
Foundations of Clustering:
New Models and Algorithms

Yuyan Wang

Committee: Benjamin Moseley (Chair)
Sergei Vassilvitskii
Zachary Lipton
Peter Zhang

Tepper School of Business
Carnegie Mellon University

This dissertation is submitted for the degree of
Doctor of Philosophy in Operations Research

May 2022

Acknowledgements

First and foremost, I would like to express deep gratitude to my advisor, Benjamin Moseley,
for leading me into the area of my Ph.D. research. I hardly had a clue about my prospect as a
researcher when I first arrived at CMU. I thank him for opening the doors to all possibilities
and igniting my passion for research.

I thank Sergei Vassilvitskii, whom I have had the privilege of collaborating with and
learning from. I thank him for his insights, support and patient guidance throughout my
research life and career seeking, and for helping me become the researcher I am.

I thank Zachary Lipton and Peter Zhang, for serving on my committee and providing
insightful feedback, and for helping me rethink about the purpose and structure of my
research and the connection it has to real world applications.

I thank my collaborators, Senaka Buthpitiya, Sami Davis, Alex Fabrikant, Silvio Lattanzi,
Ravi Kumar, Kirk Pruhs, Alireza Samadian and Rudy Zhou. My collaboration with them has
taught me a lot of skills, and has far-reaching meaning apart from the paper publication.

I thank all the faculty in the Operations Research department at the Tepper School of
Business. I have benefited from their knowledge and expertise. I thank Lawrence Rapp and
Laila Lee for seamlessly running the administration of the PhD program at Tepper.

I thank all the friends who made my Ph.D. experience far more enjoyable. Many thanks
to my cohorts: Violet Chen, Sagnik Das, Özgün Elçi, Melda Korkut, Kyra Gan, Su Jia and
Thomas Lavastida. Special thanks to Violet and her furry friend, Model, for three years of
roommate-ship and all the happiness and tears; and Sagnik Das, for selflessly helping me out
through the challenging times of my Ph.D. I also thank Musa Çeldir, Serim Hwang, Anthony
Karahalios, Neda Mirzaeian, Yanhan (Savannah) Tang, Ziye Tang and Luxi Wang for all the
memories. I thank Yimeng Liu and Yichi Zhang, my friends from China, for their empathy
and support, for sharing and connecting to my pains when starting a new chapter in my life.

Lastly, I owe almost everything to my family. I thank my parents, Wenbo Wang and
Xiaozhen Yan, for their unconditional love and support; my grandparents, and the other
family members. Despite the geographical distance and time difference, they are always
there for me. I shall also thank my furry family member, Mochi. How lucky I am to have
loved and be loved by a dog like you.

Abstract

In this dissertation, we study clustering, one of the most common unsupervised learning
problems. This dissertation covers recent developments in both clustering theory and machine
learning practice. In particular, it explores how to bridge the gap between theory and practice
by making them benefit from each other.

Many clustering algorithms are developed in an application-oriented way lacking the
guidance of theory. For some clustering problems it is hard to mathematically characterize
what is being optimized. The arising needs in the ML/AI community, such as fairness and
scalability, also require updates in current problem formulations. The first few chapters of this
dissertation lay the theoretical foundation for multiple clustering problems. We first establish
the formal optimization framework. Such a framework gives us conceptual understanding
of the problems and becomes the basis for optimization and algorithm design. We then
discuss the performance of existing approaches and come up with new algorithms beating
the state-of-the-art. Empirical evaluations also verify that the new algorithms perform better
in both quality and efficiency, showing it is beneficial to view these problems through the
lens of theory.

We study one classic clustering problem: hierarchical clustering. Unlike other more
well-formulated clustering problems such as k-means, the theoretical study of hierarchical
clustering has kicked off recently. The first chapter focuses on new objective function design
for hierarchical clustering on point inputs in a Euclidean space. It provides theoretical
guarantees for a popular heuristic. The second chapter studies how to incorporate fairness
into the hierarchical clustering optimization framework. It defines fair hierarchical clustering
trees and discusses how to design algorithms that find fair solutions for previous hierarchical
clustering objectives established by the community. Surprisingly, in this setting fairness
could be imposed at minimal loss in clustering solution performance.

The focus is then shifted to speeding up famous clustering algorithms in scenarios where
they are known to be inefficient. We consider average-linkage. Building the hierarchical tree
from bottom to top, it is one of the most commonly used hierarchical clustering algorithm.
It is known to scale poorly to large datasets, as it requires iteratively searching for two
clusters with the smallest average pairwise distance among the current clustering, which

vi

is time consuming. To speed up the cluster search, we introduce a new technique named
“clustering embedding”. It maps clusters into points in Euclidean space. The points are then
used as surrogates for the clusters, enabling us to apply Approximate Nearest Neighbors
(ANN) techniques. We reduce the previous quadratic bound on running time to only slightly
super-linear.

New challenges could also be imposed by a new data input format other than the conven-
tional sample-feature matrix. Consider relational database, one of the most common data
storage format that is highly compact. The naive way of running conventional ML algorithms
requires converting the given database into the matrix format. This could cause the input
size to grow exponentially. Instead, we design algorithms that could work directly on the
relational databases without recovering the sample-feature matrix. We give such algorithms
for the classical k-means problem. We show how to adapt the famous k-means++ algorithm
and find a constant approximation for the optimal k-means solution.

On the other hand, this dissertation shows how we can rethink the design of combinatorial
algorithms by augmenting the algorithms with learned oracles using a data driven approach.
Traditional algorithm performance design and analysis is often bottle-necked by worst-case
instances. Meanwhile, the practitioners often have historical records about past data and
solutions. Training ML oracles on the data can give us knowledge about the current problem
instance, and this knowledge could be used to help the algorithm go beyond the “hurdles” of
hard instances. We call such knowledge “predictions”. The remaining chapters focus on
proposing feasible predictions in the contexts of different clustering problems and discussing
how to design better algorithms utilizing these predictions.

We revisit the scalable hierarchical clustering algorithm designs explored in previous
chapters and extend it to inputs in more general metric spaces. In Euclidean spaces we design
cluster embeddings and couple it with ANN search to efficiently identify clusters to merge.
However, the ANN technique is not known to exist for general metrics. We show how a
proxy metric, which approximates the original metric, could be used to support the ANN
search with minimal loss in hierarchical clustering performance.

Finally, we consider correlation clustering. Given a set of points along with recommen-
dations whether each pair of points should be placed in the same cluster or into separate
clusters, the goal is to cluster the points to minimize disagreements from the recommenda-
tions. We study this problem in the online setting, where points arrive one at a time, and upon
arrival the algorithm must make an irrevocable cluster assignment decision. There is a simple
lower bound that rules out any algorithm with a non-trivial competitive ratio. We propose
using a small, randomized subset of nodes to help making online clustering decisions. Upon
the arrival of a new node, the algorithm can check whether it is recommended to be in the

vii

same/different cluster(s) with the reference set. We prove that the famous Pivot algorithm
performs well in this setting. Moreover, the performance is robust to adversarial perturbations
of the reference set.

Table of contents

1 Introduction 1

1.1 Theoretical Framework for Clustering Problems 2

1.1.1 Hierarchical Clustering: Objective Functions and Constraints 3

1.1.2 Faster Clustering: Scalable Average Linkage and Relational Algorithms5

1.2 Improved Algorithm Design with Machine-Learned Predictions 6

2 A New Objective Function for Hierarchical Clustering 9

2.1 Introduction . 9

2.2 Preliminaries . 13

2.2.1 Objective Functions . 13

2.2.2 Common Hierarchical Clustering Algorithms in Practice 14

2.3 Hierarchical-Split : Comparing Inter vs. Intra Cluster Distance 16

2.4 Ground-truth Inputs . 17

2.4.1 De�nition of Ground-Truth Inputs 18

2.4.2 Optimality of Generating Trees 19

2.5 Bisectingk-means Approximates Hierarchical-Split Objective 20

2.6 Randomly Partitioning Poorly Approximates the Hierarchical-Split Objective 25

2.7 Other Objectives for Data in Metric Space 29

2.8 Empirical Results . 32

2.9 Conclusion . 33

3 Fair Hierarchical Clustering 35

3.1 Introduction . 35

3.2 Formulation . 37

3.2.1 Generalized Objectives for Hierarchical Clustering 37

3.2.2 Notions of Fairness . 38

3.3 Fairlet Decomposition . 39

3.3.1 Fairlet decomposition for the value objective 40

x Table of contents

3.4 Optimizing revenue with fairness . 42

3.5 Optimizing value with fairness . 43

3.6 Experiments . 49

3.7 Conclusions . 53

4 Scaling Average-Linkage via Sparse Cluster Embeddings 55

4.1 Introduction . 55

4.2 Preliminaries . 59

4.2.1 Notation System . 60

4.2.2 Approximate Nearest Neighbors 60

4.3 Sparse Cluster Embeddings for Average Distance 62

4.4 Near Cluster Search . 66

4.5 Fast Approximate Average-Linkage . 67

4.5.1 A Sketch for ANN-based Average-Linkage 67

4.5.2 Robust Merging . 68

4.6 Algorithm Analysis: Approximation Ratio and Running Time 70

4.6.1 Running Time Analysis for Algorithm 70

4.6.2 Approximation and Correctness 72

4.7 Experiments . 75

4.8 Conclusions and Future Work . 81

5 Relational Algorithms For K-Means Clustering 83

5.1 Introduction . 83

5.2 Warm-up: Ef�ciently Implementing 1-means++ and 2-means++ 89

5.2.1 Hardness of Relationally Computing the Weights 91

5.3 Related Work and Background . 92

5.4 Simulating thek-means++ Algorithm . 94

5.4.1 Relational Implementation of 3-means++ 94

5.4.2 Simulatingk-means++ . 97

5.5 Weighting the Centers . 101

5.5.1 Analysis of the Weighting Algorithm 102

5.6 Conclusion . 113

6 Scalable Hierarchical Clustering in General Metric Spaces 115

6.1 Introduction . 115

6.2 Preliminaries . 117

6.3 Warm-up: Using ANNs to Approximate Single Linkage 118

Table of contents xi

6.4 Main Algorithm for Scalable Average Linkage 120

6.5 Correctness and Run Time of Average Linkage Algorithm 123

6.6 Experiments . 130

7 Robust Online Correlation Clustering 137

7.1 Introduction . 137

7.2 Semi-Online Model for Correlation Clustering 140

7.3 Warm-Up: Pivoting Using a Random Sample 142

7.3.1 Pivot Preliminaries . 142

7.3.2 Bounding Cost ofS . 143

7.3.3 Bounding Cost ofV nS . 144

7.4 Random Sample with Adversarial Corruptions 146

7.4.1 Analysis: Proof of Theorem 7.4.1 148

7.5 Experiments . 153

7.6 Conclusion . 156

References 159

Appendix A Background Information for Relational Database 169

A.1 Uniform Sampling From a Hypersphere 169

A.2 Background Information About Database Concepts 170

Appendix B Omitted Experimental Results for Hierarchical Clustering in General

Metric Space 175

B.1 Performance And Running Time for Proxy-Hash-SL And Proxy-Hash-AL . 175

B.1.1 Robustness of Performance Against Sample Sizes And Parameter

Tuning . 176

Appendix C Supplementary for Semi-online Correlation Clustering 181

C.1 Experiments . 181

Chapter 1

Introduction

Aiming at grouping similar objects together and separating dissimilar objects, clustering is

one of the most common unsupervised learning problems. It has been widely used in areas

such as pattern recognition and image analysis, where data mining tasks are common. In the

past few decades many new clustering problems and algorithms have arisen in the community.

This dissertation covers some of the most recent developments in clustering. It focuses on

bridging the gap between clustering theory and practice by making them bene�t from each

other in two directions. We develop the theoretical foundation for clustering algorithms and

uses the foundation to improve the state-of-the-art in practice. Similarly, we show how to

rethink the combinatorial design of clustering algorithms by augmenting the algorithms with

learned oracles using a data driven approach.

We �rst look into different clustering problems and their state-of-the-art solutions through

the lens of theory. It is common for ML/AI algorithmic solutions to be designed application-

oriented, and become standard in practice despite an absence of a theoretical framework for

their problem setting. Even very well-known methods, like Deep Learning, can be criticized

for lacking theoretical support despite being prevalent among practitioners. Similarly, many

clustering algorithms are also designed in lack of theoretical guidance. Some clustering

problems could have complex structures, posing challenges for characterizing them mathe-

matically. The arising needs in the ML/AI community, such as fairness and scalability, could

also require updates in the current optimization framework.What are we optimizing and

which solutions are good? How do we �nd good solutions ef�ciently?In this dissertation

we answer these questions by building the theoretical foundation for clustering problems.

This branch of work deepens our understanding of current algorithms, facilitates the commu-

nication of ML/AI ideas to the broad audience, and guides researchers in improving current

algorithms and methods.

2 Introduction

On the other hand, using ML oracles we can extract information from historical data

which helps algorithms go beyond the worst case in traditional analysis. theory often

designs algorithms using stylized models such as worst case analysis or stochastic models.

However, these models are not a perfect characterization of practice. It would be ideal to

have an algorithm tailored to the exact types of instances observed for the given application.

Luckily, in practice there is usually lots of data available about past instances of the problem

considered. One can learn information from this data and feed the information to an algorithm.

The learned information contains predictions about data patterns in the current problem

instance. The algorithm then uses the learned predictions to help make key decisions. In this

way, the algorithm is tailored directly to instances seen. My work shows how to bound the

running time and approximation ratios in terms of the errors in these predictions, giving a

formal way to go beyond worst-case and stochastic models. The ultimate goal of this new

approach for algorithm analysis is to discover new algorithmic solutions to our problems.

1.1 Theoretical Framework for Clustering Problems

The �rst part of this dissertation develops a theoretical foundation that covers popular

clustering problems/algorithms and their innovations. We start with formulating these

problems as optimization frameworks, while incorporating new constraints characterizing

requirements such as fairness. Guided by this framework we develop new solutions that beat

state-of-the-art.

It is desirable to mathematically formulate learning problems in an optimization frame-

work. Such a framework has an objective function characterizing the goal and a set of

constraints characterizing the desired solutions. The design of such a framework may some-

times be self-explanatory. For example, for supervised learning problems knowing the true

labels enables us to compute the prediction accuracy of learned models. Often we would aim

at �nding solutions that maximizes the accuracy, but with limited model complexity to avoid

over�tting. However, for unsupervised learning problems, where a “correct” solution might

either not exist or be unknown to us, it can be a non-trivial task to �nd a good optimization

problem formulation.

For clustering problems likek-means, such problem formulations have been designed

and well accepted by the community. However, for some other clustering problems, we have

many algorithms that proved to be effective in practice, with no mature theoretical problem

formulation. We would like to bridge this gap.

Goal 1: We develop well-formulated optimization framework for clustering problems.

1.1 Theoretical Framework for Clustering Problems 3

Researchers can bene�t from a well-designed optimization model in many ways. Its

objective function gives a direct performance metric for comparing different solutions. The

math formulation provides mathematical intuition on what solutions could be good. It is also

the �rst step towards analyzing algorithm performance from a theoretical point of view and

developing algorithms with performance guarantees.

Goal 2: Equipped with the tool of optimization frameworks and algorithm analysis, we

develop algorithms with both theoretical and empirical guarantees.

Fast, scalable algorithms are designed by applying combinatorial optimization and

algorithm design tool boxes to the framework. Further, we test their performance and

scalability on real datasets in various experiment settings. The algorithms beat the state-of-

the-art, showing that theory can be used to guide practice.

1.1.1 Hierarchical Clustering: Objective Functions and Constraints

Hierarchical clustering is a core data analysis method. It takes a set of points and a pairwise

similarity/dissimilarity score between the points as input. The output is a tree, often binary,

whose leaves represent singleton clusters containing the points, and every internal node

represents a cluster that is the union of the clusters represented by its children. The root is a

cluster containing every point in the set.

One of the common complaints about k-means is that it is hard to choose the value

of k in advance, which is the number of clusters. Hierarchical clustering does not require

determining k a-priori. In fact, taking different layers of clusters in the tree gives clustering

of different sizes and re�nement levels. Although the tree structure of hierarchical clustering

solutions eliminates such needs, it also makes it harder to design a framework capturing the

characteristics of desirable solutions.

Fig. 1.1 A hierarchical clustering example. The left is input data set with visualized hierarchy
of clusters. The right is the hierarchical clustering tree. The grey nodes are input points. Each
internal node in the tree on the right is a cluster of the input points in its subtreem visualized
using the same color on the left.

A new objective function. Chapter 2 designs a new objective function and explores its

connection to practical algorithms for hierarchical clustering inputs in Euclidean space.

4 Introduction

The results come from our paper [132]. In this setting, the input points have a pairwise

dissimilarity score that is de�ned as the Euclidean distance. This setting is common for

hierarchical clustering and is used in multiple hierarchical clustering ML packages (e.g.,

scipy and scikit-learn). Recent work ([61], [115], [58]) have proposed objective functions for

different settings. However, they either do not directly apply to this setting, or do not make a

signi�cant distinction between good and bad solutions.

Our new objective function captures the key criterion in clustering: points in different

clusters should have greater distances than points in the same cluster. This objective assigns

penalizes the tree whenever it separates any pair of points into sub-clusters, whose distance

is small compared to the average distance within the sub-clusters. [132] is also the �rst to

show a theoretical connection between the proposed objective andbisecting k-means, one

popular hierarchical clustering algorithm used in practice. We complement our results by

empirical studies that show the new objective function gives reasonable results for multiple

standard algorithms in practice, showing it to be a reasonable performance measure.

Imposing fairness constraints. Chapter 3 studies fairness in hierarchical clustering, based

on our work [14]. ML algorithms are often used in practice, where we need to have fairness

constraints. Here we say a given algorithm is fair if its results are independent of certain

sensitive features, such as traits of individuals which should not correlate with the outcome

(e.g., gender, ethnicity, disability). This project seeks to build a new generation of ML

algorithms that take into consideration these ethical and legal constraints.

We call such sensitive traits “protected features”. Removing the dependency of outcome

on a protected feature is, in general, more non-trial than simply dropping the feature from

the input. This is due to possible correlation between protected and unprotected features.

Even when a learning algorithm does not explicitly exploit protected features, it can still

give biased results in retrospect. For example, when clustering demographic data we can get

highly imbalanced clusters with regard to ethnicity, even if the clustering algorithm itself

does not use this feature.

Fairness could be studied in various ways. We choose to characterize it mathematically

and incorporate fairness constraints into clustering problems. How can we quantitatively

de�ne fairness and how should we design fairness constraints? Given the fairness constraints,

does a fair solution exist and if so, how can we �nd it ef�ciently? How much do we lose in

performance with respect to the objective function by imposing fairness constraints?

Chater 3 begins to answer these questions for hierarchical clustering. Given a protected

feature with multiple possible values (called “colors”), we de�ne fairness to be bottle-necked

by the most dominant feature value. A data point set is called fair if none of its colors

1.1 Theoretical Framework for Clustering Problems 5

take up an overly big portion of its points. We have designed algorithms for all prevalent

hierarchical clustering objective functions proposed in recent work. Both theoretical analysis

and empirical experiments show that fairness can be imposed with minimal loss in clustering

quality.

1.1.2 Faster Clustering: Scalable Average Linkage and Relational Al-

gorithms

In the following chapters the focus is shifted from developing mathematical frameworks to

utilizing the framework to get algorithms that performs better in terms of scalability and/or

solution quality. We seek algorithm designs that could speed up the execution, but can also

provably perform well when using the objective function as the performance measure. That

is, for any problem instances the output of the target algorithm should satisfy all constraints,

as well as at leastapproximately optimizes the objective function.

The new algorithms are designed based on the theoretical foundation for these clustering

problems. This dissertation complements the theoretical guarantees with empirical experi-

ments whose settings cover some of the most common scenarios in practice. We show that the

algorithms, being motivated and guided by the theoretical framework, beat the state-of-the-art

clustering algorithms. Thus establishing the theoretical foundation of clustering problems

could shed light on potential algorithmic innovations.

Scalable hierarchical clustering algorithms. Hierarchical clustering algorithms do not

scale well to large data sets, as their running time grows at least quadratically with input

size. Given input data in metric space with pairwise distance as a dissimilarity score, we

consider agglomerative hierarchical clustering algorithms. These algorithms build the tree

from bottom to top. They start with singleton clusters, and iteratively choose two clusters

to merge that are most similar to each other. However, searching for closest clusters is time

consuming.

Based on our work [100], Chapter 5 shows how to design a hierarchical clustering

algorithm which has slightly super-linear running time in input size, breaking the previous

quadratic running time bound. The key design here is to iteratively approximate the search for

nearby clusters. Techniques are known to exist for searching for points with small distance in

Euclidean space (namelyApproximate Nearest Neighbors (ANN)), but they do not directly

apply to cluster searches. We design acluster embeddingwhich maps a collection of

clusters to point sets in a Euclidean space. The mapped points are then used as surrogates for

6 Introduction

clusters and coupled with ANN to speed up cluster searches. Our implementation empirically

dominates the hierarchical clustering implementations in popular ML packages.

Clustering on relational inputs. New challenges on algorithm performance can also

imposed by different data input formats. ML solutions traditionally assume a matrix input,

where rows represent data points and the columns represent features. However, in practice

data could be stored in different formats. One prevalent format isrelational databases,

a highly compact data type where features are stored only partially in each table and the

underlying input could be found by concatenating the tables.

Current ML algorithm designs fall short of handling this new data format. The common

practice is to convert the relational database into a matrix, which might cause the input size

to grow exponentially. Naturally, the key questions arise: can we redesign current clustering

algorithms so that they can skip the computationally expensive data transformation step and

directly work on the relational databases? If so, which ML problems admit such solutions?

Chapter 5, which is based on our work [113], gives such an algorithm for the famous

k-means clustering problem. The work adds to the fundamental understanding about the

geometric properties of relational databases, and reveals the connection between relational

database ML problems and combinatorial optimization.

1.2 Improved Algorithm Design with Machine-Learned

Predictions

The second half of the dissertation focus on how the ML practice helps us approach algorithm

design and analysis from a new perspective other than traditional worst-case analysis. With

the aid of additional information provided by ML oracles, we go beyond previous running

time and performance guarantees.

For every algorithm, there could be “hard” input instances where the algorithm struggles

to �nd a good solution that would bottleneck standard worst-case analysis. The use of worst-

case analysis is motivated by the assumption that the algorithm could be challenged by any

adversarial input. The algorithm knows nothing about the input or optimal solution a-priori

and always starts from scratch on a new input. However, in practice we seldom face the

worst-case scenario. The worst-case inputs may not be a good characterization of the typical

problem instances that we run into. Also, we have historical data about the input instances

and the algorithms' outcomes. By applying data-mining approaches we could extract all

kinds of knowledge that could be used to help an algorithm tailor towards the speci�c type

1.2 Improved Algorithm Design with Machine-Learned Predictions 7

of problem instances in practice. The knowledge comes in the format of a Machine-learned

oracle which is treated as a black-box by the algorithm, that gives information speci�c to the

possible problem inputs that we could have.

We call such an oracle a“predictor” . The de�nition of a predictor can be very general

and it depends on the problem settings. It could be a guess about a possibly good solution.

If we are training a neural network, it is common practice to initialize the ML model with

yesterday's training results, i.e., a “warm start”, to make training more ef�cient. Following

the same logic, we can also initialize the algorithm's execution using the old results on

another input instance. It could also some other intricate information about the input itself.

For example, in an online problem setting where input arrives piece by piece, we can try

to forecast the input to arrive in the future. Such a prediction is a natural �t as it can help

combat future uncertainty.

Goal 3: In various clustering problem contexts, �nd the prediction that is most informative

and design algorithms that bene�t from these predictions.We have studied algorithm design

with predictions for several clustering problems. In these settings we �rst evaluate the

prediction proposal and the new algorithm design from a theoretical point of view. We show

that the predictions indeed help us design algorithms that go beyond previous performance

guarantees. We then empirically show that such predictions can be obtained in real life, and

even with moderate accuracy, can be bene�cial to algorithm results.

Scalable hierarchical clustering algorithms with proxy metric. In Chapter 6, we revisit

the problem of designing scalable agglomerative hierarchical clustering algorithms in a

general metric space setting. See our paper [114] for more details.

In Chapter 4 we consider points in Euclidean space, where ANN techniques are known

to exist and are used to couple to other algorithm designs to speed up the search for nearby

clusters. Many problems, however, are best captured by general metric spaces for which

ANN schemes either do not exist, or may be expensive to compute. In this case, we might

be able to discoverproxy metrics de�ned on input points, which approximates the original

metric but supports ANN schemes.

Such proxies could be obtained in many different ways. It might arise naturally from

the problem de�nition. For example, on a road network, consider the shortest path distance

and the geographic distance. These two metrics, despite not being equivalent, could be

good surrogates of each other. One can also get a proxy metric from more sophisticated

ML techniques, such as applying dimensional reduction approaches to high-dimensional

metrics. The theoretical arguments in Chapter 6 are complemented by empirical evaluations

that closely examine different general/proxy metric settings.

8 Introduction

Online correlation clustering with predictions. Correlation Clustering is a graph-based

clustering method often used to aggregate inconsistent information. Given a set of points

along with recommendations whether each pair of points should be placed in the same cluster

or into separate clusters, the goal is to cluster the points to minimize disagreements from the

recommendations. In [98], we study the correlation clustering problem in the online setting,

where points arrive one at a time, and upon arrival the algorithm must make an irrevocable

cluster assignment decision.

While the online version is natural, the problem is hard as seeing only partial information

could mislead the algorithm to make wrong decisions that result in many disagreements later

on. See Figure 1.2 for an illustration. Indeed, there is a simple lower bound that rules out any

algorithm with a non-trivial competitive ratio.

Fig. 1.2 A hard online correlation clustering example. The blue lines represent same-cluster
membership recommendations. The subgraph with the blue solid lines in the middle arrive
�rst, misleading an online algorithm to put them together. However, the true underlying
graph might also contain the blue dashed lines so the optimal solution should separate them.

Our proposed prediction is a small set of nodes called theadvice set. Upon the arrival of

a new node, we are allowed to refer to the advice set, and make cluster assignments based

on the same/different cluster recommendations between the new node and the advice set.

Such nodes and the recommendations could be obtained by learning from historical data. For

example, if the underlying graph represents a social network where nodes are entities and

edges are positive/negative communication, one can learn such predictions from last week's

records. Empirically we test these settings and show great improvement in performance

when introducing the advice set.

Chapter 2

A New Objective Function for

Hierarchical Clustering

2.1 Introduction

In this chapter we focus onhierarchical clustering as introduced in Chapter 1. Recall

that this problem takes as input a set of points with a pairwise score that represents the

similarity/dissimilarity, and outputs a (binary) tree whose internal nodes represent a hierarchy

of clusters. The leaves of this tree correspond to the individual input data points, and each

internal node is a cluster of the leaves in the subtree rooted at it. When a node gets closer

towards the leaves, the cluster it represents should become more re�ned, and the points in

this cluster should become more similar to each other. The nodes of the same level in this

tree represent a partition of the given data set into clusters. Note that each data point (leaf)

belongs to many clusters, one for each ancestor. Figure 2.1 illustrates an example application

of hierarchical clustering: biological taxonomy. The data points could represent different

species and the internal nodes are different levels of categories. From bottom to top, the point

cat could belong to the clusters representing mammals, animals, life, etc.

Fig. 2.1 Another illustration of a hierarchical clustering tree.

The mainstream algorithms used to do hierarchical clustering can be classi�ed roughly

into two categories: agglomerative and divisive, depending on whether the construction

10 A New Objective Function for Hierarchical Clustering

happens from bottom to top or top to bottom.Agglomerative algorithms initialize every

point to be a singleton cluster. They iteratively pick the two clusters that are the most similar

to each other to merge into a bigger cluster until only one cluster remains. Meanwhile, the

algorithms create a parent in the hierarchical tree produced that is connected to the two nodes

corresponding to the two clusters before merging.Divisive algorithms, on the other hand,

initialize the whole point set as one single cluster, and create a root node corresponding to

this cluster in the hierarchical tree. They iterativelysplit a cluster into smaller clusters. Then

the algorithms create nodes representing the separated clusters in the tree and make them the

children of the parent node. Again, the notion of similarity is open to different interpretations.

A divisive algorithm terminates when every point is in its own individual cluster. Data

scientists regularly use thebisectingk-meansalgorithm at each level1. This is used when

the distances between the data points are used as dissimilarity scores. Existing work [9]

proved that popular divisive algorithms can produce clusterings different from agglomerative

algorithms. Naturally, they may be optimizing fundamentally different criteria.

Recently the community has developed an interest in identifying a natural global objective

function for hierarchical clustering. However, existing work has had more success connecting

these objective functions to agglomerative rather than divisive algorithms. Dasgupta[61]

developed a cost function objective for data sets with similarity scores between points. The

work has initiated an exciting line of study [124, 58, 45, 46, 68]. Cohen-Addad et al.[58]

generalized the results in Dasgupta[61] into a class of cost functions that possess properties

desirable of a valid objective function. They showed thataverage-linkage, one of the most

popular agglomerative algorithms, is a2
3-approximation for an objective which is based on

the Dasgupta[61] objective but handles dissmilarity scores2. Contemporaneously, Moseley

and Wang [115] designed a revenue objective function based on Dasgupta [61] and showed

average-linkage is a constant approximation for the objective. Charikar et al.[45] showed an

improved analysis of average-linkage for Euclidean data. Together Cohen-Addad et al.[58],

Charikar et al.[45] and Moseley and Wang[115] have established a relationship between a

practically popular algorithm and global objectives.

This chapter is interested in the following aspects of objective function designs and their

connection to popular algorithms in practice.

Euclidean data. We consider data embedded in Euclidean space where the`2 distance

between points represents their dissimilarity. There is currently only one global objective,

the objective of Cohen-Addad et al.[58], that has been proposed for data with dissimilarity

1The word “bisecting" refers to the case whenk = 2.
2Throughout this paper we usec > 1 for approximations on minimization problems andc < 1 for maxi-

mization.

2.1 Introduction 11

scores. Noticeably, all trees gave a constant approximation if the data is in a metric space

[58]. Here we give a stronger conclusion and show in Section 2.7 thateverytree is a1
2-

approximation on metric input. Therefore, in a Euclidean space, the objective does not make

a large differentiation between different clusterings. Is there a natural objective that makes a

stronger distinction between good and bad solutions? This is the target question this paper

addresses.

Divisive algorithms. While great strides have been made on the foundations of hierarchical

clustering, it remains an open question to explain what popular divisive algorithms optimize.

In particular, the popular bisectingk-means algorithm has been proven to be at least a factor

O(
p

n) far from optimal for the objectives given in Moseley and Wang[115] and Dasgupta

[61]. This can be viewed as these algorithms beingextremely badfor these objectives in the

worst case. This contrasts with the performance of average-linkage for known objectives.

Perhaps, this highlights that bisectingk-means and other divisive algorithms optimize some-

thing fundamentally different than average-linkage and general linkage based algorithms.

It remains to discover a global objective that helps characterize the optimization criteria of

divisive algorithms, another target of this paper.

Our contributions. This paper introduces a new revenue maximization objective for

hierarchical clustering on a point set in Euclidean space. The objective is designed to capture

the main criterion that motivates the use of divisive algorithms: when data is split at a level

of the tree, the data in each sub-cluster should be closer to each other than data points in

different clusters.

Each node in the tree corresponds to asplit that generates revenue. The objective speci�es

that the global revenue of the tree is the summation of the revenue at each node. The split

revenue captures the quality of the split.

Guiding Principle: The new objective function enforces that a split is good if theinter-

cluster distances are big compared to intra-cluster distances3, as is indicated in Figure 2.2.

This is the main motivation behind a generic divisive algorithm. Of course, the global tree

structure in�uences the possible revenue at an individual split.

We show several interesting properties of this new objective.

• For problem instances corresponding a ground-truth as introduced in Cohen-Addad

et al.[58], this objective gives desirable optimal solutions. In particular, Cohen-Addad

et al. [58] introduced a large class of instances that have a natural corresponding

3Here “inter-cluster distances" refers to that between points in different clusters, while “intra-cluster
distances" refers to that between points in the same cluster.

12 A New Objective Function for Hierarchical Clustering

Fig. 2.2 Intra- and inter- cluster distance of two clusters. The black pair is an example of
intra-cluster pairs, and the grey pair is an example of inter-cluster pairs.

hierarchical clustering that should be optimal. We prove that these trees areoptimalfor

the new objective function we propose on such instances. We note that these instances

generalize instances given in Dasgupta[61] that were used to motivate a hierarchical

clustering objective.

• The bisectingk-means algorithm is a constant approximation for the objective. This

establishes that the objective is closely related to the bisectingk-means algorithm and

aids in understanding the underlying structure of solutions the algorithm produces.

This is the �rst global objective that this algorithm is known to provably optimize.

• The objective is trivially modular over the splits, like all three previous objectives.

• In the context of metric spaces, this objective has different properties compared to

some proposed objectives. It is known that the Random algorithm4, which partitions

data uniformly at random at each node, is a constant approximation for both objectives

in [58] and [115] . For these two objectives, Random is a2
3 and 1

3 approximation,

respectively. The Random algorithm can produce undesirable hierarchical clusterings

and it is counterintuitive that it should be a constant approximation for these objectives.

This paper shows that Random results in anO(1
ne)-approximation for the proposed

objective for a constante > 0. Therefore, Random provably performs poorly for the

new objective.

We further show the following about other objectives in metric space. These show that some

other objectives do not make a large differentiation between trees in metric space, even if the

trees correspond to a poor clustering. Our objective does and this can be seen as an advantage

of the new objective.

• As mentioned, we show that every tree is a1
2-approximation for value objective when

points have dissimilarity scores that form a metric.

• We show that every tree is a2-approximation for the Dasgupta objective [61] for

similarity scores that satisfy the triangle inequality. We include this result to provide

4See Section 2.6 for a formal description of the algorithm.

2.2 Preliminaries 13

insight into this objective. However we note that this is less surprising than the similar

result on the Cohen-Addad objective [58] since some natural similarity score instances

do not satisfy the triangle inequality.

We investigate empirically the performance of three popular algorithms used in practice

and Random algorithm for the new objective. As is suggested by theory, the proposed

objective moderately favors bisecting k-means over two agglomerative algorithms, while

magnifying the gap between the performance of Random and the other three algorithms.

Other related work. Some work discusses about different hierarchical clustering algo-

rithms and their performance. Steinbach et al.[129], Murtagh[117], Murtagh and Contreras

[118] and Zhao et al.[138] discussed about common agglomerative algorithms and com-

pared their performance in a variety of backgrounds. Ackerman and Ben-David[9] identi�ed

properties of trees produced by linkage-based agglomerative algorithms. See Steinbach et al.

[129] and Murtagh and Contreras [118] for more information on divisive algorithms.

Other work centers around when bisecting algorithms work well. The work of Dasgupta

and Long[63], Plaxton[120] show the remarkable result that hierarchical trees exists such

that each level of the tree optimizes the correspondingk-clustering objective. These algo-

rithms are complex and are mostly of theoretical interest. Balcan et al.[28] showed that

partitioned clusterings can be uncovered from using hierarchical clustering methods under

stability conditions. The work of Awasthi et al.[24], Balcan et al.[27], Carlsson and Mémoli

[38] and pointers therein study stability conditions of clustering.

2.2 Preliminaries

This section includes the preliminaries for hierarchical clustering that will be adopted in all

chapters concerning this topic (including Chapter 3, 4 and 6).

2.2.1 Objective Functions

For a given data setV with n points, lets(i; j) be the similarity score between pointsi and

j if similarity is used, ord(i; j) if distance/dissmilarity score is used instead. One can also

think of this input as a complete graph with weighted edgesG = (V;s) or (V;d). Without

loss of generality, in this chapter we assumeV = f 1;2; : : : ;ng = [n].

In a treeT, let [i _ j] denote theLeast Common Ancestorof i and j. Let T[u] denote the

subtree inT rooted atu. Then,T[i _ j] denote the subtree rooted ati and j's least common

ancestor. We let leaves(T[i _ j]) denote the set of leaves ofT[i _ j].

14 A New Objective Function for Hierarchical Clustering

There are three objective functions for hierarchical clustering in different settings. We

refer to them ascost, valueandrevenue, respectively.

Cost. The original objective, cost, is introduced by Dasgupta[61] for inputs based on

similarity scores(�; �). This is a cost function which a hierarchical clustering tree should seek

to minimize.

De�nition 2.2.1 (Cost). Thecostof a treeT for an instanceG = (V;s) wheres(�; �) denotes

similarity is: costG(T) = å i; j2V s(i; j) � j leaves(T[i _ j])j:

Since everys(i; j) is multiplied with the number of leaves of the smallest tree containing

bothi and j, the points that are more similar (biggers(i; j)'s) are encouraged to haveT[i _ j]

with fewer leaves. In other words, from bottom to top, these points should be merged into

the same cluster before other points that are less similar.

Value. The motivation in value, proposed by [115] is similar to cost, except now the

similarity scores(i; j) is swapped to a dissimilarity scored(i; j) and the problem is changed

to a maximization problem.

De�nition 2.2.2 (Value). Thevalue(val) of a treeT for an instanceG = (V;d) whered(�; �)

denotes distance is: valG(T) = å i; j2V d(i; j) � leaves(T[i _ j]):

Revenue.Finally, Moseley and Wang [115] introduced the revenue objective for hierar-

chical clustering on similarity-based input. Also note that for a given input graphG = (V;s),

the cost and revenue objectives sum up to a constantjVj å i6= j2V s(i; j).

De�nition 2.2.3 (Revenue). Therevenue(rev) of a treeT for an instanceG = (V;s), where

s(�; �) denotes similarity between data points, is:revG(T) = å i; j2V s(i; j) �
�
jVj � j leaves(T[i _

j])j
�
:

Throughout this dissertation, we focus on hierarchical clustering inputs with dissimilarity

scored(�; �). Additionally in this chapter we assume thatV lies in a Euclidean space, using

d(i; j) = ki � jk2 which is the`2 norm as the distance/dissimilarity score. We note that only

thevalueobjective applies to this setting. In the following sections we will show value has

several undesirable properties.

2.2.2 Common Hierarchical Clustering Algorithms in Practice

Agglomerative Algorithms. Depending on whether the input adopts similarity/dissimilarity

scores, an agglomerative algorithm quanti�es cluster similarity/dissimilarity and iteratively

choose clusters to merge with highest similarity, or lowest dissimilarity. Cluster similarity

can be de�ned in different ways which lead to different agglomerative algorithms. Given two

2.2 Preliminaries 15

setsA andB and a scorex(�; �) between points (x 2 f s;dg), here is a list of agglomerative

algorithms and similarity/dissimilarity measures between clusters:

• Average-linkage.The cluster measure isAvg(A;B) = å i2A; j2Bx(i; j)
jAjjBj for both similarity

and dissimilarity. Average-linkage seeks to maximize this whens is used and minimize

whend is used.

• Single-linkage. This method works on inputs with distance metrics. The cluster

measure isd(A;B) = mini2A; j2Bd(i; j).

• Centroid-linkage. This works on inputs in Euclidean space equipped with distance

metrics used as dissimilarity scores.d(A;B) = d(m(A);m(B)) wherem(�) is the cen-

troid of a set.

Together these three algorithms are called linkage-based algorithms.

Divisive Algorithms. On the other hand, divisive algorithms seek to separate a cluster into

sub-clusters such that the points in different sub-clusters are as dissimilar/distant from each

other as possible. The most used divisive algorithm isbisectingk-means, which �nds the

sub-clusters by optimizing ak-means objective.

We �rst de�ne the k-means objective. Given a point setS, a k-means clustering par-

titions S into k setsS1;S2; : : :Sk. The k-means objective calculates the summation over

the squared norm of the distance between a point to thecentroid of the set it belongs to:

å k
j= 1å u2Sj d

2(u;m(Sj)) . Here againm(Sj) denotes the centroid ofSj .

Let Dk(S) denote the optimalk-means objective function value for the point setS, where

k is the number of clusters. We will be particularly interested inD2(S), the optimal2-means

objective.

Fix a hierarchical clustering treeT on a setV. Consider a node of the tree and letS� V

be the subset of input data that is input to the current split. These will eventually be the leaves

of the subtree induced by this node. We useS! (S1;S2) to denote a split in the tree where a

setSis separated into two non-empty subsets,S1 andS2. These sets correspond to the input

of the two child nodes. We letS! (S1;S2) 2 T denote that this split exists inT.

Any split S! (S1;S2) whereS1 andS2 are a partition ofSis a valid2-means solution

for the point setS. SinceD2(S) denotes the optimal objective function value,D2(S) �

D1(S1)+ D1(S2) by de�nition of the2-means objective. In particular, when using bisectingk-

means sinceS! (S1;S2) is the optimal2-means solution, we haveD2(S) = D1(S1)+ D1(S2).

16 A New Objective Function for Hierarchical Clustering

2.3 Hierarchical-Split : Comparing Inter vs. Intra Cluster

Distance

This section de�nes the new objective which is a revenue function. We call the problem of

optimizing this objective theHierarchical-Split problem . We de�ne a revenue for each

pair of input points depending on where they got seperated from each other in the tree. The

objective function is then the aggregate of this revenue over all pairs of points.

De�ning pairwise revenue. Consider a node in a hierarchical clustering representing a set

Sand this set is split intoS1 andS2. A good tree ensures that the pairs of points ini; i02 S1

(resp.S2) are more similar that pairsi 2 S1 and j 2 S2 (i.e. d(i; j) � d(i; i0)). This ensures

the points corresponding to the cluster at a node in the tree become more similar at lower

levels of the tree. We sayi and j aresplit the �rst time they no longer belong to the same

cluster from top to bottom.

Every pairi and j will be eventually split in the tree and a hierarchical clustering objective

should ensure they are split at the appropriate place in the tree. Further, an objective should

optimize over all pairs uniformly to determine the splits.

Guided by these principles, we develop the objective as follows. We begin by allowing

every pairi and j to generate at most one unit of revenue. When the pair is split at an

appropriate position in the tree more revenue will be generated, and less revenue (or even

0) will be obtained when the pair is separated at a poor position. The maximum, one

unit of revenue, can always be obtained for a �xed pair, but not necessarily for all pairs

simultaneously.This is the key to determine the quality of a split.

Say thatS! (S1;S2) is the split at some node in the tree andi 2 S1 and j 2 S2 are split.

As discussed above, points inS1 (respectivelyS2) should be more similar to each other thani

and j. To measure the similarity ofi to other points inS1 we used(i;m(S1)) , the distances of

i to the centroid ofS1. Similarly, we used(j;m(S2)) to measure the distance ofj to points in

S2. The distance of a point to the centroid of a set measures the distance to the average point

in the set. Thus, we would liked(i; j) to be larger than bothd(i;m(S1)) andd(j;m(S2)) for it

to make sense to spliti and j. That is,i and j should become more similar to their respective

sets after the split than they are to each other.

Formally, de�ne the revenue for a pair of points as follows. LetdS1;S2(i; j)

= maxf d(i;m(S1)) ;d(j;m(S2))g be the maximum distance ofi and j to their respective

centroids. We would likedS1;S2(i; j) to be smaller thand(i; j) and thereforei and j generate

a unit of revenue when this is the case. WhendS1;S2(i; j) � d(i; j) we assume the revenue

decays linearly. That is, the revenue isd(i; j)
dS1;S2(i; j) .

2.4 Ground-truth Inputs 17

Putting the above together, de�ne the revenue for splittingi and j asrev(i; j) = minf d(i; j)
dS1;S2(i; j) ;1g5.

This is therevenuei and j generates. Again, a revenue of a unit can always be obtained

since we can letj be the unique last point split fromi. However, a good overall hierarchical

splitting structure is needed to get good revenue for many pairs of points, thus obtaining

global performance guarantees for the tree.

The global objective. The global objective is de�ned as follows.

De�nition 2.3.1 (Hierarchical-Split). For a data setV and a given hierarchical cluster-

ing treeT, de�ne the hierarchical tree revenue function as follows. Letrev(S1;S2) =

å i2S1 å j2S2
rev(i; j)

= å i2S1 å j2S2
minf d(i; j)

dS1;S2(i; j) ;1g be the revenue over all pairs of points split acrossS1 and

S2. The aggregate revenue isrevT(V) = å f i; jg� V rev(i; j) = å S! (S1;S2)2T rev(S1;S2), and it

should be maximized over all trees.

As is shown in De�nition 2.3.1, there are two ways of computingrevT(V). One is to sum

up the revenue over the pairs, while the other is to sum up the revenue over the splits. Both

methods lead to the same value. The second form allows us to judge whether a split at some

internal node of the tree is good or not compared to the number of pairs it separated.

2.4 Ground-truth Inputs

The work of Cohen-Addad et al.[58] gave a characterization of desirable hierarchical

clustering objectives. The idea is to give a class of instances that naturally correspond to

a speci�c hierarchical clustering tree. These trees should be optimal solutions for a good

hierarchical clustering objective.

In particular, Cohen-Addad et al.[58] de�ned input instances that correspond toultra-

metrics. Such inputs will be referred to asground-truthinputs. For such an input, they de�ne

generating trees, which should be optimal for the hierarchical clustering objective to be

valid. Intuitively, in an ultrametric either it is clear what the split should be at each point in

the tree or all splits are equivalent.6 The resulting tree is a generating tree.

We prove a generating tree is indeed an optimal solution for our objective, if the input

in Euclidean space is ground-truth. This perhaps shows that optimizing Hierarchical-Split

could give desirable results.

5We assume dividing by 0 gives revenue 1.
6If there is a natural split then the points can be divided into two groupsA andB such that inter-group

distances are larger than intra-group distances. If all splits are equivalent then pairwise the points are all the
same distance.

18 A New Objective Function for Hierarchical Clustering

2.4.1 De�nition of Ground-Truth Inputs

We cite the following de�nitions from Cohen-Addad et al. [58].

De�nition 2.4.1. A metric space(X;d) is an ultrametric if for everyx;y;z2 X, d(x;y) �

maxf d(x;z);d(y;z)g.

Intuitively, the de�nition of ultrametric implies that any three pointsu;v;w form an

isosceles triangle, whose equal sides are at least as large as the other side. Cohen-Addad et al.

[58] then de�ned an instance generated from ultrametric, which is treated as ground-truth

input for hierarchical clustering.

De�nition 2.4.2. An input instance on a set of pointsV with pairwise distance functiond is

generated from an ultrametric if the distances functiond corresponds to a ultrametric.

Following Cohen-Addad et al.[58], we de�negenerating treeson distance-based input,

which are considered the most well-behaving hierarchical clustering trees for a ground-truth

input.

De�nition 2.4.3. If the instanceV is generated by ultrametric, a binary treeT is a generating

tree forG if it satis�es the following properties:

1. It hasjVj leaves andjVj � 1 internal nodes. LetL denote its leaves and each point inL

corresponds to a unique point inV. Let N denote its internal nodes, corresponding to

clusters of the leaves of the subtree rooted at the node.

2. There exists a weight functionW : N 7! R+ . ForN1;N2 2 N , if N1 is on the path

from N2 to the root,W(N1) � W(N2). For everyx;y 2 V, d(x;y) = W(LCAT(x;y)) ,

whereLCAT(x;y) denotes the Least Common Ancestor of leaves corresponding tox

andy in T.

Cohen-Addad et al.[58] proposed that for a ground-truth input graph as de�ned in

De�nition 2.4.2, if there exists any corresponding generating treeT, it is considered one of

the best solutions among all the solutions, and thus should be one of the optimal solutions

for the hierarchical clustering objective function used.

We give some intuition for why a generating tree is considered the best tree on such

inputs. The valueW(LCAT(x;y)) can be interpreted as the distances of edges cut in split at

the LCA ofx andy. The higher up this LCA is, the larger the split distance should be. All

points split at the LCA node have equal pairwise distance, later we will show that this is

exactly the maximum pairwise distances in the corresponding point set. This agrees with the

driving motivation for the tree design as a split should always separate the farthest points.

The next subsection articulates these desirable properties.

2.4 Ground-truth Inputs 19

2.4.2 Optimality of Generating Trees

Now we prove that given an input that is generated from an ultrametric, every generating tree

is optimal for Hierarchical-Split function introduced in this paper. In particular, every pair of

points will get full revenue.

Lemma 2.4.1.A binary treeT, with jVj leaves corresponding to the points inV andjVj � 1

internal nodes, is a generating tree for an instanceV generated from a ultrametric if and

only if it satis�es the following property:

• For every splitA[B! (A;B) from top to bottom,8i 2 A; j 2 B;d(i; j) = maxx2A;y2Bd(x;y).

Proof. The if direction is true, since from top to bottom, at each split the treeT cuts only

the longest distances in the current set of points, both properties in De�nition 2.4.3 trivially

hold. We prove the only if direction. For everyi 2 A and j 2 B, LCAT(i; j) is always the

node representingA[B, sod(i; j) = W(LCAT(i; j)) is always the same value. To show it

is the maximum distance in all the pairwise distances inA[B, assume that is not the case.

Then some pair of vertices of maximum distance is contained in the subgraph induced byA

or B, which means it will be cut in the subtree rooted atA or B, say it is cut at rootN2, and let

N1 = LCAT(i; j). N1 is on the way fromN2 to the path, butW(N1) < W(N2), contradicting

property (1).

Every ground-truth input has at least one generating tree, as stated in the following

theorem.

Theorem 2.4.2.For every instance generated from some ultrametric, there is always a

generating tree T as de�ned in De�nition 2.4.3.

Proof. We prove the theorem by constructing one such tree in the following way. Say given

a setS, we separate it into two setsL andR.

1. Pick a pair of points(i; j) with longest distance. Puti into L and j into R.

2. For any pointx 2 S, eitherd(i;x) < d(i; j) or d(i;x) = d(i; j) sinced(i; j) is chosen to

be the maximum. Ifd(i;x) = d(i; j) put x into R, otherwise put it intoL.

