Foundations of Clustering:
New Models and Algorithms

Yuyan Wang

Committee: Benjamin Moseley (Chair)
Sergei Vassilvitskii
Zachary Lipton
Peter Zhang

Tepper School of Business

Carnegie Mellon University

This dissertation is submitted for the degree of

Doctor of Philosophy in Operations Research

May 2022

Acknowledgements

First and foremost, I would like to express deep gratitude to my advisor, Benjamin Moseley,
for leading me into the area of my Ph.D. research. I hardly had a clue about my prospect as a
researcher when I first arrived at CMU. I thank him for opening the doors to all possibilities
and igniting my passion for research.

I thank Sergei Vassilvitskii, whom I have had the privilege of collaborating with and
learning from. I thank him for his insights, support and patient guidance throughout my
research life and career seeking, and for helping me become the researcher I am.

I thank Zachary Lipton and Peter Zhang, for serving on my committee and providing
insightful feedback, and for helping me rethink about the purpose and structure of my
research and the connection it has to real world applications.

I thank my collaborators, Senaka Buthpitiya, Sami Davis, Alex Fabrikant, Silvio Lattanzi,
Ravi Kumar, Kirk Pruhs, Alireza Samadian and Rudy Zhou. My collaboration with them has
taught me a lot of skills, and has far-reaching meaning apart from the paper publication.

I thank all the faculty in the Operations Research department at the Tepper School of
Business. I have benefited from their knowledge and expertise. I thank Lawrence Rapp and
Laila Lee for seamlessly running the administration of the PhD program at Tepper.

I thank all the friends who made my Ph.D. experience far more enjoyable. Many thanks
to my cohorts: Violet Chen, Sagnik Das, Ozgiin El¢i, Melda Korkut, Kyra Gan, Su Jia and
Thomas Lavastida. Special thanks to Violet and her furry friend, Model, for three years of
roommate-ship and all the happiness and tears; and Sagnik Das, for selflessly helping me out
through the challenging times of my Ph.D. I also thank Musa Celdir, Serim Hwang, Anthony
Karahalios, Neda Mirzaeian, Yanhan (Savannah) Tang, Ziye Tang and Luxi Wang for all the
memories. I thank Yimeng Liu and Yichi Zhang, my friends from China, for their empathy
and support, for sharing and connecting to my pains when starting a new chapter in my life.

Lastly, I owe almost everything to my family. I thank my parents, Wenbo Wang and
Xiaozhen Yan, for their unconditional love and support; my grandparents, and the other
family members. Despite the geographical distance and time difference, they are always
there for me. I shall also thank my furry family member, Mochi. How lucky I am to have
loved and be loved by a dog like you.

Abstract

In this dissertation, we study clustering, one of the most common unsupervised learning
problems. This dissertation covers recent developments in both clustering theory and machine
learning practice. In particular, it explores how to bridge the gap between theory and practice
by making them benefit from each other.

Many clustering algorithms are developed in an application-oriented way lacking the
guidance of theory. For some clustering problems it is hard to mathematically characterize
what is being optimized. The arising needs in the ML/AI community, such as fairness and
scalability, also require updates in current problem formulations. The first few chapters of this
dissertation lay the theoretical foundation for multiple clustering problems. We first establish
the formal optimization framework. Such a framework gives us conceptual understanding
of the problems and becomes the basis for optimization and algorithm design. We then
discuss the performance of existing approaches and come up with new algorithms beating
the state-of-the-art. Empirical evaluations also verify that the new algorithms perform better
in both quality and efficiency, showing it is beneficial to view these problems through the
lens of theory.

We study one classic clustering problem: hierarchical clustering. Unlike other more
well-formulated clustering problems such as k-means, the theoretical study of hierarchical
clustering has kicked off recently. The first chapter focuses on new objective function design
for hierarchical clustering on point inputs in a Euclidean space. It provides theoretical
guarantees for a popular heuristic. The second chapter studies how to incorporate fairness
into the hierarchical clustering optimization framework. It defines fair hierarchical clustering
trees and discusses how to design algorithms that find fair solutions for previous hierarchical
clustering objectives established by the community. Surprisingly, in this setting fairness
could be imposed at minimal loss in clustering solution performance.

The focus is then shifted to speeding up famous clustering algorithms in scenarios where
they are known to be inefficient. We consider average-linkage. Building the hierarchical tree
from bottom to top, it is one of the most commonly used hierarchical clustering algorithm.
It is known to scale poorly to large datasets, as it requires iteratively searching for two

clusters with the smallest average pairwise distance among the current clustering, which

vi

is time consuming. To speed up the cluster search, we introduce a new technique named
“clustering embedding”. It maps clusters into points in Euclidean space. The points are then
used as surrogates for the clusters, enabling us to apply Approximate Nearest Neighbors
(ANN) techniques. We reduce the previous quadratic bound on running time to only slightly
super-linear.

New challenges could also be imposed by a new data input format other than the conven-
tional sample-feature matrix. Consider relational database, one of the most common data
storage format that is highly compact. The naive way of running conventional ML algorithms
requires converting the given database into the matrix format. This could cause the input
size to grow exponentially. Instead, we design algorithms that could work directly on the
relational databases without recovering the sample-feature matrix. We give such algorithms
for the classical k-means problem. We show how to adapt the famous k-means++ algorithm
and find a constant approximation for the optimal k-means solution.

On the other hand, this dissertation shows how we can rethink the design of combinatorial
algorithms by augmenting the algorithms with learned oracles using a data driven approach.
Traditional algorithm performance design and analysis is often bottle-necked by worst-case
instances. Meanwhile, the practitioners often have historical records about past data and
solutions. Training ML oracles on the data can give us knowledge about the current problem
instance, and this knowledge could be used to help the algorithm go beyond the “hurdles” of
hard instances. We call such knowledge “predictions”. The remaining chapters focus on
proposing feasible predictions in the contexts of different clustering problems and discussing
how to design better algorithms utilizing these predictions.

We revisit the scalable hierarchical clustering algorithm designs explored in previous
chapters and extend it to inputs in more general metric spaces. In Euclidean spaces we design
cluster embeddings and couple it with ANN search to efficiently identify clusters to merge.
However, the ANN technique is not known to exist for general metrics. We show how a
proxy metric, which approximates the original metric, could be used to support the ANN
search with minimal loss in hierarchical clustering performance.

Finally, we consider correlation clustering. Given a set of points along with recommen-
dations whether each pair of points should be placed in the same cluster or into separate
clusters, the goal is to cluster the points to minimize disagreements from the recommenda-
tions. We study this problem in the online setting, where points arrive one at a time, and upon
arrival the algorithm must make an irrevocable cluster assignment decision. There is a simple
lower bound that rules out any algorithm with a non-trivial competitive ratio. We propose
using a small, randomized subset of nodes to help making online clustering decisions. Upon

the arrival of a new node, the algorithm can check whether it is recommended to be in the

vii

same/different cluster(s) with the reference set. We prove that the famous Pivot algorithm
performs well in this setting. Moreover, the performance is robust to adversarial perturbations

of the reference set.

Table of contents

1

Introduction 1
1.1 Theoretical Framework for Clustering Problems 2
1.1.1 Hierarchical Clustering: Objective Functions and Constraints. . . . 3
1.1.2 Faster Clustering: Scalable Average Linkage and Relational Algorithns
1.2 Improved Algorithm Design with Machine-Learned Predictions 6
A New Obijective Function for Hierarchical Clustering 9
2.1 Introduction 9
2.2 Preliminaries 13
2.2.1 Objective Functions 13
2.2.2 Common Hierarchical Clustering Algorithms in Practice 14
2.3 Hierarchical-Split : Comparing Inter vs. Intra Cluster Distance 16
2.4 Ground-truthlnputs 17
2.4.1 De nition of Ground-Truth Inputs 18
2.4.2 Optimality of Generating Trees 19
2.5 Bisectingk-means Approximates Hierarchical-Split Objective 20
2.6 Randomly Partitioning Poorly Approximates the Hierarchical-Split Objective 25
2.7 Other Objectives for Data in MetricSpace 29
2.8 EmpiricalResults 32
29 Conclusion 33
Fair Hierarchical Clustering 35
3.1 Introduction 35
3.2 Formulation 37
3.2.1 Generalized Objectives for Hierarchical Clustering 37
3.2.2 NotionsofFairness 38
3.3 Fairlet Decomposition e 39

3.3.1 Fairlet decomposition for the value objective 40

Table of contents

3.4 Optimizing revenue withfairness 42
3.5 Optimizing value withfairness 43
3.6 EXperiments 49
3.7 Conclusions e 53
Scaling Average-Linkage via Sparse Cluster Embeddings 55
4.1 Introduction e 55
4.2 Preliminaries 59
4.2.1 Notation System 60
4.2.2 Approximate Nearest Neighbors, 60
4.3 Sparse Cluster Embeddings for Average Distance 62
44 NearClusterSearch 66
4.5 Fast Approximate Average-Linkage, 67
4.5.1 A Sketch for ANN-based Average-Linkage 67
452 RobustMerging. 68
4.6 Algorithm Analysis: Approximation Ratio and Running Time 70
4.6.1 Running Time Analysis for Algorithm 70
4.6.2 Approximation and Correctness 72
4.7 EXperiments e 75
4.8 Conclusionsand FutureWork 0. 81
Relational Algorithms For K-Means Clustering 83
5.1 Introduction 83
5.2 Warm-up: Ef ciently Implementing 1-means++ and 2-means++ 89
5.2.1 Hardness of Relationally Computing the Weights 91
5.3 Related Work and Background 92
5.4 Simulating th&k-means++ Algorithm 94
5.4.1 Relational Implementation of 3-means++ 94
5.4.2 Simulating-means++ o 97
55 WeightingtheCenters., 101
5.5.1 Analysis of the Weighting Algorithm 102
5.6 Conclusion 113
Scalable Hierarchical Clustering in General Metric Spaces 115
6.1 Introduction 115
6.2 Preliminaries 117

6.3 Warm-up: Using ANNs to Approximate Single Linkage 118

Table of contents

Xi

6.4 Main Algorithm for Scalable Average Linkage
6.5 Correctness and Run Time of Average Linkage Algorithm

6.6 EXperiments

7 Robust Online Correlation Clustering

7.1 Introduction

7.2 Semi-Online Model for Correlation Clustering

7.3 Warm-Up: Pivoting Using a Random Sample
7.3.1 PivotPreliminaries
7.3.2 BoundingCostd®.
7.3.3 BoundingCostofnS.,

7.4 Random Sample with Adversarial Corruptions
7.4.1 Analysis: Proof of Theorem7.4.1

7.5 EXpPeriments

7.6 Conclusion
References

Appendix A Background Information for Relational Database
A.1 Uniform Sampling From a Hypersphere
A.2 Background Information About Database Concepts

Appendix B Omitted Experimental Results for Hierarchical Clustering in General
Metric Space

175

B.1 Performance And Running Time for Proxy-Hash-SL And Proxy-Hash-AL . 175
B.1.1 Robustness of Performance Against Sample Sizes And Parameter

Tuning

Appendix C Supplementary for Semi-online Correlation Clustering

C.1 EXperiments o i

. 176

Chapter 1
Introduction

Aiming at grouping similar objects together and separating dissimilar objects, clustering is
one of the most common unsupervised learning problems. It has been widely used in areas
such as pattern recognition and image analysis, where data mining tasks are common. In the
past few decades many new clustering problems and algorithms have arisen in the community.
This dissertation covers some of the most recent developments in clustering. It focuses on
bridging the gap between clustering theory and practice by making them bene t from each
other in two directions. We develop the theoretical foundation for clustering algorithms and
uses the foundation to improve the state-of-the-art in practice. Similarly, we show how to
rethink the combinatorial design of clustering algorithms by augmenting the algorithms with
learned oracles using a data driven approach.

We rst look into different clustering problems and their state-of-the-art solutions through
the lens of theory. It is common for ML/AI algorithmic solutions to be designed application-
oriented, and become standard in practice despite an absence of a theoretical framework for
their problem setting. Even very well-known methods, like Deep Learning, can be criticized
for lacking theoretical support despite being prevalent among practitioners. Similarly, many
clustering algorithms are also designed in lack of theoretical guidance. Some clustering
problems could have complex structures, posing challenges for characterizing them mathe-
matically. The arising needs in the ML/Al community, such as fairness and scalability, could
also require updates in the current optimization frameww@rkat are we optimizing and
which solutions are good? How do we nd good solutions ef ciently?n this dissertation
we answer these questions by building the theoretical foundation for clustering problems.
This branch of work deepens our understanding of current algorithms, facilitates the commu-
nication of ML/Al ideas to the broad audience, and guides researchers in improving current
algorithms and methods.

2 Introduction

On the other hand, using ML oracles we can extract information from historical data
which helps algorithms go beyond the worst case in traditional analysis. theory often
designs algorithms using stylized models such as worst case analysis or stochastic models.
However, these models are not a perfect characterization of practice. It would be ideal to
have an algorithm tailored to the exact types of instances observed for the given application.
Luckily, in practice there is usually lots of data available about past instances of the problem
considered. One can learn information from this data and feed the information to an algorithm.
The learned information contains predictions about data patterns in the current problem
instance. The algorithm then uses the learned predictions to help make key decisions. In this
way, the algorithm is tailored directly to instances seen. My work shows how to bound the
running time and approximation ratios in terms of the errors in these predictions, giving a
formal way to go beyond worst-case and stochastic models. The ultimate goal of this new
approach for algorithm analysis is to discover new algorithmic solutions to our problems.

1.1 Theoretical Framework for Clustering Problems

The rst part of this dissertation develops a theoretical foundation that covers popular
clustering problems/algorithms and their innovations. We start with formulating these
problems as optimization frameworks, while incorporating new constraints characterizing
requirements such as fairness. Guided by this framework we develop new solutions that beat
state-of-the-art.

It is desirable to mathematically formulate learning problems in an optimization frame-
work. Such a framework has an objective function characterizing the goal and a set of
constraints characterizing the desired solutions. The design of such a framework may some-
times be self-explanatory. For example, for supervised learning problems knowing the true
labels enables us to compute the prediction accuracy of learned models. Often we would aim
at nding solutions that maximizes the accuracy, but with limited model complexity to avoid
over tting. However, for unsupervised learning problems, where a “correct” solution might
either not exist or be unknown to us, it can be a non-trivial task to nd a good optimization
problem formulation.

For clustering problems likk-means such problem formulations have been designed
and well accepted by the community. However, for some other clustering problems, we have
many algorithms that proved to be effective in practice, with no mature theoretical problem
formulation. We would like to bridge this gap.

Goal 1: We develop well-formulated optimization framework for clustering problems.

1.1 Theoretical Framework for Clustering Problems 3

Researchers can bene t from a well-designed optimization model in many ways. Its
objective function gives a direct performance metric for comparing different solutions. The
math formulation provides mathematical intuition on what solutions could be good. It is also
the rst step towards analyzing algorithm performance from a theoretical point of view and
developing algorithms with performance guarantees.

Goal 2: Equipped with the tool of optimization frameworks and algorithm analysis, we
develop algorithms with both theoretical and empirical guarantees.

Fast, scalable algorithms are designed by applying combinatorial optimization and
algorithm design tool boxes to the framework. Further, we test their performance and
scalability on real datasets in various experiment settings. The algorithms beat the state-of-
the-art, showing that theory can be used to guide practice.

1.1.1 Hierarchical Clustering: Objective Functions and Constraints

Hierarchical clustering is a core data analysis method. It takes a set of points and a pairwise
similarity/dissimilarity score between the points as input. The output is a tree, often binary,
whose leaves represent singleton clusters containing the points, and every internal node
represents a cluster that is the union of the clusters represented by its children. The root is a
cluster containing every point in the set.

One of the common complaints about k-means is that it is hard to choose the value
of k in advance, which is the number of clusters. Hierarchical clustering does not require
determining k a-priori. In fact, taking different layers of clusters in the tree gives clustering
of different sizes and re nement levels. Although the tree structure of hierarchical clustering
solutions eliminates such needs, it also makes it harder to design a framework capturing the
characteristics of desirable solutions.

Fig. 1.1 A hierarchical clustering example. The left is input data set with visualized hierarchy
of clusters. The right is the hierarchical clustering tree. The grey nodes are input points. Each
internal node in the tree on the right is a cluster of the input points in its subtreem visualized
using the same color on the left.

A new objective function. Chapter 2 designs a new objective function and explores its
connection to practical algorithms for hierarchical clustering inputs in Euclidean space.

4 Introduction

The results come from our paperdZ. In this setting, the input points have a pairwise
dissimilarity score that is de ned as the Euclidean distance. This setting is common for
hierarchical clustering and is used in multiple hierarchical clustering ML packages (e.g.,
scipy and scikit-learn). Recent worle(], [115, [58]) have proposed objective functions for
different settings. However, they either do not directly apply to this setting, or do not make a
signi cant distinction between good and bad solutions.

Our new objective function captures the key criterion in clustering: points in different
clusters should have greater distances than points in the same cluster. This objective assigns
penalizes the tree whenever it separates any pair of points into sub-clusters, whose distance
is small compared to the average distance within the sub-clusi&3.i$ also the rstto
show a theoretical connection between the proposed objectiveisecting k-means one
popular hierarchical clustering algorithm used in practice. We complement our results by
empirical studies that show the new objective function gives reasonable results for multiple
standard algorithms in practice, showing it to be a reasonable performance measure.

Imposing fairness constraints. Chapter 3 studies fairness in hierarchical clustering, based
on our work fL4]. ML algorithms are often used in practice, where we need to have fairness
constraints. Here we say a given algorithm is fair if its results are independent of certain
sensitive features, such as traits of individuals which should not correlate with the outcome
(e.g., gender, ethnicity, disability). This project seeks to build a new generation of ML
algorithms that take into consideration these ethical and legal constraints.

We call such sensitive traits “protected features”. Removing the dependency of outcome
on a protected feature is, in general, more non-trial than simply dropping the feature from
the input. This is due to possible correlation between protected and unprotected features.
Even when a learning algorithm does not explicitly exploit protected features, it can still
give biased results in retrospect. For example, when clustering demographic data we can get
highly imbalanced clusters with regard to ethnicity, even if the clustering algorithm itself
does not use this feature.

Fairness could be studied in various ways. We choose to characterize it mathematically
and incorporate fairness constraints into clustering problems. How can we quantitatively
de ne fairness and how should we design fairness constraints? Given the fairness constraints,
does a fair solution exist and if so, how can we nd it ef ciently? How much do we lose in
performance with respect to the objective function by imposing fairness constraints?

Chater 3 begins to answer these questions for hierarchical clustering. Given a protected
feature with multiple possible values (called “colors”), we de ne fairness to be bottle-necked
by the most dominant feature value. A data point set is called fair if none of its colors

1.1 Theoretical Framework for Clustering Problems 5

take up an overly big portion of its points. We have designed algorithms for all prevalent
hierarchical clustering objective functions proposed in recent work. Both theoretical analysis
and empirical experiments show that fairness can be imposed with minimal loss in clustering
quality.

1.1.2 Faster Clustering: Scalable Average Linkage and Relational Al-
gorithms

In the following chapters the focus is shifted from developing mathematical frameworks to
utilizing the framework to get algorithms that performs better in terms of scalability and/or
solution quality. We seek algorithm designs that could speed up the execution, but can also
provably perform well when using the objective function as the performance measure. That
is, for any problem instances the output of the target algorithm should satisfy all constraints,
as well as at leastpproximately optimizes the objective function.

The new algorithms are designed based on the theoretical foundation for these clustering
problems. This dissertation complements the theoretical guarantees with empirical experi-
ments whose settings cover some of the most common scenarios in practice. We show that the
algorithms, being motivated and guided by the theoretical framework, beat the state-of-the-art
clustering algorithms. Thus establishing the theoretical foundation of clustering problems
could shed light on potential algorithmic innovations.

Scalable hierarchical clustering algorithms. Hierarchical clustering algorithms do not
scale well to large data sets, as their running time grows at least quadratically with input
size. Given input data in metric space with pairwise distance as a dissimilarity score, we
consider agglomerative hierarchical clustering algorithms. These algorithms build the tree
from bottom to top. They start with singleton clusters, and iteratively choose two clusters
to merge that are most similar to each other. However, searching for closest clusters is time
consuming.

Based on our work00, Chapter 5 shows how to design a hierarchical clustering
algorithm which has slightly super-linear running time in input size, breaking the previous
guadratic running time bound. The key design here is to iteratively approximate the search for
nearby clusters. Techniques are known to exist for searching for points with small distance in
Euclidean space (namelpproximate Nearest Neighbors (ANN), but they do not directly
apply to cluster searches. We designolaster embeddingwhich maps a collection of
clusters to point sets in a Euclidean space. The mapped points are then used as surrogates for

6 Introduction

clusters and coupled with ANN to speed up cluster searches. Our implementation empirically
dominates the hierarchical clustering implementations in popular ML packages.

Clustering on relational inputs. New challenges on algorithm performance can also
imposed by different data input formats. ML solutions traditionally assume a matrix input,
where rows represent data points and the columns represent features. However, in practice
data could be stored in different formats. One prevalent formeglagional databases

a highly compact data type where features are stored only partially in each table and the
underlying input could be found by concatenating the tables.

Current ML algorithm designs fall short of handling this new data format. The common
practice is to convert the relational database into a matrix, which might cause the input size
to grow exponentially. Naturally, the key questions arise: can we redesign current clustering
algorithms so that they can skip the computationally expensive data transformation step and
directly work on the relational databases? If so, which ML problems admit such solutions?

Chapter 5, which is based on our woKiLj, gives such an algorithm for the famous
k-means clustering problem. The work adds to the fundamental understanding about the
geometric properties of relational databases, and reveals the connection between relational
database ML problems and combinatorial optimization.

1.2 Improved Algorithm Design with Machine-Learned
Predictions

The second half of the dissertation focus on how the ML practice helps us approach algorithm
design and analysis from a new perspective other than traditional worst-case analysis. With
the aid of additional information provided by ML oracles, we go beyond previous running
time and performance guarantees.

For every algorithm, there could be “hard” input instances where the algorithm struggles
to nd a good solution that would bottleneck standard worst-case analysis. The use of worst-
case analysis is motivated by the assumption that the algorithm could be challenged by any
adversarial input. The algorithm knows nothing about the input or optimal solution a-priori
and always starts from scratch on a new input. However, in practice we seldom face the
worst-case scenario. The worst-case inputs may not be a good characterization of the typical
problem instances that we run into. Also, we have historical data about the input instances
and the algorithms' outcomes. By applying data-mining approaches we could extract all
kinds of knowledge that could be used to help an algorithm tailor towards the speci c type

1.2 Improved Algorithm Design with Machine-Learned Predictions 7

of problem instances in practice. The knowledge comes in the format of a Machine-learned
oracle which is treated as a black-box by the algorithm, that gives information speci c to the
possible problem inputs that we could have.

