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Abstract

Chapter 1, titled “Privacy Preserving Data Fusion”, and joint work with Longxiu
Tian and Dana Turjeman, tackles the complex problem of merging multiple datasets
while ensuring user privacy. This paper introduces a privacy-preserving data fu-
sion methodology that adheres to the principles of differential privacy, leveraging
variational autoencoders and normalizing flows to create a robust, nonparametric,
Bayesian generative modeling framework. This methodology notably accounts for
missingness in each dataset, correcting for sample selection and negating the re-
quirement for identical users across datasets when learning the joint data generating
process. Through a series of simulations and an applied case involving a novel large-
scale customer satisfaction survey and CRM database from a leading U.S. telecom
carrier, we demonstrate the potential of this privacy-preserving methodology for ro-
bust data fusion, providing insights into customer satisfaction and churn propensity
without compromising privacy.

Chapter 2, titled “Understanding Consumer Expenditure Through Gaussian Process
Choice Models”, is joint work with Alan Montgomery. This chapter challenges the
rigid structural assumptions of traditional choice models that define expenditure
elasticity and the restrictive utility functional forms these models often impose. By
introducing Gaussian process priors on utility functions, we provide a flexible, util-
ity - based model for understanding expenditure - driven changes in consumer
choices. We demonstrate that relaxing the functional form on the outside good
within the framework of constrained utility maximization leads to more flexible sub-
stitution patterns. This has implications for understanding preference for variety
and quality. This methodological advance enables the model to capture non-linear
rates of satiation and precise baseline preferences—details that traditional non - ho-
mothetic (i.e., expenditure-variant preferences) parametric models often overlook
due to their assumptions of a given utility functional form. Through its automatic
detection of non-linear consumption patterns from the data, the model provides
more flexible statistical inference, offering valuable theoretical and practical insights
for improved pricing decisions.

Chapter 3, titled “Digital Twins: A Generative Approach for Counterfactual Customer
Analytics”, proposes an innovative methodology to optimize customer surveys in
a competitive landscape. Leveraging a unique dataset of quarterly cross-sectional
survey responses from major U.S. telecommunications providers from 2020 to 2022,
this paper introduces the concept of ‘Digital Marketing Twins.’ These are generative
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models of customer preferences that provide counterfactual responses under differ-
ent scenarios. Here, the concept of “generative model” means that I explicitly give
the sequence of steps describing how the data were created, i.e., the data generat-
ing process, including unknown model parameters. The methodology uses a novel
deep generative and probabilistic latent factor model, which captures individual -
level brand affinity for each brand and time period, accounting for observed het-
erogeneity and firm-side factors. Utilizing Bayesian optimization, the model offers
individual-level marketing action recommendations. It shows promising results in
identifying marketing actions most likely to increase customer satisfaction, offering
a “path of least resistance” at the individual level.
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Chapter 1

Privacy Preserving Data Fusion
joint with Longxiu Tian and Dana Turjeman

Data fusion combines multiple datasets to make inferences that are more accurate,
generalizable, and useful than those made with any single dataset alone. However,
data fusion poses a privacy hazard due to the risk of revealing user identities. We
propose a privacy preserving data fusion (PPDF) methodology intended to preserve
user-level anonymity while allowing for a robust and expressive data fusion process.
PPDF is based on variational autoencoders and normalizing flows, together enabling
a highly expressive, nonparametric, Bayesian, generative modeling framework, es-
timated in adherence to differential privacy – the state-of-the-art theory for privacy
preservation. PPDF does not require the same users to appear across datasets when
learning the joint data generating process and explicitly accounts for missingness in
each dataset to correct for sample selection. Moreover, PPDF is model-agnostic: it
allows for downstream inferences to be made on the fused data without the analyst
needing to specify a discriminative model or likelihood a priori. We undertake a se-
ries of simulations to showcase the quality of our proposed methodology. Then, we
fuse a large-scale customer satisfaction survey to the customer relationship manage-
ment (CRM) database from a leading U.S. telecom carrier. The resulting fusion yields
the joint distribution between survey satisfaction outcomes and CRM engagement
metrics at the customer level, including the likelihood of leaving the company’s ser-
vices. Highlighting the importance of correcting selection bias, we illustrate the di-
vergence between the observed survey responses vs. the imputed distribution on
the customer base. Managerially, we find a negative, nonlinear relationship between
satisfaction and future account termination across the telecom carrier’s customers,
which can aid in segmentation, targeting, and proactive churn management. Over-
all, PPDF will substantially reduce the risk of compromising privacy and anonymity
when fusing different datasets.

1.1 Introduction

Data fusion consists of the combination or linkage of multiple data sources to make
inferences that are more accurate, generalizable, and useful than those made with
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any single dataset alone. Data fusion has been applied at leading technology firms,
including Facebook (Theo Ryffel et al., 2018), Microsoft (Zheng, 2015), and Google
(Papernot, 2019). Managers use data fusion to learn about common buying behav-
iors, customer preferences, and prospective needs, from physically and conceptually
distinct datasets. For example, data fusion assists in learning about customer needs
through the fusion of choice surveys and eventual purchase data (Eleanor McDon-
nell Feit, Beltramo, and Feinberg, 2010), or in making more accurate predictions of
potential market share, through the fusion of data on both customers and the general
population (McCarthy and Oblander, 2021). Despite the prevalence and advantages
of data fusion, however, whenever data fusion involves any form of customer-level
data1, the technique poses a privacy hazard of identifying individuals. For exam-
ple, Sweeney, 1997, Narayanan and Shmatikov, 2008, and S. Li et al., 2022 show
that a combination of datasets might reveal individuals’ sensitive and identifiable
information, in a process referred to as “linkage attacks.” The data to be fused, even
if anonymous or de-identified, might be re-identified when fused, therefore risking
the privacy of individuals in either dataset.

To reduce the risks of user identification, while allowing for the advantages of
data fusion, we develop a Privacy Preserving Data Fusion (PPDF) methodology,
based on differential privacy (DP) (Dwork, Kenthapadi, et al., 2006), variational
autoencoders (VAE) (Kingma and Welling, 2013), and normalizing flows (NF) (D.
Rezende and Mohamed, 2015). It fuses two or more datasets nonparametrically and
generatively, and implements differential privacy, a state-of-the-art framework and
methodology to assure privacy preservation. PPDF will allow organizations that
handle individual - level data to substantially reduce, or even eliminate, the risk of
compromising privacy and anonymity.

Beyond being a critical pillar of customer privacy, assurance of anonymity has
been shown to increase survey response rate and honesty (Bradburn et al., 1979).
Firms often hold additional data sources such as customer relationship management
(CRM) or behavioral data. The data from different sources can be fused with survey
data, in order to gather insights on the customer base.

Hence, developing privacy preserving methodologies is becoming a prominent
need. With privacy in mind, the overarching goal is to find the balance between pri-
vacy and the great advantages provided by data and data - driven decision making.
Customers are increasingly aware and demanding of privacy (Lin, 2022). Conse-
quently, marketing efforts - previously focused on products’ abilities - are now shift-
ing to protecting customers’ privacy as part of a broader push towards customer -
centricity in marketing.

We exemplify the use of PPDF and illustrate its advantages by conducting anal-
yses on several different domains and datasets:

1The nouns user, customer, individual, person, and consumer will be used interchangeably to de-
scribe people whose information, some of which may be private and/or identifiable, is held by com-
panies.
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1. We use the well-known MNIST image dataset of hand-written digits to visu-
ally intuit the methodology and the advantages of each building-block, includ-
ing: data fusion accuracy, scalability, and the trade-off between privacy and
accuracy. Details are provided in Section 1.1.

2. A simulation using a survey of 5.5K respondents that is split and then re-fused,
to show both the trade-off between privacy and accuracy, as above, and also
the sensitivity to other tuning parameters of PPDF. More on this in Section
1.4.2.

3. Our main illustrative application will be in fusing CRM data from a leading
U.S. telecommunications company (hereafter “telecom carrier" or “firm") to
a large-scale customer satisfaction survey of its customer base conducted by
an external surveying company. Crucially, to ascertain the accuracy of PPDF,
the telecom carrier further conducted an identical internal survey in which we
know the user-id in both the survey and the CRM data2. This exercise allows us
to again show the trade-off between accuracy and privacy and to also illustrate
the managerial value of PPDF. Details of these analyses are provided in Section
1.5.

In the application of PPDF to the telecom carrier’s CRM and survey, the fusion
allows us to assess, among other things, the relationship between self-reported cus-
tomer satisfaction metrics from the survey and the likelihood to churn from the com-
pany’s services across the full customer base, yet without revealing customers’ iden-
tities as being among the survey’s respondents. Of note, in anonymous survey set-
tings, firms are limited to analyzing solely the sample distribution of the responses,
which can suffer from selection bias. Of particular interest to the firm’s managers,
our data fusion reveals that the relationship between predicted Likelihood to Recom-
mend (LTR) and churn from the full customer base has a reverse hockey stick-shaped
relationship. Whereas one would expect a straightforward negative correlation be-
tween LTR and churn, instead, we see that those with the highest predicted LTR
(10/10) are more likely to churn than those with a predicted LTR of 6/10. Moreover,
this exercise represents the first-ever individual-level ‘scoring’ of the firm’s existing
customers with their imputed LTR value. More generally, we quantify the distri-
butional divergence between survey respondents and the full customer base. This
highlights the well-known phenomenon of selection bias in survey outcomes and
how the proposed data fusion assists in correcting such selectivity to achieve more
accurate managerial insights and decision-making.

Our work makes several contributions: First, we propose a new, nonparametric
and scalable data fusion methodology to generate customer insights from disparate

2All CRM data and surveys were cleaned of personally identifiable information, including but not
limited to names, phone numbers, street addresses, and emails. Moreover, account numbers were
re-enumerated using a random index (hereafter “user ID"), prior to data-sharing, as stipulated in the
Non-Disclosure Agreement (NDA) signed by the telecom carrier and the authors.
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data sources. We demonstrate the quality of the data fusion in multiple data types
and contexts, in terms of both accuracy and posterior predictive ability. Second,
our data fusion methodology has a built-in privacy tuning mechanism that can be
tuned by the data holders. We quantitatively show the trade-off between privacy
and accuracy. Third, we present an application where we successfully fuse anony-
mous survey data and CRM data under privacy constraints. This application allows
us not only to exemplify the method, but also to predict if a customer is at risk of
leaving the company. This adds another building block in the research on the rela-
tionship between customer satisfaction and engagement, but is only the tip of the
iceberg, and solely an example, of explorations that will become feasible with the
proposed PPDF methodology.

To the best of our knowledge, PPDF is the first methodology that enables re-
searchers and managers who handle sensitive data to securely fuse datasets and
gather inferences that cannot be made with each dataset alone. Our data fusion
methodology comes with known and principled privacy guarantees (Dwork, Ken-
thapadi, et al., 2006; Abadi et al., 2016). Data holders can use the methodology
in collaboration with other entities, without revealing data and without risking the
privacy of individuals present in them. Our methodology does not require the same
users to appear in both datasets and explicitly accounts for missingness (e.g., sam-
ple selection bias). Moreover, PPDF is the first fully generative data fusion tech-
nique; that is, it is model-agnostic as the analyst need not specify the discriminative
model/analysis prior to fusing data.

As a high level description of our methodology, PPDF consists of three core com-
ponents in its specification and estimation: differential privacy (DP), variational au-
toencoders (VAE), and normalizing flows (NF). Differential privacy (Dwork, McSh-
erry, et al., 2006) introduces the concept of a “privacy budget” where researchers can
set an adequate level of privacy at the price of lower accuracy. The main assumption
is that privacy of users is preserved when one cannot identify any particular user
as being included in the dataset. In probabilistic terms, there is a bounded prob-
ability for any individual to be revealed. DP is a state-of-the-art technique among
privacy-preserving methodologies. More specifically, we implement a differentially
private, doubly-stochastic variational inference algorithm, in its (ε, δ) form (Jälkö,
Dikmen, and Honkela, 2017), which is derived from differentially private version
of stochastic gradient descent (Abadi et al., 2016). This implementation is realized
in the estimation (i.e., training) of PPDF’s variational autoencoders. VAEs are an
attractive approach to data fusion because they form a highly scalable and proba-
bilistic generative model designed to learn a concise data generating process in the
form of a joint distribution across features. We extend VAEs to also learn across
customer-level datasets, with the challenge that they do not have deterministic link-
ages between observations (i.e., due to anonymity in the survey). As a result, PPDF
fuses two or more datasets governed by differential privacy and allows analysts to
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substantially reduce, or even eliminate, the risk of compromising customers’ pri-
vacy and anonymity. One caveat of VAEs is that they tend to be limited in their
ability to capture data generating processes. We overcome this challenge by allow-
ing the generative distribution to be nonparametrically learned from the data itself,
via a normalizing flow architecture. Normalizing flows (D. Rezende and Mohamed,
2015; Papamakarios et al., 2021) refer to a sequence (flow) of non-linear, bijective
(volume-preserving, invertible) transformations on probability density functions. A
key computational advantage in the context of large-scale data fusions, such as those
in our application, is that these transformations are composed from simple distribu-
tions (e.g., the standard Normal distribution) and through the diffusion of flows
beget a far richer and more accurate representation of the underlying data generat-
ing process while retaining the inherent scalability of VAEs.

The rest of the chapter is organized as follows: In Section 1.2, we review the lit-
erature on data fusion and privacy preserving methodologies. Our methodology is
detailed in Section 1.3. Specifically, we detail the variational autoencoders in Sub-
section 1.3.1, specify the privacy enhancement in Subsection 1.3.3, and discuss the
types of missing data PPDF can handle in Subsection 1.3.4. In Section 1.4, we show
our proposed methodology’s abilities using several simulations. In Section 1.5, we
describe the data used and the results generated herein. Finally, we conclude with
a brief summary and a discussion on further applications and future directions in
Section 1.6.

1.2 Literature Review

Work in the domain of data fusion and record linkage can be traced back to Dunn,
1946, where multiple population datasets were combined. Contemporary record
linkage and more complex forms of data fusion have been used in multiple fields,
yielding results in economics (Berry, Levinsohn, and Pakes, 2004), geography (Liu et
al., 2020; Dias et al., 2019), and health (Dautov, Distefano, and Buyya, 2019), among
others. In the marketing domain, they have been used to handle missing data in
surveys (Bradlow and Zaslavsky, 1999), enrich parameter estimates and preference
predictability (Swait and Andrews, 2003), estimate product purchasing and media-
watching (Gilula, McCulloch, and Rossi, 2006), combine choice experiments with
CRM data (Eleanor McDonnell Feit, Beltramo, and Feinberg, 2010), detect heavy
and light users in multiple media platforms (Eleanor McDonnell Feit, P. Wang, et al.,
2013), predict users’ choices based on contextual data from their phones (Unger et
al., 2018), and predict market share (McCarthy and Oblander, 2021), among other
use cases.

The proposed methodology, similarly to other data fusion methodologies in mar-
keting, is intended to enhance user- and customer-level data by fusing them with
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other datasets. However, much prior work in this area has focused on fusing de-
tailed individual (disaggregate) data with data that are aggregated across customers
(e.g., Eleanor McDonnell Feit, P. Wang, et al., 2013; McCarthy and Oblander, 2021).
For such aggregate-disaggregate uses, privacy is less of a concern because linkage
attacks are unlikely to occur. This is mostly because data that are aggregated across
customers cannot usually shed light on identities of the people who are in the disag-
gregate (individual-level) data. PPDF, on the other hand, can fuse data from differ-
ent sources while protecting individuals’ privacy, whether the data are aggregated
or not.

PPDF methodology does not require that the same customers appear in both
datasets to make inferences on the joint data. Fusion occurs based on the joint distri-
bution of the shared and unique variables, and therefore, under standard assump-
tions of missingness in the data (selection bias being a specific example of miss-
ingness in data), to be further described in Section 1.3.4, it recovers one dataset’s
missingness from additional variation made available in the other dataset. In con-
trast to prior approaches, an explicit selectivity correction need not be specified in
the model (notably, there is no underlying model specification in our applications).
Instead, PPDF recovers the missingness in a nonparametric manner, inspired by ad-
vances in Bayesian canonical correlation analysis (Klami, Virtanen, and Kaski, 2013;
Chandar et al., 2016), and treats each dataset as if it were a random sample from
a multivariate random distribution we wish to encode and fuse. As a generative
model, PPDF’s imputation of missing values takes into account the joint distribu-
tion across variables and datasets. For example, if survey respondents’ character-
istics are different from those of the wider customer base, then sampling from the
generative model for the wider customer base should lead to a different LTR dis-
tribution. This mechanism automatically eliminates any lack of representativeness
arising from self-selection of survey respondents. Therefore, managers who wish to
learn from a survey jointly with CRM data, or from other datasets that inherently en-
tail sample selection or other missingness, have more opportunities to do so. More
importantly, distinguished from other data fusion methods in marketing, to the best
of our knowledge, PPDF is the first fully generative data fusion technique; that is, it
is model-agnostic as the analyst need not specify the discriminative model/analysis
prior to fusing data. Simultaneously, the generative distribution that is learned on
the fused data allows for uncertainty propagation to any downstream inference if
the analyst so chooses.

Until now, we have discussed advances in data fusion. With the great advances
of data fusion comes great progress, but on the other hand comes the risk of identi-
fying individuals. When both datasets jointly include identifiers, data fusion might
compromise customers’ privacy (within either dataset) and reveal one’s preferences
or values along with their identifiable information. This has been illustrated by the
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seminal work of Sweeney, 1997, who relied on demographic data to reveal sen-
sitive health information of public officials in the State of Massachusetts, and by
Narayanan and Shmatikov, 2008, who relied on inferred preferences when match-
ing de-identified data from Netflix with publicly available data from IMDb. Lin and
Misra, 2022 discuss how firms such as Google, Apple, and Facebook do not allow
identity matching across platforms and across devices, to prevent user identification,
and show how such protection may lead to an identity fragmentation bias when an
external actor aims to measure customer behaviors. The proposed PPDF methodol-
ogy allows us to learn the joint distribution of both datasets, based on their latent
constructs, without compromising anonymity of any user, and potentially alleviates
some of the concerns proposed by Lin and Misra, 2022. PPDF complements recent
work by Anand and C. Lee, 2023 who develop a deep learning method for data
sharing. As opposed to Anand and C. Lee, 2023, PPDF will enable data sharing with
the privacy guarantees of differential privacy and will also develop a full generative
model to allow for robust data fusion of the datasets.

Therefore, beyond extending the stream of work on data fusion, PPDF method-
ology also extends the growing stream of privacy preserving methodologies, such as
privacy preserving data publication, training, inference, and synthesis (e.g., Fung et
al., 2010; Shokri and Shmatikov, 2015; Ping, Stoyanovich, and Howe, 2017; Takagi et
al., 2020; Evans et al., 2019; Kaissis et al., 2021; Anand and C. Lee, 2023. See K. Kim
and Tanuwidjaja, 2021 for a recent review). Similar to many of the methods men-
tioned above, our method builds on differential privacy (Dwork, McSherry, et al.,
2006), the gold-standard method for privacy preservation, further explained in Sub-
section 1.3.3. DP relies on mathematical guarantees and allows for a pre-specified
“privacy budget” that can be tuned to the desired risk assessment and tolerated ac-
curacy loss.

Other privacy preserving methodologies, such as K-anonymity (Sweeney, 2002;
S. Li et al., 2022) (obscuring the data such that every person cannot be distinguished
from other K− 1 people in the dataset) and L -diversity (assuring that each variable
has at least L well-represented values, Machanavajjhala et al., 2007) have been pro-
posed to enable data publication and data synthesis. While such methods may be
relevant for datasets with a relatively small number of attributes, they fail to scale to
large datasets and might still suffer from various privacy attacks that could reveal
identities of the people represented in the data(N. Li, T. Li, and Venkatasubrama-
nian, 2007; Domingo-Ferrer and Torra, 2008). Nevertheless, they have been found
suitable for multiple uses, most notably password checkup tools such as “Have I
been Pwned” and Google’s security checkup (L. Li et al., 2019). Recently, S. Li et al.,
2022 extend K-anonymity for longitudinal panel data to also protect against linkage
attacks. We rely on differential privacy due to its ability to handle richer datasets
and due to the mathematical guarantees and clear tuning parameters it enables. In
our simulation exercise, we will demonstrate the privacy preservation vs. accuracy
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trade-off visually, using the MNIST dataset of hand-written images, as well as using
data from another survey, unrelated to the main application, which we split and then
fuse back with varying tuning parameters and varying privacy guarantees. Finally,
we explore the trade-off between accuracy and privacy in the main application on
the telecom carrier data, using an internal calibration survey in which we have full
information about users’ identities.

In our main application, using the telecom carrier data, we explore how “Likeli-
hood to Recommend" may assist in predicting customers’ churn. The general ability
to predict churn, and the relationship between LTR and churn, has been a source
of debate, both in industry and in academic settings (e.g., Lemmens and Croux,
2006; De Haan, Verhoef, and Wiesel, 2015; Neslin et al., 2006; Ascarza et al., 2018;
Lemmens and Gupta, 2020). With PPDF, a company will be better able to predict
churn and potentially offer tools to improve the antecedents and outcomes of low
customer satisfaction. Of note, this is just a specific illustration of a managerial use
of PPDF methodology. The generative framework underlying PPDF ensures that fu-
ture end-users may craft specific analyses based on their datasets and context, which
can extend beyond surveys and CRM data.

1.3 PPDF Methodology

In this section, we first give an overview of the model before decomposing each
component and explaining its role in the proposed methodology: variational au-
toencoders and normalizing flows; learning mechanism of the data fusion; privacy
preservation measures and controls.
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FIGURE 1.1: High level illustration of PPDF of two datasets, each
with some common variables X(c). Dataset 1 has variables X(1) and
Dataset 2 has variables X(2). The datasets go through differential pri-
vacy and are then fused into inferred variables X̃(1), X̃(2), and X̃(1,2)

C
based on the population of the respective dataset.
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Figure 1.1 provides an overview of PPDF and illustrates the architecture on two
datasets3: Dataset 1, which is comprised of set of variables X(1) (in the telecom car-
rier example, such CRM data will include, for example, number of lines for the ac-
count, customer tenure, contract status, billing information) and common (shared)
variables X(1)

c (e.g., engagement metrics such as purchase of a new phone or con-
nected device, reward redemption behavior, recent visits to a retail location) and
Dataset 2, which also includes the same common variables X(2)

c , but has unique
variables X(2) (e.g., various types of user satisfaction measures, such as LTR, overall
satisfaction, and more).

Importantly, while X(1)
c and X(2)

c are common variables in that they have similar
structure, they might not be of the same users and do not have to be of the same
size. The two instances of these shared variables might not even be drawn from the
same distribution. For example, customers that are more extreme in their attitudes
towards the brand may be more likely to self-select into responding to a survey,
and this attitudinal difference then translates into a different distribution in terms of
common variables. Such missingness that is due to selection bias can be overcome
with our method as long as there is sufficient ability (i.e., enough information) to
recover the joint distribution of those who chose not to respond. We detail our ability
to overcome selection bias in Section 1.3.4.

Our goal is to infer the joint distribution of the fused data while reducing privacy
risks associated with such linkage of datasets. In our focal context of the telecom car-
rier’s wireless customers, we fuse the two sources of data without revealing which
users responded to the external survey. Specifically, we find how the attributes from
the CRM database (X(1)) covary with the response outcomes from the anonymous
customer survey (X(2)) and explicitly obviate any one-to-one ‘matches’ between the
two datasets.

In the following subsections, we will explain the building blocks of PPDF – start-
ing from discussing a single dataset’s encoder and decoder implemented with a vari-
ational autoencoder (VAE), improving it through normalizing flow, making it differ-
entially private. Then, shifting back to discussing two datasets, we will explain how
we use the VAE’s encoder and decoders as a shared learning mechanism to fuse the
two datasets.

1.3.1 Variational Autoencoders (VAEs)

Variational autoencoders have been used widely to capture the generative process
of images and other data types. In this subsection, we will describe the variational
autoencoders included in PPDF. Figure 1.2 illustrates the basic setup for a VAE that
learns a joint representation for a single dataset with two sets of variables, X(1)

c and

3In what follows, and for ease of notation, we assume two datasets are to be fused, though this can
be generalized.
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FIGURE 1.2: Illustration of a variational autoencoder (VAE) of a sin-
gle dataset (without loss of generality, Dataset 1). Two parts of the
dataset, variables X(1)

c and X(1), are encoded to the latent variable Z1
through the function q(.), parameterized by the variational vector of
parameters ϕ through a neural network (1). Note that the variational
family is a function of the input and the shared variational parameters
(i.e., it is amortized). The latent vector Z1 (2) is then decoded via two
decoders: Decoder 1 and Decoder C (for “common"), parameterized
by θ through a neural network (3,4), to reconstruct the original data
(5). The VAE is a stochastic computational graph that simultaneously
optimizes the variational parameters ϕ and the model parameters θ.

X(1). The VAE learns the generative model of the dataset, and has two types of
components:

• An encoder (also known as an inference or recognition model) uses the two vari-
able sets as inputs X(1) and X(1)

c (where the c stands for common variables) and
estimates a set of latent representations qϕ(.|X(1)

c ) with inference parameters ϕ

that capture the data generating process into latent representation Z1.

• Two decoders (also known as an amortized inference or generative model) take
Z1 as input and estimate two conditionally independent models p(1)θ (X̃(1)|Z1)

and p(c)θ (X̃(c)|Z1) used to reconstruct the original data with set of parameters
θ ≡ (θ(1), θ(c)).

The difference between the original data X ≡ (X(1), X(c)) and the reconstructed data
X̃ ≡ (X̃(1), X̃(c)) forms the loss objective we wish to minimize. Through minimiz-
ing this difference, the decoder and encoder can self-supervise the learning of the
dataset’s latent representation Z1 and the accuracy of the reconstructed data X̃.

The training is optimized by simultaneously minimizing the self-reconstruction
error and the cross-reconstruction error (see Subsection 1.3.1). At its core, the learn-
ing mechanism occurs via the neural network parameterization in the encoder and
decoders.

Let pθ(z|x) be the posterior/decoded latent parameters z conditional on data x,
and let pθ(x) be the marginal likelihood, such that

x ∼ pθ(x). (1.1)
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The marginal distribution, also referred to as the marginal likelihood, is

pθ(x) =
∫

pθ(x, z)dz, (1.2)

where pθ(x, z) denotes a deep latent variable model whose prior distributions are
flexibly and nonparametrically formed by normalizing flow (see Subsection 1.3.1).
We optimize the variational parameters ϕ such that

qϕ(z|x) ≈ pθ(z|x). (1.3)

The optimization is done with a loss function, which is derived from the log-
likelihood of the data (Kingma and Welling, 2019):

log pθ(x) = Eqϕ(z|x)[log pθ(x)]

= Eqϕ(z|x)

[
log
[

pθ(x, z)
pθ(z|x)

]]
= Eqϕ(z|x)

[
log
[

pθ(x, z)
qϕ(z|x)

qϕ(z|x)
pθ(z|x)

]]
= Eqϕ(z|x)

[
log
[

pθ(x, z)
qϕ(z|x)

]]
︸ ︷︷ ︸

=Lθ,ϕ(x)≡ELBO

+Eqϕ(z|x)

[
log
[

qϕ(z|x)
pθ(z|x)

]]
︸ ︷︷ ︸

=DKL(qϕ(z|x)∥pθ(z|x))

(1.4)

We want to maximize the log-likelihood of observing the data. Thus, we derived
two terms from Equation 1.4:

• A latent loss, in the form of Kullback-Leibler (KL) divergence DKL between
the approximate posterior qϕ(z|x) and the actual posterior pθ(z|x). The KL
Divergence is non-negative,

DKL(qϕ(z|x) ∥ pθ(z|x)) ≥ 0, (1.5)

and in standard VAE, also known as “Vanilla VAE", is parameterized to be
“close to” the Normal distribution N(0, 1) in order to keep the divergence suit-
ably small. However, this approximation to N(0, 1) severely limits the expres-
siveness of the encoding, and therefore we alleviate this restriction via normal-
izing flows in Section 1.3.1.

• The “variational lower bound", or “evidence lower bound" (ELBO) Lθ,ϕ(x).
Its name is derived from the fact that, due to the non-negativity of the KL
Divergence, the ELBO acts as a lower bound on the log-likelihood of the data:

Lθ,ϕ(x) = log pθ(x)− DKL(qϕ(z|x) ∥ pθ(z|x))
≤ log pθ(x)

(1.6)
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Optimizing Evidence Lower Bound (ELBO).

Re-organizing equation 1.4 shows that maximizing the ELBO will optimize two mea-
sures of interest:

• Maximization of the marginal log-likelihood of pθ(x);

• Minimization of the KL Divergence, therefore the encoded approximation
qϕ(z|x) becomes closer to the true posterior pθ(z|x).

Maximizing the ELBO (Lθ,ϕ(x)) will therefore be the objective function with
which each of the VAEs will be constructed. In practice, this is done by implement-
ing mini-batch stochastic gradient descent optimization in which the data are split
into mini-batches of random samples from the original dataset. In each step, the
algorithm computes the reconstruction loss on mini-batch B = {x1, ...xN} and esti-
mates the gradient gB = 1

|B| ∑N
i=1∇θ,ϕLθ,ϕ(xi). Then θ and ϕ are updated following

the gradient direction −gB. This will allow the model to approach the local mini-
mum of −Lθ,ϕ(x), thus optimizing the VAE. It is in the SGD that differential privacy
will be implemented; however, we first describe the rest of the data fusion process –
improvement of VAE using normalizing flows and the fusion process with bidirec-
tional transfer-learning.

Normalizing Flows.

One challenge of fitting VAEs is that they are limited in their ability to capture the
data generating process. Specifically, VAEs perform encoding using a univariate,
Normal prior, N(0, 1), due to the construction of the loss function (specifically, due
to Kullback-Leibler (KL) divergence DKL).

FIGURE 1.3: Illustration of normalizing flow – a series of bijective
functions z = fK ◦ ... ◦ f2 ◦ f1(z0) allows to flexibly represent the data.

To overcome this challenge, we allow the encoder of each dataset to be flexibly
formed using a normalizing flow architecture. A normalizing flow (D. Rezende and
Mohamed, 2015; Papamakarios et al., 2021) forms a sequence (flow) of non-linear, bi-
jective (volume-preserving, invertible) transformations. These transformations are
composed onto a draw from a simple distribution (e.g., the standard Normal distri-
bution), making it a more accurate (yet complex) representation of the underlying
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data generating process. Normalizing flows have been used to improve the expres-
siveness and accuracy of a multitude of deep learning methods. For recent review
papers, we refer the readers to Kobyzev, Prince, and Brubaker, 2020 and Papamakar-
ios et al., 2021.
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FIGURE 1.4: Illustration of a single VAE with normalizing flow. Here,
the components (1,2,4,5,6) are identical to the ones in Figure 1.2. The
only difference is the added normalizing flow component (3) that
model allows for greater complexity in the data relationships through

bijective functions.

Figure 1.3 illustrates a normalizing flow4, whereas Figure 1.4 illustrates where
the normalizing flow will be incorporated: Instead of having a simplified latent en-
coding, distributed z ∼ N(0, 1), we add in an intermediate series of bijective func-
tions and a latent encoding z0 ∼ N(0, 1), such that

z = fK ◦ ... ◦ f2 ◦ f1(z0). (1.7)

This allows the resultant latent parameters z to flexibly capture data relationships
of greater complexity. In turn, this enables our encoder and decoders to represent
the joint distribution more accurately in the data fusion process.

