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Abstract

Modern organizations face a highly complex and dynamic environment. In this
dissertation, I argue that collectives (teams, organizations, or communities) facing highly
complex and dynamic situations need to be designed for collective intelligence, or the ability
to achieve goals in a wide range of environments. Integrating and building on extant work, I
theorize a Transactive Systems Model of Collective Intelligence, guided by agent-based
modeling, and test it with data from open-source software teams. I also explore and propose a
set of diagnostic indicators as an extension for further development, to enable monitoring and
intervention by algorithmic tools and/or leaders.

I take a complex adaptive systems view of collectives and describe how transactive
attention, memory, and reasoning systems (TAS, TMS, and TRS) emerge from individual-
level cognitive processes and member interactions to shape the emergence of collective
intelligence. I further theorize how these systems interact with each other and respond to
dynamic environmental complexity. I complement this narrative theory with agent-based
modeling (ABM) to validate the sufficiency of the proposed transactive process. Once
validated, I use the ABM to conduct two virtual experiments to demonstrate the co-regulation
of TMS and TAS, which is complemented by TRS. Based on these virtual experiments, I
derive hypotheses about the critical environmental threats that each transactive system is
specifically equipped to address, highlighting the co-regulation necessary in response to
changes in the environment which we theorize underlie the development and maintenance of
collective intelligence. Finally, I empirically test corresponding hypotheses for aggregated
system behavior by analyzing 18 months of archival data from 476 open-source software
teams. Consistent with predictions, I find evidence confirming the hypotheses and providing
initial support for the transactive systems theory.

In the next chapter, I build on the socio-cognitive architecture of collective
intelligence articulated in the Transactive Systems Model and theorize three observable
collaborative processes that are related to the transactive system processes. I propose that
these observable processes can serve as diagnostic indicators to provide real-time information
about the functioning of the underlying, largely unobservable complex adaptive system.  I
explore these collaborative process indicators in another virtual experiment that supports their
general utility in signaling the level of functioning of different transactive systems. I also
propose combining them into a single metric that acts as a leading indicator of collective
intelligence. It can be monitored in real-time and guide the diagnosis of underlying problems
by looking at its component parts. Articulation and refinement of such metrics provide useful
guides for intervention by humans or algorithmic tools and together with transactive systems
lay a foundation for a Machine Theory of Collective Intelligence.

While much remains to be learned about the nature of collective intelligence, this
dissertation presents a multi-method systems approach for investigating its emergence,
adaptation, and diagnosis, laying the groundwork for future research.

Keywords: collective intelligence, team cognition, transactive attention system, transactive
memory system, complex adaptive systems, agent-based simulations, machine theory of
collective intelligence
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I

Introduction:

Limits of Structural Control and Organizing in the Face of Continuous Change

Modern work has shifted towards increasingly dynamic, temporary, and decentralized

forms of organizing which is achieved by increasing the permeability of organizational

boundaries. Permeable boundaries enable the breaking of structural silos which allows access

to valuable resources across areas of the organization. Consequently, there has been a sharp

increase of organizing activities reflecting this boundary permeability such as multi-teaming

(Cummings & Haas, 2012; O’Leary et al., 2011), dynamic teams (Mayo, in press), role

fluidity, overlapping work, and worker dispersion (Bakker, 2010; Mortensen, 2014; O’Leary

& Cummings, 2007; Saunders & Ahuja, 2006; Valentine & Edmondson, 2015) facilitated by

organizing technology such as new channels, platforms, and devices (Bernstein et al., 2016;

Lee & Edmondson, 2017; Leonardi & Vaast, 2017; Mortensen & Haas, 2018; Neeley &

Leonardi, 2018). In some settings, these practices have led to more productivity (Ancona &

Caldwell, 1992; Faraj & Yan, 2009; Hackman & Wageman, 1995), more innovation

(Dougherty & Dunne, 2012), and more collaboration (Bechky, 2003; Kellogg et al., 2006).

This represents a significant shift from the central assumptions of the classical administrative

theory that values boundaries as a necessary form of structural control needed for efficiently

retaining and organizing bounded rational employees (March & Simon, 1993, Simon, 1997).

However, the management literature has not been able to offer much in terms of a

systematic path forward as it becomes clear that traditional organizational structures are

incompatible with the demands of complex work environments. The loosening or disruption

of structural control mechanisms to enable highly dynamic work are also problematic. It

results in errors and inefficiencies due to the increased likelihood of worker overload and

burnout. There have been increasing calls for management theory to adapt its assumptions
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about organizations to more appropriately reflect their reality as complex adaptive systems

(Arrow et al., 2000; Cronin et al., 2011; Hackman, 2012; Kozlowski & Klein, 2000; Mathieu

et al., 2019). This has resulted in the growing use of concepts originating in research on

intelligence in humans and machines (Csaszar & Steinberger, 2021; March, 2006; Simon,

1998), which has for decades studied the functions that enable systems to adapt and

accomplish goals in a wide range of environments that vary in complexity (Legg & Hutter,

2007). And as we see the rapid development of artificial intelligence and its integration into

all areas of work, it seems increasingly appropriate to view organizations less as stable

structures and more as complex adaptive systems, designed to integrate human intelligence

and machine intelligence into collective intelligence. My goal is to embrace the complexity,

to better understand the underlying dynamics in order to facilitate the emergence of desirable

properties.

In this dissertation, I introduce a Transactive Systems Model of Collective

Intelligence, which provides a process-based framework for understanding how coordination

can be accomplished in a complex adaptive system. In a transactive system, members share

and allocate cognitive resources and coordinate collective action to their mutual benefit.

Instead of using structural control to organize and retain employees by administratively

bounding organizational situations, this theory proposes that autonomy-seeking members can

exercise transactive control to engage each other’s bounded cognitive capacities in a highly

dynamic environment (see Figure 1.1). Specifically, I theorize a socio-cognitive architecture

that assumes cognitive agents —humans or machines— use their metacognition

(understanding of their own and others' memory, attention, and reasoning processes) to

transactively influence each other’s individual decision-making in order to negotiate and

maintain mutually rewarding goals and efficiently coordinate collective action in a

continually changing environment. The work unfolds via agent-based models to support and
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Figure 1.1

Environmental dynamism and members’ need for higher autonomy puts a limit on our ability

to use structural controls to organize efficiently.

develop the associated narrative theory and paired with analysis of archival data to examine

similarities and differences between computational models and patterns in the real world.

In Chapter 2 (work conducted with Anita Woolley and Kathleen Carley), I take a

complex adaptive systems view of collectives and describe how transactive attention,

memory, and reasoning systems (TAS, TMS, and TRS) emerge from individual-level

cognitive processes and member interactions to shape the emergence of collective

intelligence. I further theorize how these systems adaptively regulate each other and respond

to dynamic environmental complexity. I complement this narrative theory with agent-based

modeling (ABM) to validate the sufficiency of the proposed transactive processes. Once

validated, I use the ABM to conduct two virtual experiments to demonstrate the co-regulation

of TMS and TAS, which is complemented by TRS. Based on these virtual experiments, I

derive hypotheses about the critical environmental threats that each transactive system is
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specifically equipped to address, highlighting the co-regulation necessary in response to

changes in the environment which we theorize underlie the development and maintenance of

collective intelligence. Finally, I test these hypotheses by analyzing 18 months of archival

data from 476 open-source software teams. Consistent with predictions, I find evidence

confirming the hypotheses and providing initial support for the transactive systems theory.

In chapter 3 (work with Anita Woolley), I build on the socio-cognitive architecture of

collective intelligence and theorize three observable collaborative processes— level of

collective effort, use of performance strategy, and application of knowledge and skill— that

are related to the ongoing regulatory states of the transactive systems. I propose that these

observable processes can serve as diagnostic indicators to provide real-time information

about the non-linear and path-dependent behaviors of the underlying, largely unobservable

complex adaptive system that is prone to four common types of problems. I explored these

collaborative process indicators in an agent-based simulation and investigated their general

utility in signaling the level of regulation achieved by different transactive systems. I also

examine their validity as a real-time leading indicator of collective intelligence by combining

the individual process indicators and comparing it to the performance-based assessment of

collective intelligence. The real-time indicator offers the benefit of enabling monitoring and

diagnosis of underlying problems along with pointers to the transactive systems potentially

involved in difficulties. Articulation and refinement of such metrics hold the potential to

provide useful guides for intervention by humans or algorithmic tools and together with

transactive systems lay a foundation for a Machine Theory of Collective Intelligence.

In the final chapter, I conclude by summarizing and considering the theoretical and

empirical work as a whole and offering some thoughts on new forms of decentralized

organizations and designing tools for autonomously improving collective intelligence.
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II

Transactive Systems Model of Collective Intelligence:

The Emergence and Regulation of Collective Attention, Memory, and Reasoning.

With globalism and technology-enabled hyper-connectedness, the context surrounding

organizations has become more complex and dynamic. Consequently, collective work is

characterized by increasing uncertainty and fluidity (Edmondson and Harvey, 2018;

Eisenman et al., 2020) creating challenges for the traditional organizational structures and

conditions previously viewed as foundational to enabling collectively-rational behavior in

boundedly rational actors (March et al., 1993). In response to this growing dynamism, there

have been increasing calls for management theory to reflect the reality of collective work

operating less like a “machine” and more like a complex adaptive system (Arrow et al., 2000;

Cronin et al., 2011; Hackman, 2012; Kozlowski & Klein, 2000; Mathieu et al., 2019). This is

partially reflected in the management literature by the growing use of concepts originating in

research on intelligence in humans and machines (Csaszar & Steinberger, 2021; March,

2006), which has for decades studied the functions that enable systems to adapt and

accomplish goals in a wide range of environments that vary in complexity (Legg & Hutter,

2007). And as we see the rapid development of artificial intelligence and its integration into

all areas of work, it seems increasingly appropriate to view organizations less as stable

structures and more as complex adaptive systems, designed to integrate human intelligence

and machine intelligence into collective intelligence.

However, while a growing body of work points to a variety of correlates and

predictors of collective intelligence (Bernstein et al. 2018; Leonard & Levin, 2022; Riedl et

al., 2021; Woolley et al., 2010), we lack a detailed process theory for how to design a system

for collective intelligence. Integrating and building on extant work, here we articulate a

Transactive Systems Model of Collective Intelligence. Taking a complex adaptive systems
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view of collectives, we propose systems theory articulating how transactive memory (TMS),

attention (TAS), and reasoning (TRS) systems emerge from individual-level cognitive

processes and member interactions to shape the emergence of collective intelligence. We

further theorize how these systems interact with each other and dynamically respond to

changing environmental complexities. We describe the theory both narratively as well as

formally by operationalizing it in an agent-based model, which we validate against expected

emergent patterns. We extend the simulation and use it in virtual experiments to develop

hypotheses about the emergence and adaptation of collective intelligence in contexts that vary

in environmental complexity. The theory and simulation inform hypotheses that we then test

empirically in an archival dataset from 476 open-source software teams.

Taken together, our theory, simulation, and empirical analysis make three key

contributions to the literature. First, we contribute to the growing literature on collective

intelligence and social cognition by integrating and building on extant work to articulate a

process theory of collective intelligence and the underlying transactive systems that drive the

emergence and adaptation of collective memory, attention, and reasoning functions. Second,

we formalize this narrative theory in a computational model, which enables us to validate the

sufficiency of theorized mechanisms underlying the emergence of collective memory,

attention, and reasoning and demonstrate how their adaptive interactions result in collective

intelligence. And, finally, we operationalize constructs for use in analyses of archival data to

enable an empirical test of the behavioral patterns we theorize we can observe as a result of

these underlying processes in real-world environments. This initial empirical test provides

support for aggregate behavior emerging from underlying dynamics that are theorized and

calls for future research in other settings where the dynamics can be tested directly. Thus, this

work which theorizes a socio-cognitive architecture for collective intelligence represents an

important foundation for future research and theory about organizational functioning.
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Theorizing Collective Intelligence in Complex Adaptive Systems

Intelligence, whether in the context of an individual, a collective, or a technological

system, is broadly defined as the ability to perform or achieve goals in a wide range of

environments (Legg & Hutter, 2007). Implicit in “ability to perform” is the notion of adapting

in order to maintain performance, and “wide range of environments” refers to varying

complexity of the task and resource environment in which the collective operates. Here,

complexity captures the dominant environmental threats in terms of uncertainty in task

rewards and member resources, level of task workload, and knowledge interdependencies at a

given time (Raveendran et al., 2020). Thus, high collective intelligence is signaled by

sustained performance in the face of changes in complexity over a given time period:

… eq (1)𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒 =
𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

∑ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 
𝑡𝑖𝑚𝑒
𝑡𝑎𝑠𝑘 *  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 

𝑡𝑎𝑠𝑘
𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒

Extant work suggests that three core cognitive functions underlying intelligence in

any system are memory, attention, and reasoning processes. These functions are essential to

intelligent functioning whether the system is the human brain (Luria, 1973) or another

biological, technological, or hybrid system (Malone & Bernstein, 2015). Thus, a foundation

for the emergence of intelligence is the development of systems accomplishing these

functions. In line with this, we propose that three functionally distinct socio-cognitive

systems emerge in collectives: (a) Transactive memory system (TMS) for governing the

coordination of members’ limited and distributed knowledge and skills; (b) Transactive

attention system (TAS) for governing the coordination of members’ limited attention and

distributed availabilities; and (c) Transactive reasoning system (TRS) for governing the

coordination of effective collective goals while fulfilling members’ diverse motivations. The

emergence and mutual regulation of these systems provide the foundation for the emergence

of collective intelligence, enabling the collective to adapt in response to environmental
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complexity. The mutual adaptation of these systems is central to the collective’s ability to

accomplish two generic functions long thought to be essential in all social systems (Arrow et

al., 2000; Hackman, 1987; Taylor, 2012): first, to accomplish the system’s goals by efficiently

utilizing its resources (i.e. efficiency function); and, second, to maintain the system and its

resources by pursuing appropriate goals while fulfilling members’ needs (i.e. maintenance

function). The relative importance of these two functions is also dynamic, differs by context,

and changes over time. Thus, the design problem of collective intelligence is to put together a

set of heterogeneous, boundedly rational members who can coordinate their distributed

cognitive resources and diverse personal goals to formulate a series of joint decisions and

actions that fulfill its efficiency and maintenance functions over time (Figure 2.1).

In articulating a theory describing complex adaptive systems that exhibit a

phenomenon like collective intelligence, it is important to attend to both the mechanisms for

dynamics of emergence and adaptation. Emergent or bottom-up systems dynamics involve

describing the nature of lower-level actors and the rules that guide their interactions with

others to theorize recognizable patterns of behavior exhibited at the higher level over time. A

common example for illustration is bird flocking behavior, where the higher-level behavior

(flocking) is described by the rules governing how the individual birds decide where to

position themselves (e.g., keep X distance from each other). A goal in articulating these rules

underlying the emergence of a phenomenon is not to be exhaustive but rather to determine

the minimum rule specification necessary to produce the pattern, also referred to as

“generative sufficiency” (Epstein, 1999; Kozlowski et al., 2013; Kozlowski & Klein, 2000).

Theorizing about adaptation, by contrast, typically uses a top-down perspective and involves

specifying how the different elements of the system form feedback loops with each other and

differentially respond to different environmental variables. Adaptive behavior often arises as

the relative strengths of competing feedback loops shift as the system responds to changes in

8



Figure 2.1

Collective intelligence emerges as a result of adaptive regulation of three socio-cognitive systems (transactive memory, attention, and reasoning

systems) in response to their changing  environmental complexity.
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the environment (Meadows & Wright, 2008). For example, a thermostat forms a feedback

loop with the room temperature and automatically controls the heating, ventilation, and air

conditioning systems to maintain the desired temperature. Explicitly theorizing about both

emergence and adaptation enables us to identify the mechanisms that generate, sustain, and

conditionally modify relevant systems behaviors in response to environmental variables.

Following this approach, we first describe the processes that lead to the emergence of

three transactive systems (TMS, TAS, and TRS), and then articulate the adaptive regulation

of the transactive systems that provide the foundation of collective intelligence. As we do so,

we first articulate our theory in narrative form, and then operationalize it in an agent-based

computational model, enabling us to validate that the rules implied by our theory result in

predicted patterns in simulated data and conduct virtual experiments (Carley, 2001). The

simplified model descriptions and simulation outcomes are interwoven with our theoretical

arguments (See appendix for a summary of procedure and rulesets).