To argue that all points inL andR are of distanced(i; j) from each other, notice that if

L only containsx the theorem trivially holds. Otherwise, apparently by construction we

also have8y 2 R;d(i;y) = d(i; j). Now take any two pointsx 2 L;y 2 R, we further prove

d(x;y) = d(i; j). Observe thatd(i;x) < d(i; j) but d(i;y) = d(i; j). Again by de�nition

of ultrametric, in the triangle formed byi;x;y, we haved(x;y) = d(i;y) > d(i;x). By

Lemma 2.4.1, this is a generating tree forG.

20 A New Objective Function for Hierarchical Clustering

Using Lemma 2.4.1, the optimality ofT is proved by arguing every split gives a revenue

of 1 for every pair of points it separates.

Theorem 2.4.3.A generating treeT for an instance generatedV from an ultrametric is

optimal for the Hierarchical-Split objective.

Proof. Given any split in the treeA[B ! (A;B), for anyi 2 A and j 2 B, we prove that

d(i;m(A)) � d(i; j) andd(j;m(B)) � d(i; j). As a result,rev(i; j) = d(i; j)
maxf d(i;m(A)) ;d(j;m(B)) ;d(i; j)g =

1.

Let's focus onA for the time being. By Lemma 2.4.1,8x 2 A;d(i;x) � d(i; j). By

convexity of norms,d(i;m(A)) = d(i; å x2Ax
jAj) � å x2Ad(x;i)

jAj � d(i; j). The other inequality,

d(j;m(A)) � d(i; j), can be proved in the same way.

2.5 Bisectingk-means Approximates Hierarchical-Split Ob-

jective

This section shows that the bisectingk-means algorithm is a constant approximation for the

proposed objective. This establishes a foundational connection between a natural objective

function and the bisectingk-means algorithm. This is the �rst analysis showing that bisecting

k-means optimizes a global objective function. This helps explain the structure of the

solutions produced by the algorithm.

The goal of this section is to show the following theorem.

Theorem 2.5.1.Fix any input setV and letT be the tree created by the bisectingk-means

algorithm. The tree T is a constant approximation for the Hierarchical-Split objective.

The analysis is based on analyzing each split performed by bisectingk-means individually.

The following lemma shows that if every split in a hierarchical clustering tree is good for

the objective function proposed, then the whole tree is also good. By “good" we mean that

the split gains a revenue which is at least some constant factor times the number of pairs

separated. This lemma follows immediately by de�nition of the objective.

Lemma 2.5.2.A hierarchical clustering treeT is ag-approximation for the Hierarchical-

Split problem if it satis�es the following condition:8S! (S1;S2) 2 T, rev(S1;S2) � gjS1jjS2j

holds for some constantg > 0.

The above lemma allows us to focus on a single iteration of the bisectingk-means

algorithm. Suppose at some iteration, a clusterA[B is split into A andB. We give the

following de�nition of a high-revenue point. A point u in A is a high-revenue point if for

most of the points inB, it gains acceptable amount of revenue.

2.5 Bisectingk-means Approximates Hierarchical-Split Objective 21

De�nition 2.5.1. Given a splitA[B and a pointu 2 A, we de�nehigh-revenue setin B

for u as:HRB(u) = f v 2 B : rev(u;v) � 1
10g: De�ne the low-revenue setfor u 2 A in B as:

LRB(u) = f v 2 B : rev(u;v) < 1
10g = BnHRB(u).

De�nition 2.5.2. Given a splitA[B, a pointu 2 A is ahigh-revenue pointif jHRB(u)j �
1
2jBj. Otherwise, it is called alow-revenue point.

With the de�nition of high-revenue points in place, the next lemma claims that given split

A[B ! (A;B) created by the optimal2-means algorithm, ifjAj � j Bj, at least half ofA are

high-revenue points. This is the main technical lemma. This combined with Lemma 2.5.2

implies Theorem 2.5.1.

Lemma 2.5.3.Let A andB be the optimal2-means solution for the point setA[B. Without

loss of generality, supposejAj � j Bj. Then, at least47jAj points inA are high-revenue. This

gives a lower bound of at least135jAjjBj revenue in total for splitting A and B.

The rest of the section is devoted to proving Lemma 2.5.3 by contradiction, with proofs

partially omitted due to space limits. For the rest of the section �x a setA[B and let the

partitionA;B correspond to the optimal solution to the2-means problem onA[B. For sake

of contradiction suppose more than3
7jAj points inA are low-revenue points. We will show

that such a splitA[B ! (A;B) cannot be optimal for the2-means objective. Indeed, we will

show that another split has a smaller 2-means objective value, proving the lemma.

Say we havei 2 A and j 2 B, such thatrev(i; j) < 1
10. Let H be the hyperplane such

that H = f y : d(y;m(A)) = d(y;m(B))g. Then,H separates the Euclidean space into two

half-spaces:H+ = f y : d(y;m(A)) � d(y;m(B))g andH � = f y : d(y;m(A)) � d(y;m(B))g.

By the assumption that the splitA[B ! (A;B) is the optimal2-means solution, we have

A � H+ , andB � H � . Next we show the following structural lemma. This lemma says

that if rev(i; j) is small thend(i;m(A)) andd(j;m(B)) are within a constant factor of each

other, which is close to1. Geometrically, this implies that bothi and j are located close to

the hyperplaneH. See Figure 2.3 for an illustration. The following lemma's proof is in the

appendix.

Lemma 2.5.4. Consider anyi 2 A and j 2 B. If rev(i; j) < 1
10, we have 9

10d(i;m(A)) <

d(j;m(B)) < 10
9 d(i;m(A)) , and 9

10d(j;m(B)) < d(i;m(A)) < 10
9 d(j;m(B)) , and d(i; j) <

1
9 minf d(i;m(A)) ;d(j;m(B))g.

Proof. Say thatrev(i; j) < 1
10. Without loss of generality assume thatd(i;m(A)) � d(j;m(B)) .

This and the de�nition of revenue gived(i; j) < 1
10d(i;m(A)) . SinceA andB is the optimal2-

means partition,d(i;m(A)) � d(i;m(B)) andd(j;m(B)) � d(j;m(A)) . The triangle inequality

22 A New Objective Function for Hierarchical Clustering

Fig. 2.3 Proof by constructing a better2-means solution. The bold dashed line in the middle
is the hyperplaneH. The two bold ellipses are clustersA andB , respectively. The dashed
ellipse inA is the setS, and the dashed ellipse inB is the low-revenue setLRB(u) for point
u 2 A in B. SandLRB(u) are both close to the separating hyperplaneH. A new partition
A[B ! (AnS;B[S) is constructed, represented by the two grey areas.

gives,

d(j;m(B)) � d(i;m(B)) � d(i; j) � d(i;m(A)) � d(i; j)

> d(i;m(A)) �
1
10

d(i;m(A)) =
9
10

d(i;m(A))

An analogous proofs showsd(i;m(A)) > 9
10d(j;m(B)) . The last inequality in the lemma

follows immediately from these two inequalities.

Let S be the subset of low-revenue points inA. By assumption,jSj > 3
7jAj. The next

lemma establishes that any two points inSare very close to each other as compared to their

distance to the centroidm(A). The following lemma's proof is in the appendix.

Lemma 2.5.5.LetSbe the low-revenue points inA. For any two pointsu;v 2 S, d(u;v) �
2
9 maxf d(u;m(A)) ;d(v;m(A))g.

Proof. Recall thatLRB(u) is the set of points inw 2 B such thatrev(u;w) < 1
10. Similarly for

LRB(v). Knowing thatjLRB(u)j > 1
2jBj andjLRB(v)j > 1

2jBj, there exists some pointw 2 B,

such thatrev(u;w) < 1
10 andrev(v;w) < 1

10. Without loss of generality supposed(u;m(A)) �

d(v;m(A)) . We want to showd(u;v) � 2
9d(u;m(A)) , notice thatd(u;v) � d(u;w)+ d(v;w),

and we haved(u;w) � 1
9d(u;m(A)) and d(v;w) � 1

9d(v;m(A)) , respectively, by Lemma

2.5.4. Note thatd(v;m(A)) � d(u;m(A)) , sod(v;w) � 1
9d(u;m(A)) , and we conclude that

d(u;v) � 2
9d(u;m(A)) .

Let x be the point inSsuch thatx 2 argmaxu2Sd(u;m(A)) , the farthest points fromm(A)

in S. Notice that,d(x;m(A)) > 0, otherwise it impliesSis overlapping withm(A), for any

2.5 Bisectingk-means Approximates Hierarchical-Split Objective 23

u2 Sandv2 LRB(u), by Lemma 2.5.4, we haved(v;m(B)) = 0, but this impliesrev(u;v) = 1.

Therefore,d(x;m(A)) > 0.

Lemma 2.5.5 implies that8u 2 S, d(u;x) � 2
9d(x;m(A)) . This result tells us the setSis

contained in a ball centered atx, with radius2
9d(x;m(A)) . So we can bound the distance

between centroid ofS, m(S) andm(A) using convexity of thè2 norm. The following lemma's

proof is omitted due to space.

Lemma 2.5.6.LetSbe the low-revenue points inA andx 2 argmaxu2Sd(u;m(A)) . It is the

case that d(m(S);m(A)) � 7
9d(x;m(A)) .

Proof. This is proved by combining Lemma 2.5.5 with the convexity ofl2 norm. Notice that

m(A) is a convex combination of all points inA, Jensen's inequality gives us the conclusion.

Since we provedm(S) is far fromm(A).

d(m(S);x) = d(
å u2Su

jSj
;x) �

å u2Sd(u;x)
jSj

�
2
9

d(x;m(A))

As a result the triangle inequality gives,d(m(S);m(A)) � d(x;m(A)) � d(x;m(S)) � 7
9d(x;m(A)) .

Next, we upper-boundd(m(S);m(B)) . Recall that points in the setSare far away from

m(A), but close to the hyperplaneH = f y : d(y;m(A)) = d(y;m(B))g. The following lemma's

proof is in the appendix.

Lemma 2.5.7.LetSbe the low-revenue points inA. For anyu2 S, d(u;m(B)) � 11
9 d(x;m(A)) .

Proof. Sinceu 2 S, there existsw 2 B, s.t.d(u;w) < 1
10 maxf d(u;m(A)) ;

d(w;m(B))g. By triangle inequality, we haved(u;m(B)) � d(w;m(B)) + d(u;w). Since

rev(u;w) < 1
10, by Lemma 2.5.4,d(w;m(B)) � 10

9 d(u;m(A)) andd(u;w) � 1
9d(u;m(A)) .

Therefore,d(u;m(B)) � 11
9 d(u;m(A)) � 11

9 d(x;m(A)) .

Therefore, we can upper boundd(m(S);m(B)) : d(m(S);m(B)) � å u2Sd(u;m(B))
jSj �

11
9 d(x;m(A)) . The �rst inequality follows by de�nition of a centroid. The second from

Lemma 2.5.7. This, combined withd(m(S);m(A)) � 7
9d(x;m(A)) from Lemma 2.5.6, gives

us the following:d2(m(S);m(A))
d2(m(S);m(B)) � (7

9)2=(11
9)2 = 49

121. Recall thatDk(U) denotes the optimal

k-means value for a setU. Let S1 andS2 be two sets. We quote the following lemma from

Ostrovsky et al. [119].

Lemma 2.5.8([119]). For any two sets of pointsS1 andS2 it is the case thatD1(S1 [S2) =

D1(S1) + D1(S2) + jS1jjS2j
jS1j+ jS2j d

2(m(S1);m(S2)) .

24 A New Objective Function for Hierarchical Clustering

With this in place Lemma 2.5.3 can be shown. In general, we show this by take the set

Saway fromA and assign it into clusterB instead, and prove that this is a better2-means

solution than the previous one.

Proof of [Lemma 2.5.3] Apply Lemma 2.5.8 toD1(A) = D1(S[(AnS)) , and we get the
following equation whereob j1 is the 2-means objective for the solutionA;B:

ob j1 := D1(A)+ D1(B) = D1(S)+ D1(AnS)+
jSj(jAj � j Sj)

jAj
d2(m(S);m(AnS))+ D1(B) (2.1)

We want to boundd2(m(S);m(AnS)) from the prior equation. By de�nition of a centroid

we know jSjm(S) + (jAj � j Sj)m(AnS) = jAjm(A). SubtractingjAjm(S) from both sides

givesjAj(m(A) � m(S)) = (jAj � j Sj)(m(AnS) � m(S)) . Thus we haved2(m(S);m(AnS)) =
jAj2

(jAj�j Sj)2d2(m(S);m(A)) . Plugging this into (2.1) and we get

ob j1 = D1(S)+ D1(AnS)+ D1(B)+
jSjjAj

jAj � j Sj
d2(m(S);m(A))

> D1(S)+ D1(AnS)+ D1(B)+
7
4

jSjd2(m(S);m(A))

The last inequality comes from the fact thatjSj > 3
7jAj, so jAj

jAj�j Sj � 7
4. Now we consider

another way of splitting:A[B ! (AnS;S[B). Note that the followingob j2 is the objective

of an alternative2-means solution:ob j2 = D1(AnS) + D1(S[B) = D1(AnS) + D1(S) +

D1(B) + jSjjBj
jSj+ jBj d

2(m(S);m(B)) . Now we make use of the assumption thatjAj � j Bj. Then

jSj � 3
7jAj � 3

7jBj. Then jBj
jSj+ jBj � 1

3=7+ 1 = 7
10. So,

ob j2 = D1(AnS)+ D1(S)+ D1(B)+
jSjjBj

jSj + jBj
d2(m(S);m(B))

� D1(AnS)+ D1(S)+ D1(B)+
7
10

jSjd2(m(S);m(B))

� D1(AnS)+ D1(S)+ D1(B)+
7
10

jSj �
121
49

d2(m(S);m(A))

< D1(AnS)+ D1(S)+ D1(B)+
7
4

jSjd2(m(S);m(A)) = ob j1

This contradicts the assumption that the splitA[B ! (A;B) is the optimal2-means. There-

fore, at least47jAj points inA are high-revenue points.

2.6 Randomly Partitioning Poorly Approximates the Hierarchical-Split Objective 25

2.6 Randomly Partitioning Poorly Approximates the Hierarchical-

Split Objective

Consider the following algorithm which can create undesirable trees. TheRandomalgorithm

splits a setS into (S1;S2) by �ipping an independent, fair coin for each point inS. If the

coin comes up heads then the point gets added toS1, and otherwise gets added toS2. The

algorithm is intuitively undesirable because it does not take the structure of the input into the

construction of the solution. Further, the solutions produced do not give much insight into

the data.

While intuitively bad, this algorithm is known to be a13-approximation for the objective

of Moseley and Wang[115] with similarity scores and it is a23-approximation for value

objective for dissimilarity scores. These results hold for any set of similarity or dissimilarity

scores, regardless of if they form a metric.

We show that the our objective does not have this shortcoming. The approximation ratio

of the Random algorithm is at mostO(1
ne) for a constante > 0, indicating that it performs

very poorly, as is stated by Theorem 2.6.1.

Theorem 2.6.1.Let OPT(V) be the optimal solution forV. Let the expected revenue be

ET [revT(V)] for setV. Then, there exists a construction ofV, such that for a constant

e 2 (0;1), ET [revT(V)] = O(1
ne) � OPT(V).

Before we argue Random is bad, we give the de�nition of “clean split”. Intuitively, a

split should be considered clean if it doesn't separate points close to each other when there

are far away pairs.

De�nition 2.6.1. We de�ne a splitS! (S1;S2) to becleanif it satis�es one of the following

conditions:

1. If S� A or S� B.

2. If S1 � A;S2 � B, or S1 � B;S2 � A.

Based on the result that every tree is gaining full revenue for an ultrametric, it is easy to

see that optimal tree can get a revenue ofOPT(V) := (n2+ n)(n2+ n� 1)
2 = Q(n4) for the whole

point set. The optimal tree splitsA from B in the root split, and then can do anything on the

remaining portion of the tree.

Before formally prove this theorem we make some quick observations. First, we don't

need to care about the pairs(i; j) wherei 2 A and j 2 B because the number of such pairs

is Q(n3), even if we gain full revenue for them, it doesn't affect the approximation ratio.

26 A New Objective Function for Hierarchical Clustering

For the same reason we don't care about points(i; j) such thati; j 2 B. So, we only need to

discuss how much revenue we can get from separating all the pairs insideA in expectation

for Random.

With this in mind, we will use Chernoff bounds to argue that forQ(logn) rounds, Random

splits each node in half with high probability, which causes us to lose a lot of revenue.

Lemma 2.6.2.Suppose we have a setSwith mpoints, and use Random to split it intoS1 and

S2. Then, for i= 1;2

P(jjSi j �
m
2

j �
p

mlogm) � 1�
2

m2

Proof. Considerm i.i.d. Rademacher variablesXj . Then from Chernoff's bound, we know

that

P(j
m

å
j= 1

Xj j � t) � 2exp(�
t2

2m
)

Random is treating each pointj as a Rademacher variable by assigning

Xj =

8
<

:
+ 1 if j is assigned toS1

� 1 if j is assigned toS2

Then, fori = 1;2,

P(jjSi j �
m
2

j �
p

mlog(m)) = P(j
m

å
i= 1

Xi j � 2
p

mlog(m))

� 2exp(2 log(m)) =
2

m2

Next, we de�ne “almost-equal" splits, which refers splits such that the points fromA and

B in the parent node is almost split equally in its two children.

De�nition 2.6.2. Given a setS, letSA andSB denote the points fromA andB in S, respectively.

If a split S! (S1;S2) satis�es the property in Lemma 2.6.2, i.e., fori = 1;2, let SA
i andSB

i

denote the set of points fromA andB in setSi respectively, we say this split isalmost equal

if for i = 1;2:

1. P(jjSA
i j � 1

2jSAjj �
p

SA logSA)

2. P(jjSB
i j � 1

2jSBjj �
p

SB logSB)

Also, for a hierarchical clustering tree, if all the nodes in the �rsti layers are almost equally

split, we call this treei-almost equally split.

2.6 Randomly Partitioning Poorly Approximates the Hierarchical-Split Objective 27

The next lemma bounds the number of points in bothA andB in an internal node inith

layer if every split is almost equal for both in the �rsti layers in the tree, wherei � log(n)
2 .

Lemma 2.6.3.LetSi be a node in theith layer of the tree (i � logn=2). If all the ancestors

of Si is almost-equally split, letSA
i be the points inSi in A, andSB

i be the points inSi in B.

Then we havejSA
i j = Q(n2=2i), jSB

i j = Q(n=2i).

Proof. By induction, we prove a stronger conclusion:

n2

2i � 8

r
n2

2i log(
n2

2i) � j SA
i j �

n2

2i + 8

r
n2

2i log(
n2

2i)

and
n
2i � 8

r
n
2i log(

n
2i) � j SB

i j �
n
2i + 8

r
n
2i log(

n
2i)

We just prove the �rst claim and the other can be proved in the same way. By induction,

jSA
i j �

jSA
i� 1j
2

�
q

jSA
i� 1j log(jSA

i� 1j)

�
1
2

� (
n2

2i� 1 � 8

r
n2

2i� 1 log(
n2

2i� 1))

�

r
n2

2i� 1 log(
n2

2i� 1)

=
n2

2i � 5
p

2�

r
n2

2i (log(
n2

2i) + log(2))

�
n2

2i � 8

r
n2

2i log(
n2

2i)

And the other side of the inequality can be bounded in the same way.

If the condition in Lemma 2.6.3 holds, this result tells us that every node in the �rstlog(n)
2

layers is not clean. In other words, for all the pairs of points inA which are separated during

the �rst log(n)
2 layers of the tree, we don't get any revenue. Thus we can upper bound the

revenue for points inA:

Lemma 2.6.4. If the treeT is log(n)
2 -almost-equally-split tree, for all the pairs inA the

revenue is O(n4� e) for e = log(2)
2 .

Proof. The tree does not obtain any revenue in the splits in the �rst(log(n)
2)th layers. It can

only get revenue within the subtrees rooted at each internal node in the(log(n)
2)th layer. For

each such node, the size of the subtree isQ(n2

2log(n)=2) = Q(n2� e), wheree = log2
2 . Thus the

28 A New Objective Function for Hierarchical Clustering

revenue we can get from each subtree is bounded byQ(n4� 2e). There areQ(ne) such nodes.

So, the revenue is bounded byO(n4� e).

We have already proved that if many of the top layers have almost equally split internal

nodes, the hierarchical clustering tree has small total revenue. To formally prove Theorem

2.6.1, we only need to show that this happens with high probability. Notice that the probability

of the tree being notlog(n)
2 -almost equally split can be bounded by union bounds on the

probability of an almost equal split not happening in any of the �rstlog(n)
2 layers, which is

O(1
ne0), wheree0= 2� 3log2

2 . This is very low probability, putting everything together, we

have Lemma 2.6.4.

Proof of [Theorem 2.6.1] By Lemma 2.6.4,

ET(revT(V)jT is
log(n)

2
-almost equally split) = O(n4� e)

Then, we only need to lower bound the probability that the treeT is log(m)
2 -almost equally

split. We show next that this happens with very high probability. Again letSi denote some

node in theith layer ofT.

P(Si isn't almost equal splitjT is (i � 1)-almost equally split)

�
2

jSB
i j

+
2

jSA
i j

� Q(
2i

n
)

2.7 Other Objectives for Data in Metric Space 29

In theith layer, we have2i nodes. So we bound the probability of having a tree that's almost

equal split in the �rstlog(n)
2 layers as follows:

P(T is i-almost equally split)

= P
log(n)

2
i= 1 PSi in the ith layerP(Si is almost equally splitj

T is (i � 1)-almost equally split)

> P
log(n)

2
i= 1 PSi in the ith layer(1� Q(

2i

n
))

> 1� Q(

log(n)
2

å
i= 1

å
Si in the ith layer

(
2i

n
)2)

= 1� Q(

log(n)
2

å
i= 1

2i �
4i

n2)

= 1� Q(
(1+ 8+ 82 + ::: + 8

log(n)
2)

n2)

= 1� Q(2
3log(n)

2 =n2) = 1� Q(
1

ne0)

Wheree0= 2� 3log2
2 > e. So we haveO(1

ne0) probability thatT is noti-almost equally split,

in which case the revenue is bounded byQ(n4).

Therefore, the expectation is bounded by:

ET [revT(V)]

� P(T is
log(n)

2
-almost equally split)Q(n4� e)

+ P(T is not
log(n)

2
-almost equally split)Q(n4)

� Q(n4� e) + Q(n4� e0
)

� Q(n4� e)

wheree = log(2)
2 .

2.7 Other Objectives for Data in Metric Space

This section studies data with similarity/dissimilarity scores in a metric space. First we

investigate thevalueobjective from [58]. Recall that this is the same ascostfrom [61] except

30 A New Objective Function for Hierarchical Clustering

the minimization is swapped for a maximization and the similarity scores are swapped for

dissimilarity scores. We also study cost objective for similarity scores. We show for each

case that if the pairwise similarity/dissimilarity scores formany metric, theneverytree is a at

most a factor 2 from optimal.

For a treeT let T[i _ j] denote the subtree rooted at the least common ancestor ofi and j,

andjleaves(T[i _ j])j denote the number of leaves ofT[i _ j]. Recall that the value objective

is the following: maxT å i; j2V d(i; j)jleaves(T[i _ j])j.

In Cohen-Addad et al.[58], it has been proved that any solution is a constant approxima-

tion of the optimal solution for the value objective, given that the distance is a metric. Here

we prove a stronger conclusion:

Theorem 2.7.1.Any solution is a1
2-approximation for value objective if the distanced(i; j)

satis�es triangle inequality.

To prove this theorem, �x a treeT. Let LCA(i; j) be the least common ancestor ofi and j

in T. Let 1f i; j jkg be an indicator variable indicating whether in the treeT theLCA(i; j) is

a descendant ofLCA(i; j;k): 1f i; j jkg = 1 if such a relationship holds, and1f i; j jkg = 0 if

otherwise. Equivalently, if1f i; j jkg = 1, it means during the tree construction, tracing down

from the root,k is separated fromi and j �rst, and i; j are separated in a split closer to the

bottom of the tree. If the tree is binary, we have the following equality:

1f i; j jkg+ 1f i;kj jg+ 1f j;kjig = 1

That is, one and only one of the relationships represented by the three indicator variables can

hold.

Prior to proving Theorem 2.7.1, we cite this result from Wang and Wang[131], which

shows the revenue in Cohen-Addad et al. objective can be decomposed onto every triangle:

Lemma 2.7.2([131]). WhenjVj � 3,

RT(V) = å
i; j2V

d(i; j)jleaves T[i _ j]j

= å
f i; j ;kg� V

triRT(i; j ;k)+ 2 å
f p;qg� V

d(p;q)

2.7 Other Objectives for Data in Metric Space 31

where triRT(i; j ;k) denotes the revenue on triangle i; j;k, de�ned as follows:

triRT(i; j ;k) =

8
>>><

>>>:

d(i;k)+ d(j;k) if 1f i; j jkg = 1

d(i; j) + d(j;k) if 1f i;kj jg = 1

d(i; j) + d(i;k) if 1f j;kjig = 1

By triangle inequality, for each trianglei; j;k, we always havetriRT(i; j ;k) � 1
2(d(i;k)+

d(j;k)+ d(i; j)) , which will give us Theorem 2.7.1.

Proof of [Theorem 2.7.1] LetOPT(V) denote the optimal value of Cohen-Addad et al.

objective forV. We haveOPT(V) � å f p;qg� V jVj � d(p;q).

By triangle inequality, it is easy to see that regardless of which of the three relationship

holds, we always havetriRT(i; j ;k) � 1
2(d(i; j) + d(i;k) + d(j;k)) for any triplet f i; j ;kg.

Then, for anyT,

RT(V) = å
f i; j ;kg� V

triRT(i; j ;k)+ 2 å
f p;qg� V

d(p;q)

� å
f i; j ;kg� V

1
2

(d(i; j) + d(i;k)+ d(j;k))

+ 2 å
f p;qg� V

d(p;q)

=
1
2 å

f p;qg� V

d(p;q)(jVj � 2)+ 2 å
f p;qg� V

d(p;q)

>
1
2 å

f p;qg� V

jVj � d(p;q) �
1
2

OPT(V)

Next consider the objective in Dasgupta [61]. Here each pair of pointsi and j have a

similarity scorewi j where higher weights mean points are more similar. Recall from the

introduction that Dasgupta's objective is minT å i; j2V s(i; j)jleaves(T[i _ j])j.

The following corollary easily follows from the proof to Theorem 2.7.1.

Corollary 2.7.2.1. If the similarity score in the setting of Dasgupta[61] is a metric,

any hierarchical clustering tree is a2-approximation for the objective in Dasgupta[61] :

minT costT(V) = å 1� i< j� ns(i; j)jleaves(T[i _ j])j.

We note that for similarity scores, it is not a standard assumption that data lies in a metric

space. Thus, this corollary is perhaps interesting to understand the structure of the objective.

32 A New Objective Function for Hierarchical Clustering

However, it does not suggest that any tree will be2-approximate for most data sets with

similarity scores.

2.8 Empirical Results

The goal of this section is to study the performance of different algorithms for the new

objective empirically. The experimental results support the following claims:

• Algorithms that are popular in practice give high revenue for the new objective, with

bisectingk-means performing the best. This demonstrates that the objective value is

correlated with algorithms that perform well and highly connected to the bisecting

k-means algorithm, as the theory suggests.

• Random algorithm, as mentioned in previous section, performs poorly for the new

objective.

Data sets. We use two data sets from the UCI data repository:Census7 andBank8. Only

the numerical features are used.

Algorithm (m̂1; ŝ1)-Census (m̂2; ŝ2)-Census (m̂1; ŝ1)-Bank (m̂2; ŝ2)-Bank
bisecting k-means (4.931e5, 304.980) (1.094e12, 1.714e11) (4.912e5, 474.451) (1.049e12, 1.158e11)
average-linkage (4.900e5, 1.151e3) (1.093e12, 1.710e11) (4.907e5, 802.665) (1.052e12, 1.163e11)
single-linkage (4.869e5, 1.392e3) (1.094e12, 1.712e11) (4.818e5, 1.365e3) (1.035e12, 1.168e11)
Random (1.311e5, 1.072e4) (7.463e11, 1.152e11) (3.339e5, 8.825e3) (7.789e11, 7.993e10)
upper bound (499500, 0) (1.119e12, 1.725e11) (499500, 0) (1.167e12, 1.199e11)

Table 2.1 Summary of stats for all algorithms, on Census and Bank

Setting. We study four algorithms9: bisecting k-means, average-linkage, single-linkage,

and Random. In each experiment, we subsample2000data points from the given data set and

run the algorithms with subsampled data. We conduct �ve experiments with each data set

and report the mean and variance. Since optimal2-means solution is intractible, in practice

we import the k-means implementation from packageScikit-learn10, which uses Lloyd's

algorithm seeded with k-means++ for each split.

7https://archive.ics.uci.edu/ml/datasets/census+income
8https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
9https://github.com/wang-yuyan/hier_clustering_split_rev_obj_test.git

10https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

2.9 Conclusion 33

Results. Table 2.1 shows the comparison between performance for our objective and the

value objective. The rows denote the results for different algorithms and the upper-bound for

both value and our objective. For each algorithm, the columns(m̂1; ŝ1) and(m̂2; ŝ2) denote

the mean and standard deviation for our objective and value objective respectively, calculated

over results of the �ve experiments.

Regarding the new objective, the results show bisecting k-means performs the best of the

four algorithms for it. Further, bisecting k-means is within1% of the upper bound on the

optimal solution for the objective, which is the total number of pairs of data points. This sug-

gests that the objective is closely related to bisecting k-means, as the theory suggests. It also

shows that experimentally bisecting k-means performs much better than the approximation

ratio established.

All the three algorithms which are popular in practice perform well for our objective,

with bisecting k-means performing marginally better than average-linkage and single-linkage

on average. Moreover, bisecting k-means also has the smallest standard deviation across

different subsamples. Random is signi�cantly worse, with potentially over 30 times more loss

compared to optimal than the other algorithms. This perhaps suggests that trees created by

good algorithms perform well for the objective and poorly constructed trees do not perform

well.

Compared with the value objective from prior work, the results further show that average-

linkage performs slightly better than bisecting k-means for the value objective. This result

matches the theory, which suggests this objective is closer to average-linkage than bisecting

k-means. Again, all three algorithms used in practice perform well for value. However,

Random also gives about2=3 of the upper-bound, as the theoretical bound suggests. This

perhaps shows the value objective gives similar judgements on algorithm performance with

our objective, the latter showing a more signi�cant gap between Random and the other three

algorithms.

2.9 Conclusion

This chapter gives a new objective function for hierarchical clustering designed to mathemat-

ically capture the principle used to motivate most divisive algorithms. That is, comparing

inter vs. intra cluster distances at splits in the tree.

The paper proved a close relationship between the objective and the bisectingk-means

algorithm. This was done by showing the bisectingk-means provably optimizes the objective.

This helps to understand the structures of trees produced using bisectingk-means.

34 A New Objective Function for Hierarchical Clustering

The results in this paper leave directions for future work. How tight can the approximation

ratio be for thek-means algorithm? How do other hierarchical clustering algorithms perform

for this objective? Can we improve on the bisectingk-means algorithm to better optimize the

objective?

Chapter 3

Fair Hierarchical Clustering

3.1 Introduction

Algorithms and machine learned models are increasingly used to assist in decision making on

a wide range of issues, from mortgage approval to court sentencing recommendations [87].

It is clearly undesirable, and in many cases illegal, for models to be biased to groups, for

instance to discriminate on the basis of race or religion. Ensuring that there is no bias

is not as easy as removing these protected categories from the data. Even without them

being explicitly listed, the correlation between sensitive features and the rest of the training

data may still cause the algorithm to be biased. This has led to an emergent literature on

computing provably fair outcomes (see the book Barocas et al. [30]).

The prominence of clustering in data analysis, combined with its use for data segmen-

tation, feature engineering, and visualization makes it critical that ef�cient fair clustering

methods are developed. There has been a �urry of recent results in the ML research com-

munity, proposing algorithms for fair�at clustering, i.e., partitioning a dataset into a set of

disjoint clusters, as captured byk-center,k-median,k-means, correlation clustering objec-

tives [15, 16, 25, 32, 33, 48, 55, 76, 82, 88, 89]. However, the same issues affect hierarchical

clustering, which is the problem we study in our paper [14], which this chapter is based on.

Hierarchical clustering is frequently used for �at clustering when the number of clusters is

a priori unknown. A hierarchical clustering yields a set of clusterings at different granularities

that are consistent with each other. Therefore, in all clustering problems where fairness is

desired but the number of clusters is unknown, fair hierarchical clustering is useful. As

concrete examples, consider a set of news articles organized by a topic hierarchy, where

we wish to ensure that no single source or view point is over-represented in a cluster; or a

hierarchical division of a geographic area, where the sensitive attribute is gender or race, and

36 Fair Hierarchical Clustering

we wish to ensure balance in every level of the hierarchy. There are many such problems that

bene�t from fair hierarchical clustering, motivating its study.

Our contributions. We initiate an algorithmic study of fair hierarchical clustering. Fairness

is imposed as a constraint on the global hierarchical clustering tree while the tree's clustering

performance is measured using the revenue [115], value [58], and cost [61] objectives as

stated in 2.2.

To achieve fairness, we show how to extend thefairlets machinery, introduced by Chierichetti

et al.[52] and extended by Ahmadian et al.[15], to this problem. We then investigate the

complexity of �nding a good fairlet decomposition, giving both strong computational lower

bounds and polynomial time approximation algorithms. Based on the fairlet decomposi-

tion, we show how to build fair hierarchical clustering trees with theoretical performance

guarantees for the objectives.

Finally, we conclude with an empirical evaluation of our approach. We show that ignoring

protected attributes when performing hierarchical clustering can lead to unfair clusters. On the

other hand, adopting the fairlet framework in conjunction with the approximation algorithms

we propose yields fair clusters with anegligibleobjective degradation.

Related work. Hierarchical clustering has received increased attention over the past few

years. In Section 2.2 we have seen recent developments in hierarchical clustering, including

new objective function designs and analysis of algorithms utilizing the new framework.

In parallel to the new developments in algorithms for hierarchical clustering, there has

been tremendous development in the area of fair machine learning. We refer the reader

to a recent textbook [30] for a rich overview, and focus here on progress for fair clus-

tering. Chierichetti et al. [52] �rst de�ned fairness fork-median andk-center clustering,

and introduced the notion offairlets to design ef�cient algorithms. Extensive research has

focused on two topics: adapting the de�nition of fairness to broader contexts, and designing

ef�cient algorithms for �nding good fairlet decompositions. For the �rst topic, the fairness

de�nition was extended to multiple values for the protected feature [15, 33, 122]. For the

second topic, Backurs et al. [25] proposed a near-linear constant approximation algorithm

for �nding fairlets for k-median, Schmidt et al. [127] introduced a streaming algorithm

for scalable computation of coresets for fair clustering, Kleindessner et al. [88] designed a

linear time constant approximation algorithm fork-center where cluster centers are selected

proportionally from a set of colors, Bercea et al. [33] developed methods for fairk-means,

while Ahmadian et al. [16] and Ahmadi et al. [12] de�ned approximation algorithms for fair

correlation clustering. Concurrently with our work, Chhabra et al. [51] introduced a possible

3.2 Formulation 37

approach to ensuring fairness in hierarchical clustering. However, their fairness de�nition

differs from ours (in particular, they do not ensure that all levels of the tree are fair), and the

methods they introduce are heuristic, without formal fairness or quality guarantees.

Beyond clustering, the same balance notion that we use has been utilized to capture

fairness in other contexts, for instance: fair voting [40], fair optimization [53], as well as

other problems [41].

3.2 Formulation

3.2.1 Generalized Objectives for Hierarchical Clustering

In this section we reiterate the objective functions proposed in 2.2, but generalize them to

weighted inputs. This chapter will need to use the generalized form of these objectives. As

introduced in Section 2.2, we letG = (V;V2 ! R� 0) denote an input instance, whereV

is a set of data points equipped with similarity/dissimilarity scoresV2 ! R� 0. We denote

by n = jVj, the number of points. We then consider thevertex-weightedversions of the

problem. Here, we haveG = (V;V2 ! R� 0;m), wherem: V ! Z+ is a weight function on

the vertices. The vertex-unweighted version can be interpreted as settingm(i) = 1;8i 2 V.

ForU � V, we use the notationm(U) = å i2U m(i).

We again uses(�; �) to denote similarity scores andd(�; �) to denote dissimilarity/distance

scores.

We consider the three different objectives —revenue, value, andcost—, and generalize

them to the vertex-weighted case.

De�nition 3.2.1 (Revenue). The revenue(rev) of a treeT for an instanceG = (V;s;m),

wheres(�; �) denotes similarity between data points, is:revG(T) = å i; j2V s(i; j) �
�
m(V) �

m(leaves(T[i _ j]))
�
:

Note that in this de�nition, each weight is scaled by (the vertex-weight of) all the non-

leaves. The goal is to �nd a tree of maximum revenue. Moseley and Wang[115] showed that

average-linkage is a1=3-approximation for vertex-unweighted revenue; the state-of-the-art is

a (1=3+ e)-approximation by Charikar et al.[44]. As part of the analysis, there is an upper

bound for the revenue objective Cohen-Addad et al.[58], Moseley and Wang[115], which is

easily extended to the vertex-weighted setting:

revG(T) �
�

m(V) � min
u;v2V;u6= v

m(f u;vg)
�

� s(V): (3.1)

Note that in the vertex-unweighted case, the upper bound is just(jVj � 2)s(V).

38 Fair Hierarchical Clustering

De�nition 3.2.2 (Value). Thevalue(val) of a treeT for an instanceG = (V;d;m) where

d(�; �) denotes distance is:

valG(T) = å
i; j2V

d(i; j) � m(leaves(T[i _ j])) :

As in revenue, we aim to �nd a hierarchical clustering to maximize value. Cohen-Addad

et al.[58] showed that both average-linkage and a locallye-densest cut algorithm achieve

a 2=3-approximation for vertex-unweighted value. They also provided an upper bound for

value, much like that in (3.1), which in the vertex-weighted context, is:

valG(T) � m(V) � s(V): (3.2)

De�nition 3.2.3 (Cost). Thecostof a treeT for an instanceG = (V;s) wheres(�; �) denotes

similarity is:

costG(T) = å
i; j2V

s(i; j) � j leaves(T[i _ j])j:

Here we note that from a complexity point of view, cost is a much more dif�cult objective

to optimize. Charikar and Chatziafratis[43] showed that cost is not constant-factor approx-

imable under the Small Set Expansion hypothesis, and the current best approximations are

O
� p

log(n)
�

and require solving SDPs.

3.2.2 Notions of Fairness

Many de�nitions have been proposed for fairness in clustering. We consider the setting in

which each data point inV has acolor; the color corresponds to the value of the protected

attribute.

Disparate impact. This notion is used to capture the fact that decisions (i.e., clusterings)

should not be overly favorable to one group versus another. Chierichetti et al.[52] formalized

this notion for clustering when the protected attribute can take on one of two values, i.e.,

points have one of two colors. In their setup, thebalanceof a cluster is the ratio of the

minimum to the maximum number of points of any color in the cluster. Given a balance

requirementt, a clustering is fair if and only if each cluster has a balance of at leastt.

Bounded representation. A generalization of disparate impact, bounded representation

focuses on mitigating the imbalance of the representation of protected classes (i.e., colors) in

clusters and was de�ned by Ahmadian et al.[15]. Given an over-representation parameter

a , a cluster is fair if thefractional representation of each color in the cluster is at mosta ,

3.3 Fairlet Decomposition 39

and a clustering is fair if each cluster has this property. An interesting special case of this

notion is when there arec total colors anda = 1=c. In this case, we require that every color

is equally represented in every cluster. We will refer to this asequal representation.

These notions enjoy the following nice property:

De�nition 3.2.4 (Union-closed). A fairness constraint isunion-closedif for any pair of fair

clustersA andB, A[B is also fair.

This property is particularly useful in hierarchical clustering: given a treeT and internal

nodeu which represents a cluster, if each child cluster ofu is fair, thenu must also be a fair

cluster. We can now extend the notion of fair clustering to hierarchical clustering.

De�nition 3.2.5 (Fair hierarchical clustering). For any fairness constraint, a hierarchical

clustering is fair if all of its clusters (besides the leaves) are fair, and the minimal non-leaf

clusters form a clustering of all the data.

Thus, under any union-closed fairness constraint, this de�nition is equivalent to restricting

the bottom-most clustering (besides the leaves) to be fair. Given an objective (like revenue

or value), the goal then is to �nd a fair hierarchical clustering that optimizes the objective.

For ease of exposition, we focus on the bounded representation fairness notion withc colors

and an over-representation capa . However, the main ingredient for the revenue and value

objectives works under any notion of fairness that is union-closed. In the following sections,

we will focus on optimtizing value and revenue objectives with the fairness constraint. We

save the arguments for the more challenging cost objective until the full paper of [14] due to

space limit.

3.3 Fairlet Decomposition

We recall the notion of fairlets in Chierichetti et al. [52].

De�nition 3.3.1 (Fairlet). A fairlet Y is a fair set of points such that there is no partition of

Y into Y1 andY2 with bothY1 andY2 being fair.

In other words, a fairlet is a minimal fair set that cannot be further decomposed.

In the bounded representation fairness setting, a set of points is fair if at most ana

fraction of the points have the same color. We call this ana -capped fairlet. Fora = 1=t

with t an integer, the following lemma shows the fairlet size will always be at most2t � 1.

We will refer to the maximum possible size of a fairlet bymf (mf � 2t � 1).

40 Fair Hierarchical Clustering

Lemma 3.3.1.For any setP of sizep that satis�es fairness constraint witha = 1=t, there

exists a partition ofP into sets(P1;P2; : : :) where eachPi satis�es the fairness constraint and

t � j Pi j < 2t.

Proof. Let p = m� t + r with 0 � r < t, then the fairness constraints ensures that there are at

mostmelements of each color. Consider partitioning obtained through the following process:

consider an ordering of elements where points of the same color are in consecutive places,

assign points to setsP1;P2; : : : ;Pm in a round robin fashion. So each setPi gets at leastt

elements and at mostt + r < 2t elements assigned to it. Since there are at mostmelements of

each color, each set gets at most one point of any color and hence all sets satisfy the fairness

constraint as 1� 1
t � jPi j.

Recall that given a union-closed fairness constraint, a hierarchical clustering tree is fair if

and only if the �rst clustering in the tree is a layer of fairlets, which we call afairlet decom-

position, of the original data set. This observation gives an immediate algorithm for �nding

fair hierarchical clustering trees in a two-phase manner. (i) Find a fairlet decomposition, i.e.,

partition the input setV into clustersY1;Y2; : : : that are all fairlets. (ii) Build a tree on top of

all the fairlets. Our goal is to complete both phases in such a way that we optimize the given

objective (i.e., revenue or value).

In Section 3.4, we will see that to optimize for the revenue objective, all we need is a

fairlet decomposition with bounded fairlet size. However, the fairlet decomposition required

for the value objective is more nuanced as the performance of the tree built on top of these

fairlets are more closely tied to the quality of the decomposition. As we shall see in Section

3.3.1, we set a separate optimization goal for the desired fairlet decomposition for value.

This chapter will focus on revenue and value. For the cost objective, generally considered

the most challenging to optimize or approximate, more assumptions on the input and complex

algorithm designs are needed to achieve performance guarantees. The results for cost could

be found in the full version of [14].

3.3.1 Fairlet decomposition for the value objective

For the value objective, we need the total distance between pairs of points inside each fairlet

to be small. Formally, supposeV is partitioned into fairletsY = f Y1;Y2; : : :g such thatYi is

ana -capped fairlet. The cost of this decomposition is de�ned as:

f (Y) = å
Y2Y

å
f u;vg� Y

d(u;v): (3.3)

3.3 Fairlet Decomposition 41

Unfortunately, the problem of �nding a fairlet decomposition to minimizef (�) does not

admit any constant-factor approximation unless P=NP.

Theorem 3.3.2.Let z � 3 be an integer. Then there is no bounded approximation algorithm

for �nding (z
z+ 1)-capped fairlets optimizingf (Y), which runs in polynomial time, unless

P=NP.

The proof proceeds by a reduction from the Triangle Partition problem, which asks

whether a graphG = (V;E) on 3n vertices can be partitioned into three element sets, with

each set forming a triangle inG.

we state that the PARTITION INTO TRIANGLES (PIT) problem is known to belong to

the NP-complete class [67], de�ned as follows. In the de�nition, we call a cliquek-clique if

it hask nodes. A triangle is a 3-clique.

De�nition 3.3.2. PARTITION INTO TRIANGLES (PIT).Given graphG = (V;E), where

V = 3n, determine ifV can be partitioned into3-element setsS1;S2; :::;Sn, such that eachSi

forms a triangle inG.

The NP-hardness of PIT problem gives us a more general statement.

De�nition 3.3.3. PARTITION INTOk-CLIQUES (PIKC).For a �xed numberk treated as

constant, given graphG = (V;E), whereV = kn, determine ifV can be partitioned into

k-element setsS1;S2; :::;Sn, such that eachSi forms ak-clique inG.

Lemma 3.3.3.For a �xed constantk, the PIKC problem is NP-hard.

Proof. We reduce the PIKC problem from the PIT problem. For any graphG = (V;E)

given to the PIT problem wherejVj = 3n, construct another graphG0 = (V0;E0). Let

V0 = V [C1 [C2 [::: [Cn, where all theCi 's are (k � 3)-cliques, and there is no edge

between any two cliquesCi andCj wherei 6= j. For anyCi , let all points inCi to be connected

to all nodes inV.

Now let G0 be the input to PIKC problem. We prove thatG can be partitioned into

triangles if and only ifG0 can be partitioned intok-cliques. IfV has a triangle partition

V = f S1; :::;Sng, thenV0= f S1 [C1; :::;Sn [Cng is ak-clique partition. On the other hand,

if V0has ak-clique partitionV0= f S0
1; :::;S0

ng thenC1; :::;Cn must each belong to different

k-cliques since they are not connected to each other. Without loss of generality we assume

Ci � Si , thenV = f S0
1 nC1; :::;S0

n nCng is a triangle partition.

We are now ready to prove Theorem 3.3.2.

42 Fair Hierarchical Clustering

Proof of [Theorem 3.3.2] We prove Theorem 3.3.2 by proving that for given(b; r) where

r � 3, if there exists ac-approximation polynomial algorithmA for (3.3), it can be used to

solve the PIKC problem wherek = r for any instance as well. This holds for any �nitec.

Given any graphG = (V;E) that is input to the PIKC problem, wherejVj = kn= rn, let

a setV0with distances be constructed in the following way:

1. V0= V [f C1; :::;Cng, where eachCi is a set ofb points.

2. Color the points inV red, and color all theCi 's blue.

3. For ae= (u;v), let w(u;v) = 0, if it satis�es one of the three conditions: 1)e2 E. 2)

u;v 2 Ci for someCi . 3) one ofu;v is in V, while the other belong to someCi .

4. All other edges have distance 1.

Obviously the balance ofV0 is b
r , so each fairlet should have exactlyb blue points andr red

points.

We claim thatG has ak-clique partition if and only if algorithmA gives a solution of0

for (3.3). The same argument as in the proof of Lemma 3.3.3 will show thatG has ak-clique

partition if and only if the optimal solution to (3.3) is0. This is equal to algorithmA giving

a solution of 0 since otherwise the approximate is not bounded.

Fortunately, for the purpose of optimizing the value objective, it is not necessary to �nd

an approximate decomposition.

3.4 Optimizing revenue with fairness

In this section we consider the revenue objective. We will obtain an approximation algorithm

for this objective in three steps: (i) obtain a fairlet decomposition such that the maximum

fairlet size in the decomposition is small, (ii) show that anyb-approximation algorithm to

(3.1) plus this fairlet decomposition can be used to obtain a (roughly)b-approximation for

fair hierarchical clustering under the revenue objective, and (iii) use average-linkage, which

is known to be a1=3-approximation to (3.1).

First, we address step (ii).

Theorem 3.4.1.Given an algorithm that obtains ab-approximation to (3.1) whereb � 1, and

a fairlet decomposition with maximum fairlet sizemf , there is ab
�

1� 2mf
n

�
-approximation

for fair hierarchical clustering under the revenue objective.

3.5 Optimizing value with fairness 43

Proof. Let A be theb-approximation algorithm to (3.1). For a given instanceG = (V;s), let

Y = f Y1;Y2; : : :g be a fairlet decomposition ofV; let mf = maxY2Y jYj. Recall thatn = jVj.

We useY to create a weighted input instanceGY = (Y ;sY ;mY). ForY;Y02 Y , we

de�ne s(Y;Y0) = å i2Y; j2Y0s(i; j) and we de�nemY (Y) = jYj.

We runA on GY and letTY be the hierarchical clustering obtained byA . To extend

this to a treeT on V, we simply place all the points in each fairlet as leaves under the

corresponding vertex inTY .

We argue that revG(T) � b
�

1� 2mf
n

�
(n� 2)s(V).

SinceA obtains ab-approximation to hierarchical clustering onGY , we have

revGY

�
TY) � b � å

Y;Y02Y
s(Y;Y0)(n� m(Y) � m(Y0)) :

Notice the fact that, for any pair of pointsu;v in the same fairletY 2 Y , the revenue they

get in the treeT is (n� m(Y))s(u;v). Then,

revG(T) = å
Y2Y

(n� m(Y))s(Y)+ rev(TY)

� å
Y2Y

b(n� m(Y))s(Y)+ b å
Y;Y02Y

s(Y;Y0)(n� m(Y) � m(Y0))

� b (n� 2mf)

å
Y2Y

s(Y)+ å
Y;Y02Y

s(Y;Y0)

!

� b
�

1�
2mf

n

�
(n� 2)s(V):

Thus the resulting treeT is ab(1� 2mf
n)-approximation of the upper bound.

Prior work showed that average-linkage is a1=3-approximation to (3.1) in the vertex-

unweighted case; this proof can be easily modi�ed to show that it is still1=3-approximation

even with vertex weights.

Combined with the fairlet decomposition methods for the two-color case [52] and for

multi-color case shown in Lemma 3.3.1, we have the following.