Figure 1.5 illustrates the improvement of the reconstruction of a sample of digits
using normalizing flow. VAEs (Vanilla VAEs in this case; Kingma and Welling, 2019)
are known to create blurry images (D. J. Rezende and Viola, 2018) due to the limita-
tion described in Subsection 1.3.1. The use of a normalizing flow (in this case K = 7
layers of bijective transforms) allows a richer underlying regularization distribution
and results in much clearer images that capture the original digits well.

1.3.2 Learning Mechanism

In the description of the VAE, we detailed the creation of a single VAE for each
dataset we fuse. This explanation omitted an important part of the process, the data
fusion itself. If each dataset is encoded separately, where does the “magic" of data

4The illustration in Figure 1.3 is inspired by Lilian Weng: https://lilianweng.github.io/
lil-log/2018/10/13/flow-based-deep-generative-models.html.

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


14 Chapter 1. Privacy Preserving Data Fusion

FIGURE 1.5: Results of VAEs with and without normalizing flow: re-
sults of a VAE (middle column) and a VAE with normalizing flows
(VAE + NF, right column). The first VAE creates a blurry image,

whereas the VAE with NF is much clearer.

fusion occur? In this subsection, we further explain the learning mechanism behind
the data fusion.

To achieve the goal of learning the joint representation of the fused data while
reducing privacy risks, PPDF proceeds as follows: A unique encoder takes as in-
puts the two datasets X(1) and X(2) including their common variables X(1)

c and X(2)
c ;

the encoder is amortized only by the common variables X(1)
c and X(2)

c . The encoder
emits two sets of latent encodings, Z0

1 and Z0
2 , that are further modified through

normalizing flows (see Subsection 1.3.1). The cross-reconstruction of dataset X̃(2)

(respectively, X̃(1)) with respect to dataset X̃(1) (resp. X̃(2)) is operated by plugging
the latent enconding Z1 (resp. Z2) into Decoder 2 (resp. Decoder 1). A third decoder,
Decoder C, reconstructs the common variables present in both datasets using a simi-
lar manipulation, but it is parameterized by a single set of parameters θ(c) that learns
the shared representation of the common variables across datasets. Conversely, De-
coder 1 and Decoder 2 are parameterized by separate sets of parameters θ(1) and θ(2)

that learn idiosyncratic representations of each dataset. The bottle-necking of the
architecture through the one encoder and three decoders allows us to generalize the
common learning space into the reconstructed full data.

Note that the encoding is merely a representation of the joint distribution, does
not include the raw data, which might be identifiable, and is differentially private,
as will be explained in Subsection 1.3.3. The encoding and the differential privacy
mechanism assure that only differentially private latent representations of the data,
and not raw data, are passed to receiving parties.

Once the encoder and decoders are optimized, a query based on any subset of
variables can be made onto the joint distribution of the remaining variables across
both datasets, which is the primary objective of data fusion.

Figure 1.6 illustrates the full PPDF architecture. Based on the conceptual frame-
work of Bayesian canonical correlation analysis (BCCA), we treat each dataset as a
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FIGURE 1.6: Detailed architecture of PPDF – two VAEs and each
with its own normalizing flows. A single encoder (1) is amortized
only by the common variables X(1)

c and X(2)
c . The encoder emits

two sets of latent encodings, Z0
1 and Z0

2 (2), that are further modi-
fied through bijective transformations (3), i.e. via normalizing flows.
The cross-reconstruction of dataset X̃(2) (respectively, X̃(1)) with re-
spect to dataset X̃(1) (resp. X̃(2)) is operated by plugging the latent
encodings Z1 (resp. Z2) into Decoder 2 (resp. Decoder 1). A third
decoder, Decoder C, reconstructs the common variables present in
both datasets using a similar manipulation (4), but is parameterized
by a single set of parameters θ(c) that learns the shared representa-
tion of the common variables across datasets. Conversely, Decoder 1
and Decoder 2 are parameterized by separate sets of parameters θ(1)

and θ(2) that learn idiosyncratic representations of each dataset. The
bottle-necking of the architecture through the one encoder and three
decoders allows the induction of a common learning space. We note

that this architecture allows for differently sized datasets 1 and 2.

multivariate random variable with unknown parameters. The encoder – with the
flexibility of normalizing flows – encodes each dataset into a latent representation.
The encoding task is performed using the common variables only, but the represen-
tation is of both the common and unique variables of each dataset. The common
variables allow us to construct the mapping between the two datasets in a formation
of a joint latent representation.

Using the augmented variational parameters, data fusion (i.e., cross - reconstruc-
tion) can then occur as probabilistic imputations from a joint posterior predictive dis-
tribution. In other words, by garnering the marginal posteriors pθ(1 or C)(X(1), X(1)

c |Z1)

and pθ(2 or C)(X(2), X(2)
c |Z2) – where Z are the common latent representations, X(m) are

the dataset-specific variables, and X(m)
c are the shared variables – we can obtain the

posterior predictive joint distribution f (X(1), X(2), X(1)
c , X(2)

c ).
The end result of this data fusion is that, for every entry in either dataset, we

have a probabilistic reconstruction of the matching entry from the other, such that
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with p(X̃i
(1)|X(2)

i ) we can construct [X̃(1)
i,c , X(2)

i,c , X̃(1)
i , X(2)

i ], and conversely, inferring

Dataset 2 onto Dataset 1, we have p(X̃(2)
i |X

(1)
i ) begetting [X(1)

i,c , X̃(2)
i,c , X(1)

i , X̃(2)
i ].

As another conceptual illustration, our VAE can be thought of as the writing of
a Rosetta stone by one linguist and three scribes: the reader can think about the two
datasets as two foreign languages, where the common variables act as a common
syntax, vocabulary, and grammar, but without an exact translation across the two
datasets, which would require sharing the same rows across the two datasets. The
two languages are initially unfamiliar to the linguist and the three scribes, but the
linguist’s job (encoder) is to study these two languages and their common concepts
as inputs and encode a shared representation (books) as latent variables Z1 and Z2

through the common variables, parameterizing this representation with ϕ. This pro-
cess allows the encoding of higher levels of abstraction between the two languages,
as if the linguist was writing her interpretation of the two languages to be used by
the scribes. Normalizing flows help to reach the adequate level of abstraction. Then,
the scribes’ task (the three decoders) is to go back to a lower level of abstraction and
respectively reconstruct the original two languages and their common elements us-
ing the linguist’s books (the latent encodings). The three scribes decode their own
learning from the linguist’s books using parameters θ(1), θ(2), θ(c) for the two origi-
nal languages and their common elements, respectively. The linguist knows that her
books will be used by the scribes, so she tries to convey as much information about
the other language in each book. Once the model is trained, it is as if we wrote a
Rosetta stone that allows the analyst to go from one language to the other using the
bottle-necking via the unique encoder and the three decoders.

Using the combination of VAE, NF and the mutual learning mechanism, our
framework is capable of fusing two datasets – or more – learned as a single joint
distribution. However, as of yet, we have not described the privacy enhancing
methodology. In the next subsection, we introduce the differential privacy com-
ponent within the process.

1.3.3 Privacy Preservation Measures and Controls

One of the essential parts of the proposed methodology is the ability to preserve
users’ privacy. There is an inherent tension between privacy and accuracy, when it
comes to fusing datasets. The best data fusion will match each user’s variables in
a dataset to the same user’s variables in the other dataset. However, such match-
ing might reveal users’ full sets of attributes, and, in some cases, will allow the re-
searcher to uniquely identify them along with traits they did not choose to disclose
or that can potentially harm them. This risk is known as a “linkage attack,” and has
been demonstrated by Sweeney, 1997 and Narayanan and Shmatikov, 2008, among
others.
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On the other side of the privacy-accuracy trade-off, a completely private data
fusion might include only the summary statistics of the variables of the entire popu-
lation in one dataset and merely correlate them with those of the other dataset. This
will allow for learning of the joint distribution for the entire population but will not
allow for heterogeneity and covariance across datasets.

Consider the telecom carrier’s CRM dataset, along with a detailed, anonymous
survey on attitudes and past behaviors conducted by an external company. Any
identification that results from data fusion might harm individuals’ expectations of
privacy: they may have wished to stay anonymous, not revealing their individual
attitudes or behaviors. Moreover, intellectual property of the external survey may
demand the anonymity of the respondents. Therefore, in such cases, the data holders
(the telecom carrier in this case) may prioritize privacy over accuracy.

As another illustrative example, less privacy might be deemed necessary when
handling datasets from public sources, since it is reasonable to assume that, by the
mere presence of their data in a public dataset, individuals are not expecting privacy
guarantees5.

Therefore, it is up to the data holders to assure they are in line with customers’
expectations, intellectual property considerations, regulations, privacy policies, and
known risks when using a data fusion method.

As part of the proposed privacy preserving methodology, we offer tuning mech-
anism that will enable the data holder(s) a higher sense of control over the level
of privacy vs. accuracy. These privacy guarantees, with tuning mechanism, are
achieved using differential privacy.

Differential privacy, first introduced by Dwork, McSherry, et al., 2006, is a data
privacy mechanism used to formalize the trade-off between privacy and accuracy
through the introduction of added noise during model training. It allows the re-
searcher to tune the risk associated with identifying a person from a dataset, and
explicitly set a “privacy budget.” Differential privacy is considered state-of-the-art
among current privacy preserving methodologies and has been used for data pub-
lication or data release (Takagi et al., 2020; Fung et al., 2010; Narra and Chiyuan
Zhang, 2022), including in the release of data from the U.S. 2020 Census (see expla-
nation from U.S. Census Bureau 2021).

Differential privacy relies on the assumption that if it is impossible to ascertain
that any particular user’s data were used in an analysis, then their privacy is pre-
served. From another angle, a model-based analysis is considered differentially pri-
vate if each individual has a bounded probability to be determined as included in
the analysis’s training dataset, relative to another dataset that only differs in the re-
moval of their data. Differential privacy therefore relates to the assurance (up to a
bounded probability), that the inclusion of an individual in a dataset will not change

5While it is reasonable to assume that privacy expectations are low, the researcher might still want
to err on the side of caution and choose to de-identify individuals.
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the marginal outcomes of a model-based analysis (e.g., coefficient estimates, stan-
dard errors, posterior predictives) relative to a dataset that does not include their
data.

There are two realizations of differential privacy, ε and δ; we first begin by defin-
ing ε-differential privacy. Consider two adjacent datasets, D and D′, that are the
same except that dataset D′ has one more observation, i.e., D′ = D ∪ xi where xi are
the data of individual i.

An algorithm M is considered ε-differentially private (ε ∈ R and small as de-
sired), if for every output S, we receive the same output S with the dataset D′ at
a probability that is at most eε that of dataset D. A low ε means that for the two
datasets that differ only in the existence of xi’s data, we have very low probability of
distinguishing between the two outputs. This makes inclusion of xi in the data very
hard to detect:

Pr (M(D) ∈ S) ≤ eε · Pr
(

M(D′) ∈ S
)

. (1.8)

This can also be seen as: survey respondent i cannot be revealed as an input to
our model, if they haven’t responded to it. The probability of being identified as a
respondent, through a variation in the outputs of algorithm M, would be very low in
such a case. ε-differential privacy would allow us to state that even if i is a respon-
dent to the survey, the probability of their being identified as a data input is very
low as well; it is at most eε more likely. ε is therefore a measure of the privacy loss
that the marginal impact of a single customer’s data onto a model can be uniquely
identified back to that customer. By construction, smaller values of ε would lead to
lower privacy loss (i.e., higher privacy guarantees).

As another variation of differential privacy, Dwork, Kenthapadi, et al., 2006 added
an upper bound of the individual risk δ, such that:

Pr (M(D) ∈ S) ≤ eε · Pr
(

M(D′) ∈ S
)
+ δ. (1.9)

The addition of δ ∈ R≥0 serves as a “failure probability”, which acts as a tol-
erance to the risk associated with identification – allowing for the possibility that
ε-differential privacy is broken with probability δ. Intuitively, such failures can arise
as a result of a data breach, whereby the dataset, partially or in its entirely, is exposed
to unauthorized parties. As such, common privacy budgets are set to have δ < 1

|D| ,
where |D| is the number of users in the dataset. Thus, in addition to the likelihood
of revealing an individual’s identify from model outcomes, such exposure may also
arise from factors unrelated to M, such as data leaks.

In line with state-of-art work in this area, we implement differentially private
doubly stochastic variational inference algorithm for training, in its (ε, δ) form (Jälkö,
Dikmen, and Honkela, 2017), which is derived from DP-SGD (Abadi et al., 2016).
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Practically speaking, we incorporate the d3p package for differentially-private prob-
abilistic programming (Prediger et al., 2022), which provides a reliable, high - perfor-
mance implementation of the algorithm. This open source software is usually used
for data publication and in our case is extended to data fusion.

At each step of the PPDF training, we compute the gradient of the loss function
g(x) = ∇θ,ϕLθ,ϕ(x), or, for a random subset of samples B = {x1, ..., xN}, compute the
gradient of this mini-batch: gB = gt(xi) =

1
|B| ∑N

i=1∇θ,ϕLθ,ϕ(xi). The parameters are
then updated following the gradient with learning rate ηt, such that the updating of
parameters θ, ϕ is {θ, ϕ}t+1 = {θ, ϕ}t − ηt · gt. This is a procedure common for esti-
mating VAEs, but DP-SGD adds two more steps in the computation of the gradient,
to assure privacy.

1. Clipping the norm of each gradient gt, to assure that the information of each
individual in a mini-batch is limited:

ḡt(xi) =
gt(xi)

max
(

1, ∥gt(xi)∥2
C

) (1.10)

2. Adding noise from a Normal distribution such that

g̃ =
1
|B|

(
∑

i
ḡt(xi) +N

(
0, σ2C2I

))
. (1.11)

The parameters for the clipping of the norm and for the added noise are com-
puted based on the desired ε and δ, in a process referred to as “privacy accounting”,
detailed by Abadi et al., 2016. As noted, δ is typically set to a value less than 1

|D| (i.e.,
the tolerance for unexpected failures are inverse to the size of the dataset), and from
this point, lower ε (i.e., a more stringent privacy budget) results from larger norm
clipping and additive noises.

Now having explicated the mathematical foundations of the three core compo-
nents of PPDF – variational autoencoders, normalizing flows, and differential pri-
vacy – we next turn our attention to how PPDF, as a data fusion technique, handles
missing data and sample selection biases across datasets.

1.3.4 Handling Missing Data and Selection Bias

Inherently, every data fusion task is intended to impute missing values; the re-
searcher is imputing the unique variables from one dataset into the other, relying
on the common variables in both. There can be several types of missingness that can
confound any exercise in the combination of datasets, including data fusion. Rubin,
1976 classifies three mechanisms of missing data: missing at random (MAR), miss-
ing completely at random (MCAR), and missing not at random (MNAR, also known
as non-ignorable). For an expanded discussion, see Appendix A.1.
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In almost all realistic datasets, there is a need to overcome the problem of missing
values within variables. Missingness is a common problem in the social sciences
and, in particular, in marketing research. Collecting data from human subjects is
highly likely to result in missing information. This occurs for a variety of reasons:
unwillingness of users to respond to some questions (Bradburn et al., 1979); changes
in experimental design over time, which might also result in missing observations
for whole variables (Graham, 2009), and flaws in data collection carried out in certain
field settings.

In line with state-of-art data fusion methods (Gilula, McCulloch, and Rossi, 2006;
Qian and Xie, 2022), PPDF handles missingness of types MAR or MCAR via impu-
tation (referred to as “cross-imputation” in our framework). Moreover, any cross-
imputation undertaken by PPDF across datasets is equivalent to a sampling-adjusting
correction (Elea M Feit and Bradlow, 2021) on data that are MNAR, assuming that
any variable that affects the non-representative missingness is observed amongst the
datasets (i.e., selection on observables). Specifically, PPDF nonparametrically com-
pletes (augments) a latent representation of both within-variable missingness and
the obvious whole variable missingness, with observed and inferred variables from
the other dataset.

As we will show in Section 1.5.3, in the case of the telecom carrier’s survey and
CRM data fusion, customers with more extreme attitudes (in terms of very high or
very low Likelihood to Recommend) were also more likely to respond to the survey
(this pattern can also be found in online reviews; see e.g., Schoenmueller, Netzer,
and Stahl, 2020). Such self-selection leads to an empirical distribution on survey
outcomes that is not necessarily representative (i.e., biased) of those of the full cus-
tomer base. This is because we are missing responses proportionate to the customers
who have less extreme attitudes and are therefore less likely to respond. In order to
obviate this selection bias in the survey, PPDF will nonparameterically adjust em-
pirical distribution of the survey outcomes to reflect that of the full customer base
via cross-imputation of expected survey responses. That is, PPDF infers individual-
level survey responses for the full customer base, even if these customers have not
responded to the survey.

1.4 Simulation Exercises

Before moving onto our focal managerial applications, in this section, we showcase
the ability of PPDF to fuse datasets for which we know the underlying joint distri-
bution, with varying tuning parameters and differential privacy specifications.

1.4.1 Sensitivity Analysis 1 – MNIST Digits Data

The first simulation is based on MNIST data. Described by Deng, 2012, the MNIST
dataset is frequently used to assess classification methods. It includes 60K black and
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white images of numeric digits, each with 28× 28 = 784 pixels. In Figure 1.5, we
demonstrated the improvement of VAE+NF over a standard VAE in the reconstruc-
tion of the digits.

To illustrate PPDF for the purpose data fusion, in the following simulation, we
split each image into two – allocating a portion of the middle pixels as if they were
common variables – and will then fuse them back. Specifically, we left 300 pixels
from the center of each digit to be the common variables for each observation, and
784−300

2 = 242 pixels were considered unique variables for each dataset6.

FIGURE 1.7: Reconstruction loss (the loss relative to the original im-
ages) as a function of δ and ε. Larger noise (smaller δ and smaller
ε) represents lower tolerance to re-identification. No noise means no
privacy guarantees at all and acts as a reference. The learning rate is
η = 2 · 10−4 and common variables are 300 of the 784 pixels in each

digit.

In order to highlight the roles of δ- and ε- differential privacy in varying the noise
levels of the resultant fusion, Figure 1.7 shows the reconstruction loss for varying
levels of noise.

The smallest added noise was no noise at all (blue square), which acts as a ref-
erence. As we vary ε from larger to smaller values, we limit the privacy budget,
increasing privacy by adding more noise. This results in higher levels of reconstruc-
tion loss. Similarly, as we vary δ, we add more noise, which results in higher loss.

Following the fusion, we get the reconstructed images presented in Table 1.1:
The upper row corresponds to the basic data fusion model with no added noise, and
the rest of the rows show the resultant images with the varying levels of ε and δ.

As in any data fusion, the ability to reconstruct missing data depends on the
number of common variables. This is usually a given, but if a company wishes to
split a dataset in order to protect its customers, it can potentially control the number
of common variables before splitting. Figure A.2 in Appendix A.2 shows the ability
to reconstruct images with a varying number of common variables (pixels in MNIST
images). The more commonality there is between datasets, the better the reconstruc-
tion and the faster the convergence rate. Data holders who wish to split datasets
may try their split (vary not only the number of common variables, but also which

6We varied the number of common digits later, see Figure A.2.



22 Chapter 1. Privacy Preserving Data Fusion
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10 5−5

5 1−3

5 5−5

1 1−3

1 5−5

TABLE 1.1: Results of data fusion – MNIST dataset: An example of
10 MNIST digits with varying levels of noise added. The left side
of each pair of digits is the original digit. The right side is the re-
constructed digit after splitting and fusing the pixels: the middle 300
pixels are common across datasets, and the rest are unique to each of
the two datasets. The upper row has no added noise. The next rows
have varying levels of ε and δ. A smaller ε represents a lower privacy
budget; therefore, more noise is added to the DP-SGD, as explained
in Subsection 1.3.3. Conceptually, for hand-written digits, more pri-
vacy means a decreased ability to recognize the specific instance of

the digit by removing the identifiers of the it.

variables remain common) and test the reconstruction loss with varying ε and δ to
determine the privacy measures in different contexts.

Beyond the tuning of the DP parameters, other parameters can be tuned to im-
prove reconstruction loss. Some of these relate to the underlying structure of the
VAEs – namely the size of the vector Z of latent encoding or the size of the hidden
layer in the VAE’s inference and amortization networks. This are displayed in Figure
A.2 in Appendix A.2.

1.4.2 Sensitivity Analysis 2 – Survey Data

The second simulation, which showcases sensitivity to different parameter specifi-
cations, is based on data from a survey with 5.5K participants7. The survey included
61 questions. We split the data column-wise, into two datasets, X1 and X2. There
were 28 common variables in this analysis.

We first conducted a sensitivity analysis to the tuning parameters without dif-
ferential privacy. Figure A.3 shows the mean absolute error relative to the original
data, across all columns of the joint dataset, after running for 10K epochs, and for
various tuning parameters.

Following the selection of tuning parameters unrelated to differential privacy,
we now illustrate the sensitivity of PPDF to the addition of privacy preserving guar-
antees. For this, we used the best parameters found in the No-DP analyses and
added noise in varying scales. Figure 1.8 presents the mean absolute error of runs
with varying ε values. Figure 1.8 also shows the benchmark of the No-DP model for

7This survey is taken from a customer base unrelated to the the telecom carrier data used for our
main application.



1.5. Application: Telecom Carrier Anonymous Survey and

CRM Data
23

comparison. From this figure it is apparent that as the noise gets bigger, accuracy is
reduced, as expected.

FIGURE 1.8: Mean absolute error of PPDF on simulated data, under
multiple specifications of ε. In this plot, the other tuning parameters
were chosen as they performed best in the aforementioned (non DP)
analyses: batch size = 256, learning rate = 1e-4, Z dimension = 50, and

δ = 1e− 4 when applicable.

A note on computational intensity based on the described sensitivity analyses:
One concern in estimating large learning models such as ours is the level of scala-
bility and length of run-times. To ease this concern, we highlight that each of the
sensitivity analyses on the 5.5K survey responses took at most 10 minutes for 20K
epochs, on a commercial GPU (Google Colab), widely available for researchers and
managers alike. The analyses on MNIST digits were conducted on a personal com-
puter with 16G RAM and took 23 minutes to complete. While this is a perfectly
reasonable run-time, progress is constantly being made on processing units, and we
expect an even further reduction in these run-times in the near future.

1.5 Application: Telecom Carrier Anonymous Survey and
CRM Data

In the previous section, we illustrated the ability of PPDF to fuse MNIST digits and
performed a synthetic simulation of survey re-fusing under varying privacy budget
constraints. We now present an application of PPDF and conduct a data fusion of
two datasets provided by a leading U.S. telecom carrier.

1. Detailed sample from CRM data randomly selected from the telecom carrier’s
full customer base (3.6 million accounts, which are roughly 2.0% - 5.0% of the
full customer base, excluding pre-paid accounts).8

8Confidentiality: the data were provided to the researchers under a strict non-disclosure agreement.
Some figures and identifiers of the telecom carrier and of their customers are removed or obscured. The
percentage range above is with respect to total customers across all three major U.S. telecom carriers
at the time of writing.
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2. The responses from an industry-standard, anonymous customer satisfaction
survey, hereafter, the “external survey". The survey was conducted by an ex-
ternal surveying company (hereafter the “surveying company") that contin-
uously conducts market research on customer satisfaction, on behalf of the
market leaders in the wireless telecom sector. In particular, survey outcomes
include measures on satisfaction with different service components, as well as
an overall Likelihood to Recommend9. We provide a set of questions in the
likeness of those in the external survey in Appendix A.3.

The external survey and the resulting measures are well-known industry stan-
dards and are being used by customers and managers to assess quality of service. It
is therefore of utmost importance for the firm and their competitors in the telecom
space to improve this customer satisfaction score to both improve their customer
well-being and to attract new customers. Our goal in this data fusion exercise is to
combine the CRM data with the survey data to gather insights on the relationship
between stated satisfaction and actual engagement with the company.

Novel to this research, for the purpose of assurance of proper fusion, an addi-
tional internal calibration survey was conducted by the telecom carrier. This survey
is identical to the “external survey” conducted by the external surveying company,
except that it was conducted by the firm itself. The email link was unique to each
recipient, and so user IDs were collected through the associated link. This internal
calibration survey provides a critical, one-of-a-kind ground-truth mechanism to en-
sure our methodology properly fuses unique dataset by allowing for retrospective
testing of fusion accuracy when user identities are definitively known and overlap
across datasets. However, of note, this step is not necessary for future end-users of
PPDF and is presented here solely to convey the proposed methodology’s accuracy.

The telecom carrier’s stated goal in this process is to explore the relationship
between customer satisfaction and the likelihood to churn from the company’s ser-
vices. Customer surveys, while extensive and include many engagement variables,
do not include measures of financial outcomes, technical metrics on device and net-
work usages, nor plan and service details. For the firm’s managers, the expected
outcome of dataset fusion (of the external survey outcomes with the extensive CRM
data they hold. The survey allows the detection of pitfalls in customer satisfaction
as defined in the survey and further understood based on the respective behaviors
and detailed engagement represented in the CRM data – behaviors that may not be
well represented in the survey questions due to its length, false memory of the re-
spondents, and selection to report or not to report certain experiences, among other
reasons.

9LTR is a ubiquitous survey metric, from which Net Promoter Score (NPS) is often calculated. NPS,
while utilized at the firm, is precluded from our analysis, where we focus directly on LTR outcomes.
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Crucially, the external survey data should remain anonymous and any identifi-
cation of customers as respondents of the survey, must be avoided to ensure con-
tinued customer trust and voluntary participation in the surveying process in the
future. Therefore, to avoid the risk of identification, we use PPDF to fuse the data
sets while preserving anonymity.

We begin by describing the survey, followed by a description the CRM data. We
then show the outcomes of PPDF with and without normalizing flows, and with
and without differential privacy. Finally, we show some insights elucidated from
the joint distribution of the fused data.

1.5.1 Internal and External Survey Protocol and Data

Both internal and external surveys were conducted in the third quarter of 2021. For
the internal survey, an email was sent to 2.1 million of the telecom carrier’s cus-
tomers (randomly selected from the entire customer base, except for pre-paid cus-
tomers that were excluded). Emails were sent gradually throughout the surveying
period. Approximately 20K customers responded to the survey, corresponding to
a response rate of 0.95%. Participants did not receive compensation for completing
the survey.

The external survey was conducted by an external surveying company that con-
tinuously conducts market research on customer satisfaction on behalf of the market
leaders in the wireless telecom sector. Approximately 8K respondents responded to
the external survey, all of whom were customers of the telecom carrier at the time of
responding.

Both surveys were identical and included customer satisfaction/perception ques-
tions, questions about engagement with the firm’s products and services, questions
about the customer relationship with the telecom carrier, and socio-demographic
questions. We screened out all who started but did not complete the survey but
there were few of those.

In conjunction with the telecom carrier, we delineated the survey taxonomy into
four mutually exclusive question types:

1. Identifiers (e.g., socio-demographics)

2. Relationships (e.g., plan choice, account type, devices)

3. Engagements (e.g., times a retail store was visited, plan-switching, customer
service calls)

4. Perceptions (e.g., satisfaction with services and devices, Likelihood to Recom-
mend (LTR))
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1.5.2 CRM Data

The telecom carrier has extensive and detailed user data from the moment a user
joins. The data available for this project are one of two types: common variables
and uncommon variables. Common variables are shared between the survey data
and the CRM data, such that a common variable for a given customer will have the
same value or attribute across both datasets. Uncommon variables are idiosyncratic
to their respective datasets, that is an uncommon variable exists in one dataset but
not in the other. Uncommon variables may include variables related to detailed
engagement with the company, services used, changes to accounts, churning, and
payments. We list the common and uncommon variables in Appendix A.3.

1.5.3 Results

We first use the internal survey (20K responses), where we can deterministically link
user ID to internal CRM records, to assess the trade-off between accuracy and pri-
vacy of the proposed PPDF method with and without differential privacy and com-
pare PPDF against extant benchmark models. Next we show the outcomes of the
data fusion of the external survey (8K responses) with a random sample of the CRM
data (3.6 million users). Here, we focus on two customer-level outcome variables,
the “Likelihood to Recommend" (LTR) response from the survey and the 12-month
forward-looking churn outcome (binary) from the CRM. We highlight two advan-
tages of PPDF: (1) a regression (i.e., discriminative) analysis that is undertaken ex
post the generative data fusion, as an example of how PPDF enables the decoupling
of data fusion and downstream analyses while still retaining full posterior predic-
tive inference, and (2) this shows that the fused data exhibit better goodness-of-fit
and explanatory power on the drivers of LTR vis-a-vis only using features from any
one dataset alone. Finally, we provide managerial applications of the data fusion by
relating the fused LTR scores and churn outcomes of the customer base, realized as
an individual-level ’scoring’ of customers with their expected LTR, a task otherwise
impossible without data fusion. We also infer differences between the self-selected
survey respondents vs. the customer base without self selection. On the one hand,
from a substantive point of view, these results quantify the relationship between
LTR and potential churn and enable managers to use LTR as a potential segmenta-
tion strategy for proactive churn management. On the other hand, from a technical
point of view, these results also highlight the need to correct for selection bias in un-
derstanding customer perceptions of the company’s services and other measures of
engagement.
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With Differential Privacy Without Differential Privacy
CRM Survey CRM Survey

Model Recon Cross Recon Cross Recon Cross Recon Cross
PPDF 0.0532 0.0532 0.1325 0.1325 0.0380 0.0382 0.0912 0.0919
PPDF w/o NF 0.0683 0.0683 0.1422 0.1423 0.0421 0.0421 0.1028 0.1029
BCCA 0.0689 0.0689 0.1384 0.1391 0.0422 0.0422 0.1028 0.1028
SUR NN 0.0544 0.0546 0.1343 0.1347 0.0407 0.0409 0.0996 0.0998

TABLE 1.2: Goodness-of-fit (measured by mean absolute error –
MAE) of variations of the proposed data fusion (with and with-
out normalizing flows and with and without differential privacy)
and two other benchmark models – Bayesian canonical correlation
analysis (“BCCA") and a forward-feed neural network model (“SUR
NN"). The results are split into self-reconstruction (“Recon"), namely
encoding and decoding a dataset onto itself, and cross-imputation
(“Cross"), which is data fusion, namely decoding of one dataset into
another. Data fusion with normalizing flows provides the best re-
sults, and adding privacy-preserving guarantees increases MAE only

slightly.

Model Comparison.

In Table 1.2, we provide the goodness-of-fit of the test sample, between the pro-
posed PPDF model, with and without differential privacy,10 against three bench-
mark models. These benchmarks include (a) PPDF without normalizing flows, to
highlight the incremental gains from NF, (b) Bayesian canonical correlation analysis
(“BCCA") (Klami, Virtanen, and Kaski, 2013), which can be understood as a nested
linear-form of VAE, and (c) a forward-feed neural network model predicting survey
and CRM variates from the common variables, which can be understood as a sys-
tem of non-linear seemingly unrelated regressions (“SUR NN"). All models are fit
on the internal calibration survey. This uniquely provides us the ground truth, one-
to-one linkage between survey responses and CRM records, as discussed above. As
all variables between the survey and CRM datasets are categorical in nature and are
encoded in a one-hot approach,11 we chose to report mean absolute error (MAE)
across the model comparisons. In this context, MAE intuits the goodness-of-fit in
terms of both absolute and percentage deviations in the test data (75%/25% random
split between training and test data).