Emergence of Transactive Memory, Attention, and Reasoning Systems

In this section, we articulate the individual cognitive and inter-member processes that

lead to the emergence of transactive memory (TMS), attention (TAS), and reasoning (TRS)

systems (see Figure 2.2 for an overview). For each transactive system, we start by theorizing

the individual cognitive, meta-cognitive, and inter-member processes. We then instantiate

these processes in a baseline agent-based model and observe collective-level patterns of

behavior that emerge, thereby allowing us to validate their generative sufficiency. In the next

section, we progressively combine these baseline models in “virtual experiments” to explore

how their interaction under different environmental threats exhibits adaptive behavior. The

results of the virtual experiments inform our hypotheses, which we then test against our

empirical data in the section after.

10



Emergence of Transactive Memory System (TMS)

Collective memory is an essential element in determining the amount of knowledge

and expertise that is available to be applied to collective work. A transactive memory system

(TMS) is a form of individually-held cognitive understanding of team members’ skills,

whereby each member is aware of who knows what on the team and relies on retrieving that

knowledge to achieve effective coordination (Ren & Argote, 2011). A well-functioning TMS

greatly improves how collective memory is organized and maintained. Work by Wegner

(1987, 1995) conceptualized TMS as a dynamic system comprising of (1) members’ current

level of knowledge and skills (i.e. individual memory system); (2) their current understanding

of each others' task-relevant knowledge and skills (i.e. individual meta-memory); and (3) the

inter-member processes that facilitate the dynamic updating of meta-memory and subsequent

allocation and retrieval of knowledge to and from the most appropriate member (Figure 2.2).

Individual Memory and Meta-Memory

Individual memory systems have a limited capacity to hold knowledge, which is

managed via four memory processes: encoding, storage, retrieval, and forgetting (Newell &

Simon, 1972). During the encoding process, the incoming information is designated a

relevant “label.” This is followed by the storage process wherein the information is

assimilated in memory along with knowledge with similar labels. The labels are used to guide

the retrieval process whenever a specific piece of knowledge is recalled. Finally, forgetting

happens automatically whereby knowledge that is not accessed for a long time starts to decay.

Alongside these processes, individuals also develop meta-memory or a cognitive directory of

all the labels and their location in the person’s memory. The contents of meta-memory are

very influential in determining the speed of memory processes. Meta-memory can also serve

as a directory for labels that are not stored in a person’s own memory, but in an external

source (e.g. another person’s memory system, or a specific physical or digital archive; Flavell

11



Figure 2.2

The socio-cognitive architecture of individual- to collective-level emergence of transactive memory, attention, and reasoning systems (TMS, TAS,

and TRS).
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& Wellman, 1977). Having this directory drastically reduces the time needed to look up the

location of relevant knowledge.

Inter-Member TMS Processes

TMS involves three transactive processes that ensure effective utilization of limited

and distributed knowledge stored in members’ individual memory systems. (1) Updating the

internal skill directory of “who knows what” occurs as members work on interdependent

tasks and information about everyone’s competencies is observed and stored. This directory

updating can be explicit (e.g., conversations) or implicit (e.g., inferred from tasks

accomplished). (2) Allocation involves routing new, incoming information to the member

best positioned to understand and store it. Given the associative nature of human memory, the

best member for storing any incoming information is the member who already possesses

related knowledge. Such differentiated accumulation of knowledge in local experts leads to

member specialization (3) Retrieval is aided by well-functioning updating and allocation,

which minimizes the time required for retrieving knowledge (Wegner, 1995). With multiple

retrieval episodes, members come to form shared beliefs about the extent to which they can

credibly rely on a given member’s expertise. These features (specialization and credibility)

are used as behavioral indicators of a well-developed TMS (Ren & Argote, 2011).

TMS Model Implementation and Validation

We implement our theory in a multi-agent system that models a six-member collective

working on a stream of tasks over 240 simulated timesteps. During each timestep, each

individual (or “agent”) operates according to the rules we specify to message each other and

work on their inbox of tasks. Each task involves resolving a series of problems requiring

distinct skills. As agents encounter a task, they decide if they will do it themselves or pass it

on to someone else based on the baseline rule-set chosen (see Appendix A2 for all rulesets).

In the TMS baseline, each agent has long-term memory, implemented as a dynamic

13



list of skills. Each skill is identified by a label, an expertise level indicated by a number on a

scale of 1-10, as well as an indication of the timestep when the skill was last used (e.g.

Skill-A::L5::T15 indicates Skill A with an expertise-level of 5 last used at timestep 15). The

expertise level determines the amount of work that the member can complete in one timestep.

Every time a skill is used for task work, the expertise level increases by a prespecified

learning rate (default, 0.05); whenever a skill is not utilized for more than 30 timesteps,

“forgetting” occurs which causes the expertise level to decrease by 1. Thus, a member

specialized in Skill-A is more productive and improves and maintains their level of expertise

by regularly applying their skills. To maintain accuracy of member directories, any increase

or decrease in skill level generates an explicit metaknowledge message and is shared with all.

Each agent also has a meta-memory, which is a list of metaknowledge objects, each

holding information about a member and one of their skills. Consequently, each agent has a

personalized “map” or internal representation of “who knows what” in the collective which

manages the allocation, retrieval, and updating processes described previously. The

meta-memory map is updated based on messages agents send each other when their expertise

increases. This map is used to retrieve information about members and identify who is best to

handle a particular task or to assimilate new knowledge on behalf of the group. When running

the simulation, we can either allow agents to coordinate using TMS-based information or

inhibit it by not allowing meta-memory processes. One simplification we make in the

baseline is to assume that metaknowledge is always credible, and focus observations on the

extent of specialization (calculated as average within-member skill variance).

On simulating this base case, we observe that when we allow TMS-based

coordination, "member specialization" develops as our theory predicts, but is eroded when we

block the process specialization (Figure 2.3A). As articulated in TMS theory and

demonstrated in the simulation, TMS relies on the logic of skill-based allocation of tasks
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Figure 2.3

Model validation for the emergence of  (A) TMS, maintains high specialization over time; (B) TAS, maintains high convergence over time; and

(C) TRS, maintains high commitment over time.
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which delivers value to the collective by efficiently coordinating the storage and use of its

distributed knowledge resources. Thus, it is particularly useful when the task involves

figuring out and resolving complex knowledge interdependencies. Consistent with this, extant

research demonstrates that TMS drives collective performance in a variety of settings by

resolving knowledge interdependencies (Lewis, 2004; Ren & Argote, 2011) and is strongly

related to psychometric measures of collective intelligence (Kim et al., 2017).

Emergence of Transactive Attention System (TAS)

In addition to memory, the amount of available attention is a primary resource that

puts a hard limit on the capacity of any collective to conduct work. Thus, attention

management is argued to be central to the role of management in any social system and is at

the heart of organizational design decisions (Simon, 1973). Traditionally, organizations have

deployed specified workflows, roles, and routines in combination to structure the attention of

boundedly rational workers (March et al., 1993). However, more knowledge workers are

simultaneously engaged in and juggling their attention across multiple different projects,

fluidly transitioning between teams or organizations (Mortensen & Haas, 2018; O’leary et al.,

2011; Valentine et al., 2017). This increasing dynamism means that coordination of

distributed attention occurs through implicit processes that cannot be managed entirely by

traditional structures. To this end, we introduce TAS as a dynamic system comprising of (1)

member’s current level of available attentional resources (i.e. individual attention and control

system); (2) their current understanding of each others' current focus (i.e. individual

meta-attention); and (3) the inter-member processes that facilitate the dynamic updating of

meta-attention and subsequent allocation of individual attention and retrieval of joint

attention of appropriate members as needed (Figure 2.2).

Individual Attention and Meta-Attention

The individual attention and control system enables individuals to function adaptively
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in an information-rich world by selecting the most relevant information to the task at hand

while suppressing irrelevant information. Three control processes are responsible for the

selection and maintenance of relevant information within the focus of active attention

(Knudsen, 2007). The heuristic-driven fast selection process is responsible for automatically

filtering the wealth of incoming information based on salient characteristics (Koch & Ullman,

1985). The top-down deliberate selection process is responsible for directing action to

increase the flow of relevant information from the external world as well as deliberate recall

of relevant information from the individual’s long-term stored memory (Egeth & Yantis,

1997). Finally, the maintenance process involves chunking of closely related tasks and

information pieces in order to minimize the costs associated with cognitive switching as one

transitions between mental actions (Desimone & Duncan, 1995). To complement these

processes, individual meta-attention provides globalized cognitive control to help expertly

navigate situations involving choice among multiple tasks (Lavie et al., 2004; Miller & Bigi,

1979). Meta-attention is essential for monitoring individuals’ workload and guiding their

selection of focal tasks without incurring undue switching costs. In this way, meta-attention is

critical to the efficient use of attentional resources. We extend this conceptualization of

meta-attention to also encode information about others’ focal tasks and their priority relative

to new tasks that may emerge. Thus a well-developed meta-attention will help coordinate task

distribution by allowing members to redistribute workload when it is unbalanced, thereby

reducing bottlenecks in the project’s workflow. By contrast, poorly-developed meta-attention

will result in misallocation of time to tasks and hinder work progress.

Inter-Member TAS Processes

Just as with TMS, TAS involves three inter-member transactive processes that

facilitate the efficient utilization of collective attention. (1) Updating refers to maintaining a

dynamic and accurate understanding of “who is doing what.” Effective updating demands
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communicating frequently or developing systems (like shared calendars or task trackers) that

enable members to indicate their availability or observe each others’ focal activities. (2)

Allocation of attention involves routing new tasks to members or redistributing tasks in a

manner that minimizes bottlenecks and aligns with collective priorities (which are informed

by TRS; see next subsection). Well-functioning attention allocation prevents

attention-priority misalignments and results in member focusing behavior centered around the

most valuable tasks or projects. To maintain this as the number of members in the collective

increases, systems for managing attention allocation become increasingly important, as the

amount of information to process increases exponentially. In some situations, this might be

handled by a single decision-maker (e.g. scrum master) or decentralized and handled

asynchronously (e.g. by an issue tracking or shared tagging system). (3) Retrieval occurs

when joint, synchronous attention is needed from multiple members, such as to discuss

complex issues or handle highly interdependent tasks. Poor retrieval management can lead to

wasted attentional resources, either by calling for simultaneous attention when it is not

necessary and thus distracting from other important work, or when it is needed but weak

temporal coordination causes delays and lost time. Akin to the negative costs of cognitive

switching associated with individual attention, a well-functioning collective attention system

needs to minimize the switching costs incurred or time lost as members working on

interdependent tasks attempt to retrieve each others’ attention to exchange information or

coordinate hand-offs. The effective formation of joint attention is foundational to building

shared intentionality and working toward a common goal (Tomasello et al., 2005).

Collectives with well-developed attention retrieval processes will exhibit organized patterns

of temporal convergence, sometimes manifest as “burstiness,” characterized by periods with

low levels of interaction punctuated by intense periods where members are simultaneously

active on shared work and highly responsive to each others’ requests. Burstiness in work
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patterns has been shown to predict innovation (Riedl & Woolley, 2017) as well as collective

intelligence (Mayo & Woolley, 2021).

TAS Model Implementation and Validation

In our agent-based TAS model, each agent has a limited attention span (Kahneman,

1973) consisting of a dynamic list of up to three recently-accessed skills from memory, and is

responsible for maintaining the skills associated with the current task in active attention. If

the specific skill an agent needs for the current task was not recently accessed then the agent

incurs a switching cost by losing one timestep. In this timestep, it locates the skill in memory

and brings it to its active attention. Therefore, there is an advantage to maintaining the skills

associated with high-priority tasks in active attention.

Each agent also has meta-attention, which is a dynamic list of metaknowledge objects,

each holding information about a member and one of their tasks. Consequently, each agent

has a personalized internal representation or map of "who is doing what" which helps to

manage updating, allocation, and retrieval. The map is dynamically updated by storing

information about each member’s focal task as tasks move around. The map helps members

select the highest priority tasks to focus on, as well as to redistribute tasks among members to

ensure coverage of high priority tasks and maximum utilization of available attention. Thus,

in a highly functioning TAS, member attention is redistributed to high-priority tasks soon

after they enter the system. We can disable TAS-based coordination by inhibiting

meta-attention processes. One simplification we make as a baseline is by always providing a

clear signal of task priority, and observing the extent members collectively converge attention

on higher priority tasks (calculated as the percentage of total completion time spent by

members actively working on a task, weighted by task priority).

On simulating this base case, we observe that "convergence" of collective focus on

higher priority tasks is maintained at a high level for collectives with TAS, but when we
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disable TAS-based coordination this coordinated focus is eroded (Figure 2.3B). As articulated

in TAS theory and demonstrated in the simulation, TAS relies on the logic of priority-based

allocation of tasks to maximize the value of collective attention. It does so by avoiding

bottlenecks (and unused resources) while retrieving and reallocating attention as high-priority

tasks emerge or priorities change. Thus, it is particularly critical for collective work under

conditions of high workload with continuously evolving dependencies and priorities.

Emergence of Transactive Reasoning System (TRS)

While TMS and TAS work together to ensure efficient deployment of available

resources, specifically member skills and focus, they do not guarantee that the collective is

selecting the most valuable goals in terms of overall rewards or personal importance to

members. To supplement the focus on efficiency and productivity that TMS-and TAS-based

coordination can drive, collective reasoning serves an important maintenance function by

monitoring the value of the collective’s goals, both in terms of relative opportunities in the

environment and, relatedly, in terms of members’ personal goals and motivations. In the

increasingly complex and fluid environment surrounding collective work, where more and

more jobs are contract or “gig-based” (Deutschkron & Pearce, 2019; Valentine et al., 2017)

and boundaries are highly permeable, collectives need to attract and retain members. A

collective that doesn’t pursue valuable goals or operates in a manner that ignores members’

needs is likely to face higher levels of resource uncertainty, in the form of member

disengagement, burnout, or turnover. Thus, tackling task and resource uncertainty is critical

to the collective’s ability to sustain itself. To this end, we propose TRS as a dynamic system

comprising of (1) members’ goals and motivational needs (i.e. individual goal system); (2)

their current understanding of each others' primary goals and needs as well as the value of

alternative opportunities (i.e. individual meta-reasoning); and (3) the inter-member processes

that facilitate the dynamic updating of meta-reasoning and subsequently maximizing joint
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rewards via dynamic retrieval of member resources and their allocation to collective goals

(Figure 2.2).

Individual Reasoning and Meta-Reasoning

The organization and motivational contents of our individual goal system dictate how

we juggle our significant and often conflicting goals and how we select the goals we choose

to pursue. Goal systems can be commonly understood as a hierarchy of associatively linked

cognitive structures that represent a set of goals along with a set of tasks that are their means

of attainment. Goals are typically associated with motivational needs that are fulfilled when a

goal is achieved. Continuously fulfilling proximal motivational needs is critical for sustained

progress towards valued distal goals (Bandura, 1991). While goal hierarchies maximize

short-term rewards and illicit goal commitment, individual meta-reasoning is needed to

achieve metacognitive control that maximizes longer-term rewards. Meta-reasoning involves

monitoring and determining whether to continue, switch strategies, or terminate pursuing the

current set of proximal goals to avoid local reward maximas (Ackerman & Thompson, 2017).

This input to metacognitive control is critical for sustaining performance when the individual

is experiencing psychological uncertainty or the task environment is continually changing.