Corollary 3.4.2. There is polynomial time algorithm that constructs a fair tree that is a
1
3

�
1� 2mf

n

�
-approximation for revenue objective, wheremf is the maximum size of fairlets.

3.5 Optimizing value with fairness

In this section we consider the value objective. As in the revenue objective, we prove

that we can reduce fair hierarchical clustering to the problem of �nding a good fairlet

44 Fair Hierarchical Clustering

decomposition for the proposed fairlet objective(3.3), and then use any approximation

algorithm for weighted hierarchical clustering with the decomposition as the input. Again,

our result applies to Bera et al.[32], Bercea et al.[33]'s fairness constraint if we are given an

appropriate fairness decomposition.

Theorem 3.5.1.Given an algorithm that gives ab-approximation to(3.2) whereb � 1,

and a fairlet decompositionY such thatf (Y) � e � d(V), there is a fair solution which is

b(1� e) approximation for(3.2).

To prove this theorem, �x any hierarchical clustering algorithmA that is guaranteed on

anyweightedinput (V;d;m) to construct a hierarchical clustering with objective value at

leastbm(V)d(V) for the value objective on a weighted input. Recall that we extended the

value objective to a weighted input and we de�nem(V) = å u2V mu. Our aim is to show

that we can combineA with the fairlet decompositionY introduced in the prior section to

get a fair hierarchical clustering that is ab(1� e)-approximation for the value objective, if

f (Y) � ed(V).

In the following de�nition, we transform the point set to a new set of points that are

weighted. We will analyzeA on this new set of points. We then show how we can relate this

to the objective value of the optimal tree on the original set of points.

De�nition 3.5.1. Let Y = f Y1;Y2; : : :g be the fairlet decomposition forV that is produced

by the local search algorithm. De�neV(Y) as follows:

• Each setYi has a corresponding pointai in V(Y).

• The weightmi of ai is set to bejYi j.

• For each partitionsYi ;Yj , wherei 6= j andYi ;Yj 2 Y , d(ai ;a j) = d(Yi ;Yj).

We begin by observing the objective value thatA receives on the instanceV(Y) is large

compared to the weights in the original instance.

Claim 3.5.2. On the instanceV(Y) the algorithmA has a total weighted objective of

b(1� e) � nd(V).

Proof. Notice thatm(V(Y)) = jVj = n. Consider the total sum of all the distances inV(Y).

This iså ai ;a j2V(Y) d(ai ;a j) = åYi ;Yj2Y d(Yi ;Yj) = d(V) � f (Y). The upper bound on the

optimal solution is(åYi2Y mi)(d(V) � f (Y) = n(d(V) � f (Y)) . Sincef (Y) � ed(V), this

upper bound is at least(1� e)nd(V). Claim 3.5.2 follows from the fact that the algorithmA

archives a weighted revenue at least ab factor of the total weighted distances.

3.5 Optimizing value with fairness 45

Theorem 3.5.1 is essentially a corollary of Claim 3.5.2. We complement this result with

an algorithm that �nds a good fairlet decomposition in polynomial time under the bounded

representation fairness constraint with capa .

Let R1; : : : ;Rc be thec colors (i.e., different values of the protected feature) and let

Y = f Y1;Y2 : : :g be the fairlet decomposition. Letni be the number of points coloredRi in V.

Let r i;k denote the number of points coloredRi in thekth fairlet.

Theorem 3.5.3.There exists a local search algorithm that �nds a fairlet decompositionY

with f (Y) � (1+ e) maxi;k
r i;k
ni

d(V) in timeÕ(n3=e).

We can now use the fact that both average-linkage and thee
n-locally-densest cut algorithm

give a 2
3- and(2

3 � e)-approximation respectively for vertex-weighted hierarchical clustering

under the value objective. Finally, recall that fairlets are intended to be minimal, and their

size depends only on the parametera , and not on the size of the original input. Therefore, as

long as the number of points of each color increases as input size,n, grows, the ratior i;k=ni

goes to0. These results, combined with Theorem 3.5.1 and Theorem 3.5.3, yield Corollary

3.5.4.

Corollary 3.5.4. Given bounded size fairlets, the fairlet decomposition computed by local

search combined with average-linkage constructs a fair hierarchical clustering that is a
2
3(1� o(1)) -approximation for the value objective. For thee

n-locally-densest cut algorithm in

Cohen-Addad et al.[58], we get a polynomial time algorithm for fair hierarchical clustering

that is a(2
3 � e)(1� o(1)) -approximation under the value objective for anye > 0.

Given at most a small fraction of every color is in any cluster, Corollary 3.5.4 states

that we can extend the state-of-the-art results for value to thea -capped, multi-colored

constraint. Note that the preconditions will always be satis�ed and the extension will hold in

the two-color fairness setting or in the multi-colored equal representation fairness setting.

Fairlet decompositions via local search In this section, we give a local search algorithm

to construct a fairlet decomposition, which proves Theorem 3.5.3. This is inspired by the

e-densest cut algorithm of Cohen-Addad et al.[58]. To start, recall that for a pair of setsA

andB we denote byd(A;B) the sum of interpoint distances,d(A;B) = å u2A;v2Bd(u;v). A

fairlet decomposition is a partition of the inputf Y1;Y2; : : :g such that each color composes at

most ana fraction of eachYi .

We start by �nding an arbitrarya -capped fairlet decomposition. For two colors with

a = r=(b+ r), we use the fairlet decomposition introduced by Chierichetti et al. [52]. For

multiple colors witha = 1=t, we use Lemma 3.3.1. Our algorithm will then recursively

46 Fair Hierarchical Clustering

Algorithm 1 Algorithm for (e=n)-locally-optimal fairlet decomposition.

Input: A setV with distance functiond � 0, parametera , small constante 2 [0;1].
Output: An a -capped fairlet decompositionY .

1: Finddmax, D mf
n dmax.

2: Arbitrarily �nd an a -capped fairlet decompositionf Y1;Y2; : : :g such that each partition
has at most ana fraction of any color.

3: while 9u 2 Yi ;v 2 Yj ; i 6= j of the same color, such that for the decompositionY 0after

swappingu;v,
åYk2Y d(Yk)

åYk2Y 0d(Yk) � (1+ e=n) and åYk2Y d(Yk) > D do

4: Swapu andv by settingYi (Yi n f ug) [f vg andYj (Yj n f vg) [f ug.
5: end while

subdivide the cluster of all data to construct a hierarchy by �nding cuts. To search for a cut,

we will use aswapmethod.

De�nition 3.5.2 (Local optimality). Consider any fairlet decompositionY = f Y1;Y2; : : :g

ande > 0. De�ne aswapof u 2 Yi andv 2 Yj for j 6= i as updatingYi to be(Yi n f ug) [f vg

andYj to be(Yj n f vg) [f ug. We sayY is e-locally-optimalif any swap withu;v of the

same color reduces the objective value by less than a(1+ e) factor.

The algorithm constructs a(e=n)-locally optimal algorithm for fairlet decomposition,

which runs inÕ(n3=e) time. Consider any given instance(V;d). Let dmax denote the

maximum distance,mf denote the maximum fairlet size, andD= dmax� mf
n . The algorithm

begins with an arbitrary decomposition. Then it swaps pairs of monochromatic points until it

terminates with a locally optimal solution. By construction we have the following.

Claim 3.5.5. Algorithm 1 �nds a valid fairlet decomposition.

We prove two things: Algorithm 1 optimizes the objective (3.3), and has a small running

time. The following lemma gives an upper bound onY 's performance for(3.3) found by

Algorithm 1.

Lemma 3.5.6.The fairlet decompositionY computed by Algorithm 1 has an objective value

for (3.3) of at most(1+ e) maxi;k
r i;k
ni

d(V).

Proof. The proof follows the same logic as in the two-color case: we �rst use the(e=n)-local

optimality of the solution, and sum up the inequality over all pairs of points with the same

color.

Let Y : V 7! Y denote a mapping from a point inV to the fairlet it belongs to. Let

Ri(X) be the set ofRi colored points in a setX. Let dRi (X) = å u2Ri(X) d(u;X). Naturally,

å i dRi (x) = 2d(X) for any setX since the weight for every pair of points is repeated twice.

3.5 Optimizing value with fairness 47

TheWhile loop can end in two cases: 1) ifY is (e=n)-locally-optimal; 2) ifåYk2Y d(Yk) �

D. Case 2 immediately implies the lemma, thus we focus on case 1.

By de�nition of the algorithm, we know that for any pairu 2 Y(u) andv 2 Y(v) where

u;v have the same color andY(u) 6= Y(v) the swap does not increase objective value by

a large amount. (The same trivially holds if the pair are in the same cluster.) We get the

following inequality as in the two color case:

d(u;Y(u))+ d(v;Y(v)) � d(u;Y(v))+ d(v;Y(u))+
e
n å

Yk2Y
d(Yk): (3.4)

For any colorRi, we sum it over every pair of points inRi(V) (even if they are in the

same partition).

ni å
Yk

dRi (Yk) �

å
Yk

r ikdRi (Yk)

!

+

å
u2Ri(V)

å
Yk6= Y(u)

r ikd(u;Yk)

!

+ n2
i
e
nå

Yk

d(Yk):

Divide both sides byni and we get:

å
Yk

dRi (Yk) �

å
Yk

r ik

ni
dRi (Yk)

!

+

å
u2Ri(V)

å
Yk6= Y(u)

r ik

ni
d(u;Yk)

!

+
nie
n å

Yk

d(Yk): (3.5)

Now we sum up this inequality over all colorsRi . The LHS becomes:

å
Yk

å
i

dRi (Yk) = å
Yk

å
u2Yk

d(u;Yk) = 2å
Yk

d(Yk):

For the RHS, the last term sums up toe(å i ni)
n åYk

d(Yk) = eåYk
d(Yk). Using the fact that

r ik
ni

� maxi;k
r ik
ni

, the other terms sum up to :

å
i
å
Yk

r ik

ni
dRi (Yk) + å

i
å

u2Ri(V)
å

Yk6= Y(u)

r ik

ni
d(u;Yk)

� max
i;k

r ik

ni

(

å
Yk

å
i

dRi (Yi) + å
u2V

å
Yk6= Y(u)

d(u;Yk)

)

= max
i;k

r ik

ni

(

å
Yk

å
u2Yk

d(u;Yk) + å
Yk

å
Yj6= Yk

d(Yj ;Yk)

)

= 2max
i;k

r ik

ni
� d(V):

48 Fair Hierarchical Clustering

Therefore, putting LHS and RHS together, we get

2å
Yk

d(Yk) � 2max
i;k

r ik

ni
d(V)+ eå

Yk

d(Yk):

Then,
åYk

d(Yk)
d(V) � maxi;k

r ik
ni

� 1
1� e=2 � (1+ e) � maxi;k

r ik
ni

. The �nal step follows from the fact

that(1+ e)(1� e=2) = 1+ e
2(1� e) � 1.

In the two-color case, the ratiomaxi;k
r ik
ni

becomesmaxf r
rt

; b
bt

g, which can be further

bounded by2(b+ r)
n . If there exists a caplet decomposition such thatmaxi;k

r ik
ni

= o(1), Lemma

3.5.6 implies we can build a fair hierarchical clustering tree witho(1) loss in approximation

ratio for value objective.

Assuming for all color classRi, ni ! + ¥ asn ! + ¥ , here we give a possible caplet

decomposition fora = 1
t (t < = c) with sizeO(t) for positive integert, thus guaranteeing

maxi;k
r ik
ni

= o(1) for anyi.

Finally we bound the running time. The algorithm has much better performance in

practice than its worst-case analysis would indicate. We will show this later in Section 3.6.

Lemma 3.5.7.The running time for Algorithm 1 is̃O(n3=e).

Proof. Notice that �nding the maximum pairwise distance takesO(n2) time. Thus, we focus

on analyzing the time spent on theWhile loop.

Let t be the total number of swaps. We argue thatt = Õ(n=e). If t = 0 the conclusion

trivially holds. Otherwise, consider the decompositionYt� 1 before the last swap. Since

the While loop does not terminate here,åYk2Yt� 1
d(Yk) � D = b+ r

n dmax. However, at the

beginning, we haveåYk2Y d(Yk) � (b+ r)n� dmax= n2D� n2åYk2Yt� 1
d(Yk). Therefore, it

takes at most log1+ e=n(n2) = Õ(n=e) iterations to �nish theWhile loop.

It remains to discuss the running time of each iteration. We argue that there is a way

to �nish each iteration inO(n2) time. Before theWhile loop, keep a record ofd(u;Yi) for

each pointu and each fairletYi . This takesO(n2) time. If we knowd(u;Yi) and the objective

value from the last iteration, in the current iteration, it takesO(1) time to calculate the new

objective value after each swap(u;v), and there are at mostn2 such calculations, before the

algorithm either �nds a pair to swap, or determines that no such pair is left. After the swap,

the update for all thed(u;Yi) data takesO(n) time. In total, every iteration takesO(n2) time.

Therefore, Algorithm 1 takes̃O(n3=e) time.

Together, Lemma 3.5.6, Lemma 3.5.7, and Claim 3.5.5 prove Theorem 3.5.3. This estab-

lishes that there is a local search algorithm that can construct a good fairlet decomposition.

3.6 Experiments 49

Table 3.1 Dataset description. Here(b; r) denotes the balance of the dataset.

Name Sample size # features Protected feature Color (blue, red) (b; r)
CENSUSGENDER 30162 6 gender (female, male) (1;3)

CENSUSRACE 30162 6 race (non-white, white) (1;7)
BANK MARRIAGE 45211 7 marital status (not married, married)(1;2)

BANK AGE 45211 7 age (< 40, � 40) (2;3)

Table 3.2 Impact of Algorithm 1 on ratiovalue in percentage (mean� std. dev).

Samples 400 800 1600 3200 6400 12800
CENSUSGENDER, initial 88:17� 0:76 88:39� 0:21 88:27� 0:40 88:12� 0:26 88:00� 0:10 88:04� 0:13

�nal 99:01� 0:60 99:09� 0:58 99:55� 0:26 99:64� 0:13 99:20� 0:38 99:44� 0:23
CENSUSRACE, initial 84:49� 0:66 85:01� 0:31 85:00� 0:42 84:88� 0:43 84:84� 0:16 84:89� 0:20

�nal 99:50� 0:20 99:89� 0:32 100:0� 0:21 99:98� 0:21 99:98� 0:11 99:93� 0:31
BANK MARRIAGE, initial 92:47� 0:54 92:58� 0:30 92:42� 0:30 92:53� 0:14 92:59� 0:14 92:75� 0:04

�nal 99:18� 0:22 99:28� 0:33 99:59� 0:14 99:51� 0:17 99:46� 0:10 99:50� 0:05
BANK AGE, initial 93:70� 0:56 93:35� 0:41 92:95� 0:25 93:28� 0:13 93:36� 0:12 93:33� 0:12

�nal 99:40� 0:28 99:40� 0:51 99:61� 0:13 99:64� 0:07 99:65� 0:08 99:59� 0:06

3.6 Experiments
This section validates our algorithms from Sections 3.4 and 3.5 empirically. In particular, we

would like to:

• Show that running the standard average-linkage algorithm results in highly unfair

solutions.

• Demonstrate that demanding fairness in hierarchical clustering incurs only a small loss

in the hierarchical clustering objective.

• Show that our algorithms, including fairlet decomposition, are practical on real data.

In this section we will �rst study the results for the two-color case in detail, and then

show that in general the results extend to multi-color cases.

Datasets. We use two datasets from the UCI data repository.1 In each dataset, we use

features with numerical values and leave out samples with empty entries. For value, we use

the Euclidean distance as the dissimilarity measure. For revenue, we set the similarity to

bes(i; j) = 1
1+ d(i; j) whered(i; j) is the Euclidean distance. We pick two different protected

features for both datasets, resulting in four datasets in total (See Table 3.1 for details).

• Censusdataset: We choosegenderandraceto be the protected feature and call the

resulting datasets CENSUSGENDER and CENSUSRACE.

• Bankdataset: We choosemarital statusandageto be the protected features and call

the resulting datasets BANK MARRIAGE and BANK AGE.

1archive.ics.uci.edu/ml/index.php, Census:archive.ics.uci.edu/ml/datasets/census+income,
Bank:archive.ics.uci.edu/ml/datasets/Bank+Marketing

50 Fair Hierarchical Clustering

Table 3.3 Impact of Algorithm 1 on ratiofairlets.

Samples 100 200 400 800 1600 3200 6400 12800
CENSUSGENDER, initial 2.5e-2 1.2e-2 6.2e-3 3.0e-3 1.5e-3 7.5e-4 3.8e-4 1.9e-4

�nal 4.9e-3 1.4e-3 6.9e-4 2.5e-4 8.5e-5 3.6e-5 1.8e-5 8.0e-6
CENSUSRACE, initial 6.6e-2 3.4e-2 1.7e-2 8.4e-3 4.2e-3 2.1e-3 1.1e-3 5.3e-4

�nal 2.5e-2 1.2e-2 6.2e-3 3.0e-3 1.5e-3 7.5e-4 3.8e-4 1.9e-5
BANK MARRIAGE, initial 1.7e-2 8.2e-3 4.0e-3 2.0e-3 1.0e-3 5.0e-4 2.5e-4 1.3e-4

�nal 5.9e-3 2.1e-3 9.3e-4 4.1e-4 1.3e-4 7.1e-5 3.3e-5 1.4e-5
BANK AGE, initial 1.3e-2 7.4e-3 3.5e-3 1.9e-3 9.3e-4 4.7e-4 2.3e-4 1.2e-4

�nal 5.0e-3 2.2e-3 7.0e-4 3.7e-4 1.3e-4 5.7e-5 3.0e-5 1.4e-5

(i) (ii) (iii)
Fig. 3.1 (i)ratiofairlets, every100swaps. (ii)ratiovalue, every100swaps. (iii)CENSUSGEN-
DER: running time vs sample size on a log-log scale.

In this section, unless otherwise speci�ed, we report results only for the value objective.

Results for the revenue objective are qualitatively similar and are omitted here. We do not

evaluate our algorithm for the cost objective since it is currently only of theoretical interest.

We sub-sample points of two colors from the original data set proportionally, while

approximately retaining the original color balance. The sample sizes used are100� 2i ; i =

0; : : : ;8. On each, we do5 experiments and report the average results. We sete in Algorithm 1

to 0:1 in all of the experiments.

Implementation. In the experiments, we use Algorithm 1 for the fairlet decomposition

phase, where the fairlet decomposition is initialized by randomly assigning red and blue

points to each fairlet. We apply theaverage-linkagealgorithm to create a tree on the fairlets.

We further use average-linkage to create subtrees inside of each fairlet.

The algorithm selects arandom pair of blue or red points in different fairlets to swap,

and checks if the swap suf�ciently improves the objective. We do not run the algorithm until

all the pairs are checked, rather the algorithm stops if it has made a2n failed attempts to

swap a random pair. As we observe empirically, this does not have material effect on the

quality of the overall solution.

Metrics. In our experiments, we track the following quantities. LetG be the given input

instance and letT be the output of our fair hierarchical clustering algorithm. We consider

the following ratioratiovalue = valueG(T)
valueG(T0) for value objective. This measures how close

the performance of the found fair tree is to the unfair tree constructed using traditional

3.6 Experiments 51

Table 3.4 Clustering on fairlets found by local search vs. upper bound, performance ratio in
percentage, at size 1600 (mean� std. dev).

Dataset CENSUSGENDER CENSUSRACE BANK MARRIAGE BANK AGE

Revenue vs. upper bound81:89� 0:40 81:75� 0:83 61:53� 0:37 61:66� 0:66
Value vs. upper bound 84:31� 0:15 84:52� 0:22 89:17� 0:29 88:81� 0:18

algorithms. Similarly, for revenue, we considerratiorev = revG(T)
revG(T0) . We consider the fairlet

objective function whereY is a fairlet decomposition. Let ratiofairlets = f (Y)
d(V) .

Results. The experimental results are shown as follows. We �rst present results for value

objective with two colors, and then extend the results to the revenue objective, and multiple

colors. In all settings the results are qualitatively similar.

Average-linkage algorithm always constructs unfair trees. For each of the datasets, the

algorithm results in monochromatic clusters at some level, strengthening the case for fair

algorithms.

In Table 3.2, we show for each dataset theratiovalue both at the time of initialization

(Initial) and after using the local search algorithm (Final). We see the change in the ratio

as the local search algorithm performs swaps. Fairness leads to almost no degradation in

the objective value as the swaps increase. Table 3.3 shows theratiofairlets between the initial

initialization and the �nal output fairlets. As we see, Algorithm 1 signi�cantly improves the

fairness of the initial random fairlet decomposition. The more the locally-optimal algorithm

improves the objective value of (3.3), the better the tree's performance based on the fairlets.

Figures 3.1(i) and 3.1(ii) showratiovalue andratiofairlets for every100swaps in the execution

of Algorithm 1 on a subsample of size3200from Census data set. The plots show that as the

fairlet objective value decreases, the value objective of the resulting fair tree increases. Such

correlation are found on subsamples of all sizes.

Now we compare the objective value of the algorithm with the upper bound on the

optimum. We report the results for both the revenue and value objectives, using fairlets

obtained by local search, in Table 3.4. On all datasets, we obtain ratios signi�cantly better

than the theoretical worst case guarantee. In Figure 3.1(iii), we show the average running time

on Census data for both the original average-linkage and the fair average-linkage algorithms.

As the sample size grows, the running time scales almost as well as current implementations

of average-linkage algorithm. Thus with a modest increase in time, we can obtain a fair

hierarchical clustering under the value objective.

We then switch from value to revenue objective. We run Algorithm 1 on the subsamples

with Euclidean distances. Then we convert distances into similarity scores using transforma-

tion s(i; j) = 1
1+ d(i; j) . We test the performance of the initial random fairlet decomposition and

52 Fair Hierarchical Clustering

Table 3.5 Impact of different fairlet decomposition onratiorev in percentage (mean� std.
dev).

Samples 100 200 400 800 1600
CENSUSGENDER, initial 74:12� 2:52 76:16� 3:42 74:15� 1:44 70:17� 1:01 65:02� 0:79

�nal 92:32� 2:70 95:75� 0:74 95:68� 0:96 96:61� 0:60 97:45� 0:19
CENSUSRACE, initial 65:67� 7:53 65:31� 3:74 61:97� 2:50 59:59� 1:89 56:91� 0:82

�nal 85:38� 1:68 92:98� 1:89 94:99� 0:52 96:86� 0:85 97:24� 0:63
BANK MARRIAGE, initial 75:19� 2:53 73:58� 1:05 74:03� 1:33 73:68� 0:59 72:94� 0:63

�nal 93:88� 2:16 96:91� 0:99 96:82� 0:36 97:05� 0:71 97:81� 0:49
BANK AGE, initial 77:48� 1:45 78:28� 1:75 76:40� 1:65 75:95� 0:77 75:33� 0:28

�nal 91:26� 2:66 95:74� 2:17 96:45� 1:56 97:31� 1:94 97:84� 0:92

�nal fairlet decomposition found by Algorithm 1 for revenue objective using the converted

similarity scores. Table 3.5 shows the ratio of fair tree built by using average-linkage on

different fairlet decompositions.

Table 3.6 Age ranges for all four colors for Census and Bank.

Dataset Color 1 Color 2 Color 3 Color 4
CENSUSMULTI COLOR (26;38] : 9796 (38;48] : 7131 (48;+ ¥) : 6822 (0;26] : 6413

BANK MULTI COLOR (30;38] : 14845 (38;48] : 12148 (48;+ ¥) : 11188 (0;30] : 7030

We then ran experiments with multiple colors and the results are analogous to those in

the paper. We tested both Census and Bank datasets, with age as the protected feature. For

both datasets we set 4 ranges of age to get 4 colors and useda = 1=3. We ran the fairlet

decomposition in [15] and compare the fair hierarchical clustering's performance to that of

average-linkage. The age ranges and the number of data points belonging to each color are

reported in Table 3.6. Colors are namedf 1;2;3;4g descending with regard to the number of

points of the color. The vanilla average-linkage has been found to be unfair: if we take the

layer of clusters in the tree that is only one layer higher than the leaves, there is always one

cluster witha > 1
3 for the de�nition of a -capped fairness, showing the tree to be unfair.

As in the main body, in Table 3.7, we show for each dataset theratiovalue both at the time

of initialization (Initial) and after using the local search algorithm (Final), whereratiovalue is

the ratio between the performance of the tree built on top of the fairlets and that of the tree

directly built by average-linkage.

Table 3.7 Impact of Algorithm 1 on ratiovalue in percentage (mean� std. dev).

Samples 200 400 800 1600 3200 6400
CENSUSMULTI COLOR, initial 88:55� 0:87 88:74� 0:46 88:45� 0:53 88:68� 0:22 88:56� 0:20 88:46� 0:30

�nal 99:01� 0:09 99:41� 0:57 99:87� 0:28 99:80� 0:27 100:00� 0:14 99:88� 0:30
BANK MULTI COLOR, initial 90:98� 1:17 91:22� 0:84 91:87� 0:32 91:70� 0:30 91:70� 0:18 91:69� 0:14

�nal 98:78� 0:22 99:34� 0:32 99:48� 0:16 99:71� 0:16 99:80� 0:08 99:84� 0:05

Table 3.8 shows the performance of trees built by average-linkage based on different

fairlets, for Revenue objective. As in the main body, the similarity score between any two

pointsi; j is s(i; j) = 1
1+ d(i; j) . The entries in the table are mean and standard deviation of

3.7 Conclusions 53

Table 3.8 Impact of Algorithm 1 on ratiorev, in percentage (mean� std. dev).

Samples 200 400 800 1600 3200
CENSUSMULTI COLOR, initial 75:76� 2:86 73:60� 1:77 69:77� 0:56 66:02� 0:95 61:94� 0:61

�nal 92:68� 0:97 94:66� 1:66 96:40� 0:61 97:09� 0:60 97:43� 0:77
BANK MULTI COLOR, initial 72:08� 0:98 70:96� 0:69 70:79� 0:72 70:77� 0:49 69:88� 0:53

�nal 94:99� 0:79 95:87� 2:07 97:19� 0:81 97:93� 0:59 98:43� 0:14Table 3.9 Average running time of Algorithm 1 in seconds.

Samples 200 400 800 1600 3200 6400
CENSUSMULTI COLOR 0.43 1.76 7.34 35.22 152.71 803.59

BANK MULTI COLOR 0.43 1.45 6.77 29.64 127.29 586.08

ratios between the fair tree performance and the vanilla average-linkage tree performance.

This ratio was calculated both at time of initialization (Initial) when the fairlets were randomly

found, and after Algorithm 1 terminated (Final). Table 3.9 shows the run time of Algorithm 1

with multiple colors.

3.7 Conclusions

In this paper we extended the notion of fairness to the classical problem of hierarchical

clustering under three different objectives (revenue, value, and cost). Our results show

that revenue and value are easy to optimize with fairness; while optimizing cost appears to

be more challenging. Our work raises several questions and research directions. Can the

approximations be improved? Can we �nd better upper and lower bounds for fair cost? Are

there other important fairness criteria?

Chapter 4

Scaling Average-Linkage via Sparse

Cluster Embeddings

4.1 Introduction

Starting with this chapter, the focus is shifted from establishing and re�ning the mathematical

formulation for clustering to designing better, more scalable clustering algorithms. In this

chapter we focus on makingaverage-linkagescalable on inputs in Euclidean space using

distance/dissimilarity scores. This chapter uses the results in [100]. Recall from Section 2.2

that average-linkage calculates the average distance over all pairs of points across the clusters.

The greater this average distance is, the less similar these two clusters are. Throughout this

chapter, this average distance will be referred to as thecluster distance.

Scalability of average-linkage. Agglomerative hierarchical clustering algorithms are

known to have scalability issues, especially average-linkage. In fact, introductory guides

on hierarchical clustering often state that average-linkage should only be used on small to

modestly sized data sets due to the inherent large running time and the sequential nature of

the algorithm. This limits the applicability of hierarchical clustering on large datasets [133].

Therefore, there is interest in making average-linkage more scalable.

The fastest known implementation of average-linkage runs inQ(n2) time [116]. This

is because the iterative search for the pair of clusters with smallest cluster distance is time

consuming. To compute the exact average-linkage output,Q(n2) is intuitively necessarily as

the algorithm must inspect all of theW(n2) pairwise distances between data points to �nd the

�rst pair to merge. Thus we need better algorithm designs to further improve the running

time bound, as the scalability issue arises from the nature of agglomerative algorithms.

56 Scaling Average-Linkage via Sparse Cluster Embeddings

Recently, there has been breakthroughs with improving the scalability of average-linkage.

The work of Cochez and Neri[56] and Abboud et al.[3] broke through the quadratic barrier

by relaxing the algorithm. In both works, the idea is to allow the algorithm to iteratively

merge clusters that do not necessarily have the smallest average distance. [56] found a

sub-quadratic time algorithm for a restricted class of distance functions that includes Jaccard

distance, but excludes all` p-norm distances. Despite being scalable in implementation, the

methods in [56] cannot be directly used for any` p-norm distances. [3] shows that for input

with `1 norm distances, one can also break the quadratic bound by allowing the algorithm to

merge clusters with average distance within a factor of1+ e of the average distance between

the closest clusters. However, the algorithm design heavily relies on properties of the`1 norm

and the work does not directly apply to other` p norms1. Further, the algorithm emphasizes

the near-optimality of every merge performed, leveraging sophisticated data structures to

quickly �nd clusters to merge. The construction and maintenance of such data structures

incurs additional computational cost for this adaptation of average-linkage, which is likely to

have signi�cant overhead in practice.

Previous work does not directly give a scalable, easily implementable adaptation of

average-linkage for Euclidean inputs with general` p norm distances. Nevertheless, it

suggests the exciting possibility of developing such an adaptation with new algorithm

designs. The new algorithm design should be supported by similar theoretical guarantees,

i.e., it should iteratively choose two clusters to merge, whose distance is up to a constant of

the smallest average distance among all clusters. In particular, an intriguing open question is

to �nd an ef�cient adaptation of average-linkage for the`2-norm distance, the most popular

distance function.

Results. This chapter designs an algorithm that �nds an approximation of average-linkage,

which applies tò p norm distances withp2 [1;2], with sub-quadratic running time guarantees.

Empirically, we give a scalable implementation with near-linear running time. Our results

are as follows.

• The algorithm runs in near linear time. The algorithm requiresÕ(dn1+ r) time

and Õ(dn1+ r) space for arbitrarily smallr > 0 when the input points belong to

d-dimensional Euclidean space.2

1Note it is possible to embed̀p norms into`1 though an additional data processing step which signi�cantly
increase the dimension of the data points.

2TheÕ(�) notation hides factors of logc(n) for constantc > 0.

4.1 Introduction 57

• The tree constructed is a relaxation of average-linkage that ensures that any pair of

clusters merged have average distances within a constant factor of the closest cluster

pair.

• We perform experiments with our algorithm and compare it to the most popular

implementations of average-linkage such as scikit-learn, sci-py, and fastcluster. These

represent the fastest average-linkage packages used by data scientists across industry

and academia. Our algorithm: (1) Constructs trees that are similar to what standard

libraries achieve. In particular, the trees constructed have almost the same value

for a popular hierarchical clustering objective. (2) Achieves asymptotically faster

running times than the standard algorithms for large data sets, matching the theoretical

guarantees. The running time of our implementation is near linear in the input size, as

opposed to the quadratic baselines.

• The algorithm is easily parallelizable and can be used in parallel and distributed

environments. There is much previous work on scaling clustering methods such as

single-linkage [31]. However, fundamental differences in the problem prevent these

methods from extending to average-linkage. In contrast, most recent work on fast

average-linkage clustering, such as [3], do not extend easily into parallel and distributed

settings.

Cluster embeddings. This chapter introduces a new technique that is of interest beyond

average-linkage, named cluster embeddings. This technique maps a given set of clusters into

points a slightly higher-dimensional space, such that the pairwise distance between the points

roughly preserves the cluster distances. Formally, consider a collection of clustersC = f C1,

C2, . . . ,Ckg, a cluster embedding�nds k pointsv1;v2; : : : ;vk wherevi corresponds toCi.

These points exist in some Euclidean space andkvi � v jkp should approximate the average

distanceAvg(Ci ;Cj) up to a constant, i.e.,low-distortion[77] with respect to the average` p

distance. Ideally, the pointsv1;v2; : : : ;vk are located in a space with dimension not much

larger thand and the embedding can be computed quickly.

To see the applicability of cluster embeddings, consider a single step of average-linkage.

At each step, there is a current collection of clustersC1, C2, . . .Ck and the goal is to �nd the

clustersCi andCj that minimizes the average distance betweenCi andCj . That is, clusters

whose points are closest on average. Notice that for any pair of clusters it can take quadratic

time just to �nd their average distance depending on the sizes. However, with the embedding

in place, we would only need to �nd thèp distance between the two embedded points.

58 Scaling Average-Linkage via Sparse Cluster Embeddings

The embedding allows us to leverage data mining techniques that apply to points in

Euclidean space. Coupling the cluster embedding withLocality-Sensitive Hashing (LSH)

functions yields a method to quickly �nd pairs of clusters with small average distance. Such

a task is callednear cluster search. Given a set of points in Euclidean space, LSH functions

partitions the points into “buckets”, where points in the same bucket are likely to be closer to

each other, thus �ltering out potential near neighbors without inspecting all pairwise distances

between clusters. Such techniques leverage properties of` p distances in a Euclidean space

and cannot be directly used to do near cluster search, since the cluster distance, de�ned

to be the average distance over all pairs, is a more general metric where LSH may not

exist. However, an embedding into Euclidean space makes such a technique applicable for

near-cluster searches. Iteratively using the embedding coupled with LSH to �nd clusters that

are close gives a new approach to ef�ciently approximate average-linkage.

Our cluster embedding has the following properties. We note that Abboud et al.[3]

adopted techniques similar to cluster embedding, but these properties set our design apart

from theirs.

• The embedding issparse. Clusters of points ind-dimensional Euclidean space are

embedded into vectors with at mostd+ 1 non-zero entries. Henceonly one additional

non-trivial dimensionis required to store the embedding of each cluster.

• The embedding haslow-distortion of the cluster distances. The` p-norm distance

betweenvi andv j is guaranteed to approximate the average distance between pairs

of points inCi andCj . In particular, we prove this is bounded in the worst case.

Experimentally, they are nearly the same.

• The embedding isoblivious, i.e. there is a functionf : C ! Rd0
(ere d0 is the

dimension of the embedded space) such thatvi = f (Ci), where the computation of

f (Ci) depends only on the clusterCi itself and no other cluster ofC. Insertion, deletion,

and modi�cation of other clusters doesn't affectf (Ci).

• Constructing the embedding takeslinear time, O(nd). This is faster than comparing

the average similarity between two (large) clusters (quadratic time).

Chapter Organization: The chapter is organized as follows. We begin by introducing

preliminary de�nitions. Then in Section 4.3, we discuss the technique of cluster embedding -

our main technique for speeding up average-linkage. We �rst showcase the application of

cluster embeddings on the problem of near cluster search in Section 4.4. This is the key

step in average-linkage. Afterwards, we give an overview of the average-linkage algorithm

in Section 4.5. This overview gives a skeleton of the key algorithmic ideas. The detailed

4.2 Preliminaries 59

algorithm designs that guarantee strong theoretical performance is defered to 4.5.2. In Section

4.7 we give experimental evaluations.

Related work. There has been consistent interest in �nding ef�cient algorithms to cluster

data in large databases [73, 56]. Additionally, there has recently been increased interest in

scaling hierarchical clustering algorithms [135, 31, 3, 112, 109]. Kell et al. [91] and Cochez

et al. [56] speed-up algorithms by relaxing the criteria on when clusters can be merged. The

work of [135] and [97] considered parallelizing hierarchical clustering algorithms in the

Massively Parallel Model of computation [85, 20]. Other Spark and MapReduce algorithms

have been developed [81, 80]. This prior work on scaling hierarchical clustering focused on

other hierarchical clustering algorithms and not average-linkage.

As mentioned, recently there are breakthroughs in designing sub-quadratic adaptations of

hierarchical clustering algorithms [56, 3] which do not directly lead to a scalable average-

linkage implementation for general` p norms. Method-wise both chapters used Locality-

Sensitive Hashing (LSH) and other related techniques. The work of [3] is closer to our work

which focuses on Euclidean inputs using`1-norm distance. A crucial building block in [3] is

to leverage properties of`1 to construct a sophisticated data structure based on LSH functions,

where every cluster is represented as a multi-dimensional point. However their representation

of a cluster increases the dimension by a factor ofW(1
e6 log3n) for constante > 0 and

critically uses properties of`1 that do not hold for other̀p norms. Additionally, the original

paper does not include an average-linkage implementation. There remains the question of

�nding a more concise way of embedding clusters into potentially low-dimensional points

and designing a practical adaptation of average-linkage based on this embedding.

Embeddings are widely used and there are many types with different properties. See [70]

for reference to different types of embedding. Much prior work has focused on low-distortion

embeddings [77]. These embeddings are orthogonal to that considered in this chapter. These

are used for reducing dimension and ours is used to represent average cluster distances.

This chapter uses the value objective for hierarchical clustering [59] to evaluate our

algorithm. This is the most suitable for the setting we are considering - a point set with

pairwise distance metric. Recall that average-linkage is a2
3-approximation algorithm for it.

4.2 Preliminaries

Here we de�ne cluster embeddings, average-linkage, near cluster search, hierarchical cluster-

ing objective function and Approximate Nearest Neighbor (ANN) search based on Locality-

Sensitive Hashing (LSH).

60 Scaling Average-Linkage via Sparse Cluster Embeddings

4.2.1 Notation System

We use lower case letters e.g.x;y to denote points in Euclidean space and use subscripts

to index their coordinates e.g.xi ;yi. We will usekxkp :=
�
å i x

p
i

� 1=p to denote thèp-norm

of x. kxk will be shorthand for thè2-norm. For a �nite setX in d-dimensional Euclidean

spaceRd, let D(X) andd(X) be the maximum and minimum distances withinX, that is,

D(X) := maxx;x02X kx� x0k andd(X) := minx;x02X kx� x0k. If X is a �nite set of points let

m(X) := å x2X x=jXj be the centroid ofX and letgm(X) := argminy2Rd å x2X ky� xk=jXj be

the geometric median ofX.

Average-Linkage: Recall for two disjoint setsA;B, Avg(A;B) = 1
jAjjBj å i2Aå j2Bd(i; j) is

de�ned as the cluster distance and should be minimized in every iteration of average-linkage

. Here we note that for a collection of clustersC = f C1;C2; : : : ;Ckg, Avg(�; �) induces a

metric onC where we takeAvg(Ci ;Ci) := 0. In our setting we have eachCi � Rd and

d(x;y) = kx� ykp for somep 2 [1;2].

Cluster Embeddings For Average-Linkage:Let S� Rd be a point set and letC =

f C1;C2; : : : ;Ckg be a clustering ofS. Let f : C ! Rd0
be an embedding ofC into d0-

dimensional Euclidean space. We say thatf is an embedding ofC into `d0

p with distortiona

if the following holds for allCi ;Cj 2 C: Avg(Ci ;Cj) � k f (Ci) � f (Cj)kp � a � Avg(Ci ;Cj).

Ideally we want to embed into a space of dimension� d. In lieu of that, we ask for a sparse

embedding in a high dimensional space. We say that an embeddingf is s-sparse if the

number of non-zero entries inf (Ci) is at mosts for all Ci 2 C.

Near Cluster Search: Given a set of clustersC and a query clusterQ, the near cluster search

problem with respect to average-linkage is to �nd a clusterC 2 C that is the closest toQ in

average-linkage. Thea -approximate near cluster search problem is to �nd a clusterC 2 C

such that Avg(Q;C) � a � minC02C Avg(Q;C0).

Approximate Average-linkage: Our algorithms make approximate decisions so we de-

�ne the notion of approximation here. SetsA;B area -approximate for clusteringC if

Avg(A;B) � a � minA0;B02C Avg(A0;B0). An algorithm isa -approximate if it only merges

a -approximate clusters.

Technical Assumptions:We assume thatD(S)
d(S) = O(poly(n)) , i.e. the ratio of the maximum

to minimum distance is bounded by a polynomial in the number of points. Up to scaling, we

may also assume thatd(S), the minimum distance, is 1.

4.2.2 Approximate Nearest Neighbors

This subsection gives preliminaries onApproximate Nearest Neighbors (ANN)search.

Given a set of points, the ANN technique builds a data structure using these points that

4.2 Preliminaries 61

supports ef�cient queries. Given any point in the given set and a distance upper boundR, an

ANN query should either return another point that is approximately withinR distance from

this point, or return that there are no such points, formally de�ned as follows.

De�nition 4.2.1 (ANN Query [64]). Let Sbe a set of points andd a distance function onS.

Given a new pointq, the query either returns a pointy with d(q;y) � cRor reports that there

is no pointy0with d(q;y0) � R.

ANN technique is crucial to our scalable average-linkage design. When coupled with

the points embedded from clusters, it helps us �nd candidates for the clusters to merge. The

construction of the data structure and the ANN queries show a trade-off between time and

computational complexity and nearest point search accuracy. As we allow the approximation

ratio,c, to be bigger, the construction and query time will also decline.

Locality Sensitive Hashing (LSH). LSH is the key building block used to construct ANN

queries for a given set of points. In our paper, LSH is directly applied to the embedded points

to help us �nd pairs of clusters to merge.

Intuitively, LSH hashes points to values and nearby points are more likely to be hashed to

the same value. The space of points can then be partitioned according to the hashed values,

each partition named abucket. Let X be a metric space with distance functiond andU a

universe of buckets. We recall the formal de�nition from [64]. Let BS(q; r) denote the set of

points inSthat has distance at mostr from pointq 2 S.

De�nition 4.2.2 ((r1; r2; p1; p2)-sensitiveness). A function familyH = f h : X ! U g is said

to be(r1; r2; p1; p2)-sensitive ford(�; �) if for any x;y 2 X andh drawn uniformly at random

from H : d(x;y) � r1 =) PrH [h(y) = h(x)] � p1, andd(x;y) > r2 =) PrH [h(y) =

h(x)] � p2. We requirep1 > p2 andr1 < r2.

A family can also be de�ned by giving a random process which outputs a function

from H . LSH families have been constructed for distances induced by` p norms for all

p 2 (0;2] [64]. A hash functionh 2 H is constructed by the following procedure. Letr > 0

be given. Sample a vectorg 2 Rd, where eachgi is an i.i.d. standard Gaussian, and a real

numberb uniformly from [0; r]. For a pointx 2 Rd, its hash ish(x) = b(hg;xi + b)=rc. It's

known that this family of hash functions is(R;cR; p1; p2)-sensitive for anyc > 1, where

p1; p2 depend onc. These hash functions can be combined using well-known techniques

to amplify collision probabilities and increase accuracy. See [64] for details. Here we

summarize this result.

62 Scaling Average-Linkage via Sparse Cluster Embeddings

Theorem 4.2.1(Theorem 1 in [64]). Let H be a(R;cR; p1; p2)-sensitive family of hash

functions for distance functiond. Given a setS of n points there exists an algorithm

which constructs a data structureL by sampling multiple times fromH which supports

(R;c)-ANN queries. The time to constructL and to answer a query fromL is dominated

by Õ(n1+ r) distance computations and̃O(nr) distance computations, respectively. Here

r = ln1=p1
ln1=p2

2 (0;1) depends on c. The bigger c is, the closerr is to 0.

4.3 Sparse Cluster Embeddings for Average Distance

In this section we present our embedding of clusters to points in Euclidean space such

that the distance between embedded points approximates the average` p-distance between

clusters. The embedding enables the algorithm to approximately calculate the average

distance between any two clusters inO(d) time regardless of their sizes. Later in the

discussion on algorithm design, we will show how to use it to facilitate the search for clusters

with small average distances. We focus on the case whenp = 2 and show the following

theorem.

Theorem 4.3.1.Given a clusteringC of S� Rd, there is an embeddingf : C ! Rd0
into `d0

2

with distortiona . We have d0= d+ jCj, a = 5
p

3 andf is (d+ 1)-sparse.

We give a formula which approximates the average-linkage between two clustersA and

B. The formula is written in terms of the distance between the centroids ofA andB plus two

correction terms which only depend onA andB, respectively. This will be used to de�ne the

embedding. Then we prove Theorem 4.3.1 using the formula.

Squared Euclidean Distance:We �rst examine a simpler case to motivate our ideas.

Suppose that dissimilarities are givend(x;y) = kx� yk2. ThusAvg(A;B) = å x2A;y2B
kx� yk2

jAj�j Bj .

The goal is to express the average-linkage between clustersA;B as the distance between

their centroids plus correction terms. Sincekm(A) � m(B)k2 can potentially be small relative

to Avg(A;B) , we need the correction terms to capture the roughvariancein each cluster.

For a �nite set of pointsX de�ne Var(X) := å x2X
kx� m(X)k2

jXj , resembling the de�nition of

“variance” in statistics.

Proposition 4.3.2. For any clustersA and B, Avg(A;B) = km(A) � m(B)k2 + Var(A) +

Var(B).

Before proving this Proposition we �rst prove the following lemma.

Lemma 4.3.3.For any pointy and �nite set of pointsX in Euclidean space,å x2X kx� yk2 =

jXj � ky� m(X)k2 + jXj � Var(X).

4.3 Sparse Cluster Embeddings for Average Distance 63

Proof. Rewriting and expanding the square viaka+ bk2 = kak2 + kbk2 + 2ha;bi we have:

å
x2X

kx� yk2 = å
x2X

kx� m(X)+ m(X) � yk2

= å
x2X

kx� m(X)k2 + å
x2X

km(X) � yk2

+ å
x2X

2hx� m(X);m(X) � yi

= jXj � Var(X)+ jXj � å
x2X

ky� m(X)k2

where the last term on the second line evaluates to 0.

Proof of [Proposition 4.3.2] Applying Lemma 4.3.3 to the sumå y2Bå x2Akx� yk2 twice we

have:

å
y2B

å
x2A

kx� yk2 = å
y2B

�
jAj � ky� m(A)k2 + jAj � Var(A)

�

= jAjjBj(km(A) � m(B)k2 + Var(A)+ Var(B))

and dividing byjAj � jBj yields the proposition.

Euclidean Distance: Now we consider dissimilarities given by the Euclidean distance

between points. Recall thatAvg(A;B) = å x2A;y2B
kx� yk
jAj�jBj . We would like a decomposition

similar to Proposition 4.3.2 expressingAvg(A;B) as the distance between centroids and some

correction terms.

Let Dev(X) := å x2X
kx� m(X)k

jXj be the average deviation ofX from its centroid. It is

perhaps intuitive thatf (A;B) := km(A) � m(B)k + Dev(A) + Dev(B) should suf�ce based

on the results above. However, there are examples wheref (A;B) 6= Avg(A;B)3. Instead, we

show that the two are always within a constant factor of each other.

Lemma 4.3.4.For any two clusters A and B we haveAvg(A;B) � f (A;B) � 5Avg(A;B).

We �rst prove the following lemmas that better show the connection betweenAvg(A;B)

and f (A;B).

Lemma 4.3.5.For any cluster X,Dev(X) � 2RX(gm(X)) .

Proof. By the de�nition of Dev(X) and the triangle inequality:Dev(X) = 1
jXj å x2X kx �

m(X)k � 1
jXj å x2X (kx� gm(X)k+ kgm(X) � m(X)k)

= RX(gm(X))+ kgm(X) � m(X)k.

3Consider the corners of a rectangle with widthw and heighth, lettingA be the left side points andB the
right side points. Then Avg(A;B) = (w+

p
w2 + h2)=2 6= w+ h = f (A;B)

64 Scaling Average-Linkage via Sparse Cluster Embeddings

Now to complete the proof we claim thatkgm(X) � m(X)k � RX(gm(X)) . Using

the de�nition of m(X) and subadditivity we have:km(X) � gm(X)k =

 å x2X

x� gm(X)
jXj

 �

1
jXj å x2X kx� gm(X)k = RX(gm(X)) .

Lemma 4.3.6.For any two clusters A;B, km(A) � m(B)k � Avg(A;B).

Proof. By de�nition of centroid we have:

m(A) � m(B) =
1

jAj å
x2A

x�
1

jBj å
y2B

y

=
1

jAjjBj å
x2A

å
y2B

x�
1

jAjjBj å
x2A

å
y2B

y

=
1

jAjjBj å
x2A

å
y2B

(x� y)

Now applyingk � k to both sides and then subadditivity ofk � k completes the proof.

Lemma 4.3.7.For any two clusters A and B, RA(gm(A)) � Avg(A;B).

Proof. Sincegm(A) minimizesRA(y) for anyy 2 Rk, for all y 2 B we haveRA(gm(A)) �

RA(y). Summing this inequality over all suchy 2 B we havejBjRA(gm(A)) � å y2BRA(y) =

å y2Bå x2A
ky� xk

jAj . Dividing both sides byjBj yields the lemma.

Proof of [Lemma 4.3.4] We start by proving the lower bound. By the triangle inequality, for

anyx2 A andy2 B we havekx� yk � k x� m(A)k+ km(A) � m(B)k+ ky� m(B)k. Summing

this inequality over allx 2 A and ally 2 B then dividing byjAj � jBj yields Avg(A;B) �

f (A;B). For the upper bound we have the following sequence of inequalities:km(A) �

m(B)k+ Dev(A)+ Dev(B) � Avg(A;B)+ 2RA(gm(A))+ 2RB(gm(B)) � 5Avg(A;B).

The �rst inequality follows from Lemmas 4.3.6 and 4.3.5, and the second inequality

follows from applying Lemma 4.3.7 to the last two terms.

The lower boundAvg(A;B) � f (A;B) is a simple application of the triangle inequality.

To show the upper bound we must relateDev(A) andDev(B) to Avg(A;B). Recall that for

a clusterX, its geometric mediangm(X) minimizesRX(y) := 1
jXj å x2X ky� xk. The value

of RX(y) is the average distance of points inX to y. We show that for any two clustersA;B,

bothRA(gm(A)) andRB(gm(B)) lower boundAvg(A;B). Then we show that for any cluster

X, Dev(X) � 2RX(gm(X)) . Combining these two facts withkm(A) � m(B)k � Avg(A;B)

implies the upper bound.