For example, in the top-left cell of Table 1.2, the MAE of the self-construction of
the CRM data, is 0.0532 for the full PPDF model (i.e., trained with normalizing flows
and differential privacy). This is equivalent to an out-of-sample error of 5.32% on av-
erage across all one-hot-encoded format CRM variables. Under differential privacy,
the self-reconstruction error for the full PPDF model (0.1325) is more favorable than
those from BCCA (0.1384) and SUR NN (0.1343). While on the other hand, PPDF
without NF (0.1422) falters behind than the benchmark models, suggesting that NF

10In our empirical applications, we fix differential privacy to a stringent (ε, δ) budget of (0.1, 5.0−5),
which is on par with leading industry standards.

11For example, LTR is an eleven-point discrete scale from 0 to 10, which is then encoded as eleven
binary variables. Note that dropping a category to avoid multicollinearity, while typical for regression-
type model, is unnecessary in our generative modeling approach.
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is critical to the VAE architecture underpinning PPDF in order to offset the loss in
accuracy due to DP. While the full model without differential privacy is observed to
have the best goodness-of-fit (0.0380 for CRM and 0.0912 for survey), the addition of
differential privacy comes at the cost on accuracy. Taken together, data fusion under
privacy is capable of generating meaningful and actionable inferences on the joint
data generating process but exhibits a trade-off on accuracy compared to conven-
tional data fusion. As we will show in the next section, despite the loss of accuracy
under differential privacy, there is a tangible information gain when using the fused
data in predictive exercises, while of course, enabling the privacy guarantees of DP.

Next, we have defined self-reconstruction as the ability of models to encode and
decode a dataset onto itself. On the other hand, cross-imputation is the ability to de-
code a dataset into the other. In addition to MAEs on self-reconstruction, we show
MAEs on cross-imputation (“Cross") as well (Table 1.2). Cross-imputation is the key
data fusion technique used in the managerial exercises in the following sections.
Namely, cross-imputation allows the telecom carrier to impute the posterior pre-
dictive distributions in survey perception outcomes (e.g., LTR) from the CRM data
alone, and vice versa, based on common variables. While cross-imputation system-
atically results only in higher or equal MAEs across all models with or without DP,
any of the observed degradations in fit are well within managerial and inferential
tolerance. It is important to note that this degradation of fit is expected by the nature
of generating new data. For example, for the CRM data, PPDF saw no change in
MAE between self-reconstruction (0.0532) and cross-imputation (0.0532) under DP,
while the increase in MAE without privacy guarantees is 0.0382 - 0.0380 = 0.0002, or
0.02%.

Having established the superior goodness-of-fit of PPDF compared to extant
models, as well the accuracy-privacy trade-off of differential privacy, we next turn
to applying the generative data fusion outcomes to two discriminative regressions,
on LTR and churn, to illustrate the explanatory and predictive value that is reached
by fusing the anonymous external survey and internal CRM data, beyond analyses
on either dataset alone.

Likelihood to Recommend (LTR).

Modern customer satisfaction surveys are commonly found to be organized around
the question of LTR (Keiningham et al., 2007; F. Reichheld, 2011). From the per-
spective of inference and analysis, the conventional usage of a satisfaction survey
is to view the LTR-type perception questions as dependent variables, while other
elements of the questionnaire (i.e., identifiers, relationship, engagement and usage
elicitations) are the independent variables. However, as is in the case with our part-
ner telecom carrier, most companies are keen not only to regress LTR onto these
elements within the survey questionnaire, but also to connect LTR with CRM vari-
ables. For the telecom carrier, understanding the survey and CRM predictors of LTR
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is part of the objective of understanding their brand perception by customers as well
as to rank-order existing customers by LTR.

We highlight the applicability of our framework, which is generative in nature,
to aid in a downstream discriminative analysis of survey variables. This discrimina-
tive analysis elicits a great deal of interest from managers, who are particularly eager
to measure and use LTR. This showcases PPDF’s approach to data fusion based on
VAEs: first estimating the joint data using VAEs, and only then conduct discrim-
inative analysis. Marketing analysts are then emancipated from needing to craft
complex models that must simultaneously consider data fusion and a discrimina-
tive likelihood.

Data Type Data Source
Original Data DF w/o DP PPDF
RMSE R2 RMSE R2 RMSE R2

Original
Survey 3.250 0.179 – – – –
CRM – – – – – –

Combined – – – – – –

Self-Reconstruction
Survey – – 3.250 0.179 3.268 0.152
CRM – – 3.143 0.308 3.156 0.297

Combined – – 3.100 0.346 3.127 0.324

Cross-Construction
Survey – – 3.255 0.171 3.266 0.155
CRM – – 3.157 0.295 3.159 0.295

Combined – – 3.140 0.311 3.118 0.333

TABLE 1.3: Goodness-of-fit of external survey and full CRM data

Data Type Data Source
Original Data DF w/o DP PPDF
RMSE R2 RMSE R2 RMSE R2

Original
Survey 3.093 0.171 – – – –
CRM 2.887 0.393 – – – –

Combined 2.863 0.411 – – – –

Self-Reconstruction
Survey – – 3.096 0.167 3.103 0.152
CRM – – 2.899 0.384 2.988 0.307

Combined – – 2.865 0.409 2.952 0.340

Cross-Construction
Survey – – 3.099 0.160 3.100 0.158
CRM – – 2.948 0.340 2.991 0.304

Combined – – 2.873 0.403 2.953 0.339

TABLE 1.4: Goodness-of-fit of internal calibration survey and sur-
veyed CRM data

Broadly, we find that indeed incorporating CRM covariates, in addition to survey
covariates, results in better explanatory and predictive power of a regression on LTR,
in terms of two common discriminative goodness-of-fit metrics, root mean squared
error (RMSE, where lower is better) and R2 (where higher is better). We prefer the
use of RMSE and R2 over MAE here because they offer more stringent measures of
model performance and are more sensitive to outliers. We compare RMSE and R2

for the prediction of LTR when fusing survey and CRM data, for both the external
survey (Table 1.3) and the internal calibration survey (Table 1.4). In both figures, the
top-left quadrant provides these fit metrics based on the original data – that is, when
LTR is regressed onto just the survey data of the full sample, just the CRM data of
the full sample, and finally, both. Once again highlighting the value of the internal
calibration survey, note that it is only with this survey (Table 1.4) that we can provide
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fit metrics for the true “original” CRM and combined datasets whereas the external
survey is anonymous, and we cannot compute these metrics for the survey data. In
Table 1.4, we find that RMSE is the lowest and R2 is the highest when the LTR is
regressed against the combined data.

Having established the superior goodness-of-fit of the combined data, over-and-
above the individual datasets, the key question becomes – can we repeat this pattern
using the decoded self-reconstruction and cross-imputation datasets? This question
is pertinent in understanding whether the output of our proposed model, which
is ultimately generated and synthetic in nature, can indeed capture the complexity
of the underlying data generating process that begets the “sum is greater than the
parts” phenomenon. Here, we once again find the phenomenon to be true for both
self-reconstructed and cross-imputed data, with and without differential privacy.
For the internal calibration survey (Table 1.4), combined/fused data have RMSEs of
2.865 (self-reconstruction) and 2.873 (cross-imputation), comparing favorably to the
RMSEs of the synthetic survey- and CRM- alone regressions. Moreover, while the
RMSEs are higher than for the original data (combined data RMSE 2.863), the degra-
dation is marginal: +0.002 (self-reconstruction) and +0.010 (cross-imputation). In
line with the previous section, we find that while cross-imputation (i.e., cross-dataset
posterior predictives) results in lower goodness-of-fit, it is not at a degree expected
to substantially obscure managerial insights. The pattern is more pronounced under
differential privacy, as expected, where fused-data RMSE is higher by +0.089 (self-
reconstruction) and +0.090 (cross-imputation). Moreover, it is worth noting that the
regression metrics from the combined generated data without DP also compare fa-
vorably to those of the original individual datasets (RMSE 2.865 vs. survey’s 3.093
and CRM’s 2.887).

Lastly, we consistently see the same pattern for the anonymous external survey,
vis-à-vis original and generated data (Table 1.3). Beyond demonstrating that the
fused data generated from PPDF lend greater explanatory and predictive power
than either dataset alone (synthetic and original), this exercise also shed light on
the inferential consistency between the internal and focal external survey data gen-
erating processes. This is an important insight for the partnering firm, as well as for
future end-users of our framework. The internal survey represents a valuable, but
ultimately costly, one-time, data collection exercise for the telecom carrier. Our evi-
dence here is meant to exemplify PPDF’s ability to provide ground-truth consistent
results, but future end-users need not have an equivalent ‘calibration’ to utilize this
framework, which is designed directly for fusion of anonymous surveys to other
data sources.

Predicting Churn with PPDF.

We now show how combining CRM and survey data can improve our understand-
ing of churn. Churn is a common variable-of-interest that managers seek to predict
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FIGURE 1.9: AUC-ROC curves measuring the accuracy of predicting
churn using the CRM data only (a), internal survey data only (b), and
fused (combined) data (c). This accuracy measure is based solely on
the internal survey because it is the only survey where we can deter-
ministically link churn to the survey response. The best goodness-of-

fit comes from the combined data.

and explain. We use a binary logistic regression to study the predictors of churn.
This regression uses the data from the survey, which was conducted a year earlier
(Q3 2021) than the observed churn (Q3 2022). The challenge here is to incorporate
data from the smaller sample of anonymous survey respondents into the larger ran-
dom sample from the full customer base.

Figure 1.9 presents the AUC-ROC curves of the binary churn model for the inter-
nal (calibration) survey respondents (20K). The figure illustrates the trade-off when
the churn model is run using the original data vs. the self-reconstructed, cross-
imputed, and differentially private data.

The key pattern to observe is the relative position of these specifications’ curve. A
curve that is pulled more towards the top-left indicates higher accuracy in predicting
churn. The purpose of once again utilizing the internal survey lies in our ability to
deterministically link the 20K respondents from Q3 2021 to their churn outcome in
Q3 2022. As most U.S. telecom carriers utilize a subscription model, churn is defined
by explicit termination of contract. Figure 1.9 is organized by data source, i.e., CRM
data only (panel a), survey data only (b), and fused (combined) data (c). The original
CRM, survey, and combined data lead, unsurprisingly, to the best goodness-of-fit
relative to the synthetic datasets arising from the PPDF data fusion, either with or
without differential privacy. Even without differential privacy, there is a non-zero
loss in accuracy when applying PPDF, which is true for all generative models at the
time of writing (Abadi et al., 2016; Bagdasaryan, Poursaeed, and Shmatikov, 2019)

Compared to the AUC of the regression on the original data (CRM 0.961, survey
0.956, and combined 0.971), the loss in accuracy for self-reconstruction (CRM 0.902,
survey 0.834, and combined 0.941) and cross-imputation (CRM 0.901, survey 0.840,
and combined 0.945) are comparable, and manifest as largely overlapping curves in
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Figure 1.9. Moreover, across all models, adding differential privacy negatively im-
pacts respective model predictions, as seen in the DP models’ curves being pulled
towards the 45-degree “random” line. These results on forward-looking churn reaf-
firm the findings from the LTR analysis that (1) combing the data sources lead to a
gain in predictive accuracy, (2) this phenomenon is true for both the original ground-
truth data, as well as the self-reconstructed and cross-imputed fused data, and (3) the
pattern holds true under differential privacy, albeit with a trade-off between privacy
and accuracy.

FIGURE 1.10: Left: observed churn (Y-axis redacted for confidential-
ity) as a function of observed LTR from the internal calibration sur-
vey. Right: observed churn of the “full" customer base of 3.6 million
randomly selected customers, as a function of predicted LTR, even

though these customers did not necessarily respond to the survey.

Customer Base Churn and Satisfaction Predictions.

We now present the results of PPDF in quantifying the relationship between cus-
tomer churn and satisfaction, the latter measured as LTR. Worth noting, in the ab-
sence of a data fusion method, any firm that finds itself in possession of an anony-
mous customer survey cannot systematically, and in a principled fashion, relate sat-
isfaction and churn outcomes at the individual-level. In the case of the telecom car-
rier, as we have shown in the previous section, a binary churn model on the (internal
calibration) survey responses is improved by utilizing the combined data sources.
As such, the ability to generate samples from the posterior predictive distribution of
survey responses of the wider customer base is of notable economic significance for
these firms. This can potentially enable greater explanatory and predictive power
for downstream exercises such as segmentation, CLV models, and churn manage-
ment. To this end, across this section and the next, we examine and describe the
cross-imputation of survey outcomes for the sample of 3.6 million of the telecom
carrier’s customers. The outcomes can be understood as a counterfactual analysis
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on how these customers would have responded to the surveys had they chosen to
take them. Here, we specifically focus on the relationship between imputed LTR and
the forward-looking churn, as defined earlier.

Given that the external survey response rate is <0.01% of the customer base
each quarter, the cross-imputation of survey outcomes of the wider customer base
is, by definition, a known unknown. Therefore, unlike the exercises above, where
we could rely on the calibration survey for customer-level ground-truth validation,
here we appeal to aggregate-level correlations. Figure 1.10 illustrates a generally
negative relationship between LTR and churn rate (corr=-0.32), aggregated by the
eleven LTR bins (0 to 10), for both the internal calibration survey (20K, left panel)
and for the cross-imputation to the 3.6 million sample from the customer base (right
panel). As a reminder, the internal calibration survey enables direct linkage between
LTR and churn via the respondents’ user ID. While such direct linkage is evidently
nonexistent for the cross-imputed customer base, our ability to recover negative cor-
relation similar to the calibration survey supports the ecological validity of PPDF’s
imputations.

Importantly, unlike the calibration results, which are limited to a small subset of
respondents, managers can undertake proactive churn management based on im-
puted LTR cutoffs. At a high level, given a retention budget, the carrier can use the
imputed LTR values to define a cutoff (i.e., segment) for the most churn-vulnerable
customers. However, it’s worthwhile to note that the relationship between imputed
LTR and churn is not a simple negative linear relationship. Of note, in Figure 1.10
(left and right), for both the ground-truth calibration survey and the imputed cus-
tomer base, we observe a ‘reversal’ in churn propensity of customers at the highest
LTR (10/10). This is a surprising finding that merits attention. We hypothesize that
this is driven by these customers’ attractiveness to competitors. In other words, the
higher churn in this LTR group may be driven by the “competition vulnerable, high
customer lifetime value” segment. This may make those with the highest predicted
LTR suitable for interventions that will make them more likely to remain customers
(Lemmens and Gupta, 2020).

Selectivity Correction.

In conclusion, although our analyses of specific covariates were focused on LTR and
churn, given their outsized importance and prevalence at most direct-to-consumer
companies, we wish to emphasize that data fusion was successfully conducted across
the entire bench of features from both the customer surveys and the CRM database.
Moreover, as noted above, counterfactual customer base cross-imputations were not
limited to just LTR. As such, it is easy to imagine that the analysis from Subsection
1.5.3 could be repeated for all of the imputed perception questions.

In lieu of postulating managerial implications of individual perception ques-
tions, we end by broadly highlighting the value of data fusion of the anonymous
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FIGURE 1.11: Predicted LTR of the 3.6 million sample from the full
customer base, in red, as imputed by PPDF, along with the observed
LTR of the 8K external survey respondents (in blue). The differences
highlight the importance of correcting for selection bias before ex-
tracting insights from this and similar surveys. Survey respondents
are more extreme in their Likelihood to Recommend (along both ex-

tremes).

external survey to the wider customer base, in particular, the resulting re-sampling
of the survey response distributions. In Figure 1.11, we present the density plots
of predicted and observed Likelihood to Recommend. More so, as seen in Figure
A.1, in all cases across thirty-four questions, there is notable deviation in the ques-
tionnaire response distribution between the external survey as-is (8K respondents)
and the customer base cross-imputations (3.6 million). As noted in the discussion
on Handling Missingness and Selection Bias, our data fusion framework corrects for
selection-on-observables under the assumption that variables that affect the decision
to respond to the survey are observed in the fused dataset.

Without data fusion, firms are left without a principled approach to reconciling
survey responses, which are known to be biased due to respondent self-selection
(Bethlehem, 2010), to a more representative distribution of perception and senti-
ments of the customer base. Equipped with PPDF, in addition to privacy guaran-
tees, firms need not to limit themselves to just the responses of those who chose to
participate, but rather, they can allow the underlying generative framework to pro-
vide an unbiased and representative imputation of likely survey outcomes of their
overall customer base to enable more robust decision making using the combined
information of customer surveys and internal CRM data.

1.6 Summary

In this research, we presented a Privacy Preserving Data Fusion framework and
demonstrated its applicability for fusing data sets across various contexts, show-
casing the scalability, expressiveness, and generalizability of our approach to future
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end-users, including a demonstrative case with a large-scale anonymous survey and
the CRM database from a leading U.S. telecom carrier.

The challenges of marketing automation and analytics in the era of data privacy
are ongoing and multifaceted. This project aims to understand how data fusion,
a prevalent marketing analytics technique, can be better retooled to meet today’s
new privacy standards and practices. Our methodology offers a practical solution
to collecting and fusing disparate datasets while protecting consumer anonymity.
We show that collecting data while protecting privacy does not mean forgoing the
advantages and insights that existing data fusion techniques allow. Using PPDF,
companies can safely fuse datasets without them “ever meeting one another”, and
potentially even split data, thus protecting customers’ fundamental right to privacy
and reducing the risks associated with data breaches and leaks.

To demonstrate the managerial utility of our methodology, we show how com-
bining CRM and survey data can improve our understanding of churn. We find a
generally negative relationship between Likelihood to Recommend (LTR) and churn
rate for both the internal calibration survey and for the cross-imputation to the 3.6
million customer random sample of the the telecom carrier’s customer base. The in-
ternal calibration survey enables direct linkage between LTR and churn via respon-
dent user ID. These, and the results from the fusion between the external survey and
sample of full CRM customer base allow us to quantify the relationship between
LTR and potential churn. Our methodology enables managers to use LTR as a po-
tential segmentation strategy for proactive churn management while ensuring that
customer privacy is preserved.

Our methodology can address different contexts in marketing and beyond, out-
side the scope of this chapter. We focused our application on inferring missing cus-
tomer attributes from anonymous surveys. However, further application of PPDF
can be used by two or more firms, who wish to learn from the joint distribution of
their databases to gather market research insights, such as understanding their mar-
ket share, or assess complementarity and substitutability in their products, while
protecting their intellectual property and the privacy of their customer base.

Furthermore, PPDF can potentially enhance privacy guarantees by splitting a
sensitive dataset into two or more datasets. If a data breach were to occur, such sep-
aration ensures that data obtained will not be as harmful as the original, joint data.
The harms of severe data breaches can be dramatically reduced if names, email ad-
dresses, and other identifiers are not stored alongside sensitive choices, attitudinal,
and other individual-level data. Firms would be willing to split their data only if,
when an insight on the joint data is requested, such insight would be possible in
a secured manner, through privacy preserving data fusion. This is possible using
PPDF.

The goal of PPDF is to preserve customer anonymity and a company’s intel-
lectual property, while enabling the aforementioned use-cases, among others. We
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exemplify the usage of PPDF to assist a wireless company in exploring the relation-
ships between customer satisfaction and churn. Further research can both expand
this framework to investigate causal antecedents and temporal variations of churn
from customer perceptions as well as use PPDF in other contexts to answer other
substantive questions.
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Chapter 2

Understanding Consumer
Expenditure Through Gaussian
Process Choice Models
joint with Alan Montgomery

Consumers change their choice as expenditures within a category increase. Tradi-
tional choice models usually make restrictive structural assumptions to specify the
expenditure elasticity. This imposed functional form of utility strongly influences
the range of estimable substitution patterns across goods. Consumers with highly
nonlinear preferences may have consumption thresholds in which buying patterns
dramatically change when price or budget changes. Understanding these thresholds
with a flexible utility-based model could lead to improved pricing and promotion
decisions. Using Gaussian process priors on utility functions, the functional form on
the outside good utility is estimated within the context of constrained utility max-
imization. In a first application, we estimate a general direct utility choice model
for simultaneous purchases within a product category. In a second application, we
relax additivity and allow for complementarity in a nonhomothetic choice model,
estimating the outside good functional form. Using simulations, our model cap-
tures non-linear rates of satiation and precise baseline preferences that traditional
non-homothetic parametric models fail to capture by assuming a given functional
form of utility. The proposed model automatically detects non-linear patterns of
consumption from the data and provide a more precise statistical inference.

2.1 Introduction

Consumers change their choice as expenditures within a category increase. Tradi-
tional choice models usually make restrictive structural assumptions to specify the
expenditure elasticity. In this chapter, we show that an imposed functional form of
utility strongly influences the range of estimable substitution patterns across goods.
Consumers with highly nonlinear preferences may have consumption thresholds
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in which buying patterns dramatically change when price or budget changes. Un-
derstanding these thresholds with a flexible utility-based model should lead to im-
proved pricing decisions. For example, consumers with homogeneous preferences
who are making a choice within a category between two product tiers: the low qual-
ity yogurt tiers with two varieties, a basic vanilla yogurt and a basic strawberry
yogurt; and a high quality yogurt tiers with two varieties, a premium vanilla yogurt
and a premium strawberry yogurt. Let us suppose that consumers prefer vanilla to
strawberry when they decide on their first unit of consumption. Consumers often
purchase more than one variety within the sub-category. For example, consumers
may purchase simultaneously a vanilla yogurt and a strawberry yogurt, rather than
two vanilla yogurts, since the marginal utility of consuming an additional vanilla
yogurt is less than the marginal utility of consuming a strawberry yogurt.

Now, we assume that consumers are facing a price reduction for the basic vanilla
yogurt, or they budget exogenously increases for a given trip. Will they buy more
basic vanilla yogurts? Due to an enlarged budget constraint, consumers may switch
to the premium vanilla yogurt and/or to the strawberry yogurt. If we keep utility
constant, and if a price reduction occurs in the low quality category product, it is
likely that the demand for the low quality product will not increase as much as if
they decided to give a price discount on the high category product. This asymmet-
ric switching has been documented in the literature, in notably Allenby and Rossi
(1991) and Allenby, Garratt, and Rossi (2010). However, consumers also seek to buy
different varieties (strawberry and vanilla) due to satiation when buying a unique
variety.

Ideally, a general utility model should be able to accommodate simultaneously
normal and superior goods, i.e. allowing non-constant marginal utility functions,
and demand for variety i.e. allowing different satiation rates for different goods.
Two separate mechanisms are at play: a satiation or substitution effect, and a trading-
up or income effect. Consumers become increasingly satiated and consume a dif-
ferent variety within the same sub-category, given a vector of prices and total ex-
penditure. Nevertheless, when expenditure increases and the budget constraint is
relaxed (either through an exogenous income increase or through price discounts),
consumers start to trade up from the low quality tiers to the high quality one. It
has often been assumed that utility for each product bought by consumers is con-
stant. This assumption is overly restrictive as we just saw in our example. Constant
utility implicitly entails that consumers should buy the same items as their expendi-
ture increases in the category, whereas trading-up is frequently observed in practice.
The literature on non-homothetic choice models has focused on parametric spec-
ifications, such as the translog model (e.g. Chiang (1991)), Stone-Geary utility (J.
Kim, Allenby, and Rossi, 2002), and rotated indifference curves (Allenby and Rossi,
1991; Allenby, Garratt, and Rossi, 2010). A nonhomothetic choice model is suitable
when goods within the category of interest have wide differences in quality or for
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specifying preferences across categories (Chintagunta and Nair, 2011). Yet, existing
nonhomothetic choice models do not capture both variety seeking behavior (driven
by satiation) and trading-up (switching from low to high quality-tiers).

We hypothesize that expansion in the category moderates variety seeking. Con-
sumers rapidly reach satiation for a low quality product, and then switch to a higher
quality product. Satiation arises because the marginal utility of consuming an ex-
tra unit of the same product will be lower than the marginal utility of consuming a
unit of a different product. However, satiation may change when consumers start
to trade up to the high quality tiers. In our example, the satiation for the premium
vanilla yogurt might be much lower than with the basic vanilla yogurt. The con-
sequence of this conjecture is that parametric forms of utility functions used in the
literature display undesirable properties that limit the range of estimable consump-
tion patterns.

The previous limitations in traditional economic models of choice leads us to
conjecture that the assumption that the random utility follows a parametric spec-
ification is simplistic. Parametric assumptions on the utility function can induce
potentially large errors when the parameterization is misspecified (Gu, Bhattachar-
jya, and Subramanian, 2018). Moreover, marketers may have reasons to anticipate
highly non-linear preferences in some of the goods. Failing at modeling these non-
linearities would prevent marketers from exploiting thresholds effects in consump-
tion, and would translate into a missed opportunity to increase profit. A general util-
ity model should be able to automatically detect non-linear patterns of consumption
from the data. Yet, no model in the marketing literature has used a general utility
specification to estimate demand systems for simultaneous purchases, related to the
approach of Wales and Woodland (1983) and Hanemann (1984). A corollary of that
issue is the need for a principled way of modeling the uncertainty around the shape
of utility functions inferred in a nonparametric choice model.

Gaussian Processes (GPs) are a popular tool for nonparametric function estima-
tion; they have numerous desirable properties, as they automatically produce es-
timates on prediction uncertainty, work as interpolators for a consistent decision
maker, and retain their Gaussian property when transformed by linear operators.
Moreover, GPs are also able to encode prior knowledge in a principled way. Market-
ing research has recently featured Gaussian processes to capture the individual-level
dynamics of heterogeneity and its implications for targeting, pricing and market
structure analysis (Dew, Ansari, and Y. Li, 2020). Gaussian processes can also model
latent functions that determine purchase propensity, and can be used to analyze
purchasing dynamics in which known and unknown calendar time determinants of
purchasing with individual-level predictions are joined together (Dew and Ansari,
2018).

We build a general, flexible random utility framework to estimate demand for
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simultaneous purchases within and across product categories. Using Gaussian pro-
cess priors on utility functions, we relax the functional form on the outside good,
within the context of constrained utility maximization. In our first application, we
derive a demand system where the logarithm of the first-order derivatives of the
utility function follow a Gaussian Process. We show in numerical simulations that
misspecified functional form of outside good utility leads to inconsistent estimation
of preference parameters on the inside goods. We demonstrate that our proposed
framework is robust to misspecification and enable the modeler to recover the true
preference parameters in the category of interest. In our second application, we relax
the additivity assumption and propose a nonhomothetic choice model that can ac-
commodate complementary goods, using household production theory. We show in
numerical simulations, that the misspecified functional form of outside good utility
also leads to inconsistent estimation of preference parameters on each good. Simi-
larly, our proposed Gaussian process framework is robust to misspecification in this
context and accurately recovers the true preference parameters.

We estimate a general direct utility choice model the no-U-turn sampler (NUTS)
variant of Hamiltonian Monte Carlo. Our model captures non-linear rates of satia-
tion for inside and outside goods alike, that traditional non-homothetic parametric
models fail to capture by assuming a given functional form of utility. The proposed
model can automatically detect non-linear patterns of consumption from the data
and provide a more precise statistical inference, since it flexibly models consumer
behavior and achieve a better fit than a parametric model that assumes specific func-
tional forms on the sub-utility functions.

The proposed framework detects rich patterns in the data, especially non - linear-
ities in preferences that could not be previously captured with less flexible models
with specific utility functions such as in J. Kim, Allenby, and Rossi (2002) and Al-
lenby and Rossi (1991). Pricing products using a utility model with a misspecified
functional form of utility has negative consequences on the firm profit. If the true
rate of satiation is much higher than the estimated rate using parametric form of
utility, then price reductions on these items arising from the estimated rate of satia-
tion are sub-optimal since consumers will not buy from the items that display high
satiation rates. Due to its structural nature, the model is able to provide us with
counterfactual predictions on pricing, promotion and expenditure elasticities.

2.2 Methodological Background

2.2.1 Literature on Non-Homothetic Choice and Demand Modeling

The literature on non-homothetic choice models has focused on parametric spec-
ifications, such as the translog model (e.g. Chiang (1991)), Stone-Geary utility (J.
Kim, Allenby, and Rossi, 2002), and rotated indifference curves (Allenby and Rossi,
1991; Allenby, Garratt, and Rossi, 2010). A nonhomothetic choice model is suitable
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when goods within the category of interest have wide differences in quality or for
specifying preferences across categories (Chintagunta and Nair, 2011). Yet, existing
nonhomothetic choice models do not capture both variety seeking behavior (driven
by satiation) and trading-up (switching from low to high quality-tiers).

Allenby and Rossi (1991) and Allenby, Garratt, and Rossi (2010) use an implic-
itly defined utility function marginal utility. However, their model assumes linear
indifference curves, and rules out multiple discreteness, which limits its empirical
use. Allenby and Rossi (1991) were able to capture non-homothetic preferences with
their multinomial probit. But consumers only select one brand at a time and for only
one unit, so no variety is allowed. Allenby, Garratt, and Rossi (2010) mostly focus on
capture how advertising affect the rate at which consumers are willing to trade up
to higher quality brands, but its structural multinomial logit specification does not
incorporate multiple purchase incidence.

J. Kim, Allenby, and Rossi (2002) allow for multiple brands and units to be pur-
chased simultaneously, and focus on consumer demand for variety, with non - ho-
mothetic preferences. They propose a horizontally differentiated demand model
based on a translated additive utility structure, while allowing for the possibility of
a mixture of corner and interior solutions where more than one but not all varieties
are selected. They use the following utility parametrization:

U(q1, ..., qJ) =
J

∑
j

ψj(qj + γj)
αj (2.1)

where ψj is the baseline utility parameter, αj is the parameter that ensures dimin-
ishing marginal returns and γj is a location translation parameter that translates the
utility function to accommodate both interior and corner solutions. When γj = 0,
only interior solutions are allowed for good j. When a good has a large baseline util-
ity and a value of αj close to one, purchases of large quantities of only one variety
(high baseline preference and low satiation, and small values of α imply a high-
satiation rate. However, J. Kim, Allenby, and Rossi (2002) pointed out that the diffi-
culty to separately identify α and γ since both parameters govern the slope of the in-
difference curves at the point of intersection with the axes, and they have to fix γ to 1
for all goods. Fixing this critical parameter for all goods shows the limitations of this
model, as the patterns of substitution across goods are then substantially restricted.
When αj < 1, consumers’ marginal utility diminishes with increased consumption;
consumer are then satiated and pushed toward multiple discreteness. However, the
superior or inferior nature of the good is confounded with variety seeking. Both
α and ψ influence the rate of satiation as both parameter in the second derivative
of the utility function, which clearly indicates a deficiency in the parametric form.
Finally, this utility specification rules out the possibility of utility to be bounded, in-
cluding rapid satiation rates inducing plateaus of consumption, or sudden changes
of regimes after a certain amount of good is consumed. Furthermore, the literature
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has proposed alternative explanations, such as time varying preferences (Hasegawa,
Terui, and Allenby, 2012), in which product attributes and dynamic effects are in-
corporated in the baseline utility and satiation parameters. However, time-varying
preferences is not needed to capture nonlinearities in preferences, and as such may
lack parsimony. Moreover, Hasegawa, Terui, and Allenby (2012) assume a logarith-
mic parametric form for the outside good, which is still restrictive since the price
effects only depend on the preferences of the inside goods and not the demand of
the outside good.