We call such an oracle“@redictor” . The de nition of a predictor can be very general
and it depends on the problem settings. It could be a guess about a possibly good solution.
If we are training a neural network, it is common practice to initialize the ML model with
yesterday's training results, i.e., a “warm start”, to make training more ef cient. Following
the same logic, we can also initialize the algorithm’'s execution using the old results on
another input instance. It could also some other intricate information about the input itself.
For example, in an online problem setting where input arrives piece by piece, we can try
to forecast the input to arrive in the future. Such a prediction is a natural t as it can help
combat future uncertainty.

Goal 3: In various clustering problem contexts, nd the prediction that is most informative
and design algorithms that bene t from these predictioie have studied algorithm design
with predictions for several clustering problems. In these settings we rst evaluate the
prediction proposal and the new algorithm design from a theoretical point of view. We show
that the predictions indeed help us design algorithms that go beyond previous performance
guarantees. We then empirically show that such predictions can be obtained in real life, and
even with moderate accuracy, can be bene cial to algorithm results.

Scalable hierarchical clustering algorithms with proxy metric. In Chapter 6, we revisit
the problem of designing scalable agglomerative hierarchical clustering algorithms in a
general metric space setting. See our paper [114] for more details.

In Chapter 4 we consider points in Euclidean space, where ANN techniques are known
to exist and are used to couple to other algorithm designs to speed up the search for nearby
clusters. Many problems, however, are best captured by general metric spaces for which
ANN schemes either do not exist, or may be expensive to compute. In this case, we might
be able to discoveproxy metrics de ned on input points, which approximates the original
metric but supports ANN schemes.

Such proxies could be obtained in many different ways. It might arise naturally from
the problem de nition. For example, on a road network, consider the shortest path distance
and the geographic distance. These two metrics, despite not being equivalent, could be
good surrogates of each other. One can also get a proxy metric from more sophisticated
ML techniques, such as applying dimensional reduction approaches to high-dimensional
metrics. The theoretical arguments in Chapter 6 are complemented by empirical evaluations
that closely examine different general/proxy metric settings.

8 Introduction

Online correlation clustering with predictions. Correlation Clustering is a graph-based
clustering method often used to aggregate inconsistent information. Given a set of points
along with recommendations whether each pair of points should be placed in the same cluster
or into separate clusters, the goal is to cluster the points to minimize disagreements from the
recommendations. 1r9B], we study the correlation clustering problem in the online setting,
where points arrive one at a time, and upon arrival the algorithm must make an irrevocable
cluster assignment decision.

While the online version is natural, the problem is hard as seeing only partial information
could mislead the algorithm to make wrong decisions that result in many disagreements later
on. See Figure 1.2 for an illustration. Indeed, there is a simple lower bound that rules out any
algorithm with a non-trivial competitive ratio.

Fig. 1.2 A hard online correlation clustering example. The blue lines represent same-cluster
membership recommendations. The subgraph with the blue solid lines in the middle arrive
rst, misleading an online algorithm to put them together. However, the true underlying

graph might also contain the blue dashed lines so the optimal solution should separate them.

Our proposed prediction is a small set of nodes callecthwce set Upon the arrival of

a new node, we are allowed to refer to the advice set, and make cluster assignments based
on the same/different cluster recommendations between the new node and the advice set.
Such nodes and the recommendations could be obtained by learning from historical data. For
example, if the underlying graph represents a social network where nodes are entities and
edges are positive/negative communication, one can learn such predictions from last week's
records. Empirically we test these settings and show great improvement in performance
when introducing the advice set.

Chapter 2

A New Objective Function for
Hierarchical Clustering

2.1 Introduction

In this chapter we focus ohierarchical clustering as introduced in Chapter 1. Recall

that this problem takes as input a set of points with a pairwise score that represents the
similarity/dissimilarity, and outputs a (binary) tree whose internal nodes represent a hierarchy
of clusters. The leaves of this tree correspond to the individual input data points, and each
internal node is a cluster of the leaves in the subtree rooted at it. When a node gets closer
towards the leaves, the cluster it represents should become more re ned, and the points in
this cluster should become more similar to each other. The nodes of the same level in this
tree represent a partition of the given data set into clusters. Note that each data point (leaf)
belongs to many clusters, one for each ancestor. Figure 2.1 illustrates an example application
of hierarchical clustering: biological taxonomy. The data points could represent different
species and the internal nodes are different levels of categories. From bottom to top, the point
cat could belong to the clusters representing mammals, animals, life, etc.

Fig. 2.1 Another illustration of a hierarchical clustering tree.

The mainstream algorithms used to do hierarchical clustering can be classi ed roughly
into two categories: agglomerative and divisive, depending on whether the construction

10 A New Objective Function for Hierarchical Clustering

happens from bottom to top or top to bottoAgglomerative algorithmsinitialize every

point to be a singleton cluster. They iteratively pick the two clusters that are the most similar
to each other to merge into a bigger cluster until only one cluster remains. Meanwhile, the
algorithms create a parent in the hierarchical tree produced that is connected to the two nodes
corresponding to the two clusters before mergiDiyisive algorithms, on the other hand,
initialize the whole point set as one single cluster, and create a root node corresponding to
this cluster in the hierarchical tree. They iterativeplfit a cluster into smaller clusters. Then

the algorithms create nodes representing the separated clusters in the tree and make them the
children of the parent node. Again, the notion of similarity is open to different interpretations.
A divisive algorithm terminates when every point is in its own individual cluster. Data
scientists regularly use thmsectingk-meansalgorithm at each levél This is used when

the distances between the data points are used as dissimilarity scores. Existinglwork [
proved that popular divisive algorithms can produce clusterings different from agglomerative
algorithms. Naturally, they may be optimizing fundamentally different criteria.

Recently the community has developed an interest in identifying a natural global objective
function for hierarchical clustering. However, existing work has had more success connecting
these objective functions to agglomerative rather than divisive algorithms. Dag@lpta
developed a cost function objective for data sets with similarity scores between points. The
work has initiated an exciting line of stud§24, 58, 45, 46, 68]. Cohen-Addad et a[58]
generalized the results in Dasgupdd] into a class of cost functions that possess properties
desirable of a valid objective function. They showed thatrage-linkage one of the most
popular agglomerative algorithms, i%aapproximation for an objective which is based on
the Dasgupt§61] objective but handles dissmilarity scofe€ontemporaneously, Moseley
and Wang [115] designed a revenue objective function based on Dasgupta [61] and showed
average-linkage is a constant approximation for the objective. Charikar{4bhkhowed an
improved analysis of average-linkage for Euclidean data. Together Cohen-Addafb8t,al.
Charikar et al[45] and Moseley and Wand 15] have established a relationship between a
practically popular algorithm and global objectives.

This chapter is interested in the following aspects of objective function designs and their
connection to popular algorithms in practice.

Euclidean data. We consider data embedded in Euclidean space where tiistance
between points represents their dissimilarity. There is currently only one global objective,
the objective of Cohen-Addad et #.38], that has been proposed for data with dissimilarity

1The word “bisecting" refers to the case when 2.
2Throughout this paper we use> 1 for approximations on minimization problems ane 1 for maxi-
mization.

2.1 Introduction 11

scores. Noticeably, all trees gave a constant approximation if the data is in a metric space
[58]. Here we give a stronger conclusion and show in Section 2.7etretytree is a%-
approximation on metric input. Therefore, in a Euclidean space, the objective does not make
a large differentiation between different clusterings. Is there a natural objective that makes a
stronger distinction between good and bad solutions? This is the target question this paper
addresses.

Divisive algorithms. While great strides have been made on the foundations of hierarchical
clustering, it remains an open question to explain what popular divisive algorithms optimize.
In particular, the popular bisectingmeans algorithm has been proven to be at least a factor
O(" n) far from optimal for the objectives given in Moseley and W4dh#5] and Dasgupta

[61]. This can be viewed as these algorithms beirgemely bador these objectives in the
worst case. This contrasts with the performance of average-linkage for known objectives.
Perhaps, this highlights that bisectikgneans and other divisive algorithms optimize some-
thing fundamentally different than average-linkage and general linkage based algorithms.
It remains to discover a global objective that helps characterize the optimization criteria of
divisive algorithms, another target of this paper.

Our contributions. This paper introduces a new revenue maximization objective for
hierarchical clustering on a point set in Euclidean space. The objective is designed to capture
the main criterion that motivates the use of divisive algorithms: when data is split at a level
of the tree, the data in each sub-cluster should be closer to each other than data points in
different clusters.

Each node in the tree corresponds gpét that generates revenue. The objective speci es
that the global revenue of the tree is the summation of the revenue at each node. The split
revenue captures the quality of the split.

Guiding Principle: The new objective function enforces that a split is good ffither-
cluster distances are big compared to intra-cluster distarfces is indicated in Figure 2.2.

This is the main motivation behind a generic divisive algorithm. Of course, the global tree
structure in uences the possible revenue at an individual split.

We show several interesting properties of this new objective.

» For problem instances corresponding a ground-truth as introduced in Cohen-Addad
et al.[58], this objective gives desirable optimal solutions. In particular, Cohen-Addad
et al. [58] introduced a large class of instances that have a natural corresponding

SHere “inter-cluster distances" refers to that between points in different clusters, while “intra-cluster
distances" refers to that between points in the same cluster.

12 A New Objective Function for Hierarchical Clustering

Fig. 2.2 Intra- and inter- cluster distance of two clusters. The black pair is an example of
intra-cluster pairs, and the grey pair is an example of inter-cluster pairs.

hierarchical clustering that should be optimal. We prove that these treeptarelfor

the new objective function we propose on such instances. We note that these instances
generalize instances given in Dasgujts] that were used to motivate a hierarchical
clustering objective.

» The bisectindk-means algorithm is a constant approximation for the objective. This
establishes that the objective is closely related to the bisektingans algorithm and
aids in understanding the underlying structure of solutions the algorithm produces.
This is the rst global objective that this algorithm is known to provably optimize.

» The objective is trivially modular over the splits, like all three previous objectives.

* In the context of metric spaces, this objective has different properties compared to
some proposed objectives. It is known that the Random algcftjttmimich partitions
data uniformly at random at each node, is a constant approximation for both objectives
in [58] and [115 . For these two objectives, Random i%and% approximation,
respectively. The Random algorithm can produce undesirable hierarchical clusterings
and it is counterintuitive that it should be a constant approximation for these objectives.
This paper shows that Random results ir(}{q%)-approximation for the proposed
objective for a constarg > 0. Therefore, Random provably performs poorly for the
new objective.

We further show the following about other objectives in metric space. These show that some
other objectives do not make a large differentiation between trees in metric space, even if the
trees correspond to a poor clustering. Our objective does and this can be seen as an advantage
of the new objective.

» As mentioned, we show that every tree i%-approximation for value objective when
points have dissimilarity scores that form a metric.

* We show that every tree is Z&approximation for the Dasgupta objectiv&l] for
similarity scores that satisfy the triangle inequality. We include this result to provide

4See Section 2.6 for a formal description of the algorithm.

2.2 Preliminaries 13

insight into this objective. However we note that this is less surprising than the similar
result on the Cohen-Addad objectiv&f] since some natural similarity score instances
do not satisfy the triangle inequality.

We investigate empirically the performance of three popular algorithms used in practice
and Random algorithm for the new objective. As is suggested by theory, the proposed
objective moderately favors bisecting k-means over two agglomerative algorithms, while
magnifying the gap between the performance of Random and the other three algorithms.

Other related work. Some work discusses about different hierarchical clustering algo-
rithms and their performance. Steinbach e{H29], Murtagh[117], Murtagh and Contreras

[118] and Zhao et al[138] discussed about common agglomerative algorithms and com-
pared their performance in a variety of backgrounds. Ackerman and Ben-[S4vanti ed
properties of trees produced by linkage-based agglomerative algorithms. See Steinbach et al.
[129] and Murtagh and Contreras [118] for more information on divisive algorithms.

Other work centers around when bisecting algorithms work well. The work of Dasgupta
and Long[63], Plaxton[120] show the remarkable result that hierarchical trees exists such
that each level of the tree optimizes the correspond#inyistering objective. These algo-
rithms are complex and are mostly of theoretical interest. Balcan gz&Ishowed that
partitioned clusterings can be uncovered from using hierarchical clustering methods under
stability conditions. The work of Awasthi et 424], Balcan et al[27], Carlsson and Mémoli
[38] and pointers therein study stability conditions of clustering.

2.2 Preliminaries

This section includes the preliminaries for hierarchical clustering that will be adopted in all
chapters concerning this topic (including Chapter 3, 4 and 6).

2.2.1 Objective Functions

For a given data s&ft with n points, lets(i; j) be the similarity score between poimtsnd
J if similarity is used, od(i; j) if distance/dissmilarity score is used instead. One can also
think of this input as a complete graph with weighted ed@es(V;s) or (V;d). Without
loss of generality, in this chapter we assuvhe f1;2;:::;ng=[n].

InatreeT, let[i _ j] denote thd_.east Common Ancestorof i andj. Let T[u] denote the
subtree inT rooted atu. Then,T[i _ j] denote the subtree rootediand j's least common
ancestor. We let leav€E[i _ j]) denote the set of leaves Bfi _ j].

14 A New Objective Function for Hierarchical Clustering

There are three objective functions for hierarchical clustering in different settings. We
refer to them asost, valueandrevenuegrespectively.

Cost. The original objective, cost, is introduced by DasgyptH for inputs based on
similarity scores(;). This is a cost function which a hierarchical clustering tree should seek
to minimize.

De nition 2.2.1 (Cost) Thecostof a treeT for an instancés = (V;s) wheres(;) denotes
similarity is: cosg(T) = &i.jov S(i;]) jleavegT[i _ j])j:

Since eveny(i; j) is multiplied with the number of leaves of the smallest tree containing
bothi and j, the points that are more similar (biggsr; j)'s) are encouraged to havdi _ j]
with fewer leaves. In other words, from bottom to top, these points should be merged into
the same cluster before other points that are less similar.

Value. The motivation in value, proposed b¥15 is similar to cost, except now the
similarity scores(i; j) is swapped to a dissimilarity scod¢i; j) and the problem is changed
to a maximization problem.

De nition 2.2.2 (Value). Thevalue(val) of a treeT for an instancé = (V;d) whered(;)
denotes distance is: \&IT) = &;;jov d(i;]) leavegT[i_ j]):

Revenue.Finally, Moseley and Wandl[L5 introduced the revenue objective for hierar-
chical clustering on similarity-based input. Also note that for a given input g&aph{ V;s),
the cost and revenue objectives sum up to a conpigéte jov S(i; j)-

De nition 2.2.3 (Revenue) Therevenugrev) of a treeTl for an instancé& = (V;s), where
§(;) denotes similarity between data points,rievg(T) = &i;jov S(i5j) JVj | leavegT[i_
iDi:

Throughout this dissertation, we focus on hierarchical clustering inputs with dissimilarity
scored(;). Additionally in this chapter we assume théties in a Euclidean space, using
d(i; j) = ki jko which is the » norm as the distance/dissimilarity score. We note that only
thevalueobjective applies to this setting. In the following sections we will show value has
several undesirable properties.

2.2.2 Common Hierarchical Clustering Algorithms in Practice

Agglomerative Algorithms. Depending on whether the input adopts similarity/dissimilarity

scores, an agglomerative algorithm quanti es cluster similarity/dissimilarity and iteratively
choose clusters to merge with highest similarity, or lowest dissimilarity. Cluster similarity
can be de ned in different ways which lead to different agglomerative algorithms. Given two

2.2 Preliminaries 15

setsA andB and a score(;) between pointsx2 f s,dg), here is a list of agglomerative
algorithms and similarity/dissimilarity measures between clusters:
» Average-linkage.The cluster measure &/g(A;B) = %BB)J((IJ) for both similarity
and dissimilarity. Average-linkage seeks to maximize this wéisrused and minimize
whend is used.

 Single-linkage. This method works on inputs with distance metrics. The cluster
measure isl(A; B) = minipa:j2ed(i;).

» Centroid-linkage. This works on inputs in Euclidean space equipped with distance
metrics used as dissimilarity scorekA; B) = d(m(A); m(B)) wherem() is the cen-
troid of a set.

Together these three algorithms are called linkage-based algorithms.

Divisive Algorithms. On the other hand, divisive algorithms seek to separate a cluster into
sub-clusters such that the points in different sub-clusters are as dissimilar/distant from each
other as possible. The most used divisive algorithirisectingk-means which nds the
sub-clusters by optimizing lemeans objective.

We rst de ne the k-means objective. Given a point sg&ta k-means clustering par-
titions Sinto k sets$;; S;:::&. Thek-means objective calculates the summation over
the squared norm of the distance between a point te¢inéroid of the set it belongs to:

é',-‘: 1éuzsj d?(u; m(Sj)) . Here agaim(Sj) denotes the centroid &;.

Let Dk (S denote the optimat-means objective function value for the point Sewhere
k is the number of clusters. We will be particularly intereste®4(S), the optimal2-means
objective.

Fix a hierarchical clustering tréee on a se¥. Consider a node of the tree and &t V
be the subset of input data that is input to the current split. These will eventually be the leaves
of the subtree induced by this node. We @de (S$i;S) to denote a split in the tree where a
setSis separated into two non-empty subs&sandS,. These sets correspond to the input
of the two child nodes. We |&! (S;;S) 2 T denote that this split exists ih.

Any splitS! (S1;S) whereS, andS, are a partition oSis a valid2-means solution
for the point setS. SinceD,(S) denotes the optimal objective function valuy(S)

Di(S1) + Di(S) by de nition of the 2-means objective. In particular, when using bisecking
means sinc&! (S;S) is the optimal-means solution, we hai&(S) = Di(S) + Di(S).

16 A New Objective Function for Hierarchical Clustering

2.3 Hierarchical-Split : Comparing Inter vs. Intra Cluster
Distance

This section de nes the new objective which is a revenue function. We call the problem of
optimizing this objective thélierarchical-Split problem. We de ne a revenue for each

pair of input points depending on where they got seperated from each other in the tree. The
objective function is then the aggregate of this revenue over all pairs of points.

De ning pairwise revenue. Consider a node in a hierarchical clustering representing a set
Sand this set is split int& andS,. A good tree ensures that the pairs of pointgit2 S;
(resp.S) are more similar that paii2 S; andj 2 S (i.e. d(i;j) d(i;i9). This ensures

the points corresponding to the cluster at a node in the tree become more similar at lower
levels of the tree. We sayandj aresplit the rst time they no longer belong to the same
cluster from top to bottom.

Every pairi and]j will be eventually splitin the tree and a hierarchical clustering objective
should ensure they are split at the appropriate place in the tree. Further, an objective should
optimize over all pairs uniformly to determine the splits.

Guided by these principles, we develop the objective as follows. We begin by allowing
every pairi and j to generate at most one unit of revenue. When the pair is split at an
appropriate position in the tree more revenue will be generated, and less revenue (or even
0) will be obtained when the pair is separated at a poor position. The maximum, one
unit of revenue, can always be obtained for a xed pair, but not necessarily for all pairs
simultaneouslyThis is the key to determine the quality of a split.

Say thatS! (S;S) is the split at some node in the tree arlS; andj 2 S are split.

As discussed above, points$a (respectivelyS) should be more similar to each other than

and . To measure the similarity afto other points ir5; we used(i; (S;)), the distances of

i to the centroid of5;. Similarly, we usel(j; M(Sy)) to measure the distance pfo points in

S. The distance of a point to the centroid of a set measures the distance to the average point
in the set. Thus, we would liké(i; j) to be larger than bott(i; M(S;)) andd(j; (S)) for it

to make sense to splitand j. That is,i andj should become more similar to their respective
sets after the split than they are to each other.

Formally, de ne the revenue for a pair of points as follows. Hgts,(i; j)
= maxd(i;mS));d(j;m(S))g be the maximum distance ofand j to their respective
centroids. We would likéls s, (i; j) to be smaller thad(i; j) and thereforé and j generate
a unit of revenue when this is the case. Whigi,(i;j) d(i; j) we assume the revenue

decays linearly. That is, the revenued—gg,(siz;g—i);j).

2.4 Ground-truth Inputs 17

Putting the above together, de ne the revenue for splittisugd j asrev(i; j) = minf dsi(siz;gi);j) - 1g°.
This is therevenuei and | generates. Again, a revenue of a unit can always be obtained
since we can let be the unique last point split from However, a good overall hierarchical
splitting structure is needed to get good revenue for many pairs of points, thus obtaining

global performance guarantees for the tree.

The global objective. The global objective is de ned as follows.

De nition 2.3.1 (Hierarchical-Split) For a data se¥ and a given hierarchical cluster-
ing treeT, de ne the hierarchical tree revenue function as follows. t®(S;S) =
dizg djegreMi;j)

= 8i2g A j2s,Minf %; 1g be the revenue over all pairs of points split acr6ssind
. The aggregate revenueress (V) = &yi.jg vIeUi;) = &g (s:5)27EUS; S), and it
should be maximized over all trees.

As is shown in De nition 2.3.1, there are two ways of computmegy (V). One is to sum
up the revenue over the pairs, while the other is to sum up the revenue over the splits. Both
methods lead to the same value. The second form allows us to judge whether a split at some
internal node of the tree is good or not compared to the number of pairs it separated.

2.4 Ground-truth Inputs

The work of Cohen-Addad et aJ58] gave a characterization of desirable hierarchical
clustering objectives. The idea is to give a class of instances that naturally correspond to
a speci ¢ hierarchical clustering tree. These trees should be optimal solutions for a good
hierarchical clustering objective.

In particular, Cohen-Addad et 4b8] de ned input instances that corresponditra-
metrics Such inputs will be referred to @gound-truthinputs. For such an input, they de ne
generating trees which should be optimal for the hierarchical clustering objective to be
valid. Intuitively, in an ultrametric either it is clear what the split should be at each pointin
the tree or all splits are equivaléhiThe resulting tree is a generating tree.

We prove a generating tree is indeed an optimal solution for our objective, if the input
in Euclidean space is ground-truth. This perhaps shows that optimizing Hierarchical-Split
could give desirable results.

SWe assume dividing by 0 gives revenue 1.

8|f there is a natural split then the points can be divided into two gréupsdB such that inter-group
distances are larger than intra-group distances. If all splits are equivalent then pairwise the points are all the
same distance.

18 A New Objective Function for Hierarchical Clustering

2.4.1 De nition of Ground-Truth Inputs

We cite the following de nitions from Cohen-Addad et al. [58].

De nition 2.4.1. A metric spacd€X;d) is an ultrametric if for every;y;z2 X, d(x;y)
maxt d(x; 2);d(y; 2)g.

Intuitively, the de nition of ultrametric implies that any three poinis;w form an
isosceles trianglewhose equal sides are at least as large as the other side. Cohen-Addad et al.
[58] then de ned an instance generated from ultrametric, which is treated as ground-truth
input for hierarchical clustering.