Constructing the Embedding: We now de�ne the embedding and prove Theorem 4.3.1.

Let C = f C1;C2; : : : ;Ckg be a clustering of a point setS� Rd. We de�ne the embedding

4.3 Sparse Cluster Embeddings for Average Distance 65

f : C ! Rd+ jCj for eachCi 2 C as follows.

f (Ci) :=
p

3(m(Ci);0; : : : ; Dev(Ci)| {z }
d+ i'th coordinate

; : : : ;0) (4.1)

In other words we set the �rstd coordinates to be the centroid ofCi , thed+ i'th coordinate

to beDev(Ci) and all other coordinates to be 0. Observe that the embedding is oblivious,

meaning that computingf (Ci) only depends on the clusterCi and none of the other clusters.

Given this embedding we have that the distance between the embedding of clustersCi and

Cj , kf (Ci) � f (Cj)k, is equal to

p
3
q

km(Ci) � m(Cj)k2 + Dev(Ci)2 + Dev(Cj)2 (4.2)

To �nish the proof, we use some easy to verify inequalities.

Proposition 4.3.8. For all a;b;c 2 R+ , we have:(1=
p

3)(a+ b+ c) �
p

a2 + b2 + c2 �

a+ b+ c.

Proof of Theorem 4.3.1.Let C = f C1;C2; : : : ;Ckg be a clustering ofSand consider the em-

beddingf : C ! Rd+ jCj de�ned by (4.1). The distance between embedded clusterskf (Ci) �

f (Cj)k is given by (4.2). Combining this with the respective lower/upper bounds from Propo-

sition 4.3.8 and Lemma 4.3.4, we have:kf (Ci) � f (Cj)k � f (Ci ;Cj) � Avg(Ci ;Cj) and

kf (Ci) � f (Cj)k �
p

3f (Ci ;Cj) � 5
p

3Avg(Ci ;Cj): Finally, f being(d+ 1)-sparse follows

directly from (4.1).

We note that [64] has shown that the LSH scheme is known to work for any` p-norm

wherep 2 (0;2]. One can easily see that the following Proposition, similar to Proposition

4.3.8 holds:

Proposition 4.3.9. For all a;b;c 2 R+ , and p � 1, 1

31� 1
p
(a+ b+ c) � (ap + bp + cp)

1
p �

a+ b+ c.

The main idea for the proof of Theorem 4.3.1 can be easily extended to work for general

` p-norm wherep 2 [1;¥], resulting in the following Corollary.

Corollary 4.3.9.1. Given a clusteringC of S� Rd, there exists a constanta � 1 and a

mappingf : C ! Rd0
such that for allA;B 2 C, Avg(A;B) � k f (A) � f (B)k � a Avg(A;B).

In particular, we have d0= d+ jCj anda = 5� 31� 1
p .

66 Scaling Average-Linkage via Sparse Cluster Embeddings

4.4 Near Cluster Search

In the section we consider the key subproblem solved in average-linkage to showcase the

cluster embedding idea. At each step, average-linkage �nds the pair of cluster that are the

closest. We abstract this to the followingnear cluster searchproblem, an extension of

the ANN query to clusters instead of points. The goal is to �nd an approximately nearest

cluster in a clusteringC to a query clusterQ with respect to the average distance metric. This

subproblem is of its own interest, because data scientists often seek to �nd pairs of clusters

that are very similar.

The naive approach for �nding the clusterC 2 C minimizingAvg(Q;C) requiresQ(djQj �

å i jCi j) time. Our cluster embedding can be used to give an asymptotically faster but

approximate algorithm for this task, takingO(d(jQj + å i jCi j)) time.

Theorem 4.4.1.There exists a data structure supporting5
p

3 approximate near cluster

search queries in time O(d(jC j + jQj)) . Construction takes time O(d(jQj + å i jCi j)) .

Proof. Let C0= C [f Qg and letf be the embedding given by Theorem 4.3.1 forC0. Start

by computingf (Ci) for eachCi 2 C, taking timeO(då i jCi j). Note thatf is oblivious so

this step can be done without knowingQ. The data structure stores the embedded points.

To answer a queryQ, computef (Q) and then compute the distance fromf (Q) to f (Ci) for

eachCi 2 C and returnCi with the smallest embedded distance. Sincef has distortion5
p

3

the approximation guarantee follows. Sincef is (d+ 1)-sparse, answering the query takes

timeO(djQj + djCj).

Theorem 4.4.1 speeds up near cluster search for any clusterQ enormously, as is shown in

Section 4.7. Further, coupling the embedding with ANN techniques allows us to queryQ in

sublineartime, while only losing an additional constant factor in the approximation.

Using this, we can construct the point setS0consisting of the embedded pointsf (Ci) for

all Ci 2 C. We apply the above to obtain a data structureL supporting ef�cient approximate

near neighbor search queries in the embedded space. The sparse nature of the embedding

also implies thatL can be computed very ef�ciently in practice. When given queryQ, we

computef (Q) and then apply the algorithm from Theorem 4.2.1 to process the query. We

get the following result.

Theorem 4.4.2.For any constante > 0, there exists a data structure which supports5
p

3c-

approximate near cluster search queries in timeÕ(d(jCjr + jQj)) . Constructing the data

structure takes timẽO(d(å i jCi j + jC j1+ r)) . Herer 2 (0;1) is a constant depending on c.

4.5 Fast Approximate Average-Linkage 67

4.5 Fast Approximate Average-Linkage

The main application of our cluster embedding is to get fast approximate algorithms for

average-linkage. In this section we give the main structure for our fast implementation of

average-linkage that highlights the key ideas. The idea is to embed the current set of clusters

into points and then partition the embedded points into buckets (sets) using LSH. The number

of buckets is not �xed. We can use the hash family described in Section 4.4 for this.

4.5.1 A Sketch for ANN-based Average-Linkage

Before diving deeper into the full algorithm, we provide a sketch that can help readers

understand the key designs at an intuitive level. Say we want to merge all pairs of clusters

with average distance approximatelyd. The algorithm draws hash functionh randomly from

H , whereH is the LSH family given in [64], and applies it tof (A) for each clusterA 2 C.

Let thei'th bucket beBi = f A 2 C j h(A) = ig4. Suppose bucketBi is small: jBi j � O(nr)

for somer 2 (0;1). We run vanilla average-linkage insideBi to the point where there is no

pair of clusters with average distance smaller than(1+ e)d. Here we crucially treat each

cluster in a bucketBi as a single point via the cluster embedding, which allows us to replace

computing the average-linkage between pairs of clusters with a distance computation in the

embedding. This takes̃O(dn2r) time. Moreover, assuming all buckets are small, the cost

over all buckets isÕ(dn1+ r). We call this the “local merging” step.

Once all buckets have completed their “local merging” step, the algorithm repeats the

above steps with the given value ofd for O(logn) iterations. Provably, no two clusters

will have average-linkage� (1+ e)d with high probability. At this point the algorithm

recurses withd (1+ e)d. The number of such iterations is bounded by the number ofd's

considered between the minimum and maximum possible distances, which isO(logn) by

our technical assumption. See Algorithm 2 for pseudocode. Given the above discussion, we

see that the running time should beÕ(dn1+ r), near linear time for small constantr .

There are two unaddressed challenges. First, what should be done when there are buckets

Bi with jBi j > nr . Second, maintaining the embedding can be expensive if done in a naive

manner. We brie�y address these challenges here, but note that a variant of the above

procedure works in experimentation.

Challenge 1 - Large Buckets: In the worst case, it is possible that LSH can produce

buckets of size larger thannr , resulting in a poor running time for the local merges. Notably,

empirically most buckets have small sizes after LSH. For the few buckets whose sizes are

4We useh(A) as a shorthand forh(f (A)) since we will always be implicitly working in the embedded space

68 Scaling Average-Linkage via Sparse Cluster Embeddings

Algorithm 2 Fast Approximate Average-Linkage Algorithm

1: FASTAVERAGEL INKAGE(S;a ;e):
2: C ff xg j x 2 Sg {Make leaf clusters}
3: for k = 1;2; : : : ;Q(logn) do
4: d (1+ e)k� 1

5: Cf inal /0 {Tracks clusters that won't get merged again for this value ofd}
6: for t = 1;2; : : : ;Q(logn) do
7: h random hash function fromH
8: Computeh(A) for eachA 2 C
9: Let Bi = f A 2 C j h(A) = ig

10: if jBi j � O(nr) for all i then
11: for eachBi do
12: Run vanilla average-linkage onBi until no merges w/ average-linkage�

a (1+ e)d
13: end for
14: Update the embeddings
15: else
16: C;Cf inal ROBUSTMERGING(C;Cf inal;d;a ;e)
17: end if
18: end for
19: C Cf inal
20: end for
21: Return the hierarchical clustering found.

large, we use the “RobustMerging” procedure that utilizes the ANN search as mentioned in

Theorem 4.2.1. For any cluster, this technique only checksÕ(nr) clusters that got hashed

into the same bucket and gives theoretical performance guarantees.

Challenge 2 - Updating the Embedding: If one wants to update the embedding after a

single merge, this requires computing the distance of each point to the new centroid. This

is potentially a complex and expensive operation we wish to avoid. To do so we carefully

make additional merges before updating the embedding and applying LSH again. This is

done to ensure that enough clusters have been involved in a merge so that the total cost due

to updating the embedding is small. In practice, we use reservoir sampling to reduce the cost

of updating the embedding by approximating it using a set ofO(logn) samples maintained

during the merges.

4.5.2 Robust Merging

In this section we unveil the robust merging subroutine (“RobustMerging”) omitted in

Algorithm 2. We show that the robust merging procedure tackles the main challenges

4.5 Fast Approximate Average-Linkage 69

mentioned and is key to ensuring that the algorithm runs in near-linear time in the worst-case

and approximates average-linkage.

In Algorithm 3, a = 5
p

3 is the distortion factor in Theorem 4.3.1. The goal of this

section is to show the following theorem.

Theorem 4.5.1.With high probability, Algorithm 2 along with Algorithm 3 isO(1)-approximate

for average-linkage and runs in timẽO(dn1+ r) for some constantr 2 (0;1).

The following lemma will be quite useful in the analysis and will guide the development

of the merging procedure. The proof is easy and follows from a simple averaging argument.

Lemma 4.5.2.For a clusterA, if Avg(A;B) � d andAvg(A;C) � d, thenAvg(A;B[C) � d.

In other words this lemma states that if after some merge the minimum average distance

between clusters is at leastd, we are guaranteed that it will not fall belowd during any future

merges. Intuitively, we want to merge clusters an increased over time. This lemma ensures

that we do not undo progress.

Recall that one of the main challenges discussed is that LSH may produce large buckets.

To handle this, we employ the Approximate Near Neighbor (ANN) search technique from

[64]. Recall De�nition 4.2.1 and Theorem 4.2.1 from earlier in the paper. We will use these

tools in our analysis.

The robust merging procedure leverages(R;c)-ANN queries in the following way. First,

we embed the clusters into points. By Theorem 4.3.1, this preserves the average-linkage up

to the constant distortion factora . We then build the data structure referenced above and use

it to query every cluster.

The robust merging procedure is given in Algorithm 3. This can be described as follows.

We say two clusters are “neighbors”, if querying one of them returns the other. For each

A 2 C, let Q(A) denote the set of its neighbor clusters. IfQ(A) = /0, with high probabilityA

has average distance of at least(1+ e)d from any other cluster. We removeA from C and

add it toCf inal. Otherwise, if setQ(A) has valid clusters that are not yet merged with any

other cluster, we iteratively mergeA with these clusters in any arbitrary order. However, if

setQ(A) is non-empty but all clusters are already merged with their other neighbors, we pick

any neighbor fromQ(A) and mergeA with the current cluster containing it.

We give intuition for why the algorithm is approximate and has good running time. The

formal proof is given in the next section.

70 Scaling Average-Linkage via Sparse Cluster Embeddings

Algorithm 3 Pseudocode for Robust Merging Procedure

1: ROBUSTMERGING(C;`; d;a ;e)
2: L (a (1+ e)d;c)-ANN data structure from Theorem 4.2.1 {Construct it for point set

f f (A) j A 2 Cg}
3: for A 2 C do
4: Q(A) /0 {Will be set of discovered “neighbors” ofA}
5: end for
6: for A 2 C do
7: B result of queryingf (A) in L
8: if B is a clusterthen
9: Q(B) Q(B) [f Ag, Q(A) Q(A) [f Bg

10: end if
11: end for
12: for A 2 C such thatQ(A) = /0 do
13: DropA from C and add it toCf inal. Deletef (A) from L. {A won't be considered for

merging again at the currentd}
14: end for
15: for A 2 C such thatQ(A) is not emptydo
16: if Q(A) has clusters that are not yet merged with any other clusterthen
17: Merge all unmerged clusters inQ(A) [f Ag with A in any order
18: else
19: Let B be arbitrary cluster inQ(A)
20: MergeA with the cluster containingB
21: end if
22: end for
23: Remove all the invalid clusters fromC and add all the new clusters intoC
24: ReturnC;Cf inal

4.6 Algorithm Analysis: Approximation Ratio and Run-

ning Time

4.6.1 Running Time Analysis for Algorithm

To show that the algorithm is ef�cient we need to show that in every round of robust merging

makes reasonable progress. In particular, we show that in the total number of clusters

remaining inC shrinks by a constant factor. For �xedd, every time robust merging is

executed, any cluster inC is either put intoCf inal or merged with another cluster. Therefore,

jC j shrinks by at least12. Thus for the same thresholdd, afterQ(logn) rounds of robust

merging there will be no pairs of(A;B) such thatAvg(A;B) � (1+ e)d. This is formalized

in the next section.

4.6 Algorithm Analysis: Approximation Ratio and Running Time 71

First we give a lemma showing there exists an estimationf (A;B) � Avg(A;B) update

formula which preserves the approximation ratio for Avg(A;B).

Lemma 4.6.1.Let f (A;B) be estimates such thatAvg(A;B) � f (A;B) � a Avg(A;B) for all

A;B2 C. Suppose we mergeA;A02 C and setf (A[A0;B) = jAj
jAj+ jA0j f (A;B)+ jA0j

jAj+ jA0j f (A0;B),

thenAvg(A[A0;B) � f (A[A0;B) � a Avg(A[A0;B) for all B 2 C n f A;A0g.

Lemma 4.6.1 follows easily by an averaging argument using Avg(A[A0;B) =
jAj Avg(A;B)+ jA0j Avg(A0;B)

jAj+ jA0j . This implies that we can simulate vanilla average-linkage within

each bucket in Algorithm 2, using the update formula given in this lemma to simulate the

updates in average-linkage. Combining this with current average-linkage implementations,

we can approximately simulate the vanilla average linkage algorithm in bucketBi in time

Õ(jBi j2), until there are no pairs of clusters(A;B) such thatf (A;B) � a (1+ e)d. Thus,

there are no pairs of(A;B) such that Avg(A;B) � (1+ e)d.

We will now show the run time.

Theorem 4.6.2.Algorithm 2 has a run time of̃O(dn1+ r) for some constantr 2 (0;1).

Proof. Let r = ln(1=p1)=ln(1=p2) 2 (0;1), wherep1; p2 are the probabilities for the LSH

family in [64]. Note that it is possible to takep1; p2 as constants. Since thẽO(�) notation

hides factors ofO(log(n)) , it suf�ces to analyze the cost of the work done in the innermost

loop. This is because by de�nition of the algorithm, the steps in the innermost loop are

repeated at mostO(log2n) times. We �rst show that trivially, the time spent on updating the

embeddingf (�) is Õ(n). This comes from the fact that updating centroid takesO(1) time

every merge, and there aren� 1 merges in total. For deviation term, we dolog2(n) rounds

of merging. During every round of merging, every point in the original clusterSis calculated

in the deviation terms only once, thus givingÕ(n) time spent on updating. Thus we want

to bound the cost of running a vanilla algorithm on each bucket when all bucket sizes are

bounded byO(nr) and the cost of running the robust merging procedure.

Suppose that we have bucketsBi with jBi j � O(nr) for all i. Note thatå i jBi j = jC j

since the buckets partition the current set of clusters Then by Lemma 4.6.1 running a vanilla

average-linkage algorithm on each bucket costs at mostO(jBi j2) per bucket. Thus the overall

run time cost isO(å i jBi j2) = O(nr å i jBi j) = O(nr jC j) = O(n1+ r) sincejCj � n.

Now consider the cost of running the robust merging procedure. By Theorems 4.3.1

and 4.2.1 the data structureL can be constructed in timẽO(jCj1+ r) = Õ(n1+ r). Again by

Theorem 4.2.1, querying each cluster takes timeÕ(jC j1+ r) = Õ(n1+ r) distance computa-

tions in total. Finally, the merging step takes timeO(jCj) = O(n), yielding an overall cost of

Õ(n1+ r) for the robust merging procedure.

72 Scaling Average-Linkage via Sparse Cluster Embeddings

4.6.2 Approximation and Correctness

Now we move to analyzing the correctness of our algorithm. This encompasses two different

claims, one concerning how well the algorithm approximates average-linkage and another

showing that the algorithm always produces a valid hierarchical clustering tree. The second

claim is important since it is not immediately obvious from the de�nition of Algorithm 2.

In particular we need to show that the algorithm will perform enough merges and does not

terminate before a tree is completed. The following theorems formalize these claims.

Theorem 4.6.3.Assuming the minimum pairwise distance to be lower-bounded by1, Algo-

rithm 2 is O(1)-approximate for average-linkage with high probability.

Theorem 4.6.4.With high probability, Algorithm 2 returns a valid hierarchical clustering

tree upon termination.

Theorem 4.6.3 establishes the fact that Algorithm 2 is anO(1)-approximation for average-

linkage. Note that Lemma 4.6.7 only establishes this for the robust merging procedure, so

to complete this analysis we need to look at Algorithm 2, which uses the robust merging

procedure. The proof of Theorem 4.6.4 is also tied to the proof of Theorem 4.6.3, so we will

do the analysis for both here.

To prove the above theorems we make use of the following key lemmas. These guarantee

that for each threshold valued, by the end of theO(logn) rounds of merging, there are

no good pairs left to merge for the current threshold, and every merge we do has average

distance close to(1+ e)d.

Lemma 4.6.5.For thresholdd after merging with high probability, there are no pair of

clusters with distance at most(1+ e)d left.

Lemma 4.6.6. For a threshold valued, every merge done by Algorithm 2 has average

distance at most4ca (1+ e)d.

Before proving Lemmas 4.6.5 and 4.6.6, we �rst show that they directly give us Theo-

rems 4.6.3 and 4.6.4. To simplify the language in our arguments, we de�ne(1+ e)d-good

clusters as follows.

De�nition 4.6.1. During any stage of Algorithm 2, a cluster is called(1+ e)d-good, if there

exists one cluster in the current clustering with average distance at most(1+ e)d. We say a

pair is(1+ e)d-good if the average distance is at most(1+ e)d.

Notice that with the de�nition of(1+ e)d-goodness, Lemma 4.6.5 is equivalent to

claiming that by the end of merging there are no(1+ e)d-good points left, or no(1+ e)d-

good pairs left. We are now ready to prove the theorems.

4.6 Algorithm Analysis: Approximation Ratio and Running Time 73

Proof of [Theorem 4.6.3 and 4.6.4] For Theorem 4.6.3, given any thresholdd, take any merge

(A;B) ! A[B done in any round ford, by Lemma 4.6.6 we haveAvg(A;B) � 4ca (1+ e)d.

However,minf S1;S2g� C Avg(S1;S2) � d by Lemma 4.6.5, since all LSH rounds for threshold

valued=(1+ e) are over. Therefore, the approximation ratio is at most4ca (1+ e) for all

merges.

For Theorem 4.6.4, since with high probability it eliminates all(1+ e)d-good points for

thresholdd, and withinO(logn) number of thresholds we have investigated all the possible

average-distance values since it must be at mostmaxf i; jg� SD(i; j) and therefore merged all

the pairs.

Now we prove Lemmas 4.6.5 and 4.6.6.

Before proving Lemma 4.6.6 we �rst its simplied version. That is, the quality of every

merge is high in the Robust Merging Algorithm 3.

Lemma 4.6.7.Every clusterA 2 C such thatQ(A) is non-empty is merged with some other

clusters, and every merge done by Algorithm 3 has average distance at most4ca (1+ e)d.

Proof. In any iteration of robust merging, a clusterA, if not merged with other clusters yet,

is merged with its unmerged neighbors inQ(A), or it gets added to a set of clusters which are

already merged. We call the �rst type of cluster “core” clusters.

Pick any core clusterA in C at the beginning of Algorithm 3. Any other cluster inC, if

not put intoCf inal, must be merged with one such cluster. We show that by the end of robust

merging, for every clusterB that is merged with coreA, Avg(A;B) � 2ca (1+ e)d.

Pick any clusterB that is in the same cluster withA at the end of Algorithm 3. By

Theorem 4.3.1, we haveAvg(A;B) � k f (A) � f (B)k. If B2 Q(A), we havekf (A) � f (B)k �

ca (1+ e)d sinceB is returned by doing(a (1+ e)d;c)-NN query onA. Otherwise, it must

be the case that some other clusterC 2 Q(B) is in the same cluster asA. If C =2 Q(A), when

robust merging comes toC, it would have mergedC with B sinceB 2 Q(C) andB hasn't

been merged with any cluster yet, contradicting the assumption thatB is merged withA.

ThereforeC 2 Q(A), andAvg(A;B) � k f (A) � f (B)k � k f (A) � f (C)k+ kf (C) � f (B)k �

2ca (1+ e)d. Now by triangle inequality any two clusters marked withA has average-linkage

at most 4ca (1+ e)d.

The proof of Lemma 4.6.6 is a simple application of Lemma 4.6.7 combined with the fact

that the algorithm does average-linkage on the embedded clusters until the minimum average

distance reaches the thresholda (1+ e)d. So in both robust merging and average-linkage

merging, the pairs we merge are always4ca (1+ e)d-good. The rest of this section will be

devoted to proving Lemma 4.6.5.

74 Scaling Average-Linkage via Sparse Cluster Embeddings

In each big WHILE loop of LSH, Algorithm 2 can go to vanilla average-linkage if all

buckets are small, and to subroutineROBUSTMERGING if we have at least one big bucket.

For any round of LSH, we have the following lemma.

Lemma 4.6.8.Every round of LSH that ends up with doing average-linkage within each

bucket has at least constant probabilityp0 of reducing the number of(1+ e)d-good pairs by

a constant ofp1
10, and p0 � 9

10p1.

Proof. Let's focus on one round of LSH, suppose that before LSH we haveN number of

(1+ e)d-good pairs. Regardless of whether average-linkage or RobustMerging takes place

after LSH, we useE0 to denote the event, where at leastp1
10N (1+ e)d-good pairs collide.

Let pcollide be the probability of this occurring. LetNcollide denote the number of(1+ e)d-

good pairs that collide during the LSH. Since every good pair has probability at leastp1 of

colliding, we haveE[Ncollide] � p1 � N by linearity of expectation. So

p1 � N � E[Ncollide] � (1� pcollide) �
p1

10
N + pcollide � N

�
p1

10
N + pcollideN

This yieldspcollide � 9
10p1. Note that the eventE0 happens with probability at leastpcollide ,

independent of the location of the points and the merges we have done before.

We have established the fact that every single round of LSH has some constant probability

p0 of getting a constant portion of good pairs to collide. Here we quote a version of Chernoff's

bound:

Theorem 4.6.9(Lower Chernoff Bound). LetX1;X2; : : : ;Xt be a collection of independent

Bernoulli RV's withPr[Xi = 1] = pi . LetX = å i Xi andm= å i E[Xi]. Then for alld 2 (0;1),

Pr[X < (1� d)m] � exp
�

� d2m
2

�
:

By performingQ(1
p0

log(n)) rounds of LSH and using Theorem 4.6.9, with high proba-

bility E0 happensQ(log(n)) times during these rounds. We focus only on the LSH rounds

whereE0 happens. During these rounds, Algorithm 2 either goes to average-linkage or robust

merging. At least one of them will be repeatedQ(log(n)) times.

For average-linkage, we prove the following lemma. Intuitively, it guarantees that the

total number of good pairs will go down by a constant factor.

Lemma 4.6.10.Suppose in thetth round of LSH eventE0 happens. LetNt denote the number

of (1+ e)d-good pairs before andNt+ 1 denote the number of(1+ e)d-good pairs after. If

Algorithm 2 goes to average-linkage, thenNt+ 1 � 9
10Nt . If it goes to robust merging, then

Nt+ 1 � Nt .

4.7 Experiments 75

Blog Shuttle Covertype Higgs (L) Susy (L)
k Embed Base Embed Base Embed Base Embed Base Embed Base

128 0.17� 0.003 25.1� 28.2 0.09� 0.002 34.2� 44.7 0.11� 0.001 32.5� 9.1 0.11� 0.001 22.3� 5.4 0.10� 0.001 24.5� 10.5
256 0.17� 0.002 9.5� 9.7 0.09� 0.001 18.6� 17.8 0.11� 0.002 10.5� 4.5 0.11� 0.001 11.5� 2.2 0.10� 0.002 11.2� 4.2
512 0.17� 0.005 14.2� 33.4 0.09� 0.002 6.3� 6.9 0.12� 0.004 6.3� 2.4 0.11� 0.002 4.8� 1.9 0.10� 0.002 4.9� 3.3
1024 0.18� 0.01 3.2� 3.4 0.09� 0.002 2.0� 1.8 0.12� 0.002 2.9� 1.2 0.12� 0.002 3.3� 0.7 0.11� 0.002 2.9� 1.0
2048 0.18� 0.02 1.8� 2.8 0.11� 0.012 0.79� 0.5 0.13� 0.02 1.3� 0.6 0.13� 0.01 1.4� 0.5 0.11� 0.002 1.0� 0.6
4096 0.19� 0.003 0.82� 0.3 0.12� 0.01 0.45� 0.21 0.14� 0.003 0.62� 0.3 0.15� 0.01 0.53� 0.2 0.13� 0.002 0.52� 0.4

Table 4.1 Run time results for Near Cluster Search in seconds. We report the results asm� s ,
wheremis the average run time at each value ofk ands is the standard deviation. Note that
our technique consistently has a small run time with minuscule variance compared to the
highly variable baseline.

Proof. After average-linkage, since we have merged the clusters until the minimum average

distance forf (�) hitsa (1+ e)d, the true minimum average distance is more than(1+ e)d.

So there remains no(1+ e)d-good pairs in all the buckets.

If we can somehow prove when we merge two clusters in the same bucket, the num-

ber of (1+ e)d-good pairs across the buckets does not go up, we can safely conclude

that Nt+ 1 � Nt � Ncollide � 9
10Nt . Suppose average-linkage chooses to merge clustersA

andB. For any clusterC in other buckets, ifAvg(A [B;C) � (1+ e)d, we must have

minf Avg(A;C);Avg(B;C)g � (1+ e)d, so at least one of the two pairs(A;C) and(B;C) are

good. Now we mergeA andB and only one good pair is produced, therefore the number of

(1+ e)d-good pairs across the buckets will not increase if we do average-linkage within each

bucket. For the same reason, if Algorithm 2 does robust merging, we also haveNt+ 1 � Nt .

Thus Lemma 4.6.10 is proved.

Recall the following lemma from previous subsection:

Lemma 4.6.11.Fix any thresholdd and letC t be the setC in Algorithm 3 aftert iterations.

We havejC t+ 1j � 1
2jC t j.

Intuitively, in every LSH such that at leastp1
10 portion of (1+ e)d-good pairs collide,

either buckets are small, in which case the number of(1+ e)d-good pairs will shrink by a

constant factor with constant probabilitypcollide, or there is at least one bucket that's big, in

which case the number of candidates for(1+ e)d-good clusters will shrink by a constant

factor with high probability. Putting Lemma 4.6.10 and 4.6.11 gives us Lemma 4.6.5.

4.7 Experiments

We evaluate the performance of the cluster embedding for two applications: near cluster

search and average-linkage hierarchical clustering. The goal is to establish the following:

• Our algorithms which use cluster embeddings are scalable for both applications. Their

running time drastically outperforms standard implementations on large data sets.

76 Scaling Average-Linkage via Sparse Cluster Embeddings

Dataset
Approx.

ratio
Embedding

ratio
Shuttle 1.003 1.072
Blog 1.009 1.053

Covertype 1.022 1.059
Susy (L) 1.019 1.032
Higgs (L) 1.012 1.016

Table 4.2 Approximation Results for
Cluster Search. Note that these ratios
tend to be very close to 1, indicating the
accuracy of our algorithm.

Algorithm
Blog
32768

Blog
52397

Shuttle
32768

Shuttle
43500

scipy 221.76 732.43 125.27 307.43
sklearn 247.88 754.16 127.55 305.45

fastcluster 245.49 689.19 96.43 228.02
Our method 129.88 205.70 48.98 78.76

Table 4.3 Run time results for average-linkage
clustering. Each column is labeled by the data
set and input size considered. Our algorithm con-
sistently sees a speed-up at moderate input sizes
over all baselines tested.

• The running time of our average linkage implementation is only slightly super-linear

in the input size.

• Distances in the embedding closely approximate the average distance for all data sets.

• Our algorithm for near cluster search returns a cluster with approximately the smallest

average distance. In fact, it returns the exact best cluster at least 90% of the time.

• Our average-linkage hierarchical clustering algorithm closely approximates the stan-

dard average-linkage algorithm. The vast majority of the merges made by the algorithm

have average distances below a factor1:5 of the minimum average distance between

clusters.

• The objective value of trees produced by our new average-linkage algorithm has

negligible loss compared to baseline algorithms.

Experiment Speci�cations: We implemented our algorithms in Python and used 3 baseline

implementations of average linkage available in the SciPy, Scikit-Learn, and Fastclustering

libraries. Experiments utilized [Google Cloud Platform] virtual machines (VMs), speci�cally

n1-highmem-4 type VMs, each with 4 virtual CPUs and 26 GB of memory.

We further compare to the work of [3]. For this comparison, we used the`1-norm

distance, a requirement of their algorithm. Our method and baselines were superior to the

implementation of [3] in all experiments. While their algorithm has near linear run time like

ours, their method runs in timeO(1
e6n1+ r log3n). The 1

e6 log3n factor makes this algorithm

slow in practice.

Datasets:We use datasets from the UCI ML repository [104] : Shuttle, Blog, Covertype,

Susy, and Higgs. Number of dimensions range from8 to 281. Datasets are listed in Table 4.4.

Some datasets contained extra features which are a function of the other features. These were

preprocessed to create two datasets: “Large” (L) with all features and "Small" (S) without the

extra features. If the dataset contained a class column for supervised learning, that column

was removed. Euclidean distance was used as the dissimilarity between datapoints.

4.7 Experiments 77

Dataset
Number
of Points

Number
of Features

Pre-
processed?

Shuttle 43500 8 N
Blog 600021 281 N

Covertype 581012 54 Y
Susy (L/S) 5000000 18/8 Y
Higgs (L/S) 11000000 28/21 Y

Table 4.4 Data sets tested

Implementation Details: For near cluster search, we implemented the algorithm based on

Theorem 4.4.1. Our implementation of average-linkage is similar to Algorithm 2 but include

a few minor changes for practical ef�ciency.

Merging procedure for large buckets:in practice, if the partition induced by a round of LSH

has a large bucket with more than
p

n points, we split it into several small buckets of size at

most
p

n. Then we run average linkage within each small bucket.

Reservoir sampling to approximate deviation terms:we estimate the deviationDev(A) term

in the embeddingf (A) by sampling a small set of points uniformly from the points in this

cluster: ifx is a uniformly random point fromA, thenE[kx� m(A)k] = Dev(A). A set of

Q(logn) samples is maintained for every cluster, and updated usingreservoir samplingwhen

merging two clusters. This makes it easy maintain estimates of the deviation term.

Algorithm
Covertype

65536
Covertype

262144
Higgs (L)

65536
Higgs (L)
262144

Higgs (S)
65536

Susy (L)
65536

Susy (L)
262144

Susy (S)
65536

fastcluster 584.06 - 667.10 - 673.86 649.74 - 610.90
our method 465.15 3220.69 233.80 1684.17 230.89 112.87 799.91 63.82

Table 4.5 Running time results in seconds for average-linkage clustering. Columns indicate
data set and input size considered. Missing entries indicate a failure due to a memory error
on this input size. All other baseline algorithms fail on these large sizes.

Near cluster search. To test our near cluster search algorithm we considered the following

setup. First, for each dataset we constructed a clustering using a subsample of 50k points5. To

get a collection of clusters and a query, we ran (k+ 1)-means and took one of the clusters to

be the query clusterQ and the remainingk clusters to be the clusteringC. For our algorithm

we measured running time of constructing the embedding plus answering the query. This is

compared with the running time of the baseline method which answers a query by computing

the average distance ofQ to each cluster. We compared the quality of the cluster returned by

5The Shuttle dataset was used in its entirety as it has less than 50k points

78 Scaling Average-Linkage via Sparse Cluster Embeddings

Data Set Average 95-percentile Max
Shuttle 1.079 1.268 1.894
Blog 1.070 1.238 2.515

Covertype 1.081 1.330 3.535
Susy (L) 1.143 1.481 2.698
Susy (S) 1.132 1.444 2.465
Higgs (L) 1.194 1.652 8.260
Higgs (S) 1.188 1.632 9.859

Table 4.6 Embedding ratio stats, withDev(�) approximated with reservoir sampling, at
sample size 16384

Data Sizes 64 128 256 512 1024 2048 4096 8192 16384 32768 43500
Shuttle 99.79 99.61 99.78 99.67 99.63 99.76 99.81 99.79 99.62 99.67 99.79
Blog 92.74 95.72 95.84 96.96 97.88 98.32 99.19 99.28 99.59 99.74 /

Covertype 89.67 89.95 92.58 94.52 95.56 96.72 97.65 98.63 99.48 99.57 /
Susy (L) 98.98 98.92 99.26 99.11 98.46 98.47 98.56 98.56 98.32 98.08 /
Susy (S) 98.81 99.23 99.26 98.80 99.00 98.65 98.69 98.41 98.56 98.41 /
Higgs (L) 98.61 98.36 98.32 97.67 97.69 97.78 97.65 97.75 97.21 97.37 /
Higgs (S) 98.21 97.99 98.18 98.04 98.00 97.91 97.57 97.56 97.73 97.48 /

Table 4.7 Mean objective approximation ratio of average-linkage, in percentage

our algorithm to the cluster returned by the baseline algorithm. Finally, we compared the

embedded distance of the returned cluster to the true average distance. The parameterk was

ranged in powers of 2 from 128 to 4096, and 10 trials were done for each value ofk.

The running times of cluster search are in Table 4.1. Our algorithm utilizing the embed-

ding outperforms the baseline method in both average run time and variance. The run time of

the naive method varies drastically across different instances, being quadratically dependent

on the size of the query cluster and the number of points. Our method has very stable run

times, consistent with the theoretical justi�cation, as the run time only depends linearly on

the size of the query cluster and the number of given clusters.

We display the accuracy of our near cluster search algorithm in Table 4.2. Here,Approx.

ratio refers to the ratio of the average-linkage distance of the returned cluster for each query

to that of the actual closest cluster.Embedding ratiois the ratio, for the returned cluster,

of its distance from the query cluster in the embedding compared to their actual average

distance. We report theworstsuch ratio encountered in all instances we tested. Our method

has an error rate of about 2% for all data sets, and we observe less than 10% difference in the

embedded distances. Near cluster search with the embedding yields very accurate results,

much better than the theoretical bounds.

Average-linkage hierarchical clustering. Running time wise, our average-linkage algo-

rithm is faster than all the baseline algorithms on large datasets. See Tables 4.3 and 4.5 for

4.7 Experiments 79

details. All baseline algorithms also begin to fail once sizes reach 32k to 64k points due to

memory requirements. Recall that they requireW(n2) memory for memoization, whereas we

need slightly super-linear memory.

Figure 4.1 compares the growth rate of running time versus input size for our implemen-

tation and the three baselines. Both running time and input size are plotted on a logarithmic

scale. Notice that any polynomial functiony = cxr becomes a linear function on the log-log

plot, thus theslopeof a curve equals the exponentr . Our algorithm has a slope that is close

to 1, showing it to have near linear running time. The three baselines share a similar growth

rate. The curve “FastCluster Regression Model” is a linear regression �tted to the running

times of FastCluster, the fastest of the baselines. We report the �tted slope to be near2,

showing all three baselines to have quadratic running time. Figure 4.1 focused on Susy (L)

but the results are similar for all datasets.

Fig. 4.1 Comparison of how running time grows with input size, both axis in log scale, on
data set Susy(L)

The embedding gives very accurate estimates of the average distance between clusters.

See Table 4.8 for detailed statistics on the embedding ratio. Further, Table 4.6 shows

negligible loss in using sampling to approximate the deviation term in the cluster embedding

(4.1).

Closeness ratio:to test accuracy, in each step of the algorithm, we measure how well

the merge our algorithm makes approximate the current minimum average-linkage. The

approximation ratio is the ratio of the average distance of the chosen pair of clusters to the

minimum average distance. To measure this, we �nd the minimum average distanced � only

at the start of each round of LSH. Then, for each merge ofA andB in this round we compute

Avg(A;B)=d � , giving anupper boundon the approximation ratio, named the closeness ratio.

80 Scaling Average-Linkage via Sparse Cluster Embeddings

Dataset Mean
95th

percentile
Max

Shuttle 1.008 1.031 1.090
Blog 1.008 1.032 1.123

Covertype 1.008 1.032 1.101
Susy (L) 1.005 1.019 1.088
Susy (S) 1.006 1.020 1.075
Higgs (L) 1.003 1.012 1.058
Higgs (S) 1.003 1.012 1.077

Table 4.8 Embedding ratio stats using
true Dev(�) term at size 16384

Dataset Mean
95th

percentile
Max

Shuttle 1.13 1.33 1.58
Blog 1.30 1.85 4.12

Covertype 1.56 2.19 3.65
Susy (L) 1.28 1.61 2.02
Susy (S) 1.25 1.52 1.87
Higgs (L) 1.33 1.65 2.01
Higgs (S) 1.34 1.66 1.99

Table 4.9 Closeness ratio stats, size
1024

Table 4.9 includes more detailed statistics on all subsamples of size1024. The merges

picked by our algorithm are close to the minimum.

Finally, see Table 4.7. We observe a negligible loss in overall tree quality compared to

vanilla average-linkage.

Comparing with aother ANN-based baseline. We compare our implementation and

the standard implementation of average-linkage on the objective in [59]. Recall that the

algorithm has strong theoretical guarantees, has similar designs to our algorithm but utilizes

the original ANN schema more. We show that our implementation is way more ef�cient.

Input Size 64 128 256 512 1024 2048 4096 8192
Shuttle 41.45 102.75 229.83 634.35 2897.20 7404.18 18432.55 46840.01
Blog 2140.38 6030.19 16089.31 52891.13 - - - -

Covertype 407.44 1204.50 3369.60 13730.49 47937.79 161861.26 - -
Higgs (S) 37.77 80.92 189.81 511.43 2936.55 8001.01 21468.35 -
Susy (S) 6.48 13.84 31.85 95.76 374.26 977.79 2896.95 8565.05

Table 4.10 Average running time in seconds for algorithm due to [3]. A blank entry indicates
that the algorithm crashed due to running out of memory at this input size.

We give our results for the algorithm in [3] in Table 4.10. We present the average running

time across �ve sampled instances at each input size. Note that these times are signi�cantly

worse than our algorithm as shown in Section 4.7. Moreover, this algorithm was unable to

scale to large input sizes over� 100k points as our algorithm did. Also observe that the

performance of this method signi�cantly degrades on higher dimensional data sets such as

Blog and Covertype, which is due to the signi�cant increase in the dimension the algorithm

carries out.

4.8 Conclusions and Future Work 81

4.8 Conclusions and Future Work

This paper introduces a sparse cluster embedding that approximately preserves the average

distance between clusters. The embedding can be computed in linear time and, after the

embedding, pairwise average cluster distances can be computed inO(d) time.

The embedding enables a sub-quadratic average-linkage algorithm. In experiments, the

algorithm scales better than current popular implementations of average-linkage.

An interesting direction for future work is to explore cluster embeddings further and

determine whether they can be leveraged in other data mining tasks.

Chapter 5

Relational Algorithms For K-Means

Clustering

5.1 Introduction

Kaggle surveys [2] show that the majority of learning tasks faced by data scientists involve

relational data. Conventional formats usually represent data with multi-dimensional points

where each dimension corresponds to a feature of the data. In contrast, arelational database

consists of tablesT1;T2; : : : ;Tm where the features could be stored partially in the tables.

The columns in each table are a subset of features1 and the rows are data records for these

features. The underlying data is represented by thedesign matrix J = T1 on � � � on Tm where

each row inJ can be interpreted as a data point. Here thejoin (on) is a binary operator on

two tablesTi andTj . The result of the join is the set of all possible concatenations of two

rows fromTi andTj such that they are equal in their common columns/features. IfTi andTj

have no common columns their join is the cross product of all rows. See Table 5.1 for an

example of join operation on two tables.

Almost all learning tasks are designed for data in matrix format. The current standard

practice for a data scientist is the following.

Standard Practice:

1. Extract the data points from the relational database by taking the join of all tables

to �nd the design matrixJ = T1 on � � � on Tm.

1In relational database context the columns are also referred to asattributesbut here we call them features
per the tradition of broader communities.

84 Relational Algorithms For K-Means Clustering

T1

f1 f2
1 1
2 1
3 2
4 3
5 4

T2

f2 f3
1 1
1 2
2 3
5 4
5 5

T1 on T2

f1 f2 f3
1 1 1
1 1 2
2 1 1
2 1 2
3 2 3

Table 5.1 A join of tablesT1 andT2. Each has5 rows and2 features, sharingf2. The join
has all features from both tables. The rows withf2 = x in the join is the cross product of
all rows with f2 = x from T1 andT2. For example, forf2 = 1, the four rows inT1 on T2 has
(f1; f3) valuesf (1;1); (1;2); (2;1); (2;2)g, this is the cross product off1 2 f 1;2g from T1
and f3 2 f 1;2g from T2.

2. Then interpret each row ofJ as a point in a Euclidean space and the columns as

the dimensions, corresponding to the features of data.

3. Import this design matrixJ into a standard algorithm.

A relational database is a highly compact data representation format. The size ofJ can

be exponentially larger than the input size of the relational database [23]. ExtractingJ makes

the standard practice inef�cient. Theoretically, there is a potential for exponential speed-up

by running algorithmsdirectly on the tables in relational data. We call such algorithms

relational algorithms if their running time is polynomial in the size of tables when the

database isacyclic. Acyclic databases will be de�ned shortly. This leads to the following

exciting algorithmic question.

The Relational Algorithm Question:

A. Which standard algorithms can be implemented as relational algorithms?

B. For standard algorithms that arenot implementable by relational algorithms, is

there an alternative ef�cient relational algorithm that has similar performance?

This question has recently been of interest to the community. However, few algorithmic

techniques are known. Moreover, we do not have a good understanding of which problems

can be solved on relational data and which cannot. Relational algorithm design has a

interesting combinatorial structure that requires a deeper understanding.

We design a relational algorithm fork-means. It has a polynomial time complexity for

acyclic relational databases. The relational database is acyclic if there exists a tree with the

following properties. There is exactly one node in the tree for each table. Moreover, for any

feature (i.e. column)f , let V(f) be the set of nodes whose corresponding tables contain

5.1 Introduction 85

featuref . The subgraph induced onV(f) must be a connected component. Acyclicity can

be easily checked, as the tree can be found in polynomial time if it exists [136].

Luckily, most of the natural database schema are acyclic or nearly acyclic. Answering

seemingly simple questions on general (cyclic) databases, such as if the join is empty or not is

NP-Hard. For general databases, ef�ciency is measured in terms of thefractional hypertree

width of the database (denoted by “fhtw”)2. This measures how close the database structure

is to being acyclic. This parameter is1 for acyclic databases and larger as the database is

farther from being acyclic.

State-of-the-art algorithms for queries as simple as counting the number of rows in the

design matrix have linear dependency onnfhtw wheren is themaximumnumber of rows in all

input tables [8]. Running in time linear innfhtw is the goal, as fundamental barriers need to

be broken to be faster. Notice that this is polynomial time when fhtw is a �xed constant (i.e.

nearly acyclic). Our algorithm has linear dependency onnfhtw, matching the state-of-the-art.

Relational algorithm for k-means. k-means is perhaps the most widely used data mining

algorithm (e.g.k-means is one of the few models in Google's BigQuery ML package [big]).

The input to thek-means problem consists of a collectionSof points in a Euclidean space

and a positive integerk. A feasible output isk pointsc1; : : : ;ck, which we callcenters. The

objective is to choose the centers to minimize the aggregate squared distance from each

original point to its nearest center.

Recall extracting all data points could take time exponential in the size of a relational

database. Thus, the problem is to �nd the cluster centers without fully realizing all of the

data points the relational data represents.

[60] was the �rst chapter to give a non-trivialk-means algorithm that works on relational

inputs. The chapter gives anO(1)-approximation. The algorithm's running time has super-

linear dependency onkd when the tables are acyclic and thus is not polynomial. Herek is

the number of cluster centers andd is the dimension (a.k.a number of features) of the points.

This is equivalently the number of distinct columns in the relational database. For a small

number of dimensions, this algorithm is a large improvement over the standard practice and

they showed the algorithm gives up to 350x speed up on real data versus performing the

query to extract the data points (not even including the time to cluster the output points).

Several questions remain. Is there a relational algorithm fork-means? What algorithmic

techniques can we use as building blocks to design relational algorithms? Moreover, how

can we show some problems are hard to solve using a relational algorithm?

2See Appendix A.2 for a formal de�nition.

86 Relational Algorithms For K-Means Clustering

Results. The main result of the chapter is the following.

Theorem 5.1.1.Given an acyclic relational database with tablesT1;T2; : : :Tm where the

design matrixJ hasN rows andd columns. Letn be the maximum number of rows in any

table. Then there is a randomized algorithm running in time polynomial ind, n andk that

computes an O(1) approximate k-means clustering solution with high probability.

In Appendix A.2, we discuss the algorithm's time complexity for cyclic databases.

Challenges. To illustrate the challenges for �nding such an algorithm as described in the

prior theorem, even when the database is acyclic, consider the following theorem.

Theorem 5.1.2.Given an acyclic relational database with tablesT1;T2; : : :Tm where the

design matrixJ hasN rows andd columns. Givenk centersc1; : : : ;ck, let Ji be the set of

points inJ that are closest toci for i 2 [k]. It is #P-Hard to computejJi j for k � 2 and

NP-Hard to approximatejJi j to any factor for k� 3.

The full proof is postponed until Section 5.2.1. We show this by reducing aNP-Hard

problem to the problem of determining ifJi is empty or not. Counting points closest to a

center is a fundamental building block in almost allk-means algorithms. Moreover, we show

even performing one iteration of the classic Lloyd's algorithm is #P-Hard.

Theorem 5.1.3.Given an acyclic join, and two centers, it is#P-hard to compute the center

of mass for the points assigned to each center.

Together these two theorems necessitates the design of new techniques to address the

main theorem, shows that seemingly trivial algorithms are dif�cult relationally, and suggests

computing a coreset is the right approach for the problem as it is dif�cult to cluster the data

directly.

Overview of techniques. We �rst compute acoresetof all points inJ. That is, a collection

of points with weights such that if we run anO(1) approximation algorithm on this weighted

set, we will get aO(1) approximate solution for all ofJ. To do so, we sample points

according to the principle ink-means++ algorithm and assign weights to the points sampled.

The number of points chosen will beQ(klogN). Any O(1)-approximate weightedk-means

algorithm can be used on the coreset to give Theorem 5.1.1.

k-means++: k-means++ is a well-knownk-means algorithm [22, 10]. The algorithm it-

eratively chooses centersc1;c2; : : :. The �rst centerc1 is picked uniformly fromJ. Given

5.1 Introduction 87

that c1; : : : ;ci� 1 are picked, a pointx is picked asci with probability P(x) = L(x)
Y where

L(x) = min j2 [i� 1](

 x� c j

 2

2) andY = å x2J L(x). Here[i � 1] denotesf 1;2; : : : ; i � 1g.

Say we sampleQ(klogN) centers according to this distribution, which we call thek-

means++ distribution. It was shown in [10] that if we cluster the points by assigning them

to their closest centers, the total squared distance between points and their cluster centers is

at mostO(1) times the optimalk-means cost with high probability. Note that this is not a

feasiblek-means solution because more thank centers are used. However, leveraging this,

the work showed that we can construct a coreset by weighting these centers according to the

number of points in their corresponding clusters.

We seek to mimic this approach with a relational algorithm. Let's focus on one iteration

where we want to sample the centerci givenc1; : : : ;ci� 1 according to thek-means++ distribu-

tion. Consider the assignment of every point to its closest center inc1; : : : ;ci� 1. Notice that

thek-means++ probability is determined by this assignment. Indeed, the probability of a point

being sampled is the cost of assigning this point to its closest center (min j2 [i� 1]

 x� c j

 2

2)

normalized byY. Y is the summation of this cost over all points.

The relational format makes this distribution dif�cult to compute without the design

matrix J. It is hard to ef�ciently characterize which points are closest to which centers. The

assignmentpartitionsthe data points according to their closest centers, where each partition

may not be easily represented by a compact relational database (unlikeJ).

A Relational k-means++ Implementation:Our approach will sample every point according

to thek-means++ distribution without computing this distribution directly. Instead, we use

rejection sampling [39], which allows one to sample from a “hard” distributionP using

an “easy” distributionQ. Rejection sampling works by sampling fromQ �rst, then reject

the sample with another probability used to bridge the gap betweenQ andP. The process

is repeated until a sample is accepted. In our setting,P is thek-means++ distribution, and

we need to �nd aQ which could be sampled from ef�ciently with a relational algorithm

(without computingJ). Rejection sampling theory shows that for the sampling to be ef�cient,

Q should be close toP point-wise to avoid high rejection frequency. In the end, we will

perfectly simulatethek-means++ algorithm.