Someone with well-developed meta-reasoning is able to effectively adapt to the changing

situation by reconfiguring their goal hierarchies and ensuring reward maximization. In

addition to engaging in reasoning about one’s own cognitive and motivational states,

meta-reasoning facilitates understanding of others’ goals and motivations. One way this is

achieved is via the development of a theory of mind, wherein one can shift perspectives and

infer the cognitive and motivational states of others through observation and interaction

(Demetriou, 2000). Theory of mind has come to be understood as a foundation of social

intelligence (Woolley et al., 2010) and deficits in this ability are considered to be signs of

significant mental disability, such as autism (Baron-Cohen, 2000)
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Inter-Member TRS Processes

TRS involves three inter-member transactive processes that facilitate collective

reasoning. (1) Updating refers to maintaining an accurate view of the goals and motives of

others as their local environment changes. Since goals are inextricably linked to the state of

their environment, this updating also involves updates to task mental models and facilitates

the formation of shared situational awareness (Endsley, 2015). (2) Allocation relates to the

collective’s ability to allocate priorities and achieve goal alignment, with implications for the

distribution and allocation of resources to goals. The collective’s ability to leverage changes

in its task environment is based on the extent to which its members are able to monitor new

opportunities and threats as well as its success in integrating this information to realign

priorities. Having a diverse pool of highly motivated members is useful for recognizing

opportunities (Afuah & Tucci, 2012; A. Carsrud et al., 2009) and shared situational

awareness (Saner et al., 2009). The resulting clarity about the portfolio of collective goals

and their priorities allows for effective guidance of TAS for resource allocation and helps

recognize the needed missing resources. (3) Retrieval involves the extent to which the

collective is successful in garnering the commitment and effort of existing and prospective

members (including their time, skills, social capital, etc) in the service of the collective and

its objectives. Recent work on transactive goal dynamics has articulated how individuals in

interdependent relationships form a single unit wherein they adopt and hold other- and

system-oriented goals. When members adopt a dense set of goals that are aligned with the

system’s goals, then they will be willing to devote more resources towards their joint goals as

well as provide goal support (Fitzsimons et al., 2016). This results in higher levels of goal

persistence and commitment to the collective (Koestner et al., 2012; Moreland et al., 1993).

This is supported by research on game theory demonstrating the power of “we-reasoning”

mechanisms for persistence on collective goals, even in the face of competing personal goals
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(Bacharach, 1999). Thus, a well-developed TRS enables the provision of more resources and

clearer goal priorities to TMS and TAS to utilize and execute efficiently.

TRS Model Implementation and Validation

We instantiate a simplified goal reasoning system for each agent in accordance with

self-determination theory (Ryan & Deci, 2018). The agent’s current goals and subsequent

task selection are driven by the extent to which their motivational needs for competence and

relatedness exhibit autonomous regulation (high satisfaction) or controlled regulation (low

satisfaction) at a given timestep. Unless their individual needs fall below their threshold of

controlled regulation, the member autonomously chooses tasks that are aligned with

collective goals and exerts maximum effort towards the focal task. If satisfaction falls below

their threshold, the member continually chooses tasks that are in line with their personal goals

until their satisfaction level rises above the threshold. This is when their goals may fall out of

alignment with collective goals. Moreover, the agent exerts only 50% effort thereby

producing only half the work warranted by their experience level. In this way, the collective

pays a double penalty —misaligned goals and half the effort— if it fails to maintain its

members' motivations above their threshold levels. Meta-reasoning is a dynamic list of

metaknowledge-objects, each holding information about a member and current goals.

Consequently, each agent has a personalized internal representation or map of "who values

what" which is dynamically updated by observing other members whenever their contribution

level changes. It is utilized to identify members with eroding motivation levels sooner. This

gives enough time to provide goal support as well as identify tasks that align with personal

goals without detracting from collective goals, and the collective is able to retrieve maximum

effort out of them. When running the simulation, we can block TRS-based coordination by

not allowing meta-reasoning processes. One simplification we make in this baseline system is

always allowing accurate assessment of task priorities. We don’t model the emergence of
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shared goals via TRS as both, the value of exploration under variable task environments (e.g.

Afuah & Tucci, 2012; Hong & Page, 2004; March, 1991) and the processes of the emergence

of shared knowledge (Grand et al., 2016) are well studied in the literature.

We observe in our simulation that when we allow TRS-based coordination, "member

commitment" (10-step rolling average of member effort) is sustained at a higher level, but

when we block the process, member commitment erodes (Figure 2.3C). As articulated in TRS

theory and demonstrated in the simulation, TRS relies on the logic of reward and resource

maximization which delivers value to the collective by aligning individual and collective

goals, resulting from the ongoing evaluation of threats and opportunities which shape

members’ decisions about effort. Thus, a strong TRS is important in environments where the

collective is faced with uncertainty in tasks and resources, as the lack of such a capability

would result in member withdrawal.

Emergence of Collective Intelligence via Adaptive Regulation of Transactive Systems

In the previous section, we describe the bottom-up processes whereby TMS, TAS, and

TRS emerge independently. However, a critical element of intelligence in any system is the

ability to adapt to changes in complexity. Adaptation requires that these systems engage in

mutual regulation in response to environmental complexity. In this section, we theorize how

TMS, TAS, and TRS are locked in multiple feedback loops that trigger each other in response

to top-down, contextual factors. Together, they complement each other and dynamically

fulfill their efficiency and maintenance function, providing the foundation for collective

intelligence (see Figure 2.4 for an overview). For each function, we formally explore the

regulatory relationship under varying combinations of environmental threats by extending our

agent-based simulation to conduct a virtual experiment. We draw on the results to propose

testable hypotheses related to the conditional utility of each system.
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Figure 2.4

Overview of adaptive regulation of transactive systems. TMS and TAS regulate each other for efficient utilization of resources (see inside left

panel). While TRS regulates the tradeoff between maintaining resources and seeking efficiency (balance resources across panels).
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Efficiency Function: Co-Regulation of TMS and TAS for Efficient Resource Use

As described previously, collectives have two essential distributed resources

—member skills and attentional focus. Fulfilling the efficiency function is a continuous

trade-off between the appropriate utilization of these resources (e.g., the person with the most

task-relevant expertise might not be the most available). Because TMS regulates appropriate

utilization of knowledge and skills, reliance on a well-developed TMS will be particularly

important in environments where there is a high level of knowledge interdependence (Ren &

Argote, 2011). However, over-reliance on the logic of skill-based allocation of tasks might

also lead to the formation of bottlenecks, where tasks pile up for experts while others’

attention is under-utilized. The probability of such bottlenecks goes up as the collective

experiences a high workload without a concomitant shift to balancing attentional resources.

We posit that in a collectively intelligent, self-regulating system, deficiency in workload

management would trigger the collectives’ TAS processes and reallocate the most urgent,

important, and unattended tasks to maximize the value of attentional resources. At the same

time, while a purely TAS-driven logic of coordination can prevent bottlenecks, it may do so

at the cost of quality due to inadequate skill matches. To the extent that this causes poor

outcomes, a compensatory contribution from the TMS-driven logic of coordination will be

triggered. In this way, in conditions of high collective intelligence, TMS and TAS regulate

each other until an equilibrium is reached between the quality and efficiency of work given

available personnel and the current workload.

Virtual Experiment #1: TMS and TAS Co-Regulation

In order to explore the independent and joint effects of TMS and TAS under different

combinations of environmental threats, we extend our simulation to test six-member

collectives working in four configurations: uncoordinated, TMS-only, TAS-only, TMS +

TAS. We simulate the collectives’ behavior across two levels of knowledge interdependence
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(low vs. high) and two levels of workload (low vs. high). Our virtual experiment was run on

each simulated collective 20 times (N = 4*2*2*20 = 320 runs). For the purposes of this

virtual experiment, we disable agents’ individual reasoning systems and TRS; agents have no

personal goals and exert maximum effort at each timestep. Knowledge interdependence was

manipulated by changing the number of distinct skills needed to complete a task while

holding the total amount of taskwork constant. High interdependence trials involved 6/6

distinct skills requiring all members to work on every task before completion. Low

interdependence trials required 3/6 distinct skills. In manipulating workload, in low workload

trials, we randomly assigned each member a new task every 30 timesteps, while in high

workload trials members were assigned new tasks every 20 timesteps. Each task had

associated reward points that the collective received on its successful completion; however,

the reward was reduced by half for tasks completed after the deadline. The number of reward

points associated with a task determined its priority level. Performance was measured based

on total points accumulated in a given time period, and collective intelligence was measured

as the rate at which points were accumulated; this was calculated as the performance-slope

updated dynamically every 120 timesteps.

The results of the virtual experiment demonstrate that collectives with co-regulated

TMS+TAS outperform TMS-only and TAS-only collectives across all conditions (see Figure

2.5, Column 1 and 2). We only observed differentiation between TMS-only and TAS-only

collectives in the high interdependence conditions; TMS-only collectives performed better in

the high interdependence/low workload conditions, while TAS-only collectives performed

better in the high interdependence/high workload condition (Figure 2.5, Column 2). The most

striking evidence for the benefit of co-regulation is observed in the low interdependence /high

workload condition, where both the TMS-only and TAS-only conditions perform similarly, but

the co-regulated TMS+TAS condition exhibits significantly higher collective intelligence.
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Figure 2.5

Virtual Experiment Results: (Top two rows) Efficiency Function: Collectives with co-regulated TMS and TAS outperforms TMS-only and

TAS-only Collectives across all conditions. (Bottom row) Maintenance Function: When member effort is at risk, collectives with TMS, TAS, and

TRS exhibit higher intelligence than collectives with TMS and TAS only.
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In summary, co-regulation of the transactive memory system (TMS) and transactive

attention system (TAS) is necessary to determine the most efficient allocation of available

member skills and attention. While allocation guided by joint TMS+TAS logic is better than

either of them individually, the relative reliance on one or the other is conditional on the

particular environmental threats faced by the collective. This suggests the following

aggregate behavior:

Hypothesis 1. TMS improves collective intelligence by buffering against the negative

effects of knowledge interdependence. Specifically, maintaining a well-developed TMS

becomes more important for achieving high collective intelligence in an environment

with consistently high levels of knowledge interdependence.

Hypothesis 2. TAS improves collective intelligence by buffering against the negative

effects of task workload. Specifically, maintaining a well-developed TAS becomes

more important for achieving high collective intelligence in an environment with

consistently higher levels of task workload.

Maintenance Function: Regulate TRS for Effectively Exploring & Retaining Resources

Focusing on efficiency in task execution can lead collectives to ignore important

changes happening in the broader environment. Important information that could be ignored

relates to task and resource uncertainty, such as changes in the environment that alter the

value of current vs. alternative goals, as well as changes to the alignment of members’

personal and collective goals. Routine disregard of members’ goals and needs leads to

disengagement, burnout, and eventually turnover (Cappelli, 2020; Zucker, 2019). A collective

with a well-developed TRS will monitor the internal and external environment, and trigger

action to make changes when needed to increase the value of activities for members

individually or the collective as a whole, which would ultimately lead to higher collective

intelligence. Navigating this duality between preserving the system state and exploring new
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system states (i.e. morphostasis vs morphogenesis) is a classic dilemma of any open system

(Buckley, 1967).

Virtual Experiment #2: TRS, TMS, and TAS Co-Regulation

We expand our virtual experiment to explore the additional value that TRS can bring

to TMS and TAS co-regulation, particularly in changing or uncertain task and resource

environments. In this virtual experiment, we again simulate six-member collectives, this time

working in three different configurations: uncoordinated, TMS + TAS, or TMS + TAS + TRS.

Based on the results of the first virtual experiment, we focus on the high workload-high

interdependence condition and manipulate resource uncertainty by enabling the individual

goal reasoning system which results in varying member effort. Each configuration is run 20

times (N = 3*20 = 60 runs). As discussed previously in the section on TRS, when a TRS is

functioning, individual and collective goals are aligned which leads to higher levels of

commitment and effort; when there is no TRS they become misaligned and effort declines,

with downstream effects on performance and collective intelligence. Consistent with virtual

experiment 1, performance is measured as total points accumulated at a given time while

intelligence is measured as the rate at which points were accumulated. As shown in Figure

2.5, results demonstrate that while collectives that solely focus on efficiency (TMS + TAS) are

better than uncoordinated collectives, they exhibit lower performance and intelligence (see

Figure 2.5, Column 3) as compared to collectives that have all three (TMS + TAS + TRS).

These collectives maintain individual and collective goal alignment, and thus member effort

remains high, thereby exhibiting higher levels of collective intelligence. In summary, TRS

supplements efficiency-oriented logic by monitoring and maintaining goal alignment and

member motivation. This suggests the following effect of aggregated TRS behavior:

Hypothesis 3. TRS improves collective intelligence by reducing the negative effects of

task and resource uncertainty. Specifically, maintaining a well-developed TRS
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becomes more important for achieving high collective intelligence in an environment

with higher levels of task and resource uncertainty.

In this way, we theorize that the emergence of collective intelligence can be

characterized by the co-regulation of three transactive systems enabling the balance of its

maintenance function (which “selects right people and goals”) with its efficiency function

(which “gets them done quickly”). The influence of these systems will depend on the key

sources of complexity in the environment — specifically knowledge interdependence,

workload, and task and resource uncertainty.

Collective Intelligence in Open Source Software Teams:

An Empirical Investigation of Transactive Systems Model

In the previous two sections, we described a transactive systems model of collective

intelligence narratively and demonstrated its sufficiency in an agent-based model. We then

used virtual experimentation to explore the relative utility of the three transactive systems

under critical environmental threats (e.g. well-developed TAS when the workload is high).

We now turn to operationalizing and testing our model on empirical data from real-world

teams.

Rigorous empirical validation of a complex adaptive system model involves tracking

the behavioral dynamics of TMS, TAS, and TRS (forms of growth, decline, etc.) as a function

of different environmental threats and comparing them to data from real teams (Schwaninger

& Groesser, 2009). Although a simpler test can be conducted by statistically aggregating the

behavioral markers of the TMS, TAS, and TRS and environmental threats from real teams’

data and using them to predict the level of collective intelligence exhibited by them. While

inadequate for validating causal dynamics, such a statistical test is a reasonable “proof of

concept” and adequate for establishing the distinct and contingent role of TMS, TAS, and
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TRS under specific environmental threats. Working within the constraints of available

behavioral data from real teams, a rigorous test was not possible. Thus, we simplify the

model dynamics to test hypotheses that describe the conditional utility of each transactive

system in predicting collective intelligence under different environmental threats.

In this section, we analyze 18 months of member activity data from 476 open-source

software (OSS) project development teams in the “Node” community. Given the complex,

dynamic situations that characterize open-source projects, with high membership turnover

and wildly fluctuating levels of member activity, OSS is a prime setting for statistically

testing our proposed hypotheses.

Overview of Research Setting: Open Source Software (OSS) Project Teams

OSS projects are a great example of community-based, geographically distributed,

virtual work where members contribute to multiple self-organized projects (O’Leary &

Cummings, 2007; Vasilescu et al., 2016). OSS projects are typically volunteer-driven; while

in some cases programmers are compensated by their employer for time spent on strategically

important OSS projects, the vast majority of work is carried out by volunteers who work on

any project that interests them at whatever time they choose. The combined effect of

members’ geographic and temporal dispersion, differing backgrounds, multi-teaming

behaviors, and voluntary membership make coordination uniquely challenging (van Wendel

de Joode & Egyedi, 2005). Given the context of OSS projects, membership churn is high, and

thus the ability of a collective to retain members by assigning them fulfilling tasks and thus

getting them to consistently contribute is particularly critical for maintaining high-quality

performance over time. This makes the setting suitable for testing the value of TRS.

Despite the lack of commercial backing, OSS projects cover a staggering range of

complex software applications; from operating systems (e.g. Linux) to browsers (e.g.

Firefox). Entire programming ecosystems (e.g. Python, Node.js) including the framework and
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several thousands of smaller libraries or packages used within the framework are developed

and maintained as OSS projects. A vast majority of OSS projects are hosted on GitHub, a

code-management software. Contributors to an OSS project primarily contribute by writing

software code to add new features or improve existing features of the project’s software.

They often fix bugs that have been reported by engaging in comment-based conversations.

GitHub provides an infrastructure for storing and organizing all of the different pieces of a

project, in addition to a system for reporting issues and managing taskwork via “tags”. This

makes available for analysis a host of archival project activity data like contributors, code

commits, reported issues, comments, as well as micro-level task management events like

labeling, assignments, referencing, etc. for a given code repository. Thus, the ability to

observe and analyze a project’s characteristics as well as the contributors’ time-stamped

digital activity traces through their publicly logged events provides an exciting opportunity to

test a variety of questions, including our transactive systems model.