De nition 2.4.2. An input instance on a set of poirlswith pairwise distance functiod is
generated from an ultrametric if the distances functiod corresponds to a ultrametric.

Following Cohen-Addad et aJ58], we de negenerating treeson distance-based input,
which are considered the most well-behaving hierarchical clustering trees for a ground-truth
input.

De nition 2.4.3. If the instancé/ is generated by ultrametric, a binary tfEeés a generating
tree forG if it satis es the following properties:

1. It hasjVj leaves angVj 1 internal nodes. Let denote its leaves and each pointin
corresponds to a unique pointVh LetN denote its internal nodes, corresponding to
clusters of the leaves of the subtree rooted at the node.

2. There exists a weight functioW : N 7! Ry. ForNz;N2 2 N , if Np is on the path
from N, to the root W(N1) W(Ny). For everyx;y 2 V, d(x;y) = W(LCAT(XY)),
whereLCAy (X;y) denotes the Least Common Ancestor of leaves corresponding to
andyinT.

Cohen-Addad et al58] proposed that for a ground-truth input graph as de ned in
De nition 2.4.2, if there exists any corresponding generating Treg is considered one of
the best solutions among all the solutions, and thus should be one of the optimal solutions
for the hierarchical clustering objective function used.

We give some intuition for why a generating tree is considered the best tree on such
inputs. The valu®V(LCAr(x;y)) can be interpreted as the distances of edges cut in split at
the LCA ofx andy. The higher up this LCA is, the larger the split distance should be. All
points split at the LCA node have equal pairwise distance, later we will show that this is
exactly the maximum pairwise distances in the corresponding point set. This agrees with the
driving motivation for the tree design as a split should always separate the farthest points.
The next subsection articulates these desirable properties.

2.4 Ground-truth Inputs 19

2.4.2 Optimality of Generating Trees

Now we prove that given an input that is generated from an ultrametric, every generating tree
is optimal for Hierarchical-Split function introduced in this paper. In particular, every pair of
points will get full revenue.

Lemma 2.4.1. A binary treeT, with jV| leaves corresponding to the pointsinandjVj 1
internal nodes, is a generating tree for an instavcgenerated from a ultrametric if and
only if it satis es the following property:

 Forevery splitA[l B! (A;B) fromtop to bottom3i 2 A; j 2 B;d(i; j) = maxoay2sd(X;y).

Proof. The if direction is true, since from top to bottom, at each split the Treats only

the longest distances in the current set of points, both properties in De nition 2.4.3 trivially
hold. We prove the only if direction. For ever Aandj 2 B, LCAr(i;j) is always the
node representing[B, sod(i;j) = W(LCAr(i;])) is always the same value. To show it

is the maximum distance in all the pairwise distanceA[inB, assume that is not the case.
Then some pair of vertices of maximum distance is contained in the subgraph induged by
or B, which means it will be cut in the subtree rooteddadr B, say it is cut at roolNy, and let

N1 = LCA7(i;j). N1 is on the way fromN, to the path, butV(N;) < W(N>), contradicting
property (1). O

Every ground-truth input has at least one generating tree, as stated in the following
theorem.

Theorem 2.4.2.For every instance generated from some ultrametric, there is always a
generating tree T as de ned in De nition 2.4.3.

Proof. We prove the theorem by constructing one such tree in the following way. Say given
a setS we separate it into two setsandR.

1. Pick a pair of pointgi; j) with longest distance. Puinto L andj into R.

2. For any pointx 2 S, eitherd(i;x) < d(i; j) ord(i;x) = d(i; j) sinced(i; j) is chosen to
be the maximum. I8(i;x) = d(i; j) putxinto R, otherwise put it intd..

To argue that all points ih andR are of distancei(i; j) from each other, notice that if

L only containsx the theorem trivially holds. Otherwise, apparently by construction we
also haveBy 2 R;d(i;y) = d(i; j). Now take any two pointg 2 L;y 2 R, we further prove
d(x;y) = d(i;j). Observe thad(i;x) < d(i;) butd(i;y) = d(i;j). Again by de nition

of ultrametric, in the triangle formed byx;y, we haved(x;y) = d(i;y) > d(i;x). By
Lemma 2.4.1, this is a generating tree €r]

20 A New Objective Function for Hierarchical Clustering

Using Lemma 2.4.1, the optimality df is proved by arguing every split gives a revenue
of 1 for every pair of points it separates.

Theorem 2.4.3.A generating tredl’ for an instance generated from an ultrametric is
optimal for the Hierarchical-Split objective.

Proof. Given any splitin the tred[B! (A;B), for anyi 2 Aandj 2 B, we prove that
d(i;m(A) d(i;) andd(j;m(B)) d(i; j). Asaresultrev(i;)= — d(i;r’r'(A)?;(cli’(Jj);n(B));d(i; .
1.

Let's focus onA for the time being. By Lemma 2.4.Bx2 A;d(i;x) d(i;j). By
convexity of normsd(i; mA)) = d(i; aszA?x) axZ?Adj(X") d(i;j). The other inequality,
d(j;m(A)) d(i;]), can be proved in the same way. O

2.5 Bisectingk-means Approximates Hierarchical-Split Ob-
jective

This section shows that the bisectikgneans algorithm is a constant approximation for the
proposed objective. This establishes a foundational connection between a natural objective
function and the bisectingrmeans algorithm. This is the rst analysis showing that bisecting
k-means optimizes a global objective function. This helps explain the structure of the
solutions produced by the algorithm.

The goal of this section is to show the following theorem.

Theorem 2.5.1.Fix any input seV and letT be the tree created by the bisectikgneans
algorithm. The tree T is a constant approximation for the Hierarchical-Split objective.

The analysis is based on analyzing each split performed by bisdetimeans individually.
The following lemma shows that if every split in a hierarchical clustering tree is good for
the objective function proposed, then the whole tree is also good. By “good” we mean that
the split gains a revenue which is at least some constant factor times the number of pairs
separated. This lemma follows immediately by de nition of the objective.

Lemma 2.5.2. A hierarchical clustering tred is ag-approximation for the Hierarchical-
Split problem if it satis es the following conditiol®S! (S;)2 T,reV(S1;S) 9SS
holds for some constagt> O.

The above lemma allows us to focus on a single iteration of the bisekimgans
algorithm. Suppose at some iteration, a cluggrB is split into A andB. We give the
following de nition of a high-revenue pointA pointuin Ais a high-revenue point if for
most of the points ifB, it gains acceptable amount of revenue.

2.5 Bisectingk-means Approximates Hierarchical-Split Objective 21

De nition 2.5.1. Given a splitA[B and a poinu 2 A, we de nehigh-revenue setin B
foruas:HRg(u) = fv2 B:revu;v) %g: De ne thelow-revenue seffor u2 Ain B as:
LRg(u) = fv2 B:revu;v) < 159= BnHRg(U).

De nition 2.5.2. Given a splitA[B, a pointu2 Ais ahigh-revenue pointif JHRg(u)j
3Bj. Otherwise, it is called bow-revenue point

With the de nition of high-revenue points in place, the next lemma claims that given split
A[B! (A;B) created by the optim&-means algorithm, ifA] | Bj, at least half oA are
high-revenue points. This is the main technical lemma. This combined with Lemma 2.5.2
implies Theorem 2.5.1.

Lemma 2.5.3.Let A andB be the optimaR-means solution for the point s&{ B. Without
loss of generality, suppo$8j | Bj. Then, at IeaséjAj points inA are high-revenue. This
gives a lower bound of at Iea%jAjj Bj revenue in total for splitting A and B.

The rest of the section is devoted to proving Lemma 2.5.3 by contradiction, with proofs
partially omitted due to space limits. For the rest of the section x a&A4eB and let the
partition A; B correspond to the optimal solution to tBemeans problem oA[B. For sake
of contradiction suppose more théjAj points inA are low-revenue points. We will show
that such a splin[B! (A;B) cannot be optimal for the-means objective. Indeed, we will
show that another split has a smaller 2-means objective value, proving the lemma.

Say we have 2 A andj 2 B, such thateV(i; j) < 1—10. Let H be the hyperplane such
thatH = fy: d(y;m(A)) = d(y;m(B))g. Then,H separates the Euclidean space into two
half-spacesH™ = fy:d(y;mA)) d(yymB))gandH = fy:d(y;m(A)) d(y;mB))g.

By the assumption that the spAf B! (A;B) is the optimal2-means solution, we have
A H*,andB H . Next we show the following structural lemma. This lemma says
that if reV(i; j) is small therd(i; m(A)) andd(j; m(B)) are within a constant factor of each
other, which is close t@. Geometrically, this implies that bottand are located close to
the hyperplanéi. See Figure 2.3 for an illustration. The following lemma’s proof is in the
appendix.

Lemma 2.5.4.Consider anyi 2 Aand j 2 B. If reV(i; j) < 35, we haved(i; m(A)) <
d(j;m(B)) < Pd(i;m(A)), and £5d(j;m(B)) < d(i;m(A)) < Fd(j;m(B)), and d(i; j) <
g minf d(i; m(A)); d(j; m(B))g.

Proof. Say thatreW(i; j) < %. Without loss of generality assume thiiit; m(A)) d(j; m(B)).
This and the de nition of revenue givé(i; j) < %d(i; mM(A)). SinceA andB is the optimal-
means partitiond(i; m(A)) d(i;m(B)) andd(j;m(B)) d(j; m(A)). The triangle inequality

22 A New Objective Function for Hierarchical Clustering

Fig. 2.3 Proof by constructing a bet2imeans solution. The bold dashed line in the middle
is the hyperplanél. The two bold ellipses are clustehsandB , respectively. The dashed
ellipse inAis the sefS, and the dashed ellipse Bis the low-revenue sé&tRg(u) for point

u2 Ain B. SandLRg(u) are both close to the separating hyperpleneA new partition

A[B! (AnSBJ[S is constructed, represented by the two grey areas.

gives,

diim(B) d(i;mB) d(ij) dimA) d)
> (i mA) (A = Lsd(i (A

An analogous proofs showi; m(A)) > 1—90d(j; m(B)). The last inequality in the lemma
follows immediately from these two inequalities.]

Let Sbe the subset of low-revenue pointsAn By assumptionj§ > %jAj. The next
lemma establishes that any two pointsSiare very close to each other as compared to their
distance to the centroiah(A). The following lemma'’s proof is in the appendix.

Lemma 2.5.5.LetSbe the low-revenue points f For any two pointss;v2 S d(u;V)
£maxt d(u; m(A)); d(v m(A)) g.

Proof. Recall that_Rg(u) is the set of points imv2 B such thatev(u; w) < %). Similarly for
LRg(Vv). Knowing thatjLRg(u)j > %j Bj andjLRg(v)j > %j Bj, there exists some point2 B,
such thatev(u; w) < 1—10 andrev(v,w) < 1—10. Without loss of generality supposiéu; m(A))

d(v; m(A)). We want to shovd(u;Vv) %d(u; m(A)), notice thad(u;v) d(u;w)+ d(v;w),
and we haved(u;w) %d(u; m(A)) andd(v;w) %d(v, m(A)), respectively, by Lemma
2.5.4. Note thatd(v,m(A)) d(u;mA)), sod(v,w) %d(u; m(A)), and we conclude that
d(uv) 2d(u;m(A). O

Let x be the point infSsuch thak 2 arg max, sd(u; m(A)), the farthest points from(A)
in S. Notice thatd(x; m(A)) > 0, otherwise it impliesSis overlapping withm(A), for any

2.5 Bisectingk-means Approximates Hierarchical-Split Objective 23

u2 Sandv2 LRg(u), by Lemma 2.5.4, we haw v, m(B)) = 0, but this impliegeV(u;Vv) = 1.
Therefored(x; m(A)) > 0.

Lemma 2.5.5 implies th&u2 S d(u;x) Zd(x;m(A)). This result tells us the s&tis
contained in a ball centered gtwith radius%d(x; m(A)). So we can bound the distance
between centroid db, m(S) andm(A) using convexity of the, norm. The following lemma'’s
proof is omitted due to space.

Lemma 2.5.6.Let Sbe the low-revenue points fiandx 2 argmax, sd(u; m(A)). Itis the
case that m(S);m(A)) §d(x; M(A)).

Proof. This is proved by combining Lemma 2.5.5 with the convexity.afiorm. Notice that
m(A) is a convex combination of all points & Jensen's inequality gives us the conclusion.
Since we provedn(S) is far fromm(A).

o _ g AuesU, A y2sd(u;x)
A = a2y 22l
2 d0x ()

As aresult the triangle inequality give,m(S); m(A)) d(x;m(A)) d(x;m(S)) %d(x;n(A)).
O

Next, we upper-bound(m(S); m(B)). Recall that points in the s&are far away from
m(A), but close to the hyperplaé = fy: d(y; m(A)) = d(y; m(B))g. The following lemma'’s
proof is in the appendix.

Lemma 2.5.7.LetSbe the low-revenue points & Foranyu?2 S d(u; m(B)) l§1d(x; m(A)).

Proof. Sinceu2 S there existsv2 B, s.t.d(u;w) < 1—10ma><f d(u; m(A));

d(w;m(B))g. By triangle inequality, we havd(u;m(B)) d(w,m(B))+ d(u;w). Since
rev(u;w) < -5, by Lemma 2.5.4dw,m(B)) d(u;m(A)) andd(u;w) d(u;m(A)).
Therefored(u;m(B)) Hd(uym(A)) Hd(x; m(A)). O

Therefore, we can upper boud@m(S); m(B)): d(m(S): m(B)) w
%d(x; m(A)). The rst inequality follows by de nition of a centroid. The second from
Lemma 2.5.7. This, combined wit{m(S); m(A)) %d(x; m(A)) from Lemma 2.5.6, gives

. 2 N -
us the folIowmg:% (5)2=(})?= 5. Recall thaD(U) denotes the optimal
k-means value for a sét. LetS; andS, be two sets. We quote the following lemma from

Ostrovsky et al. [119].

Lemma 2.5.8([11Q).__F(_)r any two sets of point§; and$; it is the case thab (S [&) =
Di(S) + Di(S) + R d2(M(S1); M(S,).

24 A New Objective Function for Hierarchical Clustering

With this in place Lemma 2.5.3 can be shown. In general, we show this by take the set
Saway fromA and assign it into clustéB instead, and prove that this is a bettemeans
solution than the previous one.

Proof of [Lemma 2.5.3] Apply Lemma 2.5.8 ©©;(A) = Di(S[(AnYS), and we get the
following equation wher@b j; is the 2-means objective for the solutidnB:

d?’(m(S);mAnS)+ Dy(B) (2.1)

objs := Dy(A)+ Dy(B)= Dy(S)+ Dy(AnS)+ W

A
We want to bound?(m(S); m(AnS)) from the prior equation. By de nition of a centroid
we knowjgm9+ (jA] §)mMANnS = JAIMA). Subtracting Aim(S) from both sides

givesiA(MA) m(9)=(jAi j S)(MAnS) m(S). Thus we havel(m(S);mANS)) =

: A\J!fj;)de(n(S); m(A)). Plugging this into (2.1) and we get

ISIA
AT S
> Di(9+ Di(Ang+ Di(B)+ lzliﬂ'dz(nis):m(A))

obj; = Di(§+ Di(AnS+ Dy(B) + d?(m(S); m(A)

The last inequality comes from the fact th§t> %jAj, sojA}?jS %. Now we consider
another way of splittingA[B! (AnS S[B). Note that the followingb j, is the objective
of an alternative2-means solutionobj, = Di(AnS)+ Dy(S[B) = Di(AnS)+ Dy(9+

Dy(B) + 15918] d’(m(S); m(B)). Now we make use of the assumption tfAt j Bj. Then

1S+75 B
IS SiA §iBi. Thenddy 1= 1o SO
Objo= Dy(ANS)+ Dy(S)+ Dy(B) + ST a(r(S);m(E))
jS+iBj ’
Di(ANS)+ Dy(S)+ Da(B)+ £ SA(m(S);m(B)
DI(ANS)+ Dy(S)+ Du(B)+ 15§ oo d((S); ()

< Dy(AN9+ D9+ Dy(B)+ LjSE(M(S):m(A) = objy

This contradicts the assumption that the splitB! (A;B) is the optimaR-means. There-
fore, at IeaséjAj points inA are high-revenue points.]

2.6 Randomly Partitioning Poorly Approximates the Hierarchical-Split Objective 25

2.6 Randomly Partitioning Poorly Approximates the Hierarchical-
Split Objective

Consider the following algorithm which can create undesirable treesRahdomalgorithm
splits a seSinto ($;) by ipping an independent, fair coin for each point $ If the
coin comes up heads then the point gets add&y,tand otherwise gets added$sn The
algorithm is intuitively undesirable because it does not take the structure of the input into the
construction of the solution. Further, the solutions produced do not give much insight into
the data.

While intuitively bad, this algorithm is known to be%approximation for the objective
of Moseley and Wang115] with similarity scores and it is é-approximation for value
objective for dissimilarity scores. These results hold for any set of similarity or dissimilarity
scores, regardless of if they form a metric.

We show that the our objective does not have this shortcoming. The approximation ratio
of the Random algorithm is at mo@(n—le) for a constane > 0, indicating that it performs
very poorly, as is stated by Theorem 2.6.1.

Theorem 2.6.1.Let OPT(V) be the optimal solution foy. Let the expected revenue be
Et[revr (V)] for setV. Then, there exists a construction\of such that for a constant
e2 (0;1), Er[revr (V)] = O(Z) OPT(V).

Before we argue Random is bad, we give the de nition of “clean split”. Intuitively, a
split should be considered clean if it doesn't separate points close to each other when there
are far away pairs.

De nition 2.6.1. We de ne a splitS! (S; S) to becleanif it satis es one of the following
conditions:

1. IfS AorS B.

2. S AS Bos BS A

Based on the result that every tree is gaining full revenue for an ultrametric, it is easy to
see that optimal tree can get a revenu®®8fT(V) = w = Q(n% for the whole
point set. The optimal tree splitssfrom B in the root split, and then can do anything on the
remaining portion of the tree.

Before formally prove this theorem we make some quick observations. First, we don't
need to care about the pafisj) wherei 2 Aandj 2 B because the number of such pairs
is Q(n%), even if we gain full revenue for them, it doesn't affect the approximation ratio.

26 A New Objective Function for Hierarchical Clustering

For the same reason we don't care about pdinty such thati; j 2 B. So, we only need to
discuss how much revenue we can get from separating all the pairs Asidxpectation
for Random.

With this in mind, we will use Chernoff bounds to argue that@gtogn) rounds, Random
splits each node in half with high probability, which causes us to lose a lot of revenue.

Lemma 2.6.2. Suppose we have a sewith m points, and use Random to split it inp and
S. Then, fori= 1;2

e Mo P ——— 2
PIs) -1~ mlogm) 1 —
Proof. Considemi.i.d. Rademacher variable§. Then from Chernoff's bound, we know

that
2

m
. 0 . t
P(j Je_lxjj t) 2exy %)
Random is treating each poipas a Rademacher variable by assigning

8
<+1 if jis assigned t&;

Xj =
1 if jis assigned t&

Then, fori = 1;2,
...om P—— Sy
PUIs) 3] mlog(m) = P(ja Xj 2 mlog(m)
i=1
2exp2log(m)) = %
O

Next, we de ne “almost-equal” splits, which refers splits such that the points A@mnd
B in the parent node is almost split equally in its two children.

De nition 2.6.2. Given a se8, letS* andS® denote the points frorA andB in S, respectively.
IfasplitS! (S;S) satis es the property in Lemma 2.6.2, i.e., for 1,2, letS* andS?
denote the set of points froAandB in setS respectively, we say this split @most equal
if fori= 1;2:
A Leps Pm——=
L PGSy 3ishi 0 SlogSh)
R 1.em: P =
2. P(jisfi 3% SPlogS)
Also, for a hierarchical clustering tree, if all the nodes in the irlgtyers are almost equally
split, we call this tree-almost equally split

2.6 Randomly Partitioning Poorly Approximates the Hierarchical-Split Objective 27

The next lemma bounds the number of points in bd#ndB in an internal node iif"
layer if every split is almost equal for both in the rslayers in the tree, wheie @

Lemma 2.6.3.LetS be a node in thé" layer of the treei(logn=2). If all the ancestors
of § is almost-equally spilit, IeﬁA be the points ir§ in A, andS1B be the points ir§ in B.
Then we havesj = Q(?=2), jFj = Q(n=2).

Proof. By induction, we prove a stronger conclusion:

r— -
n? n? n2
> 8 —09(2.)JSAJ >+ 8 —og()

and r r
n n n, . . n n
5 8 §|09(§) j S 5+8 §|09(§)

We just prove the rst claim and the other can be proved in the same way. By induction,

o J . .) i
iSY 3;1 i 4ilog(iS 4i)
r—
1 n n2 n2
2 (?I 1 8 oi 1|Og(2i 1))
n2 n2
ﬁrlog(ﬁ)

n P~ n2 n2
= o 5r 2 (log(5)+ l0g(2))
n? n2
7 8 Floum)
And the other side of the inequality can be bounded in the same way. m

If the condition in Lemma 2.6.3 holds, this result tells us that every node in théo%gl
layers is not clean. In other words, for all the pairs of pointa imhich are separated during
the rst @ layers of the tree, we don't get any revenue. Thus we can upper bound the
revenue for points ir:

Lemma 2.6.4.If the treeT is @-almost-equally-split tree, for all the pairs iA the
revenue is On* ©) for e = %.

Proof. The tree does not obtain any revenue in the splits in the('%%”—))‘h layers. It can
only get revenue within the subtrees rooted at each internal nodea#—%)‘h layer. For
each such node, the size of the subtrefe(lg—) = Q(n? ©), wheree = 92, Thus the

og(n)=2

28 A New Objective Function for Hierarchical Clustering

revenue we can get from each subtree is bounde@(b§f 2¢). There areQ(n€) such nodes.
So, the revenue is bounded &¢n* ©). O

We have already proved that if many of the top layers have almost equally split internal
nodes, the hierarchical clustering tree has small total revenue. To formally prove Theorem
2.6.1, we only need to show that this happens with high probability. Notice that the probability
of the tree being no“%ﬂ-almost equally split can be bounded by union bounds on the
probability of an almost equal split not happening in any of the 'i%fl) layers, which is
O(n—leo), wheree®= 2 3"0792. This is very low probability, putting everything together, we
have Lemma 2.6.4.

Proof of [Theorem 2.6.1] By Lemma 2.6.4,

Er(revr (V)| T is 'ngf”)

-almost equally spljt= O(n* ©)

Then, we only need to lower bound the probability that the Tr@@-almost equally
split. We show next that this happens with very high probability. Agaigldenote some
node in tha'" layer of T.