2.2.2 Gaussian processes as Priors on Latent Functions

A Gaussian process (GP), denoted as a stochastic function f (·), is established over a
domain of interest, which, for our purposes, is represented by quantity q ∈ R+. The
defining characteristics of a GP are its mean function m(q) and covariance function
k(q, q′), where, given a specific set of input times q = q1, q2, . . . , qT, the function val-
ues are distributed as f (q) ∼ N (m(q), K(q)). Here, m(q) stands for the mean func-
tion evaluated across all inputs, yielding a T × 1 vector, and K(q) is a T × T covari-
ance matrix, constructed by pairwise evaluation of the covariance function k(q, q′)
across the inputs. Briefly, the mean function establishes the prior mean of the pro-
cess’s value for each quantity input q, while the covariance function delineates the
extent of correlation between the process values at different quantity pairs q and q′.
Given that a GP configures a probability distribution over potential outputs for any
given set of inputs, it inherently provides a flexible, nonparametric prior over latent
function spaces, an aspect critically useful in Bayesian data analysis (Rasmussen,
Williams, et al., 2006), and is typically represented as f (q) ∼ GP(m(q), k(q, q′)).

In the realm of GP applications, mean functions are often considered secondary
and commonly presumed constant. This assumption allows the covariance func-
tion, or kernel, to describe the essential characteristics of the functions delineated
by the GP priors. These kernels can encapsulate various general traits of the mod-
eled functions, like smoothness, differentiability, and amplitude. A kernel, denoted
by k : R2 → R, ensures the generated covariance matrix K(q) is positive semidef-
inite across any inputs q. The GP literature introduces numerous kernels, with the
squared exponential (SE) kernel being the simplest and most favored. The SE ker-
nel, chosen for our discussion, is parameterized by an signal noise parameter σ and
a lengthscale parameter β, described by the formula:

KSE(q, q′|σ2, β) = σ2 exp
(
− (q− q′)2

2β2

)
(2.2)

The signal variance parameter σ2 determines the potential deviation of function val-
ues from the mean, while the lengthscale parameter β accounts for the smoothness of
these deviations, also referred to as the smoothness parameter. The straightforward
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yet potent nature of the SE kernel facilitates its broad application in prior market-
ing research (Dew and Ansari, 2018; Dew, Ansari, and Y. Li, 2020; Dew and Fan,
2021; Dew, Ascarza, et al., 2023), emphasizing its capacity to impose priors on latent
functions.

2.2.3 Flexibly Modeling Quality Tiers Effects

Nonhomothetic preferences represent a departure from traditional utility models,
recognizing that the proportion of income spent on different goods can vary across
income levels. This perspective is crucial for understanding consumer behavior re-
lated to trading up, where consumers opt for higher-quality—and often more ex-
pensive—products as their income increases. The literature suggests that such pref-
erences can significantly influence market dynamics, including product positioning
and the competitive landscape.

Traditional approaches to modeling quality tiers often rely on restrictive assump-
tions about the functional form of utility derived from the consumption of an outside
good. This sensitivity to functional form assumptions can lead to models that either
underestimate or overestimate the attractiveness of trading up or down between
quality tiers. The choice of utility function significantly impacts the inferred elas-
ticity of substitution between goods (C. Kim et al., 2023), which in turn affects pre-
dictions about consumer response to price changes, product improvements, or the
introduction of new products. The critical takeaway is that the modeling of quality
tiers requires careful consideration of these assumptions to ensure accurate repre-
sentation of consumer behavior.

In response to these challenges, our proposed approach introduces flexibility
in modeling quality tiers by allowing for switching between complementarity and
substitution effects driven by expenditure. Our approach acknowledges that con-
sumers’ preferences between higher and lower-quality tiers can vary based on their
expenditure levels, potentially shifting from substitution to complementarity (or
vice versa) as their budget constraints change. Such a framework is more aligned
with the empirical observations of consumer behavior, capturing the nuances of
trading up or down in response to changes in income, prices, or product attributes.

2.2.4 Outside Good in Choice Modeling

C. Kim et al. (2023) investigates the impact of outside good utility functions on sub-
stitution patterns within multiple discrete/continuous demand models. The authors
present novel results on the functional form of quantity price effects in these models,
highlighting the limitations of standard outside good utility functions. A new, more
flexible outside good utility function, from the class of hyperbolic functions, is pro-
posed to accommodate broader substitution patterns and address issues of satiation.
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In their paper, the utility has the following form:

uz(z) =
ψz

b
1 + exp(bz + c)
1− exp(bz + c)

(2.3)

with slope parameter b > 0 and an intercept parameter c > 0. An empirical analy-
sis using household scanner data from the potato chip market supports the model’s
ability to capture non-standard satiation rates for the outside good, impacting price
elasticity estimates and the effectiveness of loyalty coupon targeting programs. Their
research contributes to understanding the role of outside good utility in direct utility
models, proposing a more adaptable approach to modeling consumer choice behav-
ior. However, this utility function is still parametric and impose a functional form,
which impose strong restrictions on substitution patterns across inside goods.

2.3 Application 1: Within-Category Nonhomothetic Demand
Model

2.3.1 Random Utility Model

We are interested in performing inference on the functional form of the marginal
utility for a given consumer. At a given purchase occasion, we assume that con-
sumer’s choose a vector of quantities q = (q1, ..., qJ) that maximize their direct util-
ity function, whose support is the vector of quantities consumed. We suppress the
time t and individual i subscript in this section for the moment and will introduce
them later. Our utility model is strongly separable across a vector of inside prod-
ucts at our focal store (j = 1, 2, ..., J). We assume that the sub-utility of the good j,
Uj(qj), and the sub-utility of the outside good νz(z) are continuously differentiable,
increasing functions. Following the standard random utility approach, we introduce
a multiplicative error term into our utility model:

U(q1, ..., qJ) := ∑
j

uj(qj) := ∑
j

(
νj(qj) exp

(
ε j
))

(2.4)

where, for all j = 1, . . . , J, the error terms ε j are i.i.d. and follow a Type-1 extreme
value distribution with scale σ fixed, for example to unity. The random error ε j is
known by consumers but unobserved by the researcher. Moreover, ε j and νj the sub-

utility function for the good j are independent. In addition, ε j and ∂νj
∂qj

, the marginal
sub-utility function for the good j are also independent. We also assume that the
outside good is always consumed, such that z > 0.

This random element represents information that is known to consumers, but
not observed by the researcher. This yields a form in which the marginal utilities
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consist of a deterministic ∂νj
∂qj

and a random ε j component:

∂Uj(qj)

∂qj
=

∂νj(qj)

∂qj
exp

(
ε j
)

(2.5)

which yields:

log
(

∂Uj(qj)

∂qj

)
= log

(
∂νj(qj)

∂qj

)
+ ε j (2.6)

The logarithmic form ensures that the marginal utility remains positive. The budget
constraint is linear. Consumer maximize utility in a static fashion, such that there is
no forward-looking behavior or savings allowed.

∑
j

pjqj = x (2.7)

where pj is the price of good j, and x represents the total expenditure. The corre-
sponding utility maximization problem may be written in Lagrangian form:

max
q,λ
L = U(q)− λ

(
∑

j
pjqj − x

)
(2.8)

where λ > 0, the Lagrange multiplier of the utility maximization problem. After
dividing by prices and taking logs, the Kuhn-Tucker first-order conditions are:

log
(

∂νj(qj)

∂qj

)
+ ε j − log(pj) = log(λ) if j s.t. qj > 0 (2.9)

log
(

∂νj(qj)

∂qj

)
+ ε j − log(pj) < log(λ) if j s.t. qj = 0 (2.10)

Without loss of generality, we can assume that the first good is always purchased,
and we take the difference of the first-order conditions. This differencing ensures
that the budget constraint is satisfied (J. Kim, Allenby, and Rossi, 2002). Then the
Kuhn-Tucker conditions can be rewritten as follows:

ε j = V1 −Vj + ε1 if j s.t. qj > 0 (2.11)

ε j < V1 −Vj + ε1 if j s.t. qj = 0 (2.12)

where Vj = log
(

∂νj(qj)
∂qj

)
− log(pj) for all j = 1, ..., J.

Note that the Kuhn-Tucker first order conditions are necessary and sufficient
when the utility function is monotonic and strictly quasi-concave (Dubé, 2019). Quasi-
convexity of the constraint function is also needed but it is automatically true since
the constraint function is linear.

Let the joint probability density function of the εk terms be f (ε1, ε2, . . . , ε J). The
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likelihood can be constructed following C. R. Bhat (2005) and C. R. Bhat (2008) by
showing that the probability that a consumer allocates on the occasion t (but omit-
ting the subscript) all expenditure to the first M of the J goods at the optimum (de-
noted by q∗j for all j = 1, . . . , J) is:

L(q∗1 > 0, q∗2 > 0, . . . , q∗M > 0, q∗M+1 = 0, . . . , q∗J = 0) (2.13)

= |J |
∫ ε1=+∞

ε1=−∞

∫ V1−VM+1+ε1

εM+1=−∞

∫ V1−VM+2+ε1

εM+2=−∞
· · ·

∫ V1−VJ+ε1

ε J=−∞

f (ε1, V1 −V2 + ε1, V1 −V3 + ε1, . . . V1 −VM + ε1, εM+1, εM+2, . . . , ε J−1, ε J)

dε Jdε J−1, . . . , dε1 (2.14)

where J is the Jacobian matrix whose elements are given by:

Jkl =
∂ (V1 −Vk+1 + ε1)

∂ql+1
(2.15)

=
∂ (V1 −Vk+1)

∂ql+1
for k, l = 1, 2, . . . , M− 1 (2.16)

Using Type-1 extreme value distribution on the error term, we can write the
closed form likelihood:

L(q∗1 , q∗2 , . . . , q∗M, 0, . . . , 0) =
1

σM−1

(
M

∏
j=1

∣∣∣∣− ∂

∂qj
log
(

∂νj

∂qj

)∣∣∣∣
) 1

p1

∣∣∣∣∣∣
M

∑
j=1

pj

− ∂
∂qj

log
(

∂νj
∂qj

)
∣∣∣∣∣∣


(2.17) ∏M
j=1 exp

(
Vj
σ

)
(

∑J
j=1 exp

(
Vj
σ

))M

 (M− 1)!

where Vj = log
(

∂νj
∂qj

)
− log(pj) for all j = 1, ..., J. The full derivation of the likelihood

is in Appendix B.1.

2.3.2 Vectorized notation and functional notation

For the remainder of the chapter, we also adopt the following vectorized notation
for all occasions t = 1, ..., T at the individual level. Let qj =

[
qj1, . . . , qjT

]
be the

vector of optimal quantity j for all occasions, pj =
[

pj1, . . . , pjT

]
, the vector of prices

j for all occasions, Uj(qj) =
[
Uj(qj1), . . . , Uj(qjT)

]
, the vector of stochastic utility j

evaluated at the optimal quantity j for all occasions, νj(qj) =
[
νj(qj1), . . . , νj(qjT)

]
,

the vector of deterministic utility j evaluated at the optimal quantity j for all oc-
casions, ∂νj(qj )

∂qj
=
[

∂νj(qj1)
∂qj

. . . , ∂νj(qjT)
∂qj

]
, the vector of deterministic marginal utility j
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evaluated at the optimal quantity j for all occasions, ∂2νj(qj )

∂q2
j

=

[
∂2νj(qj1)

∂q2
j

. . . , ∂2νj(qjT)

∂q2
j

]
,

and εj =
[
ε j1, . . . , ε jT

]
is the vector of error terms for utility j for all occasions.

We also adopt a functional notation, and use νj,
∂νj
∂qj

and ∂2νj

∂q2
j

to denote respec-

tively the deterministic utility function, the deterministic marginal utility function,
and the second derivative of the deterministic utility function. Likewise, log

(
∂νj
∂qj

)
and ∂

∂qj
log
(

∂νj
∂qj

)
denote respectively the logarithm of the marginal utility function

and the derivative of the logarithm of the marginal utility function.
Let Lt be the likelihood of a consumer’s purchase for mt alternatives at occasion

t. To evaluate the log-likelihood function

LL

q1, ..., qJ
∂νj

∂qj j=1,...,J
,

∂2νj

∂q2
j j=1,...,J

,p1 . . . ,pJ , σ

 =
T

∑
t=1

log(Lt) (2.18)

we need to construct a prior distribution for not only for the marginal utility function

for good j, ∂νj
∂qj

but also the second derivative of the utility function for good j, ∂2νj

∂q2
j

for all j = 1, ..., J. But due to our reparameterization in terms of the logarithm of
the marginal utility function log

(
∂νj
∂qj

)
and the derivative of the logarithm of the

marginal utility function ∂
∂qj

log
(

∂νj
∂qj

)
, it is more natural to place a prior on these last

two measures. A consequence of this reparameterization is that utility for each good
will always be increasing with quantities purchased.

2.3.3 Gaussian Process Priors

We model the preferences of a consumer who has T purchase occasions. Preferences
are fixed and constant over time, but are latent, and the researcher is only able to
observe the quantities purchased for all inside and outside goods, and their corre-
sponding prices. We propose to infer the form of utility using Gaussian processes.
Specifically, we place a Gaussian process prior on the logarithm of the deterministic
marginal utility for each good j = 1, ..., J:

log
(

∂νj

∂qj

)
∼ GP

(
µj,Kj

)
(2.19)

where we have the mean and covariance function defined as follows:

µj(qj) = E

[
log
(

∂νj(qj)

∂qj

)]
(2.20)

Kj(qj, q′j ) = E

[(
log
(

∂νj(qj)

∂qj

)
− µ(qj)

)(
log

(
∂νj(q

′
j)

∂q′j

)
− µ(q′j)

)]
(2.21)
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Thereafter we remove the subscript j on the kernelK for simplicity. When we realize
our Gaussian processes to the vectors of optimal quantities q1, . . . , qJ chosen by con-
sumers, by marginalization property, we obtain that the T values of the logarithm of
the marginal utility function for good j has a multivariate normal prior distribution,
with covariance defined by the kernelK:

log
(

∂νj(qj)

∂qj

)
:=
[
log
(

∂νj(qj1)
∂qj

)
, . . . , log

(
∂νj(qjT)

∂qj

)]T
∼ N

(
µj(qj),K(qj, qj)

)
(2.22)

which can be rewritten with as a vector of T realized log-marginal utilities at the
optimal quantities:

log
(

∂νj(qj1)
∂qj

)
log
(

∂νj(qj2)
∂qj

)
...

log
(

∂νj(qjT)
∂qj

)

 ∼ N



µj(qj1)

µj(qj2)
...

µj(qjT)

 ,


K(qj1, qj1) K(qj1, qj2) . . . K(qj1, qjT)

K(qj2, qj1) K(qj2, qj2) . . . K(qj2, qjT)
...

...
. . .

...
K(qjT, qj1) K(qjT, qj2) . . . K(qjT, qjT)




(2.23)
where K(qj, qj) = (K(qjt, qjt′)) is a T × T matrix with each element K(qjt, qjt′) and
µj is a T dimensional mean vector parameter for the Gaussian process. Notice our
GP looks like a regression model in function-space view (see Rasmussen, Williams,
et al. (2006), §2.3). We use the squared exponential (SE) covariance function for the
kernel:

K(qjt, qjt′) = σ2
f exp

(
− 1

2β2 (qjt − qjt′)
2
)

(2.24)

where β denotes the characteristic length-scale and σ2
f is the signal variance, hyper-

parameters of the GP model. The squared exponential covariance function implies
that the covariance is almost unity (when σ2

f = 1) between variables whose corre-
sponding inputs are very close (Rasmussen, Williams, et al., 2006)1

We express the joint prior distribution of the log marginal utility log
(

∂ ˚ j
∂qj

)
and

its derivative, i.e. the ratio of the derivative of the marginal utility to the marginal

1It has been shown that the squared exponential covariance function corresponds to a Bayesian lin-
ear regression model with an infinite number of basis function (ibid), which emphasizes the flexibility
of such a function. Another advantage of this covariance function is that it is infinitely differentiable,
which is useful in our context. Finally, we also choose this function for the interpretability of its hyper-
parameters. The characteristics length-scale parameter β controls the amount of information that the
Gaussian process will borrow around the test input point that needs to be evaluated. A large β means
that more information is borrowed, which will smooth the utility function; conversely, a smaller β will
make the utility function more prone to capture non-linearities in preferences and rationalize them.
The characteristic length-scale β and the signal variance σ2

f are weakly identified and their proportion
is more important to the predictive performance than their individual value for the Matérn class of
covariance function (Diggle, Tawn, and Moyeed, 1998; H. Zhang, 2004), to which belongs the squared
exponential covariance function.
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utility ∂
∂qj

log
(

∂νj
∂qj

)
as a Gaussian process. Since the differentiation operator is a lin-

ear operator, the derivative of a Gaussian process is another Gaussian process (Ras-
mussen, Williams, et al., 2006). Therefore, ∂

∂qj
log
(

∂νj
∂qj

)
, i.e. the derivative function

of the log-marginal utility of good j, also follows a Gaussian process prior, and the
joint distribution

(
log
(

∂νj
∂qj

)
, ∂

∂qj
log
(

∂νj
∂qj

))
also follows a Gaussian process prior.

Following X. Wang and Berger (2016), we can derive the kernels associated with
the joint Gaussian process for the log-marginal utility of good j and its derivative
function, for j ∈ 1, ..., J. This joint measure also has a Gaussian process prior: log

(
∂νj
∂qj

)
∂

∂qj
log
(

∂νj
∂qj

) ∼ GP ([ µj
∂

∂qj
µj

]
,

[
K K01

K10 K11

])
(2.25)

By marginalization property, the joint realization of the log-marginal utility for
good j at the optimal, observed vector of quantities for good j over T∗ purchase
occasions, and its derivative function, have a multivariate normal prior distribution: log

(
∂νj(qj)

∂qj

)
∂

∂qj
log
(

∂νj(qj)
∂qj

) ∼ N ([µ(qj)
∂µ(qj)

∂qj

]
,

[
K(qj, qj) K01(qj, qj)

K10(qj, qj) K11(qj, qj)

])
(2.26)

withK(qj, qj) = (K(qjt, qjt′)) is a T × T matrix with each element K(qjt, qjt′);

K10(q, q) = (K10(qjt, qjt′)) (2.27)

is a T × T matrix with each element K10(qjt, qjt′);

K10(qj, qj) =K01(qj, qj)
T (2.28)

and
K11(qj, qj) = (K11(qjt, qjt′)) (2.29)

is a T × T matrix with each element K11(qjt, qjt′) such that

K10(qjt, qjt′) =
∂

∂qjt
K(qjt, qjt′) = σ2

f exp
(
− 1

2β2 (qjt − qjt′)
2
)(
− 1

β2 (qjt − qjt′)

)
(2.30)

K01(qjt′ , qjt) =
∂

∂qjt′
K(qjt, qjt′) = σ2

f exp
(
− 1

2β2 (qjt′ − qjt)
2
)(

1
β2 (qjt′ − qjt)

)
(2.31)

K11(qjt, qjt′) =
∂2

∂qjt∂qjt′
K(qjt, qjt′) = σ2

f exp
(
− 1

2β2 (qjt − qjt′)
2
)

1
β2(

1− 1
β2 (qjt − qjt′)

2
)

(2.32)
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2.3.4 Identification

Inferences about utility are made through the choices that consumers make. How-
ever, utility is not directly observed. As a consequence, our metric of utility cannot
be identified uniquely from the data. To illustrate this problem, consider a transfor-
mation of utility, F(U(q)), that is monotonically increasing, ∂F

∂U > 0. Notice that our
Lagrangian can be rewritten using this transform without altering the solution:

L = F(U(q)) + λ(x− p′q) (2.33)

where q denotes here the vector of quantities (outside good included) and p denotes
the vector of prices. Since we have assumed that F is monotonically increasing, we
can rewrite the first order condition as:

∂L
∂q

=
∂F
∂U

∂U
∂q
− λp = 0 =⇒ ∂L

∂q
=

∂U
∂q
− λ

∂F
∂U

p = 0 (2.34)

Both ∂F
∂U and λ are scalars. In the transformed space, we can think about our La-

grange multiplier being scaled by our utility transformation. This points out the
dependence of utility scale on the Lagrangian. Practically, it means that our identi-
fication problem may lead to drifting behavior in the sampler if identifying restric-
tions upon utility are not given.

We assume a cardinal utility framework. Specifically, we can make the additional
assumption that F(.) is known up to a linear transformation:

F(U) = a + bU (2.35)

Although we cannot identify the translation and scale parameter, we can impose
restrictions like F(0) = 0 and ∂F(U)

∂U = 1 for all U to identify our transformation.
The restriction F(0) = 0 (i.e. a = 0) is achieved through the untestable condi-

tion of weak complementarity (Maler, 1974), in which consumers receive no utility
from a non-essential good’s attributes if they do not consume it. In other words,
we impose Uj(0) = 0 for all inside goods j = 1, ..., J and Uz(0) = 0 for the outside
good. C. R. Bhat (2008) also makes this assumption and explains that it essentially
represents a cardinal normalization restriction on utilities, and since a cardinal re-
striction on preferences must be eventually used for welfare measurement, using
weak complementarity makes sense here.

The restriction F′(U) = 1 is achieved by rewriting ∂F
∂U . Let the n + 1, n + 2, ..., Jth

inside goods, and the outside good z being consumed for a given purchase occasion.
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Then we have:

log
(

∂Uj(qjt)

∂qj

)
+ log

(
∂F
∂U

)
= log(λ) + log(pj) if j s.t. qj > 0 (2.36)

log
(

∂Uj(qjt)

∂qj

)
+ log

(
∂F
∂U

)
< log(λ) + log(pj) if j s.t. qj = 0 (2.37)

which implies, assuming that the first good is always consumed without loss of
generality, and after differencing:

log
(

∂Uj(qjt)

∂qj

)
− log

(
∂Uj(q1t)

∂q1

)
= log(pj)− log(p1) if j s.t. qj > 0 (2.38)

log
(

∂Uj(qjt)

∂qj

)
− log

(
∂Uj(q1t)

∂q1

)
< log(pj)− log(p1) if j s.t. qj = 0 (2.39)

for all j = 2, . . . , J. Fixing the scaling of the log-marginal utility for one of the
goods allows us to removes the non-identification associated with log

(
∂F
∂U

)
. This

is achieved in the simulation exercises below by using a known functional form for
the inside goods, and setting the baseline utility parameter for one of the goods
to 1 without loss of generality. A parametric utility for inside goods is necessary
when the number of distinct price points and quantity points is small, as it is of-
ten the case in practice. In the theoretical case where the inside goods’ preferences
are strongly informed by the data – large number of distinct price points and quan-
tities purchased – then the marginal utility of one of the inside goods must be set
by the analyst. The functional form for the sub-utilities are identified by variation
in purchase shares for each good, and the contemporaneous variation in purchase
quantities.

2.3.5 Simulation Exercises

We build two simulation studies to recover the latent preferences of an individual
consumer. In the first study, we assume that the analyst knows the correct functional
form of the outside good, and estimates two models: the baseline parametric model,
and the model with Gaussian process prior on the outside good. In the second study,
we assume that the analyst does not know the correct functional form of the outside
good utility function, and estimates two models: the baseline parametric model, and
the model with Gaussian process prior on the outside good. In both studies and both
models, the inside good utility function is assumed to be correctly known: we use
the following sub-utility for each inside good j = 1, . . . , J:

νj(qj) =
ψj

γj
log(γjqj + 1) (2.40)

where J is the number of inside goods. The parameter γ introduces flexibility in
the satiation rate (C. R. Bhat, 2005). Following the above-mentioned data generating
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process, we use synthetic data for two inside goods and one outside good. Prices
are uniformly drawn between 0.2 and 5.0, and the price of the outside good is fixed
to 1 (numeraire). The total consumer budget is also drawn at each time period from
a uniform distribution between $1.0 and $20. This stochastic budget illustrates the
non-stationarity of the total budget consumers allocates at each purchase occasion.
The data is generated via an interior-point optimizer, suited for large-scale nonlinear
optimization. We consider the case of one consumer with fixed preferences in 900
purchase occasions, such that we observe as many vectors of prices and quantities.
The standard deviation of the error term is assumed to be 0.1.

We estimate this model with the no-U-turn sampler (NUTS) variant of Hamil-
tonian Monte Carlo (Hoffman and Gelman, 2014), sampling simultaneously the pa-
rameters from the inside goods’ subutility functions, and the latent functions from
the Gaussian process in the outside good’s subutility function. The MCMC algo-
rithm is run for 2,000 iterations including 1,000 burn-in iterations, using 10 indepen-
dent chains. We make predictions on the range of the data. The model is able to
recover each subutility function and provides us with 95% credible intervals, which
are constructed from empirical 2.5th and 97.5th percentiles.

Comparing Parametric and GP Prior With Correct Functional Form

In this study, the sub-utility associated with the outside good is assumed to be

uz(z) = ψ3 log(z) (2.41)

such that the quantity consumed is always strictly positive. Table 2.1 shows the pos-
terior summary of parameters for correctly specified parametric prior placed on the
outside good’s marginal utility. Table 2.2 shows the posterior summary of param-
eters for Gaussian prior placed on the outside good’s marginal utility and second
derivative of utility. Figure 2.1 explains how the parametric prior compares to the
Gaussian process prior on marginal utility for the same simulated observations. Re-
sults are comparable although the Gaussian process model exhibits higher uncer-
tainty in the functional form, since it is being estimated from the data. Table 2.2 and
Figure 2.1 act as a sanity check.

Comparing Parametric and GP Prior With Misspecified Functional Form: Slower
Satiation

In this study, the sub-utility associated with the outside good is assumed to be

uz(z) = ψ3(log(z) + z) (2.42)

such that the quantity consumed is always strictly positive. However, this time, util-
ity satiates slower, as marginal utility is higher by an additional ψ3. Table 2.3 shows
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Parameter Mean SD HDI 3% HDI 97% MCSE MCSE ESS ESS R̂
(Mean) (SD) (Bulk) (Tail)

ψ1 1.000 0.000 1.000 1.000 0.0 0.0 10000.0 10000.0 -
ψ2 1.739 0.029 1.685 1.793 0.0 0.0 3590.0 4260.0 1.0
ψ3 0.823 0.009 0.807 0.840 0.0 0.0 3522.0 4210.0 1.0
γ1 0.975 0.019 0.940 1.011 0.0 0.0 3419.0 3938.0 1.0
γ2 0.990 0.020 0.951 1.029 0.0 0.0 4357.0 4564.0 1.0

TABLE 2.1: Posterior Summary of Parameters for correctly specified
parametric prior placed on outside good’s marginal utility. Two in-
side goods and one outside good are used. ψ1 is correctly set to 1
for identification. The ground truth for ψ is [1, 1.74, 0.81] and for γ is
[1, 1]. Mean: posterior mean; SD: posterior standard deviation; HDI:
high density posterior interval; MCSE: Monte Carlo standard error;

ESS: effective sample size; R̂: R-hat statistic.

Parameter Mean SD HDI 3% HDI 97% MCSE MCSE ESS ESS R̂
(Mean) (SD) (Bulk) (Tail)

ψ1 1.000 0.000 1.000 1.000 0.000 0.000 10000.0 10000.0 -
ψ2 1.723 0.040 1.647 1.795 0.001 0.001 2735.0 3518.0 1.00
γ1 0.975 0.043 0.893 1.055 0.001 0.000 4160.0 5500.0 1.00
γ2 0.978 0.029 0.924 1.033 0.000 0.000 4340.0 6276.0 1.00
intercept 1.688 1.720 -1.145 5.592 0.062 0.058 1094.0 342.0 1.01
slope -0.076 0.066 -0.199 -0.000 0.002 0.001 1628.0 2089.0 1.00
σf 4.678 4.510 0.021 12.947 0.108 0.076 1443.0 2719.0 1.00
β 8.473 2.219 4.535 12.374 0.061 0.043 1342.0 2538.0 1.01

TABLE 2.2: Posterior summary of parameters for Gaussian process
prior placed on outside good’s marginal utility. Two inside goods and
one outside good are used. The ground truth forψ is [1, 1.74, 0.81] and
for γ is [1, 1]. ψ1 is correctly set to 1 for identification. The intercept
and slope parameters of the Gaussian process correspond to an affine
functional form for the mean of the Gaussian process. σf is the square
root of the signal variance hyperparameter, and β is the lengthscale
hyperparameter, which are estimated. Mean: posterior mean; SD:
posterior standard deviation; HDI: high density posterior interval;
MCSE: Monte Carlo standard error; ESS: effective sample size; R̂: R-

hat statistic.

the posterior summary of parameters for misspecified parametric prior placed on
the outside good’s marginal utility. Table 2.4 shows the posterior summary of pa-
rameters for Gaussian prior placed on the outside good’s marginal utility and sec-
ond derivative of utility. Here we observe that the Gaussian process specification is
robust to misspecification of the functional form of the outside good’s utility. Fig-
ure 2.2 shows the inability of the parametric model to correctly fit the misspecified
marginal utility, as opposed to the Gaussian process prior that is enable to capture
the slower satiation rate.
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(a) Parametric (b) Gaussian process

FIGURE 2.1: Estimated marginal utility of the outside good when the
correctly parametric functional form u′z(z) = ψ log(z) is imposed (a)
and when a Gaussian process prior is used on the latent utility func-
tion (b). The Gaussian process specification performs comparatively
to the correctly specified parametric prior, but exhibits higher uncer-
tainty due to an estimation more demanding of the data. Note that

the realized utility values are unobserved by the analyst.

2.4 Application 2: Nonhomothetic Discrete Choice Model with
Household Production

2.4.1 Overcoming Separability with Household Production Theory

Separability and additive preferences are core concepts in consumer theory that sig-
nificantly impact the modeling of consumer choice behavior. Separability refers to
the idea that the utility derived from consuming a group of goods is independent of
the consumption of other goods. In other words, the consumer’s preference for one
set of goods does not influence their preference for another set. This notion extends
to additive preferences, where the overall utility a consumer derives from consum-
ing all goods is simply the sum of the utilities derived from each good indepen-
dently. This framework simplifies the analysis by allowing economists to consider
each good or group of goods in isolation, without needing to account for complex
interactions between different consumption choices.

However, the assumption of separability poses significant challenges when mod-
eling consumer behavior across multiple product categories. Real-world observa-
tions frequently demonstrate that consumers’ decisions about one category can be
influenced by their choices in another, indicating a level of interdependence that
separability cannot capture. For example, the purchase of a high-end coffee maker
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Parameter Mean SD HDI 3% HDI 97% MCSE MCSE ESS ESS R̂
(Mean) (SD) (Bulk) (Tail)

ψ1 1.000 0.000 1.000 1.000 0.000 0.000 10000.0 10000.0 -
ψ2 1.625 0.045 1.544 1.712 0.001 0.001 3603.0 4471.0 1.0
ψ3 9.722 0.235 9.278 10.153 0.004 0.003 3902.0 4741.0 1.0
γ0 0.811 0.052 0.717 0.912 0.001 0.001 4409.0 5505.0 1.0
γ1 0.709 0.029 0.654 0.764 0.000 0.000 5112.0 5551.0 1.0

TABLE 2.3: Posterior summary of parameters for misspecified para-
metric prior placed on outside good’s marginal utility. Two inside
goods and one outside good are used. ψ1 is correctly set to 1 for iden-
tification. The ground truth for ψ is [1, 1.74, 0.81] and for γ is [1, 1].
Mean: posterior mean; SD: posterior standard deviation; HDI: high
density posterior interval; MCSE: Monte Carlo standard error; ESS:

effective sample size; R̂: R-hat statistic.

might increase a consumer’s preference for premium coffee beans, suggesting a com-
plementarity that separable models overlook. This interdependence between prod-
uct categories means that consumer preferences are, in fact, nonseparable, making it
difficult to accurately predict consumer behavior using models that rely on the as-
sumption of separability. As a result, the use of separable models can lead to incor-
rect inferences on demand, consumer welfare, and suboptimal marketing strategies.

