Justin C. Crowley-Department of Biological Sciences - Carnegie Mellon University

Justin C. Crowley

Director, Health Professions Program

Assistant Teaching Professor

Address:
Doherty Hall 1320
Department of Biological Sciences
Carnegie Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213
Phone: (412) 268-8494, (412) 268-9806

Education

Ph.D., Duke University
Postdoctoral Appointment, Duke University

Research

The neuron is the fundamental processing unit of the brain. Neuronal function is dependent on its synaptic connections with other cells - its inputs and outputs. The population of cells that synapse onto a neuron's dendrites dictate the information available to the neuron, while a neuron's axonal processes are responsible for distributing information to the rest of the brain. The assembly of synaptic connections between neurons is the generation of the biological circuitry that can function as part of the brain's neural systems. Thus the forces that govern the growth and structure of dendrites and axons dictate the way that the brain is able to process information, eventually leading to perception, thought and behavior.

My research focuses on the formation of circuitry in the visual system, specifically the development of neural processing modules in primary visual cortex. The circuitry of primary visual cortex organizes the visual scene encoded by the retinae into "maps" of features: a map of visual space, a map of ocular dominance (eye-specific information), a map of the orientations (angles) of lines, as well as others. The goal of my work is to understand how these circuits are formed and how they process information about the visual scene. The patterning forces underlying the formation of these circuits have been hypothesized to be patterns of gene expression or patterns of neural activity or a combination of these influences. Currently, the roles of these patterning forces and their interaction are a subject of debate within the neurobiology community.

My research employs a combination of physiological and anatomical techniques. Multi-photon imaging enables the examination of the structure and function of living neurons in real time as they develop and change. Optical imaging of intrinsic signal allows the detection of activity patterns of large groups of neurons. Electrical recording of the activity of single neurons enables the high fidelity examination of single processing units. The combination of these approaches facilitates the study of the dynamic interplay between structure and function in the developing brain.

Publications

Kawasaki H, Crowley JC, Livesey FJ and Katz LC. Molecular organization of the ferret visual thalamus. J Neurosci, Nov 3;24:9962-9970, 2004.

Mizrahi A, Crowley JC, Shtoyerman E and Katz LC. High resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci, 24(13):3147-51, 2004 Mar 31.

McCoy AN, Crowley JC, Haghighian G, Dean HL and Platt ML. Saccade reward signals in posterior cingulate cortex. Neuron, 40:1031-1040, 2003.

Bosking WH, Crowley JC and Fitzpatrick D. Spatial coding of position and orientation in primary visual cortex. Nature Neuroscience, 5(9):874-882, 2002.

Crowley JC and Katz LC. Early development of ocular dominance columns. Science, 290:1321-1324, 2000.

Crowley JC and Katz LC. Development of ocular dominance columns in the absence of retinal input. Nature Neuroscience, 2(12):1125-1130, 1999.