P(S isn't almost equal spljT is(i 1)-almost equally spljt
2 2 2
ISR n

2.7 Other Objectives for Data in Metric Space 29

In theith layer, we hav@' nodes. So we bound the probability of having a tree that's almost
equal split in the rstm layers as follows:

P(T is i-almost equally spljt
log(n)

P2 P

S inthe {h |ayerP(S is almost equally splijt

Tis(i 1)-almost equally spl)t

Iogz(n) 2i
Pi=1 PS in the Iayer(1 Q(H))

% o 2,
>1 Q(a a (ﬁ))

i=1 g inthe " layer

\%

log(n)

& 4
=1 Qla 2 =)

i=1 n

1+ 8+ 82+ 4+ 8%
= 1 Q((>))

n2

1 Q" =P)=1 Q)

Wheree®= 2 %‘32 > e. Sowe haveO(n—io) probability thatT is noti-almost equally split,
in which case the revenue is bounded@n?).
Therefore, the expectation is bounded by:

Erfrevr(V)]

log(n)
2

+ P(T is not

Q(n* &)+ Q(n* ©)
Q(n* ©)

P(T is

-almost equally splfQ(n* ©)

199" _aimost equally sp)iQ(n*)

wheree = %. O

2.7 Other Objectives for Data in Metric Space

This section studies data with similarity/dissimilarity scores in a metric space. First we
investigate theralue objective from p8]. Recall that this is the same agstfrom [61] except

30 A New Objective Function for Hierarchical Clustering

the minimization is swapped for a maximization and the similarity scores are swapped for
dissimilarity scores. We also study cost objective for similarity scores. We show for each
case that if the pairwise similarity/dissimilarity scores faanmy metri¢ theneverytree is a at
most a factor 2 from optimal.

For a treeT let T[i _ j] denote the subtree rooted at the least common ancestandfj,
andjleave$T[i _ j])j denote the number of leavesDfi _ j]. Recall that the value objective
is the following: max &;.jov d(i; j)jleave€T[i _ j])j.

In Cohen-Addad et a[58], it has been proved that any solution is a constant approxima-
tion of the optimal solution for the value objective, given that the distance is a metric. Here
we prove a stronger conclusion:

Theorem 2.7.1.Any solution is %-approximation for value objective if the distand@; |)
satis es triangle inequality.

To prove this theorem, x atre&. LetLCA(i; j) be the least common ancestori @ind |
in T. Let 1fi; jjkg be an indicator variable indicating whether in the tfethe LCA(i; j) is
a descendant afCA(i; j;K): 1fi; jjkg= 1if such a relationship holds, aridi; jjkg= O if
otherwise. Equivalently, itfi; jjkg = 1, it means during the tree construction, tracing down
from the rootk is separated fromand| rst, andi; j are separated in a split closer to the
bottom of the tree. If the tree is binary, we have the following equality:

Afi; jjkg+ fi;kjjg+ 1f j;kjiig= 1

That is, one and only one of the relationships represented by the three indicator variables can
hold.

Prior to proving Theorem 2.7.1, we cite this result from Wang and Wa8agyj], which
shows the revenue in Cohen-Addad et al. objective can be decomposed onto every triangle:

Lemma 2.7.2([131]). When)Vj 3,
Rr(V)= & d(i;j)jleaves T[i_ j]j
i;j2V

= 4 tiRr(;;;;W+2 & d(po)
fi;j;kg V fpag V

2.7 Other Objectives for Data in Metric Space 31

where triRr (i; j; k) denotes the revenue on trianglg;ik, de ned as follows:
8
2d(i;k+ d(j;k) if 1fi; jjkg= 1
triRT(i;j;K) = _d(i;j)+ d(j;k) if 1fi;kjjg= 1
Td(i;)+ d@i;k) if Af j;kjig= 1

By triangle inequality, for each trianglej; k, we always havé&riRy(i; j; k) %(d(i; K) +
d(j;K)+ d(i; j)), which will give us Theorem 2.7.1.
Proof of [Theorem 2.7.1] LeOPT(V) denote the optimal value of Cohen-Addad et al.
objective forV. We haveOPT(V) &tpqq viVi d(p;0).

By triangle inequality, it is easy to see that regardless of which of the three relationship
holds, we always haveiRt(i; j;K) %(d(i;)+ d(i; k) + d(j;K) for any tripletfi; j; kg.
Then, for anyT,

Rr(V)= & tiRr(i;j;k+2 & d(p;q)

fizj:kg V fpag VvV
o 1
a S+ d(i; K+ d(j;k)
fi;j;kg V
+2 4 d(po
fpag V
1 o o o
=5 a dipa)(jvi 2+2 a d(p;a)
fpag V fpag V
1 o ... 1
>5 a jVj d(p;q) EOPT(V)
fpag V

O
Next consider the objective in Dasgup&l]. Here each pair of pointsand j have a
similarity scorewj; where higher weights mean points are more similar. Recall from the
introduction that Dasgupta's objective is mii;.jov S(i; J)jleavegT[i _ j])j.
The following corollary easily follows from the proof to Theorem 2.7.1.

Corollary 2.7.2.1. If the similarity score in the setting of Dasgupf@l] is a metric,
any hierarchical clustering tree is Z2approximation for the objective in Dasgupi&l]:
miny costr (V) = 81 i<j nS(i;])ileavesT[i_ j])j.

We note that for similarity scores, it is not a standard assumption that data lies in a metric
space. Thus, this corollary is perhaps interesting to understand the structure of the objective.

32 A New Objective Function for Hierarchical Clustering

However, it does not suggest that any tree willZsapproximate for most data sets with
similarity scores.

2.8 Empirical Results

The goal of this section is to study the performance of different algorithms for the new
objective empirically. The experimental results support the following claims:

 Algorithms that are popular in practice give high revenue for the new objective, with
bisectingk-means performing the best. This demonstrates that the objective value is
correlated with algorithms that perform well and highly connected to the bisecting
k-means algorithm, as the theory suggests.

* Random algorithm, as mentioned in previous section, performs poorly for the new
objective.

Data sets. We use two data sets from the UCI data reposit@gnsu$ andBanké. Only
the numerical features are used.

Algorithm (m;$1)-Census (p; $2)-Census (m;$1)-Bank (fip; $2)-Bank

bisecting k-means (4.931e5, 304.980) (1.094e12, 1.714e1l) (4.912e5, 474.451) (1.049e12, 1.158e11)
average-linkage (4.900e5, 1.151e3) (1.093e12, 1.710e11) (4.907e5, 802.665) (1.052e12, 1.163e11)
single-linkage (4.869e5,1.392e3) (1.094e12,1.712e11) (4.818e5,1.365e3) (1.035e12, 1.168e11)
Random (1.311e5, 1.072e4) (7.463el1, 1.152e11) (3.339e5,8.825e3) (7.789ell, 7.993e10)
upper bound (499500, 0) (1.119e12, 1.725e11) (499500, 0) (1.167e12, 1.199e11)

Table 2.1 Summary of stats for all algorithms, on Census and Bank

Setting. We study four algorithn?s bisecting k-means, average-linkage, single-linkage,
and Random. In each experiment, we subsarBp@ddata points from the given data set and

run the algorithms with subsampled data. We conduct ve experiments with each data set
and report the mean and variance. Since optraleans solution is intractible, in practice

we import the k-means implementation from pack&gikit-learrt®, which uses Lloyd's
algorithm seeded with k-means++ for each split.

"https://archive.ics.uci.edu/ml/datasets/census+income
8https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
%https://github.com/wang-yuyan/hier_clustering_split_rev_obj_test.git
Ohttps://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

2.9 Conclusion 33

Results. Table 2.1 shows the comparison between performance for our objective and the
value objective. The rows denote the results for different algorithms and the upper-bound for
both value and our objective. For each algorithm, the coluffimss1) and(fp;S2) denote

the mean and standard deviation for our objective and value objective respectively, calculated
over results of the ve experiments.

Regarding the new objective, the results show bisecting k-means performs the best of the
four algorithms for it. Further, bisecting k-means is withi¥ of the upper bound on the
optimal solution for the objective, which is the total number of pairs of data points. This sug-
gests that the objective is closely related to bisecting k-means, as the theory suggests. It also
shows that experimentally bisecting k-means performs much better than the approximation
ratio established.

All the three algorithms which are popular in practice perform well for our objective,
with bisecting k-means performing marginally better than average-linkage and single-linkage
on average. Moreover, bisecting k-means also has the smallest standard deviation across
different subsamples. Random is signi cantly worse, with potentially over 30 times more loss
compared to optimal than the other algorithms. This perhaps suggests that trees created by
good algorithms perform well for the objective and poorly constructed trees do not perform
well.

Compared with the value objective from prior work, the results further show that average-
linkage performs slightly better than bisecting k-means for the value objective. This result
matches the theory, which suggests this objective is closer to average-linkage than bisecting
k-means. Again, all three algorithms used in practice perform well for value. However,
Random also gives aboRt3 of the upper-bound, as the theoretical bound suggests. This
perhaps shows the value objective gives similar judgements on algorithm performance with
our objective, the latter showing a more signi cant gap between Random and the other three
algorithms.

2.9 Conclusion

This chapter gives a new objective function for hierarchical clustering designed to mathemat-
ically capture the principle used to motivate most divisive algorithms. That is, comparing
inter vs. intra cluster distances at splits in the tree.

The paper proved a close relationship between the objective and the bidentaans
algorithm. This was done by showing the bisectikagneans provably optimizes the objective.
This helps to understand the structures of trees produced using bidectiegns.

34 A New Objective Function for Hierarchical Clustering

The results in this paper leave directions for future work. How tight can the approximation
ratio be for thek-means algorithm? How do other hierarchical clustering algorithms perform
for this objective? Can we improve on the bisectkageans algorithm to better optimize the
objective?

Chapter 3

Fair Hierarchical Clustering

3.1 Introduction

Algorithms and machine learned models are increasingly used to assist in decision making on
a wide range of issues, from mortgage approval to court sentencing recommend&fjons [

It is clearly undesirable, and in many cases illegal, for models to be biased to groups, for
instance to discriminate on the basis of race or religion. Ensuring that there is no bias
is not as easy as removing these protected categories from the data. Even without them
being explicitly listed, the correlation between sensitive features and the rest of the training
data may still cause the algorithm to be biased. This has led to an emergent literature on
computing provably fair outcomes (see the book Barocas et al. [30]).

The prominence of clustering in data analysis, combined with its use for data segmen-
tation, feature engineering, and visualization makes it critical that ef cient fair clustering
methods are developed. There has been a urry of recent results in the ML research com-
munity, proposing algorithms for faiat clustering, i.e., partitioning a dataset into a set of
disjoint clusters, as captured kycenterk-median k-means, correlation clustering objec-
tives [15, 16, 25, 32, 33, 48, 55, 76, 82, 88, 89]. However, the same issues affect hierarchical
clustering, which is the problem we study in our paper [14], which this chapter is based on.

Hierarchical clustering is frequently used for at clustering when the number of clusters is
a priori unknown. A hierarchical clustering yields a set of clusterings at different granularities
that are consistent with each other. Therefore, in all clustering problems where fairness is
desired but the number of clusters is unknown, fair hierarchical clustering is useful. As
concrete examples, consider a set of news articles organized by a topic hierarchy, where
we wish to ensure that no single source or view point is over-represented in a cluster; or a
hierarchical division of a geographic area, where the sensitive attribute is gender or race, and

36 Fair Hierarchical Clustering

we wish to ensure balance in every level of the hierarchy. There are many such problems that
bene t from fair hierarchical clustering, motivating its study.

Our contributions. We initiate an algorithmic study of fair hierarchical clustering. Fairness

is imposed as a constraint on the global hierarchical clustering tree while the tree's clustering
performance is measured using the reverilié)[value [8], and cost §1] objectives as
stated in 2.2.

To achieve fairness, we show how to extendfthdets machinery, introduced by Chierichetti
et al.[52] and extended by Ahmadian et Hl5], to this problem. We then investigate the
complexity of nding a good fairlet decomposition, giving both strong computational lower
bounds and polynomial time approximation algorithms. Based on the fairlet decomposi-
tion, we show how to build fair hierarchical clustering trees with theoretical performance
guarantees for the objectives.

Finally, we conclude with an empirical evaluation of our approach. We show that ignoring
protected attributes when performing hierarchical clustering can lead to unfair clusters. On the
other hand, adopting the fairlet framework in conjunction with the approximation algorithms
we propose Yields fair clusters withnegligibleobjective degradation.

Related work. Hierarchical clustering has received increased attention over the past few
years. In Section 2.2 we have seen recent developments in hierarchical clustering, including
new objective function designs and analysis of algorithms utilizing the new framework.

In parallel to the new developments in algorithms for hierarchical clustering, there has
been tremendous development in the area of fair machine learning. We refer the reader
to a recent textbook 30] for a rich overview, and focus here on progress for fair clus-
tering. Chierichetti et al.92] rst de ned fairness fork-median and-center clustering,
and introduced the notion ddirletsto design ef cient algorithms. Extensive research has
focused on two topics: adapting the de nition of fairness to broader contexts, and designing
ef cient algorithms for nding good fairlet decompositions. For the rst topic, the fairness
de nition was extended to multiple values for the protected featibe33, 122. For the
second topic, Backurs et aRf] proposed a near-linear constant approximation algorithm
for nding fairlets for k-median, Schmidt et al1pR7] introduced a streaming algorithm
for scalable computation of coresets for fair clustering, Kleindessner &ghtd¢signed a
linear time constant approximation algorithm fecenter where cluster centers are selected
proportionally from a set of colors, Bercea et 83|[developed methods for fak-means,
while Ahmadian et al.16] and Ahmadi et al.12] de ned approximation algorithms for fair
correlation clustering. Concurrently with our work, Chhabra et&l] {ntroduced a possible

3.2 Formulation 37

approach to ensuring fairness in hierarchical clustering. However, their fairness de nition
differs from ours (in particular, they do not ensure that all levels of the tree are fair), and the
methods they introduce are heuristic, without formal fairness or quality guarantees.

Beyond clustering, the same balance notion that we use has been utilized to capture
fairness in other contexts, for instance: fair votid@|[fair optimization B3], as well as
other problems [41].

3.2 Formulation

3.2.1 Generalized Objectives for Hierarchical Clustering

In this section we reiterate the objective functions proposed in 2.2, but generalize them to
weighted inputs. This chapter will need to use the generalized form of these objectives. As
introduced in Section 2.2, we I&=(V:V2! R 9) denote an input instance, whére
is a set of data points equipped with similarity/dissimilarity sces R 9. We denote
by n = jVj, the number of points. We then consider tretex-weightedversions of the
problem. Here, we hav@ = (V;V2! R %;m), wherem:V ! Z* is a weight function on
the vertices. The vertex-unweighted version can be interpreted as suti)rg 1;8i 2 V.
ForU V, we use the notatiom(U) = &,y m(i).

We again use&(;) to denote similarity scores amlf ;) to denote dissimilarity/distance
scores.

We consider the three different objectivesevenuevalug andcost—, and generalize
them to the vertex-weighted case.

De nition 3.2.1 (Revenue) The revenue(rev) of a treeT for an instances = (V;s,m),
wheres(;) denotes similarity between data points, ievg(T) = &;.jov S(i;j) m(V)
m(leavesT[i _ j])) :

Note that in this de nition, each weight is scaled by (the vertex-weight of) all the non-
leaves. The goal is to nd a tree of maximum revenue. Moseley and &kt showed that
average-linkage is &s-approximation for vertex-unweighted revenue; the state-of-the-art is
a(1=3+ e)-approximation by Charikar et g44]. As part of the analysis, there is an upper
bound for the revenue objective Cohen-Addad e8], Moseley and Wan@L15], which is
easily extended to the vertex-weighted setting:

rewg(T) m(V) u;\/er/iﬂgVanU;Vg) s(V): (3.1)

Note that in the vertex-unweighted case, the upper bound igjjist 2)s(V).

38 Fair Hierarchical Clustering

De nition 3.2.2 (Value) Thevalue(val) of a treeT for an instancés = (V;d;m) where
d(;) denotes distance is:

valg(T)= & d(i;j) m(leavesT[i_ j]):
i;j2V
As in revenue, we aim to nd a hierarchical clustering to maximize value. Cohen-Addad
et al.[58] showed that both average-linkage and a locadtjensest cut algorithm achieve
a Z=s-approximation for vertex-unweighted value. They also provided an upper bound for
value, much like that in (3.1), which in the vertex-weighted context, is:

valg(T) m(V) (V): (3.2)

De nition 3.2.3 (Cost) Thecostof a treeT for an instancé&s = (V;s) wheres(;) denotes
similarity is:
cost(T)= & s(i;)) jleavesT[i_ j]i:
i;j2V

Here we note that from a complexity point of view, cost is a much more dif cult objective
to optimize. Charikar and Chatziafraf#3] showed that cost is not constant-factor approx-
imable under the Small Set Expansion hypothesis, and the current best approximations are
o’ log(n) and require solving SDPs.

3.2.2 Notions of Fairness

Many de nitions have been proposed for fairness in clustering. We consider the setting in
which each data point X has acolor; the color corresponds to the value of the protected
attribute.

Disparate impact. This notion is used to capture the fact that decisions (i.e., clusterings)
should not be overly favorable to one group versus another. Chierichett[®2plormalized

this notion for clustering when the protected attribute can take on one of two values, i.e.,
points have one of two colors. In their setup, tiedanceof a cluster is the ratio of the
minimum to the maximum number of points of any color in the cluster. Given a balance
requirement, a clustering is fair if and only if each cluster has a balance of atieast

Bounded representation. A generalization of disparate impact, bounded representation
focuses on mitigating the imbalance of the representation of protected classes (i.e., colors) in
clusters and was de ned by Ahmadian et[db]. Given an over-representation parameter

a, a cluster is fair if thdractional representation of each color in the cluster is at mast

3.3 Fairlet Decomposition 39

and a clustering is fair if each cluster has this property. An interesting special case of this
notion is when there aretotal colors ancgh = 1=c. In this case, we require that every color
is equally represented in every cluster. We will refer to thie@sal representatian

These notions enjoy the following nice property:

De nition 3.2.4 (Union-closed) A fairness constraint isnion-closedf for any pair of fair
clustersA andB, A[Bis also fair.

This property is particularly useful in hierarchical clustering: given aTresd internal
nodeu which represents a cluster, if each child clusteu &f fair, thenu must also be a fair
cluster. We can now extend the notion of fair clustering to hierarchical clustering.

De nition 3.2.5 (Fair hierarchical clustering)For any fairness constraint, a hierarchical
clustering is fair if all of its clusters (besides the leaves) are fair, and the minimal non-leaf
clusters form a clustering of all the data.

Thus, under any union-closed fairness constraint, this de nition is equivalent to restricting
the bottom-most clustering (besides the leaves) to be fair. Given an objective (like revenue
or value), the goal then is to nd a fair hierarchical clustering that optimizes the objective.
For ease of exposition, we focus on the bounded representation fairness notiarcaliths
and an over-representation capHowever, the main ingredient for the revenue and value
objectives works under any notion of fairness that is union-closed. In the following sections,
we will focus on optimtizing value and revenue objectives with the fairness constraint. We
save the arguments for the more challenging cost objective until the full papkf]afje to
space limit.

3.3 Fairlet Decomposition

We recall the notion of fairlets in Chierichetti et al. [52].

De nition 3.3.1 (Fairlet). A fairlet Y is a fair set of points such that there is no partition of
Y into Y1 andY, with bothY; andY, being fair.

In other words, a fairlet is a minimal fair set that cannot be further decomposed.

In the bounded representation fairness setting, a set of points is fair if at mast an
fraction of the points have the same color. We call thisarapped fairlet. Fora = 1=t
with t an integer, the following lemma shows the fairlet size will always be at 2iostl.

We will refer to the maximum possible size of a fairletdoy (m; 2t 1).

40 Fair Hierarchical Clustering

Lemma 3.3.1.For any seP of sizep that satis es fairness constraint wigh= 1=t, there
exists a partition oP into sety(P; P;:::) where eaclP, satis es the fairness constraint and
tjRi<2

Proof. Letp=m t+rwithO r<t,then the fairness constraints ensures that there are at
mostm elements of each color. Consider partitioning obtained through the following process:
consider an ordering of elements where points of the same color are in consecutive places,

elements and at most r < 2t elements assigned to it. Since there are at mosements of
each color, each set gets at most one point of any color and hence all sets satisfy the fairness
constraintas 1 { jRj. O

Recall that given a union-closed fairness constraint, a hierarchical clustering tree is fair if
and only if the rst clustering in the tree is a layer of fairlets, which we cdhidet decom-
position, of the original data set. This observation gives an immediate algorithm for nding
fair hierarchical clustering trees in a two-phase manner. (i) Find a fairlet decomposition, i.e.,
partition the input seé¥ into clustersys;Ys;::: that are all fairlets. (ii) Build a tree on top of
all the fairlets. Our goal is to complete both phases in such a way that we optimize the given
objective (i.e., revenue or value).

In Section 3.4, we will see that to optimize for the revenue objective, all we need is a
fairlet decomposition with bounded fairlet size. However, the fairlet decomposition required
for the value objective is more nuanced as the performance of the tree built on top of these
fairlets are more closely tied to the quality of the decomposition. As we shall see in Section
3.3.1, we set a separate optimization goal for the desired fairlet decomposition for value.

This chapter will focus on revenue and value. For the cost objective, generally considered
the most challenging to optimize or approximate, more assumptions on the input and complex
algorithm designs are needed to achieve performance guarantees. The results for cost could
be found in the full version of [14].

3.3.1 Fairlet decomposition for the value objective

For the value objective, we need the total distance between pairs of points inside each fairlet
to be small. Formally, supposkis partitioned into fairletyy’ = fY1;Y;:::g such thaty; is
ana-capped fairlet. The cost of this decomposition is de ned as:

f(Y)=a a duv: (3.3)
Y2Y fuvg Y

3.3 Fairlet Decomposition 41

Unfortunately, the problem of nding a fairlet decomposition to minimfzg) does not
admit any constant-factor approximation unless P=NP.

Theorem 3.3.2.Letz 3 be an integer. Then there is no bounded approximation algorithm
for nding (;%7)-capped fairlets optimizing (Y), which runs in polynomial time, unless
P=NP.

The proof proceeds by a reduction from the Triangle Partition problem, which asks
whether a grapks = (V; E) on 3n vertices can be partitioned into three element sets, with
each set forming a triangle @.

we state that the PARTITION INTO TRIANGLES (PIT) problem is known to belong to
the NP-complete clas$7], de ned as follows. In the de nition, we call a cliquleclique if
it hask nodes. A triangle is a 3-clique.

De nition 3.3.2. PARTITION INTO TRIANGLES (PITgiven graphG = (V;E), where
V = 3n, determine iV can be partitioned int8-element set§;; S; ::1; Sy, such that each
forms a triangle irG.