OSS contains a variety of projects with varying sizes, complexity, and development

activity belonging to a variety of ecosystems, each with idiosyncratic community norms,

making it a good setting to test the impact of TMS and TAS. Controlling for variation in

community norms is particularly important for our analysis, as we operationalize our

transactive systems based on emergent behaviors. Too much variability within the sample can

make it a nuisance variable. Therefore, we restrict our archival analysis to a single ecosystem:

“Node.js”. Unlike many OSS communities, the official node website periodically reports on

quality, maintenance, and popularity scores for each project as a way for its users to choose

between projects that serve similar functions. This makes it a good setting to evaluate a

project’s success in maintaining high-quality code.

Data and Operationalization of Constructs

For this analysis, we focus on 476 projects from the Node.js ecosystem on GitHub.
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The 476 projects in the final sample are filtered down from about 400K possible node

projects with GitHub data (as of July 2019). The filter ensured that each project in our sample

was actively developed by a team (at least 3 contributors per month between Jan 2018 and

July 2019, 18-month analysis window) as well as actively used by the community (at least

1000 downloads in the preceding year, signaling maintenance of high-quality code). Next, we

created measures of environmental complexity and level of transactive systems use by

aggregating theorized behavioral markers observed in the 18-month member-activity data.

Environmental Complexity

We first considered the critical sources of environmental complexity that threaten a

projects’ ability to maintain high-quality code — knowledge interdependence, workload, and

task and resource uncertainty. In selecting OSS as a context for testing our model, we

determined that task and resource uncertainty was a factor that was uniformly high across all

projects, given that contributors are free to enter and exit at will and the members are free to

negotiate and choose project goals. Thus there was no means of or need to operationalize a

metric to capture the level of task and resource uncertainty; nonetheless, a TRS to manage

this source of environmental complexity would be critical for all projects.

Workload. The number of issues to be handled varied considerably by project, even

among projects of a similar size. As mentioned, all tasks including issue reports were logged

into an issue tracker, making it quite straightforward to capture how much activity was taking

place in the project. Workload was operationalized as the total number of open issues per

member on the project within our analysis window.

Knowledge Interdependence. The structure of these software projects was highly

emergent and complex. As different contributors initiate a feature, they create code that they

can choose to add to an existing file or create a new file. Resolving an issue by updating the

code often necessitates understanding, changing, and reorganizing code across multiple files.
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On one hand, as the number of code changes increases the level of knowledge

interdependence among the co-edited files also increases. On the other hand, the code-base

tends to get organized into relatively independent modules that reduce knowledge

interdependence. To calculate this, we first identified the number of code modules in each

project by constructing a file co-edit network and counted the number of clusters of closely

connected files that tend to get changed together. Next, we calculated Knowledge

Interdependence based on the average number of edits (or commits) per module (commit

count / code modules count). Thus, larger values indicate projects where a typical module has

undergone a relatively higher number of edits creating stronger interdependencies with them.

Failure to understand how focal code change affects code in other interdependent files can

lead to adding potential bugs that break the project, reducing its quality and making it hard to

maintain.

Transactive Systems and Indicative Patterns

We draw on the indicative patterns theorized for each of the transactive systems to

operationalize indicators of each in the sample (see Figure 2.2).

Transactive Memory System (TMS). Two indicators of the level of TMS in a

collective are whether or not members have credibility in their areas of expertise, and

whether they specialize by concentrating their work in those areas. While we did not have

access to participants’ perceptions to gauge credibility, data on work patterns were available

to provide insight on specialization. In this context, specialization reflects the extent to which

members focus their contributions on fewer vs. across more code modules. To evaluate this,

we first constructed a member co-edit network for the project and, using cluster analysis,

identified different clusters or contributor groups within the project. Then, we created an

index of TMS-Specialization by comparing the number of contributor groups and the number

of code modules (contributor groups count / code modules count). If each module is worked
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on by a unique contributor group then TMS=1 (i.e. highly specialized), else TMS<1 indicates

the extent to which groups contribute across code modules (i.e. less specialized).

Transactive Attention System (TAS). Two patterns that are indicative of TAS

function are the degree to which members are focusing on tasks that are collective priorities,

and convergence around temporal patterns of work by responding to one another and work to

resolve issues in quick succession. The issue tracker which serves as the main hub for OSS

projects facilitates discussion via comment threads and also enables issue tagging. Tags are

used to direct other members’ attention by indicating the priority level of an issue or alerting

specific members to provide input. As members communicate to resolve issues and

contribute code over time, Github passively logs the project’s activity data. Using these data,

we calculated two different indicators of TAS. TAS-Focusing is operationalized based on the

amount of tagging activity per member. Because convergence occurs when activity takes

place in more bursty patterns (i.e. activity concentrated in shorter time periods vs. distributed

more broadly across time), TAS-Convergence is operationalized as the extent of temporal

burstiness (calculated as fano factor) of the activity stream.

Transactive Reasoning System (TRS). Two patterns that are indicators of the level

of TRS functioning are collective goal clarity and member commitment. We did not have

access to data from participants which would enable us to estimate goal clarity. However, our

data does capture the extent to which a contributing member persists in working on and

continuing to contribute to the project. To operationalize this, we created a member-by-month

contribution matrix such that each cell was marked 1 if a member contributed during that

month. Then, we created another persistence-matrix by taking a 3-month rolling average

across months for each contributor and multiplying it (element-wise) with the contribution

matrix. Each cell in this matrix denotes each member’s persistence index, ranging from 0 (no

contribution in the past three months) to 1 (contributed in each of the past three months).
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TRS-Commitment is the average of the persistence index across all contributors across all

months. Higher values indicate the project’s ability to retain their contributing members.

Collective Intelligence (NPM-Score)

The node.js community analyzes the activity of all the projects on a rolling basis and

reports scores across three dimensions (quality, maintenance, and popularity) by aggregating

different aspects of the project over the year. For example, maintenance denotes if the project

is being actively maintained and depends on metrics like release and commit frequency,

proportion, and duration of open issues over the past year. Similarly, quality is reported by

combining more complex software features like code coverage of automatic tests, the extent

of outdated dependencies, and the release of stable versions (Lichtman, 2018). Collective

intelligence (NPM Score) is constructed by averaging the ‘quality’ and ‘maintenance’ scores

reported by the community. These scores are driven by the core team’s ability to keep the

project code operational, up-to-date, and bug-free over time in the face of evolving

membership, workload, and code complexity.

Control Variables

We create four control variables: project-capacity calculated as the average count of

contributors each month; project-age, months since first code commit (first member

contribution); project-size, operationalized as the total number of commits; and

project-popularity, indexed based on scores reported by the community.

Results

Descriptive statistics and correlations for all study variables are displayed in Table

2.1. First, inspecting the zero-order correlations among study variables reveals some

important observations relating to sources of environmental complexity in this setting. While

we note that workload demonstrates an expected and significant negative relationship with

collective intelligence (r = -.31; p < .01), knowledge interdependence is not correlated with
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collective intelligence (r = -.05 p > .01).

To test our conditional hypotheses, we standardized all variables and ran linear

regression models in two steps. In the first model, we regress on the environmental

complexity variables to determine which of them are a dominant threat (significant negative

effect) that hinders the OSS teams’ ability to maintain high-quality code over time, i.e.

exhibit collective intelligence. Then, we add transactive systems variables to examine their

conditional utility in buffering against these dominant threats.

Hypothesis 1 predicted that TMS improves collective intelligence by reducing the

negative effects of knowledge interdependence. Knowledge interdependence does not appear

to be a significant threat to maintaining the quality of OSS projects (Table 2.2-Model 1).

Accordingly, we see that TMS is also not a significant predictor of collective intelligence

(Table 2.2-Model 2). This doesn’t mean that OSS teams do not need TMS. Recall, we

theorize that TMS and TAS co-regulate each other, and together, give rise to efficient use of

resources. In fact, we observe that OSS teams in our sample exhibit well-developed TMS

(mean = 0.8; sd = 0.3; theoretical range = [0,1]) but cannot expect it to significantly predict

collective intelligence unless the corresponding environment threat it buffers against is

negative and significant. Our inability to test the dynamics is a limitation of the metrics that

capture aggregated behavior over our time window.

Hypothesis 2 predicted that TAS improves collective intelligence by reducing the

negative effects of task workload. As demonstrated in Table 2.2-Model 2, and in support of

hypothesis 2, both indicators of TAS (focusing and convergence) moderate the effect of

workload on CI. In decomposing the interaction, we see in Figure 2.6 that the effect of TAS

was particularly dramatic for teams experiencing very high levels of workload. Finally,

hypothesis 3 predicted that TRS improves collective intelligence by reducing the negative

effects of task and resource uncertainty. As mentioned previously, task and resource
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Table 2.1. OSS-GitHub Study Descriptive Statistics and Correlations

Mean SD [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

[1] CI (NPM Score) 0.86 0.11 -
[2] Workload 17.99 15.23 -0.31 -
[3] Interdependence 29.91 29.17 -0.05 0.12 -
[4] TRS Commitment 0.64 0.11 0.23 -0.33 0.08 -
[5] TAS Focusing 109.85 102.80 0.13 0.24 0.23 0.38 -
[6] TAS Convergence 62.17 73.48 0.06 0.26 0.18 0.08 0.47 -
[7] TMS Specialization 0.80 0.30 0.00 0.08 0.02 0.16 0.20 0.18 -
[8] Project Popularity 0.32 0.20 0.04 0.36 -0.03 -0.44 -0.03 0.16 0.06 -
[9] Project Size 1844.8 2799.5 -0.05 0.28 0.58 0.14 0.40 0.39 0.27 0.08 -

[10] Project Capacity 15.43 17.85 0.00 0.34 0.20 -0.11 0.30 0.36 0.23 0.34 0.53 -
[11] Project Age 54.94 24.58 -0.20 0.24 0.12 -0.18 -0.05 0.02 0.14 0.32 0.23 -0.04

Note. N = 476; p < .01 in bold; CI = Collective Intelligence

Table 2.2. Test of Hypotheses in OSS-GitHub: OLS Regression Results

Collective Intelligence (NPM Score)

Model 1 Model 2

Coeff SE Coeff SE

Environmental Complexity
Workload -0.613 * -0.081 0.130 -0.193
Interdependence -0.063 -0.085 0.000 -0.086

Transactive Systems
TRS Commitment 0.135 * -0.057
TAS Focusing 0.694 * -0.195
TAS Focusing * Workload 0.606 * -0.260
TAS Convergence 0.440 * -0.178
TAS Convergence * Workload 0.607 * -0.256
TMS Specialization 0.025 -0.072
TMS Specialization * Interdependence 0.034 -0.086

Controls
Project Popularity 0.204 * -0.045 0.288 * -0.047
Project Size 0.170 -0.093 -0.069 -0.102
Project Capacity -0.024 -0.078 -0.020 -0.077
Project Age -0.191 * -0.044 -0.132 * -0.043

Intercept 0.153 * -0.076 0.768 * -0.144

N 476 476
R2 0.161 0.245
adj R2 0.150 0.224
Note. * p < .05
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Figure 2.6

High workload projects without a well-developed TAS suffer the most. Collective intelligence

is operationalized as NPM score - an index capturing the projects' ability to maintain good

quality code.

uncertainty in the form of loss of contributors is uniformly high in the OSS context, and thus

not an element that varied across projects. As shown in Table 2.2, TRS, as indexed by

member commitment, has a significant positive relationship with collective intelligence. The

findings support hypothesis 3. In the OSS context, where member contributions are at risk,

having a well-developed TRS positively predicts collective intelligence.

General Discussion

Although the view of organizations is shifting from well-structured machine-like

entities designed for performance to dynamically responsive complex adaptive systems

capable of exhibiting collective intelligence, we have lacked a detailed process model

describing how collective intelligence emerges and is sustained under different conditions.
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The purpose of this paper was to articulate and evaluate a minimally viable socio-cognitive

architecture—Transactive Systems Model—of collective intelligence. Building from classic

theory in management (March et al., 1993) we posit that, in the absence of rigid structures,

boundedly rational actors can leverage their metacognitive capabilities to coordinate their

limited and distributed memory and attention as well as their diverse goals to overcome their

cognitive limits as a collective. Building on this, we described the bottom-up processes that

lead to the emergence of transactive memory, attention, and reasoning systems (TMS, TAS,

and TRS) and articulated the persistent behavioral patterns that are indicative of their

development.

We instantiated these processes in an agent-based simulation to conduct an initial

sufficiency validation along with two virtual experiments to explore how the three transactive

systems mutually regulate and adapt based on the critical sources of environmental

complexity, thereby exhibiting collective intelligence. Results from the first experiment

demonstrated that collectives utilize their resources—members’ skills and focus—most

efficiently when TMS and TAS co-regulate each other. Specifically, we hypothesized that the

relative reliance on one or the other is conditional on the level of threat associated with

different environmental complexities faced by the collective. Using the second virtual

experiment we hypothesized that, when resource uncertainty is the most threatening source of

environmental complexity, member commitment is at risk. In these conditions, high

collective intelligence results in the deployment of TRS to dynamically ensure the

maintenance of collective resources rather than allowing the pursuit of efficiency to

dominate. Finally, we empirically tested these hypotheses by analyzing archival data from

476 open-source software teams. Data and observation demonstrated that this is a context

where resource uncertainty (i.e. member commitment) and workload are the largest threats,

And consistent with predictions, evidence supported the conditional value of TRS and TAS.
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By contrast, knowledge interdependence was not a source of complexity in this context, and

as predicted we did not observe an influential role for TMS.

Implications

This work has important implications for both theory and research. In terms of theory,

our process-oriented framework and computational model provides a precise

conceptualization of the emergent and regulatory dynamics (Figure 2.2 & 2.4) that shape how

and when collective intelligence develops. By pairing narrative theory with agent-based

modeling, our paper exhibits the benefits of theories of emergence prevalent in team

cognition (Carley, 2001; Kozlowski & Klein, 2000). In addition, our complex adaptive

systems approach enables a more holistic perspective where we can investigate the

co-regulatory effects of our theorized transactive systems. This has important implications for

research on social cognition where the literature has accumulated evidence for independent

effects of key constructs (DeChurch & Mesmer-Magnus, 2010) but lacks studies that test

their joint or co-regulatory effects. In our virtual experiments and our empirical data, we find

evidence of such co-regulation.

Next, we extend the literature on social cognition by consolidating existing work to

articulate two new constructs, TAS and TRS. While the attention-based view (ABV, Ocasio,

2011) of the firm takes inspiration from individual attentional processes and articulates the

selective, executive, and vigilant aspects of attending to information flowing from the

environment, TAS builds upon them by leveraging the concept of meta-attention to articulate

how it helps members coordinate each others’ focus. In this sense, ABV functionally overlaps

the processes involved in team situational awareness and the subsequent emergence of shared

goals (Burke et al., 2006; Endsley, 2015; Rico et al., 2019). Additionally, complementing

extant work on transactive goal dynamics (Fitzsimons et al., 2016), TRS consolidates

relevant constructs to articulate the emergence of a system’s maintenance function. While our
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initial model of TRS dynamics proposed in the paper is adequate for our research questions,

more explicit integration of these constructs would be useful in future studies.

In terms of implications for research, in addition to articulating our transactive

systems theory of collective intelligence and providing initial validation, we also identified

operational metrics for evaluating TMS, TAS, and TRS in empirical data. This facilitated the

study of these constructs in an empirical setting to replicate and extend our model. In

addition, the indicative patterns associated with each transactive system provide the basis for

additional computational process metrics to enable the study of these constructs in other

settings (Riedl et al., 2021).

Finally, our work has important implications for research in information systems. The

transactive systems model can be used to further the basic goals of collective intelligence

research —to detect, diagnose, and enhance collective functioning. Identifying the

contingencies associated with sources of environmental complexity is important for targeting

critical areas of focus. The indicative patterns associated with each of the transactive systems

provide a starting point for diagnosis, and could likely be augmented by technology-based

systems. Such insights could, in turn, provide starting points for interventions. However,

given the highly interdependent nature of complex adaptive systems, it is important to think

of the system holistically to avoid unintended consequences where an intervention in one

system creates a new problem in another (e.g. Gupta & Woolley, 2018).