We now describe the intuition for designing such aQ. Recall thatP is determined by

the assignment of points to their closest centers. We will approximate this assignment up

to a factor ofO(i2d) when sampling theith centerci, whered is the number of columns in

J. Intuitively, the approximate assignment makes things easier since for any center we can

easily �nd the points assigned to it using an ef�cient relational algorithm. ThenQ is found

by normalizing the squared distance between each point and its assigned center.

88 Relational Algorithms For K-Means Clustering

The approximate assignment is designed as follows. Consider thed-dimensional Eu-

clidean space where the data points inJ are located. The algorithm divides space into a

laminar collection ofhyper-rectangles3 (i.e., f x 2 R d : v j � x j � w j ; j = 1; : : : ;dg, herex j

is the value for featuref j). We assign each hyper-rectangle to a center. A point assigns itself

to the center that corresponds to thesmallesthyper-rectangle containing the point.

The key property of hyper-rectangles that bene�ts our relational algorithm is: we can

ef�ciently represent all points fromJ inside any hyper-rectangle by removing some entries

in each table from the original database and taking the join of all tables. For example, if a

hyper-rectangle has constraintv j � x j � w j , we just remove all the rows with value outside of

range[v j ;w j] for column f j from the tables containing columnf j . The set of points assigned

to a given center can be found by adding and subtracting a laminar set of hyper-rectangles,

where each hyper-rectangle can be represented by a relational database.

Weighting the Centers: We have sampled a good set of cluster centers. In order to get a

coreset we need to assign weights to them. As we have already mentioned, assumingP 6= #P,

the weights cannot be computed relationally. In fact, they cannot be approximated up to

any factor in polynomial time unlessP = NP. Rather, we design an alternative relational

algorithm for computing the weights. Each weight will not be an approximate individually,

but we prove that the weighted centers form anO(1)-approximate coreset in aggregate.

The main algorithmic idea is that for each centerci we generate a collection of hyper-

spheres aroundci containing geometrically increasing numbers of points. The space is then

partitioned using these hyperspheres where each partition contains a portion of points inJ.

Using the algorithm from [4], we then sample a poly-log sized collection of points from each

partition, and use this subsample to estimate the fraction of the points in this partition which

are closer toci than any other center. The estimated weight ofci is aggregated accordingly.

Chapter Organization: As relational algorithms are relatively new, we begin with some

special cases which help the reader build intuition. In Section 5.2 we give a warm-up

by showing how to implement1-means++ and2-means++ (i.e. initialization steps ofk-

means++). In this section, we also prove Theorem 5.1.2 as an example of the limits of

relational algorithms. In Section 5.3 we go over background on relational algorithms that

our overall algorithm will leverage. In Section 5.4 we give thek-means++ algorithm via

rejection sampling. Section 5.5 shows an algorithm to construct the weights and then analyze

this algorithm. Many of the technical proofs appear in the appendix due to space.

3A laminar set of hyper-rectangles means any two hyper-rectangles from the set either have no intersection,
or one of them contains the other.

5.2 Warm-up: Ef�ciently Implementing 1-means++ and 2-means++ 89

5.2 Warm-up: Ef�ciently Implementing 1-means++ and

2-means++

This section is a warm-up to understand the combinatorial structure of relational data. We

will show how to dok-means++ fork 2 f 1;2g (referred to as 1- and 2-means++) on a simple

join structure. We will also show the proof of Theorem 5.1.2 which states that counting the

number of points in a cluster is a hard problem on relational data.

First, let us consider relationally implementing 1-means++ and 2-means++. For better

illustration, we consider a special type of acyclic table structure namedpath join . The

relational algorithm used will be generalized to work on more general join structures when

we move to the full algorithm in Section 5.4.

In a path join each tableTi has two features/columnsfi , and fi+ 1. TableTi andTi+ 1 then

share a common columnfi+ 1. Assume for simplicity that each tableTi containsn rows.

The design matrixJ = T1 on T2 on : : : on Tm hasd = m+ 1 features, one for each feature (i.e.

column) in the tables.

Even with this simple structure, the size of the design matrixJ could still be exponential

in the size of database -J could contain up tonm=2 rows , anddnm=2 entries. Thus the

standard practice could require time and spaceW(mnm=2) in the worst case.

T1

f1 f2
1 1
2 1
3 2
4 3
5 4

T2

f2 f3
1 1
1 2
2 3
5 4
5 5

J = T1 on T2

f1 f2 f3
1 1 1
1 1 2
2 1 1
2 1 2
3 2 3

Table 5.2 A path join instance where the two tablesT1 andT2 havem= 2 andn = 5. This
showsT1, T2, the design matrixJ, and the resulting layered directed graphG. Everypath
from the left most layer to the right most layer of this graphG corresponds to one data point
for the clustering problem (i.e. a row of the design matrix).

Graph Illustration of the Design Matrix: Conceptually consider a directed acyclic graph

G, where there is one layer of nodes corresponding to each featurefi(i = 1; : : : ;d), and edges

only point from nodes in layerfi to layer fi+ 1.

The nodes inG correspond to feature values, and edges inG correspond to rows in tables.

There is one vertexv in layer fi for each value that appears in columnfi in tableTi� 1 or Ti,

and one edge pointing fromu in layer fi to v in layer fi+ 1, if (u;v) is a row in tableTi . Then,

90 Relational Algorithms For K-Means Clustering

there is a one-to-one correspondence betweenfull paths in G (paths from layerf1 to layer

fd) and rows in the design matrix.

A Relational Implementation of 1-means++:Implementing the 1-means++ algorithm is

equivalent togenerating a full path uniformly at random fromG. We generate this path by

iteratively picking a row from tableT1; : : : ;Tm, corresponding to picking an arc pointing from

layer f1 to f2, f2 to f3, ..., such that concatenating all picked rows (arcs) will give a point in

J (full path inG).

To sample a row fromT1, for every rowr 2 T1, considerr on J, which is all rows inJ

whose values in columns(f1; f2) are equivalent tor. Let the functionF1(r) denote the total

number of rows inr on J. This is also the number of full paths passing arcr. Then, every

r 2 T1 is sampled with probability F1(r)
å r02T1

F1(r0) , noticeå r02T1
F1(r0) is the total number of full

paths. Let the picked row ber1.

After samplingr1, we can conceptually throw away all other rows inT1 and focus only

on the rows inJ that usesr1 to concatenate with rows from other tables (i.e.,r1 on J). For any

row r 2 T2, let the functionF2(r) denote the number of rows inr on r1 on J, also equivalent

to the total number of full paths passing arcr1 andr. We sample everyr with probability
F2(r)

å r02T2
F2(r0) . Notice thatå r02T2

F2(r0) = F1(r1), the number of full paths passing arcr1. Repeat

this procedure until we have sampled a row in the last tableTm: for tableTi andr 2 Ti,

assuming we have sampledr1; : : : ; r i� 1 from T1; : : : ;Ti� 1 respectively, throw away all the

other rows in previous tables and focus onr1 on : : : on r i� 1 on J. Fi(r) is the number of rows

in r on r1 on : : : on r i� 1 on J andr is sampled with probability proportional toFi(r). It is easy

to verify that every full path is sampled uniformly.

For every tableTi we need to �nd the functionFi(�) which is de�ned on all its rows. There

arem such functions. For eachFi(�), we can �nd allFi(r) values forr 2 Ti using a one-pass

dynamic programming and then sample according to the values. Repeating this procedurem

rounds completes the sampling process. This gives a polynomial time algorithm.

A Relational Implementation for 2-means++:Assumex = (x1; : : : ;xd) is the �rst center

sampled and now we want to sample the second center. Byk-means++ principles, any row

r 2 J is sampled with probability kr� xk2

å r02J kr0� xk2 . For a full path inG corresponding to a row

r 2 J we refer tokr � xk2 as theaggregated costover alld nodes/features.

Similar to1-means++, we pick one row in each table fromT1 to Tm and putting all the

rows together gives us the sampled point. Assume we have sampled the rowsr1; r2; : : : ; r i� 1

from the �rst i � 1 tables and we focus on all full paths passingr1; : : : ; r i� 1 (i.e., the new

design matrixr1 on : : : on r i� 1 on J). In 1-means++, we computeFi(r) which is the total

number of full paths passing arcr1; : : : ; r i� 1; r (i.e., r on r1 on : : : on r i� 1 on J.) and sample

r 2 Ti from a distribution normalized usingFi(r) values. In2-means++, we de�neFi(r) to

5.2 Warm-up: Ef�ciently Implementing 1-means++ and 2-means++ 91

be the summation of aggregated costs over all full paths which pass arcsr1; : : : ; r i� 1; r. We

sampler 2 Ti from a distribution normalized usingFi(r) values.

It is easy to verify the correctness. Again, eachFi(�) could be computed using a one-pass

dynamic programming which gives the values for all rows inTi when we sample fromTi.

This would involvemrounds of such computations and give a polynomial algorithm.

5.2.1 Hardness of Relationally Computing the Weights

This section established the dif�culty of relationally implementing thek-means algorithms

by proving Theorem 5.1.2 and 5.1.3.

Proof of [Theorem 5.1.2] Here we prove Theorem 5.1.2. We will focus on showing that given

a set of centers, counting the number of points inJ that is closest to any of them is#P-hard.

We prove#P-Hardness by a reduction from the well known#P-hard Knapsack Counting

problem. The input to the Knapsack Counting problem consists of a setW = f w1; : : : ;whg

of nonnegative integer weights, and a nonnegative integerL. The output is the number of

subsets ofW with aggregate weight at mostL. To construct the relational instance, for each

i 2 [h], we de�ne the tablesT2i� 1 andT2i as follows:

T2i� 1

f2i� 1 f2i

0 0
0 wi

T2i

f2i f2i+ 1

0 0
wi 0

Table 5.3 NP-hardness Reduction

Let centersc1 andc2 be arbitrary points such that points closer toc1 thanc2 are those

pointsp for whichå d
i= 1 pi � L. Then there are2h rows inJ, sincewi can either be selected

or not selected in feature2i. The weight ofc1 is the number of points inJ closer toc1 than

c2, which is in turn exactly the number of subsets ofW with total weight at mostL.

Then we prove the second part of Theorem 5.1.2 that given an acyclic database and a

set of centersc1; : : : ;ck, it is NP-Hard to approximate the number of points assigned to each

center whenk � 3. We prove it by reduction from Subset Sum. In Subset Sum problem,

the input is a set of integersA = w1; : : : ;wm and an integerL, the output is true if there is a

subset ofA such that its summation isL. We create the following acyclic schema. There are

mtables. Each tableTi has a single unique columnxi with two rowswi ;0. Then the join of

the tables has2m rows, and it is a cross product of the rows in different tables in which each

row represents one subset ofA.

92 Relational Algorithms For K-Means Clustering

Then consider the following three centers:c1 = (L� 1
m ; L� 1

m ; : : : ; L� 1
m), c2 = (L

m; : : : ; L
m),

andc1 = (L+ 1
m ; L+ 1

m ; : : : ; L+ 1
m). The Voronoi diagram that separates the points assigned to each

of these centers consists of two parallel hyperplanes:å i xi = L � 1=2 andå i xi = L + 1=2

where the points between the two hyperplanes are the points assigned toc2. Since all the

points in the design matrix have integer coordinates, the only points that are between these

two hyperplanes are those points for whichå i xi = L. Therefore, the approximation for the

number of points assigned toc2 is non-zero if and only if the answer to Subset Sum is True.

Proof of [Theorem 5.1.3] We prove by a reduction from a decision version of the counting

knapsack problem. The input to the counting knapsack problem consists of a the setW =

f w1; : : : ;wng of positive integer weights, a knapsack sizeL, and a countD. The problem is

to determine whether there are at leastD subsets ofW with aggregate weight at mostL. The

points in our instance ofk-means will be given relationally. We construct a join query withn+

1 columns/attributes, andn tables. All the tables have one column in common and one distinct

column. Thei-th table has2 columns(di ;dn+ 1) and three rowsf (wi ; � 1); (0; � 1); (0;D)g.

Note that the join has2n rows with � 1 in dimensionn+ 1, and one row with values

(0;0; : : : ;0;D). The rows with� 1 in dimensiond + 1 have all the subsets off w1; : : : ;wng

in their �rst n dimensions. Let the two centers fork-means problem be any two centers

c1 andc2 such that a pointx is closer toc1 if it satis�es å n
d= 1xd < L and closer toc2 if it

satis�eså n
d= 1xd > L. Note that the row(0;0; : : : ;0;D) is closer toc1. Therefore, the value

of dimensionn+ 1 of the center of mass for the tuples that are closer toc1 is Y = (D � C)=C

whereC is the actual number of subsets ofW with aggregate weight at mostL. If Y is

negative, then the number of solutions to the counting knapsack instance is at leastD.

5.3 Related Work and Background

Related Work on K-means: Constant approximations are known for thek-means problem

in the standard computational setting [102, 84]. Although the most commonly used algorithm

in practice is a local search algorithm called Lloyd's algorithm, or sometimes confusingly

just called “the k-means algorithm”. Thek-means++ algorithm from [22] is a Q(logk)

approximation algorithm, and is commonly used in practice to seed Lloyd's algorithm. Some

coreset construction methods have been used before to design algorithms for thek-means

problem in other restricted access computational models, including steaming [72, 36], and

the MPC model [66, 26], as well as speeding up sequential methods [111, 128].

5.3 Related Work and Background 93

Relational Algorithms for Learning Problem: Training different machine learning models

on relational data has been studied; however, many of the proposed algorithms are not

ef�cient under our de�nition of a relational algorithm. It has been shown that using repeated

patterns in the design matrix, linear regression, and factorization machines can be imple-

mented [121] more ef�ciently. [92, 126, 6] has improved the relational linear regression and

factorization machines for different scenarios. A uni�ed relational algorithm for problems

such as linear regression, singular value decomposition and factorization machines proposed

in [7]. Algorithms for training support vector machine is studied in [Yang et al., 5]. In [50],

a relational algorithm is introduced for Independent Gaussian Mixture Models, and they have

shown experimentally that this method will be faster than materializing the design matrix.

Relational Algorithm Building Blocks: In the path join scenario, the1- and2-means++

sampling methods introduced in subsection 5.2 have similar procedures: starting with the

�rst table T1, iteratively evaluate some general functionFi(�) de�ned on all rows in the table

Ti , sample one rowr i according to the distribution normalized fromFi(�). The functionFi(�)

for tableTi is de�ned on the matrixr1 on : : : on r i� 1 on J whereJ is the design matrix. This

matrix is also the design matrix of a new relational database, constructed by throwing away

all rows in previous tables apart from the sampledr1; : : : ; r i� 1.

We can generalize the computation ofFi(�) functions into a broader class of queries

that we know could be implemented ef�ciently onanyacyclic relational databases, namely

SumProd queries. See [8] for more details. In the following lemmas assume the relational

database has tablesT1; : : : ;Tm and their design matrix isJ, let n be the maximum number of

rows in each tableTi , mbe the number of tables andd be the number of columns inJ.

De�nition 5.3.1. For the jth feature (j 2 [d]) let q j : R ! Sbe an ef�ciently computable

function that maps feature values to some setS. Let the binary operations� and
 be any

operators such that(S; � ;
) forms a commutative semiring. The value of
L

x2J
N

j2 [d] q j (x j)

is a SumProd query.

Lemma 5.3.1([8]). Any SumProd query can be computed ef�ciently in timeO(md2nfhtw log(n))

where fhtw is the fractional hypertree width of the database. For acyclic databases fhtw=1

so the running time is polynomial.

Despite the cumbersome formal de�nition of SumProd queries, below we list their key

applications used in this paper. With a little abuse of notation, throughout this paper we use

Y(n;d;m) to denote the worst-case time bound on any SumProd queries.

Lemma 5.3.2.Given a pointy 2 R d and a hyper-rectangleb = f x 2 R d : vi � xi � wi ; i =

1; : : : ;dg wherev andw are constant vectors, we letJ \ b denote the data points represented

94 Relational Algorithms For K-Means Clustering

by rows ofJ that also fall intob. Pick any tableTj . Using one single SumProd query we

can compute for allr 2 Tj the valueå p2ron J\ bkp� yk2
2. The time required is at most that

required by one SumProd query,Y(n;d;m).

Lemma 5.3.2 is an immediate result of Theorem A.2.3 and the fact that we can ef�ciently

represent all points fromJ inside any hyper-rectangle by removing some entries in each table

from the original database and taking the join of all tables. The following lemma follows by

an application of the main result in [4]. In Appendix A.1 we formally show to apply their

result to give the following lemma.

Lemma 5.3.3([4]). Given a hyperspheref x 2 R d : kx� y0k2 � z2
0g wherey0 is a given point

andz0 is the radius, a(1+ e)-approximation of the number of points inJ that lie inside this

hypersphere could be computed in O
�

m6 log4n
e2 Y(n;d;m)

�
time.

Notice that a SumProd query could be used to output either a scalar (similar to Lemma

5.3.3) or a vector whose entries are function values for every rowr in a chosen tableTj (in

Lemma 5.3.2). We say the SumProd query isgrouped byTj in the latter case.

5.4 Simulating thek-means++ Algorithm

In this section we describe a relational implementation of thek-means++ algorithm. To give

some intuition, we �rst explained the special case of implementing the algorithm whenk = 3.

Then we generalize this to arbitrary valuedk.

5.4.1 Relational Implementation of 3-means++

Recall that the 3-means++ algorithm picks a pointx to be the third centerc3 with probability

P(x) = L(x)
Y whereL(x) = min(kx� c1k2

2 ;kx� c2k2
2) andY = å x2J L(x) is a normalizing

constant. Conceptually think ofP as being a `hard” distribution to sample from.

Description of the Implementation: The implementation �rst constructs two identically-

sized axis-parallel hypercubes/boxesb1 andb2 centered aroundc1 andc2 that areas large

as possiblesubject to the constraints that the side lengths have to be non-negative integral

powers of2, and thatb1 andb2 can not intersect. Such side lengths could be found since we

may assumec1 andc2 have integer coordinates or they are suf�ciently far away from each

other that we can scale them and increase their distance. Conceptually the implementation

also considers a boxb3 that is the whole Euclidean space.

5.4 Simulating thek-means++ Algorithm 95

Fig. 5.1 Boxes used for sampling the third center

To de�ne our “easy” distributionQ, for each pointx de�ne R(x) to be

R(x) =

8
>>><

>>>:

kx� c1k2
2 x 2 b1

kx� c2k2
2 x 2 b2

kx� c1k2
2 x 2 b3 andx =2 b1 andx =2 b2

In the above de�nition, note that whenx =2 b1 andx =2 b2, the distance ofx to both centers are

relatively similar; therefore, we can assignx to either of the centers – here we have assigned

it to c1. ThenQ(x) is de�ned to beR(x)
Z , whereZ = å x2J R(x) is normalizing constant. The

implementation then repeatedly samples a pointx with probabilityQ(x). After samplingx,

the implementation can either (A) rejectx, and then resample or (B) acceptx, which means

setting the third centerc3 to bex. The probability thatx is accepted after it is sampled isL(x)
R(x) ,

and thus the probability thatx is rejected is 1� L(x)
R(x) .

It is straightforward to see how to computeb1 andb2 (note thatb1 andb2 can be computed

without any relational operations), and how to computeL(x) andR(x) for a particular pointx.

Thus, the only non-straight-forward part is sampling a pointx with probabilityQ(x), which

we explain now:

• The implementation uses a SumProd query to compute the aggregate 2-norm squared

distance fromc1 constrained to points inb3 (all the points) and grouped by tableT1

using Lemma 5.3.2. Let the resulting vector beC. SoCr is the aggregate 2-norm

squared distance fromc1 of all rows in the design matrix that are extensions of rowr

in T1.

• Then the implementation uses a SumProd query to compute the aggregated 2-norm

squared distance fromc2, constrained to points inb2, and grouped byT1. Let the

96 Relational Algorithms For K-Means Clustering

resulting vector beD. Notice that an axis-parallel box constraint can be expressed as a

collection of axis-parallel hyperplane constraints, and for every axis-parallel constraint

it is easy to remove the points not satisfying it from the join by �ltering one of the

input tables having that dimension/feature. Then the sum product query is the same as

the sum product query in the previous step.

• Then the implementation uses a SumProd query to compute the aggregated 2-norm

squared distance fromc1, constrained to points inb2, and grouped byT1 Let the

resulting vector beE.

• Then pick a rowr of T1 with probability proportional toCr � Er + Dr .

• The implementation then replacesT1 by a table consisting only of the picked rowr.

• The implementation then repeats this process on tableT2, then tableT3 etc.

• At the endJ will consist of one point/rowx, where the probability that a particular

pointx ends up as this �nal row isQ(x). To see this note that in the iteration performed

for Ti, C� E is the aggregate 2-norm squared distances toc1 for all points not inb2

grouped byTi, andD is the aggregated squared distances of the points inb2 to c2

grouped byTi .

We now claim that this implementation guarantees thatc3 = x with probabilityP(x). We

can see this using the standard rejection sampling calculation. At each iteration of sampling

from Q, let S(x) be the event that pointx is sampled andA(x) be the event thatx is accepted.

Then,

Pr[S(x) andA(x)] = Pr[A(x)] j S(x)] � Pr[S(x)] =
L(x)
R(x)

Q(x) =
L(x)

Z

Thusx is accepted with probability proportional toL(x), as desired.

As the number of times that the implementation has to sample fromQ is geometrically

distributed, the expected number of times that it will have to sample is the inverse of

the probability of success, which ismaxx
R(x)
L(x) . It is not too dif�cult to see (we prove it

formally in Lemma 5.4.3) thatmaxx
R(x)
L(x) = O(d). It takes3m SumProd queries to sample

from Q. Therefore, the expected running time of our implementation of 3-means++ is

O(mdY(n;d;m)) .

5.4 Simulating thek-means++ Algorithm 97

5.4.2 Simulatingk-means++

It is suf�cient to explain how centerci is picked given the previous centers. Recall that

the k-means++ algorithm picks a pointx to be the centerci with probability P(x) = L(x)
Y

whereL(x) = min j2 [i� 1](

 x� c j

 2

2) andY = å x2J L(x) is a normalizing constant. The

implementation consists of two parts. The �rst part, described in subsubsection The second

part, described in subsubsection 5.4.2 samples according to probability distributionP using

rejection sampling and an “easy” distributionQ that is derived from the boxes constructed in

the �rst part.

Box Construction

Here we explain the algorithm to construct a set of laminar boxes given the centers sampled

in the previous rounds. Note that the centers are explicitly present and we don't need any

relational operation for this algorithm.

Algorithm Description: The algorithm maintains two collectionsGi and B i of tuples

consisting of a box and a point in that box that we refer to as the representative of the box.

When the algorithm terminates,B i will be a laminar collection of boxes that we will use to

de�ne the “easy” probability distributionQ.

Initially Gi consists of a hypercube centered at each previous centerc j , j 2 [i � 1] where

eachd � 1 dimensional simplex is at distance 1 fromc j , with the representative point being

c j . And initially B i is empty. Without loss of generality we can scale so that no pair of

these boxes intersect. Over time, some of the boxes inGi will grow in size, some boxes will

be added toGi and some boxes will be moved fromGi to B i. So one can think ofGi as a

collection of active boxes that might change in the future, and think ofB i as a collection of

inactive boxes that are frozen.

The algorithm repeats the following steps. If there are no pair of boxes inGi that intersect,

then a doubling step is performed. In a doubling step every box inGi is doubled, which

means that eachd� 1 dimensional simplex is moved twice as far away from its representative

point. Otherwise the algorithm picks two arbitrary intersecting boxes fromGi, sayb1 with

representativer1 andb2 with representativer2, and executes what we call a meld step. A

meld step consists of

• Computing the smallest boxb3 that contains bothb1 andb2.

• Adding (b3; r1) to Gi .

• Deleting(b1; r1) and(b2; r2) from Gi .

98 Relational Algorithms For K-Means Clustering

• If b1 was created before the last doubling step (that is,b1 was not melded with another

box since the last doubling step), the implementation computes a boxb0
1 from b1 by

halving, which means that eachd� 1 dimensional simplex is moved so that its distance

to the box's representative is halved. Then(b0
1; r1) is added toB i .

• If b2 was created before the last doubling step, then the implementation computes a

boxb0
2 from b2 by halving, which means that eachd� 1 dimensional simplex is moved

so that its distance to the box's representative is halved. Then(b0
2; r2) is added toB i .

The algorithm terminates when there is only one element(b; r) left in Gi , at which point the

algorithm adds a box that contains the whole Euclidean space with representativer to B i.

Note that at each iteration of the doubling and melding, the boxes which are added toB i are

the ones that after doubling were melded with other boxes (and they are added at their size

before doubling).

Lemma 5.4.1.The collection of boxes inB i constructed the above algorithm is laminar.

Proof of [Lemma 5.4.1]

Note that right before each doubling step, the boxes inGi are disjoint and that is because

the algorithm in the previous iteration melds all the boxes that have intersection with each

other. Now we prove by induction that for every boxb in B i there exist a boxb0 in Gi such

thatb � b0. Since the boxes added toB i in each iteration are a subset of the boxes inGi

before the doubling step, Laminarity ofB i is a straight-forward consequence.

Now we prove that in all time for every boxb in B i there exist a boxb0 in Gi such

thatb � b0. Initially B i is empty and therefore the claim holds. Assume in some arbitrary

iteration` this claim holds right before the doubling step, then after the doubling step since

every box inGi still covers all of the area it was covering before getting doubled, the claim

holds. Furthermore, in the melding step every boxb3 that is resulted from melding of two

boxesb1 andb2 covers bothb1 andb2; therefore,b3 will cover b1 andb2 if they are added to

B i , and if a box inB i was covered by either ofb1 or b2, it will be still covered byb3.

Sampling

To de�ne our easy distributionQ, let b(x) be the minimal box inB i that contains pointx

and letr(x) the representative ofb(x). De�ne R(x) = kx� r(x)k2
2, andQ(x) = R(X)

Z where

Z = å x2J R(x) is a normalizing constant.

Implementation Description: The implementation then repeatedly samples a pointx

with probabilityQ(x). After samplingx, the implementation can either (A) rejectx, and then

5.4 Simulating thek-means++ Algorithm 99

resample or (B) acceptx, which means setting the next centerci is x. The probability thatx is

accepted after it is sampled isL(x)
R(x) , and thus the probability thatx is rejected is 1� L(x)

R(x) .

If S(x) is the the event of initially samplingx from distributionQ, andA(x) is the event

of subsequently acceptingx, we can calculate the probability of acceptingx in a particular

round using the standard rejection sampling calculation:

Pr[S(x) andA(x)] = Pr[A(x) j S(x)] Pr[S(x)] =
L(x)
R(x)

Q(x) =
L(x)

Z

Thus we can see that the probability thatx is sampled is proportional toL(x), as desired.

We now explain how to relationally implement the generation of a pointx with probability

Q(x). The implementation �rst generates a single row from tableT1, then a single row from

tableT2, etc. Then,x would be the concatenation of these rows (join of them). So it is

suf�cient to explain how to implement the generation of a row from an arbitrary tableT̀ .

To generate a row fromT̀ , the implementation recursively computes a vectorC` that has

one entryC`
r for each rowr of T̀ . Initially C` is the all zeros vector. The recursion starts

with the box inB i that is the whole Euclidean space. Assume that it is currently operating

on boxb with representativer. FirstC` is incremented by the aggregate 2-norm squared

distances of points inb from r grouped byT̀ , which can be computed by a SumProd query

with box constraintb and grouped byT̀ . Then let(b1; r1); : : : (bh; rh) be the children of(b; r)

in the laminar decompositionB i. If no such boxes exists, then this is a base case of the

recursion, and no further action is taken. Otherwise for eachj 2 [h], C` is decremented

by a the aggregate 2-norm squared distances of points inb j from r j grouped byT̀ , which

can computed by a SumProd query with box constraintb j grouped by tableT̀ . Then the

implementation recurses on each(b j ; r j) for j 2 [h]. OnceC` is computed, then a rowr is

selected fromT̀ with probability proportional toC`
r , andT̀ is replaced by a table with a

single rowr.

Lemma 5.4.2.Consider the state of the implementation just before it is going to execute

doubling stepj + 1. Consider an arbitrary boxb in Gi at this time, and leth(b) be the number

of centers in b at this time. Let ca be an arbitrary one of these h(b) centers. Then:

A. The distance from ca to any d� 1 dimensional simplex of b is at least2 j .

B. Each side length of b is at most h(b)2 j+ 1.

Proof. The �rst statement is a direct consequence of the de�nition of doubling and melding

since at any point of time the distance of all the centers in a box is at least2 j . To prove

the second statement, we de�ne the assignment of the centers to the boxes as following.

100 Relational Algorithms For K-Means Clustering

Consider the centers inside each boxb right before the doubling step. We call these centers,

the centers assigned tob and denote the number of them byh0(b). When two boxesb1 and

b2 are melding into boxb3, we assign their assigned centers tob3.

We prove each side length ofb is at mosth0(b)2 j+ 1 by induction on the numberj of

executed doubling steps. Sinceh0(b) = h(b) right before each doubling, this will prove the

second statement. The statement is obvious in the base case,j = 0. The statement also

obviously holds by induction after a doubling step asj is incremented and the side lengths

double and the number of assigned boxes don't change. It also holds during every meld step

because each side length of the newly created larger box is at most the aggregate maximum

side lengths of the smaller boxes that are moved toB i, and the number of assigned centers

in the newly created larger box is the aggregate of the assigned centers in the two smaller

boxes that are moved toB i. Note that since for any boxb all the assigned centers tob are

insideb at all times,h0(b) is the number of centers insideb before the next doubling.

Lemma 5.4.3.For all points x, R(x) � O(i2d) � L(x).

Proof. Consider an arbitrary pointx. Let c` , ` 2 [i � 1], be the center that is closest tox

under the 2-norm distance. Assumej is minimal such that just before the(j + 1)-th doubling

round,x is contained in a boxb in Gi . We argue about the state of the algorithm at two times,

the times just before doubling roundj and the timet just before doubling roundj + 1. Let

b be a minimal box inGi that containsx at timet, and lety be the representative for boxb.

Notice that we assignx to the representative of the smallest box inB i that contains it, sox

will be assigned toy. Indeed, none of the boxes added intoB i before timet containsx by the

minimality of j, and when boxb gets added intoB i (potentially after a few more doubling

rounds) it still has the same representativey. By Lemma 5.4.2 the squared distance from

from x to r is at most(i � 1)2d22j+ 2. So it is suf�cient to show that the squared distance

from x to c` is W(2 j).

Let b0be the box inGi that containsc` at times. Note thatx could not have been inside

b0at times by the de�nition of t ands. Then by Lemma 5.4.2 the distance fromc` to the

edge ofb0at timet is at least22j� 2, and hence the distance fromc` to x is also at least22j� 2

asx is outside ofb0.

Theorem 5.4.4.The expected time complexity for this implementation of k-means++ is

O(k3dmY(n;d;m)) .

Proof. When picking centerci, a pointx can be sampled with probabilityQ(x) in time

O(miY(n;m;d)) time. This is becauseB i is sizeO(i), as the laminar decomposition can

be thought of as a tree withi � 1 leaves, the implementation needs to group by each of the

5.5 Weighting the Centers 101

tables. By Lemma 5.4.3, the expected number of times that the implementation will have to

sample fromQ is O(i2d). Summing overi 2 [k], we getO(k3dmY(n;d;m))

5.5 Weighting the Centers

Our algorithm samples a collectionC of k0 = Q(klogN) centers using thek-means++

sampling described in the prior section. We give weights to the centers to get a coreset.

Ideally, we would compute the weights in the standard way. That is, letwi denote the

number of points that are closest to pointci among all centers inC. These pairs of centers

and weights(ci ;wi) are known to form a coreset. Unfortunately, as stated in Theorem 5.1.2,

computing suchwi 's even approximately isNP hard. Instead, we will �nd a different set of

weights which still form a coreset and are computable.

Next we describe a relational algorithm to compute a collectionW0 of weights, one

weight w0
i 2 W0 for each centerci 2 C. The proof that the centers with these alternative

weights(ci ;w0
i) also form a coreset is postponed until the appendix.

Algorithm for Computing Alternative Weights: Initialize the weightw0
i for each center

ci 2 C to zero. In thed-dimensional Euclidean space, for each centerci 2 C, we generate a

collection of hyperspheres (also namedballs) f Bi; jg j2 [lgN], whereBi; j contains approximately

2 j points fromJ. The space is then partitioned intof Bi;0;Bi;1 � Bi;0;Bi;2 � Bi;1; : : :g. For

each partition, we will sample a small number of points and use this sample to estimate

the number of points in this partition that are closer toci than any other centers, and thus

aggregatingw0
i by adding up the numbers. Fix small constantse;d > 0. The following steps

are repeated forj 2 [lgN]:

• Let Bi; j be a ball of radiusr i; j centered atci . Find ar i; j such that the number of points in

J \ Bi; j lies in the range[(1� d)2 j ; (1+ d)2 j]. This is an application of Lemma 5.3.3.

• Let t be a constant that is at least30. A collectionTi; j of t
e2k02 log2N “test” points

are independently sampled following the sameapproximately uniform distribution

with replacement from every ballBi; j . Here an “approximately uniform” distribution

means one where every pointp in Bi; j is sampled with a probabilitygp;i; j 2 [(1 �

d)=jBi; j j; (1+ d)=jBi; j j] on each draw. This can be accomplished ef�ciently similar

to the techniques used in Lemma 5.3.3 from [4]. Further elaboration is given in the

Appendix A.1.

• Among all sampled pointsTi; j , �nd Si; j , the set of points that lie in the“donut”

Di; j = Bi; j � Bi; j � 1. Then the cardinalitysi; j = jSi; j j is computed.

102 Relational Algorithms For K-Means Clustering

• Findti; j , the number of points inSi; j that are closer toci than any other center inC.

• Compute the ratio ratio0i; j = ti; j
si; j

(if si; j = ti; j = 0 then ratio0i; j = 0).

• If ratio0
i; j � 1

2k02 logN
thenw0

i is incremented by ratio0i; j � 2 j � 1, elsew0
i stays the same.

At �rst glance the algorithm appears naive:w0
i can be signi�cantly underestimated if in

some donuts only a small portion of points are closest toci , making the estimation inaccurate

based on sampling. However, in Appendix 5.5.1, we prove the following theorem which

shows that the alternative weights computed by our algorithm actually form a coreset.

The running time of a naive implementation of this algorithm would be dominated

by sampling of the test points. Sampling a single test point can be accomplished withm

applications of the algorithm from [4] and setting the approximation error tod = e=m. Recall

the running time of the algorithm from [4] is O
�

m6 log4n
d2 Y(n;d;m)

�
. Thus, the time to

sample all test points isO
�

k02m9 log6n
e4 Y(n;d;m)

�
. Substituting fork0, and noting thatN � nm,

we obtain a total time for a naive implementation ofO
�

k2m11 log8n
e4 Y(n;d;m)

�
.

5.5.1 Analysis of the Weighting Algorithm

The goal in this subsection is to prove the following Theorem 5.5.1 which states that the

alternative weights form anO(1)-approximate coreset with high probability. Throughout our

analysis, “with high probability” means that for any constantr > 0 the probability of the

statement not being true can be made less than1
Nr asymptotically by appropriately setting

the constants in the algorithm.

Theorem 5.5.1.The centersC, along with the computed weightsW0, form anO(1)-approximate

coreset with high probability.

Intuitively if a decent fraction of the points in each donut are closer to centerci than

any other center, then Theorem 5.5.1 can be proven by using a straight-forward application

of Chernoff bounds to show that each alternate weightw0
i is likely close to the true weight

wi. The conceptual dif�cultly is if only a very small portion of points in a donutDi; j are

closer toci than any other points, in which case the estimatedratio0
i; j < 1

2k02 logN
and thus

the “uncounted” points inDi; j would contribute no weight to the computed weightw0
i. We

call this theundersampledcase. If many docuts around a centeri are undersampled, the

computed weightw0
i may well poorly approximate the actual weightwi .

To address this, we need to prove that omitting the weight from these uncounted points

does not have a signi�cant impact on the objective value. We break our proof into four parts.

5.5 Weighting the Centers 103

The �rst part, described in subsubsection 5.5.1, involves conceptually de�ning a fractional

weight wf
i for each centerci 2 C. Each point has a weight of1, and instead of giving

all this weight to its closes center, we allow fractionally assigning the weight to various

“near” centers.wf
i is then the aggregated weight over all points forci. The second part,

described in subsubsection 5.5.1, establishes various properties of the fractional weight that

we will need. The third part, described in subsubsection 5.5.1, shows that each fractional

weightwf
i is likely to be closely approximated the computed weightw0

i. The fourth part,

described in subsubsection 5.5.1, shows that the fractional weights for the centers inC form

aO(1)-approximate coreset. Subsubsection 5.5.1 also contains the proof of Theorem 5.5.1.

De�ning the Fractional Weights

To de�ne the fractional weights we �rst de�ne an auxiliary directed acyclic graphG = (S;E)

where there is one node inScorresponding to each row inJ. For the rest of this section,

with a little abuse of notation we useSto denote both the nodes in graphG, and the set of

d-dimensional data points in the design matrix. Letp be an arbitrary point inS� C. Leta (p)

denote the subscript of the center closest top, i.e., if ci 2 C is closest top thena (p) = i. Let

Di; j be the donut aroundci that containsp. If Di; j is not undersampled thenp will have one

outgoing edge(p;ci). So let us now assume thatDi; j is undersampled. De�ning the outgoing

edges fromp in this case is a bit more complicated.

Let Ai; j be the pointsq2 Di; j that are closer toci than any other center inC (i.e.,a (q) = i).

If j = 1 thenDi;1 contains only the pointp, and the only outgoing edge fromp goes toci.

So let us now assumej > 1. Let ch the center that is closest to the most points inDi; j � 1, the

next donut in towardci from Di; j . That isch = argmaxc j2C å q2Di; j � 1
1a (q)= c j

. Let Mi; j � 1 be

points inDi; j � 1 that are closer toch than any other center. That isMi; j � 1 is the collection of

q 2 Di; j � 1 such thata (q) = h. Then there is a directed edge fromp to each point inMi; j � 1.

Before de�ning how to derive the fractional weights fromG, let us take a detour to note that

G is acyclic.

Lemma 5.5.2.G is acyclic.

Proof. Consider a directed edge(p;q) 2 E, andci be the center inC that p is closest

to, andDi; j the donut aroundci that containsp. Then sincep 2 Di; j it must be the case

that kp� cik
2
2 > r i; j � 1. Sinceq 2 Bi; j � 1 it must be the case thatkq� cik

2
2 � r i; j � 1. Thus

kp� cik
2
2 > kq� cik

2
2. Thus the closest center toq must be closer toq than the closest center

to p is to p. Thus as one travels along a directed path inG, although identify of the closest

center can change, the distance to the closest center must be monotonically decreasing. Thus,

G must be acyclic.

104 Relational Algorithms For K-Means Clustering

We explain how to compute a fractional weightwf
p for each pointp 2 Susing the network

G. Initially eachwf
p is set to 1. Then conceptually these weights �ow toward the sinks inG,

splitting evenly over all outgoing edges at each vertex. More formally, the following �ow

step is repeated until is no longer possible to do so:

Flow Step: Let p 2 Sbe an arbitrary point that currently has positive fractional weight and

that has positive outdegreeh in G. Then for each directed edge(p;q) in G incrementwf
q by

wf
p=h. Finally setwf

p to zero.

As the sinks inG are exactly the centers inC, the centers inC will be the only points

that end up with positive fractional weight. Thus we usewf
i to refer to the resulting fractional

weight on centerci 2 C.

Properties of the Fractional Weights

Let ratioi; j be the fraction of points that are closest toci among all centers inC in this donut

Di; j = Bi; j � Bi; j � 1. We show in Lemma 5.5.3 and Lemma 5.5.5 that with high probability,

either the estimated ratio is a good approximation ofratioi; j , or the real ratioratioi; j is very

small.

We show in Lemma 5.5.7 that the maximum �ow through any node is bounded by1+ e

whenN is big enough. This follows using induction because each point hasW(k0logN)

neighbors and every point can have in degree from one set of nodes per center. We further

know every point that is not uncounted actually contributes to their centers weight.

Lemma 5.5.3.With high probability eitherjratioi; j � ratio0
i; j j � eratioi; j or ratio0

i; j � 1
2k02 logN

.

To prove Lemma 5.5.3, we use the following Chernoff Bound.

Lemma 5.5.4.Consider Bernoulli trialsXi ; : : : ;Xn. LetX = å n
i= 1Xi andm= E[X]. Then,

for anyl > 0:

Pr[X � m+ l] � exp
�

�
l 2

2m+ l

�
Upper Chernoff Bound

Pr[X � m� l] � exp
�

�
l 2

3m

�
Lower Chernoff Bound

Proof. Proof of Lemma 5.5.3: Fix any centerci 2 C and j 2 [logN]. By applying the low

Chernoff bound from Lemma 5.5.4 it is straight forward to conclude thatt is large then with

high probability at least a third of the test points in eachTi; j are in the donutDi; j . That is,

with high probabilitysi; j � t
3e2k02 log2N . So let us consider a particularTi; j and condition

si; j having some �xed value that is at least13e2k02 log2N. Sosi; j is conditioned on being large.

5.5 Weighting the Centers 105

Recall ti; j = å p2Wi; j (1p2Ti; j)(1a (p)= i), and the indicator random variables1p2Ti; j are

Bernoulli trials. Further note by the de�nition ofgp;i; j it is the case thatE[ti; j] = å p2Wi; j gp;i; j (1a (p)= i).

Further note that as the sampling of test points is nearly uniform thatfi; j (1� d)si; j � E[ti; j] �

fi; j (1+ d)si; j . For notational convenience, letm= E[ti; j]. We now break the proof into three

cases, that cover the ways in which the statement of this lemma would not be true. For each

case, we show with high probability the case does not occur.

Case 1:ratio0
i; j � 1

2k02 logN
and ratioi; j > 1� e

2k02 logN and ratio0
i; j � (1+ e)ratioi; j . We are

going to prove the probability of this case happening is very low. If we setl = em, then

using Chernoff bound, we have

Pr[ti; j � (1+ e)m] � exp
�

�
(em)2

2m+ em

�
[Upper Chernoff Bound]

� exp
�

�
e2(1� d)ratioi; jsi; j

2+ e

�
[m� (1� d)ratioi; jsi; j]

� exp
�

�
e2(1� d)(1� e)si; j

3(2k02 logN)

�
[ratioi; j >

1� e
2k02 logN

]

� exp

�
e2(1� d)(1� e)t k02 log2N

3(2k02 logN)(3e2)

!

[si; j �
t

3e2k02 logN]

= exp
�

�
(1� d)(1� e)t logN

18

�

Therefore, ford � e=2 � 1=10 andt � 30 this case cannot happen with high probability.

Case 2:ratio0
i; j � 1

2k02 logN
and ratioi; j > 1� e

2k02 logN and ratio0
i; j < (1� e)ratioi; j . We can

use Lower Chernoff Bound withl = emto prove the probability of this event is very small.

Pr[ti; j � (1� e)m] � exp
�

�
(em)2

3m

�

� exp
�

�
e2(1� d)ratioi; jsi; j

3

�
[m� (1� d)ratioi; jsi; j]

� exp
�

�
e2(1� d)(1� e)si; j

3(2k02 logN)

�
[ratioi; j >

1� e
2k02 logN

]

� exp

�
e2(1� d)(1� e)t k02 log2N

3(2k02 logN)(3e2)

!

[si; j �
t

3e2k02 logN]

= exp
�

�
(1� d)(1� e)t logN

18

�

Therefore, ford � e=2 � 1=10andt � 30 this case cannot happen with high probability.

106 Relational Algorithms For K-Means Clustering

Case 3:ratio0
i; j � 1

2k02 logN
and ratioi; j � 1� e

2k02 logN
: Since ratio0i; j = ti; j

si; j
, in this case:

ti; j �
si;

2k02 logN
(5.1)

Sincem� fi; j (1+ d)si; j , in this case:

m�
1� e

2k02 logN
(1+ d)si; j (5.2)

Thus subtracting line 5.1 from line 5.2 we conclude that:

ti; j � m+
(e� d + ed)si; j

2k02 logN
(5.3)

Let l = (e� d+ ed)si; j

2k02 logN
. We can conclude that

Pr[ti; j � m+ l] � exp
�

�
l 2

2m+ l

�
Upper Chernoff Bound

� exp

0

@ � l 2

1� e
2k02 logN

(1+ d)si; j + l

1

A Using line 5.2

= exp

0

B
@

�
�

(e� d+ ed)si; j

2k02 logN

� 2

1� e
2k02 logN

(1+ d)si; j + (e� d+ ed)si; j

2k02 logN

1

C
A

= exp

0

B
@

�
�

(e� d+ ed)2si; j

k02 logN

�

2(1� e)(1+ d)+ 2(e� d + ed)

1

C
A

� exp
�

� (e � d + ed)2si; j

12k02 logN

�

= exp
�

� (e � d + ed)2t logN
12e2

�
Substituting our lower bound onsi; j

Therefore, ford � e=2 � 1=10 andt � 30 this case cannot happen with high probability.

The next case proves the how largef 0
i; j is when we know thatfi; j is large.

Lemma 5.5.5. If ratioi; j > 1+ e
2k02 logN then with high probabilityratio0

i; j � 1
2k02 logN .

5.5 Weighting the Centers 107

Proof. We can prove that the probability ofratio0
i; j < 1

2k02 logN andratioi; j � 1+ e
2k02 logN is small.

Multiplying the conditions for this case bysi; j we can conclude thatti j < si; j

2k02 logN
and

m� (1� d) (1+ e)si; j

2k02 logN
. And thusti; j � m� l wherel = (e� d� ed)si; j

2k02 logN
. Then we can conclude

that:

Pr[ti; j � m� l] � exp
�

�
l 2

3m

�
[Lower Chernoff Bound]

= exp

0

B
@�

�
(e� d� ed)si; j

2k02 logN

� 2

3m

1

C
A

� exp

0

B
@�

�
(e� d� ed)si; j

2k02 logN

� 2

3 1� e
2k02 logN

(1+ d)si; j

1

C
A

= exp

0

B
@�

�
(e� d� ed)2si; j

2k02 logN

�

3(1� e)(1+ d)

1

C
A

� exp
�

� (e � d � ed)2si; j

12k02 logN

�
[d < e � 1]

� exp

� (e � d � ed)2(t

3e2k02 log2N)

12k02 logN

!

[Using our lower bound onsi; j]

Therefore, ford � e=2 � 1=10 andt � 30 this case cannot happen with high probability.

We now seek to bound the fractional weights computed by the algorithm. LetDi(p)

denote the total weight received by a pointp 2 SnC from other nodes (including the initial

weight one onp). Furthermore, letDo(p) denote the total weight sent byp to all other nodes.

Notice that in the �ow stepDo(p) = Di(p) for all p in SnC.

Lemma 5.5.6.Let Di(p) denote the total weight received by a pointp 2 SnC from other

nodes (including the initial weight one onp). Furthermore, letDo(p) denote the total

weight sent byp to all other nodes. With high probability, for allq 2 S, Di(q) � 1+
1+ 2e
logN maxp:(p;q)2E Do(p).

Proof. Fix the pointq that redirects its weight (has outgoing arcs inG). Consider its direct

predecessors:P(q) = f p : (p;q) 2 Eg. PartitionP(q) as follows:P(q) =
S

i= 1;:::;k0Pci (q),

108 Relational Algorithms For K-Means Clustering

wherePci (q) is the set of points that have �owed their weights intoq, butci is actually their

closest center inC. Observe the following. The pointq can only belong to one donut around

ci. Due to this,Pci (q) is either empty or contains a set of points in a single donut aroundci

that redirect weight toq.

Fix Pci (q) for someci . If this set is non-empty suppose this set is in thej-th donut around

ci . Conditioned on the events stated in Lemmas 5.5.3 and 5.5.5, since the points inPci (q) are

undersampled, we havejPci (q)j � (1+ e)2 j � 1

2k02 logN
. Consider anyp 2 Pci (q). Let bi be the number

of points thatp charges its weight to (this is the same for all such pointsp). It is the case that

bi is at least(1� d)2 j � 1

2k0 sincep �ows its weights to the points that are assigned to the center

that has the most number of points assigned to it fromci 's (j � 1)th donut.

Thus,q receives weight fromjPci (q)j � (1+ e)2 j � 1

2k02 logN
points and each such point gives its

weight to at least(1� d)2 j � 1

2k0 points with equal split. The total weight thatq receives from

points inPci (q) is at most the following.

2k0

(1� d)2 j � 1 å
p2Pci (q)

Do(p)

�
2k0

(1� d)2 j � 1 å
p2Pci (q)

max
p2Pci (q)

Do(p)

�
2k0

(1� d)2 j � 1 �
(1+ e) � 2 j � 1

2k02 logN
max

p2Pci (q)
Do(p) [jPci (q)j � (1+ 2e)2 j � 1

2k02 logN
]

�
1+ 2e
k0logN

max
p2Pci (q)

Do(p) [d � e
2 � 1

10]

Switching the max tomaxp:(p;q)2E Do(p), summing over all centersci 2 C and adding

the original unit weight onq gives the lemma.

The following crucial lemma bounds the maximum weight that a point can receive.

Lemma 5.5.7.Fix h to be a constant smaller thanlog(N)
10 ande < 1. Say that for allq 2 SnC

it is the case thatDo(q) = hDi(q). Then, with high probability for anyp 2 SnC it is the case

thatDi(p) � 1+ 2h
logN .

Proof. We can easily prove this by induction on nodes. The lemma is true for all nodes

that have no incoming edges inG. Now assume it is true for all nodes whose longest path

that reaches them inG has lengtht � 1. Now we prove it for nodes whose longest path

that reaches then inG is t. Fix such a nodeq. For any nodep such that(p;q) 2 E, by

5.5 Weighting the Centers 109

induction we haveDi(p) � 1+ 2h
logN , soDo(p) � 2(1+ 2h

logN). By Lemma 5.5.6,Di(q) �

1+ 1+ 2e
logN maxp:(p;q)2E Do(p) � 1+

�
h(1+ 2e)

logN

� �
1+ 2h

logN

�
= 1+ h

logN + h
logN � 2(1+ 2e)h+ 2e

logN �

1+ 2h
logN .