The NP-hardness of PIT problem gives us a more general statement.

De nition 3.3.3. PARTITION INTCk-CLIQUES (PIKC).For a xed numbel treated as
constant, given grap® = (V;E), whereV = kn, determine ifV can be partitioned into
k-element set§;; S; ::1; S, such that each forms ak-clique inG.

Lemma 3.3.3.For a xed constank, the PIKC problem is NP-hard.

Proof. We reduce the PIKC problem from the PIT problem. For any graph(V;E)
given to the PIT problem wher@/j = 3n, construct another grap@®= (VCE9. Let
VO= V[C [G ::[Cn where all theC's are (k 3)-cliques, and there is no edge
between any two cliques andC; wherei 6 j. For anyG;, let all points inC; to be connected
to all nodes inv.

Now let G%be the input to PIKC problem. We prove th@tcan be partitioned into
triangles if and only ifG°can be partitioned int&-cliques. IfV has a triangle partition
V = £S;:5S0, thenvP= S [Cyi;:i;S [Cagis ak-clique partition. On the other hand,
if VOhas ak-clique partitionv®= fS);:::;; g thenCy; :::;C, must each belong to different
k-cliques since they are not connected to each other. Without loss of generality we assume
Ci S, thenV = fSnCy; ;P nCqgis a triangle partition. O

We are now ready to prove Theorem 3.3.2.

42 Fair Hierarchical Clustering

Proof of [Theorem 3.3.2] We prove Theorem 3.3.2 by proving that for giden) where
r 3, if there exists a-approximation polynomial algorithiA for (3.3), it can be used to
solve the PIKC problem wheile= r for any instance as well. This holds for any nite

Given any graplc = (V; E) that is input to the PIKC problem, whepéj = kn= rn, let
a setvOwith distances be constructed in the following way:

1. VO= V[f Cy;::;Cng, where eaclg; is a set ob points.
2. Color the points ity red, and color all th€;'s blue.

3. Forae=(u;v), letw(u;v) = 0, if it satis es one of the three conditions: &P E. 2)
u;v 2 G for someG;. 3) one ofu;vis inV, while the other belong to son@.

4. All other edges have distance 1.

Obviously the balance afis ? so each fairlet should have exadtiyplue points and red
points.
We claim thatG has ak-clique patrtition if and only if algorithn®A gives a solution 00
for (3.3). The same argument as in the proof of Lemma 3.3.3 will showGliets ak-clique
partition if and only if the optimal solution to (3.3) & This is equal to algorithmA giving
a solution of 0 since otherwise the approximate is not bounded.]
Fortunately, for the purpose of optimizing the value objective, it is not necessary to nd
an approximate decomposition.

3.4 Optimizing revenue with fairness

In this section we consider the revenue objective. We will obtain an approximation algorithm
for this objective in three steps: (i) obtain a fairlet decomposition such that the maximum
fairlet size in the decomposition is small, (ii) show that drgpproximation algorithm to
(3.1) plus this fairlet decomposition can be used to obtain a (roughbpproximation for
fair hierarchical clustering under the revenue objective, and (iii) use average-linkage, which
is known to be d=3-approximation to (3.1).

First, we address step (ii).

Theorem 3.4.1.Given an algorithm that obtainska-approximation to (3.1) whede 1, and

a fairlet decomposition with maximum fairlet sizg, thereisab 1 2m -approximation

n
for fair hierarchical clustering under the revenue objective.

3.5 Optimizing value with fairness 43

Proof. Let A be theb-approximation algorithm to (3.1). For a given instai&e (V;9), let
Y = fY1;Y5;:::g be a fairlet decomposition &f; let ms = max,,y jYj. Recall than = jVj.
We useY to create a weighted input instanGe = (Y ;sy ;my). ForY;Y?2 Y , we
de ne s(Y;Y9 = &iav:j2yos(i; j) and we de nemy (Y) = jYj.
We runA onGy and letTy be the hierarchical clustering obtained Ay To extend
this to a treeT onV, we simply place all the points in each fairlet as leaves under the
corresponding vertex ify .
We argue thatrey(T) b 1 2% (n 2)s(V).
SinceA obtains & -approximation to hierarchical clustering @&y , we have

reve, Tv) b @ SY;YY(n m(Y) m(Y9):
YRy
Notice the fact that, for any pair of pointsv in the same fairleY 2 Y , the revenue they

getinthetred is(n m(Y))s(u;v). Then,

revs(T)= @ (N m(Y)s(Y)+ re(Ty)

Y2Y
a b(n myY)sY)+b g sY;Y9(n my) m(Y9)
Y2Y Y. YRV

b(n 2m)) & s+ & sYY9
Y2Y Y:YRV

b 1 Z_r:f (n 2)s(V):

Thus the resulting tre€ is ab (1 2—rr?f)-approximation of the upper bound. O

Prior work showed that average-linkage i&aapproximation to (3.1) in the vertex-
unweighted case; this proof can be easily modi ed to show that it iststi#pproximation
even with vertex weights.

Combined with the fairlet decomposition methods for the two-color ca&eand for
multi-color case shown in Lemma 3.3.1, we have the following.

Corollary 3.4.2. There is polynomial time algorithm that constructs a fair tree that is a

% 1 % -approximation for revenue objective, wheng is the maximum size of fairlets.

3.5 Optimizing value with fairness

In this section we consider the value objective. As in the revenue objective, we prove
that we can reduce fair hierarchical clustering to the problem of nding a good fairlet

44 Fair Hierarchical Clustering

decomposition for the proposed fairlet object(&3), and then use any approximation
algorithm for weighted hierarchical clustering with the decomposition as the input. Again,
our result applies to Bera et §B2], Bercea et al[33]'s fairness constraint if we are given an
appropriate fairness decomposition.

Theorem 3.5.1.Given an algorithm that gives b-approximation to(3.2) whereb 1,
and a fairlet decompositio such thatf (Y) e d(V), there is a fair solution which is
b(1 e) approximation for(3.2).

To prove this theorem, x any hierarchical clustering algoritirthat is guaranteed on
anyweightedinput (V;d; m) to construct a hierarchical clustering with objective value at
leastom(V)d(V) for the value objective on a weighted input. Recall that we extended the
value objective to a weighted input and we de méV) = 4,y my. Our aim is to show
that we can combind with the fairlet decompositiol introduced in the prior section to
get a fair hierarchical clustering that ivg1l e)-approximation for the value objective, if
f(Y) edV).

In the following de nition, we transform the point set to a new set of points that are
weighted. We will analyzé\ on this new set of points. We then show how we can relate this
to the objective value of the optimal tree on the original set of points.

De nition 3.5.1. LetY = fY;Ys;:::g be the fairlet decomposition f&f that is produced
by the local search algorithm. De né(Y) as follows:

» Each seYt; has a corresponding poiatin V(Y).
» The weightm of g is set to bgYjj.
« For each partition¥;;Y;, wherei 6 j andY;;Y; 2 Y , d(a;a;) = d(Y;;Y)).

We begin by observing the objective value tAatceives on the instansqY) is large
compared to the weights in the original instance.

Claim 3.5.2. On the instanc&/(Y) the algorithmA has a total weighted objective of
b(1 e) nd(V).

Proof. Notice thatm(V (Y)) = jVj = n. Consider the total sum of all the distance¥ifY).
This is@ 5:a,2v(v)d(@i;aj) = &y:v2y d(Yi;Yj) = d(V) f(Y). The upper bound on the
optimal solution igayoy m)(d(V) f(Y)= n(d(V) f(Y)).Sincef (Y) ed(V),this
upper bound is atleagl e)nd(V). Claim 3.5.2 follows from the fact that the algorithin
archives a weighted revenue at least tactor of the total weighted distances. O

3.5 Optimizing value with fairness 45

Theorem 3.5.1 is essentially a corollary of Claim 3.5.2. We complement this result with
an algorithm that nds a good fairlet decomposition in polynomial time under the bounded
representation fairness constraint with eéap

Y = fY1;Ys:::gbe the fairlet decomposition. Let be the number of points colorél in V.
Letr;.x denote the number of points colorBdin thekth fairlet.

Theorem 3.5.3.There exists a local search algorithm that nds a fairlet decomposivon
withf (Y) (1+ e)max. rri]—:i"d(V) in time O(n3=e).

We can now use the fact that both average-linkage anfHbeally-densest cut algorithm
give a%- and(% e)-approximation respectively for vertex-weighted hierarchical clustering
under the value objective. Finally, recall that fairlets are intended to be minimal, and their
size depends only on the paramederand not on the size of the original input. Therefore, as
long as the number of points of each color increases as inputsigews, the rati;., =
goes td). These results, combined with Theorem 3.5.1 and Theorem 3.5.3, yield Corollary
3.5.4.

Corollary 3.5.4. Given bounded size fairlets, the fairlet decomposition computed by local
search combined with average-linkage constructs a fair hierarchical clustering that is a
%(1 0(1))-approximation for the value objective. For tRdocally-densest cut algorithm in
Cohen-Addad et a[58], we get a polynomial time algorithm for fair hierarchical clustering
that is a(% e)(1 o(1))-approximation under the value objective for any O.

Given at most a small fraction of every color is in any cluster, Corollary 3.5.4 states
that we can extend the state-of-the-art results for value tateapped, multi-colored
constraint. Note that the preconditions will always be satis ed and the extension will hold in
the two-color fairness setting or in the multi-colored equal representation fairness setting.

Fairlet decompositions via local search In this section, we give a local search algorithm
to construct a fairlet decomposition, which proves Theorem 3.5.3. This is inspired by the
e-densest cut algorithm of Cohen-Addad ef{a8]. To start, recall that for a pair of sets
andB we denote byl(A; B) the sum of interpoint distanced(A;B) = & pav2sd(U; V). A
fairlet decomposition is a partition of the inpit1;Y>;:: :g such that each color composes at
most ama fraction of eaclhy;.

We start by nding an arbitrarga -capped fairlet decomposition. For two colors with
a = r=(b+ r), we use the fairlet decomposition introduced by Chierichetti ebd]. For
multiple colors witha = 1=t, we use Lemma 3.3.1. Our algorithm will then recursively

46 Fair Hierarchical Clustering

Algorithm 1 Algorithm for (e=n)-locally-optimal fairlet decomposition.

Input: A setV with distance functioml 0, parametea, small constang 2 [0; 1].
Output: An a-capped fairlet decomposition .

1: Finddmax D -Omax

2. Arbitrarily nd an a-capped fairlet decompositidrYy;Y>;:::g such that each partition

has at most aa fraction of any color.

3: while 9u 2 Y;;v2Y;j;i 8 j of the same color, such that for the decompositotafter
% (1+ e=n) and &y,oy d(Y) > Ddo
4: Swapu andv by setting¥; (Yinfug) [f vgandY; (Yjnfvg)[f ug.
5. end while

swappingu; v,

subdivide the cluster of all data to construct a hierarchy by nding cuts. To search for a cut,
we will use aswapmethod.

De nition 3.5.2 (Local optimality) Consider any fairlet decompositioh = fY1;Y>;:::g
ande> 0. De ne aswapofu 2 Y; andv 2 Y] for j 6 i as updatingj to be(Yinfug) [f vg
andY;j to be(Yjnfvg) [f ug. We sayY is e-locally-optimalif any swap withu;v of the
same color reduces the objective value by less th@dn+ae) factor.

The algorithm constructs @=n)-locally optimal algorithm for fairlet decomposition,
which runs inO(n%=e) time. Consider any given instan¢¥;d). Let dmax denote the
maximum distancens denote the maximum fairlet size, aBd= dmax % The algorithm
begins with an arbitrary decomposition. Then it swaps pairs of monochromatic points until it

terminates with a locally optimal solution. By construction we have the following.
Claim 3.5.5. Algorithm 1 nds a valid fairlet decomposition.

We prove two things: Algorithm 1 optimizes the objective (3.3), and has a small running
time. The following lemma gives an upper boundYrs performance fo(3.3) found by
Algorithm 1.

Lemma 3.5.6. The fairlet decompositiolY computed by Algorithm 1 has an objective value
for (3.3) of at mos(1+ e) max .k %d(V).

N

Proof. The proof follows the same logic as in the two-color case: we rst uséehr)-local
optimality of the solution, and sum up the inequality over all pairs of points with the same
color.

LetY :V 7! Y denote a mapping from a point A to the fairlet it belongs to. Let
Ri(X) be the set oR colored points in a set. Letdr (X) = & 2R x)d(u; X). Naturally,
aidr(X) = 2d(X) for any setX since the weight for every pair of points is repeated twice.

3.5 Optimizing value with fairness 47

TheWhile loop can end in two cases: 1)¥f is (e=n)-locally-optimal; 2) ifay, oy d(Yk)
D. Case 2 immediately implies the lemma, thus we focus on case 1.
By de nition of the algorithm, we know that for any pair2 Y(u) andv 2 Y(v) where
u;v have the same color ant{u) 6 Y(v) the swap does not increase objective value by
a large amount. (The same trivially holds if the pair are in the same cluster.) We get the
following inequality as in the two color case:

d(uY(u)+ d(vY(v) d(uY(v)+ d(vY(u)+ % a divo: (3.4)
Yi2Y

For any colorR;, we sum it over every pair of points R(V) (even if they are in the
same partition).
! !
o o o o € o
nia dr(Yi) ardrM) + A a rkduYd +nf=3 d(Y):

Yi Yi U2R(V) Y8 Y(u) N v

Divide both sides by; and we get:
I |

o] o [j o] o € o
S0 &Nk + A 8 (duw) +TCEAY) (35
Yie Ye u2R (V) Y8 Y(u) Yi

Now we sum up this inequality over all coloRs. The LHS becomes:

AAddr(M)=a A duY)= 23 d(¥):
N Y U2 Yy Yk

For the RHS, the last term sums up—eéér;l) ay, d(Yk) = eay, d(Yk). Using the fact that

fi I :
Wik max;kﬁk, the other terms sumup to :

o o [j o o 0 I
a8 ‘R(M)+d & & duY
i Y I(i U2Ri(V) Y6 Y(U))
mgxn'—k a a dr () + a a d(u; Yy)
I i u2VY,8Y(u)

()

r o o o o

maxX & & duYo+ & & d(Yi;Y)
Tk Ny w2y Yic Y;6 Y

2maxk d(v):
i)k N

48 Fair Hierarchical Clustering

Therefore, putting LHS and RHS together, we get

28.d(Y) 2maxkd(Vv)+ e d(%):

Yi ik N Yi
Then,w max;krn‘—'r s (1+e) max;krr‘]—‘i(. The nal step follows from the fact
that(1+e)(1 e=2)= 1+ 35(1 e) 1.

]

In the two-color case, the ratimax;krn‘—'i‘ becomesmax %; gg, which can be further

bounded by@. If there exists a caplet decomposition such thabq;krni—ik = 0(1), Lemma
3.5.6 implies we can build a fair hierarchical clustering tree with) loss in approximation
ratio for value objective.

Assuming for all color clas&;, nj! +¥ asn! +¥, here we give a possible caplet
decomposition foa = %(t <= ¢) with sizeO(t) for positive integet, thus guaranteeing
maxx i = o(1) for anyi.

Finally we bound the running time. The algorithm has much better performance in
practice than its worst-case analysis would indicate. We will show this later in Section 3.6.

Lemma 3.5.7. The running time for Algorithm 1 i©(n°=e).

Proof. Notice that nding the maximum pairwise distance tak&$?) time. Thus, we focus
on analyzing the time spent on tki¢hile loop.

Lett be the total number of swaps. We argue thatO(n=e). If t = 0 the conclusion
trivially holds. Otherwise, consider the decompositign 1 before the last swap. Since
the While loop does not terminate her&y, oy, , d(Yk) = blnrdmax. However, at the
beginning, we havy,y d(Ye) (b+r)n dmax= N°D n?&v,y, ,d(Yi). Therefore, it
takes at most log (%) = O(n=e) iterations to nish thewhile loop.

It remains to discuss the running time of each iteration. We argue that there is a way
to nish each iteration irD(n?) time. Before thaVhile loop, keep a record af(u;Y;) for
each poinu and each fairleY;. This takegO(n?) time. If we knowd(u;Y;) and the objective
value from the last iteration, in the current iteration, it tak§4) time to calculate the new
objective value after each swép; V), and there are at most such calculations, before the
algorithm either nds a pair to swap, or determines that no such pair is left. After the swap,
the update for all thel(u;Y;) data take©(n) time. In total, every iteration take3(n?) time.

Therefore, Algorithm 1 take®(n3=e) time.]

Together, Lemma 3.5.6, Lemma 3.5.7, and Claim 3.5.5 prove Theorem 3.5.3. This estab-
lishes that there is a local search algorithm that can construct a good fairlet decomposition.

3.6 Experiments 49

Table 3.1 Dataset description. Héker) denotes the balance of the dataset.

Name | Sample size # features Protected feature Color (blue, red) (b;r)
CENSUSGENDER | 30162 6 gender (female, male) (1;3)
CENSUSRACE | 30162 6 race (non-white, white) (1;7)
BANKMARRIAGE | 45211 7 marital status (not married, married)1; 2)
BANKAGE | 45211 7 age 4 40, 40) (2;3)

Table 3.2 Impact of Algorithm 1 on ratjgue in percentage (mean std. dev).

Samples [400 800 1600 3200 6400 12800
CENSUSGENDER, initial 8817 0:76 8839 0:21 8827 0:40 8812 0:26 8800 0:10 8804 0:13
nal 99.01 0:60 9909 0:58 9955 0:26 9964 0:13 9920 0:38 9944 0:23
CENSUSRACE, initial 8449 0:66 8501 0:31 8500 0:42 8488 0:43 8484 0:16 8489 0:20
nal 9950 0:20 9989 0:32 1000 0:21 9998 0:21 9998 0:11 9993 0:31
BANK MARRIAGE, initial 9247 054 9258 0:30 9242 0:30 9253 0:14 9259 0:14 9275 0:04
nal 9918 0:22 9928 0:33 9959 0:14 9951 0:17 9946 0:10 9950 0:05
BANKAGE, initial 9370 056 9335 0:41 9295 0:25 9328 0:13 9336 0:12 9333 0:12
nal 9940 0:28 9940 0:51 9961 0:13 9964 0:07 9965 0:08 9959 0:06

3.6 Experiments

This section validates our algorithms from Sections 3.4 and 3.5 empirically. In particular, we
would like to:
» Show that running the standard average-linkage algorithm results in highly unfair
solutions.
» Demonstrate that demanding fairness in hierarchical clustering incurs only a small loss
in the hierarchical clustering objective.
» Show that our algorithms, including fairlet decomposition, are practical on real data.
In this section we will rst study the results for the two-color case in detail, and then
show that in general the results extend to multi-color cases.

Datasets. We use two datasets from the UCI data repositoty. each dataset, we use
features with numerical values and leave out samples with empty entries. For value, we use
the Euclidean distance as the dissimilarity measure. For revenue, we set the similarity to
bes(i; j) = Wl(lj) whered(i; j) is the Euclidean distance. We pick two different protected
features for both datasets, resulting in four datasets in total (See Table 3.1 for details).
» Censuglataset: We chooggenderandraceto be the protected feature and call the
resulting datasetsENSUSGENDER and GENSUSRACE.
» Bankdataset: We choosmarital statusandageto be the protected features and call
the resulting datasetsaBiIk MARRIAGE and BANK AGE.

tarchive.ics.uci.edu/ml/index.phpensusarchive.ics.uci.edu/ml/datasets/census+income
Bank: archive.ics.uci.edu/ml/datasets/Bank+Marketing

50 Fair Hierarchical Clustering

Table 3.3 Impact of Algorithm 1 on ratigets.

Samples | 100 200 400 800 1600 3200 6400 12800
CENSUSGENDER, initial 2.5e-2 1.2e-2 6.2e-3 3.0e-3 1.5e-3 7.5e-4 3.8e-4 1.9e-4
nal 4.9e-3 1.4e-3 6.9e-4 2.5e-4 8.5e-5 3.6e-5 1.8e-5 8.0e-6
CENSUSRACE, initial 6.6e-2 3.4e-2 1.7e-2 8.4e-3 4.2e-3 2.1e-3 1.1e-3 5.3e-4
nal 2.5e-2 1.2e-2 6.2e-3 3.0e-3 1.5e-3 7.5e-4 3.8e-4 1.9e-5
BANKMARRIAGE, initial 1.7e-2 8.2e-3 4.0e-3 2.0e-3 1.0e-3 5.0e-4 2.5e-4 1.3e-4
nal 5.9e-3 2.1e-3 9.3e-4 4.1e-4 1.3e-4 7.1e-5 3.3e-5 1.4e-5
BANKAGE, initial 1.3e-2 7.4e-3 3.5e-3 1.9e-3 9.3e-4 4.7e-4 2.3e-4 1.2e-4
nal 5.0e-3 2.2e-3 7.0e-4 3.7e-4 1.3e-4 5.7e-5 3.0e-5 1.4e-5

(i) (i) (iii)
Fig. 3.1 (i) ratiorjrets, €vEeryl00swaps. (ii)ratio g ue everyl00swaps. (i) CENSUSGEN-
DER: running time vs sample size on a log-log scale.

In this section, unless otherwise speci ed, we report results only for the value objective.
Results for the revenue objective are qualitatively similar and are omitted here. We do not
evaluate our algorithm for the cost objective since it is currently only of theoretical interest.

We sub-sample points of two colors from the original data set proportionally, while
approximately retaining the original color balance. The sample sizes uséfGre';i =

to 0:1 in all of the experiments.

Implementation. In the experiments, we use Algorithm 1 for the fairlet decomposition
phase, where the fairlet decomposition is initialized by randomly assigning red and blue
points to each fairlet. We apply tlaverage-linkagealgorithm to create a tree on the fairlets.
We further use average-linkage to create subtrees inside of each fairlet.

The algorithm selectsi@ndom pair of blue or red points in different fairlets to swap,
and checks if the swap suf ciently improves the objective. We do not run the algorithm until
all the pairs are checked, rather the algorithm stops if it has m2ddailed attempts to
swap a random pair. As we observe empirically, this does not have material effect on the
quality of the overall solution.

Metrics. In our experiments, we track the following quantities. Gabe the given input
instance and let be the output of our fair hierarchical clustering algorithm. We consider
the following ratioratioajye = % for value objective. This measures how close

the performance of the found fair tree is to the unfair tree constructed using traditional

3.6 Experiments 51

Table 3.4 Clustering on fairlets found by local search vs. upper bound, performance ratio in
percentage, at size 1600 (mearstd. dev).

Datasetl CENSUSGENDER CENSUSRACE BANKMARRIAGE BANKAGE

Revenue vs. upper bound81:89 0:40 8175 0:83 6153 0:37 6166 0:66

Value vs. upper bound 84:31 0:15 8452 0:22 8917 0:29 8881 0:18
revg(T)

algorithms. Similarly, for revenue, we considatioe, = Tova(T0 - We consider the fairlet

objective function wher® is a fairlet decomposition. Let ratigets = %

Results. The experimental results are shown as follows. We rst present results for value
objective with two colors, and then extend the results to the revenue objective, and multiple
colors. In all settings the results are qualitatively similar.