Limitations And Future Directions

Parsimony is a central tenet of theorizing complex adaptive systems (Carley, 2001;

Miller & Page, 2007). As a result, our model makes various simplifying assumptions which

may limit its applicability to some settings and are fertile grounds for future extensions. First,

while metacognition is central to our theorizing we have not built in allowance for

deficiencies in this area; as modeled, our agents have an accurate awareness of self and
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others’ mental states. However, we know that individuals vary significantly in their abilities

to pick up on others’ mental states, which has significant implications for collective

intelligence (Engel et al., 2014; Meslec et al., 2016; Riedl et al., 2021). Furthermore, as the

communication cost for achieving “complete metaknowledge” will increase exponentially

with the size of the collective, both inaccuracy and variability of metacognition across

members is likely to further increase. Therefore, future developments in this work will need

to test the boundaries of the accuracy and variability of metacognition and consider what

structures might be necessary such as subgroups/clusters or hierarchy to enable the critical

level to be achieved.

Second, our model ignores emotions. Emotion and cognition are deeply intertwined

(Dolan, 2002). Emotion plays a central role in reasoning, not only in decision making

(Schwarz, 2000) but also in collective reasoning by affecting the extent to which members

care about each other’s personal goals and are willing to trust and coordinate with each other

(Druskat & Wolff, 2001). Thus, inter-member emotional dynamics can have a profound

impact on transactive processes regulating collective attention and memory, especially under

high-stress situations. In addition, we chose to focus on sources of environmental complexity

that have been widely demonstrated as threats to coordination. However, in further

developing the model, additional considerations such as sense-making under varying levels of

ambiguity and risk preferences (March & Olsen, 1979; March & Shapira, 1992; Weick, 1995)

would add important nuance and improve generalizability.

Finally, the simplified “proof of concept” test of the conditional utility of different

transactive systems in the context of OSS teams collapses the theorized dynamics and simply

examines the relationships by aggregating behavioral markers of all the transactive systems

as well as collective intelligence. Such regression tests of emergent phenomena suffer from

multiple weaknesses. Of particular importance are two limitations: (a) its inability to
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disentangle the direction of causality between the threat and the corresponding transitive

system, and (b) its susceptibility to washing out effects of a threat that may have been high

for only a small proportion of the time window it was aggregated over. Therefore, future

work that maps the theorized dynamics with temporal observations that span across various

levels and combinations of environmental threats would be better suited for testing this

systems theory.

Conclusion

This paper introduces a transactive systems model for the emergence of collective

intelligence and presents a multi-method systems approach for investigating its adaptive

behavior. Our theory articulates the metacognitive and inter-member processes underlying the

emergence of collective memory, attention, and reasoning, and suggests how these transactive

systems co-regulate in response to different task constraints to sustain a high level of

collective intelligence. In so doing, this work theorizes a role for metacognition in the place

of traditional organizational structures, where members are aware of their limitations and

leverage the collective to overcome them. Much like the cognitive architectures that have

guided the development of artificial intelligence (ACT-R, Anderson & Lebiere, 1998; SOAR,

Laird, 2012; Newell, 1990), this socio-cognitive architecture holds the potential to be further

formalized in computational terms to explore the dynamics of collective intelligence and

pinpoint opportunities for enhancing it. Such guidance could prove very timely —advances in

robotics and AI are unlocking new and exciting organizational forms that leverage their

individual strengths. In order to unleash the true potential of human-machine collaboration,

we need to design with an understanding of the emergent and regulatory dynamics necessary

to cultivate collective intelligence.
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III

Dynamic Indicators of Collective Intelligence:

The Diagnostic Role of Collaborative Processes in Transactive Systems Model

The Transactive Systems Model of Collective Intelligence theorizes that collective

intelligence results from the emergence of transactive attention (TAS), memory (TMS), and

reasoning (TRS) systems that are a result of individual-level cognitive processes and member

interactions regulating one another in response to changing environmental conditions. While

computational models or retrospective archival analyses can provide the comprehensive

information necessary to analyze the development of the theorized systems and their

consequences (such as the analysis in Chapter 2), in many settings it would be helpful to have

observable indicators, available in real-time, to signal the level of functioning of different

parts of the system. Such indicators would enable managers or even automated systems to

identify problems as they develop along with potential points of intervention.

In order for such indicators to have practical utility, they would need to be valid

signals of the regulatory functioning of the underlying transactive cognitive systems—TAS,

TMS, and/or TRS. In addition, they would need to be both more specific and functionally

“upstream” from the collective intelligence indices for the entire system. The observation of a

decline in some overall metric of collective intelligence is important, but typically

incorporates too many inputs at too high a level and too late in the process to be able to

pinpoint a specific problem with the team. Thus, useful indicators would be more specific and

available early enough to course correct difficulties in a particular part of the system before

the problems are amplified across the system as a whole. In complex adaptive systems terms,

this indicator acts as the ‘sensory mechanism’. It perceives changes in the environment as

well as reflects how efficient and well-maintained the system is, at the current time.
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Here, we build on ideas originally introduced into the traditional teams literature to

identify essential collaborative processes which can serve as dynamic indicators of the level

of collective intelligence developing in a team or other collective. We first formalize our

argument for the value of a well-developed sensory mechanism by briefly discussing four

problems that any collective experiences when continually adapting to a changing

environment. Next, we describe three collaborative processes based on models in the extant

literature and theorize how they are related to various transactive system processes, thereby

claiming their value as a decomposable sensory mechanism. In the next section, we build on

an agent-based model presented in prior work (see chapter 2) and present a virtual experiment

to explore how our three theorized collaborative processes develop as signals of the level of

regulatory functioning of the three transactive systems. In a further extension of our model,

we also develop a composite indicator of collective intelligence using these collaborative

processes, which serves as a useful real-time proxy for performance-based measures of

collective intelligence that are typically available at a later stage.

In developing these diagnostic indicators, this work lays the foundation for translating

the socio-cognitive architecture of collective intelligence underlying our descriptive

Transactive Systems Model into machine-readable, dynamic indicators that can be used for

real-time diagnosis and intervention—by human managers, or by AI systems.

Four Common Problems That Plague the Management of Complex Adaptive Systems

For theorizing a socio-cognitive architecture of collective intelligence (Transactive

Systems Model), we relied on two important features that govern the dynamic behaviors of

complex adaptive systems: the emergence of transactive systems from localized member

interactions and adaptive regulation of transactive systems in response to a changing

environment. Similarly, informing our ability to design and manage complex adaptive
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collectives requires understanding two more features— non-linearity and path dependence—

that characterize these dynamic behaviors. Both of these issues point to the critical role

played by indicators in successfully diagnosing and intervening in complex adaptive systems.

In this section, we identify and briefly describe four common problems posed by non-linear

and path-dependent behaviors.

First, a system where heterogeneous members respond to their local conditions tends

to find itself locked in multiple reinforcing and balancing feedback loops (Figure 2.4).

Viewed from the global perspective, adaptive behavior arises as the relative strengths of these

feedback loops shift. These shifts can be prompted by external perturbations as well as the

specific nature of how the feedback loops are connected internally. The shifting dominance of

feedback loops gives rise to abrupt or non-linear changes in behavior. Two common forms of

non-linear changes include a small perturbation resulting in a disproportionately large output

and a larger perturbation having little to no effect on the system output. Thus, collectives are

prone to exhibiting plateauing as well as tipping point behaviors (Meadows & Wright, 2008;

Miller & Page, 2007). Longer gaps between action and feedback in a non-linear system may

be a recipe for undesirable outcomes. A collective with an insufficient sampling of changes

will fail at sensing maladaptive behaviors and often find itself experiencing unintended

consequences. A particularly egregious form of non-linearity arises when a balancing

feedback loop has a delay built into it. It makes the system output susceptible to cyclical and

sometimes hard to detect oscillations (Arrow et al., 2000; Meadows & Wright, 2008). Delays

can trick managers into generating ill-calibrated responses to changes in their environment

and get collectives stuck in a cycle of reactionary and overcompensatory actions that get

worse as time passes. The right types of diagnostic indicators can enable better sensing of

problems and effective responses to counteract the tendencies to either overcompensate or

wait too long to respond.
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Second, most complex systems go through some degree of non-linear change—

reinforcing loops, compounding returns, lock-ins— which results in a corresponding level of

path dependence (Sterman and Witt, 1999). Path dependence refers to the ways in which

early activities and decisions open up or close off possibilities for future action. A system’s

history uniquely constrains the probability of successfully pursuing specific actions in the

near future (Miller & Page, 2007; Page, 2006). A particularly important aspect of a system’s

history that has received special attention is its ‘input or initial conditions’ (Meadows &

Wright, 2008). A collective whose members have all of the skills needed to address the tasks

at hand as well as have well-defined roles and norms for developing transactive systems

appropriate for the workload can quickly achieve high collective intelligence. On the other

hand, many collectives are likely to start out with some form of compositional or structural

handicap, lacking appropriate skills or poorly thought-out norms. Such collectives need a

way to quickly sense and overcome their situation or risk low collective intelligence behavior.

Furthermore, the early developmental trajectory of transactive systems also creates path

dependence. For example, experiencing early success with TMS-based task allocation can

lead a collective to encode heuristics and routines centered on reliance on expertise. If this

occurs, it can become harder for a collective to successfully sense and adapt to changes that

require a different logic of coordination; in other words, a collective can become locked-into

TMS-driven regulatory inertia. This may lead the collective to have difficulty adapting to\

higher workloads and consequent bottlenecks and fail to notice that for some tasks, relevant

expertise is less important and they should use a TAS-based resource-driven regulatory logic.

In this way, the level of intelligence exhibited by a collective is highly sensitive to the initial

conditions and rules of interaction that shape their path, particularly in the absence of

diagnostic indicators available at earlier stages to mitigate the tendency toward inertia.
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In addition to valid and early detection of these four types of problems, effectively

dealing with non-linearity and path dependence requires diagnostic indicators that isolate a

particular part of the process or the system as a likely focus for intervention. And, because a

complex adaptive system is continuously changing, it is important that the indicators also

update dynamically to ensure an accurate assessment of an issue as well as the impact of an

attempted intervention. In the next section, we describe three collaborative processes we have

identified from extant literature and their relationship to the transactive systems included in

our socio-cognitive architecture of collective intelligence. We argue that these relationships

make the three collaborative processes ideal diagnostic indicators for collectives in dynamic

settings (see Figure 3.1 for an overview).

Collaborative Processes and their Relationship with Transactive Systems Model

In extant work on collective intelligence, typically indicators are generated based on

performance on multiple tasks, perhaps in different environments, that vary in complexity.

However, such measures often are only possibly relatively late in the process, leaving little

opportunity for adjustment or improvement. Herein lies the core challenge of designing and

managing teams that aspire to operate at high levels of collective intelligence. While

punctuated use of after-action reviews, retrospectives, and performance feedback has

tremendous value, what can we do about course-correcting in real-time, when the work is

being done? Using diagnostic indicators can not only be useful for real-time interventions but

also facilitate evidence-based performance evaluations. The team performance literature has a

fairly established history of research on team processes which have been looked to in various

settings as proximal indicators of group functioning. A number of classic models have

identified different processes; one widely recognized and empirically supported model is the

Normative Model of Team Effectiveness (Hackman, 1987; Hackman, 2011) which argued
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Figure 3.1

Collaborative processes dynamically sense the changing environmental complexity (indicator of current collective intelligence) and help the

collective accurately diagnose the problem and allow managers to take actions that desirably regulate transactive systems (calibrated response).
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that three collaborative processes serve as essential and predictive indicators of team

effectiveness. These include: (1) the sufficiency of the effort members are expending in

carrying out collective work; (2) the appropriateness of performance strategies, that is,

ongoing choices that members make about what and how the collective work is getting done;

and (3) the sufficiency of the knowledge and skill the members are applying in carrying out

collective work. Subsequent work has validated the use of self-report measures of these

processes in longer-term teams at critical transition points (Wageman et al., 2005), as the

focus of interventions administered by skilled team coaches (Hackman & Wageman 2005)

and, more recently, as a differentiator of teams that are high versus low in collective

intelligence (Riedl et al., 2021).

Recognizing the value of initial conditions when managing complex adaptive systems

(Hackman, 2012), as well as the need for adaptation to maintain performance over time (i.e.

high intelligence) reinforces the value of using dynamic measures of collaborative processes

that can serve as diagnostic indicators. Without such inputs, even the best initial conditions

can morph into sources of regulatory inertia and poorly sense changes in their goals, norms,

and membership evoking ill-calibrated responses. Based on extant research, the collaborative

processes— collective effort, performance strategy, and use of knowledge and skill— to

identify problems and opportunities in real-time is likely to be of tremendous value for

ensuring high levels of collective intelligence. In addition to identifying what indicators

might have useful signal value, it is important to determine how they relate to the underlying

transactive memory, attention, and reasoning systems in order to determine if and how to

make a change to a system, thereby fulfilling the role of ‘sensory function’ in a complex

adaptive system (Figure 3.1). As described in the Transactive Systems Model, the three

systems engage in mutual regulation in response to environmental complexity, via a network

of reinforcing and balancing feedback loops that trigger each other continually until
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efficiency and maintenance tradeoffs are reached. We propose that the three collaborative

processes are indicative of the ongoing efficiency and maintenance tradeoffs attained by the

system at any given time (refer to Figure 2.4 for the regulatory model). These three

collaborative processes don’t operate in isolation and monitoring them in combination

provides real-time information about the functioning of the underlying, largely unobservable

complex adaptive system.

Proposition 1. Collectives with high intelligence are better at monitoring their

collaborative processes— collective effort, performance strategy, and use of

knowledge and skill— for sensing undesirable changes and diagnosing the associated

transactive systems that are causing the problem.

Here we further describe each collaborative process and its relationship to the

transactive processes that determine the regulatory tradeoffs necessary for fulfilling the

system’s efficiency and maintenance functions (see Figure 3.2 for an overview). This

framework guides how changes in a diagnostic indicator can be linked to an underlying set of

issues associated with the functioning of different transactive systems. Consequently, these

indicators can help identify ‘leverage points’ (Meadows & Wright, 2008) for improving

collective intelligence via targeted intervention. In the next section, we will extend the

agent-based simulation model from the previous chapter to explore the theorized diagnostic

role of these processes. In addition, we also combine the collaborative process metrics to

develop a composite metric and demonstrate its value as a leading indicator of collective

intelligence by comparing it to the observed trajectories of collective intelligence.

Sufficient Application of Collective Effort

Collaborators are most likely to work hard to accomplish collective goals if they are

engaged in work that is meaningful to them, consequential to the collective, and sufficiently

53



Figure 3.2

Collaborative processes can be used to triangulate and diagnose possible problems with different transactive processes, the underlying

mechanism for collective intelligence. Taken together, the collaborative processes indicate the current level of collective intelligence.
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challenging while also giving them a substantial level of operational autonomy (Hackman &

Oldham, 1976). The resource retrieval process in a well-functioning transactive reasoning

system (TRS) involves inter-member negotiations such that the members adopt a dense set of

goals that are not only aligned with collective goals but are also motivationally engaging for

the individuals. The resulting level of commitment and goal persistence contribute to

increasing the total effort members are willing to put towards the collective. The alignment of

goals and associated commitment also reduces the feeling of diffused responsibility thereby

preventing the most common ailment plaguing work in larger collectives —social loafing.

Thus, a drop in collective effort suggests a poorly functioning TRS retrieval process. Digging

into which may reveal a lack of focus on fulfilling member needs due to overemphasis on

TMS and TAS or poor TRS updating process.

That said, members cannot be infinitely motivated to increase effort and devote all

their time to the focal collective’s work. In addition to work-life balance, modern workers are

often juggling multiple projects across multiple teams and organizations (O’Leary et al,

2012). It would be reasonable to mutually agree upon an aspired level of effort expected from

each member (e.g., hours per week). Comparing the combined capacity with a benchmark for

sufficient capacity is necessary for accurately diagnosing if the collective needs to focus on

motivating members or adding more members. In the absence of individual aspiration levels,

the collective can also use effort data from its past behavior as the baseline. Understanding

these maintenance trade-offs is essential as member turnover is the biggest source of

uncertainty in the resource environment. Moreover, frequently changing or adding members

comes with its own complications, a non-linear increase in the communication overhead.

Proposition 2a. A consistent decrease or constant fluctuation in collective effort

suggests poorly developed TRS retrieval processes (maintenance check)
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The most egregious form of efficiency loss experienced by collectives is the effort

spent dealing with communication overheads (e.g. poorly run meetings). It directly cuts into

the time and energy devoted to productive work. In the transactive systems model, members

spend time communicating about each others’ skills, workloads, plans, and goals (all three

metacognitive updating processes). This understanding forms the necessary basis for the

emergence and development of the three transactive systems. As such this is unavoidable and

members have to find ways to efficiently maintain the accuracy of metaknowledge to reduce

wasted time and effort due to poor TMS, TAS, and TRS updating.