Comparing Alternative Weights to Fractional Weights

It only remains to bound the cost of mapping points to the centers they contribute weight

to. This can be done by iteratively charging the total cost of reassigning each node with the

�ow. In particular, each point will only pass its weight to nodes that are closer to their center.

We can charge the �ow through each node to the assignment cost of that node to its closest

center, and argue that the cumulative reassignment cost bounds the real fractional assignment

cost. Further, each node only has1+ e �ow going through it. This will be suf�cient to bound

the overall cost in Lemma 5.5.9.

Lemma 5.5.8.With high probability, for every centerci, it is the case that the estimated

weightw0
i computed by the weighting algorithm is(1� 2e)wf

i wherewf
i is the fractional

weight of i.

Proof. Apply union of bounds to Lemma 5.5.3 and 5.5.5 over alli and j.

Fix a centerci . Consider all of the points that are closest toci and are not undersampled.

Let ws
i denote the number of these points. All the incomming edges toci in G, are coming

from these points; therefore based on Lemma 5.5.7,ws
i � wf

i � ws
i (1+ 2

log(N)). On the other

hand,w0
i is (1� e) approximation ofws

i . Therefore, 1� e
1+ 2

log(N)
wf

i � w0
i � (1+ e)wf

i . Assuming

that logN is suf�ciently larger thane, the lemma follows.

Comparing Fractional Weights to Optimal

Next we bound the total cost of the fractional assignment de�ned by the �ow. According

to the graphG, any pointp 2 Sandci 2 C, we letw(p;ci) be the fraction of weights that

got transferred fromp to ci. Naturally we haveå ci2C w(p;ci) = 1 for any p 2 S and the

fractional weightswf
i = å p2Sw(p;ci) for anyci 2 C.

Lemma 5.5.9. Let f opt be the optimalk-means cost on the original setS. With high

probability, it is the case that:

å
p2S

å
ci2C

w(p;ci)kp� cik2 � 160(1+ e)f opt

110 Relational Algorithms For K-Means Clustering

Proof. Let f � = å p2Skp� ca (p)k
2. Consider anyp 2 Sand centerci such thatw(p;ci) > 0.

Let P be any path fromp to ci in G. If node p's only outgoing arc is to its closest center

ca (p) = ci, thenP = p ! ci, we haveå c2C w(p;c)kp � ck2 = kp � ca (p)k
2. Otherwise

assumeP = p ! q1 ! q2 ! : : : ! q` ! ci . Note that the closest center toq` is ci . Let D(P)

be the fraction of the original weight of1 on p that is given toci along this path according to

the �ow of weights. As we observed in the proof of Lemma 5.5.2, we havekp� ca (p)k >

kq1 � ca (p)k � k q1 � ca (q1)k > kq2 � ca (q1)k � k q2 � ca (q2)k > : : : > kq` � ca (q`)k. This

follows because for any arc(u;v) in the graph,v is in a donut closer toca (u) than the donutu

is in, andv is closer toca (v) thanca (u).

We make use of the relaxed triangle inequality for squared`2 norms. For any three points

x;y;z, we havekx� zk2 � 2(kx� yk2 + ky� zk2). Thus, we boundkp� cik2 by

kp� cik2 = kp� ca (p) + ca (p) � q1 + q1 � cik2

� 2kp� ca (p) + ca (p) � q1k2 + 2kq1 � cik2 [relaxed triangle inequality]

� 2(kp� ca (p)k+ kca (p) � q1k)2 + 2kq1 � cik2 [triangle inequality]

� 8kp� ca (p)k
2 + 2kq1 � cik2 [kp� ca (p)k � k ca (p) � q1k]:

Applying the prior steps to eachqi gives the following.

kp� cik2 � 8(kp� ca (p)k
2 +

`

å
j= 1

2 jkq j � ca (q j)k
2)

Let P q(j) be the set of all pathsP that reach pointq using j edges. Ifj = 0, it meansP

starts with pointq. We seek to boundå ¥
j= 02 j å P2P q(j) D(P)kq� ca (q j)k

2. This will bound

the charge on pointq above over all pathP that contains it.

De�ne a weight functionD0(p) for each nodep 2 SnC. This will be a new �ow of

weights likeD, except now the weight increases at each node. In particular, give each node

initially a weight of1. Let D0
o(p) be the total weight leavingp. This will be evenly divided

among the nodes that have outgoing edges fromp. De�ne D0
i(p) to be the weight incoming

to p from all other nodes plus one, the initial weight ofp. SetD0
o(p) to be2D0

i(p), twice the

incoming weight.

Lemma 5.5.7 implies that the maximum weight of any pointp is D0
i(p) � 1+ 4

logN . Further

notice that for anyq it is the case thatD0
i(q) = å ¥

j= 02 j å P2P q(j) D(P). LettingP (p;ci) be

the set of all paths that start atp to centerci. Notice such paths correspond to howp's unit

weight goes toci. We havew(p;ci) = å P2P (p;ci) D(P). Let P denote the set of all paths,

`(P) denote the length of pathP (number of edges onP) , and letP(j) denote thejth node

on pathP. Thus we have the following.

5.5 Weighting the Centers 111

å
p2S

å
ci2C

w(p;ci)kp� cik2

= å
p2S

å
ci2C

å
P2P (p;ci)

D(P)kp� cik2

� 8 å
p2S

å
ci2C

å
P2P (p;ci)

D(P)(
`(p)� 1

å
j= 0

2 jkP(j) � ca (P(j)) k
2)

= 8 å
P2P

D(P)(
`(p)� 1

å
j= 0

2 jkP(j) � ca (P(j)) k
2)

= 8 å
q2S

+ ¥

å
j= 0

å
P2P q(j)

2 jD(P)kq� ca (q)k
2

= 8 å
q2S

D0
i(q)kq� ca (q)k

2

� å
q2S

8(1+
4

logN
)kq� ca (q)k

2 = 8(1+
4

logN
)f �

Lemma 5.5.9 follows because ifk0 � 1067klogN, f � � 20f opt with high probability by

Theorem 1 in [10].

Finally, we prove that �nding anyO(1)-approximation solution for optimal weighted

k-means on the set(C;W0) gives a constant approximation for optimalk-means for the

original setS. LetW f = f wf
1; : : : ;wf

k0g be the fractional weights for centers inC. Let f �
W f

denote the optimal weightedk-means cost on(C;W f), andf �
W0 denote the optimal weighted

k-means cost on(C;W0). We �rst prove thatf �
W f = O(1)f OPT, wheref OPT denote the

optimalk-means cost on setS.

Lemma 5.5.10.Let (C;W f) be the set of points sampled and the weights collected by

fractional assignmentw. With high probability, we havef �
W f = O(1)f OPT.

Proof. Consider the cost of the fractional assignment we've designed. Forci 2 C, the weight

is wf
i = å p2Sw(p;ci). Denote thek-means cost ofw by f w = å p2Så c2C w(p;c)kp� ck2.

By Lemma 5.5.9, we have thatf w � 160(1+ e)f OPT.

Intuitively, in the following we showf �
W f is close tof w. As always, we letCOPT denote

the optimal centers fork-means on setS. For set of pointsX with weightsY : X ! R+ and a

set of centersZ, we letf (X;Y)(Z) = å x2X Y(x) minz2Z kx� zk2 denote the cost of assigning

112 Relational Algorithms For K-Means Clustering

the weighted points inX to their closest centers inZ. Note thatf �
W f � f (C;W f)(COPT) since

COPT is chosen with respect toS.

f �
W f � f (C;W f)(COPT)

= å
ci2C

(å
p2S

w(p;ci)) min
c2COPT

kci � ck2 [wf
i = å p2Sw(p;ci)]

= å
ci2C

å
p2S

min
c2COPT

w(p;ci)kci � ck2

� å
ci2C

å
p2S

min
c2COPT

w(p;ci) � 2(kp� cik2 + kp� ck2) [relaxed triangle inequality]

= 2f w + 2f OPT � 322(1+ e)f OPT

Using the mentioned lemmas, we can prove the �nal approximation guarantee.

Proof of [Theorem 5.5.1] Using Lemma 5.5.8, we knoww0
i = (1� 2e)wf

i for any center

ci. Let C0
k bek centers for(C;W0) that is ag-approximate for optimal weightedk-means.

Let C f
OPT be theoptimal k centers for(C;W f), andC0

OPT optimal for (C;W0). We have

f (C;W f)(C
0
k) � (1+ 2e)f (C;W0)(C

0
k) for the reason that the contribution of each point grows

by at most(1+ 2e) due to weight approximation. Using the same analysis,f (C;W0)(C
f

OPT) �

(1+ 2e)f �
W f . Combining the two inequalities, we have

f (C;W f)(C
0
k) � (1+ 2e)2f (C;W0)(C

0
k) � (1+ 2e)2gf �

W0

� (1+ 2e)2gf (C;W0)(C
f

OPT) [by optimality of f �
W0]

� (1+ 2e)3gf �
W f � 322g(1+ 2e)4f OPT [using Lemma 5.5.10]

(5.4)

Let f S(C0
k) = å p2Sminc2C0

k
kp� ck2. For every pointp2 S, to bound its costminc2C0

k
kp�

ck2, we use multiple relaxed triangle inequalities for every centerci 2 C , and take the

weighted average of them usingw(p;ci).

5.6 Conclusion 113

f S(C0
k) = å

p2S
min
c2C0

k

kp� ck2

= å
p2S

å
ci2C

w(p;ci) min
c2C0

k

kp� ck2 [å ci2C w(p;ci) = 1]

� å
p2S

å
ci2C

w(p;ci) min
c2C0

k

2(kp� cik2 + kci � ck2) [relaxed triangle inequality]

= 2f w + 2f (C;W f)(C
0
k) [å p2Sw(p;ci) = wf

i]

� 2f w + 2� 322g(1+ 2e)4f OPT [inequality (5.4)]

� 2� 160(1+ e)f OPT + 2� 322g(1+ 2e)4f OPT [Lemma 5.5.9]

= O(g)f OPT

5.6 Conclusion

The next natural steps in this line of research are to determine which other standard learning

algorithms can be implemented relationally, and which other standard learning problems

admit relational algorithms. The hope would be that such algorithms would/could eventually

be implemented in software products like BigQuery ML [big].

Looking further out, one could imagine a middleware of relational algorithms incorpo-

rated into a database that application builders could use in the development of algorithms

for their homegrown optimization problem (which may or may not arise from a learning

application). Thus natural broader research goals are to develop generally applicable algo-

rithmic design and analysis tools, and to determine what are the “right” relational algorithms

to include in such a middleware (because the problem that they solve is a commonly useful

basic building block for the development of other algorithms).

Chapter 6

Scalable Hierarchical Clustering in

General Metric Spaces

6.1 Introduction

In Chapter 4 we have studied the scalable agglomerative hierarhical clustering problem.

In this chapter we revisit the problem in a more general setting, where previous algorithm

designs cannot be directly applied.

For ` p metrics, both Abboud et al.[3] and Lavastida et al.[100] showed how to use

Approximate Nearest Neighbor (ANN) data structure to improve the running time to be

subquadratic for average linkage. The ANN data structure, constructed based on locality

sensitive hashing (LSH), can be used to quickly �nd points that are close to any given point.

In this work we generalize their approach and show how to implement it in any space where

a hashing function like LSH exists so that an ANN data structure can be constructed. Our

�rst key technical contribution is a new way to use ANN data structures to compute average

similarity between a pair of clusters.

Many problems, however, are best captured by general metric spaces for whichANN

schemes do not exist. Consider, for instance, the shortest path metric on a road graph. A

general road network does not have a good ANN and therefore there is no fast average-linkage

algorithm known. To overcome this we could use the latitude and longitude as the Euclidean

location of points and usè2 distance to be aproxy for the road network distance. Then we

have a space where LSH and an ANN data structure exists and we can leverage our algorithm.

This has issues though because while the road distance and proxy are often close, natural

obstacles like mountains and rivers may cause two points that are in close proximity in the

Euclidean space are far apart according to the road metric.

116 Scalable Hierarchical Clustering in General Metric Spaces

This phenomenon is common. In several instances we have a well-behaved proxy

metric that approximately preserves distances for majority of point pairs in the input.

For instance, the distances between points after applying dimension reduction like John-

son–Lindenstrauss [62] or metric embedding [78]. Using these techniques, most pairwise

distances are approximately preserved, but a few of the pairs have high error.

This paper investigate how one can use such proxies to improve running times of hierar-

chical clustering in general metric spaces. One can, of course, directly use them in place of

the true metric to compute a hierarchical clustering in linear time. This approach has two

drawbacks. First it leads to poor solutions as small errors can propagate and lead to a very

different solution. Second, it is brittle and offers no trade-off between the quality of the

solution and the running time. In contrast, we show how to use proxy metrics, ANN data

structures, and the original metric in a way that allows us to keep the subquadratic running

time and only pay a small cost in the accuracy of the �nal clustering. Our methods are

applicable to any general metric for which such a proxy exists. The algorithm is evaluated

with theoretical analysis and we further verify its effectiveness in several experiment settings

derived from real-life scenarios. We show that despite the proxy locally distorting the original

metric for some pairs, empirically our algorithm is able to make up for the distortion and

identi�es the approximately closest clusters to merge.

Related work. Hierarchical clustering received renewed attention in the community with

a breakthrough result by [61] followed by [58] and [115]. [13] and [43] gave stronger

theoretical justi�cations. These developments have been covered in previous chapters, mostly

in Section 2.2.

The focus of our work is on improving the running time of hierarchical clustering

algorithms in general metric spaces. Our main tool will be that of locality sensitive hashing

(LSH), �rst introduced by [79], that has had many developments, see for instance [19].

However, as [54] showed formally, not all metric spaces support such Approximate Nearest

Neighbor (ANN) data structures.

For hierarchical clustering speci�cally, [3] recently gave a way to use locality sensitive

hashing to speed up average linkage algorithms. Critically, however, the methods in [3]

only work for `1 spaces. We extend them to use arbitrary ANN data structures by identifying

invariant properties that make speed improvements possible.

Our Contributions In this work we give new algorithms for improving the running time

of hierarchical clustering algorithms.

6.2 Preliminaries 117

1. We show how to use Approximate Nearest Neighbor (ANN) data structures to speed

up running times of single-linkage and average-linkage algorithms.

2. In general metric spaces, when ANN data structures are not available, we show how to

use proxy metrics to trade-off accuracy with running time.

3. We demonstrate such a trade-off empirically, and show how to �nd hierarchical clus-

terings within a few percent of optimal in near linear running time.

6.2 Preliminaries

Linkage-based algorithms. Both average-linkage and single linkage have been de�ned

in Section 2.2. Here we note that the single linkage algorithm is equivalent to Kruskal

algorithm for computing the Minimum Spanning Tree (MST) on the complete graph where

edge weights correspond to the distance between points. We will also be interested in

the approximate version of Kruskal algorithm, which selects any edge at each step whose

distance is within a factorc of the smallest edge between different components. This version

always returns a tree of weight at mostc times optimal [37].

Approximate Nearest Neighbors. A key building block of our techniques will be the

approximate nearest neighbor (ANN) data structure, as is already de�ned in Section 4.2.2.

We recall here key facts about LSH and ANN, adopting the new notation in this chapter.

The ANN data structure relies on an existence of a family of hash functionsH with

eachh 2 H a function fromSto Z, that map nearby points to the same hash value. Let

BS(q; r) denote the set of points inSthat has distance at mostr from pointq 2 S. We have

the de�nition of (r;gr; p1; p2)-sensitiveness:

De�nition 6.2.1 ((r;gr; p1; p2)-sensitiveness). For any target distancer, point setSand any

query pointq 2 S, given a constant factorg (g > 1), the hash functionh is (r;gr; p1; p2)-

sensitive, if forp1 > p2:

• 8v 2 BS(q; r), Pr[h(q) = h(v)] � p1

• 8v =2 BS(q;gr), Pr[h(q) = h(v)] � p2

FamiliesH satisfying these constraints are known to exist for` p norm distances in

Euclidean space forp 2 (0;2] [64], and are known not to exist for some metric spaces [54].

Using a family of such functionsH we can construct a data structure for approximate

nearest neighbor queries.

118 Scalable Hierarchical Clustering in General Metric Spaces

As we mentioned, such a family of functionsH might not exist for a general distance

function d : S� S7! R+ we are considering. However, assume we have aproxy metric

d0: S� S7! R+ that approximatesd by a factor ofb � 1. Up to scaling, we assume that for

any pair of points(x;y) 2 S� S, 1
b � d0(x;y)

d(x;y) � 1. If there exists an ANN data structure for

d0, usingd0as a proxy ford and applying a(r;g0r; p1; p2)-sensitive function ond0gives a

(r;bg0r; p1; p2)-sensitive function ford. Then, we can combine the proxy metricd0and its

LSH function to construct a data structure that works ford as well.

De�nition 6.2.2. For any set of pointsP � S, QP(q; r) is a valid(r;g)-Near-Neighbor (NN)

query, if it satis�es these conditions:

• If BP(q; r) = /0, thenQP(q; r) returns /0.

• If BP(q; r) 6= /0, thenQP(q; r) gives a pointp 6= q 2 P, such thatd(p;q) � g� r.

We call the point found by an approximate NN-query aneighbor.

[79] and [64] described the way to build a data structureD (S;r;g) that allows one to

answer(r;g)-NN queries on any subsetP using(r;gr; p1; p2)-sensitive hashes. Importantly,

the queries run in time sublinear injSj.

We letn = jSj andH(n) denote the time needed to construct a hash function. By the

scheme described in [64], D (S;r;g) is constructed by concatenatingO(logn) hashes and

repeating forO(nr logn) times. Thus the construction time forD (S;r;g) is bounded by

O(nr log2nH(n)) , wherer = ln(1=p1)
ln(1=p2) 2 (0;1).

Moreover, assuming it takes constant time to insert, delete or access an arbitrary point

in any bucket, the query time ofQP(q; r) is T(n;g) = O(nr logn), while the insert/delete

time isD(n;g) = O(nr log2n). We note that for a �xedp1, p2 decreases asg grows, hence

makingr a function ofg.

6.3 Warm-up: Using ANNs to Approximate Single Linkage

In this section, we give a brief description of how an ANN data structure can be used to

implement single linkage clustering.

Both [79] and [35] proposed algorithms that use(r;g)-Near-Neighbor to compute an

Approximate Minimum Spanning Tree. Here we provide a modi�ed version that is more in

line with our average-linkage algorithm described in the next section.

The goal is to implement the approximate variant of Kruskal's algorithm. Initially the

treeT is empty. The algorithm iteratively selects an edgee and adds to toT if (1) T [f eg

does not form a cycle and (2) it is within a factor of(1+ e) of the cheapest such edge.

6.3 Warm-up: Using ANNs to Approximate Single Linkage 119

We now re-interpret this approach in the language of single linkage. Initially all points

are clusters. In each step, clustersCi andCj are merged ifmina2Ci ;b2Cj d(a;b) is at most

(1+ e) mini06= j0mina2Ci0;b2Cj0
d(a;b).

Let Sbe the set of input points. Without loss of generality, assume the smallest interpoint

distance is1 and theaspect ratiois D= maxu;v2Sd(u;v). We want to �nd a pair of clusters

to merge. We �x somed > 0, and proceed by merging all clusters with distance at mostd

between them. When no more merges are possible, we incrementd by a(1+ e) factor and re-

peat. Suppose we have a partition ofSinto different components (clusters)C = f C1; : : : ;Cmg.

We will �nd edges with weights at mostgd between components and merge components that

share such an edge. It is easy to see that this results in a(1+ e)g-approximation of the MST.

How then to use the ANN data structure to �nd clusters to merge? For a thresholdd,

construct a data structureD = D (S;d;g). Pick any componentCi 2 C, remove the points in

Ci from D , and add all points inCi to a query list. Query the �rst point in the list,p, using

the currentD . If the query returns a neighborq, letCj be the component containingq. Add

edge(p;q) to the treeT. Then add all points inCj to the query list and removeCj from D .

Repeat until the query returns an empty set forp, then use next point in the query list and

repeat. If the query list becomes empty but there are components that haven't been queried

before, pick an arbitrary component and do repeat the process again. The querying stops

whenD becomes empty.

The de�nition of the data structures immediately yields the following theorem.

Theorem 6.3.1.With high probability, the algorithm returns a(1+ e)g-approximate mini-

mum spanning tree or singe-linkage tree, and has O(1
e logDlog2nr H(n)) running time.

Proof. First we analyze the approximation ratio. Notice that after all merges for thresholdd,

there is no edge of weight at mostd that can be added without creating a cycle. Indeed, say

such an edge(p;q) exists. Assumep gets added into the query list beforeq. Consider the

time whenp is deleted from the query list.q is not in the same component withp, so since

d(p;q) � d, queryingp should have returned another point andp should not be deleted at

this time, contradiction. Thus for thresholdd, we have guarantee that the shortest edge that

could be added has distance at leastd
1+ e. Since all queries are(d;g)-NN queries, the edges

found have weights bounded bygd, giving the approximation ratiog(1+ e).

Now we analyze the running time. There arelog1+ e D= Q(1
e logD) threshold values in

total. Fix any threshold valued. The construction of data structure takeslog2n� nr H(n).

For every pointp, every query ofp either results in merging the component containingp

with some other component, or deletingp from the query list and thus never queryingp

again for the current thresholdd. So the total number of queries performed for any point in

Sis bounded byO(n), takingO(nQ(n;g)) = O(n1+ r log2n) time in total. Any pointp 2 S

120 Scalable Hierarchical Clustering in General Metric Spaces

gets deleted once from the data structure, so the algorithm performsO(n) deletions, taking

O(nD(n;g)) = O(n1+ r log2n) time. The time spent on adding and deleting points to the

query list can be inO(n). AssumingH(n) = W(n), the data construction time dominates the

run time of algorithm, thus the run time isO(nr log2nlogDH(n)) .

6.4 Main Algorithm for Scalable Average Linkage

We now expand our method to show how to use ANNs to construct a provably approximate

average-linkage for input using general metric distance scores. Similar to the single linkage

case, the average linkage algorithm will consider a geometric series of thresholdsd of

the form(1+ e)k for k 2 [dlogDe]. For any �xedd, the algorithm merges clusters within

g(1+ O(e))d of each other.

Like what we have seen in Chapter 4, the algorithm uses ANN to iteratively merge

clusters with approximately smallest average distance for each threshold. Naively computing

the distance between two clusters requires comparing the total distance of all pairs of points

in the two clusters; ANN helps us avoid this quadratic dependence. However, thecluster

embeddingtechnique described Chapter 4 will no longer apply here as the points are no

longer assumed to be in a Euclidean space, while the embedding requires knowing the

coordinates of the input points.

Algorithmic structure. We now detail how to use ANNs to �nd clusters with average

linkage distanceg(1+ O(e))d or smaller.

Let C be the current set of clusters. We represent every cluster inC by a point in the

cluster that is close to the cluster center. (If points were in Euclidean space, we would use

the centroid of the cluster.) Letf (Ci) be the point inCi we use to represent this cluster, we

de�ne this formally in the next section. We will maintain a data structure of the pointsf (Ci)

for Ci 2 C. This data structure allows for queries of the formQ(f (Ci); r) for a r close tod.

The query �nds all pairsCi ;Cj such thatd(f (Ci); f (Cj)) � gr. Intuitively, the mappingf is

chosen such that for any two clusters, the distance between the mapped points preserves their

average distance up to some constant factor.

Unfortunately, it is hard to select af such thatd(f (Ci); f (Cj)) approximated(Ci ;Cj) for

any pair of clustersCi ;Cj . For example, consider two clusters with overlapping centers, but

points are close to the center in one of them, and far away from the center in another.

To make up for the information loss, for every clusterC 2 C, we maintain two values:

one isf (C) and the other iss (C) = 1
jCi j å v2Ci d(v; f (Ci)) . Intuitively s (C) represents the

6.4 Main Algorithm for Scalable Average Linkage 121

"deviation" of points inC from the centerf (C). Given any two clustersCi ;Cj 2 C, we use

thed(f (Ci); f (Cj)) ands (C) to approximate the average distance Avg(Ci ;Cj).

At a high level, the following properties should hold forf (�) ands (�). These properties

will allow us to identify clusters whose average linkage distance is small enough to merge

them. (Formally, we will need slight variations on these, see the paragraph on Construction

of Center and Deviation for exact details.)

1. d(f (Ci); f (Cj)) � s (Ci) � s (Cj) � Avg(Ci ;Cj) � d(f (Ci); f (Cj)) + s (Ci) + s (Cj).

2. s (Ci);s (Cj) � c� Avg(Ci ;Cj) for a constantc.

We now describe how we �nd which pairs of clusters can be merged and which ones

we should not consider merging. For any clusterCi, we use the deviation terms (Ci) as a

�lter. Observe that ifs (Ci) > cd, thenAvg(Ci ;Cj) > d for anyCj by the above property.

This implies that noCi with s (Ci) > cd needs to be considered for merging with any other

cluster.

We thus remove all such clusters from consideration. Since the deviation terms for all

remaining clusters are small, property one will allow the algorithm to merge any pair of

clusters whered(f (Ci); f (Cj)) is small compared tod. To that end, as stated before we build

a nearest neighbor data structure based on the pointsf (Ci) for all remaining clusters.

There is one problem remaining. After a merge the new cluster needs to be considered

for subsequent merges. The question is how to adapt the data structure ef�ciently such that

the query is still valid? There are two steps involved: 1) �nding a representative point for the

new cluster and measuring deviation, and 2) deleting the old clusters and inserting the new

cluster into the data structure.

For both, we will develop a fast algorithm that constructs a randomized approximation to

f ands .

Construction of center and deviation. For each clusterC in C we show how to construct

f (C) ands (C). The purpose of this section is to establish that these quantities exist for every

cluster such that they have the requisite properties. Algorithmically, this section will allow

us to discover any clusterC to discard based ons (C). For the kept clusters we will put their

f (C)'s into the data structure, then use ANN queries to decide which pairs to merge.

If jCj � 1
e, setf (C) = argminp2C Avg(C; p) for some constant0 < e < 1 to be set later.

This takesO(1
e jCj) time to determine. Now, considerC such thatjCj � 1

e. To begin, we

calculate(f (C);s (C)) as follows. Samplem points uniformly fromC to get a sampleC0.

Find the pointv 2 C0 such thatå p2C d(v; p) is minimized. Setf (C) equal tov. Then set

s (C) = Avg(C; f (C)) = Avg(C;v).

122 Scalable Hierarchical Clustering in General Metric Spaces

We now aim to show the properties regardingf ands .

Lemma 6.4.1. If m = Q(1
e logn), with high probability, s (C) = Avg(f (C);C) � (1 +

1
1� e) minp2SAvg(p;C) � 2(1+ e) minp2SAvg(p;C) for e � 0:5.

Proof. Let c0 be the point that minimizesAvg(C;c0) in S. Let BC(c0; r) be a ball around

c0 of radiusr, which contains the set of points inC with distance less than somer from

c0. Correspondingly letBC(c0; r) denote the ball with same center and radius, but includ-

ing its boundaries. For any radiusre, to simplify the notation we denote the two balls by

Be andBe respectively. We can �nd are such thatjBej < ejCj, but Be � ejCj. We will

prove any point inBe is a good center forC. For any pointq 2 Be, by the triangle in-

equality,å p2C d(p;q) � å p2C d(p;c0) + å p2C d(q;c0) � å p2C d(p;c0) + jCjre. Notice that

å p2C d(p;c0) = å p2Be d(p;c0)+ å p=2Be d(p;c0) � (1� e)jCjre, sinced(p;c0) � re if p =2 Be.

Therefore,jCjre � 1
1� e å p2C d(p;c0), giving uså p2C d(p;q) � (1+ 1

1� e) å p2C d(p;c0) �

2(1+ e) å p2C d(p;c0), so Avg(C;q) � 2(1+ e) Avg(C;c0).

This implies that it is suf�cient to sample a single point fromBe. There areejCj points

in the ballBe. Every time we sample we havee probability of getting a pointp such that

Avg(C; p) � 2(1+ e) Avg(C;c0). Chernoff bounds ensure a such a point is sampled with

probability at least 1� 1
nW(1) .

The prior lemma immediately gives the following corollary.

Corollary 6.4.1.1. For any clusterCi with high probability ifs (Ci) � 2(1+ e)d then given

any other cluster Cj , Avg(Ci ;Cj) � d for e � 0:5.

The corollary ensures that ifs (Ci) > 2(1+ e)d then w.h.p. Ci has average linkage

distance greater thand from every cluster inC. Thus,Ci need not be considered for a merge.

Moreover, since average linkage distance increases as clusters get merged, we never need to

considerCi for thisd.

The following lemma is a direct application of triangle inequality of average distances.

Lemma 6.4.2.For any two clusters Ci and Cj ,

d(f (Ci); f (Cj)) � s (Ci) � s (Cj) � Avg(Ci ;Cj) � d(f (Ci); f (Cj)) + s (Ci) + s (Cj)

The following run time lemma bounds the running time of the construction ofs andf .

Lemma 6.4.3.For a cluster C, calculating(f (C);s (C)) takes O(1
e jCj logn) time.

Proof. It takesO(1
e jCj logn) time to sample1e logn points, andO(1

e jCj logn) time to measure

the average distance fromC to every one of them, picking the center and calculating deviation.

6.5 Correctness and Run Time of Average Linkage Algorithm 123

Formal algorithm. We present the formal algorithm which follows the intuition given in

the previous section and the developed de�nitions off ands .

See Algorithm 4 for the pseudocode. As stated, the algorithm considersd of geometrically

increasing values. Fixd = (1+ e)k� 1 andC to be the current set of clusters. Initiallyd = 1

andC has a cluster for each individual point. LetPk be the set of centers of clusters with

small deviation:Pk = f f (C) j C 2 C;s (C) � 2(1+ e)dg.

The setPk contains centers of clusters inC for which there may exist another cluster

within average distanced. We maintain a data structure that supports(r;g)-NN queries onPk

for a chosenr = O(d), denoted byDk. While Pk is not empty, we pick a pointf (Ci) from

it and use it as a query inDk to �nd a nearest neighbor. If there is no such point,f (Ci) is

discarded fromPk andDk. Otherwise, if the data structures returns another pointf (Cj), we

mergeCi andCj , adopting the merging procedure proposed by [3]. This new point is added

to Pk andDk.

For ef�ciency, the pair(f (�);s (�)) is not recalculated at every merge. Rather, an update

happens after a merge only if the cluster size grows signi�cantly. We maintain a quantity

s(C) which denotes the size of clusterC the last time(f (C);s (C)) was recalculated. When

we mergeCi andCj into a new clusterC, if jCj � (1+ h) maxf s(Ci);s(Cj)g for some �xed

h , the center and deviation(f (C);s (C)) are recalculated, ands(C) is updated. Otherwise

we use the center and deviation of the cluster with biggers(�) value. See Algorithm 5 for

details about merging.

In the next section we provide performance and running time guarantees for Algorithm 4.

6.5 Correctness and Run Time of Average Linkage Algo-

rithm

The following theorems show that the algorithm approximates the decision of average-

linkage up to a constant factor, and the algorithm runs in near-linear time. The value ofr is

asdescribed in the data strcutre in the preliminaries.

Theorem 6.5.1(Running Time). Letn = jSj andD be the aspect ratio inS. The run time of

the algorithm is O(1
enr log2n� logD� H(n)) .

Proof. We �rst analyze the time needed to construct the data structures. there are1
e logD

number of thresholdd's. For everyd, it takesO(nr log2nH(n)) time to build the data

structure. The total time to construct each of these data structures is bounded byO(1
enr log2n�

logD� H(n)) .

Now we analyze the total time the algorithm spends querying the data structure or deleting

a point. These queries occur to discover whether a cluster can be merged. If a cluster cannot

124 Scalable Hierarchical Clustering in General Metric Spaces

Algorithm 4 Main Algorithm

1: FASTAVERAGEL INKAGE(S;g;e):
2: C ff pg j p 2 Sg {Make leaf clusters.}
3: f (f pg) p, s (f pg) 0, s(f pg) 1 for p 2 S{Initialize center and deviation.}
4: for k = 1;2; : : : ; log1+ e D do
5: d (1+ e)k� 1

6: Pk f f (C) for C 2 C : s (C) � 2(1+ e)dg {Filter the clusters.}
7: r 5(1+ e)d
8: Dk D (Pk; r;g)
9: while Dk is not emptydo

10: Get an arbitraryf (Ci) from Pk.
11: Deletef (Ci) from Dk andPk. {Maintain the data structure.}
12: while QPk(f (Ci); r) 6= /0 do
13: f (Cj) QPk(f (Ci); r)
14: x (1+ e)6(5g+ 4)
15: h e2

1+ x
16: MERGE(Ci ;Cj ;Dk;Pk;h)
17: end while
18: end while
19: end for
20: Return the resulting tree.

Algorithm 5 Merge Algorithm

1: MERGE(Ci ;Cj ;Dk;Pk;h):
2: if jCi j + jCj j � (1+ h) maxf s(Ci);s(Cj)g then
3: Update(f (Ci [Cj);s (Ci [Cj)) {Update only when cluster size increases by a factor.}

4: s(Ci [Cj) j Ci j + jCj j
5: else
6: if s(Ci) � s(Cj) then
7: (f (Ci [Cj);s (Ci [Cj)) (f (Ci);s (Ci))
8: s(Ci [Cj) s(Ci)
9: else

10: (f (Ci [Cj);s (Ci [Cj)) (f (Cj);s (Cj))
11: s(Ci [Cj) s(Cj)
12: end if
13: end if
14: Deletef (Cj) from Dk andPk, insertf (Ci [Cj) into Dk andPk only if s (Ci [Cj) �

2(1+ e)d.

be merged, its corresponding point is removed from the data structure for the given threshold

6.5 Correctness and Run Time of Average Linkage Algorithm 125

d. Thus the total number of queries isO(1
e(logD)n). Every query takesO(nr logn) time. In

total more time is spent constructing the data structures.

Next, we analyze the total time it takes to update the data structures. By Lemma 6.4.3,

every time we update the center and deviation for clusterC it takesO(1
e jCj logn) time. The

amortized cost on every point inC is O(1
e logn). Pick any pointp 2 S, every timep receives

an amortized cost ofO(1
e logn), the size of the clusterp belongs to grows by a factor of

1+ h whereh = e2

1+ x . Thus the total merging and updating cost on pointp is bounded by

O(log1+ h (n) � 1
e logn) = O(1

h logn� 1
e logn). This is bounded byO(1

e3 log2n). Taking the

sum over all points inSgives a total update time ofO(1
e3nlog2n). This is a lower order term

because it is bounded by the time to construct the data structures ifH(n) = W(n).

The next theorem bounds the approximate ratio of the algorithm.

Theorem 6.5.2(Approximation Guarantees). With high probability, Algorithm 4 gives an

approximation ratio of(5g+ 4)(1+ O(e)) for average-linkage and completes the hierarchical

clustering tree.

Our remaining goal is to prove Theorem 6.5.2. The theorem would be immediate from

Lemma 6.4.2 ifs andf were updated every time two clusters were merged. However, these

are not always updated to ensure an ef�cient running time. Instead, we show the following

key properties of the algorithm. Intuitively, they guarantee that if the cluster size does not

grow signi�cantly, "borrowing" the center and deviation from a cluster it is merged from will

only cause the distance to be slightly distorted. The �rst property is critical and what allows

us to derive the second and third.

Lemma 6.5.3(Properties of Merging). During any iteration of Algorithm 5 for some �xedd,

these properties always hold.

1. For any clusterC 2 C, usebC to denote the subcluster ofC whose center and deviation

are used byC. For any clusterCi 2 C, and another clusterCj 6= Ci 2 C. Then we have

the following two equations,

(1� jCi j�j bCi j
jCi j

) Avg(bCi ;Cj) � Avg(Ci ;Cj)

� (1+ 1+ x
e � jCi j�j bCi j

jCi j
) Avg(bCi ;Cj) (6.1)

126 Scalable Hierarchical Clustering in General Metric Spaces

and

(1�
jCi j � j bCi j

jCi j
)(1�

jCj j � j bCj j

j bCj j
) Avg(bCi ; bCj) � Avg(Ci ;Cj)

� (1+
1+ x

e
�
jCi j � j bCi j

jCi j
)(1+

1+ x
e

jCj j � j bCj j
jCj j

) Avg(bCi ; bCj) (6.2)

2. At the end of the iteration, no pairs of unmerged clusters have average distance less

than d
(1+ e)2 .

3. During this iteration, every pair of clusters we merge has distance at most(5g+ 4)(1+

e)3d.

Notice that Theorem 6.5.2 is a corollary of the lemma. The following proof of this lemma

follows logic similar to that of Lemma A.6 in [3].

Proof of [Lemma 6.5.3]

We prove this by induction. Assume we choose to mergeCi with Cj in thek-th iteration,

for thresholdd = (1+ e)k� 1. Assume all properties hold in all iterations ford = (1+ e)t for

t = 0;1; : : : ;k � 2, and all the time in the current iteration, until the merge. Speci�cally, we

assume the algorithm �nds the pairCi andCj correctly before merging them. LetC be the

current partition ofS. We will prove that after the merge ofCi andCj , 1) the approximation

ratio in property one still holds, 2) the next pair of clusters we found are close to each other,

and eventually 3) there will be no clusters with average-linkage less thand
(1+ e)2 by the end

of iteration for current thresholdd.

Notice that the following always holds. Letx = (1+ e)6(5g+ 4). For any other cluster

C 2 C, Avg(Ci ;Cj) � x minf Avg(Ci ;C);Avg(Cj ;C)g, and Avg(bCi ; bCj) �

x minf Avg(bCi ; bC);Avg(bCj ; bC)g. This will be used in the proof.

Since we choose to mergeCi andCj , by third property in Lemma 6.5.3 we must have

the following by inductionAvg(Ci ;Cj) � (1+ e)3(5g+ 4)d. We also haveAvg(bCi ; bCj) �

(1+ e)(5g+ 4)d. This is because the(r;g)-NN query picked the pair(bCi ; bCj). Assume the

clusterC comes from mergingC0
1; : : : ;C0

` , wheref C0
1; : : : ;C0

`g are clusters in the partition at

the end of the iteration for the previous thresholdd
1+ e.

We �rst proveAvg(Ci ;Cj) � x Avg(Ci ;C). By property one, the average distance between

Ci and any ofC0
1; : : : ;C0

` is at least d
(1+ e)3 . By an averaging argument we haveAvg(Ci ;C) =

å `
t= 1 jC0

t j Avg(Ci ;C0
t)

jCj � d
(1+ e)3 . Letting x = (1+ e)6(5g+ 4) givesAvg(Ci ;Cj) � x Avg(Ci ;C).

Likewise we have Avg(Ci ;Cj) � x Avg(Cj ;C).

Next we proveAvg(bCi ; bCj) � x Avg(bCi ; bC). By property oneAvg(bCi ; bC) � (1� e)2Avg(Ci ;C) �

(1� e)2 � d
(1+ e)3 ' d

(1+ e)5 . Since Avg(bCi ; bCj) � (5g+ 4)(1+ e)d, the inequality holds.

6.5 Correctness and Run Time of Average Linkage Algorithm 127

Now we prove the property one still holds after the merge. LetC00= Ci [Cj be the new

cluster. Assume �rst that(f (C00);s (C00)) got recalculated. ThenbC00= C00, s(C00) = jC00j and

for any clusterC, Avg(bC00;C) = Avg(C00;C). Both Inequality (6.1) and (6.2) are reduced to:

(1�
jCj � j bCj

jCj
) Avg(C00; bC) � Avg(C00;C) � (1+

1+ x
e

�
jCj � j bCj

jC
) Avg(C00; bC)

By induction we have

(1�
jCj � j bCj

jCj
) Avg(Ci ; bC) � Avg(Ci ;C) � (1+

1+ x
e

�
jCj � j bCj

jCj
) Avg(Ci ; bC)

and

(1�
jCj � j bCj

jCj
) Avg(Cj ; bC) � Avg(Cj ;C) � (1+

1+ x
e

�
jCj � j bCj

jCj
) Avg(Cj ; bC)

Taking the weighted average gives the inequality we want.

For the following argument, assume that(f (C00);s (C00)) is not recalculated. WLOG, as-

sumes(Ci) � s(Cj) and we used the center of deviation ofCi , so bC00= bCi . Now, given another

clusterC 2 C, we have thatAvg(C;Cj) � Avg(Ci ;C)+ Avg(Ci ;Cj) � (1+ x) Avg(Ci ;C) by

triangle inequality of average distances. We �rst prove Inequality (6.1). That is,

(1�
jCj � j bCj

jCj
) Avg(C00; bC) � Avg(C00;C) � (1+

1+ x
e

�
jCj � j bCj

jCj
) Avg(C00; bC)

And

(1�
jC00j � j bC00j

jC00j
) Avg(bC00;C) � Avg(C00;C) � (1+

1+ x
e

�
jC00j � j bC00j

jC00j
) Avg(bC00;C)

The former inequality can be proved in the same way as the case whereC00is recalculated by

taking weighted average over two inequalities forCi andCj . Thus we only need to prove the

second one. This is done by expanding the expression ofAvg(C00; bC) as weighted average of

Avg(Ci ; bC) andAvg(Cj ; bC) and then leverage the fact thatAvg(Cj ;C) � (1+ x) Avg(Ci ;C).

128 Scalable Hierarchical Clustering in General Metric Spaces

For upper bound,

Avg(C00;C) =
jCi j Avg(Ci ;C)+ jCj j Avg(Cj ;C)

jCi j + jCj j

�
jCi j Avg(Ci ;C)+ jCj j(1+ x) Avg(Ci ;C)

jCi j + jCj j

�
jCi j + jCj j(1+ x)

jCi j + jCj j
(1+

1+ x
e

jCi j � s(Ci)
jCi j

) Avg(bCi ;C)

= (1+
x jCj j

jCi j + jCj j
)(1+

1+ x
e

jCi j � s(Ci)
jCi j

) Avg(bCi ;C)

We prove that

(1+
x jCj j

jCi j + jCj j
) � (1+

1+ x
e

�
jCi j � s(Ci)

jCi j
) � 1+

1+ x
e

�
jC00j � s(C00)

jC00j
(6.3)

We have:

LHS� (1+
1+ x

e
�
jCi j � s(Ci)

jCi j
+

x jCj j
jCi j + jCj j

� (1+
1+ x

e
�

e2

1+ x
))

= (1+
1+ x

e
�
jCi j � s(Ci)

jCi j
+ (1+ e)

x jCj j
jCi j + jCj j

)

We prove that(1+ e) x jCj j
jCi j+ jCj j

� 1+ x
e � jCj js(Ci)

jCi j(jCi j+ jCj j)
. Sinces(Ci)

jCi j
� 1+ x � e2

1+ x , 1+ x
e � jCj js(Ci)

jCi j(jCi j+ jCj j)
�

1+ x � e2

e � jCj j
jCi j+ jCj j

� (1+ e) x jCj j
jCi j+ jCj j

. Therefore,

Avg(C00;C) � Avg(bCi ;C) � (1+
1+ x

e
�
jCi j � s(Ci)

jCi j
+ (1+ e)

x jCj j
jCi j + jCj j

)

� Avg(bCi ;C) � (1+
1+ x

e
�
jCi j � s(Ci)

jCi j
+

1+ x
e

jCj js(Ci)
jCi j(jCi j + jCj j)

)

= Avg(bCi ;C)(1+
1+ x

e
�
jCi j + jCj j � s(Ci)

jCi j + jCj j
)

= Avg(bC00;C)(1+
1+ x

e
�
jC00j � s(Ci)

jC00j
)

6.5 Correctness and Run Time of Average Linkage Algorithm 129

For lower bound,

Avg(bC00;C) =
jCi j Avg(Ci ;C)+ jCj j Avg(Cj ;C)

jCi j + jCj j

�
jCi j Avg(Ci ;C)

jCi j + jCj j

� Avg(bCi ;C) �
s(Ci)
jCi j

�
jCi j

jCi j + jCj j

= Avg(bCi ;C) �
s(Ci)

jCi j + jCj j

= Avg(bC00;C) � (1�
jC00j � s(C00)

jC00j
)

Thus we've proved that the Inequality(6.1)holds after the new merge. Using the same

logic, we can prove Inequality (6.2).

For upper bound,

Avg(C00;C) =
jCi j Avg(Ci ;C)+ jCj j Avg(Cj ;C)

jCi j + jCj j

�
jCi j Avg(Ci ;C)+ jCj j(1+ x) Avg(Ci ;C)

jCi j + jCj j

�
jCi j + jCj j(1+ x)

jCi j + jCj j
� (1+

1+ x
e

�
jCi j � s(Ci)

jCi j
)

� (1+
1+ x

e
�
jCj � s(C)

jCj
) Avg(bCi ; bC)

Plugging Inequality (6.3) into the RHS gives us:

Avg(C00;C) � (1+
1+ x

e
�
jC00j � s(C00)

jC00j
)

(1+
1+ x

e
�
jCj � s(C)

jCj
) Avg(bCi ; bC)

130 Scalable Hierarchical Clustering in General Metric Spaces

Table 6.1 Comparing the performance of different average linkage methods, New York

Sample Size 169 330 414 493 615 888 1141 1855
Aprx Ratio, mean, Proxy-AL 1.923 1.513 1.939 1.545 1.854 2.083 2.450 1.746

Aprx Ratio, mean, Proxy-Hash-AL 1.402 1.503 1.479 1.640 1.656 1.636 1.784 1.780
Aprx Ratio, 90%, Proxy-AL 3.705 2.096 3.678 1.813 2.865 3.913 3.240 2.372

Aprx Ratio, 90%, Proxy-Hash-AL 1.925 1.975 1.973 2.268 2.234 2.188 2.452 2.407
Aprx Ratio, max, Proxy-AL 21.391 13.930 28.233 20.042 54.844 44.783 228.615 42.991

Aprx Ratio, max, Proxy-Hash-AL 2.871 2.677 3.046 3.332 2.932 3.389 3.762 3.902
Global Obj, Proxy-AL 0.999 0.989 0.999 0.998 0.999 0.994 0.963 1.001

Global Obj, Proxy-Hash-AL 1.004 0.970 0.985 0.975 0.999 0.987 0.966 0.971

For lower bound,

Avg(C00;C) =
jCi j Avg(Ci ;C)+ jCj j Avg(Cj ;C)

jCi j + jCj j

�
jCi j Avg(Ci ;C)

jCi j + jCj j

� Avg(bCi ; bC) � (1�
jCi j � s(Ci)

jCi j
) � (1�

jCj � s(C)
jCj

) �
jCi j

jCi j + jCj j

= Avg(bCi ; bC) �
s(Ci)
jCi j

�
s(C)
jCj

�
jCi j

jCi j + jCj j

= Avg(bCi ; bC) �
s(Ci)

jCi j + jCj j
s(C)
jCj

= Avg(bC00; bC) � (1�
jC00j � s(C00)

jC00j
)(1�

jCj � s(C)
jCj

)

The �rst property directly impliesAvg(Ci ;Cj) = (1� e)2Avg(bCi ; bCj) for all pairsCi ;Cj 2 C.

For the second property, assume there is one(C0
i ;C

0
j) whereAvg(C0

i ;C
0
j) � d

(1+ e)2 . So

Avg(bC0
i ; bC0

j) � d. This implies that the deviationss (bC0
i);s (bC0

j) � 2(1+ e)d, so the two

centersf (bC0
i); f (bC0

j) cannot be deleted until the query returns empty set. SinceAvg(bC0
i ; bC0

j) �

d, d(f (bC0
i); f (bC0

j)) � Avg(bC0
i ; bC0

j)+ s (bC0
i)+ s (bC0

j) � 5(1+ e)d. Sincer = 5(1+ e)d, a valid

r;g-NN query can't return empty set forf (C0
i) andf (C0

j), contradiction.

For the third property, since after the merge(bC0
i ; bC0

j) is returned by a valid(r;g)-NN

query wherer = 5(1+ e)d, Avg(bC0
i ; bC0

j) � (1+ e)(5g+ 4)d. Using the �rst property gives

us Avg(C0
i ;C

0
j) � (1+ e)3(5g+ 4)d.

6.6 Experiments

This section demonstrates the empirical effectiveness of our algorithms for both single

linkage and average linkage clustering.

6.6 Experiments 131

Fig. 6.1 Subsamples for New York, Bay Area and Great Lakes

Recall that one of our motivations was that ANNs may not exist for general metrics, but

often times there are well-behaved proxy metrics available; this is the setting we explore in

this Section.

Our single linkage and average linkage implementations are named Proxy-Hash-SL and

Proxy-Hash-AL, respectively. The goals of this section are to establish the following:

• Show that both Proxy-Hash-SL and Proxy-Hash-AL have strictly sub-quadratic running

times.

• Show that using single/average linkage directly on the proxy metrics results in poor

quality, yet Proxy-Hash-SL and Proxy-Hash-ALhave strong performance. This will

show that they new algorithms are able leverage the proxy metrics to achieve scalability,

while overcoming the shortcomings of using the proxy metrics directly.

• Demonstrate that using Proxy-Hash-SL and Proxy-Hash-AL, we can �nd solutions with

only a small loss in quality compared with the solution found by using single/average

linkage on the real metric.

Implementation Details. We implemented the algorithms in Section 6.3 and 6.4 with

slight modi�cations. While building the ANN data structure for querying, we set the number

of concatenations and repetitions to be constant. The values of the constants are tuned

according to different data sets.

To improve show the trade-off between accuracy and running time, while querying a point

using the data structure, we use LSH on theproxy distanceto identify the set of candidates

that are nearest neighbors to the query point, but then use thereal distanceto pick the closest

candidate. We only take a constant number of neighbors from the point's LSH bucket and

pick the one with smallestreal distancefrom the query point. If the true distance is below

the thresholddk, we merge the clusters.