Average-linkage algorithm always constructs unfair trees. For each of the datasets, the
algorithm results in monochromatic clusters at some level, strengthening the case for fair
algorithms.

In Table 3.2, we show for each dataset th&o,, e both at the time of initialization
(Initial) and after using the local search algorithm (Final). We see the change in the ratio
as the local search algorithm performs swaps. Fairness leads to almost no degradation in
the objective value as the swaps increase. Table 3.3 showatitygets between the initial
initialization and the nal output fairlets. As we see, Algorithm 1 signi cantly improves the
fairness of the initial random fairlet decomposition. The more the locally-optimal algorithm
improves the objective value of (3.3), the better the tree's performance based on the fairlets.
Figures 3.1(i) and 3.1(ii) showatio,g e andratiojrets for every100swaps in the execution
of Algorithm 1 on a subsample of si8200from Census data set. The plots show that as the
fairlet objective value decreases, the value objective of the resulting fair tree increases. Such
correlation are found on subsamples of all sizes.

Now we compare the objective value of the algorithm with the upper bound on the
optimum. We report the results for both the revenue and value objectives, using fairlets
obtained by local search, in Table 3.4. On all datasets, we obtain ratios signi cantly better
than the theoretical worst case guarantee. In Figure 3.1(iii), we show the average running time
on Census data for both the original average-linkage and the fair average-linkage algorithms.
As the sample size grows, the running time scales almost as well as current implementations
of average-linkage algorithm. Thus with a modest increase in time, we can obtain a fair
hierarchical clustering under the value objective.

We then switch from value to revenue objective. We run Algorithm 1 on the subsamples
with Euclidean distances. Then we convert distances into similarity scores using transforma-
tions(i; j) = Wl(u) We test the performance of the initial random fairlet decomposition and

52 Fair Hierarchical Clustering

Table 3.5 Impact of different fairlet decomposition @tioe, in percentage (mean std.
dev).

Samples [100 200 400 800 1600
CENSUSGENDER, initial 7412 2:52 7616 342 7415 1:44 7017 1:.01 6502 0:79
nal 9232 2:70 9575 0:74 9568 0:96 9661 0:60 9745 0:19
CENSUSRACE, initial 6567 7:53 6531 374 6197 2:50 5959 1:89 5691 0:82
nal 85:38 1:68 9298 1:89 9499 0:52 9686 0:85 9724 0:63
BANK MARRIAGE, initial 7519 253 7358 1:.05 7403 1:33 7368 0:59 7294 0:63
nal 9388 216 9691 0:99 9682 0:36 9705 0:71 9781 0:49
BANKAGE, initial 7748 145 7828 1:75 7640 1:65 7595 0:77 7533 0:28
nal 91:26 2:66 9574 2:17 9645 1:56 9731 1:94 9784 0:92

nal fairlet decomposition found by Algorithm 1 for revenue objective using the converted
similarity scores. Table 3.5 shows the ratio of fair tree built by using average-linkage on
different fairlet decompositions.

Table 3.6 Age ranges for all four colors for Census and Bank.

Dataset| Color 1 Color 2 Color 3 Color 4
CENSUSMULTICOLOR | (26;38]:9796 (38;48]:7131 (48,+¥):6822 (0;26]:6413
BANKMULTICOLOR | (30;38]:14845 (38,48]:12148 (48,+¥):11188 (0;30]:7030

We then ran experiments with multiple colors and the results are analogous to those in
the paper. We tested both Census and Bank datasets, with age as the protected feature. For
both datasets we set 4 ranges of age to get 4 colors andauseti=3. We ran the fairlet
decomposition in15] and compare the fair hierarchical clustering's performance to that of
average-linkage. The age ranges and the number of data points belonging to each color are
reported in Table 3.6. Colors are nanfeld2; 3;4g descending with regard to the number of
points of the color. The vanilla average-linkage has been found to be unfair: if we take the
layer of clusters in the tree that is only one layer higher than the leaves, there is always one
cluster witha > % for the de nition of a-capped fairness, showing the tree to be unfair.

As in the main body, in Table 3.7, we show for each datasetatie,, e both at the time
of initialization (Initial) and after using the local search algorithm (Final), whate, e iS
the ratio between the performance of the tree built on top of the fairlets and that of the tree
directly built by average-linkage.

Table 3.7 Impact of Algorithm 1 on ratjguein percentage (mean std. dev).

Samples | 200 400 800 1600 3200 6400
CENSUSMULTICOLOR, initial 8855 0:87 8874 0:46 8845 0:53 8868 0:22 8856 0:20 8846 0:30
nal 9901 0:09 9941 0:57 9987 0:28 9980 0:27 10000 0:14 9988 0:30
BANKMULTICOLOR, initial 9098 1:17 9122 0:84 9187 0:32 9170 0:30 9170 0:18 9169 0:14
nal 9878 0:22 9934 0:32 9948 0:16 9971 0:16 9980 0:08 9984 0:05

Table 3.8 shows the performance of trees built by average-linkage based on different
fairlets, for Revenue objective. As in the main body, the similarity score between any two
pointsi; j is s(i;]) = Wl(.,) The entries in the table are mean and standard deviation of

3.7 Conclusions 53

Table 3.8 Impact of Algorithm 1 on ratig, in percentage (mean std. dev).

Samples | 200 400 800 1600 3200
CENSUSMULTICOLOR, initial 7576 2:86 7360 1.77 6977 0:56 6602 0:95 6194 0:61
nal 9268 0:97 9466 1:66 9640 0:61 9709 0:60 9743 0:77

0:98 7096 0:69 7Q79 072 7077 049 ~ 6988 0:53

prNipy thtie ofiAbgoriten oein secor

BANKMULTICOLOR, initial 72:08
Yied

Samples | 200 400 800 1600 3200 6400
CENSUSMULTICOLOR 0.43 1.76 7.34 35.22 152.71 803.59
BANKMULTICOLOR 0.43 1.45 6.77 29.64 127.29 586.08

ratios between the fair tree performance and the vanilla average-linkage tree performance.
This ratio was calculated both at time of initialization (Initial) when the fairlets were randomly
found, and after Algorithm 1 terminated (Final). Table 3.9 shows the run time of Algorithm 1
with multiple colors.

3.7 Conclusions

In this paper we extended the notion of fairness to the classical problem of hierarchical
clustering under three different objectives (revenue, value, and cost). Our results show
that revenue and value are easy to optimize with fairness; while optimizing cost appears to
be more challenging. Our work raises several questions and research directions. Can the
approximations be improved? Can we nd better upper and lower bounds for fair cost? Are
there other important fairness criteria?

Chapter 4

Scaling Average-Linkage via Sparse
Cluster Embeddings

4.1 Introduction

Starting with this chapter, the focus is shifted from establishing and re ning the mathematical
formulation for clustering to designing better, more scalable clustering algorithms. In this
chapter we focus on makirayerage-linkagescalable on inputs in Euclidean space using
distance/dissimilarity scores. This chapter uses the result9b). [Recall from Section 2.2

that average-linkage calculates the average distance over all pairs of points across the clusters.
The greater this average distance is, the less similar these two clusters are. Throughout this
chapter, this average distance will be referred to aslinger distance

Scalability of average-linkage. Agglomerative hierarchical clustering algorithms are
known to have scalability issues, especially average-linkage. In fact, introductory guides
on hierarchical clustering often state that average-linkage should only be used on small to
modestly sized data sets due to the inherent large running time and the sequential nature of
the algorithm. This limits the applicability of hierarchical clustering on large datas8g [
Therefore, there is interest in making average-linkage more scalable.

The fastest known implementation of average-linkage rurg(irf) time [116. This
is because the iterative search for the pair of clusters with smallest cluster distance is time
consuming. To compute the exact average-linkage ouu) is intuitively necessarily as
the algorithm must inspect all of th&{n?) pairwise distances between data points to nd the
rst pair to merge. Thus we need better algorithm designs to further improve the running
time bound, as the scalability issue arises from the nature of agglomerative algorithms.

56 Scaling Average-Linkage via Sparse Cluster Embeddings

Recently, there has been breakthroughs with improving the scalability of average-linkage.
The work of Cochez and Nefb6] and Abboud et al.3] broke through the quadratic barrier
by relaxing the algorithm. In both works, the idea is to allow the algorithm to iteratively
merge clusters that do not necessarily have the smallest average distaéjdeund a
sub-quadratic time algorithm for a restricted class of distance functions that includes Jaccard
distance, but excludes aly-norm distances. Despite being scalable in implementation, the
methods in $6] cannot be directly used for any-norm distances.3] shows that for input
with "1 norm distances, one can also break the quadratic bound by allowing the algorithm to
merge clusters with average distance within a factdr-bfe of the average distance between
the closest clusters. However, the algorithm design heavily relies on properties ofibien
and the work does not directly apply to othgmormsl. Further, the algorithm emphasizes
the near-optimality of every merge performed, leveraging sophisticated data structures to
quickly nd clusters to merge. The construction and maintenance of such data structures
incurs additional computational cost for this adaptation of average-linkage, which is likely to
have signi cant overhead in practice.

Previous work does not directly give a scalable, easily implementable adaptation of
average-linkage for Euclidean inputs with genergainorm distances. Nevertheless, it
suggests the exciting possibility of developing such an adaptation with new algorithm
designs. The new algorithm design should be supported by similar theoretical guarantees,
i.e., it should iteratively choose two clusters to merge, whose distance is up to a constant of
the smallest average distance among all clusters. In particular, an intriguing open question is
to nd an ef cient adaptation of average-linkage for thenorm distance, the most popular
distance function.

Results. This chapter designs an algorithm that nds an approximation of average-linkage,
which applies to , norm distances witp 2 [1; 2], with sub-quadratic running time guarantees.
Empirically, we give a scalable implementation with near-linear running time. Our results
are as follows.

« The algorithm runs in near linear time. The algorithm requitédn'*") time
and O(dn**") space for arbitrarily smalt > 0 when the input points belong to
d-dimensional Euclidean spaée.

INote it is possible to embeg, norms into" ; though an additional data processing step which signi cantly
increase the dimension of the data points.
2TheO() notation hides factors of I§¢n) for constant > 0.

4.1 Introduction 57

» The tree constructed is a relaxation of average-linkage that ensures that any pair of
clusters merged have average distances within a constant factor of the closest cluster
pair.

» We perform experiments with our algorithm and compare it to the most popular
implementations of average-linkage such as scikit-learn, sci-py, and fastcluster. These
represent the fastest average-linkage packages used by data scientists across industry
and academia. Our algorithm: (1) Constructs trees that are similar to what standard
libraries achieve. In particular, the trees constructed have almost the same value
for a popular hierarchical clustering objective. (2) Achieves asymptotically faster
running times than the standard algorithms for large data sets, matching the theoretical
guarantees. The running time of our implementation is near linear in the input size, as
opposed to the quadratic baselines.

* The algorithm is easily parallelizable and can be used in parallel and distributed
environments. There is much previous work on scaling clustering methods such as
single-linkage B1]. However, fundamental differences in the problem prevent these
methods from extending to average-linkage. In contrast, most recent work on fast
average-linkage clustering, such 8k fo not extend easily into parallel and distributed
settings.

Cluster embeddings. This chapter introduces a new technique that is of interest beyond
average-linkage, named cluster embeddings. This technique maps a given set of clusters into
points a slightly higher-dimensional space, such that the pairwise distance between the points
roughly preserves the cluster distances. Formally, consider a collection of cldstef<,,

Co, ...,Ckg, acluster embedding nds k pointsvy;Vo;:::;Vk wherev; corresponds tq;.

These points exist in some Euclidean spaceland vjk, should approximate the average
distanceAvg(C;;C;) up to a constant, i.elow-distortion[77] with respect to the averagg

larger thard and the embedding can be computed quickly.

To see the applicability of cluster embeddings, consider a single step of average-linkage.
At each step, there is a current collection of clus@r<,, ...C, and the goal is to nd the
clustersC; andC;j that minimizes the average distance betw€eandC;. That is, clusters
whose points are closest on average. Notice that for any pair of clusters it can take quadratic
time just to nd their average distance depending on the sizes. However, with the embedding
in place, we would only need to nd thg, distance between the two embedded points.

58 Scaling Average-Linkage via Sparse Cluster Embeddings

The embedding allows us to leverage data mining techniques that apply to points in
Euclidean space. Coupling the cluster embedding attality-Sensitive Hashing (LSH)
functions yields a method to quickly nd pairs of clusters with small average distance. Such
a task is calleahear cluster search Given a set of points in Euclidean space, LSH functions
partitions the points into “buckets”, where points in the same bucket are likely to be closer to
each other, thus Itering out potential near neighbors without inspecting all pairwise distances
between clusters. Such techniques leverage propertigsdidtances in a Euclidean space
and cannot be directly used to do near cluster search, since the cluster distance, de ned
to be the average distance over all pairs, is a more general metric where LSH may not
exist. However, an embedding into Euclidean space makes such a technique applicable for
near-cluster searches. Iteratively using the embedding coupled with LSH to nd clusters that
are close gives a new approach to ef ciently approximate average-linkage.

Our cluster embedding has the following properties. We note that Abboud|[&] al.
adopted techniques similar to cluster embedding, but these properties set our design apart
from theirs.

» The embedding isparse Clusters of points iml-dimensional Euclidean space are
embedded into vectors with at mabkt 1 non-zero entries. Henamly one additional
non-trivial dimensions required to store the embedding of each cluster.

» The embedding hasw-distortion of the cluster distances. Thg-norm distance
betweenv; andyv; is guaranteed to approximate the average distance between pairs
of points inC; andC;j. In particular, we prove this is bounded in the worst case.
Experimentally, they are nearly the same.

* The embedding i®blivious, i.e. there is a functiori : C ! RY (eredis the
dimension of the embedded space) such thatf (C;), where the computation of
f (G;) depends only on the clust€ritself and no other cluster @& . Insertion, deletion,
and modi cation of other clusters doesn't affdc{C;).

» Constructing the embedding takesear time, O(nd). This is faster than comparing
the average similarity between two (large) clustepsadratic time.

Chapter Organization: The chapter is organized as follows. We begin by introducing
preliminary de nitions. Then in Section 4.3, we discuss the technique of cluster embedding -
our main technique for speeding up average-linkage. We rst showcase the application of
cluster embeddings on the problem of near cluster search in Section 4.4. This is the key
step in average-linkage. Afterwards, we give an overview of the average-linkage algorithm
in Section 4.5. This overview gives a skeleton of the key algorithmic ideas. The detailed

4.2 Preliminaries 59

algorithm designs that guarantee strong theoretical performance is defered to 4.5.2. In Section
4.7 we give experimental evaluations.

Related work. There has been consistent interest in nding ef cient algorithms to cluster
data in large database&3 56]. Additionally, there has recently been increased interest in
scaling hierarchical clustering algorithnis3h, 31, 3, 112 109. Kell et al. [91] and Cochez
et al. [56] speed-up algorithms by relaxing the criteria on when clusters can be merged. The
work of [135 and [97] considered parallelizing hierarchical clustering algorithms in the
Massively Parallel Model of computatioB%, 20]. Other Spark and MapReduce algorithms
have been develope@1, 80]. This prior work on scaling hierarchical clustering focused on
other hierarchical clustering algorithms and not average-linkage.

As mentioned, recently there are breakthroughs in designing sub-quadratic adaptations of
hierarchical clustering algorithm&6, 3] which do not directly lead to a scalable average-
linkage implementation for genergl norms. Method-wise both chapters used Locality-
Sensitive Hashing (LSH) and other related techniques. The woi¥ &f £loser to our work
which focuses on Euclidean inputs usingnorm distance. A crucial building block i8] is
to leverage properties 0f to construct a sophisticated data structure based on LSH functions,
where every cluster is represented as a multi-dimensional point. However their representation
of a cluster increases the dimension by a factor/\bf—ﬁ log®n) for constante > 0 and
critically uses properties of; that do not hold for otherp norms. Additionally, the original
paper does not include an average-linkage implementation. There remains the question of

nding a more concise way of embedding clusters into potentially low-dimensional points
and designing a practical adaptation of average-linkage based on this embedding.

Embeddings are widely used and there are many types with different propertieg0bee |
for reference to different types of embedding. Much prior work has focused on low-distortion
embeddings{7]. These embeddings are orthogonal to that considered in this chapter. These
are used for reducing dimension and ours is used to represent average cluster distances.

This chapter uses the value objective for hierarchical clusteBb8pt evaluate our
algorithm. This is the most suitable for the setting we are considering - a point set with
pairwise distance metric. Recall that average-linkage%isaaproximation algorithm for it.

4.2 Preliminaries

Here we de ne cluster embeddings, average-linkage, near cluster search, hierarchical cluster-
ing objective function and Approximate Nearest Neighbor (ANN) search based on Locality-
Sensitive Hashing (LSH).

60 Scaling Average-Linkage via Sparse Cluster Embeddings

4.2.1 Notation System

We use lower case letters exyy to denote points in Euclidean space and use subscripts
to index their coordinates e.g; Y. We will usekxkp := &;x" P to denote the ,-norm

of x. kxk will be shorthand for thé,-norm. For a nite seX in d-dimensional Euclidean
spaceRY, let D(X) andd(X) be the maximum and minimum distances withinthat is,

D(X) := maxxox kx xk andd(X) := min.oxkx xk. If X is a nite set of points let

M(X) := &,ox X X] be the centroid oK and letgm(X) := argmin,radxox Ky xk=Xj be

the geometric median of.

Average-Linkage: Recall for two disjoint set&; B, Avg(A;B) = jAj%é.izAéjZBd(i; j)is

de ned as the cluster distance and should be minimized in every iteration of average-linkage

metric onC where we takedvg(Ci;G) := 0. In our setting we have each) RY and
d(x;y) = kx ykp for somep 2 [1,2].
Cluster Embeddings For Average-Linkage:LetS RY be a point set and & =

dimensional Euclidean space. We say thas an embedding of into ‘%0 with distortiona

if the following holds for allC;;Cj 2 C: Avg(Ci;Cj) k f(G) f(Cjkp a Avg(Gi;Cj).
Ideally we want to embed into a space of dimensiod. In lieu of that, we ask for a sparse
embedding in a high dimensional space. We say that an embeftidmgsparse if the
number of non-zero entries fn(G;) is at mostsfor allC; 2 C.

Near Cluster Search Given a set of cluster§ and a query clusteD, the near cluster search
problem with respect to average-linkage is to nd a clu§l& C that is the closest tQ in
average-linkage. Tha-approximate near cluster search problem is to nd a cluSterC

such that AvgQ:C) a mincoc Avg(Q:CH.

Approximate Average-linkage Our algorithms make approximate decisions so we de-
ne the notion of approximation here. SefsB area-approximate for clusterin@ if
Avg(A;B) a mingognc Avg(A%BY. An algorithm isa-approximate if it only merges
a-approximate clusters.

Technical Assumptions:We assume thag% = O(poly(n)), i.e. the ratio of the maximum

to minimum distance is bounded by a polynomial in the number of points. Up to scaling, we
may also assume thd{S), the minimum distance, is 1.

4.2.2 Approximate Nearest Neighbors

This subsection gives preliminaries dpproximate Nearest Neighbors (ANN)search.
Given a set of points, the ANN technique builds a data structure using these points that

4.2 Preliminaries 61

supports ef cient queries. Given any point in the given set and a distance upper Bpand
ANN query should either return another point that is approximately wistance from
this point, or return that there are no such points, formally de ned as follows.

De nition 4.2.1 (ANN Query [64]). Let Sbe a set of points andla distance function o8.
Given a new point, the query either returns a powtvith d(g;y) cRor reports that there

is no pointy®with d(q;y9 R

ANN technique is crucial to our scalable average-linkage design. When coupled with
the points embedded from clusters, it helps us nd candidates for the clusters to merge. The
construction of the data structure and the ANN queries show a trade-off between time and
computational complexity and nearest point search accuracy. As we allow the approximation
ratio, ¢, to be bigger, the construction and query time will also decline.

Locality Sensitive Hashing (LSH). LSH is the key building block used to construct ANN
queries for a given set of points. In our paper, LSH is directly applied to the embedded points
to help us nd pairs of clusters to merge.

Intuitively, LSH hashes points to values and nearby points are more likely to be hashed to
the same value. The space of points can then be partitioned according to the hashed values,
each partition namedlaucket Let X be a metric space with distance functibandU a
universe of buckets. We recall the formal de nition fror64]. Let Bg(q; r) denote the set of
points inSthat has distance at masfrom pointq2 S.

De nition 4.2.2 ((ry;rz2; p1; p2)-sensitiveness)A function familyH = fh: X! U gis said
to be(rq;ro; p1; p2)-sensitive ford(;) if for any x;y 2 X andh drawn uniformly at random
fromH : d(xy) ri =) Priy[h(y)=h(X¥] p1, andd(xy) > r2 =) Pry [h(y) =
h(x)] p2. We requirep; > p2 andry < rj.

A family can also be de ned by giving a random process which outputs a function
from H . LSH families have been constructed for distances induceg, loporms for all
p2 (0;2] [64]. A hash functioth2 H is constructed by the following procedure. ltet 0
be given. Sample a vectgr2 RY, where eacly; is an i.i.d. standard Gaussian, and a real
numberb uniformly from[0;r]. For a pointx 2 RY, its hash ish(x) = b(hg; xi + b)=rc. It's
known that this family of hash functions {&; cR p1; p2)-sensitive for anyc > 1, where
p1; p2 depend ort. These hash functions can be combined using well-known techniques
to amplify collision probabilities and increase accuracy. S for details. Here we
summarize this result.

62 Scaling Average-Linkage via Sparse Cluster Embeddings

Theorem 4.2.1(Theorem 1 in §4]). LetH be a(R;cR pz; p2)-sensitive family of hash
functions for distance functiod. Given a setS of n points there exists an algorithm
which constructs a data structuteby sampling multiple times frotd which supports
(R;c)-ANN queries. The time to constrdcand to answer a query fror is dominated
by O(n**") distance computations ar@(n") distance computations, respectively. Here

n1%P1 5 (0;1) depends on c. The bigger c is, the closéis toO.

r= In1=p,

4.3 Sparse Cluster Embeddings for Average Distance

In this section we present our embedding of clusters to points in Euclidean space such
that the distance between embedded points approximates the aveiggnce between
clusters. The embedding enables the algorithm to approximately calculate the average
distance between any two clusters@d) time regardless of their sizes. Later in the
discussion on algorithm design, we will show how to use it to facilitate the search for clusters
with small average distances. We focus on the case wher2 and show the following
theorem.