Proposition 2b. A stable but low level of collective effort devoted to task work

suggests poorly developed TMS, TAS, and TRS updating processes (efficiency check).

Appropriate Use of Performance-Strategies

“Performance-Strategy” refers to two distinct sets of collective choices made by

members about (1) which goals are worth pursuing and (2) how will we go about performing

the tasks involved in the pursuit of these goals. Successfully navigating the former is essential

for navigating high levels of uncertainty in the task environment where rewards associated

with existing goals can quickly erode and new opportunities often arise. The resource

allocation process in a well-functioning transactive reasoning system (TRS) involves the

collective’s ability to allocate priorities and achieve goal alignment. It monitors for

significant shifts in environmental threats and integrates this information to realign priorities.

This allows the collectives that develop truly original or insightful ways of formulating and

selecting better goals while leveraging their diverse pool of highly motivated members. The

resulting clarity about the portfolio of collective goals and their priorities allows for effective

guidance of TAS. Thus, inappropriate use of performance strategies suggests a poorly

functioning TRS allocation process. Examining this in combination with collective effort may

reveal that the collaborators are not spending enough time exploring and evaluating new
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opportunities and are no longer in agreement about goals and priorities due to a myopic focus

on TMS- and TAS-driven efficiency.

Proposition 3a. Consistent use of inappropriate performance strategies suggests

poorly developed TRS allocation processes (maintenance check).

Once the goals are chosen and the plans for pursuing them are made, deploying an

appropriate strategy involves figuring out member interaction that results in little "slippage"

in the execution of these performance plans. Both the attention allocation and retrieval

processes that are responsible for the emergence of a well-functioning transactive attention

system (TAS) contribute to effective management of the collective’s workload. It involves

routing new tasks to members or redistributing tasks in a manner that minimizes bottlenecks

and aligns with collective priorities. It also ensures swift resolution of unplanned task

interdependencies by facilitating synchronous discussion of complex issues, thereby reducing

inefficiencies involved in information exchange. Thus, a diagnostic indicator capturing a

decline in the execution of performance strategy points towards a poorly functioning TAS

allocation and retrieval process. Examining this in combination with an indicator for use of

knowledge and skill (discussed next) can alternatively suggest if the collective is

overfocusing on expertise at the expense of efficiency, revealing an over-reliance on TMS or

an inability to detect bottlenecks or hidden workload interdependencies.

Proposition 3b. A decline in the execution of performance strategies suggests poorly

developed TAS allocation and retrieval processes (efficiency check).

Sufficient Application of Knowledge and Skill

A collective is most likely to bring sufficient expertise to bear on its collective work

when its composition provides the right number and mix of members who have the

knowledge and skills needed for achieving the chosen collective goals. Collectives operating

with frequently changing goals often come across a lot of new information and regularly need
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the development of new types of skills and the resolution of complex knowledge

interdependencies. The information allocation process in a well-functioning transactive

memory system (TMS) involves routing new, incoming information to the member best

positioned to understand and store it. This fosters the development of local experts who

possess the unique ability to perceive and solve highly specialized problems or might develop

differential experience in tackling certain niches of an ongoing project. Moreover, the pattern

of interactions involved in the information allocation process between members with

differing expertise further fosters cross-training. Thus, a drop in a diagnostic indicator

capturing the growth of task-relevant knowledge and skills points toward a poorly

functioning TMS allocation process. Digging into which may reveal poor TMS updating

processes or an inability of any member to interpret and learn the new information that is

unlike anything the members have handled before. In that case, it might be meaningful to add

another member to the team. Understanding these maintenance trade-offs is essential as

adding a new member, especially one that doesn’t speak the same language comes with its

own complications as previously discussed.

Proposition 4a. A consistent decline in the level of collective knowledge and skill

suggests a poorly developed TMS allocation (maintenance check)

Finally, one of the most common forms of coordination error committed by

collectives is inappropriately weighting members’ input. Members are prone to cognitive

biases that skew the heuristics they use to assign credibility to others’ contributions. Often,

attributes related to demographics, personality, or organizational status override the value of

subject matter expertise. The information retrieval process in a well-functioning transactive

memory system (TMS) involves the identification of subject-matter experts and minimizes

the time required for accurately retrieving required knowledge. With multiple retrieval

episodes, members come to form shared beliefs about the extent to which they can credibly
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rely on a given member irrespective of their other attributes. Thus, a drop in the indicator for

appropriate application of knowledge and skill points toward a poorly functioning TMS

retrieval process. Triangulating this with diagnostic indicators for appropriate use of

performance strategy may reveal a deadline-chasing pattern of behavior that is indicative of

over-reliance on TAS or an inability to detect hidden knowledge interdependencies.

Proposition 4b. Inappropriate application of knowledge and skill suggests a poorly

developed TMS retrieval (efficiency check).

Identify Leverage Points by Putting All of Them Together

In practical terms, diagnostic indicators are unlikely to spell out obvious solutions in

isolation. In fact, it is unlikely any collective would achieve uniformly high levels across all

three collaborative process indicators, even under an ideal scenario, as the underlying systems

are locked in a mesh of reinforcing and balancing feedback loops creating non-linear

tradeoffs. The three processes don’t operate in isolation. This also means that we cannot

directly or independently nudge a specific collaborative process and expect uniform

improvement in collective intelligence. A recent study suggests that attempts to do this yield

mixed results (Gupta et al., under review). Thus, the most fruitful course of action is to

identify all the indicator processes that drop over time, generate, and triangulate possible

candidates for intervention by diagnosing the corresponding transactive process using the

relationships theorized. This would generate a shortlist of intervention candidates. But, how

do we rank them?

Given the regulatory relationships between transactive systems, maximizing the

probability that a team exhibit high collective intelligence necessitates achieving the most

rewarding efficiency and maintenance trade-off. Hence, we propose that the most effective

regulatory scenario would involve focusing on maximizing the leading indicator that

combines all three collaborative processes. Then one can rely on the components of this
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composite indicator to identify and rank the shortlisted intervention candidates to maximize

the possibility of pushing the system from its current level of collective intelligence to a

higher level. Such an approach honors the messiness of complex adaptive systems exhibiting

non-linearity and path dependence where outcomes are being driven by a large number of

interacting variables. It offers us theory-driven diagnostic guides for designing and managing

collectives.

Proposition 5. Interventions that maximize the joint value of all three collaborative

processes indicators will be better than interventions that exclusively focus on

maximizing any single indicator.

Exploring Diagnostic Use of Collaborative Indicators via Simulation

We build upon the agent-based simulation that instantiates the Transactive Systems

Model (presented in the previous chapter) by operationalizing and monitoring the three

collaborative indicators. We then conduct a virtual experiment to (a) observe how the

composite indicator derived from collaboration indicators compares with the ideal measure of

that capture rate of performance and (b) observe how collaborative indicators behave in the

absence of specific transactive systems as well as provide a basis for diagnosis by drawing on

theorized relationships. Agent-based modeling (ABM) excels in exploring emergent,

non-linear, and path-dependent behavior of complex adaptive systems. ABM is a powerful

theory-generating mechanism, rather than serving as a vehicle for empirical testing of

theorized relationships (Krackhardt, 2000). We wish to explore the co-regulation of these

systems and the correspondence of diagnostic indicators by systematically switching off one

transactive system at a time, as well as validate our intuition that these indicators don’t

operate in isolation. We want to explore how switching of one transactive system triggers
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other processes involved in the regulatory loops compounding the problems experienced by

the collective over time. Thus, underscoring the complexity of diagnosis and intervention.

Model overview and Virtual Experiment Design

We implement the transactive systems theory in a multi-agent system that models a

six-member collective working on a stream of tasks over 240 simulated timesteps. During

each timestep, each individual (or “agent”) operates according to the rules we specify to

message each other and work on their inbox of tasks. Each task involves resolving a series of

problems requiring distinct skills. As agents encounter a task, they decide if they will do it

themselves or pass it on to someone else based on the baseline rule-set chosen (see Appendix

A2 for all rulesets).

We design our virtual experiment to explore how the three collaborative process

indicators behave in the absence of specific transactive systems. For this we simulate four

different configurations of our six-member collectives: (1) TMS + TAS + TRS (all); (2) TMS

+ TAS (no TRS); (3)TMS + TRS (no TAS); and, (4) TAS + TRS (no TMS). To examine the

criticality of all three transactive systems for achieving collective intelligence, we subject

these teams to the most complex environmental conditions. That is, for all simulation runs,

tasks require 6/6 distinct skills, requiring all members to work on every task before

completion (high knowledge interdependence), members were assigned new tasks every 20

timesteps (high workload), and members regulate their effort based on satisfaction of their

individual needs (high resource uncertainty). Each configuration is run 20 times (N = 4*20 =

80 runs). The emergent and adaptive behavior of the three transactive systems was validated

previously (presented in the previous chapter). No new agent interactions were added. For

this virtual experiment, the goal is to operationalize and examine the collaborative process

indicators under different conditions to enable us to make comparisons and draw diagnostic

inferences.
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Indicators Operationalization

Level of Collective Effort. We aggregate the number of work-units each member

generates at every timestep to operationalize effort. This is based on their current level of

need satisfaction. When fully satisfied, each of the six members is expected to devote 100

work-units per timestep (600 units total). The benchmark for sufficiency of the collective

effort is set at 500 work-units at every timestep. This leaves us with some slack. The dynamic

level of collective effort is calculated by taking a moving average of total work-units

generated during a given timestep and dividing it by 500 (range [0-1]). As the communication

is assumed to be instantaneous in the model, there is no effort wasted in terms of coordination

overhead. The only two ways to see a drop in effort are if the members were idle or they were

not working very quickly due to lack of motivation.

Efficiency of Performance Strategy. The external task environment is held constant

across configurations and iterations. That is the overall workload (randomized set of tasks) is

the same and each team has an equal opportunity to generate rewards by completing them on

time. However, since all teams are subjected to a high workload, there is value in prioritizing

more valuable high reward tasks over low reward tasks. Under high workload, the most

efficient strategy for achieving higher performance is to make sure that the high reward tasks

are not stuck in bottlenecks. We operationalize bottlenecking by calculating the standard

deviation across the number of tasks in each member's inbox at a given timestep.

Bottlenecking is high if one member is assigned the majority of the tasks, while it is low if

the workload is evenly distributed. The measure is created by calculating exp(-(bottlenecking

/ k)4) to get a range between [0-1] where 1 is no bottleneck and the measure tends to 0 as

bottlenecking increases. k is a constant used to specify the rate at which the measure drops

and can be chosen in benchmarking against acceptable levels of bottlenecking.
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Use of Knowledge and Skills. At every timestep that a member is actively working on

a task using a specific skill, we calculate the discrepancy between the member’s current skill

level and the level of skill required by the task. If the members’ skill level is equal to or

higher than the task requirement, the measure would have a value of 1. In all other cases, it is

0 indicating poor use of a members’ knowledge and skills. Finally, the number of distinct

skills needed for task work is held constant during the run (6 skills) so there is no opportunity

to learn new skills.

Composite Process-based Indicator of Collective Intelligence. The leading indicator

of collective intelligence derived from the dynamic values of the three collaborative process

indicators is created by multiplying the three measures. As all of them range between [0,1]

with 1 representing a high score on each, so consequently the composite metric falls within

the same range.

Performance-based Measure of Collective Intelligence. Each task had associated

reward points that the collective received on its successful completion; however, the reward

was reduced by half for tasks completed after the deadline. Performance was measured based

on total points accumulated in a given time period, and the performance-based collective

intelligence was measured as the rate at which points were accumulated; this was calculated

as the performance-slope updated dynamically every 120 timesteps.

In order to observe the aggregate value and overall trends of the collaborative process

indicators as well as compare their composite with the performance-based measure of

collective intelligence, we plot the 120-period moving average for all the indicators.

Examining Results and Exploring the Diagnostic Role

As could be reasonably expected, the condition in which all three transactive systems

were allowed to emerge (TMS + TAS + TRS) developed the highest level of collective

intelligence and best aggregate performance (see the purple line in Figure 3.3, Panel C and
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D). We observe that the pattern of results across the four conditions in the performance-based

measure of collective intelligence (Figure 3.3, Panel C) is very similar to the composite

indicator derived from the three collaborative processes (Figure 3.3, Panel A). This supports

our theory-based claims and allows us to use the composite metric as a leading indicator of

collective intelligence in real-time as well as leverage its component measures to diagnose

the regulatory state of different parts of the system and triangulate the transactive processes

that are good candidates for intervention.

Next, we analyze the patterns in the collaborative process indicators exhibited by the

three remaining configurations in the simulation, where one specific transactive system is not

contributing. Because all of the metrics range from 0-1, we add a reference line at 0.75 to

guide inference; indicators at or below this level, or trending downward warrants our

attention for triangulating the underlying problem. First, the TMS + TAS (no TRS)

configuration shows a stable but lower level of collective intelligence as compared to TMS +

TAS + TRS (see blue lines in Figure 3.3). We observe that the teams in this configuration

show a stable but low level of collective effort (0.6). Without the ability to develop a TRS this

outcome matches our expectation that goals are not aligned or member needs are not being

met. The potential for goals to fall out of alignment is constrained as the simulation doesn’t

model uncertainty in the task environment. Thus, the consequence of a dysfunctional TRS is

only restricted to member dissatisfaction. The application of knowledge and skill indicator is

at par with the best-case scenario while we are seeing a slow erosion of the indicator denoting

appropriate use of performance strategy. Taken together, we can diagnose that the blue teams

have likely prioritized efficiency over satisfying their members. And the resulting drop in the

collective effort is just shy of the minimum effort needed to keep up with the high workload.

As a result, we are seeing a slow but consistent increase in bottlenecking. If this continues,

we will likely see a nonlinear drop in performance in the near future.
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Figure 3.3

Virtual Experiment Results: Composite, process-based indicator of collective intelligence (A)

along with three underlying collaborative process indicators (B). The Performance-based

measure of collective intelligence (C) along with underlying performance score over time

(D).

Next, the TMS + TRS (no TAS) configuration shows a lower level of collective

intelligence compared to TMS + TAS + TRS, which is further declining at an alarming rate

(see green lines in Figure 3.3). This trend is clearly evidenced in the collaborative process

indicator denoting the use of performance strategy. Without the ability to develop a TAS this

pattern matches our theory-based expectation that members are good at coordinating work in
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accordance with collective priorities. The increasing bottleneck has no impact on the

application of knowledge and skill which continues to be maintained at the highest level. On

the other hand, collective effort is stable but has declined below the reference line. Taken

together, we can surmise that the green teams are overemphasizing TMS-based coordination

at the expense of efficiency. Moreover, the existence of bottlenecks makes it easier for

members to engage in social loafing such that they prefer to remain idle rather than working

on tasks that are important for the collective but difficult for them to accomplish. Left

unchecked we would likely observe a further drop in their collective effort. With some delay,

the lack of work is also going to demotivate members thereby decreasing the amount of effort

they are willing to exert when called upon. Such a team would benefit from figuring out

“Which tacit norms are blocking members from working on high priority tasks?” and “Who

is the bottleneck? What can they do to help them?”

Finally, the TAS + TRS (no TMS) configuration shows even more dramatically

reduced levels of collective intelligence compared to TMS + TAS + TRS (see orange lines in

Figure 3.3). This trend is clearly evident in the application of knowledge and skill and

collective effort indicators. Without the ability to develop a TMS the decline of application of

knowledge and skill matches our expectations but the stark decrease in member effort is

surprising. The lack of bottleneck denoted by appropriate use of strategy indicator suggests

that the orange teams are focused on spreading the workload at the expense of finding the

member with the right expertise to do the work. Taken together, we can diagnose that the

poor skill-match observed throughout the team has created a situation in which members are

taking longer to complete a task. As members are not allowed to abandon tasks in the middle

(a feature unique to this simulation), longer work periods on poorly-matched tasks have

quickly eroded their motivation. Once demotivated, these members down-regulate the

amount of effort they devote to these tasks which further exacerbates (non-linearity) the
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speed at which work gets done. This particular combination of TAS, TRS, and simulation

rules created a dominant negatively reinforcing feedback loop. Such situations are extremely

hard to reverse without significant intervention. Teams, where members are allowed to

abandon projects in the middle, are likely to not show such extreme motivational burnout.

