances for all surface histidine residues, except \(\alpha_{45}\). Although resonance H was tentatively assigned to \(\alpha_{45}\) (Ho and Russu, 1985), later it was thought that it might be one of the distal histidines. The present study unequivocally shows that resonance H is not a distal histidine and thus, assigns resonance H to \(\alpha_{45}\)His, completing the assignment of the imidazole side chain of all histidyl residues in HbCO A.

The use of \(^{15}\)N labeling provides new means for assigning the imidazole protons of the surface histidines. First, because it can label only one type of chain at a time, the NMR spectra can be edited to contain only the resonances from either the \(\alpha\)-chain or the \(\beta\)-chain. Second, it is very easy to correlate the H\(\epsilon_1\) and H\(\delta_2\) resonances via coupled HMQC. Such a correlation is capable, for example, of directly solving the problem of assigning the resonances J and K, which until recently were lumped together as B116His or B117His. Fang et al. (1999) mutated B116His into Glu, and thus assigned resonance J to B117His. In the assignments reported in that work, extensive use was made of correlation between C2(He1) and C4(H\(\delta_2\)) protons by means of TOCSY experiments. Although such experiments work, the spectra take a long time to acquire, the cross-peaks are weak, and there is always the problem of overlap with the resonances of the aromatic residues. It is actually quite remarkable that cross-peaks were obtained for a protein of this size (64.5 kDa), for side-chain protons coupled via 4 bonds! The HMQC spectrum in Fig. 4 shows right away that there is a C4(H\(\delta_2\)) proton shifted unusually far upfield, to about 6.4 ppm, coupled to peak J. In the amino acid sequence of Hb, B117His is followed by a Phe, whose ring current would create an upfield shift of an imidazole proton of B117His and therefore peak J must belong to B117His.

Further information is obtainable from the \(^{15}\)N chemical shifts. As shown schematically in Fig. 1, the chemical shift separation between the \(^{15}\)N\(\delta_1\) and \(^{15}\)N\(\epsilon_2\) resonances of histidines is expected to be large (up to 80 ppm) for residues with pK values much lower than the pH of the NMR sample. This separation should decrease for histidyls with higher pK, finally resulting in degenerate chemical shifts when the pK is much higher than the sample pH and both imidazole nitrogens are protonated. This expected trend is followed quite well by 12 of the 13 distinct surface histidyls of Hb A, as seen by correlating the cross-peaks observed at pH 6.86 (Fig. 4) with the measured pK values (Ho and Russu, 1987; Russu et al., 1989; Fang et al., 1999). For example, B77His exhibits a \(^{15}\)N separation of 4.0 ppm, and has a pK of 7.81 in 0.1 M phosphate (Ho and Russu, 1987), whereas \(\alpha_{45}\)His shows a \(^{15}\)N separation of 57.1 ppm, and has a pK of 6.09 in 0.1 M HEPES plus 0.1 M chloride (Fang et al., 1999). However, B143His is a striking exception to this trend. With a pK of 5.73 in HbCO A and the corresponding value of 4.70 for deoxy-Hb A in 0.1 M HEPES plus 0.1 M chloride (Fang et al., 1999), B143His is expected to exhibit a \(^{15}\)N chemical shift separation larger than that of \(\alpha_{45}\)His, but the observed separation is only 4.4 ppm. This anomalous behavior is a clear indication that B143His experiences a very unique environment as reflected by unusually low pK values for both deoxy and CO forms and by perturbed nitrogen chemical shifts. Located in the lining of the central cavity of Hb A, this residue is exposed to solvent (Dickerson and Geis, 1983). For a discussion of the environment and properties of B143His, see Fang et al. (1999).

Tryptophan side chains

The HMQC spectra of chain-selectively \(^{15}\)N-labeled Hb A have also provided partial side-chain assignments for...
α14Trp, β15Trp, and β37Trp. The assignment of α14Trp is straightforward. The HN cross-peak at 10.4/129.5 ppm shows a clear correlation with a sharp peak at 7.28/129.5 ppm, which must, thus, be the Hδ1 proton. A strip at 10.4/129.5 ppm from a 3D-NOEY-HSQC experiment performed at 34°C (results not shown) contains cross-peaks at proton frequencies of 7.28 and 7.53 ppm, identifying thus the Hɛ2 proton at 7.53 ppm. The assignments for the indole proton resonances of α14Trp in isolated α-chains of Hb A in the CO form at pH 5.3 and 36°C were first published by Dalvit and Wright (1987), and nearly identical results were reported later by Martineau and Craescu (1992) under very similar sample conditions. Our assignments under somewhat different conditions are very close to theirs. As distinct from both previous reports, we see the Hδ1 proton at a chemical shift of 7.28 ppm, not 7.32. As we detect a through-bond connectivity, we are confident that our identification of Hδ1 of α14Trp is correct.

The β-chains possess two tryptophans, whose indole NH resonances are well resolved from each other and from the bulk of the amide resonances. The HMOC spectrum has proved the identity of these NH resonances as indole by the correlation with an aromatic proton through a long-range coupling to the nitrogen. The differential assignment was made by using an Hb sample in the deoxy form, where the β37Trp indole NH becomes involved in an interfacial hydrogen bond and its resonance is shifted downfield (results not shown). The chemical shifts of the three Trp residues are listed in Table 2.

The assignment of the Trp residues is very important for understanding the structure-function relationship in hemoglobin. β37Trp is of particular interest, because it lies within the α1β2 interface, a region essential to the cooperative oxygenation of Hb A. The environment of β37Trp is significantly different in the various conformations of Hb A (for details, see Ho and Lukin, 2000). Recently, using the pH2 plasmid provided by our laboratory, Hu and Spiro (1997) have assigned UV resonance Raman bands due to α14Trp and β37Trp. Thus, another application of our ability to observe Trp residues in our NMR spectra is to make a direct comparison between NMR and resonance Raman results on structural changes associated with the cooperative oxygenation of Hb A and other mutant hemoglobins.

CONCLUSION

Two-dimensional heteronuclear NMR spectroscopy is seen to be capable of revealing the resonances of individual amino acids in proteins as large as hemoglobin, with a molecular weight of 64.5 kDa. Chain-selective isotopic labeling reduces spectral overlap and provides unambiguous residue-specific information. Here, the HMOC spectrum has helped, completing the assignment of all histidines of HbCO A by confirming and extending the previous assignments. The surface histidine residues have previously been shown to be responsible for 86% of the alkaline Bohr effect at pH 7.4 and 55% of the acid Bohr effect at pH 5.1 (Sun et al., 1997; Fang et al., 1999). The assignments were aided by the use of chain-selective isotopically labeled samples, obtained by separating the α- and β-chains of uniformly 15N-labeled Hb A and recombining them with the complementary chains of the natural abundance protein. This technique promises to be useful in the study of this and other multimeric, allosteric proteins and regulatory enzymes.

We thank Drs. Ad Bax and Gordon S. Rule for helpful discussions. This work is supported by research grants from the National Institutes of Health (R01HL-24525 and S10RR-11248).

REFERENCES

Tame, J., and B. Vallone. 1998. Protein Data Bank entry 1A3N.