Theorem 4.3.1.Given a clusterinC of S RY, there is an embeddirig: C ! R%into ¢’
with distortiona. We have 8= d+ jCj,a = 5 3andf is(d+ 1)-sparse.

We give a formula which approximates the average-linkage between two clasiars
B. The formula is written in terms of the distance between the centroidsaofiB plus two
correction terms which only depend #&mandB, respectively. This will be used to de ne the
embedding. Then we prove Theorem 4.3.1 using the formula.

Squared Euclidean Distance:We rst examine a simpler case to motivate our ideas.
Suppose that dissimilarities are givex;y) = kx yk2. ThusAvg(A;B) = adxoAy2B '}’;\j—f’k;.
The goal is to express the average-linkage between clustBras the distance between
their centroids plus correction terms. SinagA) m(B)k? can potentially be small relative
to Avg(A;B) , we need the correction terms to capture the rouayilancein each cluster.
For a nite set of pointsX de ne Var(X) := &,ox w, resembling the de nition of

iX]
“variance” in statistics.

Proposition 4.3.2. For any clusterA and B, Avg(A;B) = km(A) m(B)k?+ Var(A) +
Var(B).

Before proving this Proposition we rst prove the following lemma.

Lemma 4.3.3.For any pointy and nite set of pointsX in Euclidean spaced oy kx ykZ=
iXj ky mX)k?+ jXj Var(X).

4.3 Sparse Cluster Embeddings for Average Distance 63

Proof. Rewriting and expanding the square Wi+ bk? = kak?+ kbk?+ 2ha; bi we have:

a kx yk?= d kx m(X)+ m(X) yk?
x2 X x2 X

= & kx mX)k®+ § kmX) yk?

x2 X X2 X

+ 4 2k mX);mX) i
x2 X

= i Xj Var(X)+ jXj & ky mX)k?
X2 X

where the last term on the second line evaluates to 0. O]

Proof of [Proposition 4.3.2] Applying Lemma 4.3.3 to the sé@pga xo a kX yk? twice we
have:

a dk« yk*= 3 JjA ky mAK+JA Var(A)

y2BX2A y2B

= jAjBj(km(A) m(B)k?+ Var(A)+ Var(B))

and dividing byjAj jBj yields the proposition. O
Euclidean Distance: Now we consider dissimilarities given by the Euclidean distance
between points. Recall thAlrg(A;B) = &,oay28 kaj—ﬁé']‘ We would like a decomposition
similar to Proposition 4.3.2 expressiAgg(A; B) as the distance between centroids and some
correction terms.

Let DeU(X) := &yxox kx jr)r((jx)k be the average deviation of from its centroid. It is
perhaps intuitive that(A;B) := km(A) m(B)k+ Dev(A)+ Dev(B) should suf ce based
on the results above. However, there are examples wi{édB) 6 Avg(A;B)°. Instead, we

show that the two are always within a constant factor of each other.

Lemma 4.3.4. For any two clusters A and B we hadeg(A;B) f(A;B) 5Avg(A;B).

We rst prove the following lemmas that better show the connection betweg(A; B)
andf(A;B).

Lemma 4.3.5. For any cluster XDeX) 2Rx(gm(X)).
Proof. By the de nition of De\(X) and the triangle inequalityDev(X) = ,%jéxzx kX

mX)k x5 éex (ke gm(X)k+ kgm(X) mX)K)
= Rx(gm(X)) + kgm(X) m(X)k.

3Consider the corners of a rectanglf: with wigtland height, letting A be the left side points ari8ithe
right side points. Then AV@A;B) = (w+ w2+ h?)=26 w+ h= f(A;B)

64 Scaling Average-Linkage via Sparse Cluster Embeddings

Now to complete the proof we claim th&agm(X) m(X)k Rx(gm(X)). Using

the de nition of m(X) and subadditivity we havekm(X) gm(X)k = &,ox %)

x &xex kX gmX)k = Rx(gm(X)). 0

Lemma 4.3.6. For any two clusters 8B, km(A) m(B)k Avg(A;B).

Proof. By de nition of centroid we have:

A = — 3
mA) m(B)= JAJS‘A o Y
! S A A 1 oaay
SE] wayzs INIBoas
1 o
= WS 438Ky
Aie 2, 8

Now applyingk k to both sides and then subadditivitylofk completes the proof. [
Lemma 4.3.7.For any two clusters A and B,ARgm(A)) Avg(A;B).

Proof. Sincegm(A) minimizesRa(y) for anyy 2 R, for all y 2 B we haveRa(gm(A))

Ra(y). Summing this inequality over all sugt2 B we haveBjRa(gmM(A)) ayosRaly) =
ayZBasz JA‘ D|V|d|ng both sides byBj yields the lemma. O

Proof of [Lemma 4.3.4] We start by proving the lower bound. By the triangle inequality, for
anyx2 Aandy2 Bwe havekx yk k x m(A)k+ km(A) m(B)k+ ky m(B)k. Summing
this inequality over alk 2 A and ally 2 B then dividing byjAj jBj yields Avg(A; B)
f(A;B). For the upper bound we have the following sequence of inequakitngs)
m(B)k+ Dev(A)+ Dev(B) Avg(A;B)+ 2Ra(gm(A))+ 2Rg(gm(B)) 5Avg(A;B).

The rst inequality follows from Lemmas 4.3.6 and 4.3.5, and the second inequality
follows from applying Lemma 4.3.7 to the last two terms. O

The lower bounddvg(A;B) f(A;B) is a simple application of the triangle inequality.
To show the upper bound we must rel@&A) andDev(B) to Avg(A' B). Recall that for
a clusterX, its geometric mediagm(X) minimizesRx(y) := JXJ axox Ky xk. The value
of Rx(y) is the average distance of pointsArto y. We show that for any two clustefs B,
bothRa(gm(A)) andRg(gm(B)) lower boundAvg(A; B). Then we show that for any cluster
X, DeX) 2Rx(gm(X)). Combining these two facts witkm(A) m(B)k Avg(A;B)
implies the upper bound.

Constructing the Embedding: We now de ne the embedding and prove Theorem 4.3.1.
Let C = fC1;Cy;:::;Cg be a clustering of a point s& RY. We de ne the embedding

4.3 Sparse Cluster Embeddings for Average Distance 65

f :C 1 R%ICIfor eachCi 2 C as follows.

f(C)= " B(mC)0s PeyCy :::::0) (4.1)

d+i'th coordinate

In other words we set the rad coordinates to be the centroid©f, thed + i'th coordinate

to beDeV(Cj) and all other coordinates to be 0. Observe that the embedding is oblivious,
meaning that computinfy(C;) only depends on the clust€r and none of the other clusters.
Given this embedding we have that the distance between the embedding of cuatzils

Cj, kf (Gi) f(Cjk,isequalto

q
P3 km(C) m(Cj)k2+ Dev(C;)2+ Dev(C;)2 (4.2)

To nish the proof, we use some easy to verify inequalities.

Proposition 4.3.8. For all a;b;c 2 R+, we have:(lzp 3)(a+ b+) P a’+ b?+ c?
a+b+c.

beddingf : C! R9*ICI de ned by (4.1). The distance between embedded clukfef6;)

f (Cj)k is given by (4.2). Combining this with the respective lower/upper bounds from Propo-
sition 4.3.8 and Lemma 4.3.4, we havd: (C) f (Cj)k f(Ci;Cj) Avg(C;;Cj) and

kf (C) f(Cjk p§f(Ci;Cj) 5 3Avg(Ci;Cj): Finally,f being(d+ 1)-sparse follows
directly from (4.1). O]

We note that§4] has shown that the LSH scheme is known to work for ggyorm
wherep 2 (0;2]. One can easily see that the following Proposition, similar to Proposition
4.3.8 holds:

Proposition 4.3.9.For alla;b;c2 R+, andp 1, -tr(a+b+c) (aP+bP+ cp)%
3P

a+ b+ c.

The main idea for the proof of Theorem 4.3.1 can be easily extended to work for general
“p-norm wherep 2 [1;¥], resulting in the following Corollary.

Corollary 4.3.9.1. Given a clusteringC of S RY, there exists a constaat 1 and a
mappingf : C ! R% such that for allA; B2 C,Avg(A;B) k f(A) f(B)k aAvg(AB).

In particular, we have 8= d+ jCjanda = 5 3t b,

66 Scaling Average-Linkage via Sparse Cluster Embeddings

4.4 Near Cluster Search

In the section we consider the key subproblem solved in average-linkage to showcase the
cluster embedding idea. At each step, average-linkage nds the pair of cluster that are the
closest. We abstract this to the followingar cluster searchproblem, an extension of
the ANN query to clusters instead of points. The goal is to nd an approximately nearest
cluster in a clusterin@ to a query cluste® with respect to the average distance metric. This
subproblem is of its own interest, because data scientists often seek to nd pairs of clusters
that are very similar.

The naive approach for nding the clust€r2 C minimizing Avg(Q;C) requireQ(djQj
aijCij) time. Our cluster embedding can be used to give an asymptotically faster but
approximate algorithm for this task, taki@d(jQj + &;jCij)) time.

Theorem 4.4.1.There exists a data structure supportiﬁ%ﬁ approximate near cluster
search queries in time @(jCj + jQj)). Construction takes time(@(jQj + &;jCij)) .

Proof. LetC%= C[f Qgand letf be the embedding given by Theorem 4.3.1@dt Start

by computingf (C;) for eachC; 2 C, taking timeO(d§;jCij). Note thatf is oblivious so

this step can be done without knowiQg The data structure stores the embedded points.
To answer a quer®, computef (Q) and then compute the distance frérfQ) to f () for
eachC; 2 C and returrC; with the smallest embedded distance. Sihdeas distortiorb 3

the approximation guarantee follows. Sirices (d+ 1)-sparse, answering the query takes
time O(djQj + djCj). O

Theorem 4.4.1 speeds up near cluster search for any cl@&®eormously, as is shown in
Section 4.7. Further, coupling the embedding with ANN techniques allows us to Quary
sublineartime, while only losing an additional constant factor in the approximation.

Using this, we can construct the point §8tonsisting of the embedded poititéC;) for
allG; 2 C. We apply the above to obtain a data structusaipporting ef cient approximate
near neighbor search queries in the embedded space. The sparse nature of the embedding
also implies that. can be computed very ef ciently in practice. When given qu@rye
computef (Q) and then apply the algorithm from Theorem 4.2.1 to process the query. We
get the following result.

Theorem 4.4.2.For any constané > 0, there exists a data structure which suppcﬁ‘t)sf’ac-
approximate near cluster search queries in tidx(jCj" + jQj)). Constructing the data
structure takes tim&(d(&;jCij+ jCj**")). Herer 2 (0;1) is a constant depending on c.

4.5 Fast Approximate Average-Linkage 67

4.5 Fast Approximate Average-Linkage

The main application of our cluster embedding is to get fast approximate algorithms for
average-linkage. In this section we give the main structure for our fast implementation of
average-linkage that highlights the key ideas. The idea is to embed the current set of clusters
into points and then partition the embedded points into buckets (sets) using LSH. The number
of buckets is not xed. We can use the hash family described in Section 4.4 for this.

4.5.1 A Sketch for ANN-based Average-Linkage

Before diving deeper into the full algorithm, we provide a sketch that can help readers
understand the key designs at an intuitive level. Say we want to merge all pairs of clusters
with average distance approximately The algorithm draws hash functidrrandomly from
H , whereH is the LSH family given in §4], and applies it td (A) for each clusteA2 C.
Let thei'th bucket beB; = fA2 C j h(A) = ig*. Suppose buckds; is small:jB;j O(n")
for somer 2 (0;1). We run vanilla average-linkage insi@gto the point where there is no
pair of clusters with average distance smaller t{ieh €)d. Here we crucially treat each
cluster in a buckeB; as a single point via the cluster embedding, which allows us to replace
computing the average-linkage between pairs of clusters with a distance computation in the
embedding. This takeS(dn?") time. Moreover, assuming all buckets are small, the cost
over all buckets i©(dn'*"). We call this the “local merging” step.

Once all buckets have completed their “local merging” step, the algorithm repeats the
above steps with the given value @ffor O(logn) iterations. Provably, no two clusters
will have average-linkage (1+ e)d with high probability. At this point the algorithm
recurses wittd (1+ e)d. The number of such iterations is bounded by the humbdtsof
considered between the minimum and maximum possible distances, wid¢log) by
our technical assumption. See Algorithm 2 for pseudocode. Given the above discussion, we
see that the running time should &dn'* "), near linear time for small constant

There are two unaddressed challenges. First, what should be done when there are buckets
Bi with jBjj > n". Second, maintaining the embedding can be expensive if done in a naive
manner. We brie y address these challenges here, but note that a variant of the above
procedure works in experimentation.

Challenge 1 - Large Buckets:In the worst case, it is possible that LSH can produce

buckets of size larger tharh, resulting in a poor running time for the local merges. Notably,
empirically most buckets have small sizes after LSH. For the few buckets whose sizes are

“We useh(A) as a shorthand fdi(f (A)) since we will always be implicitly working in the embedded space

68 Scaling Average-Linkage via Sparse Cluster Embeddings

Algorithm 2 Fast Approximate Average-Linkage Algorithm

1: FASTAVERAGELINKAGE(S a;e):
2. C ff xgjx2 Sg{Make leaf clusters}
3: for k= 1;2;:::;Q(logn) do

4: d (1+ek!?

5. Ciina 0 {Tracks clusters that won't get merged again for this valud]of

6: fort=1;2;:::;Q(logn) do

7. h random hash function fromd

8: Computeh(A) for eachA2 C

9 LetBi=fA2 Cjh(A) = ig

10: if jBjj O(n") for alli then

11: for eachB; do

12: Run vanilla average-linkage dg until no merges w/ average-linkage
a(l+e)d

13: end for

14: Update the embeddings

15: else

16: C;Ctinar ROBUSTMERGING(C;Csing;d;a;e)

17: end if

18: end for

190 C Cfjpa

20: end for

21: Return the hierarchical clustering found.

large, we use the “RobustMerging” procedure that utilizes the ANN search as mentioned in
Theorem 4.2.1. For any cluster, this technique only ch€tks) clusters that got hashed
into the same bucket and gives theoretical performance guarantees.

Challenge 2 - Updating the Embedding: If one wants to update the embedding after a
single merge, this requires computing the distance of each point to the new centroid. This
is potentially a complex and expensive operation we wish to avoid. To do so we carefully
make additional merges before updating the embedding and applying LSH again. This is
done to ensure that enough clusters have been involved in a merge so that the total cost due
to updating the embedding is small. In practice, we use reservoir sampling to reduce the cost
of updating the embedding by approximating it using a s€(@gn) samples maintained

during the merges.

4.5.2 Robust Merging

In this section we unveil the robust merging subroutine (“RobustMerging”) omitted in
Algorithm 2. We show that the robust merging procedure tackles the main challenges

4.5 Fast Approximate Average-Linkage 69

mentioned and is key to ensuring that the algorithm runs in near-linear time in the worst-case
and approximates avera%e-linkage.

In Algorithm 3,a = 5 3 s the distortion factor in Theorem 4.3.1. The goal of this
section is to show the following theorem.

Theorem 4.5.1.With high probability, Algorithm 2 along with Algorithm 3@(1)-approximate
for average-linkage and runs in tin@dn'*") for some constant 2 (0;1).

The following lemma will be quite useful in the analysis and will guide the development
of the merging procedure. The proof is easy and follows from a simple averaging argument.

Lemma4.5.2.For a clusterA, if Avg(A;B) d andAvg(A;C) d, thenAvg(A;B[C) d.

In other words this lemma states that if after some merge the minimum average distance
between clusters is at leabtwe are guaranteed that it will not fall belavduring any future
merges. Intuitively, we want to merge clusters an increbseer time. This lemma ensures
that we do not undo progress.

Recall that one of the main challenges discussed is that LSH may produce large buckets.
To handle this, we employ the Approximate Near Neighbor (ANN) search technique from
[64]. Recall De nition 4.2.1 and Theorem 4.2.1 from earlier in the paper. We will use these
tools in our analysis.

The robust merging procedure leveragRsc)-ANN queries in the following way. First,
we embed the clusters into points. By Theorem 4.3.1, this preserves the average-linkage up
to the constant distortion factar. We then build the data structure referenced above and use
it to query every cluster.

The robust merging procedure is given in Algorithm 3. This can be described as follows.
We say two clusters are “neighbors”, if querying one of them returns the other. For each
A2 C, letQ(A) denote the set of its neighbor clustersQIfA) = 0, with high probabilityA
has average distance of at leflst e)d from any other cluster. We remoyefrom C and
add it toCsing . Otherwise, if seQ(A) has valid clusters that are not yet merged with any
other cluster, we iteratively mergewith these clusters in any arbitrary order. However, if
setQ(A) is non-empty but all clusters are already merged with their other neighbors, we pick
any neighbor fronQ(A) and mergeA with the current cluster containing it.

We give intuition for why the algorithm is approximate and has good running time. The
formal proof is given in the next section.

70 Scaling Average-Linkage via Sparse Cluster Embeddings

Algorithm 3 Pseudocode for Robust Merging Procedure

1: ROBUSTMERGING(C; ;d;a;e)
2. L (a(1l+ e)d;c)-ANN data structure from Theorem 4.2.1 {Construct it for point set
ff (A)jA2 Cg}

3: for A2 C do

4. Q(A) 0{Will be set of discovered “neighbors” @}
5. end for

6. for A2 C do

7. B result of querying (A) in L

8: if Bis a clustetthen

o Q(B) Q(B)[f Ag,Q(A) Q(A)[f Bg

10: endif

11: end for

12: for A2 C such thaQ(A) = 0do

13: DropAfrom C and add it tdCjng . Deletef (A) from L. {Awon't be considered for
merging again at the curred}

14: end for

15: for A2 C such thaQ(A) is not emptydo

16: if Q(A) has clusters that are not yet merged with any other cltisésr

17: Merge all unmerged clusters @A) [f Agwith Ain any order
18: else

19: Let B be arbitrary cluster iiQ(A)

20: MergeA with the cluster containing

21: endif

22: end for

23: Remove all the invalid clusters fro@ and add all the new clusters in®
24: ReturnC; Csijnal

4.6 Algorithm Analysis: Approximation Ratio and Run-
ning Time

4.6.1 Running Time Analysis for Algorithm

To show that the algorithm is ef cient we need to show that in every round of robust merging
makes reasonable progress. In particular, we show that in the total number of clusters
remaining inC shrinks by a constant factor. For xed, every time robust merging is
executed, any cluster i@ is either put intdCsina Or merged with another cluster. Therefore,

jCj shrinks by at Ieas%. Thus for the same threshotl after Q(logn) rounds of robust
merging there will be no pairs ¢f; B) such thatAvg(A;B) (1+ e)d. This is formalized

in the next section.

4.6 Algorithm Analysis: Approximation Ratio and Running Time 71

First we give a lemma showing there exists an estimati@yB) Avg(A;B) update
formula which preserves the approximation ratio for 8%gB).

Lemma 4.6.1.Let f(A; B) be estimates such thavg(A;B) f(A;B) a Avg(A;B) for all
A;B2 C. Suppose we mergeA%2 C and setf(A[A®B)= W‘TAJ!A(I f(A:B)+ jAJ.JTA?Aqf(AO, B),
thenAvg(A[ASB) f(A[A°B) aAvg(A[A°B)forallB2 CnfA;A%.

Lemma 4.6.1 follows easily by an averaging argument using AygA® B) =
jAjAVg(A;j'i?j:jjﬁ%A"g(AqB). This implies that we can simulate vanilla average-linkage within
each bucket in Algorithm 2, using the update formula given in this lemma to simulate the
updates in average-linkage. Combining this with current average-linkage implementations,
we can approximately simulate the vanilla average linkage algorithm in bBcketime
é(jBijZ), until there are no pairs of clustefs;B) such thatf(A;B) a(1+ e)d. Thus,
there are no pairs A; B) such that AvgA;B) (1+ e)d.

We will now show the run time.

Theorem 4.6.2.Algorithm 2 has a run time dd(dn'*") for some constant 2 (0;1).

Proof. Letr = In(1=p1)=In(1=py) 2 (0;1), whereps; po are the probabilities for the LSH
family in [64]. Note that it is possible to takes; p, as constants. Since ti#) notation
hides factors 0O(log(n)), it suf ces to analyze the cost of the work done in the innermost
loop. This is because by de nition of the algorithm, the steps in the innermost loop are
repeated at mo€d(log?n) times. We rst show that trivially, the time spent on updating the
embeddind () is O(n). This comes from the fact that updating centroid taRé%) time
every merge, and there ame 1 merges in total. For deviation term, we khg?(n) rounds

of merging. During every round of merging, every point in the original cluSisrcalculated

in the deviation terms only once, thus givifi§n) time spent on updating. Thus we want

to bound the cost of running a vanilla algorithm on each bucket when all bucket sizes are
bounded byO(n") and the cost of running the robust merging procedure.

Suppose that we have buck&swith jBjj O(n") for all i. Note thatd;jBijj = jCj
since the buckets partition the current set of clusters Then by Lemma 4.6.1 running a vanilla
average-linkage algorithm on each bucket costs at @¢&;j2) per bucket. Thus the overall
run time cost i<0(3;jBij?) = O(n' &;jBjj) = O(n jCj)= O(n**") sincejCj n.

Now consider the cost of running the robust merging procedure. By Theorems 4.3.1
and 4.2.1 the data structutecan be constructed in tir@(jCj**") = O(n'*"). Again by
Theorem 4.2.1, querying each cluster takes €| ") = O(n**") distance computa-
tions in total. Finally, the merging step takes ti@g§Cj) = O(n), yielding an overall cost of
O(n* ") for the robust merging procedure. N

72 Scaling Average-Linkage via Sparse Cluster Embeddings

4.6.2 Approximation and Correctness

Now we move to analyzing the correctness of our algorithm. This encompasses two different
claims, one concerning how well the algorithm approximates average-linkage and another
showing that the algorithm always produces a valid hierarchical clustering tree. The second
claim is important since it is not immediately obvious from the de nition of Algorithm 2.

In particular we need to show that the algorithm will perform enough merges and does not
terminate before a tree is completed. The following theorems formalize these claims.

Theorem 4.6.3.Assuming the minimum pairwise distance to be lower-bounddd Algo-
rithm 2 is (1)-approximate for average-linkage with high probability.

Theorem 4.6.4.With high probability, Algorithm 2 returns a valid hierarchical clustering
tree upon termination.

Theorem 4.6.3 establishes the fact that Algorithm 2 i©é1) -approximation for average-
linkage. Note that Lemma 4.6.7 only establishes this for the robust merging procedure, so
to complete this analysis we need to look at Algorithm 2, which uses the robust merging
procedure. The proof of Theorem 4.6.4 is also tied to the proof of Theorem 4.6.3, so we will
do the analysis for both here.