132 Scalable Hierarchical Clustering in General Metric Spaces

Data Set Nodes Edges
New York 264,346 366,923
Bay Area 321,270 400,086

Great Lakes 2,758,119 3,442,829

Table 6.2 Dataset Details

Table 6.3 Ratio between total road distance of the tree and real MST, New York

Sample Size 169 330 727 1166 1825 3765 6710 14428 28985
Proxy-SL 1.760 1.304 1.554 1.784 1.412 1.805 1.753 1.883 1.511

Proxy-Hash-SL 1.035 1.016 1.021 1.024 1.027 1.030 1.029 1.022 1.024

Experiment 1: Road Maps.We use datasets from The 9th DIMACS Implementation

Challenge1. The data �les include the road networks of different cities. The data is given

in graph format where nodes represent end points of roads, while edge weights represent

the road lengths. Each node's latitude and longitude are provided. We choose three areas to

study: New York, Bay Area, and the Great Lakes, see Table 6.2.

Based on the road network, the distance between any two points is the length of shortest

path between them, termedroad distance. This is correlated but not equivalent to the

Euclidean distance calculated using lat/long values. We remark that the true metric is a

general metric, and we will use the Euclidean metric as a proxy.

Table 6.4 Ratio between total real distance of the spanning tree and real MST, Seizure

Sample Size 100 200 400 800 1600
Proxy-SL 1.284 1.331 1.416 1.462 1.521

Proxy-Hash-SL 1.141 1.158 1.176 1.184 1.209

The original datasets have millions of points, so it is impractical to �nd all pairwise

shortest-path road distances to compute the groundtruth average linkage clustering. We

perform the following subsampling method: for each city, we draw a rectangle at a random

position on the map. Then we take the subgraph induced by all points in this rectangle. If the

subgraph is not connected, we take the biggest connected component. Figure 6.1 contains a

map of all points for every city, and the boxes represent5 rectangles drawn for some given

lat/long lengths. This allows us to get subsamples with many different sizes and study the

ef�ciency of our methods.

Experiment 2: Random Projections of High-Dimensional Datasets.We consider

Euclidean datasets in a large number of dimensions and use a Johnson-Lindenstrauss (see,

for instance, Dasgupta and Gupta[62] dimension reduction technique to reduce the number

1http://users.diag.uniroma1.it/challenge9/download.shtml

6.6 Experiments 133

Table 6.5 Comparing the performance of different average linkage methods, Seizure

Sample Size 100 200 400 800 1600
Aprx Ratio, mean, Proxy-AL 1.723 1.955 2.141 2.651 3.159

Aprx Ratio, mean, Proxy-Hash-AL 1.210 1.240 1.284 1.348 1.623
Aprx Ratio, 90%, Proxy-AL 2.549 3.053 3.386 4.272 5.315

Aprx Ratio, 90%, Proxy-Hash-AL 1.438 1.456 1.504 1.567 2.120
Aprx Ratio, max, Proxy-AL 5.836 5.958 8.851 13.501 22.921

Aprx Ratio, max, Proxy-Hash-AL 1.763 1.757 1.891 1.969 2.973
Global Obj, Proxy-AL 0.993 0.991 0.993 0.986 0.990

Global Obj, Proxy-Hash-AL 1.012 1.013 1.018 1.013 1.012

of dimensions. We consider the`2 distance between the original high-dimensional points as

the real distance, and the`2 distance between the projected data points as the proxy distance.

We use theseizure data set from UCI data repository2. The dataset has179dimensions

and11500points, with every point a recording of brain activity. We project the data to4

dimensions and take subsamples of size[100;200;400;800;1600] from the original data set

and test Proxy-Hash-SL and Proxy-Hash-AL. For each of the data sizes we take5 subsamples,

and take the average of both performance and running time on these.

Performance Metrics. We use the following metrics to measure the performance of

hierarchical clustering trees. For MST (single linkage), we use the objective in the MST

problem. This is the total weight of the edges chosen in the spanning tree.

For average linkage, we use two metrics. Given a sequence of cluster merges, at every

merge, using the real distance, we calculate the ratio between the average linkage of the

merged clusters and the minimum average linkage. We call this metric theapproximation

ratio. Assuming there aren points, a hierarchical clustering tree givesn� 1 such ratios. For

both datasets we show the mean,90%-percentile and the maximum of all approximation

ratios. For vanilla average linkage on thereal distance, this ratio is always1. If all n� 1

ratios are close to1, the hierarchical clustering tree closely resembles the tree produced

by average linkage. The other metric we use is the recently developed global objective for

hierarchical clustering tree introduced in Cohen-Addad et al. [58].

Running Time. The bottleneck in all computations is the time spent on computing true

distances between points. For the road map data set, every computation involves �nding

the shortest path between a pair of points; and forseizure , it is time consuming since

the original data is high-dimensional. To give an implementation and problem independent

view into the performance of our methods, we report the total number ofreal distance

computationsmade by Proxy-Hash-SL and Proxy-Hash-AL.

2https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition

134 Scalable Hierarchical Clustering in General Metric Spaces

(a) New York (b) Seizure

Fig. 6.2 Growth of distance computation, Proxy-Hash-AL

Results.We �rst compare the performance of directly using proxy distance with using

Proxy-Hash-SL and Proxy-Hash-AL. Namely, we �rst construct a hierarchical clustering

tree by running MST/average linkage on the dataset using proxy distance as the distance

metric. We use “Proxy-SL” and “Proxy-AL” to refer to the results produced in this way in all

tables and �gures. Then we construct another tree using our implementation of Proxy-Hash-

SL/Proxy-Hash-AL. Then we compare the performance of these two hierarchical clustering

trees using the proposed performance metrics.

For road map dataset, Table 6.3 compares the spanning tree found by Proxy-SLand

Proxy-Hash-SL. The entries show the ratio of total weights of the spanning tree to the real

MST (lower is better). We report the results fore = 0:2 in Proxy-Hash-SL. The results are

quantitatively similar on all three datasets, we only show results for New York here, and

postpone the other two cities to the Supplementary Material.

Table 6.1 compares the performance of hierarchical clustering tree by running average

linkage directly on the proxy metric and Proxy-Hash-AL for road map in New York. The

�rst column shows the performance metric we are using. Here “Aprx Ratio” refers to the

approximation ratio, where “mean”, “90%” and “max” refers to the mean,90%-percentile and

maximum of all approximation ratios for the tree, respectively. Following that, “Proxy-AL”

or “Proxy-Hash-AL” speci�es which algorithm we are using for that line in the table.

Performance analysis. The new algorithms perform signi�cantly better than building a

tree directly from the proxy metric. Naively building the MST on the proxy metric has poor

performance, over 50% degradation in quality. At the same time Proxy-Hash-SL gives much

better results, with only 1-3% loss ate = 0:1 to around 7-10% ate = 0:5. This result is

independent of the graph size, but lowere values in Proxy-Hash-SL lead to higher quality

results. See the Supplementary Materials for more discussion about the impact of sample

6.6 Experiments 135

size ande on the performance of Proxy-Hash-SL. We note that in general the performance is

robust to small changes ine.

The results extend to average linkage. In Table 6.1 and 6.5, note that both Proxy-AL

and Proxy-Hash-AL perform well for the global objective in Cohen-Addad et al.[58]. The

degradation is negligible (about 1%) compared to the real average linkage tree. However,

the statistics of approximation ratios show that on both datasets, Proxy-Hash-AL often beats

Proxy-AL on both data sets in mean and90%percentile of all approximation ratios. On

seizure , the advantage is more apparent than in road maps. Especially, Proxy-Hash-AL

has a signi�cant advantage overProxy-ALin worst-case approximation ratios. This shows

Proxy-Hash-AL makes decisions which are similar to true average linkage. The quality of its

decision is stable and robust against large distortion between the proxy and real distances.

Running time analysis. Next, we look at the speed of our algorithms. The main bottleneck

in all of the approaches is the number of distance computations. For the naive algorithm, we

must compute distances for alln2 pairs of nodes, resulting in a quadratic running time.

Figure 6.2a and 6.2b show the growth of number of distance computations as sample

size grows. In both �gures, sample sizes (the x-axis) are plotted on a log-scale for better

visualization. For both data sets, we draw another “benchmark” polynomial curvey= c� x1+ r

to show that the growth is strictly sub-quadratic. The plots show that for road map and

seizure , ther value is bounded by0:7 and0:3, respectively. The gain in running time

might depend on the data set. The running time plots for Proxy-Hash-SL and the road maps

in Bay Area and the Great Lakes can be found in Appendix B.

Chapter 7

Robust Online Correlation Clustering

7.1 Introduction

Clustering is a central unsupervised learning problem, which comes in many �avors and

variants. For instance we may consider different objectives for the clustering:k-clustering

like k-means ork-median, spectral clustering, or correlation clustering. Or we may try to

perform the clustering in different computational models—batch, distributed, parallel, etc. A

clustering setting that has received a lot of interest in recent years is the online paradigm, see

for instance, Zhang et al.[137], Vidal [130], Lattanzi and Vassilvitskii[99], Cohen-Addad

et al.[57], Guo et al.[74, 75]. In online clustering elements arrive one by one and they are

irrevocably assigned to clusters at arrival time. A key property of this setting is that the

resulting clustering is stable. This is particularly important in real-world systems where

clusters are served directly to users or used in downstream machine learning tasks, and so

modifying the clustering has a high cost.

Clustering problems likek-median andk-means are well studied in the online setting, see

for instance the groundbreaking work of Meyerson[110]and Liberty et al.[103]. This chapter

considers the online correlation clustering problem, which is less understood. Correlation

clustering was introduced by Bansal et al.[29]. In the problem we are given as input a

weighted graph withn nodes, where positive edges represent similarities and negative edges

represent dissimilarities between endpoints. A partition of the nodes into clusters should

minimize the sum of the negative edges contained in any cluster and the sum of positive

edges between clusters. That is, minimizing thedisagreementsin the clustering. Correlation

clustering has many applications, for instance in �nding clustering ensembles[34], duplicate

detection [21], community mining [49], disambiguation tasks [83], and automated labelling

[11, 42].

138 Robust Online Correlation Clustering

The problem is known to be NP-hard and admits approximation algorithms. For the most

studied version of the problem, where the weights are restricted to be inf� 1;+ 1g, and a2:06

approximation algorithm was shown by Chawla et al.[47]. When, in addition, the number of

clusters is upper-bounded byk, a polynomial time approximation scheme was shown to exist

by Giotis and Guruswami[69]. For arbitrary weights aO(logn) approximation is the best

known [65].

We consider the online correlation clustering problems when edges have weights in

f� 1;+ 1g. In the online setting, nodes arrive one by one and reveal their edges to nodes

that have arrived previously. The algorithm needs to make an irrevocable cluster assignment

when a node arrives. The most popular form of analysis of online algorithms iscompetitive

analysiswhere the performance of the online algorithm is compared to the best (in hindsight)

optimum solution.

It is impossibleto design an online algorithm for correlation clustering that has a good

competitive ratio. Consider the following example. Suppose that the �rst two nodes to

arrive are connected by a positive edge. The algorithm has to commit to either placing them

in the same cluster, or in different clusters. If it places them in the same cluster then the

adversary places the remainingn� 2 nodes as follows. The nodes are split evenly between

two complete cliques with all positive edges. The two initial nodes are placed in different

cliques and there are no positive edges between cliques except the single edge between

the two initially arriving nodes. The optimal solution in hindsight makes1 disagreement

by placing the cliques into two separate clusters, while the algorithm makes at leastQ(n)

disagreements.

On the other hand if the algorithm places the �rst two nodes into different clusters then the

adversary chooses the remaining instance to be a single clique of positive edges containing

the two nodes. The competitive ratio of the algorithm will be unbounded as the optimal has

cost 0 and the algorithm has a positive objective value of at least one.

This lower bound example (�rst observed in [107]) rules out �nding a good algorithm via

competitive analysis, sinceeveryalgorithm will have a worst case competitive ratio ofW(n).

However, in practice, instances are typically far from worst case. To rigorously study these

situations requires going beyond worst case analysis. For a rich body of work on this topic

see the recent text by Roughgarden[123]. This line of work considers broadly applicable

models that avoid pathological worst-case instances that are unlikely to occur in practice.

In practice, for online clustering problems, it is common to have some information about

nodes that will arrive. For example when clustering temporal data we have access to last

month's data and this data gives some insights on tomorrow's data. Motivated by this, it is

natural to study a model where one has access to few samples of the input data representing

7.1 Introduction 139

the past data that has been observed. Of course, if the sample is completely adversarial the

problem has not become any easier. To overcome this limitation we follow previous work

[90, 105] and consider a setting where the algorithm has access to a random sample of data.

The model considered is as follows. Suppose that for any (potentially adversarially

chosen) input, the algorithm is given a small number of random samples from the input

before the rest is revealed online. Can we prove that it is possible to design online algorithms

that are near optimal? If possible, can the model be strengthened such that some of the

sample is randomized while some is adversarial and we can design robust online algorithms

for this more challenging setting? We answer positively to both questions in this work.

Our Contributions. We introduce thesemi-onlinemodel for correlation clustering. In this

model elements arrive online in adversarial order but beforehand a small random fraction

of nodes are revealed. This setting captures situations where some part of the online input

is available beforehand, a common case when analyzing temporal data. A similar semi-

online model for bipartite matching is introduced by [93], where a part of the input graph is

predictable and known of�ine, while the remainder is unknown and arrives online.

We prove that the well-know Pivot algorithm [18] obtains a constant fraction approxi-

mation in the online setting when a small fraction of points selected at random is revealed

beforehand. The key insight behind our proof is that the Pivot algorithm can use a small

random sample to “sparsify” the input instance so that it is easily clusterable.

Furthermore, we show that even if a fraction of the sample is adversarially corrupted the

Pivot algorithm can still recover a constant approximation. In other words, the approach is

provably robust.

Finally we analyze our �nding empirically and verify that the theory is predictive of

empirical results. We show that even on “adversarial” inputs the Pivot algorithm obtains good

performance if it has access to a small sample of the data. Without the sample, Pivot performs

poorly. We further show similar behaviour can be observed when the sample is learned from

historical data. These results demonstrate the connection between the theoretical model and

practice.

Additional related work. The online correlation clustering problem has been studied by

[107] , where they give aO(n)-competitive algorithm. However, their algorithm is allowed

to re-assign points by merging clusters. Ailon et al.[18] show that the Pivot algorithm is

3-competitive when vertices arrive in random order.

Our setting is also closely related to the algorithm with machine learning advice setting

Lykouris and Vassilvitskii[106]. In this context, Ailon et al.[17], Saha and Subramanian

[125] study the correlation clustering problem and show that it is possible to obtain better

performance guarantees using same-cluster queries.

140 Robust Online Correlation Clustering

7.2 Semi-Online Model for Correlation Clustering

In this paper, we consider the min-disagreementcorrelation clusteringproblem. We �rst

introduce the of�ine version of the problem.

De�nition 7.2.1 (Correlation Clustering). The input is a complete signed graphG= (V;E) on

n vertices such that the edges are partitioned into positive and negative edgesE = E+ [E� ,

respectively.

The goal is to partition vertices into clusters, e.g.V = C1 [� � � [Ck, wherek is arbitrary, to

minimize the number of disagreements: number of positive edges with endpoints in different

clusters plus the number of negative edges within each cluster. We can write this objective

as:å i< j jf uv2 E+ j u 2 Ci ;v 2 Cjgj+ å k
i= 1jf uv2 E� j u;v 2 Cigj.

In theonlinemodel, the vertices of the graph arrive one-by-one online. The algorithm

has to maintain a partition of all arrived vertices into clusters at all times. Upon each vertex

arrival, its edges (and their signs) to all previous arrivals are revealed. Then the algorithm

must make an irrevocable cluster assignment for this arrival. We recall the lower bound in

this setting due to Mathieu et al. [107].

Lemma 7.2.1.[107] For anyn, there exists an instance of online correlation clustering where

vertices arrive in adversarial order such that every algorithm has competitive ratioW(n).

Semi-online model. As discussed, it is impossible to obtain any positive result in the online

model. Thus, we introduce the semi-online model for correlation clustering.

De�nition 7.2.2 (Semi-Online Correlation Clustering). Let G = (V;E) be a complete signed

graph. In semi-online correlation clustering, there are two phases: an of�ine and online

phase.

First, in the of�ine phase, our algorithm is given the induced subgraphG[S] for some

vertex setS� V. Then, in the online phase, the remainder of the verticesV nSarrive online.

Upon each online arrival, the algorithm must allocate the vertex to a cluster, either starting a

new singleton cluster, or assigning it to a previously de�ned one.

The goal is to maintain a clustering of the vertices throughout to minimize the number of

disagreements.

We will consider different models for how the of�ine verticesSare chosen. We note that

if Sis chosen adversarially, then the adversary can chooseSto be a graph with only negative

edges, andV nSto be a lower bound instance of sizen� j Sj. This gives a lower bound of

W(n� j Sj). Thus, we focus on models whereSis, at least, partially chosen randomly.

7.2 Semi-Online Model for Correlation Clustering 141

The algorithm we analyze for the semi-online correlation clustering is the natural adapta-

tion of thePivot algorithm developed by Ailon et al.[18]. We describe it �rst. The algorithm

takes the following steps.

Of�ine Pivot Algorithm

1. Initially, all vertices areunclustered.

2. Consider verticesv 2 V in some order.

3. If v is currently unclustered, then markv as apivot, and make a new cluster consisting

of v and its remaining unclustered, positive neighbors. Thus, the new cluster is

f vg [f u 2 V j uv2 E+ ;u unclusteredg.

4. Repeat until all vertices are clustered, and output the �nal clustering.

Pivot's performance critically depends on the ordering of the vertices. If the algorithm

considers vertices in random order, then Pivot is a 3-approximation in expectation [18].

Pivot can be adapted to the online setting by considering the vertices in their arrival

order. As we noted, this algorithm will perform poorly on adversarially ordered sequences;

moreover as we will see it has poor empirical performance as well. In the semi-online model,

we can take advantage of the of�ine phase to �nd better clusters for the online arriving

vertices via the pivots computed in the of�ine phase.

Semi-Online Pivot

1. In the of�ine phase, randomly order the vertices inS and then using the random

ordering run the Pivot algorithm onG[S].

2. In the online phase, we continue running the Pivot algorithm on the remainder ofG

given the pivots and resulting clustering onG[S]. Note that we consider vertices in the

order they arrive online.

Note that the pivots chosen in the of�ine phase can potentially cluster vertices in the

online phase. In particular, if vertexv arrives in the online phase, andv has a positive edge

to a pivotu chosen in the of�ine phase, thenv joins u's cluster. We will show that ifSis a

en-sized random sample of the input, then Pivot isO(1
e)-competitive. Thus a small random

sample is suf�cient to circumvent the strong lower bounds on any online algorithm. We also

show that this style of algorithm is robust, even whenS is not fully random, semi-online

Pivot is guaranteed to perform well.

142 Robust Online Correlation Clustering

7.3 Warm-Up: Pivoting Using a Random Sample

In this section, we consider the case whereS is a random sample fromV of sizeen for

e 2 (0;1). We call this thee-random sample model. The analysis of this setting will illustrate

the main technical ideas. Later we generalize to the case where the random sample has a

fraction of adversarially chosen corruptions. In this section, we prove the following.

Theorem 7.3.1.Fix an e 2 (0;1), and letShaveen samples chosen uniformly at random.

Then semi-online Pivot is O(1
e)-competitive in expectation.

We also complement our upper bound with a matching lower bound.

Theorem 7.3.2.For any e 2 (0;1), every algorithm in thee-random sample model has

competitive ratioW(1
e).

Proof. To prove the lower bounds, it suf�ces to considere < 1
2. Fix a suf�ciently largen

such that1e + en � n. We de�ne a graph onn nodes. All edges are negative except those on

a setL of 1
e vertices. The edges onL form a lower bound instance of size1e guaranteed by

Lemma 7.2.1.

The probability that the random sampleScontains no vertex fromL is: P(S\ L = /0) =

(1� 1=e
n) : : : (1 � 1=e

n� en+ 1) � (1 � 1=e
n� en)en = W(1). Further, conditioned on this event, the

cost of any algorithm isW(1
e)-competitive, becauseL arrives in adversarial order.

We now prove the upper bound. Our proof will proceed in two parts. First, we bound the

cost of semi-online Pivot on the random sampleS. Recall that these vertices arrive in random

order, so we can leverage the analysis of the original Pivot algorithm.

Second, we bound the cost ofV nS. The main dif�culty here is thatV nS arrives in

adversarial order. To overcome theW(n) lower bound, we �rst prove a more re�ned lower

bound on the optimal solution in terms of the positive degrees (number of positive edges

incident on a vertex) in the input graph. Then we show that running semi-random Pivot onS

sparsi�es the remaining graph onV nS. That is, there are few positive edges on the nodes no

adjacent to a pivot in the sample. Finally, we relate the cost of Pivot to the positive degrees

to complete the proof.

7.3.1 Pivot Preliminaries

Throughout this section, letOPT denote the number of disagreements made by the optimal

of�ine algorithm onG andALG denote the cost of semi-online Pivot. Note thatOPT is a

�xed quantity, while ALG depends on the random choice ofSand its order.

7.3 Warm-Up: Pivoting Using a Random Sample 143

We begin with the concept ofbad triangles, which we use to lower boundOPT and upper

bound ALG.

De�nition 7.3.1 (Bad Triangle). A bad triangle inG is a triple of vertices,t = i jk such that

two edges among them are positive, and the remaining edge is negative. We letT denote the

set of bad triangles inG.

By case analysis one can check that any clustering must make at least one disagreement

in a bad triangle. Similarly, the Pivot algorithm makes a disagreement on edgei j if and only

if there exists a bad trianglei jk of unclustered vertices such thatk is chosen as pivot. This

motivates the de�nition for any bad trianglet of the event:

At = f one vertex oft is chosen as a pivot while all three are unclusteredg

By linearity of expectation, we can write our expected cost as:

E[ALG] = å
t2T

P(At): (7.1)

We emphasize that this expression holds for any distribution of arrivals. The only difference

is the probabilities of theAt 's. We will re-use the same notations and expression when we

consider a random sample with corruptions later. However, for the remainder of this section,

all probabilities are with respect to thee-random sample model unless otherwise noted.

To formalize the two main steps in our proof sketch, we decompose the above quantity

into two parts: one forSand one forV nS. To this end, we de�ne for each bad trianglet

the eventsAS
t = f one vertex oft is chosen as pivot inSwhile all three are unclusteredg and

AVnS
t = f one vertex oft is chosen as pivot inV nSwhile all three are unclusteredg.

We can re-write:E[ALG] = cost(S) + cost(V nS); wherecost(S) = å t2T P(AS
t) and

cost(V nS) = å t2T P(AVnS
t). We will analyze each of these two terms separately. In particular,

we �rst show thatcost(S) = O(OPT) by relating to Pivot in random order. Then we show

cost(V nS) = O(1
e)OPT by relating to the positive degrees. Combining these two bounds

with the above expression forE[ALG] completes the proof of Theorem 7.3.1.

7.3.2 Bounding Cost ofS

We showcost(S) = O(OPT). Because the vertices ofSare a random subset ofV and we

can analyze them in random order, the �rsten arrivals of thee-random sample model are

distributed identically to the �rsten arrivals in the model whereall vertices arrive in random

order. We rely on the next theorem from Ailon et al.[18], which bounds the cost of Pivot

when vertices arrive in random order.

144 Robust Online Correlation Clustering

Theorem 7.3.3. [18] If vertices arrive in random order, then Pivot is3-competitive in

expectation.

Now we use that Equation (7.1) holds for both thee-random sample model and the ran-

dom order model. We denote the former distribution with a subscriptSand the latter with a

subscriptR. Let RAND denote the cost of running Pivot in the random order model. Then ap-

plying Equation (7.1) and Theorem 7.3.3, we have:cost(S) = å t2T PS(AS
t) = å t2T PR(AS

t) �

å t2T PR(At) = ER[RAND] � 3OPT:

The second equality follows from the observation that the �rsten arrivals in thee-random

sample model are distributed identically to the �rsten arrivals in the random order model,

and the eventAS
t does not depend on the arrival order ofV nS. Thus for any bad trianglet,

PS(AS
t) = PR(AS

t). To understand the latter probability, in the random order model we use

the convention that the ordered setSis the �rst en arrivals.

7.3.3 Bounding Cost ofV nS

We showcost(V nS) = O(1
e)OPT. We begin with a lower bound onOPT in terms of the

positive degrees. Because every clustering must make at least one disagreement on each bad

triangle, we can interpret a clustering as covering all bad triangles using edges (which are the

disagreements that this clustering makes.) Further, every bad triangle has two positive edges,

so we show that the number of bad triangles that any edge can cover is proportional to the

positive degrees of its endpoints.

Lemma 7.3.4. Fix any clusteringC and letE� denote the set of edges thatC makes a

disagreement on. ThenjTj � å i j 2E� d+ (i) + d+ (j), whered+ (�) denotes the positive degree

of a vertex.

Proof. Cmust make at least one disagreement on each bad triangle. It follows,C must cover

each bad triangle with at least one edge inE� . It suf�ces to show that eachi j 2 E� can

be in at mostd+ (i) + d+ (j) bad triangles. To see this, we consider two cases. Ifi j 2 E� ,

then each bad triangle includingi j must also have two positive edgesik and jk for somek.

There can be at mostmin(d+ (i);d+ (j)) suchk. Otherwise,i j 2 E+ . Then each bad triangle

includingi j must have one other positive edge – eitherik or jk for somek. There can be at

mostd+ (i) + d+ (j) suchk.

To understand the utility of the above lemma, it is informative to upper bound eachd+ (i)

by the max positive degree, sayd� . Then Lemma 7.3.4 givesjTj = O(d�)OPT. Further,

by Equation (7.1), the expected cost of Pivot (foranyarrival distribution) iså t2T P(At) �

jTj. Combining these two inequalities gives that Pivot is aO(d�)-approximation even in

7.3 Warm-Up: Pivoting Using a Random Sample 145

adversarial order. In the worst case, we haved� = W(n) (as in the standardW(n) lower bound

instance.)

To overcome this, note that some nodes inV nSare “pre-clustered” by running Pivot onS.

This occurs when a vertex inV nShas a positive edge to a pivot inS. Bad triangles containing

such vertices do not contribute tocost(V nS), so it suf�ces to consider the remaining subgraph

of vertices inV nSthat are not pre-clustered. We show that this random subgraph has small

positive degrees in expectation, so applying Lemma 7.3.4 to this sparse random subgraph

allows us to boundcost(V nS).

We can now show our key structural lemma about sparsi�cation. The main idea of the

proof is that if a vertex has high positive degree, then it is likely that one of its positive

neighbors becomes a pivot inS.

Lemma 7.3.5. For anyv 2 V, de�ne the random variableNv to be 0 if v is clustered

by running Pivot onS (i.e. v 2 S or v has a positive edge to a pivot inS) or Nv =

jf unclustered positive neighbors ofv in V nSgj otherwise. ThenENv = O(1
e).

Proof. Fix v 2 V and k � 0. We �rst upper boundP(Nv � k). De�ne the eventCi =

f v is unclustered and has at leastk positive unclustered neighbors afterith arrival inSg. Then

P(Nv � k) = P(CjSj j CjSj� 1; : : : ;C1) : : :P(C1). For all i, we have:

P(Ci j Ci� 1; : : : ;C1) � 1� P(v clustered byith arrivalj Ci� 1; : : : ;C1)

� 1�
k+ 1

n� (i � 1)
� 1�

k
n

where in the second inequality, we use the fact that conditioned onCi� 1, v has at leastk

unclustered neighbors before theith arrival.

RecallingjSj = en, we haveP(Nv � k) � (1� k
n)en � exp(� ek). Using this tail bound, we

can bound the expectation ofNv: ENv = å ¥
k= 0P(Nv � k) � å ¥

k= 0exp(� ek) = O(
R¥

0 exp(� ek)dk) =

O(1
e):

To �nish our bound oncost(V nS), it remains to combine Lemma 7.3.4 with Lemma 7.3.5.

To this end, we letG0denote the random subgraph ofG induced by all vertices inV nSthat

are not clustered by the pivots chosen inS. The key properties ofG0are:

• Let T0be the set of all bad triangles inG0. We haveå t2T 1
AVnS

t
� j T0j. To see this, note

that if AVnS
t occurs, then no vertex oft is pre-clustered byS, sot 2 T0.

• The positive degree inG0of a vertexv is exactlyNv (as de�ned in Lemma 7.3.5.) Note

that here we use the fact that ifv is clustered by running Pivot onS, Nv = 0 , sincev is

not a vertex inG0.

146 Robust Online Correlation Clustering

• Let E0denote the edge set ofG0andE� the disagreements made byOPT on the whole

graphG. Recall thatOPT is de�ned onG, soE� is invariant. ThenOPT induces a

clustering ofG0that makes disagreementsE0\ E� .

Using the above two lemmas and three properties, we conclude:cost(V nS) � EjT0j �

E[å i j 2E0\ E� d+
G0(i) + d+

G0(j)] � å i j 2E� ENi + ENj = O(1
e)OPT: This completes the proof of

Theorem 7.3.1.

7.4 Random Sample with Adversarial Corruptions

We now consider the case whereSis a random sample fromV with adversarial corruptions.

Our goal is to show that even with adversarial additions toS, pivot has strong approximation

guarantees. We assume thatS is generated by the following procedure, parameterized by

e 2 (0;1) anda 2 (0;e):

e-Random Sample witha -Corruption

1. Given a complete signed graphG = (V;E), an adversary chooses a �xed setA � V of

a n vertices.

2. Then a uniform random subsetRof size(e� a)n is drawn fromV nA.

3. Our algorithm is givenS= R[A in the of�ine phase.

We emphasize the order of events: �rst the adversary choosesA, and then a random

sampleR is drawn. In particular, the choice ofA does not depend onR. Also, our algorithm

is givenSin the of�ine phase, but critically it is unaware of which vertices belong toA or R.

We brie�y discuss some slight variants of our model and their tractability. Sampling

(e � a)n from V nA rather thanen from V itself is mainly for technical convenience; the

latter model admits similar theoretical guarantees, becauseRnA is chose to uniform onV nA

if R is a uniform random sample ofV. However, if we change the order of events, so �rst

sampleR, and then allow an adversary to remove/replacea n vertices from the sample, then

the competitive ratio degrades toW(a n). To see this, consider an input graph consisting of a

lower-bound instance of sizea n guaranteed by Lemma 7.2.1 and all other edges are negative.

The adversary can guarantee that the lower-bound instance is always outside the sample and

thus arrives in adversarial order.

The main result of this section is that the corruptions do not degrade the performance of

semi-online pivot; in particular, the algorithm performs as if it had an uncorrupted sample of

size(e� a)n (under the mild assumption thata is at most a constant fraction ofe.)

7.4 Random Sample with Adversarial Corruptions 147

Theorem 7.4.1.For e 2 (0;1) anda 2 (0;e), semi-online pivot in thee-random sample

with a -corruption model is O(e
(e� a)2)-competitive in expectation.

Similar to the random sample model, we have an almost matching lower bound for the

e-random sample witha -corruption model under the mild assumption that the corruption is

at most half of the whole sample. The proof of this theorem is similar to Theorem 7.3.2.

Theorem 7.4.2.For anye 2 (0;1) anda 2 (0; e
2), every algorithm in thee-random sample

with a -corruption model has competitive ratioW(1
e� a).

Proof. It suf�ces to considere � a < 1
2. Thene 2 (0; 3

4). Consider any suf�ciently large

n such that 1
e� a + en � n. Then we de�ne the graph onn vertices. All edges are negative

except those on a setL of 1
e� a vertices. The edges onL are a lower bound instance of size

1
e� a guaranteed by Lemma 7.2.1.

The adversary chooses the corrupted nodes of the sample to be those not inL. Let Rbe

the corrupted random sample given to the algorithm. Then the probability thatR contains no

vertex fromL is:

Pr(R\ L = /0) = (1�
1=(e� a)
(1� a)n

) : : : (1�
1=(e� a)

(1� a)n� (e� a)n+ 1
)

� (1�
1=(e� a)

n� en
)(e� a)n = W(1)

Further, conditioned on this event, the cost of any algorithm isW(1
e� a)-competitive, because

L arrives in adversarial order.

Proof Overview of Theorem 7.4.1:The proof of Theorem 7.4.1 has the same structure

as Theorem 7.3.1; in particular, we split the cost of semi-online Pivot into an of�ine- and

online phase. The of�ine- and online phases roughly correspond toSandV nS, respectively.

However, the corruptions introduce new challenges in both cases.

For the of�ine phase, we can no longer argue thatSis distributed as the �rsten arrivals

in the random order model due to the adversarially chosen part ofS. Instead, we prove a

generalization of Theorem 7.3.3 via dual �tting that allows us to handle more general arrival

distributions. Roughly, to bound the cost of the of�ine phase, it suf�ces to show that ifAt

occurs in the of�ine phase, then each vertex oft has reasonable probability to be the pivot

that “causes”At .

For the online phase, we still argue by Lemma 7.3.4 that it suf�ces to show that the

remaining vertices in the online phase have small positive degree. Here, we prove that even

with adversarial corruptions, running Pivot in the of�ine phase still sparsi�es the remaining

graph.

148 Robust Online Correlation Clustering

7.4.1 Analysis: Proof of Theorem 7.4.1

Throughout this section, letOpt denote the number of disagreements made by the optimal

of�ine algorithm onG andAlg denote the cost of semi-online Pivot. Note thatOpt is a �xed

quantity, whileAlg depends on the random choice ofSand its order. Further, all probabilities

are taken with respect to thee-random sample witha -corruption model.

By Equation (7.1), we can write our cost as:

EAlg = å
t2T

P(At):

Previously, we split this sum into the contributions bySandV nS. Now, we consider a slightly

different partition. To this end, we de�ne the (random) ordered setS0� Sof the �rst e� a
2 n ar-

rivals inS. Recall thatAS0

t = f one vertex oft is chosen as pivot inS0while all three are unclusteredg

and analogously forAVnS
t . Then we can re-write:

EAlg = cost(S0) + cost(V nS0);

wherecost(S0) = å t2T P(AS0

t) andcost(V nS0) = å t2T P(AVnS0

t). Thus, now our of�ine phase

corresponds toS0, and our online phase toV nS0. We will show thatcost(S0) = O(1
e� a)Opt

andcost(V nS0) = O(e
(e� a)2)Opt. Combining these two bounds with the above expression

for EAlg completes the proof of Theorem 7.4.1.

Bounding Bad Triangles in the Cost ofS0

We show thatcost(S0) = O(1
e� a)Opt. Recall thatS0 is part of the of�ine phase which arrives

in random order. For any vertexi 2 V, we de�ne the eventAS0

i analogously asAS0

t for triangle

t. That is,AS
i = f i is chosen as pivot inS0g. We begin with a technical lemma that analogous

to the dual �tting analysis of Pivot in random order.

Lemma 7.4.3.Let c > 0. Suppose for allt 2 T andi 2 t, we haveP(AS0

i j AS0

t) � c. Then

å t2T P(AS0

t) � 1
cOpt.

Proof. Consider the primal-dual pair of linear programsP andD:

P = min
x

f å
e2E

xe j xi j + x jk + xki � 18i jk 2 T; x � 0g:

D = max
y

f å
t2T

yt j å
t2Tje2t

yt � 18e2 E; y � 0g:

7.4 Random Sample with Adversarial Corruptions 149

We observe thatxe = 1Opt makes a disagreement on efor all e is feasible forP with objective value

Opt. Thus,Opt(P) � Opt. Further, by strong dualityOpt(D) = Opt(P) � Opt.

We now exhibit a feasible solution toD. For all t 2 T, takeyt = cP(AS0

t). It suf�ces to

show that this setting ofy is feasible forD, because thencå t2T P(AS0

t) � Opt. It is immediate

thaty � 0, so we check for eachi j 2 E:

å
k2Vji jk2T

cP(AS0

i jk) � å
k2Vjj i jk2T

P(AS0

k j AS0

i jk)P(AS0

i jk) = å
kji jk2T

P(AS0

k \ AS0

i jk);

where we observe that the eventsAS0

k \ AS0

i jk are disjoint for allk with i jk 2 T, and each such

event implies that Pivot makesi j a disagreement. We conclude:

å
k2Vjj i jk2T

cP(AS0

i jk) � P(Pivot makesi j a disagreement) � 1:

Thus,y is feasible forD.

Note that we can recover the proof of Theorem 7.3.3 using the above lemma. Take all

probabilities with respect to the random order model, andS0= V. ThenP(AV
i j AV

t) � 1
3 for

all t 2 T andi 2 t. This is because each vertex oft has equal probability of arriving �rst

among the three in the random order model. This implies the expected cost of Pivot in the

random order model is at most 3Opt.

In light of the above lemma, we study the probabilitiesP(AS0

i j AS0

t) for t 2 T; i 2 t.

Roughly, we want to show that the probability of each vertex oft arriving �rst among the

three is not too small. The case to keep in mind is if some vertices of a bad triangle are

adversarial and others are not. The next lemma bounds shows that the probability than the

next arrival inS0 is a particular vertex does not vary much between adversarial and random

vertices.

Lemma 7.4.4.Let r � j S0j. Fix an ordered pre�xp = (p1; : : : ; pr� 1) of the �rst r � 1 arrivals

in S0. Then for anyi =2 p, we have:

e� a
2

1
en� (r � 1)

� P(rth arrival isi j �rst r � 1 arrivals arep) �
1

en� (r � 1)
:

Proof. Fix i =2 p and letP be the eventP = f �rst r � 1 arrivals arepg. Noting thati 2 Sis

necessary fori to be therth arrival, we have:

P(rth arrival isi j P) = P(rth arrival isi j P; i 2 S)P(i 2 Sj P):

150 Robust Online Correlation Clustering

Conditioned onP andi 2 S, therth arrival is a uniform random vertex fromSnP, so:

P(rth arrival isi j P; i 2 S) =
1

jSj � j Pj
=

1
en� (r � 1)

:

To analyze the second term,P(i 2 Sj P), we consider two cases. In the �rst casei 2 A,

so P(i 2 S j P) = 1. Otherwise,i 2 V nA, so conditioned onP, i 2 S if and only if i 2

Rn f p1; : : : ; pr� 1g. Thus we can lower-boundP(i 2 Sj P) � (e� a)n� r
n � e� a

2 , where we

recallr � j S0j = (e� a)n
2 . We conclude,e� a

2 � P(i 2 Sj P) � 1. Combining our expressions

for both terms gives the desired result.

Now we are ready to lower boundP(AS0

i j AS0

t) by considering the pre�xes of arrivals

whereAS0

t occurs.

Lemma 7.4.5.For anyt 2 T andi 2 t, P(AS0

i j AS0

t) � e� a
5 .

Proof. Fix t 2 T andi 2 t. For 1� r � j S0j, we de�ne the event

Ar
t = f one vertex oft is chosen as pivot in therth arrival while all three are unclusteredg

Note that the eventsAr
t for all 1 � r � j S0j partitionAS0

t . Then by the law of total probability:

P(AS0

i j AS0

t) =
jS0j

å
r= 1

P(AS0

i j AS0

t ;Ar
t)P(Ar

t j AS0

t) =
jS0j

å
r= 1

P(rth arrival isi j Ar
t)P(Ar

t j AS0

t):

Becauseå
jS0j
r= 1P(Ar

t j AS0

t) = 1, it suf�ces to lower boundP(rth arrival isi j Ar
t) � e� a

5 for all

1 � r � j S0j.

To this end, we �x any1 � r � j S0j, and lett = i jk. Noting that the events that therth

arrival isi, j , or k partitionAr
t , we have:

P(rth arrival isi j Ar
t) + P(rth arrival is j j Ar

t) + P(rth arrival isk j Ar
t) = 1

P(rth arrival isi j Ar
t) = (1+

P(rth arrival is j j Ar
t)

P(rth arrival isi j Ar
t)

+
P(rth arrival isk j Ar

t)
P(rth arrival isi j Ar

t)
)� 1:

It remains to upper bound the ratioP(rth arrival isujAr
t)

P(rth arrival isvjAr
t)

for u;v 2 t. To this end, we de�ne the

setP of all ordered pre�xesp of r � 1 arrivals such that after running Pivot onp, all vertices

in t are uncovered. In particular,Ar
t occurs if any only if the �rstr � 1 arrivals is somep 2 P

7.4 Random Sample with Adversarial Corruptions 151

and therth arrival is int. Then for anyu 2 t:

P(rth arrival isu j Ar
t) =

P(rth arrival isu;Ar
t)

P(Ar
t)

=
å p2PP(rth arrival isu; �rst r � 1 arrivals arep)

P(Ar
t)

=
å p2PP(rth arrival isu j �rst r � 1 arrivals arep)P(�rst r � 1 arrivals arep)

P(Ar
t)

:

Now consideru;v 2 t. Applying the upper- and lower bounds given by Lemma 7.4.4,

respectively, we have:

P(rth arrival isu j Ar
t) �

1
en� (r � 1) å

p2P

P(�rst r � 1 arrivals arep)
P(Ar

t)
;

P(rth arrival isv j Ar
t) �

e � a
2

1
en� (r � 1) å

p2P

P(�rst r � 1 arrivals arep)
P(Ar

t)
;

which taken together implyP(rth arrival isujAr
t)

P(rth arrival isvjAr
t)

� 2
e� a : We conclude:

P(rth arrival isi j Ar
t) � (1+

2
e� a

+
2

e� a
)� 1 =

e� a
4+ e� a

�
e� a

5
:

Composing Lemma 7.4.3 and Lemma 7.4.5 givescost(S0) = å t2T P(AS0

t) � 5
e� a Opt =

O(1
e� a)Opt.

Bounding Bad Triangles in the Cost ofV nS0

Here we show thatcost(V nS0) = O(e
(e� a)2)Opt. Our strategy again is to show that Pivot on

S0sparsi�es the remaining graph, so every arrival inV nS0has a small number of positive

unclustered neighbors. Then we apply Lemma 7.3.4. The next lemma is analogous to

Lemma 7.3.5, but the estimates are slightly more involved due to the more complex arrival

distribution.

Lemma 7.4.6. For anyv 2 V, de�ne the random variableNv to be 0 if v is clustered

by running Pivot onS0 (i.e. v 2 S0 or v has a positive edge to a pivot inS0) or Nv =

jf unclustered positive neighbors ofv in V nS0gj otherwise. ThenENv = O(e
(e� a)2).

Proof. Fix v 2 V and k � 0. We �rst upper boundP(Nv � k). De�ne the eventCi =

f v is unclustered and has at leastk positive unclustered neighbors afterith arrival inS0g. Then

152 Robust Online Correlation Clustering

P(Nv � k) = P(CjS0j j CjS0j� 1; : : : ;C1) : : :P(C1). For all i, we have:

P(Ci j Ci� 1; : : : ;C1) � 1� P(v clustered byith arrivalj Ci� 1; : : : ;C1):

It is convenient to describe the distribution of theith arrival inS0as follows: Suppose the �rst

i � 1 arrivals consist of random arrivalsR0� V nA and adversarial arrivalsA0� A. First, we

decide whether theith arrival will be random (fromV nA) or adversarial (fromA.) It is random

with probability (e� a)n�j R0j
en� i+ 1 � (e� a)n�j R0j

en � e� a
2e , using the fact thati � j S0j = (e � a)n=2.

Similarly, theith arrival is adversarial with probabilitya n�j A0j
en� i+ 1 � a n�j A0j

en . After deciding

whether theith arrival will be random or adversarial, then we choose the arrival by drawing a

uniform random vertex from(V nA) nR0or AnA0, respectively.

Now we lower boundP(v clustered byith arrivalj Ci� 1; : : : ;C1). Conditioned onCi� 1, v

has at leastk unclustered positive neighbors before theith arrival. Letr anda denote the

number of unclustered positive neighbors inV nA andA, respectively. Note thatr + a � k.

Then we compute:

P(v clustered byith arrivalj Ci� 1; : : : ;C1) �
e � a

2e
r
n

+
a n� j A0j

en
a

a n� j A0j

=
e� a

2e
r
n

+
1
e

a
n

�
e� a

2e
k
n

:

RecallingjS0j = (e� a)n=2, we have:

P(Nv � k) � (1�
e� a

2e
k
n

)(e� a)n=2 � exp(�
(e � a)2k

4e
):

Using this tail bound, we can bound the expectation ofNv:

ENv =
¥

å
k= 0

P(Nv � k) �
¥

å
k= 0

exp(�
(e � a)2k

4e
) = O(

Z ¥

0
exp(�

(e � a)2x
4e

)dx) = O(
e

(e� a)2):

Composing Lemma 7.3.4 and Lemma 7.4.6, we can boundcost(V nS0). Let G0denote

the subgraph ofG induced by all vertices inV nS0that are not clustered by the pivots chosen

in S0. Then we have the same three properties as in the proof of Theorem 7.4.1, which we

repeat for convenience:

• Let T0be the set of all bad triangles inG0. We haveå t2T 1
AVnS0

t
� j T0j.

7.5 Experiments 153

• The positive degree inG0of a vertexv is exactlyNv (as de�ned in Lemma 7.4.6.)

• Let E0denote the edge set ofG0andE� the disagreements made byOpt. ThenOpt

induces a clustering ofG0that makes disagreementsE0\ E� .

Using Lemma 7.3.4 and Lemma 7.4.6 and the above three properties, we conclude:

cost(V nS0) � EjT0j � E[å
i j 2E0\ E�

d+
G0(i) + d+

G0(j)] � å
i j 2E�

ENi + ENj = O(
e

(e� a)2)Opt:

7.5 Experiments

In this section, we empirically validate our theoretical �ndings. Speci�cally, we:

• Demonstrate that Pivot's performance can be poor when the arrival sequence is chosen

adversarially.

• Verify that with a small portion of nodes randomly drawn from the dataset (which we

refer to asadvice), semi-online Pivot is competitive with of�ine Pivot in random order

(which is a3-approximation to optimum). Further, we show that the result is robust

across multiple parameter settings and additional corruptions.

• Show that when the advice is temporal (and not random) the performance is still strong.

Datasets. We use the following datasets from the Stanford Large Network Dataset Collec-

tion [101]1. Each dataset is a social network where the nodes represent entities such as users

or communities, and the edges represent connections between the entities such as communica-

tion or transactions. We use two non-temporal datasets:ego-Facebookandego-Gplus[108];

and two temporal datasets:soc-RedditHyperlinks[94] andsoc-sign-bitcoin-otc[96, 95]. The

temporal datasets havetimestampson the edges representing when the connection happened.

We refer to these datasets asFACEBOOK, GPLUS, REDDIT andBITCOIN respectively. See

Table 7.1 for a full description of the four data sources.

To generate signed complete graphs, on directed graphs we convert all arcs into undirected

edges, and on weighted graphs we only keep the edges with positive weights. These edges

represent the positive edges, and all the other edges are negative edges.

To perform a richer evaluation, we sub-sample from the datasets to obtain our input

graphs in the following manner. The two non-temporal data sources,FACEBOOK and

1https://snap.stanford.edu/data/,ego-Facebook: https://snap.stanford.edu/data/ego-Facebook.html,ego-
Gplus: https://snap.stanford.edu/data/ego-Gplus.html,soc-RedditHyperlinks: https://snap.stanford.edu/data/soc-
RedditHyperlinks.html,soc-sign-bitcoin-otc: https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

154 Robust Online Correlation Clustering

Table 7.1 Dataset desciption.

Dataset (# Edges, # Nodes) Edge Features Edge Meaning
FACEBOOK (4039, 88234) Undirected, unweighted, non-temporal Users are friends

GPLUS (107614, 13673453) Directed, unweighted, non-temporal One user follows another
REDDIT (55863, 858490) Directed, weighted, temporal A hyperlink between two subreddits

BITCOIN (5881, 35592) Directed, weighted, temporal A trust rating between users

GPLUS, containego-networkswhich represent the lists of friends of pre-selected users and

the connections among them. We experiment on these ego-networks which are sub-graphs

induced from the entire graph by a subset of nodes. For the temporal data sources, we take

all edges with timestamps falling into a time interval and all nodes induced on these edges.

Performance Metrics. We use Pivot in uniformly random order as our benchmark.

For each arrival order constructed, we conduct multiple trials, take the ratio of the average

number ofdisagreementsfor semi-online Pivot over that of random Pivot, and subtract1 to

measure relative improvement, which we calldegradation.

Power of Advice.Our �rst experiment studies the bene�t of a random sample of nodes.

We compare the performance of Pivot with and without advice under different element

orderings.

We �rst test Pivot on a uniform random ordering of the nodes. Recall that this is a

3-approximation [18] to the optimum. Then we test Pivot in the following adversarial orders:

(1) node degree in descending order; (2) number of bad triangles in a node's neighborhood

that contains this node, in descending order2; and (3) timestamp, in chronological order (only

for temporal datasets.)3

Next, we explore the performance ofsemi-onlinePivot with advice in thee-random

sample model. We produce the advice by randomly sampling ane-fraction of the nodes.

Then, in the online phase, the remaining nodes arrive in adversarial order. We test the same

adversarial orders as before.

Table 7.2 Mean degradation and standard deviation in Pivot's performance on different
sequences,e = 0:1, 30 trials.

Dataset (# Nodes, # Edges) Random Degree Degree w. Advice Bad Triangles
Bad Triangles

w. Advice Time
Time

w. Advice
FACEBOOK (534, 9626) 0� 11.21 % 108.61 % 4.33� 12.68 % 108.54 % 3.53� 13.46 % N/A N/A
FACEBOOK (1034, 53498) 0� 6.00 % 63.19 % 0.19� 5.49 % 63.72 % 1.48� 6.63 % N/A N/A

GPLUS (1650, 166292) 0� 20.79 % 133.46 % 9.90� 23.30 % 133.46 % -0.80� 17.03 % N/A N/A
GPLUS (3455, 435569) 0� 15.35 % 229.37 % -3.95� 16.03 % 229.38 % -3.91� 12.78 % N/A N/A

REDDIT (4277, 9524) 0� 42.79 % 610.64 % 3.99� 8.31 % 610.97 % 5.71� 8.49 % 139.26 % -4.88� 10.43%
REDDIT (7019, 20724) 0� 11.36 % 690.05 % 21.28� 28.61 % 690.27 % 18.40� 11.74 % 79.89% 4.59� 8.65 %
REDDIT (14042, 56567) 0� 20.23 % 822.60 % 11.09� 42.99 % 822.64 % 2.59� 12.24 % 50.24 % -1.01� 14.11 %

BITCOIN (2979, 14695) 0� 21.83 % 1070.07 % 9.75� 24.32 % 1066.81 % 11.70� 25.48 % 579.06 % 8.50� 40.54 %

2For a node withk neighbors, this number is equivalent to itsclustering coef�cient times k(k� 1)
2 .