Such a team will benefit from abandoning their current project in favor of tasks that are

aligned with their area of expertise. Particularly, move to tasks that give them a quick win to

restore their sense of competency and accomplishment.

General Discussion

Complex adaptive systems, by their very nature, are extremely difficult to observe and

accurately diagnose for the purposes of intervening to improve sustained levels of

performance. In this paper, we build on the socio-cognitive architecture of collective

intelligence and theorize three observable collaborative processes— level of collective effort,

appropriateness of performance strategy, and use of knowledge and skill— to be reflective of

the ongoing regulatory state of the transactive systems. By theorizing their contribution to

efficiency and maintenance functions, I propose that these observable processes can serve as

diagnostic indicators and provide real-time information about the non-linear and

path-dependent behaviors of the underlying, largely unobservable complex adaptive system.

We explored these collaborative process indicators in an agent-based simulation and

investigated their general utility in signaling the level of regulation achieved by different

transactive systems. We also examine their validity as a real-time leading indicator of

collective intelligence by combining the individual process indicators and comparing the

resulting metric to the summative performance-based assessment of collective intelligence.

The real-time indicator offers the benefit of enabling monitoring and diagnosis of underlying

problems along with pointers to the transactive systems potentially involved in difficulties.
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Implication for Leadership and Coaching Functions

The results highlight that the collaborative indicators rarely change in isolation. Even

if only one transactive system is initially the source of dysfunction, the regulatory

relationship over time creates secondary effects that erode the overall collective intelligence

of teams as a result of multiple factors. Left to their own devices, most complex adaptive

systems tend towards dysfunction. Cultivating high collective intelligence requires constant

vigilance and maintenance, often performed by a leader who can serve as a “coach” who

proactively intervenes to address issues. This is consistent with extant work on team

coaching, and the importance of this function for providing effective leadership (Hackman &

Wageman, 2009):

“Teams that expend sufficient effort on the work, deploy performance
strategies that are well-aligned with task requirements, and bring ample
knowledge and skill to bear on the work are quite likely to perform well. By
contrast, teams that operate in ways that compromise their standing on these
three processes are likely to underutilize their collective resources and turn
in suboptimal performances. Competent coaching helps members work
together in ways that foster process gains and minimize process losses for
each of these three performance processes.” (p.18)

There are two major hurdles to be overcome if the leadership or members of a

collective intend to succeed in cultivating high intelligence. The first is developing a

heightened awareness and deep understanding of how the member interactions determine

their ability to perform. And second is developing competence in identifying ‘leverage

points’ in real-time, and creatively designing well-targeted, small-scale interventions or

nudges that can transform even a large social system. Great coaches, consultants, or leaders

may be naturally gifted to do so. We posit that the Transactive Systems Model, together with

its relationship to the collaborative indicators theorized in this paper, can help explicitly

define a procedure for monitoring, diagnosing, and intervening in the functioning of complex

adaptive social systems (see Figure 3.1 for an overview of the full model). This not only

reduces the barrier to entry but also opens up interesting possibilities for partly or fully
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automating this process. Next, we discuss the possible functional roles an artificially

intelligent virtual coach (in the form of a dashboard, automation, or algorithm) can play in

improving a team’s collective intelligence.

Foundations for the Development of AI-based Team Facilitator or Coach

The role of artificial intelligence (AI) is growing in almost every area of society. In

thinking about the different classes of artificial intelligence technologies that have been

developed, one major distinction often made is between “production” technologies and

“coordination” technologies (Scott et al., 2007). Production technologies are those that

directly help carry out work, either by taking over tasks for humans altogether or by making

humans more accurate or efficient in completing tasks. Most technological development

begins here, whether we think of early generations of technology (hand tools, machines) or

those of the digital age. By contrast, coordination technologies are those that enable the

connection or coordination of effort or information from different sources. Examples include

algorithms that match people seeking a good or service with the best source to provide it

(such as ridesharing or online market platforms). Organizations use coordination technologies

to accomplish a variety of work scheduling and task distribution functions. We see additional

roles that AI can play in enhancing collective intelligence, from assisting with individual task

work to coaching collective teamwork processes (Fiore & Wiltshire, 2016), to diagnosing

system-level collaboration breakdowns. We see an opportunity for further development of

technologies that can sense and intervene to structure processes proactively before problems

emerge. Guided by the transactive system model, we discuss three roles for AI below.

Assistive AI. People are increasingly using what we refer to in Figure 3.4 as

“Assistive AI.” These are used to augment all of the cognitive functions mentioned in

individual task performance, such as internet search algorithms to aid memory and find

information, reminders to direct attention, or even tools that track information in the

69



Figure 3.4

Potential roles for AI-based team facilitator or coaching agents for improving collective

intelligence. Adapted from (Gupta and Woolley, 2021)

environment (e.g. financial indicators, job postings) that inform individual goals. We could

also foresee assistive AI that might incorporate knowledge of individual skills or

characteristics to specifically augment certain areas of weakness or anticipate reactions that

could inhibit judgment and decision making. Such an Assistive AI could arrange the

individual’s task environment to enhance cognitive functioning. As Stanford University

radiologist Curtis Langlotz put it: “AI won’t replace radiologists, but radiologists who use AI

will replace radiologists who don’t.” (Dafoe et al., 2021)

Coach AI. Another role for technology is possible in what we refer to as “Coach AI''

in enhancing transactive memory, attention, and reasoning systems. The best coaches
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structure activities or initiate action proactively rather than waiting for difficulties to develop

(Hackman & Wageman, 2005). Some researchers have experimented with relatively simple

“nudges” to proactively shape norms or prime awareness of collective memory, attention, or

reasoning as a means of sparking the associated transactive processes (Gupta et al., 2019).

Newer tools focused on memory sense the content of one member’s work and proactively

alert them to related information team members might have (e.g., Gimpel et al., 2020). An

important calibration in such systems is to supply the right amount of information, as

supplying too many connections could easily lead to overload and defeat the intent of

enhanced CI. Additional tools focused on transactive attention include “flash teams” (Retelny

et al., 2014) which break complex, multi-faceted projects into segments and coordinate task

assignments and hand-offs among contributors in a way that makes it possible to accomplish

such projects in significantly less time than standard. In the area of transactive reasoning,

some AI-based coach tools facilitate the identification of individual member perspectives on

what is most valuable via market-like bidding systems (Malone et al., 2017) to identify the

plans or approaches the most members collectively support.

Diagnostic AI. Beyond shaping behavior, there are also possibilities for developing or

leveraging AI to monitor a team or larger group via observable collaborative process

indicators to diagnose early signs of trouble. Such diagnostics, informed by relationships

theorized in this paper, could in turn trigger interventions via Coach AI. For example,

monitoring the level of effort and motivation by tracking member activity levels (Engel &

Malone, 2018) or emotional states (Van Kleef et al., 2012) can provide early indications of

diminishing levels and trigger a review of goal clarity and alignment. Indicators of

coordination via activity patterns (Mayo & Woolley, 2021), as well as the concentration of

work in fewer projects or areas versus spreading members across many different projects or

areas (Bertolotti et al., 2015), can be diagnostic of appropriate performance strategy and
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trigger a review of systems for managing attention. Finally, the match between member

expertise and time spent on tasks requiring that expertise, along with an increase in

specialization among group members, can help diagnose the appropriate use of knowledge

and skill (Ren & Argote, 2011). The biggest practical challenge in setting up such systems is

in the context-specific identification of operational measures that comprehensively and

accurately capture the collaborative indicators.

Human-AI Relationship Management. With the continued development of AI, it is

certainly possible to imagine systems that could completely “self-manage” or “self-organize”

the interactions of group members to routinely create high levels of collective intelligence.

However, we also know that poor human-AI interfacing can complicate what would

otherwise be a perfect system on paper (Demir & Cooke, 2014). For instance, work on

algorithm aversion demonstrates the numerous situations in which workers override tools and

technologies even when doing so to their detriment (Glikson & Woolley, 2020). Systems that

would deprive workers of their autonomy to exercise judgment or experience responsibility

for their results would undermine their sense of internal motivation (Hackman & Oldham,

1976). Thus it would seem that such systems will need to strike the right balance between

autonomy and control, as well as not undermine the natural social cognition that members

would normally develop through collaboration (Gupta & Woolley, 2018).

Overall, the systematic development of a Machine Theory of Collective Intelligence

holds the promise of producing a virtual coaching system that not only leverages the

combination of all three roles discussed in this section but also is capable of building a

trustworthy relationship with each human member of the team to successfully influence

individual and collective behavior. Such systems would be especially useful in cases where

members with varying levels of skills who don’t necessarily have experience working with
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each other are put together on short notice and are expected to perform under extenuating

circumstances (e.g. search and rescue missions in tsunami-affected or war-torn areas).

Conclusion

In developing the relationship between the collaborative processes and transactive

systems, this work lays the foundation for translating the Transactive Systems Model of

collective intelligence into machine-readable, dynamic indicators that can be used for

real-time diagnosis and intervention. Articulation and refinement of context-appropriate

metrics hold the potential to provide useful guides for intervention by human managers or AI

systems. Together with transactive systems, it pushes the theoretical and practical boundaries

of understanding and enhancing human-machine teaming thereby laying a foundation for a

Machine Theory of Collective Intelligence.
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IV

Summary Conclusions and Future Directions

Modern work has shifted towards increasingly dynamic, temporary, and decentralized

forms of organizing as evidenced by the sharp increase in multi-teaming, flash organizations,

and open-source work (O’Leary et al., 2011; Valentine et al., 2017). Success in such work

leverages new technology for breaking down silos by loosening or disrupting organizational

boundaries (Bernstein et al., 2016; Leonardi & Vaast, 2017; Turco, 2016). This represents a

significant shift from the central assumptions of the classical administrative theory that values

boundaries as a necessary form of structural control needed for efficiently retaining and

organizing bounded rational employees (March & Simon, 1993, Simon, 1997). While giving

up structural control in the face of dynamism is beneficial for innovation and collaboration

(Dougherty & Dunne, 2012; Kellogg et al., 2006), it also results in errors and inefficiencies

due to an increased likelihood of worker overload and burnout.

In response, there have been increasing calls for management theory to adapt its

assumptions about organizations to more appropriately reflect their reality as complex

adaptive systems (Arrow et al., 2000; Cronin et al., 2011; Hackman, 2012). This has resulted

in the growing use of concepts originating in research on intelligence in humans and

machines (Csaszar & Steinberger, 2021), which has for decades studied the functions that

enable systems to adapt and accomplish goals in a wide range of environments that vary in

complexity (Legg & Hutter, 2007). And as we see the rapid development of artificial

intelligence and its integration into all areas of work, it seems increasingly appropriate to

view organizations less as stable structures and more as complex adaptive systems, designed

to integrate human intelligence and machine intelligence into collective intelligence.

In this dissertation, I argue that collectives (teams, organizations, or communities)

facing highly complex and dynamic situations need to be designed for collective intelligence
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and introduce a Transactive Systems Model of Collective Intelligence, which provides a

process-based framework for understanding how coordination can be accomplished in a

complex adaptive system (see Figure 3.1 for an overview of the full model). In a transactive

system, members share and allocate cognitive resources and coordinate collective action to

their mutual benefit. Instead of using structural control to organize and retain employees by

administratively bounding organizational situations, this theory proposes that

autonomy-seeking members can exercise transactive control to engage each other’s bounded

cognitive capacities in a highly dynamic environment (see Figure 1.1). The work unfolds via

agent-based models to support and develop the associated narrative theory and paired with an

analysis of archival data to examine similarities and differences between computational

models and patterns in the real world.

The key arguments of my dissertation and their contributions are summarized in four

points that follow -

1. Collective intelligence is a product of its members’ ability to transactively coordinate

their collective attention, memory, and reasoning systems (TAS, TMS, and TRS). I

describe how each of these transactive systems emerges, bottom-up, from

individual-level cognitive processes and member interactions, and identify persistent

collective behavioral patterns that indicate their development. In doing so, this work

contributes to the literature on social cognition by introducing and extending two new

constructs examining collective attention and reasoning (see Chapter 2, and Figure 2.2

for an overview).

2. Collectives exhibit intelligence by continually co-regulating the three transactive

systems in order to adapt to their changing environment. The three-way co-regulation

balances its maintenance function (which “selects the right people and goals”) with its

efficiency function (which “gets them done quickly”). I theorize that each of these
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transactive systems buffers against the negative effects of a specific source of

complexity in the environment and their overall influence is thus contingent on the

dominant problems experienced by the collective. TMS, TAS, and TRS buffer against

knowledge interdependence, workload, and task and resource uncertainty

respectively. The integrated theorizing, validated by an agent-based simulation

experiment and supported by empirical data from 476 open-source software teams,

contributes to the nascent line of research on collective intelligence (see Chapter 2,

and Figure 2.4 for an overview).

3. In practice, complex adaptive systems, by their very nature, are extremely difficult to

observe and accurately diagnose for the purposes of intervening to improve and

maintain collective intelligence. For this, I extend the transactive system model and

theorize three observable indicators of collaboration— level of collective effort,

appropriateness of performance strategy, and use of knowledge and skill— to be

reflective of the ongoing regulatory state of the transactive systems. By theorizing

their contribution to efficiency and maintenance functions, I propose that these

observable processes can serve as diagnostic indicators and provide real-time

information about the non-linear and path-dependent behaviors of the underlying,

largely unobservable complex adaptive system. This work extends the research on

team coaching providing a theoretical connection between the indicators and

underlying socio-cognitive mechanisms and exploring their diagnostic capabilities

using agent-based simulation (see Chapter 3, and Figure 3.2 for an overview).

4. Finally, guided by the transactive system model and collaborative indicators, I discuss

the potential for developing an “AI-based coaching system,” by describing three

distinct roles ripe for AI-driven facilitation— Assistive, Coach, and Diagnostic AI,

that can distinctly understand team functioning and successfully nudge individual and
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collective behavior in real-time. This pushes the theoretical and practical approach to

designing human-machine teams and newer forms of decentralized and autonomous

organizations, and calls for the systematic development of a Machine Theory of

Collective Intelligence (see Chapter 3, and Figure 3.4 for an overview).

While I’ve only been able to largely reason about and develop a theoretical model of

collective intelligence in this dissertation, it does help us take a helpful perspective towards

exploring how existing and newer organizational forms can be categorized and what forms of

automation and tooling are likely to be productive in evolving our approach to organizational

design. In this final section, I briefly discuss some of these ideas.

Future Exploration: Developing Organizational Design Principles

and Digital Tools for Minimum Viable Collective Intelligence

As discussed in chapter 2, collective intelligence is achieved by successfully fulfilling

and balancing its maintenance function (which captures resources by “selecting right people

and goals”) with its efficiency function (which deploys said resources by “getting them done

quickly”). I anticipate that locating an organization on the maintenance x efficiency graph can

help its leader and members better understand the prototypical problem they will have to

resolve in order to move towards higher collective intelligence (Figure 4.1).

On one end, a typical profit-oriented business aims to maximize “technical” efficiency

in producing its goods or services. For example, in a software firm, this is achieved by using

tools like JIRA that implement the philosophy of Continuous Integration or Continuous

Deployment. Such tools standardize the rules for production and coordination of the tasks by

providing direct feedback to the developers in short cycles. In a manufacturing firm, this

takes the form of varying levels of supply chain automation (like UIPath) to ensure

just-in-time materials and inventory management. Thus, profit-oriented businesses can scale
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Figure 4.1

Organizational forms located in the Efficiency x Maintenance Graph.

successfully by getting exceedingly good at leveraging technology to reduce and manage

their technical debt. Technical debt, the source of operational inefficiencies, is the notion that

taking shortcuts while writing software (or making supply chain infrastructure decisions) has

undesirable consequences later. This concept of technical debt with an eye for efficiently

balancing speed with specialization is explained quite well by Cunningham (1992) in his

reflections on building a large portfolio management software -

“  Although immature code may work fine and be completely acceptable to the
customer, excess quantities will make a program unmasterable, leading to extreme
specialization of programmers and finally an inflexible product. Shipping first time
code is like going into debt. A little debt speeds development so long as it is paid back
promptly with a rewrite. The danger occurs when the debt is not repaid. Every minute
spent on not-quite-right code counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the debt load of an unconsolidated
implementation, ...”