The Household Production Theory offers a compelling framework to address
these limitations. Originally proposed by Becker (1965), this theory posits that house-
holds derive utility not directly from market goods, but from “commodities” they
produce using these goods as inputs, along with their time – although, for sim-
plicity, we do not consider time as input, in this chapter. The theory provides a
broader perspective on consumer choice, emphasizing the process by which house-
holds combine purchased goods with their labor to produce final commodities that
directly contribute to utility. This approach has been further elaborated in the liter-
ature, with scholars such as Pollak and Wachter (1975) and Gronau (1977) exploring
its implications for labor supply, time allocation, and the valuation of non-market
activities. By focusing on the production process within the household, this theory
introduces a natural framework for considering the interactions between different
product categories and the nonseparability of preferences in a more nuanced man-
ner.

In this application, we propose a model that, while initially based on separable
preferences, is enhanced by incorporating intermediary goods, thus accommodating
nonseparability in consumer preferences across multiple product categories. Our
approach leverages the Household Production Theory to understand how the con-
sumption of intermediary goods—those used in the production of final commodities
within the household—can create linkages between seemingly independent product
categories. By integrating these goods into our model, we demonstrate how prefer-
ences for one category of products can influence preferences for another, overcom-
ing the limitations imposed by the traditional assumption of separability. This novel
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Parameter Mean SD HDI 3% HDI 97% MCSE MCSE ESS ESS R̂
(Mean) (SD) (Bulk) (Tail)

ψ1 1.000 0.000 1.000 1.000 0.000 0.000 10000.0 10000.0 -
ψ2 1.723 0.040 1.646 1.798 0.001 0.001 3224.0 5195.0 1.00
γ1 0.974 0.044 0.893 1.057 0.001 0.001 3731.0 5013.0 1.00
γ2 0.978 0.029 0.924 1.031 0.000 0.000 4505.0 5629.0 1.00
intercept 1.667 1.664 -1.217 5.036 0.047 0.033 1332.0 2332.0 1.01
slope -0.075 0.066 -0.197 -0.000 0.001 0.001 2058.0 2359.0 1.01
σf 4.485 4.451 0.013 13.014 0.102 0.072 1351.0 2176.0 1.00
β 8.394 2.302 4.352 12.464 0.069 0.049 1065.0 1627.0 1.01

TABLE 2.4: Posterior summary of parameters for Gaussian process
prior placed on outside good’s marginal utility. Two inside goods and
one outside good are used. The ground truth for ψ is [1, 1.74, 0.81]
and for γ is [1, 1]. ψ1 correctly is set to 1 for identification. The
ground truth for the outside good is a utility function of the follow-
ing form: uz(z) = ψ(log(z) + z). The intercept and slope parameters
of the Gaussian process correspond to an affine functional form for
the mean of the Gaussian process. σf is the square root of the signal
variance hyperparameter, and β is the lengthscale hyperparameter,
which are estimated. Mean: posterior mean; SD: posterior standard
deviation; HDI: high density posterior interval; MCSE: Monte Carlo

standard error; ESS: effective sample size; R̂: R-hat statistic.

contribution not only aligns our model more closely with observed consumer behav-
ior but also offers new insights into the complex interplay between different types
of goods in household production and consumption processes.

We need to better understand how complementarity between different consumer
packaged goods is moderated by expansion in the product category. Take the exam-
ple of burgers and buns, which function as both intermediary and final goods. When
they combine to form a sandwich, the final good – demand is expected to rise with
consumer expenditure, highlighting as complex complementarity influenced by ex-
penditure.

The role of outside good consumption further complicates choice modeling re-
garding budget allocation and price effects. Traditional models, imposing linear util-
ity from outside goods, assume that consumers do not satiate in their outside good
consumption. This unrealistic assumption fails to account for diminishing returns
of utility in consumption – a scenario better captured by nonlinear utility models.
However, even nonlinear utility models make parametric assumptions that cannot
be justified ex ante.

In this section, we relax a parametric assumption on the outside good consump-
tion, allowing the detection of more flexible income effects. We formulate a struc-
tural model of household production and consumption, using constrained utility
maximization. The consumer problem is to buy the optimal volume of intermediary
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(a) Parametric (b) Gaussian process

FIGURE 2.2: Estimated marginal utility of the outside good when the
misspecified parametric functional form u′z(z) = ψ log(z) is imposed
(a) and when a Gaussian process prior is used on the latent utility
function (b). The ground truth is a marginal utility function of the
following form: u′z(z) = ψ(log(z) + z). The Gaussian process spec-
ification is robust to an unknown functional form of outside good
preference. Note that the realized utility values are unobserved by

the analyst.

goods q and outside good z, and use the intermediary goods to produce a utility-
maximizing final good to consume.

V(p, E) = max
c,q,z

u(c, z) = ln u(c) + τ ln(z)

subject to:

p′q + z ≤ E

q ∈ Q
c ∈ C(q) (2.43)

where c ∈ C(q) is the set of final goods that consumers are able to produce, p is
the price vector, and E is the budget allotment and the price of the outside good is
assumed to be $1.00 without loss of generality. The production-consumption step
allows us to parameterize U(c, z) and C(q) instead of utility in terms of quantities
purchased.

Consumers always purchase some of the outside good, but purchase exactly one
product from the final good category. Utility maximization results in a corner solu-
tion; therefore, a linear utility function is appropriate:

u(c) = ψ′c (2.44)
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Because we are interested in understanding how consumers switch between dif-
ferent final consumption goods as E increases, we need utility to be nonhomothetic.
Consumers obtain higher utility by changing their demand toward a higher-quality
final good, instead of buying more units of the same lesser-quality final good.

The utility for the vector of demand of the final good is defined implicitly as:

u(c) =
K

∑
k=1

ψk(ū)ck =
K

∑
k=1

exp (αk − κkū(c, z)) ck (2.45)

where the marginal utility of a final good is a function of attainable utility ū. Allenby
and Rossi (1991) and Allenby, Garratt, and Rossi (2010) use a similar utility model
as it allows for superior good effect and account for expenditure effects by rotating
the indifference curves as utility increases with expenditure.

Our parameterization of utility implies the following utility for purchased goods.
The consumer problem is then rewritten as follows:

max
c,z

u(c, z) = ln u(c) + τ ln(z)

s.t.
K

∑
k=1

fkck + z ≤ E (2.46)

The input-output matrix A considers intermediary goods quantities ajk such that
the volume of input j is required to make one unit of final good k. As an example,
we consider the case where J = 2 and K = 3, where intermediary goods are buns
and burgers, and final goods are bun, burger, and sandwich:

A =

(
1 0 1
0 1 1

)
(2.47)

In that case, there are three possible final goods, c1 (bun), c2 (burger) and c3 (sand-
wich). The set C(q) of final good quantities that can be produced from input vol-
umes q is the set of vector c with nonnegative entries and such that ∑k ajkck ≤ qj for
all j.

Under the assumption that consumers do not keep inventories, buying more in-
termediary goods only come at an extra cost; therefore the demand for intermediary
goods be such that:

q∗j =
K

∑
k=1

ajkc∗k = ajk1(c∗k = 1). (2.48)

for all j = 1, . . . , J. We derive the full price fk of each final good k as the dollar
amount that consumers need to pay to produce a unit of that final good:

fk =
J

∑
j=1

ajk pj (2.49)
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Likelihood specification

Adding a multiplicative error to equation (2.45), we obtain the probability of select-
ing final good k:

Pr(ck = 1) = Pr(αk − κkūk + τ ln(E− fk) + εk > αi − κiūi + τ ln(E− fi) + ε i) (2.50)

for all i such that pi ≤ E. Assuming type 1 extreme value errors with scale parameter
1 (i.e., variance π2

6 ):

Pr(ck = 1) =
exp(αk − κkūk + τ ln(E− fk))

∑i| fi<E exp(αi − κiūi + τ ln(E− fi))
(2.51)

which we can rewrite, by changing the parametrization to intermediary goods:

Pr(qj = ajk) =
exp(αk − κkūk + τ ln(E−∑J

j=1 ajk pj))

∑i|∑J
j=1 aji pj<E exp(αi − κiūi + τ ln(E−∑J

j=1 aji pj))
(2.52)

Nonparametric specification

We relax the functional form on the outside good to

V(p, E) = max
c,q,z

u(c, z) = ln u(c) + uz(z)

subject to:

p′q + z ≤ E

q ∈ Q
c ∈ C(q) (2.53)

where uz(z) is an unknown function of the outside good whose functional form is
estimated from the data. We place a Gaussian process (GP) prior on uz(.):

uz(.) ∼ GP (µ, K) (2.54)

where we have the mean and covariance function defined as follows:

µ(z) = E [u(z)] (2.55)

K(z, z′) = E
[
(u(z)−µ(z))

(
u(z′)−µ(z′)

)]
(2.56)

Notice our GP looks like a regression model in function-space view (see Ras-
mussen, Williams, et al. (2006), §2.3). We use the squared exponential (SE) covari-
ance function for the kernel:

K(zt, zt′) = σ2
f exp

(
− 1

2β2 (zt − zt′)
2
)

(2.57)
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where β denotes the characteristic length-scale and σ2
f is the signal variance, hyper-

parameters of the GP model. The squared exponential covariance function implies
that the covariance is almost unity (when σ2

f = 1) between variables whose corre-
sponding inputs are very close (Rasmussen, Williams, et al., 2006)2 Adding a mul-
tiplicative error to equation (2.45), we obtain the probability of selecting final good
k:

Pr(ck = 1) = Pr(αk − κkūk + uz(E− fk) + εk > αi − κiūi + uz(E− fi) + ε i) (2.58)

Assuming type 1 extreme value errors with scale parameter 1 (i.e., variance π2

6 ):

Pr(ck = 1) =
exp(αk − κkūk + uz(E− fk))

∑i| fi<E exp(αi − κiūi + uz(E− fi))
(2.59)

which we can rewrite, by changing the parametrization to intermediary goods:

Pr(qj = ajk) =
exp(αk − κkūk + uz(E−∑J

j=1 ajk pj))

∑i|∑J
j=1 aji pj<E exp(αi − κiūi + uz(E−∑J

j=1 aji pj))
(2.60)

We derive below the derivative of demand and show that own and cross-price
effects all depend on the marginal utility of the outside good. Hence, misspecifica-
tion of that marginal utility leads to inconsistent estimation of own- and cross-price
effects. We also show that using intermediary goods enable non-trivial own- and
cross-price effects, even when using an additive utility framework for final goods.

Derivatives of Demand

∂Pr(ck = 1)
∂ fl

=

− (I(k = l)Pr(ck = 1)− Pr(ck = 1)Pr(cl = 1)u′z(E− fl))
(

1
1+κlul

)
0 if fl > E

(2.61)
Then, we calculate the derivative of the intermediary demand with respect to

prices. We first consider the case where the good m and good k are used to make

2It has been shown that the squared exponential covariance function corresponds to a Bayesian lin-
ear regression model with an infinite number of basis function (ibid), which emphasizes the flexibility
of such a function. Another advantage of this covariance function is that it is infinitely differentiable,
which is useful in our context. Finally, we also choose this function for the interpretability of its hyper-
parameters. The characteristics length-scale parameter β controls the amount of information that the
Gaussian process will borrow around the test input point that needs to be evaluated. A large β means
that more information is borrowed, which will smooth the utility function; conversely, a smaller β will
make the utility function more prone to capture non-linearities in preferences and rationalize them.
The characteristic length-scale β and the signal variance σ2

f are weakly identified and their proportion
is more important to the predictive performance than their individual value for the Matérn class of
covariance function (Diggle, Tawn, and Moyeed, 1998; H. Zhang, 2004), to which belongs the squared
exponential covariance function.
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final good k: We can re-parameterize this derivative:

∂Pr(qj = ajk)

∂pj′
=

K

∑
k′=1

∂Pr(qj = ajk)

∂ fk′

∂ fk′

∂pj′
(2.62)

=
K

∑
k′=1

∂Pr(ck = 1)
∂ fk′

∂ ∑J
j=1 ajk′ pj

∂pk′
(2.63)

=
K

∑
k′=1

∂Pr(ck = 1)
∂ fk′

ajk′ (2.64)

=
∂Pr(ck = 1)

∂ fk
ajk +

K

∑
k′=1
k′ ̸=k

∂Pr(ck = 1)
∂ fk′

ajk′ (2.65)

The expected optimal demand for intermediary good j is:

E(q∗j ) = E

(
K

∑
k=1

ajkc∗k

)
(2.66)

= E

(
K

∑
k=1

ajkc∗k

)
(2.67)

=
K

∑
k=1

ajkPr(c∗k = 1) (2.68)

We can compute the derivatives of expected demand with respect to prices:

∂E(q∗j )

∂pl
=

K

∑
k=1

ajkalk
∂Pr(ck = 1)

∂ fk
+

K

∑
k=1

K

∑
k′=1
k ̸=k

ajkalk′
∂Pr(ck = 1)

∂ fk′
(2.69)

= −
K

∑
k=1

ajkalk
1

1 + κkuk
u′z(E− fk)Pr(ck = 1)(1− Pr(ck = 1))

+
K

∑
k=1

K

∑
k′=1
k ̸=k

ajkalk′
1

1 + κk′uk′
u′z(E− fk′)Pr(ck = 1)Pr(c′k = 1) (2.70)

In the case where l = j, the effect is non-obvious, except when ajk′ = 0 for all
k′ ̸= k, that is, without loss of generality, when the intermediary good j is used to
produce exclusively the final good k and not any other final good; in that case, de-
mand of j decreases with price of good j. Conversely, it is possible that demand of
j increases with price of good j, provided that the first element in the sum in (2.70)
is smaller, in absolute terms, than the second element. This case may happen, e.g.,
when the intermediary good j is used to make simultaneously many final goods;
these competing final goods becoming relatively more attractive, and that the de-
mand of other intermediary goods becomes so high that it calls for more intermedi-
ary good j by complementarity effect.
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We estimate this model with the no-U-turn sampler (NUTS) variant of Hamil-
tonian Monte Carlo (Hoffman and Gelman, 2014), sampling simultaneously the pa-
rameters from the inside goods’ subutility functions, and the latent functions from
the Gaussian process in the outside good’s subutility function. The implicit utility
values in the likelihood are obtained using Newton’s method at each MCMC itera-
tion (Allenby, Garratt, and Rossi, 2010).

2.4.2 Identification

The outside good utility functional form is identified nonparametrically by variation
in purchase shares for each inside good. However, the outside good utility can be
translated by a factor a and rotated by a scale parameter b without changing the
likelihood function, which causes an identification issue. Let vz(.) ≡ a + buz(.).
Assuming a type 1 extreme value error distribution with scale σ:

Pr(qj = ajk) =
exp

(
1
σ (αk − κkūk + vz(E−∑J

j=1 ajk pj))
)

∑i|∑J
j=1 aji pj<E exp

(
1
σ (αi − κiūi + vz(E−∑J

j=1 aji pj))
) (2.71)

=
exp

(
1
σ (αk − κkūk + a + buz(E−∑J

j=1 ajk pj))
)

∑i|∑J
j=1 aji pj<E exp

(
1
σ (αi − κiūi + a + buz(E−∑J

j=1 aji pj) + b)
)
(2.72)

=
exp

(
1
σ′ (αk − κkūk + uz(E−∑J

j=1 ajk pj))
)

∑i|∑J
j=1 aji pj<E exp

(
1
σ′ (αi − κiūi + uz(E−∑J

j=1 aji pj))
) (2.73)

where σ′ = σ/b. In theory, a is identified by setting the scale parameter of the error
term to 1, but in practice, in our experiments, a is not always well identified by the
data only. As a consequence, a and b need to be fixed by the analyst. A convenient
way to fix these values is to set the slope and the intercept by conditioning on two
observations in the prior distribution evaluated at set, assumed known utility values,
without loss of generality. The joint distribution of the training vector of utility and
the vector of utility at z∗ is:[

uz(z)

uz(z∗)

]
∼ N

([
µ(z)

µ(z∗)

]
,

[
K(z, z) K(z, z∗)
K(z∗, z) K(z∗, z∗)

])
(2.74)

Let z be the training data that is being observed. We condition on two observations
z∗ by conditioning the joint Gaussian prior distributions on the observations to give:

uz(z) | uz(z∗) ∼ N
(
µ′, K′

)
(2.75)

where
µ′ = µ(z) + K(z∗, z)K(z∗, z∗)−1(uz(z∗)−µ(z∗)) (2.76)



2.4. Application 2: Nonhomothetic Discrete Choice Model with Household Production 63

and
K′ = K(z, z)−K(z∗, z)K(z∗, z∗)−1K(z, z∗) (2.77)

2.4.3 Simulation Exercises

We build four simulation studies to recover the latent preferences of an individual
consumer. In the first study, we assume that the analyst knows the correct functional
form of the outside good, and estimates two models: the baseline parametric model,
and the model with Gaussian process prior on the outside good. In the subsequent
studies, we assume that the analyst does not know the correct functional form of
the outside good utility function, and estimates two models: the baseline parametric
model, and the model with Gaussian process prior on the outside good.

Following the above-mentioned data generating process, we use synthetic data
for three final goods (e.g., burgers, buns, and sandwiches) Prices are uniformly
drawn between 1.0 and 5.0, and the price of the outside good is fixed to 1 (nu-
meraire). The total consumer budget is also drawn at each time period from a uni-
form distribution between $1.0 and $5, but correcting ex post to make sure that each
allocation is feasible, i.e., at least one inside good is purchased. We consider the case
of one consumer with fixed preferences in 900 training purchase occasions, such that
we observe as many vectors of prices and quantities. We also set aside 100 testing
purchase occasions to understand how each specification generalizes. The scale of
the Type 1 extreme value error term is assumed to be small (0.1).

We estimate this model with the no-U-turn sampler (NUTS) variant of Hamil-
tonian Monte Carlo (Hoffman and Gelman, 2014), sampling simultaneously the pa-
rameters from the inside goods’ subutility functions, and the latent functions from
the Gaussian process in the outside good’s subutility function. The MCMC algo-
rithm is run for 1,100 iterations including 1,000 burn-in iterations, using 24 indepen-
dent chains. We make predictions on the range of the data. The model is able to
recover each subutility function and provides us with 95% credible intervals, which
are constructed from empirical 2.5th and 97.5th percentiles.

Figure 2.3 acts as a sanity check and shows that the Gaussian process model is on
par with the correctly specified parametric model, especially where the observations
are more dense. We note that when the data gets scare (around 15 units), the Gaus-
sian process becomes more unstable and tends to deviate from the ground truth (in
blue and green).

In a second study, we use a more exotic functional form of outside good utility
u(z) = sin(0.7z)+ 0.7 which plateaus at specific regions of the space (Figure 2.4). We
observe that the misspecified parametric prior struggles to capture the nonlinear rate
of satiation, as opposed to the Gaussian process prior. It’s important to realize that
estimation proceeds from the vector of price, total expenditure, and quantities (zero
or one) from the final goods. The data requirements are minimal to estimate each
model. The nonlinear rate of satiation is estimated from the sudden variations in
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(a) Parametric (b) Gaussian process

FIGURE 2.3: Estimated utility of the outside good when the correct
parametric functional form is imposed (a) and when a Gaussian pro-
cess prior is used on the latent utility function (b). The ground truth
is a utility function of the power form: uz(z) = z0.7. Note that the
realized utility values are unobserved by the analyst. The hyperpa-
rameters of the Gaussian process are manually set and not estimated,
for simplicity and as it significantly reduces the computational bur-

den.

probabilities of chosen goods when expenditure increases, characterized by different
empirical choice distributions with increased expenditure.

In a third study, we use an outside good functional form u(z) = 3 − exp(2 −
0.7z), which displays less satiation at first, and more aggressive satiation after a
threshold is reached (Figure 2.5). Once more, the parametric functional form strug-
gles to fit the change in satiation rate and compromises across the two rates. On
the other hand, the Gaussian process prior is able to fit this “threshold-induced”
preference on the outside good.

In a fourth study, we use an outside good functional form u(z) = 0.7z, which dis-
plays no satiation (Figure 2.6). Once more, the parametric functional form struggles
to fit the change in satiation rate and compromises across the two rates. On the other
hand, the Gaussian process prior is able to fit this “threshold-induced” preference on
the outside good.

Table 2.7, Table 2.10 and Table 2.13 show how each model (parametric baseline
and Gaussian process prior model) generalize on test observations. We use the pos-
terior predictive modal values to generate predictions for each final good (0,1,2). The
hit probabilities are higher for each Gaussian process specification, and the negative
log predictive densities are also lower, suggesting that the GP-based models fit the
data better.
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(a) Parametric (b) Gaussian process

FIGURE 2.4: Estimated utility of the outside good when the mis-
specified parametric functional form uz(z) = zα is imposed (a) and
when a Gaussian process prior is used on the latent utility function
(b). The ground truth is a utility function of the following form:
uz(z) = sin(0.7z) + 0.7z. Note that the realized utility values are
unobserved by the analyst. The hyperparameters of the Gaussian
process are manually set and not estimated, for simplicity and as it

significantly reduces the computational burden.

Predicted
Actual 0 1 2

0 0.71 0.16 0.08
1 0.05 0.86 0.18
2 0.00 0.07 0.88

TABLE 2.5:
Nonhomothetic

Hit Probability: 0.82
NLPD: 86.06

Predicted
Actual 0 1 2

0 0.71 0.16 0.08
1 0.00 0.86 0.24
2 0.00 0.02 0.96

TABLE 2.6:
Gaussian process

Hit Probability: 0.84
NLPD: 81.61

TABLE 2.7: Confusion matrix on test observations, comparing a non-
homothetic model and a Gaussian process model, with a ground truth
of uz(z) = 3− exp(2− 0.7z) and a misspecified parametric prior of
uz(z) = zα. Hit probabilities are calculated using posterior predictive
modal values. The Gaussian process model demonstrates improved
predictive accuracy and a better fit to the test data in terms of negative

log predictive density (NLPD).

2.5 Discussion

To be able to use the proposed model in both applications, a regime of informative
likelihood is necessary, such that the functional form is identified by the data. In par-
ticular, a high density of the data through multiple price points changes is crucial to
identify the functional form of utility. Another limitation in the first application is the
joint Gaussian process prior on marginal utility and its derivative function does not
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(a) Parametric (b) Gaussian process

FIGURE 2.5: Estimated utility of the outside good when the mis-
specified parametric functional form uz(z) = zα is imposed (a) and
when a Gaussian process prior is used on the latent utility function
(b). The ground truth is a utility function of the following form:
uz(z) = 3− exp(2− 0.7z). Note that the realized utility values are
unobserved by the analyst. The hyperparameters of the Gaussian
process are manually set and not estimated, for simplicity and as it

significantly reduces the computational burden.

Predicted
Actual 0 1 2

0 0.77 0.09 0.12
1 0.15 0.86 0.18
2 0.02 0.06 0.79

TABLE 2.8:
Nonhomothetic

Hit Probability: 0.82
NLPD: 91.24

Predicted
Actual 0 1 2

0 0.85 0.08 0.00
1 0.03 0.95 0.09
2 0.03 0.05 0.79

TABLE 2.9:
Gaussian process

Hit Probability: 0.895
NLPD: 54.52

TABLE 2.10: Confusion matrix on test observations, comparing a non-
homothetic model and a Gaussian process model, with a ground truth
of uz(z) = sin(0.7z) + 0.7z and a parametric prior of uz(z) = zα. Hit
probabilities are calculated using posterior predictive modal values.
The Gaussian process model demonstrates a significantly higher pre-
dictive accuracy and a better fit to the test data as indicated by the

lower NLPD value.

have any monotonicity restrictions. Economic theory suggests that the utility func-
tion must be quasiconcave to have necessary and sufficient first-order Kuhn-Tucker
conditions. When utility is additive, and we have U(q1, . . . , qn) = F(∑K

k=1 uk(qk))

where F is a strictly increasing real function, then at least n − 1 of the functions
u1, . . . , un must be concave functions, without necessarily destroying the quasicon-
cavity of U (Yaari, 1977). Van Soest, A. Kapteyn, and Kooreman (1993) show that
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(a) Parametric (b) Gaussian process

FIGURE 2.6: Estimated utility of the outside good when the misspec-
ified parametric functional form uz(z) = zα is imposed (a) and when
a Gaussian process prior is used on the latent utility function (b). The
ground truth is a utility function of the following form: uz(z) = 0.7z.
Note that the realized utility values are unobserved by the analyst.
The hyperparameters of the Gaussian process are manually set and
not estimated, for simplicity and as it significantly reduces the com-

putational burden.

Predicted
Actual 0 1 2

0 0.83 0.10 0.07
1 0.06 0.91 0.19
2 0.01 0.09 0.63

TABLE 2.11:
Parametric baseline

Hit Probability: 0.845
NLPD: 69.83

Predicted
Actual 0 1 2

0 0.83 0.11 0.04
1 0.06 0.92 0.15
2 0.03 0.05 0.74

TABLE 2.12:
Gaussian process

Hit Probability: 0.865
NLPD: 59.06

TABLE 2.13: Confusion matrix on 100 test observations, with a
ground truth of uz(z) = 0.7z and a misspecified parametric prior of
uz(z) = xψ. NLPD: negative log predictive density. Hit probabilities
are calculated using posterior predictive modal values. The Gaus-
sian process model predicts better on test data, misclassifies choice

instances less often, and fits the test data better.

when a maximum likelihood estimator is used and utility is not strictly quasicon-
cave, the Kuhn-Tucker conditions may suffer from the “coherency problem” that is
they may not yield a unique vector of optimal quantities. However, they also men-
tion that flexible and tractable demand systems only have local concavity properties,
and coherency can be guaranteed by imposing regularity conditions in some rele-
vant region of price or quantity space. One way to make impose a monotonic prior
on marginal utility is to use a transformed Gaussian process. We refer the interested
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readers to Appendix B.2 for an original method to implement this monotonic prior.
The second application relaxes the assumption of strong separability by using a

nonhomothetic choice model with intermediary and final goods, building on house-
hold production theory. The final goods subutility is separable, but the intermediary
goods utility becomes non-separable. However, the second application makes the
assumption of a known input-output matrix, where the exact mix of intermediary
goods is known ahead of time.

2.6 Conclusion

This chapter proposes a general framework to incorporate a flexible functional prior
on direct utility models, with a structural interpretation. We highlight that mis-
specifying the functional form of the outside good severely impacts the estimation
of preference parameters for inside goods demanded in continuous quantities, and
in the case of final goods demanded in discrete quantities. The first application
displays rich insights on baseline preferences and satiation rates that a parametric
model could not capture adequately. The flexibility of Gaussian processes is a desir-
able property to obtain additional information on preferences at the individual level.
The second application develops a nonhomothetic choice model that overcomes the
limiting assumption of additive utility, through household production theory. We
show in a series of numerical simulations, that our Gaussian process choice mod-
eling framework is robust to misspecification in the outside good utility functional
form, which in turns leads to better choice prediction, and more accurate price effect
estimation.
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Chapter 3

Digital Twins: A Generative
Approach for Counterfactual
Customer Analytics

This chapter provides a novel methodology, Digital Marketing Twins, that automat-
ically extracts latent features from individual-level brand survey responses to in-
form a statistically-principled, deep generative model of customer-side brand affin-
ity and firm-side performance factors. The proposed model enables marketers to
find drivers of individual-level brand affinity, as opposed to traditionally observed
metrics that must be analyzed in aggregation. The framework serves a counterfac-
tual purpose at the customer level. The generative part of the model completes the
distribution of survey responses over time, and across firms – thereby addressing
the archetypal missing data problem – by imputing customer responses in counter-
factual regimes. The proposed prescriptive framework also proposes policy opti-
mization through customer surveys, using Bayesian optimization, which efficiently
identifies “paths of least resistance” among customer responses to service-quality
questions – a search that otherwise would represent a complexity of O(nd). This re-
search applies Digital Marketing Twins methodology to the competitive landscape
of the U.S. wireless telecommunications retail market, leveraging a unique dataset
of large-scale quarterly brand surveys from all three major carriers (AT&T, T-Mobile,
and Verizon) from 2020 to 2022. Empirically, this approach reveals latent asymme-
tries in competition in terms of brand affinity, together with a nonlinear increase in
brand affinity for certain types of drivers, such as satisfaction with network speed,
but a nonlinear decrease in brand affinity for customers who report greater like-
lihoods of changing plans, providers, or devices, relative to their current wireless
services.

3.1 Introduction

Customer surveys are ubiquitous tools. Marketers leverage them to fuel brands and
boost corporate growth, as well as determine the causes of customer satisfaction
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and of customer churn. Marketing researchers adopt them to learn customer pref-
erences, gauge customer satisfaction, identify competitive offers, improve existing
products and services, tailor marketing strategies, and innovate personalized ser-
vices. Due to the ever growing complexity, and frequency of customer surveys and
survey touchpoints though, firms today mostly rely on third-party platforms (e.g.,
Salesforce, HubSpot) or survey companies (e.g., Ipsos and Kantar) to execute large-
scale customer surveys, known commercially as brand surveys. The increasing scale
and scope of such brand surveys also is part of a broader trend of marketers em-
bracing data-driven approaches, with an emphasis on the use of behavioral metrics
to compute customer lifetime value (CLV) (e.g., Venkatesan and Kumar, 2004; Fader,
Hardie, and K. L. Lee, 2005). Behavioral metrics help identify which customers
are at risk of churning, though recent research also calls for efforts to distinguish
the causes from the predictors of churn (Braun and Schweidel, 2011; Ascarza et al.,
2018; Ascarza, 2018). That is, predictors of churn include demographics and behav-
ioral patterns that statistically indicate a high likelihood of discontinuing products
or services, but the causes of churn might include poor customer service, high prices,
product quality issues, or more attractive offerings from competitors. Customer sat-
isfaction targets the root issues that lead to customer attrition (Gustafsson, Johnson,
and Roos, 2005). Moreover, customer satisfaction and dissatisfaction drive compa-
nies’ stock prices asymmetrically: dissatisfaction harms returns far more than a one-
unit increase enhances them (Malshe, Colicev, and Mittal, 2020). Accordingly, a new
methodology is needed to carve out the “paths of least resistance” to individual-level
customer satisfaction; this research proposes a prescriptive framework that pioneers
such policy optimization by relying on customer surveys.

Despite the numerous benefits of customer surveys for marketers, there are two
issues – one theoretical and the other practical – that plague most large-scale surveys
carried out for customer relationship management (CRM) purposes. First, the sur-
veys are difficult to integrate into prescriptive frameworks. Linear functional forms,
strong parametric assumptions, and limited consideration of customer heterogene-
ity as a result of limited or incomplete individual-level data across brands makes it
difficult for marketers to understand customer churn and retention in mature, com-
petitive environments. Which marketing action should be recommended when cus-
tomer satisfaction declines? Although one obvious lever is promotional offers, there
are others; for example, in the wireless telecommunications industry, managers can
increase customer satisfaction by improving network quality and network speeds,
providing better data plans, strengthening brand perception, and solving problems
that customers encounter when using providers’ devices and services. However,
the question remains: which aspects should be prioritized at the customer level?
Second, in practice, customer surveys often are repeated cross-sectional. Because re-
peated cross-sectional surveys represent different sets of customers at various points
in time, they cannot track individual changes. Unlike longitudinal surveys, they
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take “snapshots” and thereby provide less depth of information about individual re-
spondents. If the sampled population changes significantly over time, comparisons
between different cross-sectional surveys become challenging, if not impossible. For
this reason, the nature of data variations in the repeated cross-sectional format of
brand surveys is described as pseudo-longitudinal.