3The original temporal datasets only have timestamps on edges. We consider the timestamp of any node to
be the earliest timestamp of all edges adjacent to it.

7.5 Experiments 155

See Table 7.2 for data on the performance of Pivot in different scenarios. Each entry shows

the level of degradation compared with fully random Pivot after30 trials (mean� standard

deviation). See Section C.1 for results on all input graphs. The �rst two columns show the

data source and the size of the graph instance. Column “Random” shows random Pivot's

performance. Columns “Degree”, “Bad Triangles” and “Time” give Pivot's performance on

the three adversarial orders mentioned earlier, while the columns next to these three show the

performance of semi-online Pivot using the advice.

Compared with a fully random sequence, an adversarial sequence of online node arrivals

can cause Pivot's performance to degrade signi�cantly, from 2-10x. Sorting the nodes accord-

ing to degrees or bad triangles in the neighborhood could causes Pivot's performance to be

1000%worse for some sub-samples. For the temporal node sequences, Pivot's performance

is about50� 100%worse forREDDIT and500%worse forBITCOIN. However, when

e = 0:1, semi-online Pivot's performance is only slightly worse (about10� 20%) than fully

random Pivot. Thus, with only a small advice set, semi-online Pivot almost completely

bridges the gap between adversarial and random order.

Robustness. Our next goal is to show that the gains of Pivot with advice are robust to

different choices ofe as well as adversarial corruptions. Recall that for a node set of sizen,

the advice has(e� a)n randomly sampled nodes anda n adversarially chosen nodes. For

each of the four data sources, we select a suf�ciently large sub-sample and changee anda

while producing advice.

For the corrupted advice, for any one of the three adversarial sequences, we choose the

�rst a fraction of nodes to be the corruptions (i.e. the “worst” nodes as evidenced by the

experiments with no advice). Then, we sample(e� a)n nodes from the remaining nodes

to complete the advice. The online phase arrival order is the same as in the adversarial

sequence.

Figure 7.1(i) shows how degradation changes whilee ranges in[0:01;0:5] anda = 0 (no

corruptions), and (ii) shows how corruptions in the advice affect semi-online Pivot when

e = 0:2. Pivot's performance is robust against shrinking the size of the advice and against

adding corruptions. Fore � 0:05, or with the advice set corrupted by25%, the performance

remains constant. See Section C.1 for results on more datasets.

Temporal advice. Finally, learning the advice from prior temporal data is suf�cient for

Pivot to have good performance. We test both temporal datasets:REDDIT andBITCOIN.

The advice is generated from older data just prior to the time interval of the test dataset. In

particular, our advice consists of all nodes in the older dataset, which are incident on edges

156 Robust Online Correlation Clustering

(i) (ii)
Fig. 7.1 (i) Degradation v.s.e values,REDDIT, (# nodes, # edges) = (14042, 56567). (ii)
Degradation v.s.a values, whene = 0:2.

in the test dataset (i.e. the old data that is related to the new data.) After the advice, the test

data set arrives in adversarial order - including temporal order, where vertices arrive in order

of their timestamps.

Table 7.3 Degradation of semi-online Pivot when using advice from historical data,REDDIT,
100 trials, test dataset has the duration of 6 months.

Days e-value Random Degree Degree w. Advice Bad Triangles Bad Triangles w. Advice Time Time w. Advice
5 0.09 0� 14.57 % 675.40 % 60.73� 38.29 % 675.12 % 65.73� 46.47 % 52.08 % 55.49� 29.57 %

10 0.15 0� 14.57 % 675.40 % 42.09� 25.19 % 675.12 % 36.85� 20.26 % 52.08 % 34.74� 23.39 %
15 0.19 0� 14.57 % 675.40 % 41.09� 32.35 % 675.12 % 36.85� 20.26 % 52.08 % 36.58� 37.41 %
20 0.22 0� 14.57 % 675.40 % 30.76� 23.27 % 675.12 % 36.43� 32.97 % 52.08 % 41.66� 48.21 %
25 0.25 0� 14.57 % 675.40 % 35.28� 50.72 % 675.12 % 30.97� 32.24 % 52.08 % 30.54� 28.82 %

Table 7.3 shows the results forREDDIT when we change the time interval used to generate

the advice, which is shown in Column “Days” in time unit of days. The time interval for

thetest datasetis �xed to be 6 months. Column “e-value” gives the proportion of nodes

in test dataset that appeared in the old data, which corresponds to the parametere in the

e-random sample model. See Section C.1 for the results forBITCOIN. The rest of the

table shows the degradation of Pivot using the advice from the corresponding historical data.

Pivot's performance improves when we increase the time interval (equivalent to increasinge).

Starting withe = 0:15 (time interval for old data/test data is 10 days/6 months), the temporal

advice improves Pivot's performance on all adversarial orders. This demonstrates that Pivot

works well empirically using advice from historical data.

7.6 Conclusion

By augmenting a standard online algorithm for correlation clustering with a small random

sample of the data, we can overcome strong lower bounds for online correlation clustering.

We give near-optimal algorithms for semi-online correlation clustering given a random

7.6 Conclusion 157

sample (with corruptions), and further this theory is predictive of practical performance.

Empirically, with only a small random sample, semi-online pivot is competitive withof�ine

pivot in random order. Further, in temporal datasets, the sample can be practically obtained

from past data. We show that semi-online models, where we augment an online algorithm

with some of�ine information, can be a powerful tool in both theory and practice to improve

the performance of online algorithms, and we believe they will �nd further applications in

other problems.

References

[big] https://cloud.google.com/bigquery-ml/docs/bigqueryml-intro.

[2] (2018). Kaggle machine learning and data science survey. https://www.kaggle.com/
kaggle/kaggle-survey-2018.

[3] Abboud, A., Cohen-Addad, V., and Houdrougé, H. (2019). Subquadratic high-
dimensional hierarchical clustering. InAdvances in Neural Information Processing
Systems, pages 11576–11586.

[4] Abo-Khamis, M., Im, S., Moseley, B., Pruhs, K., and Samadian, A. (2021a). Approximate
aggregate queries under additive inequalities. InSymposium on Algorithmic Principles of
Computer Systems (APOCS), pages 85–99. SIAM.

[5] Abo-Khamis, M., Im, S., Moseley, B., Pruhs, K., and Samadian, A. (2021b). A rela-
tional gradient descent algorithm for support vector machine training. InSymposium on
Algorithmic Principles of Computer Systems (APOCS), pages 100–113. SIAM.

[6] Abo Khamis, M., Ngo, H. Q., Nguyen, X., Olteanu, D., and Schleich, M. (2018a).
Ac/dc: in-database learning thunderstruck. InSecond Workshop on Data Management for
End-To-End Machine Learning, page 8. ACM.

[7] Abo Khamis, M., Ngo, H. Q., Nguyen, X., Olteanu, D., and Schleich, M. (2018b).
In-database learning with sparse tensors. InACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, pages 325–340.

[8] Abo Khamis, M., Ngo, H. Q., and Rudra, A. (2016). Faq: Questions asked frequently.
In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS '16, page 13–28, New York, NY, USA. Association for
Computing Machinery.

[9] Ackerman, M. and Ben-David, S. (2016). A characterization of linkage-based hierarchi-
cal clustering.Journal of Machine Learning Research, 17:232:1–232:17.

[10] Aggarwal, A., Deshpande, A., and Kannan, R. (2009). Adaptive sampling for k-means
clustering. InInternational Conference on Approximation Algorithms for Combinatorial
Optimization Problems, pages 15–28.

[11] Agrawal, R., Halverson, A., Kenthapadi, K., Mishra, N., and Tsaparas, P. (2009). Gen-
erating labels from clicks. InProceedings of the Second ACM International Conference
on Web Search and Data Mining, pages 172–181.

160 References

[12] Ahmadi, S., Galhotra, S., Saha, B., and Schwartz, R. (2020). Fair correlation clustering.
arXiv:2002.03508.

[13] Ahmadian, S., Chatziafratis, V., Epasto, A., Lee, E., Mahdian, M., Makarychev, K.,
and Yaroslavtsev, G. (2020a). Bisect and conquer: Hierarchical clustering via max-uncut
bisection. InAISTATS.

[14] Ahmadian, S., Epasto, A., Knittel, M., Kumar, R., Mahdian, M., Moseley, B., Pham, P.,
Vassilvitskii, S., and Wang, Y. (2020b). Fair hierarchical clustering.Advances in Neural
Information Processing Systems, 33.

[15] Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M. (2019). Clustering without
over-representation. InKDD, pages 267–275.

[16] Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M. (2020c). Fair correlation
clustering. InAISTATS.

[17] Ailon, N., Bhattacharya, A., and Jaiswal, R. (2018). Approximate correlation clustering
using same-cluster queries. InLatin American Symposium on Theoretical Informatics,
pages 14–27. Springer.

[18] Ailon, N., Charikar, M., and Newman, A. (2008). Aggregating inconsistent information:
ranking and clustering.Journal of the ACM (JACM), 55(5):1–27.

[19] Andoni, A. and Indyk, P. (2008). Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions.Commun. ACM, 51(1):117–122.

[20] Andoni, A., Nikolov, A., Onak, K., and Yaroslavtsev, G. (2014). Parallel algorithms for
geometric graph problems. InSTOC.

[21] Arasu, A., Ré, C., and Suciu, D. (2009). Large-scale deduplication with constraints
using dedupalog. In2009 IEEE 25th International Conference on Data Engineering,
pages 952–963. IEEE.

[22] Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding.
In ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035.

[23] Atserias, A., Grohe, M., and Marx, D. (2008). Size bounds and query plans for relational
joins. In IEEE Symposium on Foundations of Computer Science, pages 739–748.

[24] Awasthi, P., Blum, A., and Sheffet, O. (2012). Center-based clustering under perturba-
tion stability. Inf. Process. Lett., 112(1-2):49–54.

[25] Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., and Wagner, T. (2019).
Scalable fair clustering. InICML, pages 405–413.

[26] Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and Vassilvitskii, S. (2012). Scalable
k-means++.PVLDB, 5(7):622–633.

[27] Balcan, M., Blum, A., and Gupta, A. (2013). Clustering under approximation stability.
J. ACM, 60(2):8:1–8:34.

References 161

[28] Balcan, M., Blum, A., and Vempala, S. (2008). A discriminative framework for
clustering via similarity functions. InProceedings of STOC, pages 671–680.

[29] Bansal, N., Blum, A., and Chawla, S. (2004). Correlation clustering.Machine learning,
56(1):89–113.

[30] Barocas, S., Hardt, M., and Narayanan, A. (2019).Fairness and Machine Learning.
www.fairmlbook.org.

[31] Bateni, M., Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Kiveris, R., Lattanzi,
S., and Mirrokni, V. S. (2017). Af�nity clustering: Hierarchical clustering at scale. In
NeurIPS.

[32] Bera, S., Chakrabarty, D., Flores, N., and Negahbani, M. (2019). Fair algorithms for
clustering. InNeurIPS, pages 4955–4966.

[33] Bercea, I. O., Groß, M., Khuller, S., Kumar, A., Rösner, C., Schmidt, D. R., and
Schmidt, M. (2019). On the cost of essentially fair clusterings. InAPPROX-RANDOM,
pages 18:1–18:22.

[34] Bonchi, F., Gionis, A., and Ukkonen, A. (2013). Overlapping correlation clustering.
Knowledge and information systems, 35(1):1–32.

[35] Borodin, A., Ostrovsky, R., and Rabani, Y. (1999). Subquadratic approximation
algorithms for clustering problems in high dimensional spaces. InProceedings of the
thirty-�rst annual ACM symposium on Theory of computing, pages 435–444.

[36] Braverman, V., Frahling, G., Lang, H., Sohler, C., and Yang, L. F. (2017). Clustering
high dimensional dynamic data streams. InInternational Conference on Machine Learning,
pages 576–585.

[37] Calinescu, G., Chekuri, C., PÃ¡l, M., and VondrÃ¡k, J. (2011). Maximizing a monotone
submodular function subject to a matroid constraint.SIAM Journal on Computing,
40(6):1740–1766.

[38] Carlsson, G. E. and Mémoli, F. (2010). Characterization, stability and convergence of
hierarchical clustering methods.Journal of Machine Learning Research, 11:1425–1470.

[39] Casella, G., Robert, C. P., Wells, M. T., et al. (2004). Generalized accept-reject sampling
schemes. InA Festschrift for Herman Rubin, pages 342–347. Institute of Mathematical
Statistics.

[40] Celis, L. E., Huang, L., and Vishnoi, N. K. (2018a). Multiwinner voting with fairness
constraints. InIJCAI, pages 144–151.

[41] Celis, L. E., Straszak, D., and Vishnoi, N. K. (2018b). Ranking with fairness constraints.
In ICALP, pages 28:1–28:15.

[42] Chakrabarti, D., Kumar, R., and Punera, K. (2008). A graph-theoretic approach to
webpage segmentation. InProceedings of the 17th international conference on World
Wide Web, pages 377–386.

162 References

[43] Charikar, M. and Chatziafratis, V. (2017). Approximate hierarchical clustering via
sparsest cut and spreading metrics. InSODA, pages 841–854.

[44] Charikar, M., Chatziafratis, V., and Niazadeh, R. (2019a). Hierarchical clustering better
than average-linkage. InSODA, pages 2291–2304.

[45] Charikar, M., Chatziafratis, V., Niazadeh, R., and Yaroslavtsev, G. (2019b). Hierarchical
clustering for euclidean data. In Chaudhuri, K. and Sugiyama, M., editors,PMLR,
volume 89, pages 2721–2730. PMLR.

[46] Chatziafratis, V., Niazadeh, R., and Charikar, M. (2018). Hierarchical clustering with
structural constraints. InProceedings of the ICML, pages 773–782.

[47] Chawla, S., Makarychev, K., Schramm, T., and Yaroslavtsev, G. (2015). Near optimal
lp rounding algorithm for correlationclustering on complete and complete k-partite graphs.
In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 219–228.

[48] Chen, X., Fain, B., Lyu, C., and Munagala, K. (2019). Proportionally fair clustering. In
ICML, pages 1032–1041.

[49] Chen, Y., Sanghavi, S., and Xu, H. (2012). Clustering sparse graphs. InProceedings of
the 25th International Conference on Neural Information Processing Systems-Volume 2,
pages 2204–2212.

[50] Cheng, Z. and Koudas, N. (2019). Nonlinear models over normalized data. In2019
IEEE 35th International Conference on Data Engineering (ICDE), pages 1574–1577.
IEEE.

[51] Chhabra, A. and Mohapatra, P. (2020). Fair algorithms for hierarchical agglomerative
clustering.arXiv:2005.03197.

[52] Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S. (2017). Fair clustering
through fairlets. InNIPS, pages 5029–5037.

[53] Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S. (2019). Matroids, match-
ings, and fairness. InAISTATS, pages 2212–2220.

[54] Chierichetti, F., Kumar, R., and Mahdian, M. (2014). The complexity of LSH feasibility.
Theor. Comput. Sci., 530:89–101.

[55] Chiplunkar, A., Kale, S., and Ramamoorthy, S. N. (2020). How to solve fairk-center in
massive data models. InICML.

[56] Cochez, M. and Neri, F. (2015). Scalable hierarchical clustering: Twister tries with a
posteriori trie elimination. InSSCI, pages 756–763.

[57] Cohen-Addad, V., Hjuler, N., Parotsidis, N., Saulpic, D., and Schwiegelshohn, C.
(2019). Fully dynamic consistent facility location. InNeurIPS'19-33rd Conference on
Neural Information Processing Systems.

[58] Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., and Mathieu, C. (2018). Hierarchi-
cal clustering: Objective functions and algorithms. InSODA, pages 378–397.

References 163

[59] Cohen-addad, V., Kanade, V., Mallmann-trenn, F., and Mathieu, C. (2019). Hierarchical
clustering: Objective functions and algorithms.J. ACM, 66(4).

[60] Curtin, R. R., Moseley, B., Ngo, H. Q., Nguyen, X., Olteanu, D., and Schleich, M.
(2020). Rk-means: Fast clustering for relational data. In Chiappa, S. and Calandra, R., ed-
itors,The 23rd International Conference on Arti�cial Intelligence and Statistics, AISTATS
2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 ofProceedings of
Machine Learning Research, pages 2742–2752. PMLR.

[61] Dasgupta, S. (2016). A cost function for similarity-based hierarchical clustering. In
STOC.

[62] Dasgupta, S. and Gupta, A. (2003). An elementary proof of a theorem of johnson and
lindenstrauss.Random Struct. Algorithms, 22(1):60–65.

[63] Dasgupta, S. and Long, P. M. (2005). Performance guarantees for hierarchical clustering.
J. Comput. Syst. Sci., 70(4):555–569.

[64] Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive
hashing scheme based on p-stable distributions. InProceedings of the twentieth annual
symposium on Computational geometry, pages 253–262.

[65] Demaine, E. D., Emanuel, D., Fiat, A., and Immorlica, N. (2006). Correlation clustering
in general weighted graphs.Theoretical Computer Science, 361(2-3):172–187.

[66] Ene, A., Im, S., and Moseley, B. (2011). Fast clustering using MapReduce. InKDD,
pages 681–689.

[67] Garey, M. R. and Johnson, D. S. (2002).Computers and Intractability. WH Freeman
New York.

[68] Ghoshdastidar, D., Perrot, M., and von Luxburg, U. (2018). Foundations of comparison-
based hierarchical clustering.CoRR, abs/1811.00928.

[69] Giotis, I. and Guruswami, V. (2005). Correlation clustering with a �xed number of
clusters.arXiv preprint cs/0504023.

[70] Goodman, J. E. and O'Rourke, J., editors (1997).Handbook of Discrete and Computa-
tional Geometry. CRC Press, Inc., USA.

[Google Cloud Platform] Google Cloud Platform. https://cloud.google.com/.

[72] Guha, S., Meyerson, A., Mishra, N., Motwani, R., and O'Callaghan, L. (2003). Clus-
tering data streams: Theory and practice.IEEE Transactions on Knowledge and Data
Engineering, 15(3):515–528.

[73] Guha, S., Rastogi, R., and Shim, K. (2001). Cure: An ef�cient clustering algorithm for
large databases.Inf. Syst., 26(1):35–58.

[74] Guo, X., Kulkarni, J., Li, S., and Xian, J. (2020). On the facility location problem
in online and dynamic models. InApproximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

164 References

[75] Guo, X., Kulkarni, J., Li, S., and Xian, J. (2021). Consistent k-median: Simpler, better
and robust. InInternational Conference on Arti�cial Intelligence and Statistics, pages
1135–1143. PMLR.

[76] Huang, L., Jiang, S. H. C., and Vishnoi, N. K. (2019). Coresets for clustering with
fairness constraints. InNeurIPS, pages 7587–7598.

[77] Indyk, P. (2001). Algorithmic applications of low-distortion geometric embeddings. In
FOCS.

[78] Indyk, P. and Matousek, J. (2004). Low-distortion embeddings of �nite metric spaces.
In in Handbook of Discrete and Computational Geometry, pages 177–196. CRC Press.

[79] Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: towards removing
the curse of dimensionality. InProceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613.

[80] Jin, C., Chen, Z., Hendrix, W., Agrawal, A., and Choudhary, A. N. (2015a). Incremental,
distributed single-linkage hierarchical clustering algorithm using mapreduce. InHPC.

[81] Jin, C., Liu, R., Chen, Z., Hendrix, W., Agrawal, A., and Choudhary, A. N. (2015b). A
scalable hierarchical clustering algorithm using spark. InBig Data Computing Service
and Applications.

[82] Jones, M., Nguyen, T., and Nguyen, H. (2020). Fairk-centers via maximum matching.
In ICML.

[83] Kalashnikov, D. V., Chen, Z., Mehrotra, S., and Nuray-Turan, R. (2008). Web people
search via connection analysis.IEEE Transactions on Knowledge and Data Engineering,
20(11):1550–1565.

[84] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and
Wu, A. Y. (2004). A local search approximation algorithm for k-means clustering.
Computational Geometry, 28(2-3):89–112.

[85] Karloff, H. J., Suri, S., and Vassilvitskii, S. (2010). A model of computation for
mapreduce. InSODA.

[86] Khamis, M. A., Ngo, H. Q., Ré, C., and Rudra, A. (2016). Joins via geometric
resolutions: Worst case and beyond.ACM Transactions on Database Systems, 41(4):22:1–
22:45.

[87] Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., and Mullainathan, S. (2017). Hu-
man decisions and machine predictions.The Quarterly Journal of Economics, 133(1):237–
293.

[88] Kleindessner, M., Awasthi, P., and Morgenstern, J. (2019a). Fairk-center clustering for
data summarization. InICML, pages 3448–3457.

[89] Kleindessner, M., Samadi, S., Awasthi, P., and Morgenstern, J. (2019b). Guarantees for
spectral clustering with fairness constraints. InICML, pages 3448–3457.

References 165

[90] Korula, N., Mirrokni, V., and Zadimoghaddam, M. (2018). Online submodular wel-
fare maximization: Greedy beats 1/2 in random order.SIAM Journal on Computing,
47(3):1056–1086.

[91] Kull, M. and Vilo, J. (2008). Fast approximate hierarchical clustering using similarity
heuristics.BioData Mining, 1.

[92] Kumar, A., Naughton, J., and Patel, J. M. (2015). Learning generalized linear models
over normalized data. InACM SIGMOD International Conference on Management of
Data, pages 1969–1984.

[93] Kumar, R., Purohit, M., Schild, A., Svitkina, Z., and Vee, E. (2019). Semi-online
bipartite matching. In10th Innovations in Theoretical Computer Science Conference,
ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages 50:1–50:20.

[94] Kumar, S., Hamilton, W. L., Leskovec, J., and Jurafsky, D. (2018a). Community
interaction and con�ict on the web. InProceedings of the 2018 world wide web conference,
pages 933–943.

[95] Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., and Subrahmanian, V.
(2018b). Rev2: Fraudulent user prediction in rating platforms. InProceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, pages 333–341.

[96] Kumar, S., Spezzano, F., Subrahmanian, V., and Faloutsos, C. (2016). Edge weight
prediction in weighted signed networks. In2016 IEEE 16th International Conference on
Data Mining (ICDM), pages 221–230. IEEE.

[97] Lattanzi, S., Lavastida, T., Lu, K., and Moseley, B. (2019). A framework for paralleliz-
ing hierarchical clustering methods. InECML.

[98] Lattanzi, S., Moseley, B., Vassilvitskii, S., Wang, Y., and Zhou, R. (2021). Robust
online correlation clustering.Advances in Neural Information Processing Systems, 34.

[99] Lattanzi, S. and Vassilvitskii, S. (2017). Consistent k-clustering. InInternational
Conference on Machine Learning, pages 1975–1984. PMLR.

[100] Lavastida, T., Lu, K., Moseley, B., and Wang, Y. (2021). Scaling average-linkage via
sparse cluster embeddings. InAsian Conference on Machine Learning, pages 1429–1444.
PMLR.

[101] Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data.

[102] Li, S. and Svensson, O. (2016). Approximating k-median via pseudo-approximation.
SIAM J. Comput., 45(2):530–547.

[103] Liberty, E., Sriharsha, R., and Sviridenko, M. (2016). An algorithm for online k-means
clustering. In2016 Proceedings of the eighteenth workshop on algorithm engineering
and experiments (ALENEX), pages 81–89. SIAM.

[104] Lichman, M. (2013). UCI ml repository.

166 References

[105] Lykouris, T., Mirrokni, V., and Paes Leme, R. (2018). Stochastic bandits robust to
adversarial corruptions. InProceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 114–122.

[106] Lykouris, T. and Vassilvitskii, S. (2018). Competitive caching with machine learned
advice. InInternational Conference on Machine Learning, pages 3296–3305. PMLR.

[107] Mathieu, C., Sankur, O., and Schudy, W. (2010). Online correlation clustering. In
27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010,
March 4-6, 2010, Nancy, France, pages 573–584.

[108] McAuley, J. J. and Leskovec, J. (2012). Learning to discover social circles in ego
networks. InNIPS, volume 2012, pages 548–56. Citeseer.

[109] Menon, A. K., Rajagopalan, A., Sumengen, B., Citovsky, G., Cao, Q., and Kumar, S.
(2019). Online hierarchical clustering approximations.CoRR, abs/1909.09667.

[110] Meyerson, A. (2001). Online facility location. InProceedings 42nd IEEE Symposium
on Foundations of Computer Science, pages 426–431. IEEE.

[111] Meyerson, A., O'Callaghan, L., and Plotkin, S. A. (2004). Ak-median algorithm with
running time independent of data size.Machine Learning, 56(1-3):61–87.

[112] Monath, N., Kobren, A., Krishnamurthy, A., Glass, M. R., and McCallum, A. (2019).
Scalable hierarchical clustering with tree grafting. InSIGKDD.

[113] Moseley, B., Pruhs, K., Samadian, A., and Wang, Y. (2021a). Relational algorithms for
k-means clustering.International Colloquium on Automata, Languages, and Programming
(ICALP).

[114] Moseley, B., Vassilvitskii, S., and Wang, Y. (2021b). Hierarchical clustering in general
metric spaces using approximate nearest neighbors. InInternational Conference on
Arti�cial Intelligence and Statistics, pages 2440–2448. PMLR.

[115] Moseley, B. and Wang, J. (2017). Approximation bounds for hierarchical clustering:
Average linkage, bisecting k-means, and local search.Advances in neural information
processing systems, 30.

[116] Mullner, D. (2013). fastcluster: Fast hierarchical, agglomerative clustering routines
for r and python.Journal of Statistical Software, 53(9).

[117] Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms.
Comput. J., 26(4):354–359.

[118] Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical clustering: an
overview.Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, 2(1):86–97.

[119] Ostrovsky, R., Rabani, Y., Schulman, L. J., and Swamy, C. (2012). The effectiveness
of lloyd-type methods for the k-means problem.Journal of the ACM (JACM), 59(6):28.

[120] Plaxton, C. G. (2006). Approximation algorithms for hierarchical location problems.
J. Comput. Syst. Sci., 72(3):425–443.

References 167

[121] Rendle, S. (2013). Scaling factorization machines to relational data. InProceedings
of the VLDB Endowment, volume 6, pages 337–348. VLDB Endowment.

[122] Rösner, C. and Schmidt, M. (2018). Privacy preserving clustering with constraints. In
ICALP, pages 96:1–96:14.

[123] Roughgarden, T. (2020).Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press.

[124] Roy, A. and Pokutta, S. (2017). Hierarchical clustering via spreading metrics.JMLR,
18:88:1–88:35.

[125] Saha, B. and Subramanian, S. (2019). Correlation clustering with same-cluster queries
bounded by optimal cost.arXiv preprint arXiv:1908.04976.

[126] Schleich, M., Olteanu, D., and Ciucanu, R. (2016). Learning linear regression models
over factorized joins. InProceedings of the 2016 International Conference on Management
of Data, SIGMOD '16, pages 3–18. ACM.

[127] Schmidt, M., Schwiegelshohn, C., and Sohler, C. (2019). Fair coresets and streaming
algorithms for fair k-means. In Bampis, E. and Megow, N., editors,WAOA, pages 232–251.

[128] Sohler, C. and Woodruff, D. P. (2018). Strong coresets for k-median and subspace
approximation: Goodbye dimension. InSymposium on Foundations of Computer Science,
pages 802–813.

[129] Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document
clustering techniques. InKDD workshop on text mining, volume 400, pages 525–526.
Boston.

[130] Vidal, R. (2006). Online clustering of moving hyperplanes.Advances in Neural
Information Processing Systems, 19:1433–1440.

[131] Wang, D. and Wang, Y. (2018). An improved cost function for hierarchical cluster
trees.CoRR, abs/1812.02715.

[132] Wang, Y. and Moseley, B. (2020). An objective for hierarchical clustering in euclidean
space and its connection to bisecting k-means. InAAAI, pages 6307–6314.

[133] Xu, R. and Wunsch, D. C. (2005). Survey of clustering algorithms.IEEE Trans.
Neural Networks, 16(3):645–678.

[Yang et al.] Yang, K., Gao, Y., Liang, L., Yao, B., Wen, S., and Chen, G. Towards factorized
svm with gaussian kernels over normalized data.

[135] Yaroslavtsev, G. and Vadapalli, A. (2018). Massively parallel algorithms and hardness
for single-linkage clustering under lp distances. InICML.

[136] Yu, C. T. and Ozsoyoglu, M. Z. (1979). An algorithm for tree-query membership
of a distributed query. InComputer Software and The IEEE Computer Society's Third
International Applications Conference, pages 306–312. IEEE.

168 References

[137] Zhang, J., Ghahramani, Z., and Yang, Y. (2004). A probabilistic model for online
document clustering with application to novelty detection.Advances in neural information
processing systems, 17:1617–1624.

[138] Zhao, Y., Karypis, G., and Fayyad, U. M. (2005). Hierarchical clustering algorithms
for document datasets.Data Min. Knowl. Discov., 10(2):141–168.

Appendix A

Background Information for Relational

Database

A.1 Uniform Sampling From a Hypersphere

In order to uniformly sample a point from inside a ball, it is enough to show how we can

count the number of points located inside a ball grouped by a tableTi. Because, if we can

count the number of points grouped by input tables, then we can use similar technique to

the one used in Section 5.4 to sample. Unfortunately, as we discussed in Section 5.2, it is

#P-Hard to count the number of points inside a ball; however, it is possible to obtain a1� d

approximation of the number of points [4]. Bellow we brie�y explain the algorithm in [4] for

counting the number of points inside a hypersphere.

Given a centerc and a radiusR, the goal is approximating the number of tuplesx 2 J

for whichå i(c
i � xi)2 � R. Consider the setScontaining all the multisets of real numbers.

We denote a multisetA by a set of pairs of(v; fA(v)) wherev is a real value andf (v) is the

frequency ofv in A. For example,A = f (2:3;10); (3:5;1)g is a multiset that has10 members

with value2:3 and1 member with value3:5. Then, let� be the summation operator meaning

C = A� B if and only if for all x 2 R, fC(x) = fA(x) + fB(x), and let
 be the convolution

operator such thatC = A
 B if and only if fC(x) = å i2R fA(i) + fB(x� i). Then the claim is

(S; � ;
) is a commutative semiring and the following SumProd query returns a multiset that

has all the squared distances of the points inJ from C:

M

x2J

O

i

f ((xi � ci)2;1)g

170 Background Information for Relational Database

Using the result of the multiset, it is possible to count exactly the number of tuplesx 2 J for

whichkx� ck2
2 � R2. However, the size of the result is as large asW(jJj).

In order to make the size of the partial results and time complexity of� and
 operators

polynomial, the algorithm uses(1+ d) geometric bucketing. The algorithm returns an array

where in j-th entry it has the smallest valuer for which there are(1+ d) j tuplesx 2 J

satisfyingkx� ck2
2 � r2.

The query can also be executed grouped by one of the input tables. Therefore, using this

polynomial approximation scheme, we can calculate conditioned marginalized probability

distribution with multiplicative(1� d). Therefore, usingmqueries, it is possible to sample a

tuple from a ball with probability distribution1n(1� md) wheren is the number of points in-

side the ball. In order to get a sample with probability1
n(1� e), all we need is to setd = e=m;

hence, on [4], the time complexity for sampling each tuple will beO
�

m9 log4(n)
e2 Y(n;d;m)

�

A.2 Background Information About Database Concepts

Given a tuplex, de�ne PF (x) to be projection ofx onto the set of featuresF meaningPF (x)

is a tuple formed by keeping the entries inx that are corresponding to the feature inF. For

example letT be a table with columns(A;B;C) and letx = (1;2;3) be a tuple ofT, then

P f A;Cg(x) = (1;3).

De�nition A.2.1 (Join). LetT1; : : : ;Tm be a set of tables with corresponding sets of columns/features

F1; : : : ;Fm we de�ne the join of themJ = T1 on � � � on Tm as a table such that the set of columns

of J is
S

i Fi , andx 2 J if and only if PFi (x) 2 Ti .

Note that the above de�nition of join is consistent with the de�nition written in Section

5.1 but offers more intuition about what the join operation means geometrically.

De�nition A.2.2 (Join Hypergraph). Given a joinJ = T1 on � � � on Tm, the hypergraph asso-

ciated with the join isH = (V;E) whereV is the set of vertices and for every columnai in

J there is a vertexvi in V, and for every tableTi there is a hyper-edgeei in E that has the

vertices associated with the columns ofTi .

Theorem A.2.1(AGM Bound [23]). Given a joinJ = T1 on � � � on Tm with d columns and its

associated hypergraphH = (V;E), and letC be a subset ofcol(J), let X = (x1; : : : ;xm) be

A.2 Background Information About Database Concepts 171

any feasible solution to the following Linear Programming:

minimize
m

å
j= 1

log(jTj j)x j

subject to å
j :v2ej

x j � 1; v 2 C

0 � x j � 1; j = 1; :::;t

ThenÕi jTi jxi is an upper bound for the cardinality ofPC(J), this upperbound is tight ifX is

the optimal answer.

We give another de�nition ofacyclicitywhich is consistent with the de�nition in the main

body.

De�nition A.2.3 (Acyclic Join). We call a join query (or a relational database schema)

acyclic if one can repeatedly apply one of the two operations and convert the set of tables to

an empty set:

1. Remove a column that is only in one table.

2. Remove a table for which its columns are fully contained in another table.

De�nition A.2.4 (Hypertree Decomposition). Let H = (V;E) be a hypergraph andT =

(V0;E0) be a tree with a subset ofV associated to each vertex inv02 V0calledbagof v0and

show it byb(v0) � V. T is called ahypertree decompositionof H if the following holds:

1. For each hyperedgee2 E there existsv02 V0such thate � b(v0)

2. For each vertexv 2 E the set of vertices inV0that havev in their bag are all connected

in T.

De�nition A.2.5. Let H = (V;E) be a join hypergraph andT = (V0;E0) be its hypertree

decomposition. For eachv02 V0, let Xv0
= (xv0

1 ;xv0

2 ; : : : ;xv0

m) be the optimal solution to the

following linear program:min å t
j= 1x j , subject toå j :vi2ej x j � 1;8vi 2 b(v0) where0 � x j �

1 for eachj 2 [t]. Then thewidth of v0 is å i x
v0

i denoted byw(v0) and thefractional width of

T is maxv02V0w(v0).

De�nition A.2.6 (fhtw). Given a join hypergraphH = (V;E), the fractional hypertree

width of H, denoted by fhtw, is the minimum fractional width of its hypertree decomposition.

Here the minimum is taken over all possible hypertree decompositions.

172 Background Information for Relational Database

Observation 1. The fractional hypertree width of an acyclic join is1, and each bag in its

hypertree decomposition is a subset of the columns in some input table.

Theorem A.2.2(Inside-out [86]). There exists an algorithm to evaluate a SumProd query in

timeO(Tmd2nfhtw log(n)) wherefhtw is the fractional hypertree width of the query andT is

the time needed to evaluate� and
 for two operands. The same algorithm with the same

time complexity can be used to evaluate SumProd queries grouped by one of the input tables.

Theorem A.2.3. Let Qf be a function from domain of columnf in J to R, andG be a vector

that has a row for each tuple r2 Ti . Then the query

å
X2J

å
f

Qf (xf)

can be converted to a SumProd and the query returning G with de�nition

Gr = å
X2Yion J

å
f

Fi(xf)

can be converted to a SumProd query grouped by Ti .

Proof. Let S= f (a;b) j a 2 R;b 2 Ig, and for any two pairs of(a;b); (c;d) 2 Swe de�ne:

(a;b) � (c;d) = (a+ c;b+ d)

and

(a;b)
 (c;d) = (ad+ cb;bd):

Then the theorem can be proven by using the following two claims:

1. (S; � ;
) forms a commutative semiring with identity zeroI0 = (0;0) and identity one

I1 = (0;1).

2. The query� X2J
 f (Qf (xf);1) is a SumProd FAQ where the �rst entry of the result is

å X2J å f Qf (xf) and the second entry is the number of rows inJ.

proof of the �rst claim: Since arithmetic summation is commutative and associative, it is

easy to see� is also commutative and associative. Furthermore, based on the de�nition of�

we have(a;b) � I0 = (a+ 0;b+ 0) = (a;b).

A.2 Background Information About Database Concepts 173

The operator
 is also commutative since arithmetic multiplication is commutative, the

associativity of
 can be proved by

(a1;b1)
 ((a2;b2)
 (a3;b3)) = (a1;b1)
 (a2b3 + a3b2;b2b3)

= (a1b2b3 + b1a2b3 + b1b2a3;b1b2b3)

= (a1b2 + b1a2;b1b2)
 (a3;b3)

= ((a1;b1)
 (a2;b2))
 (a3;b3)

Also note that based on the de�nition of
 , (a;b)
 I0 = I0 and(a;b)
 I1 = (a;b). The

only remaining property that we need to prove is the distribution of
 over� :

(a;b)
 ((c1;d1) � (c2;d2)) = (a;b)
 (c1 + c2;d1 + d2)

= (a;b)
 (c1 + c2;d1 + d2)

= (c1b+ c2b+ ad1 + ad2;bd1 + bd2)

= (c1b+ ad1;bd1) � (c2b+ ad2;bd2)

= ((a;b)
 (c1;d1)) � ((a;b)
 (c2;d2))

Now we can prove the second claim: To prove the second claim, since we have already

shown the semiring properties of(S; � ;
) we only need to show what is the result of

� X2J
 f (Qf (xf);1). We have
 f (Qi(xf);1) = (å f Qi(xf);1), therefore

� X2J
 f (Qi(xf);1) = � X2J(å
f

Qf (xf);1) = (å
X2J

å
f

Qf (xf); å
X2J

1)

where the �rst entry is the result of the SumSum query and the second entry is the number of

rows inJ.

Appendix B

Omitted Experimental Results for

Hierarchical Clustering in General

Metric Space

This chapter contains the experiment results omitted in the main body. We show the perfor-

mance table and running time plots for Proxy-Hash-SL And Proxy-Hash-AL on the three

road map datasets andseizure . These results lead to the same conclusions as in the main

body: both Proxy-Hash-SL and Proxy-Hash-AL are more accurate and ef�cient than directly

using the proxy metric.

B.1 Performance And Running Time for Proxy-Hash-SL

And Proxy-Hash-AL

We defer the performance data for Proxy-Hash-SL on road map dataset in Bay Area and

Great Lakes until the next subsection, where we will show the complete data table containing

performance data for a range ofe values in the LSH algorithm, gathered from the road map

datasets in all three cities. Here we show the performance for Proxy-Hash-AL on road maps

in Bay Area and Great Lakes in Table B.1 and B.2.

Running-time wise, Figure B.1a and B.1b show the growth in number of distance compu-

tations in Proxy-Hash-AL for road map in Bay Area and the Great Lakes, versus growth in

sample size. The sample sizes are plotted on log scale. Both curves are strictly sub-quadratic

as it is dominated byy = cx1:3 wherec is a constant.

176 Omitted Experimental Results for Hierarchical Clustering in General Metric Space

Table B.1 Comparing the performance of different average linkage methods, Bay Area

Sample Size 299 440 481 830 909 1065 1280 1363
Aprx Ratio, mean, Proxy-AL 3.608 2.491 3.423 2.830 2.431 3.017 2.787 2.175

Aprx Ratio, mean, Proxy-Hash-AL 1.484 1.647 1.493 1.725 1.629 1.709 1.821 1.730
Aprx Ratio, 90%, Proxy-AL 6.554 4.327 5.324 3.759 3.816 5.156 4.711 3.418

Aprx Ratio, 90%, Proxy-Hash-AL 2.024 2.300 1.987 2.402 2.214 2.313 2.550 2.353
Aprx Ratio, max, Proxy-AL 85.784 126.459 89.782 116.732 44.144 96.401 215.839 64.011

Aprx Ratio, max, Proxy-Hash-AL 2.553 3.223 3.184 3.759 3.816 3.646 4.507 3.418
Global Obj, Proxy-AL 0.994 0.990 0.990 0.998 0.999 0.994 0.963 1.001

Global Obj, Proxy-Hash-AL 1.004 0.970 0.985 0.975 0.999 0.987 0.966 0.971

Table B.2 Comparing the performance of different average linkage methods, the Great Lakes

Sample Size 86 211 363 496 632 713 1064 1885
Aprx Ratio, mean, Proxy-AL 1.539 1.457 1.935 1.971 1.975 1.742 1.828 1.837

Aprx Ratio, mean, Proxy-Hash-AL 1.362 1.545 1.562 1.592 1.603 1.675 1.766 1.797
Aprx Ratio, 90%, Proxy-AL 2.158 1.732 2.476 2.516 3.280 2.839 2.466 2.658

Aprx Ratio, 90%, Proxy-Hash-AL 1.890 2.311 2.112 2.172 2.158 2.268 2.523 2.412
Aprx Ratio, max, Proxy-AL 14.361 8.603 55.200 45.255 28.929 17.767 65.448 51.816

Aprx Ratio, max, Proxy-Hash-AL 2.428 3.367 3.043 2.971 3.079 3.137 5.073 3.943
Global Obj, Proxy-AL 0.992 0.996 0.990 1.001 0.988 0.997 0.990 0.996

Global Obj, Proxy-Hash-AL 0.983 0.998 0.996 0.983 0.994 0.995 0.992 0.997

Table B.3 Ratio between total road distance of the tree and real MST, New York

Sample Size 169 330 727 1166 1825 3765 6710 14428 28985
Euclidean 1.760 1.304 1.554 1.784 1.412 1.805 1.753 1.883 1.511

Proxy-Hash-SL-0.1 1.035 1.016 1.021 1.024 1.027 1.030 1.029 1.022 1.024
Proxy-Hash-SL-0.2 1.048 1.035 1.055 1.038 1.045 1.040 1.066 1.044 1.055
Proxy-Hash-SL-0.3 1.109 1.030 1.055 1.052 1.062 1.060 1.063 1.052 1.059
Proxy-Hash-SL-0.4 1.082 1.036 1.075 1.064 1.068 1.064 1.063 1.074 1.078
Proxy-Hash-SL-0.5 1.074 1.094 1.081 1.091 1.065 1.068 1.090 1.072 1.077

In the main body, we have also omitted the running time plots for Proxy-Hash-SL for all

data sets. See Figure B.2 for them. Clearly, all running time curves are strictly subquadratic,

and even only slightly super-linear on all road map datasets.

B.1.1 Robustness of Performance Against Sample Sizes And Parameter

Tuning

There are a lot of parameters in the implementation of both Proxy-Hash-SL and Proxy-Hash-

AL, which might affect the accuracy and ef�ciency of our algorithms. One of the most

important parameters ise - in every round of LSH the threshold merging value grows by a

factor of1+ e. In this section we show that the performance of our algorithms are robust

against differente values and the growth of sample sizes. We focus on Proxy-Hash-SL for

now.

See Table 6.3, B.4, B.5 for partial statistics of Proxy-Hash-SL performance for Bay Area

and the Great Lakes. The sample sizes are picked to grow by approximately a factor of2.

Here

B.1 Performance And Running Time for Proxy-Hash-SL And Proxy-Hash-AL 177

(a) Bay Area (b) the Great Lakes

Fig. B.1 Growth of distance computation, Proxy-Hash-AL, Bay Area and Great Lakes

Table B.4 Ratio between total road distance of the tree and real MST, Bay Area

Sample Size 251 424 909 1804 3732 7135 10106 22861
Euclidean 2.241 1.643 1.954 1.407 1.905 2.252 2.198 2.397

Proxy-Hash-SL-0.1 1.027 1.039 1.032 1.026 1.035 1.026 1.028 1.027
Proxy-Hash-SL-0.2 1.058 1.045 1.038 1.046 1.058 1.038 1.049 1.047
Proxy-Hash-SL-0.3 1.050 1.045 1.034 1.051 1.066 1.064 1.054 1.070
Proxy-Hash-SL-0.4 1.098 1.042 1.058 1.049 1.073 1.063 1.068 1.069
Proxy-Hash-SL-0.5 1.105 1.070 1.061 1.049 1.081 1.082 1.069 1.071

Table B.5 Ratio between total road distance of the tree and real MST, the Great Lakes

Sample Size 616 1289 3063 6564 14056 26004
Euclidean 1.434 1.586 1.433 1.623 1.799 1.824

Proxy-Hash-SL-0.1 1.054 1.036 1.029 1.036 1.030 1.031
Proxy-Hash-SL-0.2 1.053 1.067 1.038 1.046 1.057 1.049
Proxy-Hash-SL-0.3 1.111 1.081 1.042 1.079 1.052 1.071
Proxy-Hash-SL-0.4 1.108 1.100 1.043 1.084 1.074 1.082
Proxy-Hash-SL-0.5 1.081 1.094 1.062 1.085 1.118 1.083

Figure B.3, B.4 and B.5 show the performance of our algorithm versus sample size and

differente values. Here Proxy-Hash-SL-e refers to spanning tree constructed by Proxy-Hash-

SL usinge as parameter.

Figure B.7 and B.8 show the number of distance computations that would be needed by

our algorithm, versus sample size ande. As is the case with New York, it grows only slightly

super-linearly with sample size.

Figure B.6, B.7 and B.8 show the number of distance evaluations done by the algorithm.

The naive implementation this grows quadratically. We see that Proxy-Hash grows slightly

superlinearly with input size.

178 Omitted Experimental Results for Hierarchical Clustering in General Metric Space

(a) New York (b) Bay Area

(c) The Great Lakes (d) Seizure

Fig. B.2Number of distance computation, versus sample size (log), Proxy-Hash-SL

B.1 Performance And Running Time for Proxy-Hash-SL And Proxy-Hash-AL 179

Fig. B.3 Approximation ratio versus sample size ande value for New York

Fig. B.4 Approximation ratio versus sample size ande value for Bay Area

Fig. B.5 Approximation ratio versus sample size ande value for the Great Lakes

	Table of contents
	1 Introduction
	1.1 Theoretical Framework for Clustering Problems
	1.1.1 Hierarchical Clustering: Objective Functions and Constraints
	1.1.2 Faster Clustering: Scalable Average Linkage and Relational Algorithms

	1.2 Improved Algorithm Design with Machine-Learned Predictions

	2 A New Objective Function for Hierarchical Clustering
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Objective Functions
	2.2.2 Common Hierarchical Clustering Algorithms in Practice

	2.3 Hierarchical-Split : Comparing Inter vs. Intra Cluster Distance
	2.4 Ground-truth Inputs
	2.4.1 Definition of Ground-Truth Inputs
	2.4.2 Optimality of Generating Trees

	2.5 Bisecting k-means Approximates Hierarchical-Split Objective
	2.6 Randomly Partitioning Poorly Approximates the Hierarchical-Split Objective
	2.7 Other Objectives for Data in Metric Space
	2.8 Empirical Results
	2.9 Conclusion

	3 Fair Hierarchical Clustering
	3.1 Introduction
	3.2 Formulation
	3.2.1 Generalized Objectives for Hierarchical Clustering
	3.2.2 Notions of Fairness

	3.3 Fairlet Decomposition
	3.3.1 Fairlet decomposition for the value objective

	3.4 Optimizing revenue with fairness
	3.5 Optimizing value with fairness
	3.6 Experiments
	3.7 Conclusions

	4 Scaling Average-Linkage via Sparse Cluster Embeddings
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Notation System
	4.2.2 Approximate Nearest Neighbors

	4.3 Sparse Cluster Embeddings for Average Distance
	4.4 Near Cluster Search
	4.5 Fast Approximate Average-Linkage
	4.5.1 A Sketch for ANN-based Average-Linkage
	4.5.2 Robust Merging

	4.6 Algorithm Analysis: Approximation Ratio and Running Time
	4.6.1 Running Time Analysis for Algorithm
	4.6.2 Approximation and Correctness

	4.7 Experiments
	4.8 Conclusions and Future Work

	5 Relational Algorithms For K-Means Clustering
	5.1 Introduction
	5.2 Warm-up: Efficiently Implementing 1-means++ and 2-means++
	5.2.1 Hardness of Relationally Computing the Weights

	5.3 Related Work and Background
	5.4 Simulating the k-means++ Algorithm
	5.4.1 Relational Implementation of 3-means++
	5.4.2 Simulating k-means++

	5.5 Weighting the Centers
	5.5.1 Analysis of the Weighting Algorithm

	5.6 Conclusion

	6 Scalable Hierarchical Clustering in General Metric Spaces
	6.1 Introduction
	6.2 Preliminaries
	6.3 Warm-up: Using ANNs to Approximate Single Linkage
	6.4 Main Algorithm for Scalable Average Linkage
	6.5 Correctness and Run Time of Average Linkage Algorithm
	6.6 Experiments

	7 Robust Online Correlation Clustering
	7.1 Introduction
	7.2 Semi-Online Model for Correlation Clustering
	7.3 Warm-Up: Pivoting Using a Random Sample
	7.3.1 Pivot Preliminaries
	7.3.2 Bounding Cost of S
	7.3.3 Bounding Cost of V S

	7.4 Random Sample with Adversarial Corruptions
	7.4.1 Analysis: Proof of thmadversarial

	7.5 Experiments
	7.6 Conclusion

	References
	Appendix A Background Information for Relational Database
	A.1 Uniform Sampling From a Hypersphere
	A.2 Background Information About Database Concepts

	Appendix B Omitted Experimental Results for Hierarchical Clustering in General Metric Space
	B.1 Performance And Running Time for Proxy-Hash-SL And Proxy-Hash-AL
	B.1.1 Robustness of Performance Against Sample Sizes And Parameter Tuning

	Appendix C Supplementary for Semi-online Correlation Clustering
	C.1 Experiments