On the other end, a typical purpose-oriented community aims to maximize its ability

to effectively “organize” members from the wider society by creating opportunities for

78



engaging in activities that tackle problems they personally care about. For example,

Wikipedia has created a set of rules that makes it easy for almost anyone to onboard and start

contributing to topics that user has knowledge about. These rules and roles continually evolve

and are designed with flexibility in mind. They ensure each contribution productively adds to

and curates our collective knowledge while allowing for diverse types of members (e.g.

varying skills) as well as diverse forms of interactions (e.g. resolving conflicts). In short, a

community is successful at pursuing its purpose by dealing with its organizational debt.

Organizational debt is generated by “all the people/culture compromises made to ‘just get it

done’ in the early stages” (Blank, 2015). Its negative consequences are felt in terms of “the

interest companies pay when their structure and policies stay fixed and/or accumulate as the

world changes” (Dignan, 2016). Members leave when they feel that the community’s rules

(organization structure) are no more serving the purpose that motivated them to join or is

inadequate at fulfilling their personal needs. With the uptake of blockchain technology in

recent years, we are seeing a surge in experimentation with Decentralized Autonomous

Organizations (DAOs) that promise to scale our ability to build and manage communities

across the globe. “Instead of a hierarchical structure … controlling property via the legal

system, a DAO involves a set of humans interacting with each other according to a protocol

specified in code and enforced on the blockchain” (Nielson, 2021). They are more transparent

and have lower barriers to entry than traditional companies (Xie, 2021). DAOs are leveraging

software to automate the governance process of negotiating contracts that satisfies the

contributors' needs by executing work that furthers the community’s goals.

Seen from the perspective of our collective intelligence model, the profit-oriented

business excels in dealing with technical debt by incurring organizational debt that constrains

and directs the employees' work, while the purpose-oriented community excels in dealing

with organizational debt by incurring technical debt that allows the parallel pursuit of diverse
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ideas that don’t necessarily build on each other. This sentiment is captured in a recent tweet

thread by Sam Spurlin, an org design consultant studying DAOs by becoming a first-hand

contributor -

If you want your DAO to run as efficiently as a company, maybe think about starting a
company instead. If you want to tap into the nearly limitless potential of humans and
create a space for adults to relate as adults in pursuit of a purpose, then go ahead and
start a DAO.

DAOs trade efficiency for a huge basket of other great things: resilience,
engagement, effectiveness, and innovation to name but a few. If you see inefficiency
around you remember what you’re “buying” with it.

Not saying efficiency doesn’t matter, but if it’s the primary thing you’re worried
about in your DAO it’s like going for a swim and spending a lot of effort trying to not
get too wet. Kinda comes with the territory and focusing on other things will let you
have a much better time. (Spurlin, 2022)

Given the dynamism of our task environment and labor market, we would like to

build high collective intelligence organizations that are equally adept at navigating and

dealing with both kinds of debts. That is, they have rules that are flexible enough to engage

everyone who comes up with productive ideas and agile enough to make sure that each

contribution adds to or at least complements the existing organizational capabilities. In this

setup, the organization manages to have very high efficiency to ensure profitability, and all

active employees are motivated to produce their best quality work. A great starting point is to

ask: How can a business leverage the wider community without disrupting current

operations? How can a community adopt business practices without getting derailed from its

mission? And, finally, what specific tools can help us manage this process at scale?

An exciting approach to exploiting organizational forms that hold the promise of

exhibiting minimum viable collective intelligence is in the use of experimental platforms like

Foundry that enable the deployment of flash teams and flash organizations, “a framework for

dynamically assembling and managing paid experts from the crowd” (Retenly et al., 2014,

Valentine et al., 2017). This temporary teaming model provides digital tools that scaffold the

ability to manage the workflow of short-term decomposable projects. Although, evidence
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suggests that this kind of workflow creates intermediate artifacts that inhibit open-ended and

creative adaptions typically required for complex design and engineering tasks (Retenly et al.,

2017). In other words, flash teams are able to exhibit intelligence when a limited number of

people are involved in working on a reasonably well-specified project that can be completed

in a short time. But it is unlikely to sustainably manage the debts that accrue when members

solve a poorly-specified problem over time. Moreover, scaling the size of a decentralized

team comes with its own trade-offs (Hu et al., 2022).

What kind of tools can we imagine that help us, a collective of boundedly rational

humans, overcome their fundamental limits to continually balance their technical and

organizational debt? Understanding the tradeoffs imposed by algorithmically mediated

systems on gig workers is an active area of research that draws scientists and practitioners

from computer science and organizational behavior (e.g., Cameron et al., 2021). The DAO

tooling community has a fertile ecosystem of open-source software projects that experiment

with novel governance and management mechanisms (see Nielson, 2021 for an overview of

the common category of infrastructure tools).

As discussed at the end of the previous chapter, the Transactive Systems Model along

with the indicators has the potential for informing the development of an “Artificial Social

Intelligence” that can passively read digital trace data generated by member interactions in

real-time and deliver dashboards and APIs (data and program interfaces) that help diagnose

the current state of the collective as well as generate recommendations for individual and

joint intervention. Moreover, such a system can operate at multiple scales simultaneously

(teams, nested in communities, nested across organizations). I am involved in prototyping

such a real-time coaching system for teams playing dynamically perturbed search and rescue

missions in Minecraft (ASIST Grant, 2019-22).
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Although such tools help in the day-to-day management of collectives, a fully

fleshed-out Machine Theory of Collective Intelligence will also be able to produce tools that

help us explore the high dimensional design space for collectives. Just as modern software

packages help engineers design bridges or test the performance of aircraft designs by

modeling air flows, a software for Computer-Aided Socio-Technical Systems Design will

make it easy to prototype collectives and simulate the effects of different rules for the

management of technical and organizational debts. A well-designed user interface will make

it easy for anyone to thoughtfully select the features of humans and machines that make up

the collective as well as systematically model the rules governing the interactions for each

combination.

Managerial Implications

While the goal of this dissertation was to develop a holistic theory about how complex

adaptive systems exhibit collective intelligence, the transactive systems model lens generates

two major insights for managers dealing with challenges posed by dynamic coordination.

First, if managers fail to note the need to respond adaptively to the dynamism in their (and

their team members) work environment they will likely never solve the correct problem. As

structural control mechanisms have worked quite well in the traditional work settings, the

temptation to double-down on them as the work gets more dynamic due to changes in

coordination technology is really high. The premise of our theory suggests that doing so may

cause more harm. The model recommends that in dynamic environments, it is useful for the

managers to lean into it and get better at dynamic coordination by further loosening structures

and giving their members more autonomy. This does come at a cost. Making various

organizational boundaries more permeable will increase both the informational and relational

load experienced by the members. In contemporary teams and organizations, the functional
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skills members have are considered their biggest asset. With the loosening of boundaries, it

becomes easy for them to stumble upon opportunities outside their present organization that

find their skills highly desirable. Furthermore, the rise of remote and flexible work setups has

drastically reduced the cost of changing employers and moving elsewhere. Without strong

ties within the team that reinforces their value in the current role, highly skilled employees

are bound to be lost in the constant presence of alternatives. The emphasis of the manager's

job is thus shifting from efficient project management to employee retention. In such

circumstances, the role of the manager shifts from exercising structural control by reinforcing

boundaries to facilitating transactive control by aligning and building shared mental models

around collective goals, needs, availabilities, and skills. Specifically, as per the Transactive

Systems Model, work is accomplished when collaborators are able to reciprocally rely on

each other by better understanding their skills, availabilities, and goals. Hence, the manager’s

function is to ensure that this mutual understanding doesn’t break down.

Boiling it down, three desirable characteristics of a manager of dynamic collectives

are: (1) They consistently communicate and enforce a few expectations - Every team needs

ongoing goals, norms, and values. The manager is skilled in identifying a few that are critical

for the collective’s goals and enforcing them by articulating clearly, reminding regularly, as

well as publicly recognizing actions that align, and privately correcting those that misalign.

Regular reinforcement makes it easier to both maintain the collective’s transactive reasoning

system and detect when the expectations need adjustment. (2) The manager employs their

own expertise as a multiplier, and not a limiter - In a changing environment, the management

is not in the best position to understand all the relevant influences underlying how the

situation has changed. Rather than enforcing their point of view, their expertise can be better

utilized to elicit the employees' thinking and facilitate collective integration and decision

making. Facilitation ensures the emergence and adoption of new shared norms that suit the
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new situation faced by the collective thereby rebalancing across the three transactive systems

instead of getting stuck in any one at the neglect of others. (3) The manager doesn’t direct but

unlocks and unleashes the employees' potential - They are skilled in facilitating transactive

interactions across many people they manage. Building a better understanding of their team

members’ skills, workloads, and ambitions makes it easier for the manager to tap into

organizational resources that are likely to generate win-win scenarios for both, their team and

the larger organization. Ultimately, rather than molding each employee into a set role, or

coaching them along a pre-defined career trajectory, such a manager spends time getting to

know the evolving goals and motives of the people they manage and creating opportunities

that help them become the best versions of who they are.

Finally, with the emphasis on transactive forms of coordination, the ideal member of a

high intelligence collective is what one would deem to be a “super-collaborator.” In addition

to being highly skilled in their area of expertise, they are also highly metacognitive. For this

reason, managers should focus on evaluating the collaboration skills of the people they

manage in addition to their technical skills. Specifically, a self and peer assessment of how

well-developed are the focal member’s meta-memory, meta-attention, and meta-reasoning

processes. For example, when given a list of common tasks, all members of a team with a

well-developed meta-attention will independently report a similar rank-ordering for triaging

through the task list. Similarly, when given a commonly faced problem, all members of a

team with a well-developed meta-memory will independently report a similar subset of

members they will reach out for help and resources that they will access to resolve the

problem at hand. Members who exhibit a high level of metacognition across all three

functions will be exceptionally good at dynamically understanding and engaging in work

with their collaborators. Lastly, the managers themselves should also be evaluated on their

ability to monitor, diagnose and coach the collaboration of their team. In addition to the
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previously discussed characteristics, good managers will have a firm grasp of the extent to

which the people they manage are motivated to put in their effort, their collective effort is

appropriately deployed and the members are not only using their skills but also have an

opportunity to grow and develop more skills that can be brought to bear on collective tasks in

the future.

Conclusion

As articulated in the introduction the work presented here is inspired by and seeks to

build on the work of Herbert Simon, who proposed that the boundedly-rational administrative

man (sic) organizes others via structural control to efficiently absorb uncertainty and fulfill

collective goals (March & Simon, 1993, Simon, 1997). My work in this dissertation builds

upon Simon’s main thesis and develops a path that I hope will expand the scope and

applicability of his ideas in the future. I propose that when dynamism is very high, the

boundedly-rational metacognitive individual, being aware of their own limitations, cooperates

with others via transactive interactions to manage uncertainty and satisfactorily balance the

fulfillment of personal and collective goals. Metacognition enables transactive behavior and

the emergent collective attention, memory, and reasoning structures necessary for the

development of collective intelligence. While much remains to be learned about the nature of

collective intelligence in complex adaptive systems, this dissertation introduces a

socio-cognitive model to enable a multi-method systems approach for investigating the

emergence, adaptation, and diagnosis of collective intelligence, laying the groundwork for

future research. In so doing, it is my hope that this work embodies the qualities articulated by

the researcher who is my strongest source of intellectual inspiration—

“The goal of science is to make the wonderful and the complex
understandable and simple - but not less wonderful.”

- Herbert Simon, The Sciences of the Artificial (1998)
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Appendix

Table A1

Procedure for Computational Model for Emergence of Collective Intelligence.

Step 1: Clean up Short- and Long-term Memory (assume negligible time)
1.1: Memory Maintenance: Forget Old Experiences
1.2: Attention Maintenance: Unload knowledge that is not recently used

Step 2: Evaluate and Store all MetaKnowledge Messages (assume negligible time)
2.1: Meta-memory: Directory Updating
2.2: Meta-attention: Availability Updating
2.3: Meta-reasoning: Goals and Needs Updating

Step 3: Evaluate Inbox and Select Focal Task (assume negligible time)
3.1: Triage my inbox: Estimate the best candidate for each task as per appropriate rule-set (Table A2)

3.1.1: Deploy appropriate rule-set using my meta-attention (workload), meta-memory (skill),
and meta-reasoning (needs) to assign tasks to the best candidate.
3.1.2: If my current workload (Level-Change); send meta-attention message to all members

3.2: Select focal task for work:
3.2.1: If inbox is empty: Do nothing; END timestep
3.2.2: If TMS (ON): Select the oldest task
3.2.3: If TAS (ON): Select the highest priority task
3.2.4: If Needs (ON and unfulfilled): Select task that best suits personal goals

Step 4: Load Focal Task in Attention (top-down selection of knowledge)
4.1: Figure out the current task-state and identify the skill knowledge it needs
4.2: Load skill knowledge in attention from memory

4.2.1: If knowledge already in attention, continue to step 4
4.2.2: Else spend timestep loading knowledge (switching cost) and END timestep

Step 5: Work on Focal Task, Learn from it and Regulate motives and personal goals
5.1: Calculate Skill multiplier for work generation based on level of relative task difficulty (default = 1)

5.1.1: If too easy (< my level - 200); multiplier = 2.0
5.1.2: If too hard (> my level + 200); multiplier = 0.5

5.2: Calculate Effort multiplier for work generation based on current motivational state (default = 1)
5.2.1: If MemberNeeds (ON) and Motivational Need (Below Threshold); multiplier = 0.5

5.3: Generate Work proportional to my skill-level, learn, and regulate personal goals
5.3.1: WorkGenerated = Skill-level * Skill-multiplier * Effort-multiplier
5.3.2: Learning by Experience: increase experience-level proportional to learning rate

5.3.2.1: If Skill-knowledge (Level-Up); send meta-memory message to all members
5.3.2: Goal Regulation: update needs satisfaction levels based on current task and skill

5.3.2.1: If Needs (Level-Change); send meta-reasoning message to all members
5.4: Execute task

5.4.1: Spend timestep working for the identified skill (Taskload = Taskload - WorkGenerated)
5.4.2: If task (Complete): Remove task from inbox and END timestep

Note. All steps of the pseudo-code were evaluated individually by each agent for each timestep. But
the order in which each member evaluated these steps was randomized for each timestep.
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Table A2

Rulesets for Triaging a Member's Inbox.

Ruleset 1: If TMS (OFF) and TAS (OFF): Do nothing

Ruleset 2: If TMS (ON) and TAS (OFF): Ask meta-memory: Who is the 'skill' expert?
(NOT ME): Send the task to the expert
(ME or NO ANSWER): Keep the task

Ruleset 3: If TMS (OFF) and TAS (ON): Ask meta-attention: Is this my focal task?
(YES): Keep the task
(NO): Ask meta-attention: Who is working on a lower 'priority' focal task?

(NOT ME): Send the task to the available member
(ME or NO ANSWER): Keep the task

Ruleset 4: If TMS (ON) and TAS (ON): Ask meta-memory: Am I the 'skill' expert?
(YES): Ask meta-attention: Is this my focal task?

(YES): Keep the task
(NO): Ask meta-memory & loop through next best 'skill' expert:
Ask meta-attention: Is this member working on a lower 'priority' task?
(YES): Ask for help from available non-expert; 'Send Task'
(NO ANSWER): Keep the task

(NO): Ask meta-memory & loop through all relative 'skill' experts:
Ask meta-attention: Is this member working on a lower 'priority' task?
(YES): Ask for help from the available expert; 'Send Task'
(NO ANSWER): Keep the task

Ruleset 5: If TRS (ON): Before 'Send Task' in Ruleset 4: Ask meta-reasoning: Are receivers' needs satisfied?
(YES) Send task
(NO) Ask meta-reasoning: Can this task align with receivers' unsatisfied needs?

(YES) Provide goal support and send task
(NO) Keep the task

Note. Members iterate through each task in their inbox and figure out task-state (identify skill needed
and priority). Then estimates the best candidate for each task based on the appropriate rule-set.
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