In this chapter, I propose a novel methodology – Digital Marketing Twins – that
leverages large-scale brand surveys conducted by a focal firm and its competitors in
the U.S. wireless telecommunications retail market. This methodology finds paths of
least resistance to individual-level customer satisfaction, in a statistically principled
way. It uses a unique dataset from a representative sample of customers of AT&T,
T-Mobile, and Verizon, the three major players in the U.S. telecommunications mar-
ket. Using quarterly cross-sectional survey responses that span ten quarters – from
2020 to 2022 – the methodology overcomes both the substantive and technical limita-
tions previously mentioned. The framework builds a generative model of customer
preferences by flexibly mapping individual-level surveyed characteristics to various
dimensions of customer satisfaction. Generative models capture the joint probabil-
ity distribution between observed and latent variables of interest. In practice, they
provide the steps that explain how the data are assumed to be generated, allowing
marketers and researchers to incorporate domain expertise into their models. The
generative aspect not only supports the forecasting of customers’ responses in the
next quarter, but also provides counterfactual responses according to different sce-
narios, such as customer responses as if they were using a different wireless carrier,
all else being equal.

The digital twins approach, already an established method for counterfactual
simulations in the realm of manufacturing, presents a novel and previously unex-
plored avenue for application within the marketing field. Until now, this innovative
approach has, to the best of my knowledge, remained unapplied to this context.
Digital twins integrate data from different sources to mimic the behavior of physi-
cal objects or systems; they can be used to test hypotheses, simulate scenarios, and
optimize the performance of the systems. The use of generative models as a basis
for digital twins is not novel; for example, generative adversarial networks (GANs)
and conditional GANs can learn distributions of interest in structures with material
nonlinearities and uncertainties (Tsialiamanis et al., 2021). In marketing contexts,
digital twins serve a counterfactual purpose at the customer level. The generative
part of the model completes the distribution of survey responses over time, and across
firms, such that it can address the archetypal missing data problem. The proposed
Digital Marketing Twins methodology offers a solution to the missing data problem
that arises from the pseudo-longitudinality of brand surveys – in which individual
respondents can be only observed in one time period and at one company – by im-
puting customer responses in the next time period and in a counterfactual regime
in which all individually observed characteristics remain constant. The goal is to
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infer customer satisfaction under counterfactual regimes of their experiential, en-
gagement, and usage characteristics, identifying the potential causes of satisfaction.

Table 3.1 provides a summary of the conceptual benefits of the Digital Market-
ing Twins framework. Quasi-experimental methods can be particularly useful for
understanding the effect and strategic value of an intervention on an outcome of in-
terest from recorded CRM data. A combination of propensity score matching and
a flexible Bayesian parametric or nonparametric model such as a GAM, a Gaussian
process (GP), or a mixture-of-normals can be useful for making counterfactual pre-
dictions. However, these methods are seldom scalable out-of-the box; they require
careful selection of kernel functions and/or hyperparameters, which in turn requires
expert knowledge. The quasi-experimental methods’ inference (especially of natu-
ral experiments) is necessarily to quantifying what has happened, rather than what
could happen. Although state-of-the-art predictive CRM methods provide forward-
looking analytical insights, often with the help of rich machine learning techniques,
they lack the ability to provide counterfactuals by focusing on predictors of cus-
tomer churn, neglecting complex structures such as competitive effects, and relying
on flexible statistics of customer behavior.

Predictions / Tactical Counterfactuals / Strategic
Retroactive Basic CRM Reports Quasi-Experimental Methods
Proactive Predictive CRM Models Digital Twins

TABLE 3.1: Digital Marketing Twins as a proactive and strategic
framework for customer analytics.

From a technical standpoint, the goal of this research is to develop a novel deep
generative and probabilistic latent factor model, as well as to leverage Bayesian op-
timization to find the best marketing actions to recommend at the individual level,
from a large-scale survey. The Digital Marketing Twins model captures customer-
side brand affinity at the individual level, for each brand, in each time period, con-
trolling for observed heterogeneity and firm-side factors. The inference model map-
ping from data to the latent space is parameterized by a neural network, for high
flexibility. Latent, customer-side brand affinity provides an interpretable layer that
maps to a latent utility model that in turn yields an ordinal logit structure for brand
survey questions pertaining to customer satisfaction. To generate counterfactual re-
sponses and missing quarters, it relies on amortized inference, learning a set of pa-
rameters that can map any data point to the latent space. I train the model using
stochastic variational inference with mini-batching, for high scalability and uncer-
tainty quantification. After training, a Bayesian optimization method maximizes
individual-level, latent, customer-side brand affinity for customers of the focal firm,
to discover the marketing actions most likely to increase customer satisfaction. This
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maximization leads to a path of least resistance at the individual level, enabling mar-
keters to use surveys to identify causes of satisfaction. Applications of Bayesian op-
timization on a latent space has been applied to other contexts, outside marketing
(e.g., Gómez-Bombarelli et al. 2018; Griffiths and Hernández-Lobato 2020), and is
useful in situations in which gradients are not accessible.

The remainder of the chapter is organized as follows: Section 2 presents a liter-
ature review. In Section 3, contains a description and exploration of the data, us-
ing simple descriptive techniques. Section 4 provides the methodology. Section 5
provides fit metrics, benchmarks the Digital Marketing Twins model against nested
baseline models, analyzes the probabilistic latent factors, and provides counterfac-
tual results. Section 6 introduces a novel prescriptive framework to optimize cus-
tomer satisfaction with Bayesian optimization. Section 7 concludes.

3.2 Related Literature

This work contributes to academic literature on digital twins using generative mod-
eling, as well as to literature on machine learning methods in marketing for com-
petitive environments; it also shows that early models for customer satisfaction are
special cases of the proposed framework.

3.2.1 Digital Twins and Generative Modeling

Tsialiamanis et al. (2021) suggest how to advance system simulation by creating
digital twins for specific systems, referring to fields such as manufacturing, con-
trol systems, the Internet of Things (IoT), smart cities, social networks, and manage-
ment. Digital twins can help predict the behavior of structures in different situations,
thus maximizing the operational lives of the structures and minimizing costs. How-
ever, the construction of digital twins is inherently complex and uncertain. Aleatory
uncertainty, related to random events, and epistemic uncertainty, related to a lack
of knowledge, are key considerations. To address these issues, Tsialiamanis et al.
(2021) propose the use of generative models as the foundation for a digital twin,
providing estimations of aleatory and epistemic uncertainty. They study two types
of generative models: the Stochastic Finite Element (SFE) method – a physics-based,
white-box model – and the Conditional Generative Adversarial Network (cGAN) –
a data-driven, black-box model. Each has strengths and limitations. For example,
SFE models excel in predefined conditions but struggle with unknown scenarios,
whereas cGANs can perform across a wide range of conditions but cannot extrap-
olate beyond available data. With a hybrid, grey-box approach, incorporating both
models to overcome these limitations, generative models might better accommo-
date uncertainty in digital twins. By combining a generative white box (SFE) and a
generative black box (cGAN), they propose a fully generative grey box that they as-
sess in relation to other existing models, such as variational auto-encoder (VAE) and
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Gaussian processes (GP). In this chapter, on the other hand, I use a deep generative
model building on a variational auto-encoding neural network to mirror the compet-
itive environment, and use a Gaussian process to optimize the latent customer-side
brand affinity.

M. G. Kapteyn, Pretorius, and Willcox (2021) propose a new mathematical foun-
dation for digital twins, that is, computational models that mirror structures, be-
haviors, and contexts of physical assets. Because digital twin applications usually
require extensive resources and expertise for implementation, the authors propose a
unifying mathematical model that uses dynamical systems theory and probabilistic
graphical models, with the digital twin and the physical asset modeled as coupled
dynamical systems that evolve over time, and the digital twin constantly updating
its internal models according to observational data. By dmonstrating this approach
with a digital twin of an unmanned aerial vehicle (UAV), they show how the model
aids in calibration by updating internal models, and facilitating decision-making.
They conclude with the presentation of an abstract state-space formulation for digi-
tal twins, describing a realized dynamic decision network based on this mathemati-
cal model and illustrating its application to a UAV’s structural digital twin.

Finally, Yu et al. (2021) propose a health monitoring solution for complex sys-
tems in smart manufacturing, applying a digital twin approach with a nonpara-
metric Bayesian network model. With advancements in sensor technology and ar-
tificial intelligence, modern manufacturing systems need to be intelligent, visual,
and capable of self-assessing their health throughout their life cycle. The Prognostic
and Health Management (PHM) process is crucial in this context, and the proposed
model offers an innovative solution for tracking the health states of such systems.
The model collects sensor data from the physical world, updating its simulated
physical model in real time and providing optimization and decision support. Their
nonparametric Bayesian network model can adapt in real-time too, thus reducing
model uncertainty. Yu et al. (2021) also include model validation experiments on
electro-optical systems, and provide more accurate health monitoring than a tradi-
tional data-driven Convolution Neural Network (CNN) approach.

3.2.2 Machine Learning Methods in Marketing for Competitive Environ-
ments

Among the proposals for machine learning techniques to study market structures
and competitive landscapes, Netzer et al., 2012 systematically analyze online user-
generated content to “listen” to what customers write about a focal firm’s and com-
petitors’ products; they use text mining to overcome the difficulties involved in ex-
tracting and quantifying the wealth of online data that customers generate and net-
work analysis tools to convert the mined relationships into co-occurrences among
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brands or between brands and terms. (Tirunillai and Tellis, 2014) extract latent di-
mensions of customer satisfaction with quality, using an unsupervised latent Dirich-
let allocation model, and T. Y. Lee and Bradlow, 2011 automatically elicit product
attributes and extract brands’ relative positions from online customer reviews, pro-
viding both predictive and descriptive support for managerial decision making.

Brand competition occurs not only in single markets, but also in different sub-
markets and structured markets. The hypothesis of multiple structured markets
(Kannan and Wright, 1991) helps us understand how brands compete by includ-
ing marketing mix variables. In type-primary markets, “switchers” are highly re-
sponsive to changes in marketing mix variables whereas in brand-primary markets,
the “loyal” segment remains relatively unresponsive to marketing programs (e.g.,
in contexts of ground coffee purchases or store panel records). Ringel (2023) re-
cently proposed the visualization of brand competition in a multimarket member-
ship product (MMP) context, in which products that compete in multiple submar-
kets that are each characterized by distinct competitors and customer preferences,
with competitive relationships inferred from customers’ online searches using boot-
strapped neural network product embeddings in the digital camera market.

3.2.3 Customer Satisfaction and Survey Research

Using an ordered probit model, Kekre, Krishnan, and Srinivasan (1995) study de-
terminants of customer satisfaction for software products and service support for
mainframes and workstations. Their main dependent variable is an overall satisfac-
tion score, measured on an ordered categorical scale. The authors can explain how
certain features of the software, such as reliability, capability and usability, affected
overall satisfaction. They consider other explanatory variables, such as the type of
product and the type of user, allowing for interaction effects. If an ordered logit were
substituted for their ordered probit, their model can be nested within the proposed
framework, by replacing amortized neural networks with linear functions, assuming
that business key performance indicators (KPI) have no impact on customer satisfac-
tion and considering only overall satisfaction as a unique target variable.

3.3 Exploring the Data

The data for this study consist of repeated cross-sectional responses from a brand
survey for all major U.S. telecom carriers (AT&T, T-Mobile, and Verizon) between the
third quarter of 2019 and the third quarter of 2022. Responses are recorded quarterly.
For each carrier – not necessarily in the order previously mentioned, for confiden-
tiality – I observe responses from a sample of 8770 customers, 7129 customers, and
4370 customers, in every quarter. The number of customers is the same across quar-
ters for a given carrier, but the sample of customers for each carrier differs between
quarters (i.e., repeated cross-sectional data).
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According to managerial sources from one of the three major U.S. telecom carri-
ers, the objectives of this survey were threefold: (1) gain an understanding of how
wireless, internet, and pay TV customers view and rate customer experience with
their carrier or provider, (2) determine the driving factors of customer satisfaction,
and (3) determine what the focal firm does well and where it falls behind competi-
tors, according to not only customer satisfaction (i.e., net promoter score) but also
specific drivers and attributes.

3.3.1 Inputs and Outputs

The questions in the survey data fall into three categories, representing three dif-
ferent goals. The first group of questions provides customer characteristics; their
characteristics have a predictive function, because they cannot be manipulated by
managers (e.g., age and ethnicity cannot be influenced by any marketing action).
The second group of perceptual questions offer immediate strategic value to man-
agers, in that they ask customers about their feeling toward competing carriers. The
third group of questions relates directly to customer satisfaction and form the basis
for the proposed digital twin approach, because I assume that managers aim to max-
imize customer satisfaction. Therefore, the survey questions reflect three categories:

• Predictive Variables: during the inference phase, and at test time, these vari-
ables are fixed. In the optimization phase, they remain fixed. A key assump-
tion of the model is that invariant predictors completely characterize customer
heterogeneity. For the empirical application, I use large numbers of socio-
demographic and usage questions, including age, gender, race or ethnicity,
annual household income before taxes, devices at home, name of the wireless
service provider, type of plan, tenure with provider, dollar amount paid per
month for the plan, data usage, 5G usage, and rewards program.

• Strategic Variables: at training time and test time, these variables are fixed.
At optimization time, these variables are the arguments of the optimization
problem, and are assumed to be manipulated by the marketing analyst. They
include:

– Importance of any of the following according to likelihood to recommend:
network in rating, price / value; billing; customer service; general feeling;
plans; rewards and benefits; other factors.

– Satisfaction with network speed; network reliability; data plans that meet
my needs; value of price paid; accuracy of billing; rewards and recogni-
tion; ease of doing business; solving problems for the first time; “brand
for me”; total cost of wireless service; device selection.
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• Target Variables: these variables are reconstructed at inference time, and pre-
dicted at test time, and optimized at optimization time. They include1:

– Likelihood to recommend (LTR) (0-10);

– Likelihood to recommend current provider’s phone to a friend or a col-
league (Phone LTR) (0-10);

– Likelihood to switch wireless service providers within the next 12 months
(Intention to Switch) (0-4);

– Overall satisfaction with current provider (0-9);

– Overall feeling about current provider (0-4);

– Overall feeling about competitions’ providers2 (0-4).

The model also controls for different aspects of firm performances, using Gen-
erally Accepted Accounting Principles (GAAP) and non-GAAP measures published
quarterly by AT&T, T-Mobile, and Verizon between the second quarter of 2020 and
the fourth quarter of 2022. For brevity, I denote these variables as business key per-
formance indicators (KPIs). They include total revenue, operating revenue, cost
of revenue, gross profit, operating expense, churn, and average revenue per user
(ARPU). The measures are standardized. Tables C.1 and C.2 (in the Appendix) lists
all questions included as target variables and strategic variables. Figure C.1 includes
summary statistics at the question level, per carrier.

3.3.2 Multivariate Analysis

Before providing a generative model of the target variables (LTR, Phone LTR, Sat-
isfaction, Overall Feeling about Carrier {1, 2, 3}, Intention to Switch), it is helpful
to understand how they are associated with one another. Therefore, I undertake a
correlation analysis of the target variables, at the carrier level.

First, I recode the Intention to Switch as Retention Likelihood, applying the for-
mula f (x) = 4− x. Intuitively, Satisfaction, Likelihood to Recommend and Overall
Feeling about Own Provider should correlate positively with Retention Likelihood;
an empirical analysis verifies these correlations (Figure 3.1). For each carrier, the
correlation between retention likelihood and satisfaction ranges from 0.28 to 0.31.
The correlation between Retention Likelihood and Feeling about Current Provider
also is positive (respectively, 0.50, 0.43, and 0.46 for Carriers 1, 2, and 3). Phone LTR
is also positively correlated with Retention Likelihood. The strong positive corre-
lations between LTR and Feeling about Own Provider and Satisfaction suggest that

1The complete list of strategic and target variables is available in Appendix A; because there are
more than 300 one-hot encoded predictors, they are not listed here. The complete list remains available
upon request.

2For example, an AT&T customer is asked about their overall feeling about T-Mobile and Verizon,
as two separate questions.
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marketers at least indirectly capture a measure of satisfaction when they record the
popular Net Promoter Scores3 (F. F. Reichheld, 2003).

It is more challenging to understand the relationship between Feeling about
Competitions’ Providers and other target variables. More positive feelings are as-
sociated with a lower Retention Likelihood (correlations from -0.08 to -0.18, Figure
3.1). However, more positive feelings are also associated with higher LTR, Phone
LTR, and Satisfaction, suggesting that customers may simply be “happier” about
the telecommunications industry in general. This suggestion is corroborated by the
slightly positive correlation between all Feeling measures about Own and Competi-
tor’s providers.

Finally, it is interesting to notice symmetries and asymmetries between the three
carriers in terms of correlations across target variables. In terms of symmetries, cus-
tomers from all carriers tend to have more positive or more negative feeling about
all competitions’ carriers simultaneously; moreover, the variable that correlates most
with Retention Likelihood is Feeling about Own carrier, whereas Overall Satisfaction
comes second. In terms of asymmetries, customers from Carrier 3 do not express
positive or negative associations with their Feeling about Own Carriers and Compe-
titions’ Carriers (correlations of 0.01 and 0.03, in Figure 3.1) whereas customers from
Carrier 1 and especially Carrier 2 tend to have a stronger associations (correlations
of 0.14 and 0.16 for Carrier 2, Figure 3.1).

3.3.3 Linear Modeling is Limited for Analyzing Brand Surveys

The first step in gauging whether a nonlinear model is needed to investigate the re-
lationship between explanatory variables (invariant predictors) is to compare two
simple discriminative machine learning models. For simplicity, I use multiple out-
put linear regression as a benchmark for the discriminative linear model, and multi-
ple output random forest as a benchmark for the discriminative nonlinear model.

Multiple output linear regression is a generalization of the simple linear regres-
sion model when more than one output variables is considered. The model learns
a linear relationship between the input variables and each of the output variables.
Each output variable is modeled as a linear combination of the input variables plus
an error term. In contrast, random forests are ensemble learning methods that oper-
ate by constructing a multitude of decision trees and outputting the mean prediction
for a regression task. A multiple output random forest is an extension of this tech-
nique to handle multiple output variables. This method is useful when the output
variables are not independent of each other and share some correlation, as indicated
in Subsection 3.2.

3The Net Promoter Score is the measure that transforms LTR by assigning a +1 to respondents who
indicate a LTR of 0 to 6, 0 to those who indicate a LTR between 7 and 8, and +1 to those who provide a
LTR of 9 and 10, then taking the average across all respondents.
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FIGURE 3.1: Correlation matrices for target variables in the survey,
for each carrier.

Notes: Feeling C1, Feeling C2, and Feeling C3 respectively refer to
Overall Feeling about Carrier 1 (a), Carrier 2 (b), and Carrier 3 (c),

respectively.
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Fitting the multiple-output linear regression and the multiple-output random
forest on the pooled data shows that the coefficient of determination score R2 is
higher for all target variables in the random forest analysis (Table 3.2). This higher
goodness-of-fit metric indicates that the nonlinear model better captures the rela-
tionships between input (invariant and strategic) variables and target variables.

Although linear regression and random forest are useful models, they are fun-
damentally predictive and do not necessarily provide meaningful interpretations of
the relationships between inputs and outputs. For counterfactual reasoning, other
techniques may be more desirable, such as structural equation modeling (SEM). Yet,
even if SEM may be more interpretable, it also yields questionable assumptions, be-
cause it is difficult to know a priori how the different input variables relate to latent
constructs of interest that explain the various target variables that managers care
about and try to optimize.

Data Source
Multiple Output Discriminative Models

Linear Regression (Test R2) Random Forest (Test R2)
Q12 (Likelihood-to-recommend, LTR) 0.78 0.82

Q27 (Phone LTR) 0.30 0.42
Q18 (Satisfaction) 0.58 0.67

Q20Ar1 (Overall Feeling Carrier 1) 0.38 0.58
Q20Ar2 (Overall Feeling Carrier 2) 0.40 0.57
Q20Ar3 (Overall Feeling Carrier 3) 0.39 0.55

Q20 (Intention to Switch) 0.52 0.60

TABLE 3.2: Goodness-of-fit of two discriminative models on a test
sample of the data.

Notes: Multi-output Linear regression is a standard benchmark,
while multi-output random forest is a nonlinear benchmark. A non-

linear model better explains the variation in the data.

3.4 Modeling Framework

Subsection 3.4.1 details the model architecture and training, based on mapping cus-
tomer - side and firm - side input variables to latent variables using amortized neural
networks. After documenting the latent variables and their marketing interpreta-
tions (Subsection 3.4.2), Subsection 3.4.3 presents the model layer for ordered cate-
gorical variables. Subsection 3.4.4 details the inference procedure, with implemen-
tation details. Section 3.5 outlines the predictions tasks, and Section 3.6 offers a de-
scription of the optimization phase.

3.4.1 Mapping Customer-Side and Firm-Side Input Variables to Latent
Parameters through Amortized Neural Networks

The survey data refer to N respondents and K carriers. In a single quarter t, for a
given firm k, a subset Nkt of these N respondents are surveyed, such that

∑K
k=1 ∑T

t=1 Nkt = N. The number of respondents within a firm remains constant over
time, but individuals are not surveyed more than once, such that Nk1 = · · · = NkT



3.4. Modeling Framework 81

for all k = 1, . . . , K. Throughout this chapter, K = 3, referring to the three largest
carriers: AT&T, T-Mobile, and Verizon4. The survey data has J questions. I label the
Jpred predictive variables xpred

it , the Jstr strategic variables xstr
it and the Jtargets targets

yijtk, where i = 1, . . . , N customers, j = 1, . . . , J questions, k = 1, 2, 3 firms. In
summary, Jstr + Jpred + Jtargets = J. The training phase does not make a conceptual
distinction between invariant predictors and strategic variables, because they enter
the same neural network. Therefore, xit = [xstr

it , xpred
it ]T. For a given quarter t and a

given firm k, business KPI are xKPI
kt , which is a vector of size H.

Amortized inference refers to inference over variational parameters that are pa-
rameterized by a function of the data, instead of approximating separate variables
for each data point (Cheng Zhang et al., 2018). For this research, the parameterized
function is the neural network f (.) that represents the parameters of the variational
distribution across all data points from the J questions in the survey. An alterna-
tive would be to separately learn a set of parameters for each data point, rather than
learning a set of mean and location parameters for each customer, at each time pe-
riod, and each firm. The word “amortized” herein means that the cost of learning
the variational parameters is “amortized” over all the data points.

Amortized inference is a powerful way to infer the posterior over customer-level
and firm-level latent variables according to xKPI , xstr and xpred. Using variational in-
ference to approximate the posterior distribution of customer-side and firm-side la-
tent variables implies replacing the locational variational parameters with a function
of the data where parameters – weights and biases of neural networks – are shared
across all data points, for all firms and at all quarters. The neural network param-
eters automatically learn a complex representation of the inputs across firms and
over time, and this representation is mapped to latent variables that are the building
blocks of the target variables. As a major methodological contribution, the current
study proposes amortized inference as a way to augment repeated cross-sectional
data.

The feed-forward neural networks f (.) and g(.) map customer-side and firm-
side, respectively, input variables to a set of latent location and scale parameters that
generatively model the target variables. In such feed-forward neural networks, hid-
den layers are dense and sequentially connected. Consider the feed-forward neural
network function f (x; θ f ) with D hidden layers; is detailed as follows. The input
layer is d = 0, hidden layers are d = 1, 2..., and the output layer is D. The weights
connecting layer d and layer d + 1 can be referred to as W(d), and the biases in layer
d + 1 are indicated by b(d). The pre-activation at layer d + 1 can be denoted as a(d+1),
and the post-activation is h(d+1). The activation function is the hyperbolic tangent

4Sprint was also a major carrier but merged with T-Mobile U.S. on April 1, 2020. It was the fourth-
largest telecommunications carrier in the United States before the merger. Since the data starts in Q2
2020, I do not consider Sprint customers in the analysis.
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(tanh), such that:

a(1) = W(0)xit + b(0) (3.1)

h(1) = tanh(a(1)) (3.2)

a(2) = W(1)h(1) + b(1) (3.3)
...

a(D) = W(D−1)h(D−1) + b(D−1) (3.4)

h(D) = tanh(a(D)) (3.5)

µikt = W(D)
µ h(D) + b(D)

µ (3.6)

νikt = exp
(

W(D)
ν h(D) + b(D)

ν

)
(3.7)

Here, xit is the batch input to the network. Because νikt is a variance and must
be non-negative, I apply an exponential function to obtain it from a(D). The weights
and biases (collectively referred to as θ f ) are learned by training the network. These
weights and biases are parameters of amortized neural networks.

For the feed-forward neural network g(xKPI ;θg) with D′ hidden layers, the in-
puts are the KPI for the three major carriers in the U.S. market (AT&T, T-Mobile, and
Verizon), published quarterly over the corresponding 10 quarters of survey data.
The neural network’s output at a batch level is a concentration parameter γktl and a
rate parameter ωktl . The function g also relies on amortization to learn a shared rep-
resentation across all quarters and firms instead of learning individual γktl and ωktl .
The dimension l refers to a set of L latent dimensions summarizing the various as-
pects of performance across firms and over time. These L latent dimensions provide
dimensionality reduction, similar to principal components in principal component
analysis.

Finally, the use of the tanh activation function introduces non-linearities between
layers, allowing the network to learn complex mappings from inputs to outputs.
The tanh function is particularly well-suited to the empirical application, due to its
differentiability and its output range of −1 to 1, which helps with the normalization
of the outputs.

3.4.2 Interpreting the Probabilistic Latent Factors Generating Digital Twins

For the latent parameter layer of the digital twin architecture, which includes the
latent variables and their prior distributions, recall that i indexes customer identifiers
from 1 to N; k indexes firms from 1 to K; t indexes time from 1 to T. Customer-side
factors include the following latent variables:

• zikt ∼ N (µikt, νikt): this latent factor has a Normal prior distribution. Because
µikt and νikt are functions of an amortized neural network, this prior is highly
flexible and encodes a wide range of customer characteristics, automatically
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accounting for interactions and nonlinearities. This parameter is interpreted
as the customer-side brand affinity factor; it represents, for a given customer at a
given time, their affinity with brand k.

• αjkt ∼ N (0, 1): The parameters αjkt represent the baseline for question j for firm
k at time t. It has a standard Normal prior distribution for simplicity.

• β jl ∼ N+(0, 1) The parameter β j is interpreted as the polarization of question j
in the l-th dimension of service quality, that is, how much question j elicits a
response on the l-th service characteristic.

The firm-side factors include the following latent variables:

• ϕktl ∼ G(γktl , ωktl): The parameterization of a prior on ϕktl , a firm-side latent
factor on dimension l for firm k at time t, has a Gamma prior distribution. Be-
cause γktl and νktl are functions of an amortized neural network, this prior also
is highly flexible; it encodes a wide range of firm characteristics, automatically
accounting for interactions and nonlinearities.

Support for both ϕktl and β jt is the real positive line, for identification. The sign of
zikt becomes then immediately interpretable, as explained in Subsection 4.3.

3.4.3 Model Layer for Ordered Categorical Outcomes

Because the target variables are all ordered categorical variables, I use an ordered
logit specification. Let y∗ijkt denote the latent response of respondent i to the entire
set of J questions. Questions have different numbers of scale points: some questions
have five scale points (0-4) whereas others have 10. For M + 1 common and ordered
cut points {cm : cm−1 ≤ cm, m = 1, . . . , M} where c0 = −∞ and cM = +∞, latent
utility values y∗ijkt depend linearly on αjkt, which are baseline values for question j at
firm k; the customer-side brand affinity zikt; the polarization of question j in firm-side
latent dimension l, β jl ; and the firm-side factors ϕktl :

y∗ijkt = αjkt + zikt

L

∑
l=1

(
β jϕkt

)
l + ε ijkt where ε ijkt ∼

i.i.d.
EV(0, 1) (3.8)

The individual responses yijkt for a customer i = 1, . . . , N of firm k = 1, . . . , K at ques-
tion j = 1, . . . , Jtargets, at time t = 1, . . . , T take the following values: m = 1, 2, . . . , M
where M is the maximum number of scale points for question j. Because questions
differ in their total number of scale points, m and M should have a subscript j, but I
omit it for simplicity. The following holds:

yijkt = m if cj,m−1 ≤ y∗ijkt ≤ cj,m (3.9)

where a Dirichlet prior model applies to ordinal probabilities, which serves to
induce cut points indirectly. This approach enables a proper, principled prior on the
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cut points, which is useful when some categories are not strongly separated due to
their data sparsity in some categories (Betancourt, 2020).

By marginalizing out the latent utilities y∗ijkt, it is possible to write the probability
of observing category m for question j in customer i of firm k at time t:

p(yijkt|cj,1, . . . , cj,M) =



Π(cj,1 − αjkt − zikt ∑L
l=1
(

β jϕkt
)

l) if m = 1

Π(cj,m − αjkt − zikt ∑L
l=1
(

β jϕkt
)

l)

−Π(cj,m−1 − αjkt − zikt ∑L
l=1
(

β jϕkt
)

l)) if 1 < m < M

1−Π(cj,m−1 − αjkt − zikt ∑L
l=1
(

β jϕkt
)

l)) if m = M

(3.10)

where Π(.) is the cumulative distribution function of the Type I extreme value dis-
tribution, that is, the logistic function.

3.4.4 Inference and Implementation

The set of latent variables to infer is z̃ = [z,α,β,ϕ,µ,ν,γ,ω]. The set of parameters
to learn is θ =

[
θ f ,θg

]
. By writing y as the set of all observations (survey data and

KPI), it is possible to approximate the posterior distribution pθ(z̃|y).
Because of the size of the data, and the use of neural networks to parameterize

the latent variables, exact inference (e.g., Markov chain Monte Carlo algorithms) is
not feasible. Therefore, it is necessary to rely on approximate Bayesian inference;
stochastic variational inference (SVI) aims at determining a variational distribution
qλ(z̃) that is as close as possible to the posterior pθ(z̃|y) as measured by Kullback-
Leibler (KL) divergence. Minimizing the KL divergence is equivalent to maximiz-
ing the evidence lower bound (ELBO) on the log marginal probability of the data
log pθ(y), with log pθ(y) ≥ ELBO and log pθ(y)− ELBO = KL (qλ(z̃))∥pθ(z̃|y)).

The evidence lower bound (ELBO) is:

L(λ) = Eqλ(z̃) [log pθ(y, z̃)]−Eqλ(z̃) [log qλ(z̃)] (3.11)

The ELBO creates two expectations with respect to the variational distribution.
The first expectation, Eqλ(z̃) [log pθ(y, z̃)], represents the expected log-likelihood of
the data given the model parameters, which encourages densities that place their
mass on configurations of the latent variables that explain the observed data (Blei,
Kucukelbir, and McAuliffe, 2017). The second expectation, Eqλ(z̃) [log qλ(z̃)], is the
negative divergence between the variational density and the prior. Maximizing the
ELBO is akin to finding a balance between encouraging the model to fit the data well
(maximizing the first term) and encouraging densities close to the prior (maximizing
the second term).

In line with standard practice, this study uses mean-field variational approxima-
tion. The model implementations relies on the machine learning framework Google
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JAX for fast computation on Graphics Processing Unit (GPU), and the NumPyro
probabilistic programming language (Phan, Pradhan, and Jankowiak, 2019). With
the Adam optimization algorithm (Kingma and Ba, 2014), a Monte Carlo version of
the loss function is optimized in Equation (3.11) and a test set is used to determine
all model hyperparameters, namely, the number of hidden layers per neural net-
work, number of hidden units per neural network, and number L of latent firm-side
dimensions.

3.4.5 Digital Twin Generative Process

To summarize, the specification is such that for all m = 1, . . . , M, i = 1, . . . , N, j =
1, . . . , J, k = 1, . . . , K and t = 1, . . . , T:[

µikt

νikt

]
= f (xit,θ f ) where f is a feed-forward neural network[

γkt

ωkt

]
= g(x(KPI)

kt ,θg) where g is a feed-forward neural network

β j ∼ N+(0, 1)

zikt ∼ N (µikt, νikt)

ϕktl ∼ Gamma(γktl , ωktl)

y∗ijkt = αjkt + zikt

L

∑
l=1

(
β jϕkt

)
l + ε ijkt where ε ijkt ∼

i.i.d.
EV(0, 1)

π(cj|κ, λ) = D(p(cj, λ)|κ).|J(cj, λ)|
yijkt = m if cj,m−1 ≤ y∗ijkt ≤ cj,m

where D is the Dirichlet probability density function, and J is the Jacobian ma-
trix. A uniform Dirichlet prior κ = (1, 1 . . . , 1) and the anchor point λ = 0 iden-
tify the model, without loss of generality. Figure 3.2 provides an illustration of the
full digital twin architecture. The hybrid deep learning and probabilistic generative
framework allow the best of both worlds: high flexibility and representation power
of the amortized neural network on the left hand side of the illustration, in orange,
and high interpretability and theory-based for counterfactual reasoning on the right
hand side, in green.

3.4.6 Identification

Two core empirical challenges prevent marketing analysts from drawing respondent-
level counterfactual inferences from the observed outcomes of brand surveys, or
even when utilizing discriminative models. Among the T repeated cross-sectional
surveys for a carrier k, it is highly unlikely that any respondent would repeatedly
manifest across surveys. This data regime is not only common in commercial brand
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FIGURE 3.2: A deep probabilistic architecture of the modeling frame-
work. An amortized inference neural networks (in orange, top) take
survey data question as inputs and parameterize latent customer-side
brand affinity zikt. Another amortized inference neural network (in
orange, bottom) takes KPI data as input and parameterize firm-side
performance factors ϕktl . These two types of latent variables are then
combined in the probabilistic model layer according to the Equation
(3.8) as a latent customer-level utility. This latent utility is then eval-
uated against latent question-level cut points to present ordered cat-

egorical variables for target customer satisfaction questions.

surveys, but across typical survey designs in the social sciences (Groves et al., 2011).
Hence, the first challenge is that such pseudo-longitudinal setting disallows the ap-
plication of standard longitudinal panel models to analyze these types of data. Sec-
ond, except in rare cases, the presence of any customer i of carrier k in the U.S.
wireless telecom sector precludes the possibility of their simultaneous presence as a
customer of competing carrier k′. These two identification challenges motivate the
development of Digital Marketing Twins.

In this section, I establish the mechanism of Digital Marketing Twins’ generative
framework in identifying respondent-level counterfactual outcomes across K carri-
ers and T periods, while assuming a data generating process of the survey outcomes
whereby any respondent i is only ever observed for a single carrier k, in a single
period t.

The counterfactual identification strategy described below extends missing data
approaches found in marketing and statistics (Rubin, 1976; Little and Rubin, 2019;
Rossi and Allenby, 2003) to formalize a set of antecedent modeling assumptions and
how they translate into the consequent posterior predictive distribution. Where ap-
propriate, testable vs. untestable assumptions necessary for internal validity are



3.4. Modeling Framework 87

delineated, along with their implications on external validity (i.e., managerial ac-
tionability). Finally, I draw parallels to the closely related missing data paradigm
of the Rubin Potential Outcomes framework (Rubin, 1974), as well as contrast the
counterfactuals under Digital Marketing Twins versus causal estimands based on
potential outcomes – namely, in the analysis of brand surveys, there does not exist
the notion of treatment interventions, which is the focal design of any causal infer-
ence undertaking.

Target counterfactual. The Digital Marketing Twins framework enables the iden-
tification of the posterior predictive distribution of:

p`(zik′ |xikt) (3.12)

where k′ ̸= k such that xikt is the J-length vector of observed survey outcomes for
customer i of firm k who responded in period t, zik′ is a T-by-D matrix of customer-
side brand-affinity if i were – counterfactually – a customer of firm k′ instead.

Let D denote the observed data generating process, which face the two afore-
mentioned repeat cross-sectional empirical limitations; andD∗ denote an oracle data
generating process whereby all N respondents appear in all T periods and for all K
carriers. Samples drawn from the above target distribution (Eq. 3.12) are defined as
counterfactual samples if the corresponding stationary posterior givenD is identical
to the stationary posterior given D∗.

If given oracle data with sufficiently large N, {x}N
i=1 ⊆ D, an arbitrarily flexible

generative model can robustly and consistently infer the above target distribution
(Eq. 3.12) by simply learning a bijective mapping of a respondent’s outcomes from
any period t, under any carrier k, to respondent’s own outcomes for any other pe-
riod t′ ∈ {1, . . . , T} and carrier k′ ∈ {1, . . . , K}. However, oracle data are infeasible
to collect, both due to cost of carrying out large-scale longitudinal brand surveys as
well as the market reality that the vast majority of U.S. wireless consumers procure
service from a single carrier at any time. Therefore, the identification of the coun-
terfactual posterior predictive distribution from observed data relies on (1) desired
empirical regularities in D∗ that have equivalents in D, and (2) undesired empirical
regularities in D that must be controlled for via model specifications.

Formally, the posterior predictive distribution, conditional on observed data,
that produces the desired counterfactuals must meet the following criterion on the
KL-divergence, a measurement of the difference between distributions:

DKL {p`(zik′ |xikt ⊂ D∗)∥p`(zik′ |xikt ⊂ D)} = 0 (3.13)

• Assumption 1: Ignorability in y. Extending the classic econometric age-period-
cohort (APC) approach (e.g., Mason et al., 1973; Yang, 2006) to modeling repeat
cross-sectional panels via partial pooling, here ignorability posits that idiosyn-
cratic differences across time and carriers can be deconfounded (i.e., ignorable)
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via the latent variables αjkt and ϕkt. Whereas the APC framework assumes all
cohort differences (i.e., selection artifacts and other unobservables) are cap-
tured by the additive parameter αjkt, in Digital Marketing Twins, this decon-
founding mechanism is extended to also include the multiplicative term ϕkt.
Together, as amortized parameters, αjkt and ϕkt serve to flexibly control for con-
founding arising from unobservable factors that would bias the counterfactual
inference of zik′ in repeat cross-sectional settings.

• Assumption 2: Comparability in x. As shown in the model-free evidence, the
brand surveys exhibit strong overlapping empirical support in input features
x across periods and carriers. Having this overlap in the observed data gener-
ating process D signifies that – despite any respondent i is only ever observed
for a single carrier k, in a single period t – the distributions of x are compara-
ble across any other period t′ ∈ {1, . . . , T} and carrier k ∈ {1, . . . , K}. Under
comparability, any sample from the posterior, when conditioned on identical
values of x but varying in period and/or carrier, can be considered as interpo-
lations within the empirical support – i.e., robust and consistent to the equiva-
lent posterior under D∗.

• Assumption 3: Exchangeability in z. Given assumptions 1 and 2, it follows
that p`(zik′ |xikt) (Eq. 3.12) is robust and consistent to any permutation in the
indexing of z and x. Should the indexing entail p`(zik′ |xikt), then we can inter-
pret this posterior predictive distribution as the counterfactual distribution of
the customer-side brand-affinity of customer i if they were – exchangeably – a
customer of firm k′ instead.

Lastly, while Eq. 3.12 has a canonical form of a conditional distribution, its valid-
ity is asserted through exchangeability, which is a weaker assumption than condi-
tional independence. Whereas the latter can be assessed through empirical hypoth-
esis testing, the former arises in counterfactual and missing data contexts where the
validity of the inference on the unobserved outcome(s) must arise from assumptions
on the data generating process, as done above. In summary, recognizing the “chasm"
between the observed data generating process of surveys, D, versus the ideal data
generating process D∗, the Digital Marketing Twins framework utilizes flexibly pa-
rameterizations to control for observed and unobserved confounders (Assumption
1), as well as exploits essential empirical regularities in D that mimics D∗ (Assump-
tion 2), to establish that the counterfactual inferences capable of being drawn from
Eq. 3.12 are exchangeably valid across time and firms (Assumption 3) – despite the
absence of the ideal, but unrealistic, longitudinal survey data.
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3.4.7 Relation to Prior Literature

Variational Autoencoders

My model is novel in its use of customer-level predictors and strategic variables that
parameterize an amortized neural network for high flexibility, that output structured
latent variables that can be subsequently interpreted by marketers, and generate a
coherent model of customer satisfaction. However, neither the use of amortized
neural networks nor the use of Bayesian optimization in marketing is novel.

The model resembles a Variational Autoencoder (VAE) (Kingma and Welling,
2013), which is also a generative model that also uses variational inference for learn-
ing. The differences lie primarily in the specific structure of the model and the form
of the decoder. In the VAE, the encoder is a neural network that takes the observed
data as inputs, then outputs parameters of a distribution over the latent variables.
The proposed model has two such “encoders”, f and g, each of which produces pa-
rameters for different distributions over subsets of the latent variables, such that f
encodes µikt and νikt for customer-side brand affinity zikt, and g encodes γkt and ωkt

for firm-side factors ϕkt.
In a VAE, the latent variables capture unobserved factors of variation in the data,

whereas zikt and ϕkt capture observed factors of variation in the data, because they
are parameterized by survey and KPI inputs. The only unobserved factors of varia-
tions come through the type I extreme value that affects latent utilities.

The decoder in a VAE takes the latent variables and generates parameters for the
distribution over the observed data. The equations involving yijkt and y∗ijkt can be
interpreted as part of a kind of decoder that uses the latent variables, together with
an ordered logit model, gives a distribution over the observed variable yijkt. How-
ever, unlike a VAE, this decoder does not involve a neural network but is determined
by an ordered logit model and a latent factor model that decomposes firm-side and
customer-side effects.

Bayesian Models in Political Science

The proposed model connects loosely with political science literature, through the
notion of Bayesian ideal points.5 In political science, a latent factor model quanti-
fies lawmakers’ political preferences using roll-call votes (Jackman, 2001; Clinton,
Jackman, and Rivers, 2004). Lawmakers yay or nay voters on a shared set of bills
can be coded as a binary variable yij for lawmaker i voting for bill j. Each law-
maker is assumed to have a latent variable zi, also known as the ideal point, and
per-bill latent variables (αj, β j). The vote can be modeled as a Bernoulli distribution

5Note that the ideal point in political science has a different meaning that in marketing; in market-
ing, it refers to the hypothetical product attributes or characteristics that a consumer would perceive as
perfect, indicating their absolute preference. Market research and product development often use the
ideal point concept to tailor offerings to align closely with consumer desires, increase product appeal,
and ensure market success.
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yij ∼ N (σ
(
αj + ziβ j

)
) where σ(x) = 1

1+exp(−x) . The customer-side brand affinity
functions as an ideal point, such that each customer’s measurement on target vari-
ables is akin to rating each company.

3.5 Model Results

3.5.1 Fit and Benchmarks

The comparison of the proposed model with three benchmarks confirms its validity,
as the goodness-of-fit metrics in Table 3.3 reveal. The three competing specifications
are as follows: Model (1) is a linear version of the proposed model, in which the
neural networks have been replaced by a linear layer. It is akin to a traditional SEM,
with observed inputs and outputs, but has latent variables parameterizing the rela-
tionship between inputs and outputs. A traditional SEM is therefore a special case.
Model (2) omits individual predictive and strategic variables from the full specifica-
tion, but retains individual level customer-side brand affinity zikt for all i = 1, .., N,
k = 1, ..., K, t = 1, ..., T as “random effects”. Model (3) omits KPI, but retains firm
level performance factors ϕktl for all l = 1, ..., L, k = 1, ..., K, t = 1, ..., T as “random
effects”.

Figure 3.3 shows evidence of convergence, in that the average training and test
loss (i.e., negative evidence lower bound – ELBO) decrease rapidly before stabiliz-
ing. The average test loss is close to the training loss, suggesting good generalizabil-
ity. The greater variance of the test loss results from the test sample being smaller
than the training sample.

In terms of goodness-of-fit, the proposed model (Model (4)) consistently per-
forms better than other models across all carriers and metrics. The average training
and test losses are lowest in this model, indicating that it offers the best fit to the
data. For example, the Average Training Loss for Model (4) is 11.54, lower than the
corresponding values for other models. The same trend is apparent in the Average
Test Loss, in which Model (4) outperforms other models with a loss of 12.81. Further-
more, with regard to the Mean Absolute Error (MAE) for each carrier across different
tasks, Model (4) generally exhibits the smallest error, suggesting it the most capable
of accurately reconstructing the data. Some exceptions involve the Phone LTR and
Carrier Satisfaction for Carriers 1 and 2, and the Retention Likelihood for Carrier 3,
for which Model (4) does not perform best. However, the overall performance of
Model (4) remains superior.

Thus, Table 3.3 suggests that a neural network model that includes individual
predictors and KPI performs best among the presented models across a variety of
reconstruction tasks. It also indicates the complexity of the relationships in the data
and the ability of neural networks to better capture these complex relationships and
extract predictive latent features.
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FIGURE 3.3: Average training and test loss (ELBO), over all individu-
als in training and test sets, respectively.

Notes: The plot suggests that convergence is reached after about 1000
epochs, but the model was trained for 10,000 epochs in total. Test
loss is slightly greater than training loss, but remains constant after

convergence, as expected.

3.5.2 Analyzing and Interpreting the Probabilistic Latent Factors

A crucial aspect of the proposed framework is its ability to analyze and interpret
the estimated probabilistic latent factors while relaxing the functional form between
various predictors and these factors for maximum flexibility.

Figure 3.4 plots the counterfactual customer-side brand affinities z∗ikt using pos-
terior means across all customers. A darker color signifies higher density. Each dot
represents the triplet (zi1t, zi2t, zi3t) where t = 0, after transformation through a soft-
max function, which is then converted in a barycentric coordinate system to obtain
values that live in a three-dimensional simplex. For example, a customer in Car-
rier 2 with a dot near the “Carrier 1” vertex reflects that the brand affinity level that
customer would obtain if they were assigned to Carrier 1, i.e., the digital twin of that
customer under the counterfactual regime that this customer’s carrier is now Carrier
1.

One interesting phenomenon to notice is the higher density of customers toward
Carrier 1, for all carriers’ customer bases. This digital twin representation suggests
a large group of customers who would have a high brand affinity with Carrier 1, if
they were ever assigned to be its customers. This latent asymmetry in brand affin-
ity could not be identified without a rigorous counterfactual analytical framework.
Carrier 1 likely should target this group of prospective customers to steal them from
Carrier 2’s and Carrier’3 customer bases.

Figure 3.5 plots baseline values αjkt for each target variable over time, showing
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(A) Carrier 1 (B) Carrier 2

(C) Carrier 3

FIGURE 3.4: Plotting counterfactual customer-side brand affinities
z∗ikt, using posterior means across all customers.

Notes: A higher density is signified by darker colors. Brand affinities
have been transformed using a softmax to fit into a simplex. Each
dot represents a customer from a given carrier, and can be projected
onto the edges of the triangle to reveal the manifest digital twins, i.e.,

counterfactual brand affinities summarizing target variables.
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Models (1) (2) (3) (4)

ϕ Linear NN w/o KPI NN
z Linear w/o indiv. NN NN

predictors
No. epochs 10000 10000 10000 10000

Avg. Training Loss 12.22 14.06 11.57 11.54
Avg. Test Loss 13.49 15.81 12.94 12.81

Test Mean Absolute Error (MAE)

Carrier 1 LTR 0.84 1.59 0.67 0.64
Phone LTR 1.39 1.57 1.24 1.27
Carrier Satisfaction 1.10 1.51 0.95 1.00
Overall Feeling Carrier 1 0.53 0.71 0.49 0.42
Overall Feeling Carrier 2 0.68 0.61 0.68 0.64
Overall Feeling Carrier 3 0.55 0.47 0.56 0.50
Retention Likelihood 0.74 0.90 0.69 0.71

Carrier 2 LTR 0.88 1.75 0.69 0.67
Phone LTR 1.31 1.48 1.15 1.17
Carrier Satisfaction 1.11 1.53 0.97 1.01
Overall Feeling Carrier 1 0.70 0.70 0.69 0.68
Overall Feeling Carrier 2 0.51 0.75 0.47 0.43
Overall Feeling Carrier 3 0.61 0.57 0.60 0.57
Retention Likelihood 0.85 1.01 0.81 0.82

Carrier 3 LTR 0.84 1.54 0.63 0.62
Phone LTR 1.35 1.60 1.20 1.21
Carrier Satisfaction 1.11 1.54 0.95 1.00
Overall Feeling Carrier 1 0.75 0.69 0.75 0.70
Overall Feeling Carrier 2 0.76 0.70 0.77 0.71
Overall Feeling Carrier 3 0.49 0.68 0.47 0.38
Retention Likelihood 0.74 0.89 0.68 0.69

TABLE 3.3: Goodness-of-fit metrics. Training and Testing Loss, and
Mean Absolute Error for Reconstruction Tasks. Model (4) is bench-
marked against nested versions (1,2,3). Model (1) assumes a linear
link between inputs (predictive variables, strategic variables, key per-
formance indicators) and latent variables. Model (2) omits individual

predictors. Model (3) omits key performance indicators.

posterior mean and 95% credible intervals. These values represent the base utility
for a given question, at a given time, and for a given carrier, after accounting for non-
parametric variations in individual predictors or KPI. Baseline values for LTR seem
to be lower for Carrier 2, though they seem higher in terms of recommending their
carrier’s phone. Unsurprisingly, baseline values for Overall Feeling about Carriers
1, 2, and 3 are higher for corresponding customer bases. Finally, baseline values for
Retention Likelihood for Carrier 1 and 3 are higher than for Carrier 2; customers of
Carrier 2 are more likely to switch to the competition, on average.

Figure 3.6 plots the carrier performance loading on each target variable over
time. The evidence is more mixed, because reflecting considerable uncertainty, as
also indicated by the credible interval. This uncertainty is propagated into the model’s
predictive performance, explaining why the model with KPI performs only marginally
better than the model without them. An interesting aspect to notice is that carrier
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FIGURE 3.5: Plot of the baseline values αjkt for each target variable
over time.

Notes: These values represent the base utility for a given question, at
a given time, and for a given carrier, abstracting away from individual

predictors or key performance indicators.
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performance loading on Overall Feeling about Own Carrier and Competition’s Car-
rier are well informed, as is also reflected in the lower test MAE shown above in
Model (4) compared with Model (3).

3.5.3 Application: Personalized Marketing Communication Campaigns
using Grid Search on Strategic Variables

After the model is trained, digital twins can be used to optimize personalized mar-
keting communications campaigns. Certain features of telecommunications services
are complex and not well understood or known by customers. The proposed frame-
work allows marketers to automatically rearrange current communication strategies
automatically, to focus on the most critical aspects of customer satisfaction, at the in-
dividual level.

With a grid search on strategic variables for all customers in the test sample of
the dataset, I decrease each customer’s current value by 2 points for each strategic
variable with at least five point scales, then gradually increase each current value by
0.1 increments, until it reaches +2 points. These changes are simultaneously imple-
mented across all customers in 2020 Q2. Figure 3.7 plots individual-level responses
in brand affinity after changing strategic variables from -2 to 2, using the posterior
mean for zikt as a summary statistic. Carrier 2 seems to have a group of customers
with lower brand affinity. Carriers 1 and 3 are remarkably close in terms of brand
affinity level. The plots also offer strong evidence of customer-level nonlinearities
for two strategic variables. A more positive response by customers to a change in
wireless service within the next six months would induce a lower brand affinity, up
to a certain point. However, a more positive response by customers to a satisfaction
question on their providers’ network speed would induce a rapid increase in brand
affinity for most customers.

3.6 Optimizing Customer Satisfaction with Bayesian Opti-
mization

The Digital Marketing Twins model, presented in Section 4, estimates a probabilistic
generative model of customer-side brand affinity and firm-side performance factors.
The analysis in Section 5.3 showed how posterior inference on the model can be used
by managers to undertake campaign personalization, which fits into the broader cat-
egory of discriminative, or segmentation, based analysis in marketing research. The
assumption of partial equilibria in customers’ preferences and perception of brands
and their offerings, conditional on firm-side (e.g., marketing) efforts, is fundamen-
tal to any applied discriminative marketing analysis; in the context of the proposed
model’s inference for the U.S. wireless telecom industry, it is equivalent to assuming
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FIGURE 3.6: Plot of the carrier k performance loading on each target
variable j (∑L

l=1 β jlϕlkt) over time t.
Notes: These values represent the contribution from KPI to target

questions. These values are multiplied to brand affinity.
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(A) “How likely are you to change anything
about your current wireless service in the next 6

months?”
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(B) How satisfied are you with your carrier’s per-
formance on the following aspect of your overall

wireless service experience: Network Speed

FIGURE 3.7: Plotting variations in counterfactual customer-side
brand affinities z∗ikt in response to marginal changes in strategic vari-
ables, between -2 and 2. Each line represents an individual cus-
tomer’s response from a given carrier, in Q2 2020. These plots show
evidence of individual-level nonlinearities in brand affinity responses

to marginal changes in strategic variables.

that the distribution across the customer base’s brand affinity is invariant, because
of ongoing marketing strategies and realizations of capital expenditure.

This assumption is reflected in the retroactive and tactical nature of personaliza-
tion campaigns, which, due to the current strengths and weaknesses across the di-
mensions of an individual’s brand affinity, resulting from customers’ experiences,
usages, and interactions, should tailor forthcoming marketing communications to
highlight strengths and ameliorate weaknesses. By leveraging the Digital Marketing
Twins generative framework, this section highlights its potential as a proactive and
strategic tool, grounded in the statistical perspective that counterfactual reasoning
is a missing data problem, to rationalize and optimize a wireless telecom carrier’s
marketing strategy. Specific marketing strategy dimensions lead to a more optimal
distribution of a customer base’s brand affinity, by taking into consideration not only
differences across customers, but also the competitive landscape.

From an optimization perspective, should the generative model be convex and
smooth everywhere, then an optimal firm-level marketing policy – realized in this
specific exercise as relative emphases across the 33 strategic dimensions – can be
found through differential calculus on the model’s functional form. However, two
computational challenges arise that require the use of Bayesian optimization: (1) the
fitted model specification is almost surely nonconvex, and (2) a brute-force search of
the policy grid creates an infeasible O(nd) time complexity.6

6For example, a grid of 1.0, by 0.1 grid size, would translate into 1033 calculations to be evaluated.
State-of-art GPUs have 20,000 cores, each of which can (optimistically) evaluate the model to calculate
the individual-level brand affinity of all customers in one millisecond. This search thus would still
take 1.58 quintillion years to complete.
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In dealing with these two computational challenges, Bayesian optimization is a
powerful tool that can resolve black-box global optimization problems, particularly
those with expensive function evaluations (Letham and Bakshy, 2019). Bayesian op-
timization combines principles of exploration and exploitation, and uses acquisition
functions to navigate the optimizable design space effectively and feasibly. I intro-
duce a novel expected improvement (EI) acquisition likelihood that will enable mar-
keters to identify paths of least resistance to improve overall and individual-specific
brand affinity within a competitive landscape.

My framework is novel in that it combines a generative model to use with Bayesian
optimization for policy search (e.g., Athey, Wager, et al., 2017). The Digital Market-
ing Twins generative model can be viewed as a form of offline simulators (Letham
and Bakshy, 2019), that elicits the effects of changes to a system more efficiently,
which in this case is the brand affinity distribution of the customer base. Formally,
as an offline simulator in a policy search framework, the Digital Marketing Twins
framework allows (1) exploration of brand affinity distributions under different mar-
keting policy configurations (2) computation of both individual- and aggregate- level
“rewards” (i.e., increase in brand affinity relative to other brands), and (3) a coun-
terfactual estimate of alternative policies on the same customer or segment (Bottou
et al., 2013; Dudík et al., 2014).

The modeling of the counterfactual brand affinity response surface uses the pop-
ular Bayesian optimization implementation through a Gaussian process (GP) prior,
denoted as:

z∗ikt ∼ GP (m(.), K(., .)) (3.14)

I denote brand affinity evaluations from the GP as z∗ikt to indicate that they are coun-
terfactual outcomes that do not necessarily map onto zikt inferred from the data used
to train the Digital Marketing Twins generative model. For this reason, the GP prior
is seen as a distribution over function spaces, and analogously, the goal of Bayesian
optimization is to learn a global policy response set and identify feasible optima. The
prior is characterized by a mean function m(x(str)) = E[ f (x(str))] and a covariance
function K(x(str), x′(str)) = cov[ f (x(str)), f (x′(str))]. The covariance function specifies
the covariance between any two points in the design space, which as noted, consists
of thirty-three strategic variables. Specifically, I use the ARD-RBF kernel, hyperpa-
rameterized by τ (amplitude) and lj (policy-dimension specific lengthscale). The
advantages of the ARD-RBF kernel are that it undertakes variable selection, and it is
infinitely differentiable, which enables me to capture complex nonlinear interactions
through the policy space:

K(x(str), x′(str)) = τ2 exp

−1
2

J

∑
j=1

x(str)
j − x′(str)

j

lj

2
 (3.15)
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In the current study context, the nonparametric GP prior is especially useful as a pol-
icy response surface model for Bayesian optimization. First, it provides uncertainty
estimates for unobserved points, which are crucial for applying an explore/exploit
algorithm. Second, the mean and variance predictions are available in closed form,
enabling fast gradient optimization when identifying the next optimal point to test.
Third, the smoothness assumption allows efficient exploration of the complex, non-
linear relationships between strategic and target variables from the surveys, which
were learned using neural networks during training.

Finally, to choose policies for future evaluation, I use the Expected Improvement
(EI) acquisition function that is integrated over the posterior distribution in brand
affinity, and rationalized over explore/exploit dynamics in this context. The opti-
mization problem I address aims to maximize an objective E[z∗], with the constraints
cj(x

(str)
j ) ≥ 0 for j = 1, ..., J; such that J = 33, representing the strategic variables to

be optimized within feasible constraints – which can be implemented as +/ − 1.0
of the current values. Accordingly, the individual-level improvement at any x∗ over
the current feasible policy (x(str)) can be expressed as:

Ii(x∗(str), x(str)) = max
{

0,
z∗ikt − zikt

K(x∗(str), x(str))−1

}
I
{

c(x∗(str)) > 0
}

(3.16)

The proposed acquisition function differs from extant improvement functions used
in Bayesian optimization through the division of the inverse kernel evaluation,
K(x∗, x)−1. Intuitively, the denominator term penalizes any policies in the strategic
variables that deviate too far from the current policy. Instead, the improvement
function rewards policies that give the paths of least resistance to be executed by the
marketing organization. Taken together, the final EI acquisition function is given
by the following Monte Carlo integration (over both customers and the posterior
distribution in brand affinity):

αEI(x(str)) =
N

∑
i=1

Ep(z)[Ii(x∗(str), x(str))] (3.17)

Through this approach, the Digital Marketing Twins framework can serve as a policy
simulator, providing a mechanism to draw from the posterior predictive distribution
of a customer profile across time and under different firms, in terms of their target
satisfaction variables. This approach offers a proactive and strategic tool for ratio-
nalizing and optimizing a carrier’s marketing strategies in a realistic and relevant
way, which ultimately should improve customer satisfaction.

3.7 Conclusion

The novel Digital Marketing Twins methodology promises to address the challenges
of analyzing large-scale customer surveys, as demonstrated in the context of the U.S.
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wireless telecommunications retail market. This study thus addresses two major is-
sues: (1) the theoretical difficulty of integrating customer surveys into a prescriptive
framework and (2) the practical problem posed by repeated cross-sectional surveys,
such that itcontributes to the literature on digital twins, machine learning methods
for competitive environments, and customer satisfaction.

The proposed methodology provides counterfactual responses under different
scenarios, which can serve as a powerful tool in the realm of customer analytics. The
technique also addresses the missing data problem that is typical of repeated cross-
sectional surveys, thereby presenting a comprehensive approach to understanding
and leveraging customer survey data at scale.

The implementation of the methodology involves the development of a deep
generative and probabilistic latent factor model that captures customer-side brand
affinity at the individual level, for each brand and each time period, while control-
ling for observed heterogeneity and firm-side factors. The methodology leverages
Bayesian optimization to maximize individual-level, latent, customer-side brand
affinity, thereby leading to a “path of least resistance” at the individual level.

The findings have implications for marketers who seek to improve customer sat-
isfaction by understanding the causes of satisfaction from surveys. Furthermore,
because the methodology appears generalizable to other sectors and contexts, and
therefore, it suggests new avenues for research and applications in the field of mar-
keting and customer analytics.
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Appendix A

Privacy Preserving Data Fusion

Deviations Between Observed and Imputed Response Distributions

FIGURE A.1: Predicted responses of full customer base, in red, as im-
puted by PPDF, along with the observed responses of the 8K external
survey respondents (in blue). The differences highlight the impor-
tance of correcting for selection bias before using insights from this
and similar surveys. Survey respondents are more extreme in their

Likelihood to Recommend.
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A.1 Missing Data

Past techniques for handling missing data involved either removing observations if
they had even one missing variable or filling missing values with the observed sam-
ple mean of the given variable(Graham, 2009). These techniques have been shown to
be both inefficient and inaccurate. One drawback is that they reduce the sample size
and could possibly create a non-random sample. They could also lead to inaccurate
inferences due to the fact that using the mean of an explanatory variable can change
the impact on the explained outcome.

Two more contemporary common methods are used to handle missing data in
the social sciences in general, and in marketing research in particular. The first group
is comprised of multiple imputation methods; key examples are described by Little
and Rubin, 1989 and Kamakura and Wedel, 1997. The second group of methods
for handling missing data are maximum likelihood methods. Such methods can be
based on classical maximization of a model likelihood, as Kamakura and Wedel,
2000 demonstrate, or on stochastic simulation, such as Bayesian estimation used by
Eleanor McDonnell Feit, Beltramo, and Feinberg, 2010.

Qian and Xie, 2014 proposed a Bayesian approach for completing missing data
in regression covariates. A major contribution of their work is the ability to derive
the missing values and regress over all data, without the need to specify the exact
distribution for each covariate or the relations among covariates. This technique
can handle high-dimensional missing covariate problems. However, when there is
insufficient information to recover the underlying model, and when there is insuffi-
cient data or a too complex problem to handle, this method may not be suitable.

There are several types of missingness that should be acknowledged and prop-
erly handled. Specifically, Rubin, 1976 classifies three mechanisms of missing data:
missing at random (MAR), missing completely at random (MCAR), and missing not
at random (MNAR, also known as non-ignorable).

In the case of MAR, while some of the data are missing, the missingness can
be overcome by other observed variables. This means that the cause of missingness
may depend on other covariates that are in the data but not on any unobserved data.
A simple example can be responses to an income question on a survey. People might
be reluctant to fill in their income if they feel that they have too high or too low of
an income. However, missing answers can be imputed using a combination of other
variables such as level of education, living area, and age. Though imputation will
probably not arrive at the true individual responses, inferences drawn on large data
samples will not be affected by the missingness.

MCAR can be considered a special case of MAR. As implied by the name, the
missingness is completely random, and does not depend on either observed or un-
observed variables. One possible example is when some of the data are corrupted
due to a technical error. Another example is when some respondents simply forget
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to answer certain questions in a randomly-ordered questionnaire. Since they were
randomly missing, any inferences regarding the data as a whole will be correct1,
thus representing the true underlying data generating processes, with or without
completing the data.

The MNAR (also known as NR, nonrandom, or non-ignorable) missingness mech-
anism occurs when some of the values are missing and their missingness depends
on unobserved data. Therefore, some information in the missing data depends on
the missing values themselves, and cannot be fully rectified based on available in-
formation. One case is if inferences made based on such data might be biased by the
missingness. Consider our example from above regarding missing income: if peo-
ple are reluctant to respond to an income question because they are concerned about
scammers, but such concern cannot be explained by any data available to us, then
the missingness is non-random. It could be reverted to MAR if we could somehow
account for this missing piece of information, perhaps through a survey question
about this particular concern.

In our method, we will allow the data to have missingness of types MAR and
MCAR. We will nonparametrically complete (augment) a latent representation of
both within-variable missingness and the obvious whole variable missingness, with
observed variables from either dataset. We define common variables as those that
appear in both datasets and are measured on the same scale. Semi-common vari-
ables refer to variables that relate to the same underlying information, but are mea-
sured differently.

Given that missingness can occur across multiple data variables, a key limitation
to conventional data imputation methods is that model complexity scales with the
number of missing values. VAEs overcome this limitation by treating missingness
as arising from a single generative model, and instead seek to encode the joint data
generating process as a nonparametric random function that may in turn then be
used to decode missing values when missingness may arise. The method allows for
data – either individual values or entire covariates – to be missing at random (MAR),
and for truncation into categories if data are semi-common.

Moreover, if data are MNAR, but the missingness can be accounted for (becom-
ing MAR) using the other dataset, PPDF will be able to account for it as well. Con-
sider a self-selected survey as our illustrated dataset. Customers who are more ex-
treme in their attitudes towards the brand may be more likely to respond to a sur-
vey, and this attitudinal difference then translates into a distribution shift in terms of
common variables. PPDF will be able to overcome such missingness, as long as the
common variables bridge the missingness, essentially making MNAR on a single
dataset become MAR in the joint dataset.

1With a caveat: the standard errors are likely to become larger, since we have fewer observations
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A.2 Simulations: Sensitivity to Tuning Parameters

We begin with the sensitivity of the tuning parameters of the MNIST digits. As seen
in Figure A.2, panels (b) and (c), while too small latent representation in Z may result
in greater loss due to the inability to encode the data well enough, a value of Z which
is too big may result in over-fitting, and might also result in higher reconstruction
loss. Hidden layer dimensions may allow for richer representation, but they come
at the cost of higher running times.

FIGURE A.2: Reconstruction loss (the loss relative to the original
MNIST images, upper panels) and running time (lower panels) as a
function of the number of common variables (panel (a)), length of the
hidden layer (panel (b)) and length of Z – the latent representation
of the encoders. The learning rate is η = 2 · 10−4. All simulations
ran for 25 epochs. Number of common variables, if not varied, is 300
of the 784 pixels in each digit. Hidden layer dimension, if not var-
ied, is 400. Latent representation – Z dimension – if not varied, is
25. An interesting artifact of VAEs, which is seen in the upper right
panel, is that an increase in the size of the Z dimension may cause
over-parameterization, which makes the reconstruction loss plateau

or shift upwards.

Moving to the next sensitivity analysis, of the survey data described in Section
1.4.2, Figure A.3 shows the mean absolute error relative to the original data, across
all columns of the joint dataset, after running for 10K epochs.

• Number of normalizing flows: Moving from left to right in the panels of Fig-
ure A.3, we can see the effects of the normalizing flow. The more flexibility
there is in encoding the data (manifested through the number of flows), the
better (lower) the mean absolute error. However, at some point, there is not
much further improvement, and therefore, in the following stages, we utilize
normalizing flows with 6 transform layers (a 9-flow iteration was also tested
but found to have a similar plateau relative to the 6-flow iteration, so it was
removed for brevity).
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FIGURE A.3: Simulation results: Mean absolute error of data fusion
without differential privacy, as a function of the dimension of the en-
coding vector Z (x axis), number of normalizing flows (horizontal
panes), hidden layer dimension (vertical panes), learning rate (shape)
and batch sizes (colors). A bigger hidden dimension is better, a bigger
batch size is better, and a smaller learning rate is better in improving
mean absolute error. Higher levels of the encoding vector Z dimen-
sion are usually better but may results in overfitting. More normal-
izing flows were also found to be better, but this value plateaued as
well. Missing dots are due to simulations with these specifications

failing to complete 10K epochs.

• Latent Encoding Vector Z: The length of the encoding vector has an inverse-U
shape, where a smaller length is not sufficient to properly code the data into
latent representation, but bigger sizes may result in overfitting the training
data (this is seen visually by the loss that plateaus or shifts upward). Therefore,
going forward, we use Z of size 50.

• Learning Rate: While largely beyond the scope of this paper, a smaller learn-
ing rate increases the likelihood of completing the training due to the gradual
improvement rate but will result in a much longer time to train the model. We
continued with a learning rate of 1e-4 for the sensitivity analyses of PPDF on
this dataset.

• Batch Size: Each epoch divides the data into equal batches of pre-specified size.
We find that the bigger the batch, the more accurate the analysis (up to a limit)
and the faster the run. We carry on with a batch size of 256 rows. The batch
size has a major effect on the run-time, though all runs in this analysis were
efficient and ended in several minutes on a commodity GPU Google Colab
Framework.
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A.3 Survey Questions and CRM Data

The following represents a subset of the questions and variables in the data, pre-
sented in a way that preserves intellectual property of the respective companies. For
further information, please contact the authors.

1. Identifiers / Relationship Questions

• QI1: Do you identify as Hispanic or Latin?

• QI2: Which wireless service providers do you currently use? (Select all
that apply)

• QI3: What is the current monthly cost for your primary personal phone
with [Respondent’s Current Provider]? If you have multiple phones, please
specify the cost for the phone you use most frequently.

• QI4: What was the main reason that led you to choose [Respondent’s Cur-
rent Provider] as your wireless service provider among the following op-
tions?

• QI5: Which of the following products or services, if any, do you currently
use or subscribe to in addition to your wireless service with [Respondent’s
Current Provider]?

• QI6: What is the highest level of education you have completed?

• QI7: What is the monthly data limit of your plan with [Respondent’s Cur-
rent Provider] before incurring additional charges for over usage?

• QI8: Do you have access to [Respondent’s Current Provider] 5G network
service in the area where you live, work or frequently travel to, to the best
of your knowledge?

• QI9: What is the brand of the mobile phone that you currently use for
personal use?

• QI10: Which internet and cable/video providers do you primarily use for
each service at home, among the following options?

2. Engagement Questions

• QE1: What is the probability of you switching wireless service providers
within the next 12 months?

• QE2: In the context of considering switching carriers, which activities
have you personally experienced with [Respondent’s Current Provider] in
the past 6 months?

• QE3: In the context of asking about or disputing a recurring bill, which ac-
tivities have you personally experienced with [Respondent’s Current Provider]
in the past 6 months?
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• QE4: In the context of buying a new phone or connected device, which ac-
tivities have you personally experienced with [Respondent’s Current Provider]
in the past 6 months?

• QE5: In the context of getting technical support (other than fixing a bro-
ken or lost device), which activities have you personally experienced with
[Respondent’s Current Provider] in the past 6 months?

• QE6: In the context of redeeming rewards, which activities have you per-
sonally experienced with [Telecom Carrier Name] in the past 6 months?

• QE7: In the context of fixing or replacing a broken, lost, or stolen device,
which activities have you personally experienced with [Telecom Carrier
Name] in the past 6 months?

• QE8: Other than the options provided, which activities have you person-
ally experienced with [Telecom Carrier Name] in the past 6 months?

• QE9: During the past 6 months, have you used [Telecom Carrier Name]’s
international plan?

3. Perception Questions

• QP1: How likely would you be to recommend your current wireless ser-
vice provider, [Respondent’s Current Provider], to a friend or family mem-
ber on a scale of 0-10?

• QP2: What network-related factors contributed to you giving your cur-
rent provider, [Respondent’s Current Provider], a rating of [Numerical Re-
sponse to QP1?

• QP3: What price-and-value-related factors contributed to you giving [Re-
spondent’s Current Provider] a rating of [Numerical Response to QP1?

• QP4: What billing-process-related factors contributed to you giving [Re-
spondent’s Current Provider] a rating of [Numerical Response to QP1?

• QP5: What customer-service-related factors contributed to you giving
[Respondent’s Current Provider] a rating of [Numerical Response to QP1?

• QP6: What general-feeling-related factors contributed to you giving [Re-
spondent’s Current Provider] a rating of [Numerical Response to QP1?

• QP7: What plan-related factors contributed to you giving [Respondent’s
Current Provider] a rating of [Numerical Response to QP1?

• QP8: What reward-and-benefit-related factors contributed to you giving
[Respondent’s Current Provider] a rating of [Numerical Response to QP1?

• QP9: What device-related factors contributed to you giving [Respondent’s
Current Provider] a rating of [Numerical Response to QP1?

• QP10: What other factors contributed to you giving [Respondent’s Current
Provider] a rating of [Numerical Response to QP1?
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• QP11: What is your overall level of satisfaction with [Respondent’s Current
Provider]?

• QP12: How satisfied are you with the network speed provided by [Re-
spondent’s Current Provider] as part of your overall wireless service expe-
rience?

• QP13: How satisfied are you with the network reliability provided by
[Respondent’s Current Provider] as part of your overall wireless service ex-
perience?

• QP14: How satisfied are you with [Respondent’s Current Provider]’s ability
to provide data plans that meet your needs as part of your overall wireless
service experience?

• QP15: How satisfied are you with the value you are receiving for the price
you are paying for [Respondent’s Current Provider]’s wireless service?

• QP16: How satisfied are you with the accuracy of billing provided by
[Respondent’s Current Provider] as part of your overall wireless service ex-
perience?

• QP17: How satisfied are you with the rewards and recognition offered
by [Respondent’s Current Provider] as part of your overall wireless service
experience?

• QP18: How satisfied are you with the ease of doing business with [Respon-
dent’s Current Provider] as part of your overall wireless service experience?

• QP19: How satisfied are you with [Respondent’s Current Provider]’s abil-
ity to solve problems on the first contact as part of your overall wireless
service experience?

• QP20: How satisfied are you with the perception that [Respondent’s Cur-
rent Provider] is a brand for you as part of your overall wireless service
experience?

• QP21: How satisfied are you with the total cost of your wireless service
provided by [Respondent’s Current Provider] as part of your overall wire-
less service experience?

• QP22: How satisfied are you with the device selection offered by [Respon-
dent’s Current Provider] as part of your overall wireless service experience?

• QP23: How satisfied are you with the way [Respondent’s Current Provider]
treats you fairly and respectfully as part of your overall wireless service
experience?

• QP24: What is your overall feeling about [Telecom Carrier Name] as a
wireless service provider?

• QP25: What is your overall feeling about [COMPETITOR A] as a wireless
service provider?
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• QP26: What is your overall feeling about [COMPETITOR B] as a wireless
service provider?

• QP27: What is your overall feeling about Sprint as a wireless service
provider?

• QP28: What is the likelihood of you making any changes (plan, provider,
device) to your current wireless service in the next 6 months?

• QP29: What is the likelihood of you recommending your [pipe:QI9 (sic:
read “Insert the phone brand that was given at question QI9”)] phone to
a friend or colleague?

• QP30: How well do you understand the details of your wireless plan with
[Respondent’s Current Provider], on a scale of 1 to 5?

• QP31: How, if at all, has the coronavirus pandemic affected your spend-
ing habits?

• QP32: How has the coronavirus pandemic affected your perspective on
the importance of home internet services?

• QP33: How has the coronavirus pandemic affected your perspective on
the importance of wireless services?

• QP34: How has the coronavirus pandemic affected your perspective on
the importance of TV and streaming services?

4. Common variables

• QC1: Can you please indicate your gender?

• QC2: Could you please provide your annual household income before
taxes?

• QC3: Can you tell me what the total bill for your wireless plan was last
month, exclusive of any charges for your device?

• QC4: Are you currently utilizing 5G service on a 5G compatible mobile
phone?

• QC5: In the last 6 months, have you been to a [Telecom Carrier Name] retail
location?

• QC6: Which provider do you primarily use for internet and cable/video
service at home?

• QC7: In addition to your wireless service with [Telecom Carrier Name],
which, if any, of the following products/services do you use or subscribe
to?

• QC8: Does your plan with [Telecom Carrier Name] include unlimited data?

• QC9: When will you fully own your phone and no longer have to make
payments to [Telecom Carrier Name] for your phone?
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• QC10: Are you currently a member of any of the following groups?

5. Variables only available in the CRM Data

• QUC1: Risk score of the line with the highest likelihood of churn.

• QUC2: Median total account amount, excluding device payments, from
the previous six months’ bills.

• QUC3: The deviation of the total billed amount for this month from the
average bill over the past 3, 6, and 12 months.

• QUC4: A binary indicator of whether the account had at least one Sales
and Service Transaction in the Customer Service Channel (1 = yes, 0 = no).

• QUC5: A binary indicator of whether the account has an autopay dis-
count (1 = yes, 0 = no).

• QUC6: The count of 3G or 4G phones associated with the account.

• QUC7: The most recent Quality Experience Score within the account that
was lowest within the 90 days preceding the survey.

• QUC8: Whether the feature was added within 180 days of the survey.

• QUC9: Whether the account was disconnected (1 = yes, 0 = no).
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Appendix B

Understanding Consumer
Expenditure Through Gaussian
Process Choice Models

B.1 Derivation of the Likelihood Function

After rearranging the terms, and denoting g(.) as the standard extreme value density
function and G(.) as the standard extreme value cumulative distribution function:

L(q∗1 > 0, q∗2 > 0, . . . , q∗M > 0, q∗M+1 = 0, . . . , q∗J = 0) (B.1)
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Furthermore, we can write the following equality from the definition of a Gamma
function:
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where Vj = log
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Therefore we have the following Jacobian matrix:
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Using the matrix determinant lemma, we write the absolute determinant of the Ja-
cobian |J | as follows:
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If M = 1, there is no satiation effects and the Jacobian terms drops out and the model
collapses to the standard MNL model (C. R. Bhat, 2008). Finally, we can write the
closed form expression of the likelihood, combining (B.11) and (B.19):
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where Vj = log
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B.2 Bayesian Nonparametric Prior Model for Unknown Mono-
tonic Functions

We have seen that the Kuhn-Tucker first order conditions are necessary and suffi-
cient when the utility function is strictly quasi-concave. When marginal utility func-
tions are positive and increasing, then the utility function will be monotonic and
strictly quasi-concave. However, Gaussian processes priors in their basic formula-
tion are not restricted in their shape, i.e. they are not a priori positive and increasing.
Thus, in order to build valid priors compatible with our microeconomic domain of
expertise, we need to transform these priors and constraint their shape adequately.
There are several ways to do so.

First, we could impose a set of virtual locations of the sign of the derivative of the
process (Riihimäki and Vehtari, 2010). These points would form a grid of constraints.
These points could enforce the monotonicity of the sub-utility levels through the
positivity of the marginal sub-utilities evaluated at these points. However there are
theoretical and empirical issues with this approach. Monotonicity of the sample
paths may not be guaranteed on the entire domain. One question is to determine an
appropriate number of virtual observations: too many points imply that the poste-
rior will be overly smoothed and too few points imply non-monotonicity. Further-
more, the posterior and the marginal likelihood would then depend on virtual loca-
tions. Finally, optimal quantities in a given test set (or at predictive inference time)
could be far away from optimal quantities in the training set (or inference time).
As a consequence, virtual locations would need to be correctly placed, accounting
for both existing optimal solutions and future solutions, which is not practical. For
all these reasons, we stay away from the virtual location approach and propose an
alternative solution to build monotonicity directly into our priors, developing an ap-
proach proposed by Andersen et al., 2018 and Solin and Särkkä, 2020. The approach
is also empirically investigated in Riutort-Mayol et al., 2023.

Our approach to build a valid prior in the monotonic function space relies on
a non-linear transformation of our original Gaussian process prior. Since our do-
main expertise informs us that the marginal utility for each good j = 1, . . . , J should
be decreasing, equivalently, the logarithm of the marginal utility should also be de-
creasing. This monotonicity guarantees that the utility for each good j is concave
and increasing, and implies that the utility function is strictly quasi-concave.

We characterize the set of non-increasing functions as the set of solutions to the
differential equation

∂

∂qj
log
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∂νj

∂qj

)
= −h ≤ 0 (B.22)
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where h(.) is a non-negative function. The solutions to this differential equation will
be monotonic and given by

log
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∂νj(qj)

∂qj

)
= f0 −

∫ x

a
h(s)ds (B.23)

for f0 and a constants and x ≥ a. We assume that h can be modeled by a nonlinear
transformation applied to a Gaussian process:

h(x) = (t ◦ g)(x) (B.24)

where t is a non negative function and g is a sample from a GP. Conditioned on g,
the log marginal utility function is given by

log
(

∂νj(qj)

∂qj

)
= f0 −

∫ x

a
t(g(s))ds (B.25)

Then by construction the log marginal utility will be absolutely continuous, and has
the property that log

(
∂νj(a)

∂qj

)
= f0 and log

(
∂νj(qj)

∂qj

)
≤ f0 for all values x ≥ a. There-

fore ∂νj(qj)
∂qj

will be bounded by exp( f0). The function t(.) can be any non-negative
transformation, but in this work, we choose t(x) = x2 for modeling convenience and
tractability.

Next, we propose to apply a low rank approximation based on Hilbert space
methods, to make inference tractable. The evaluation of the log marginal utility
function is not trivial because it depends on all values of g(s) for a < s < x (An-
dersen et al., 2018). We want to evaluate a closed form approximation of the log
marginal utility function. To arrive at this close form approximation, we assume
that the domain of interest is a compact subset x ∈ [−M, M] for some M > 0 and
that g satisfies the Dirichlet boundary condition g(−M) = g(M) = 0. Then the
stationary covariance function K for g can be approximated (Solin and Särkkä, 2020)
as

K(qj, qj) ≈∑
l

Sθ(
√

λ)ϕl(qj)ϕl(q′j) (B.26)

where Sθ(.) is the spectral density of the stationary covariance function K and θ is the
set of hyperparameters of K. Since we are using a squared exponential covariance
function, we have the following closed form spectral density:

Sθ(ω) = σ2
f

√
2πβ exp

(
−1

2
β2ωTω

)
(B.27)
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The eigenvalues {λl}∞
l=1 and eigenfunctions {ϕl}∞

l=1 of the Laplacian operators sat-
isfy the following eigenvalue problem−∇2ϕl(qj) = λlϕl(qj) qj ∈ (−M, M)

ϕl(qj) = 0 qj /∈ (−M, M)
(B.28)

The eigenvalues λj > 0 are real and positive because the Laplacian operator is a
positive definite Hermitian operator. If we truncate the sum in equation (B.26), we
can represent g as follows

g(qj) ≈
L

∑
l=1

αlϕl(qj) (B.29)

where αj ∼ N
(

0, Sθ

(
λ1/2

j

))
. In other words, we use an approximation of the func-

tion g with a finite basis function expansion, where each coefficient αl is Gaussian
distributed with zero mean and variance Sθ

(
λ1/2

j

)
. As an aside, an extensive em-

pirical analysis on the choice of M and L is available in Riutort-Mayol et al., 2023.
The eigenfunctions ϕl for the eigenvalue problem in equation (B.28):

√
λl =

lπ
2M

(B.30)

ϕl(qj) =

√
1
M

sin
(√

λl(qj + M)
)

(B.31)

Then, we can substitute the approximation of g(.) in equation (B.29) and t(x) = x2

into equation (B.25)

log
(

∂νj(qj)

∂qj

)
≈ f0 −

∫ x

a

[
L

∑
l=1

αlϕl(s)

]2

ds (B.32)

log
(

∂νj(qj)

∂qj

)
≈ f0 −

∫ x

a

L

∑
l=1

L

∑
l′=1

αlαl′ϕl(s)ϕl′(s)ds (B.33)

≈ f0 −
L

∑
l=1

L

∑
l′=1

αlαl′

∫ x

a
ϕl(s)ϕl′(s)ds (B.34)

And because the eigenfunctions are sinusoids, the integrands, ϕl(s)ϕl′(s) can be
rewritten using the trigonometric identity: sin(a) sin(b) = 1

2 (cos(a− b)− cos(a + b)),
which lead to analytical solvability of the definite integrals:

log
(

∂νj(qj)

∂qj

)
≈ f0 −

L

∑
l=1

L

∑
l′=1

αlαl′ψll′(qj)

log
(

∂νj(qj)

∂qj

)
= f0 −αTψ(qj)α (B.35)
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where ψ(qj) is given by

ψll′(qj) =


1

2M (qj + M)− sin(γ+
l′ l′ (ql+M))

2Mγ+
l′ l′

, l = l′

sin(γ−ll′ (ql+M))
2Mγ−ll′

− sin(γ+
ll′ (ql+M))

2Mγ+
ll′

, l ̸= l′
(B.36)

where γ−ll′ =
√

λl −
√

λl , γ+
ll′ =

√
λl +

√
λl and a = −M. Under reasonable con-

ditions, the kernel approximation in equation (B.26) becomes exact when L → ∞
and M → ∞ (Solin and Särkkä, 2020). Equation (B.36) shows that the functions ψll′

are independent of the kernel hyperparameters and can be precomputed. Finally,
we get a closed form approximation for the derivative of the log marginal utility by
taking the derivative of equations (B.35) and (B.36):

∂

∂qj
log
(

∂νj(qj)

∂qj

)
= −αT ∂

∂qj
ψ(qj)α (B.37)

and

∂

∂qj
ψll′(qj) =

 1
2M

[
1− cos

(
γ+

l′ l′(ql + M)
)]

, l = l′

1
2M

[
cos

(
γ−ll′(ql + M)

)
− cos

(
γ+

ll′(ql + M)
)]

, l ̸= l′
(B.38)

In conclusion, we have derived a closed form approximation for the prior dis-
tribution over two types of functions of interest: the monotonically decreasing log
marginal utility function for each good j = 1, . . . , J and the respective partial deriva-
tive of that function. These expressions above can then be used within a generic
derivative-based MCMC algorithm to compute the posterior distribution.
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B.3 Demand Prediction Algorithm

In this section, we provide an algorithm for demand prediction given a certain util-
ity specification. The algorithm borrows from Pinjari and C. Bhat (2021) and imple-
ments a numerical bisection to estimate the Lagrange multiplier, which is further
used to calculate optimal quantities.

First, we propose a procedure to obtain an inverse function approximation of
the marginal utility, using a fine sequence of points. This procedure can be applied
for any strictly decreasing function, with predefined domain and range. Let j be the
index of the jth good and suppose that the optimal quantity q∗j for this good is strictly

positive. Then, according to the Kuhn-Tucker conditions,
∂uj(q∗j )

∂qj
= λpj. Since ∂uj

∂qj
is

strictly decreasing, it has an inverse. Let
(

∂uj
∂qj

)−1
be the inverse of ∂uj

∂qj
. Then we have

the following: q∗j =
(

∂uj
∂qj

)−1
(λpj).

1. Let q̄j be a regular sequence of points from q̄min to q̄max, with increment q̄inc. For
example, one could set: q̄min = 10−3 to q̄max = 200, with increment q̄inc = 10−3.
Let Cj be the cardinal number of q̄j. Let an element of q̄j be qji for i = 1, . . . , Cj.

2. Sort all values of q̄ji in a descending order. Let’s call this tuple R(q̄j). Sort all

values of ∂uj(q̄ji)
∂qj

, for all i = 1, . . . , Cj in an ascending order. Let’s call this tuple

S(q̄j). Let Ri(q̄j) and Si(q̄j) respectively denote the ith element in R(q̄j) and
S(q̄j).

3. Let λ̂ denote an estimate of λ, and pj price of good j. Calculate λ̂pj and search
the index k of the first nearest value to λ̂pj in S(q̄j). Then we have the following
approximation: Sk(q̄j) ≈ λ̂pj.

4. Calculate Sk(q̄j). Then we have the following approximation:

Rk(q̄j) ≈
(

∂uj
∂qj

)−1
(λ̂pj) ≈ q∗j .

Now, let λ̂ and x̂ be respectively estimates for the Lagrange multiplier λ and the
budget constraint x. Let δλ and δx be the tolerance values fixed to small values such
as 10−6.

The algorithm for demand prediction goes as follows:

1. Set M = 1, where M is the number of consumed goods at the optimum. Com-
pute the price normalized deterministic marginal utility values at zero con-
sumption for all J alternatives, ∂νj(0)/∂qj

pj
, for j = 1, . . . , J. Simulate independent

errors ε j from an Extreme Value distribution with scale σ for each good, and

multiply them respectively to the J alternatives: ∂uj(0)/∂qj
pj

=
∂νj(0)/∂qj

pj
∗ exp(ε j).

Sort the J stochastic values in a descending order. If there is an outside good, it
is positioned first.
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2. Set λ̂ = ∂uM+1(0)/∂qM+1
pM+1

. For all m = 1, . . . , M, using λ̂ and pm, get an esti-
mate of the demand q̂m using the inverse function approximation described
above, following from a consequence of the Kuhn-Tucker conditions: q̂∗m =(

∂um
∂qm

)−1
(λ̂pm). Get an estimate of the budget constraint x, using

x̂ = ∑M
m=1 pjq̂∗m.

3. If x̂ < x, go to step 4. Else, if x̂ > x, set λL = ∂uM+1(0)/∂qM+1
pM+1

and λU = ∂uM(0)/∂qM
pM

because ∂uM+1(0)/∂qM+1
pM+1

< λ < ∂uM(0)/∂qM
pM

. Go to step 5 to estimate λ with nu-
merical bisection.

4. Set M = M + 1. If M < J, then go to step 2. Else, if M = J, set λL = 0 and
λU =

∂νJ(0)/∂qJ
pJ

since 0 < λ <
∂νJ(0)/∂qJ

pJ
.

5. Set λ̂ = λL+λU
2 . Re-calculate a new estimate of the demand q̂m for all m =

1, . . . , M as in step 2, and get a new estimate of the budget constraint x̂.

(a) If |λL − λU | ≤ δλ or |x̂− x| ≤ δx then go to step 6.

(b) Else, if x̂ < x update the upper bound of λ: λU = λU+λL
2 and go to step

5(a).

(c) Else, if x̂ > x update the lower bound of λ: λL = λU+λL
2 and go to step

5(a).

6. Compute the optimal quantities of the first M goods using the method in Step
2. Set the optimal quantities of the other goods to zero and stop.
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Appendix C

Digital Twins: A Generative
Approach for Counterfactual
Customer Analytics
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FIGURE C.1: Summary Statistics for Target Variables and Strategic
Variables, Per Carrier
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Variable
Name

Description

Q14R1 [pipe:hCurrentProvider]’s Network - Which of the following directly contributed
to you giving [pipe:hCurrentProvider] a rating of ?

Q14R2 [pipe:hCurrentProvider]’s Price / Value - Which of the following directly con-
tributed to you giving [pipe:hCurrentProvider] a rating of ?

Q14R8 [pipe:hCurrentProvider]’s Billing process - Which of the following directly con-
tributed to you giving [pipe:hCurrentProvider] a rating of ?

Q14R3 [pipe:hCurrentProvider]’s Customer Service - Which of the following directly con-
tributed to you giving [pipe:hCurrentProvider] a rating of ?

Q14R4 General feelings about [pipe:hCurrentProvider] - Which of the following directly
contributed to you giving [pipe:hCurrentProvider] a rating of ?

Q14R5 [pipe:hCurrentProvider]’s Plans - Which of the following directly contributed to
you giving [pipe:hCurrentProvider] a rating of ?

Q14R9 [pipe:hCurrentProvider]’s Rewards and benefits - Which of the following directly
contributed to you giving [pipe:hCurrentProvider] a rating of ?

Q14R6 [pipe:hCurrentProvider]’s Devices - Which of the following directly contributed to
you giving [pipe:hCurrentProvider] a rating of ?

Q14R7 Other (please specify) - Which of the following directly contributed to you giving
[pipe:hCurrentProvider] a rating of ?

Q19R1 Network speed - How satisfied are you with [pipe:hCurrentProvider]’s perfor-
mance on the following aspects of your overall wireless service experience?

Q19R2 Network reliability - How satisfied are you with [pipe:hCurrentProvider]’s perfor-
mance on the following aspects of your overall wireless service experience?

Q19R3 Data plans that meet my needs - How satisfied are you with
[pipe:hCurrentProvider]’s performance on the following aspects of your overall
wireless service experience?

Q19R4 Value for the price paid - How satisfied are you with [pipe:hCurrentProvider]’s
performance on the following aspects of your overall wireless service experience?

Q19R5 Accuracy of billing - How satisfied are you with [pipe:hCurrentProvider]’s perfor-
mance on the following aspects of your overall wireless service experience?

Q19R6 Rewards and recognition - How satisfied are you with [pipe:hCurrentProvider]’s
performance on the following aspects of your overall wireless service experience?

Q19R7 Easy to do business with - How satisfied are you with [pipe:hCurrentProvider]’s
performance on the following aspects of your overall wireless service experience?

Q19R8 Solves problems the first time you contact them - How satisfied are you with
[pipe:hCurrentProvider]’s performance on the following aspects of your overall
wireless service experience?

Q19R9 Is a brand for me - How satisfied are you with [pipe:hCurrentProvider]’s perfor-
mance on the following aspects of your overall wireless service experience?

Q19R10 Total cost of wireless service - How satisfied are you with
[pipe:hCurrentProvider]’s performance on the following aspects of your overall
wireless service experience?

Q19R11 Device Selection - How satisfied are you with [pipe:hCurrentProvider]’s perfor-
mance on the following aspects of your overall wireless service experience?

Q19R1aux
(resp.
Q19R2-
Q19R11)

Aware of [pipe:hCurrentProvider]’s performance on the aspects mentioned in
Q19R1? (resp. Q19R2-Q19R11)

Q23 How likely are you to change anything (plan, provider, device) about your current
wireless service in the next 6 months?

Q35 On a scale of 1 to 5, how well do you feel you understand the details of your wire-
less plan with [pipe:hCurrentProvider]?

TABLE C.1: List of Strategic Variables
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Variable
Name

Description

Q12 Thinking about your overall experience with your wireless service
provider, on a scale of 0 to 10, how likely are you to recommend
[pipe:hCurrentProvider] to a friend or family member?

Q18 Q18: Overall, how satisfied are you with [pipe:hCurrentProvider]?
Q20 How likely are you to switch wireless service providers within the

next 12 months?
Q20AR1 Carrier 1 - What best describes your overall feeling about each wire-

less service provider?
Q20AR2 Carrier 2 - What best describes your overall feeling about each wire-

less service provider?
Q20AR3 Carrier 3 - What best describes your overall feeling about each wire-

less service provider?
Q27 How likely are you to recommend your [pipe:Q26] phone to a

friend or a colleague?

TABLE C.2: List of Target Variables
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