To prove the above theorems we make use of the following key lemmas. These guarantee
that for each threshold valuw® by the end of thé(logn) rounds of merging, there are
no good pairs left to merge for the current threshold, and every merge we do has average
distance close t¢1+ e)d.

Lemma 4.6.5. For thresholdd after merging with high probability, there are no pair of
clusters with distance at mogt + e)d left.

Lemma 4.6.6. For a threshold valued, every merge done by Algorithm 2 has average
distance at mostca (1+ e)d.

Before proving Lemmas 4.6.5 and 4.6.6, we rst show that they directly give us Theo-
rems 4.6.3 and 4.6.4. To simplify the language in our arguments, we & -+fe)d-good
clusters as follows.

De nition 4.6.1. During any stage of Algorithm 2, a cluster is callgt+ e)d-good, if there
exists one cluster in the current clustering with average distance a{ ino&)d. We say a
pairis(1+ e)d-good if the average distance is at mfkt e)d.

Notice that with the de nition of(1+ e)d-goodness, Lemma 4.6.5 is equivalent to
claiming that by the end of merging there are(ie- €)d-good points left, or ng1l+ e)d-
good pairs left. We are now ready to prove the theorems.

4.6 Algorithm Analysis: Approximation Ratio and Running Time 73

Proof of [Theorem 4.6.3 and 4.6.4] For Theorem 4.6.3, given any threshaétke any merge
(A;B)! A[Bdoneinany round fod, by Lemma 4.6.6 we havavg(A;B) 4ca(1+ e)d.
Howevermings ., c AV9(S1;S) d by Lemma 4.6.5, since all LSH rounds for threshold
valued=(1+ e) are over. Therefore, the approximation ratio is at ndcat(1+ e) for all
merges.

For Theorem 4.6.4, since with high probability it eliminateg(ah e)d-good points for
thresholdd, and withinO(logn) number of thresholds we have investigated all the possible
average-distance values since it must be at mas¢;.;; sD(i; j) and therefore merged all
the pairs. O

Now we prove Lemmas 4.6.5 and 4.6.6.
Before proving Lemma 4.6.6 we rst its simplied version. That is, the quality of every
merge is high in the Robust Merging Algorithm 3.

Lemma 4.6.7.Every clusteiA 2 C such thatQ(A) is non-empty is merged with some other
clusters, and every merge done by Algorithm 3 has average distance adca¢$t- e)d.

Proof. In any iteration of robust merging, a clus#rif not merged with other clusters yet,
is merged with its unmerged neighborsA), or it gets added to a set of clusters which are
already merged. We call the rst type of cluster “core” clusters.

Pick any core clusteh in C at the beginning of Algorithm 3. Any other cluster@y if
not put intoCsinal, Must be merged with one such cluster. We show that by the end of robust
merging, for every clusteB that is merged with corg, Avg(A;B) 2ca(1+ e)d.

Pick any clusteB that is in the same cluster with at the end of Algorithm 3. By
Theorem 4.3.1, we havavg(A;B) k f (A) f (B)k. If B2 Q(A), we havekf (A) f (B)k
ca(l+ e)d sinceB is returned by doinga (1+ e)d;c)-NN query onA. Otherwise, it must
be the case that some other clug€eét Q(B) is in the same cluster &s If C 2 Q(A), when
robust merging comes 1o, it would have merge@ with B sinceB 2 Q(C) andB hasn't
been merged with any cluster yet, contradicting the assumptiomBtisamerged withA.
ThereforeC 2 Q(A), andAvg(A;B) k f (A) f(B)k k f(A) f(C)k+kf (C) f(B)k
2ca (1+ e)d. Now by triangle inequality any two clusters marked withas average-linkage
atmost4a(1+ e)d. O

The proof of Lemma 4.6.6 is a simple application of Lemma 4.6.7 combined with the fact
that the algorithm does average-linkage on the embedded clusters until the minimum average
distance reaches the threshalflL+ e)d. So in both robust merging and average-linkage
merging, the pairs we merge are alwdygs (1+ e€)d-good. The rest of this section will be
devoted to proving Lemma 4.6.5.

74 Scaling Average-Linkage via Sparse Cluster Embeddings

In each big WHILE loop of LSH, Algorithm 2 can go to vanilla average-linkage if all
buckets are small, and to subroutiReBUSTMERGING if we have at least one big bucket.
For any round of LSH, we have the following lemma.

Lemma 4.6.8. Every round of LSH that ends up with doing average-linkage within each
bucket has at least constant probabiliy of reducing the number @fL + €)d-good pairs by
aconstantof}, and p 5P1.

Proof. Let's focus on one round of LSH, suppose that before LSH we hNamamber of

(1+ e)d-good pairs. Regardless of whether average-linkage or RobustMerging takes place
after LSH, we usé, to denote the event, where at Iez%ltxl (1+ e)d-good pairs collide.

Let pcolige b€ the probability of this occurring. L&t.qjige denote the number ¢fL + e)d-

good pairs that collide during the LSH. Since every good pair has probability appgast
colliding, we haveE[Ncoiiige] Pp1 N by linearity of expectation. So

P1 N E[Ncolide] (1 Peollide) %N+ Pcollide N

%)N + PeollideN
This yieldspcoliide %pl. Note that the everiy happens with probability at leaptoiide »
independent of the location of the points and the merges we have done before. [

We have established the fact that every single round of LSH has some constant probability
po of getting a constant portion of good pairs to collide. Here we quote a version of Chernoff's
bound:

Bernoulli RV's withPi{X; = 1] = p;. LetX = &; X andm= §; E[X]. Then for alld 2 (0;1),
2
PiX< (1 dyml exp -5 :

By performingQ(% log(n)) rounds of LSH and using Theorem 4.6.9, with high proba-
bility Eg happen®(log(n)) times during these rounds. We focus only on the LSH rounds
whereEg happens. During these rounds, Algorithm 2 either goes to average-linkage or robust
merging. At least one of them will be repea®og(n)) times.

For average-linkage, we prove the following lemma. Intuitively, it guarantees that the
total number of good pairs will go down by a constant factor.

Lemma 4.6.10.Suppose in th8" round of LSH everfEy happens. Lel: denote the number
of (1+ e)d-good pairs before andl 1 denote the number ¢1+ e)d-good pairs after. If
Algorithm 2 goes to average-linkage, thisn 1 1—90Nt. If it goes to robust merging, then

N1 N

4.7 Experiments 75

Blog Shuttle Covertype Higgs (L) Susy (L)

k Embed Base Embed Base Embed Base Embed Base Embed Base
128(0.17 0.003 25.1 28.2|0.09 0.002 34.2 44.7| 0.11 0.001 32.59.1{0.11 0.001 22.35.4|/0.10 0.001 245 10.5
256 |0.17 0.002 9.59.7 [0.09 0.001 18.6 17.8| 0.11 0.002 10.54.5{0.11 0.001 11.52.2|/0.10 0.002 11.2 4.2
512 |0.17 0.005 14.233.4/0.09 0.002 6.3 6.9 | 0.12 0.004 6.3 2.4|0.11 0.002 4.81.9(0.10 0.002 4.9 3.3
1024| 0.18 0.01 3.2 3.4 |0.09 0.002 2.01.8 [0.12 0.002 2.91.2|0.12 0.002 3.30.7|0.11 0.002 2.9 1.0
2048(0.18 0.02 1.8 2.8 [0.11 0.012 0.790.5| 0.13 0.02 1.30.6|0.13 0.01 1.4 0.5|0.11 0.002 1.00.6
4096/ 0.19 0.003 0.820.3 | 0.12 0.01 0.450.21| 0.14 0.003 0.62 0.3| 0.15 0.01 0.53 0.2/ 0.13 0.002 0.52 0.4

Table 4.1 Run time results for Near Cluster Search in seconds. We report the resultsas
wheremis the average run time at each valukainds is the standard deviation. Note that

our technique consistently has a small run time with minuscule variance compared to the
highly variable baseline.

Proof. After average-linkage, since we have merged the clusters until the minimum average
distance forf () hitsa(1+ e)d, the true minimum average distance is more tfeh e)d.
So there remains nd + e)d-good pairs in all the buckets.

If we can somehow prove when we merge two clusters in the same bucket, the num-
ber of (1+ e)d-good pairs across the buckets does not go up, we can safely conclude
thatNi+1 Nt Neollide 1—90Nt. Suppose average-linkage chooses to merge cluaters
andB. For any clusteC in other buckets, ifAvg(A[B;C) (1+ e)d, we must have
minf Avg(A;C); Avg(B;C)g (1+ e)d, so at least one of the two paii8;C) and(B;C) are
good. Now we mergd andB and only one good pair is produced, therefore the number of
(1+ e)d-good pairs across the buckets will not increase if we do average-linkage within each
bucket. For the same reason, if Algorithm 2 does robust merging, we alsdNhave N;.

Thus Lemma 4.6.10 is proved. O

Recall the following lemma from previous subsection:

Lemma 4.6.11.Fix any thresholdl and letC! be the seC in Algorithm 3 aftert iterations.
We havgC'™?lj ijctj.

Intuitively, in every LSH such that at Iea% portion of (1+ e)d-good pairs collide,
either buckets are small, in which case the numbéf efe)d-good pairs will shrink by a
constant factor with constant probabiliyoiige, OF there is at least one bucket that's big, in

which case the number of candidates bt e)d-good clusters will shrink by a constant
factor with high probability. Putting Lemma 4.6.10 and 4.6.11 gives us Lemma 4.6.5.

4.7 EXperiments

We evaluate the performance of the cluster embedding for two applications: near cluster
search and average-linkage hierarchical clustering. The goal is to establish the following:
 Our algorithms which use cluster embeddings are scalable for both applications. Their
running time drastically outperforms standard implementations on large data sets.

76 Scaling Average-Linkage via Sparse Cluster Embeddings

Approx. Embeddin . Blog Blog Shuttle Shuttle
Dataset | "\t atio Algorithm | 35768 52397 32768 43500
Shuttle | 1.003 1.072 scipy 221.76 73243 12527 307.43
Blog 1.009 1.053 sklearn | 247.88 754.16 127.55 305.45
Covertype| 1.022 1.059 fastcluster | 245.49 689.19 96.43 228.02
Susy (L) | 1.019 1.032 Our method| 129.88 205.70 48.98 78.76
Higgs (L) | 1.012 1.016 Table 4.3 Run time results for average-linkage

Table 4.2 Approximation Results for clustering. Each column is labeled by the data
Cluster Search. Note that these ratioset and input size considered. Our algorithm con-
tend to be very close to 1, indicating thesistently sees a speed-up at moderate input sizes
accuracy of our algorithm. over all baselines tested.

» The running time of our average linkage implementation is only slightly super-linear
in the input size.

* Distances in the embedding closely approximate the average distance for all data sets.

 Our algorithm for near cluster search returns a cluster with approximately the smallest
average distance. In fact, it returns the exact best cluster at least 90% of the time.

» Our average-linkage hierarchical clustering algorithm closely approximates the stan-
dard average-linkage algorithm. The vast majority of the merges made by the algorithm
have average distances below a fadtérof the minimum average distance between
clusters.

» The objective value of trees produced by our new average-linkage algorithm has
negligible loss compared to baseline algorithms.

Experiment Speci cations: We implemented our algorithms in Python and used 3 baseline
implementations of average linkage available in the SciPy, Scikit-Learn, and Fastclustering
libraries. Experiments utilizedjoogle Cloud Platforjvirtual machines (VMs), speci cally
nl-highmem-4 type VMs, each with 4 virtual CPUs and 26 GB of memory.

We further compare to the work o8]l For this comparison, we used thgnorm
distance, a requirement of their algorithm. Our method and baselines were superior to the
implementation of 3] in all experiments. While their algorithm has near linear run time like
ours, their method runs in tin@(Zn'* " log>n). The 5 log®n factor makes this algorithm
slow in practice.

Datasets:We use datasets from the UCI ML repositoiyf] : Shuttle, Blog, Covertype,

Susy, and Higgs. Number of dimensions range f®tm 281 Datasets are listed in Table 4.4.
Some datasets contained extra features which are a function of the other features. These were
preprocessed to create two datasets: “Large” (L) with all features and "Small" (S) without the
extra features. If the dataset contained a class column for supervised learning, that column
was removed. Euclidean distance was used as the dissimilarity between datapoints.

4.7 Experiments 77

Dataset Numper Number Pre-
of Points of Features processed?

Shuttle 43500 8 N

Blog 600021 281 N

Covertype | 581012 54 Y

Susy (L/S) | 5000000 18/8 Y

Higgs (L/S) | 11000000 28/21 Y

Table 4.4 Data sets tested

Implementation Details: For near cluster search, we implemented the algorithm based on
Theorem 4.4.1. Our implementation of average-linkage is similar to Algorithm 2 but include
a few minor changes for practical ef ciency.

Merging procedure for large bucketsn practice, if the partition induced by a round of LSH
has a large bucket with more thgrﬁ points, we split it into several small buckets of size at
mostp n. Then we run average linkage within each small bucket.

Reservoir sampling to approximate deviation terme: estimate the deviatidDev(A) term

in the embedding (A) by sampling a small set of points uniformly from the points in this
cluster: ifx is a uniformly random point frond, thenE[kx mM(A)k] = DeV(A). A set of
Q(logn) samples is maintained for every cluster, and updated ussegvoir samplingvhen
merging two clusters. This makes it easy maintain estimates of the deviation term.

Covertype Covertype Higgs (L) Higgs (L) Higgs (S) Susy (L) Susy (L) Susy (S)
65536 262144 65536 262144 65536 65536 262144 65536
fastcluster| 584.06 - 667.10 - 673.86 649.74 - 610.90
our method 465.15 3220.69 233.80 1684.17 230.89 112.87 799.91 63.82

Table 4.5 Running time results in seconds for average-linkage clustering. Columns indicate
data set and input size considered. Missing entries indicate a failure due to a memory error
on this input size. All other baseline algorithms fail on these large sizes.

Algorithm

Near cluster search. To test our near cluster search algorithm we considered the following
setup. First, for each dataset we constructed a clustering using a subsample of 59k Points
get a collection of clusters and a query, we ras (1)-means and took one of the clusters to

be the query cluste® and the remaining clusters to be the clusterir@. For our algorithm

we measured running time of constructing the embedding plus answering the query. This is
compared with the running time of the baseline method which answers a query by computing
the average distance Qfto each cluster. We compared the quality of the cluster returned by

5The Shuttle dataset was used in its entirety as it has less than 50k points

78 Scaling Average-Linkage via Sparse Cluster Embeddings

Data Set | Average 95-percentile Max
Shuttle 1.079 1.268 1.894
Blog 1.070 1.238 2.515
Covertype| 1.081 1.330 3.535
Susy (L) | 1.143 1.481 2.698
Susy (S) | 1.132 1.444 2.465
Higgs (L) | 1.194 1.652 8.260
Higgs (S) | 1.188 1.632 9.859

Table 4.6 Embedding ratio stats, wibeV) approximated with reservoir sampling, at
sample size 16384

Data Sizes ‘ 64 128 256 512 1024 2048 4096 8192 16384 32768 43500
Shuttle 99.79 99.61 99.78 99.67 99.63 99.76 99.81 99.79 99.62 99.67 99.79

Blog 92.74 95.72 95.84 96.96 97.88 98.32 99.19 99.28 99.59 99.74 /
Covertype | 89.67 89.95 92.58 94.52 95.56 96.72 97.65 98.63 99.48 99.57 /
Susy (L) 98.98 98.92 99.26 99.11 98.46 98.47 98.56 98.56 98.32 98.08 /
Susy (S) 98.81 99.23 99.26 98.80 99.00 98.65 98.69 98.41 98.56 98.41 /
Higgs (L) 98.61 98.36 98.32 97.67 97.69 97.78 97.65 97.75 97.21 97.37 /
Higgs (S) 98.21 97.99 98.18 98.04 98.00 97.91 97.57 97.56 97.73 97.48 /

Table 4.7 Mean objective approximation ratio of average-linkage, in percentage

our algorithm to the cluster returned by the baseline algorithm. Finally, we compared the
embedded distance of the returned cluster to the true average distance. The p&araster
ranged in powers of 2 from 128 to 4096, and 10 trials were done for each vatue of

The running times of cluster search are in Table 4.1. Our algorithm utilizing the embed-
ding outperforms the baseline method in both average run time and variance. The run time of
the naive method varies drastically across different instances, being quadratically dependent
on the size of the query cluster and the number of points. Our method has very stable run
times, consistent with the theoretical justi cation, as the run time only depends linearly on
the size of the query cluster and the number of given clusters.

We display the accuracy of our near cluster search algorithm in Table 4.2. AfgyaX.
ratio refers to the ratio of the average-linkage distance of the returned cluster for each query
to that of the actual closest clustétmbedding ratids the ratio, for the returned cluster,
of its distance from the query cluster in the embedding compared to their actual average
distance. We report theorstsuch ratio encountered in all instances we tested. Our method
has an error rate of about 2% for all data sets, and we observe less than 10% difference in the
embedded distances. Near cluster search with the embedding yields very accurate results,
much better than the theoretical bounds.

Average-linkage hierarchical clustering. Running time wise, our average-linkage algo-
rithm is faster than all the baseline algorithms on large datasets. See Tables 4.3 and 4.5 for

4.7 Experiments 79

details. All baseline algorithms also begin to fail once sizes reach 32k to 64k points due to
memory requirements. Recall that they reqiM@?) memory for memoization, whereas we
need slightly super-linear memory.

Figure 4.1 compares the growth rate of running time versus input size for our implemen-
tation and the three baselines. Both running time and input size are plotted on a logarithmic
scale. Notice that any polynomial functigne cX' becomes a linear function on the log-log
plot, thus theslopeof a curve equals the exponant Our algorithm has a slope that is close
to 1, showing it to have near linear running time. The three baselines share a similar growth
rate. The curve “FastCluster Regression Model” is a linear regression tted to the running
times of FastCluster, the fastest of the baselines. We report the tted slope to b2 near
showing all three baselines to have quadratic running time. Figure 4.1 focused on Susy (L)
but the results are similar for all datasets.

Fig. 4.1 Comparison of how running time grows with input size, both axis in log scale, on
data set Susy(L)

The embedding gives very accurate estimates of the average distance between clusters.
See Table 4.8 for detailed statistics on the embedding ratio. Further, Table 4.6 shows
negligible loss in using sampling to approximate the deviation term in the cluster embedding
(4.1).

Closeness ratioto test accuracy, in each step of the algorithm, we measure how well
the merge our algorithm makes approximate the current minimum average-linkage. The
approximation ratio is the ratio of the average distance of the chosen pair of clusters to the
minimum average distance. To measure this, we nd the minimum average distanody
at the start of each round of LSH. Then, for each mergk andB in this round we compute
Avg(A; B)=d , giving anupper boundn the approximation ratio, named the closeness ratio.

80 Scaling Average-Linkage via Sparse Cluster Embeddings

o5h 95h
Dataset | Mean . Max Dataset | Mean . Max
percentile percentile

Shuttle | 1.008 1.031 1.090 Shuttle | 1.13 1.33 1.58

Blog 1.008 1.032 1.123 Blog 1.30 1.85 4.12

Covertype| 1.008 1.032 1.101 Covertype| 1.56 2.19 3.65

Susy (L) | 1.005 1.019 1.088 Susy (L) | 1.28 1.61 2.02

Susy (S) | 1.006 1.020 1.075 Susy (S) | 1.25 1.52 1.87

Higgs (L) | 1.003 1.012 1.058 Higgs (L) | 1.33 1.65 2.01

Higgs (S) | 1.003 1.012 1.077 Higgs (S) | 1.34 1.66 1.99
Table 4.8 Embedding ratio stats using Table 4.9 Closeness ratio stats, size

true De\) term at size 16384 1024

Table 4.9 includes more detailed statistics on all subsamples 0182z The merges
picked by our algorithm are close to the minimum.

Finally, see Table 4.7. We observe a negligible loss in overall tree quality compared to
vanilla average-linkage.

Comparing with aother ANN-based baseline. We compare our implementation and

the standard implementation of average-linkage on the objectiv&]n Recall that the
algorithm has strong theoretical guarantees, has similar designs to our algorithm but utilizes
the original ANN schema more. We show that our implementation is way more ef cient.

Input Size ‘ 64 128 256 512 1024 2048 4096 8192
Shuttle 41.45 102.75 229.83 634.35 2897.20 7404.18 18432.55 46840.01
Blog 2140.38 6030.19 16089.31 52891.13 - - - -
Covertype 407.44 1204.50 3369.60 13730.49 47937.79 161861.26 -
Higgs (S) 37.77 80.92 189.81 511.43 2936.55 8001.01 21468.35
Susy (S) 6.48 13.84 31.85 95.76 374.26 977.79 2896.95 8565.05

Table 4.10 Average running time in seconds for algorithm du@jtoA blank entry indicates
that the algorithm crashed due to running out of memory at this input size.

We give our results for the algorithm iB][in Table 4.10. We present the average running
time across ve sampled instances at each input size. Note that these times are signi cantly
worse than our algorithm as shown in Section 4.7. Moreover, this algorithm was unable to
scale to large input sizes over100k points as our algorithm did. Also observe that the
performance of this method signi cantly degrades on higher dimensional data sets such as
Blog and Covertype, which is due to the signi cant increase in the dimension the algorithm
carries out.

4.8 Conclusions and Future Work 81

4.8 Conclusions and Future Work

This paper introduces a sparse cluster embedding that approximately preserves the average
distance between clusters. The embedding can be computed in linear time and, after the
embedding, pairwise average cluster distances can be compudéd)itime.

The embedding enables a sub-quadratic average-linkage algorithm. In experiments, the
algorithm scales better than current popular implementations of average-linkage.

An interesting direction for future work is to explore cluster embeddings further and
determine whether they can be leveraged in other data mining tasks.

Chapter 5

Relational Algorithms For K-Means
Clustering

5.1 Introduction

Kaggle surveysd] show that the majority of learning tasks faced by data scientists involve
relational data Conventional formats usually represent data with multi-dimensional points
where each dimension corresponds to a feature of the data. In contelatj@al database

The columns in each table are a subset of featuard the rows are data records for these
features. The underlying data is represented byl#sign matrixJ= Tyro @ Ty, where
each row inJ can be interpreted as a data point. Herejthe (o) is a binary operator on
two tablesT; andT;j. The result of the join is the set of all possible concatenations of two
rows fromT; andTj such that they are equal in their common columns/featurds atidT;
have no common columns their join is the cross product of all rows. See Table 5.1 for an
example of join operation on two tables.

Almost all learning tasks are designed for data in matrix format. The current standard
practice for a data scientist is the following.

Standard Practice:

1. Extract the data points from the relational database by taking the join of all tables
to ndthe design matrixJ= Ty T,

1in relational database context the columns are also referredatrifmitesbut here we call them features
per the tradition of broader communities.

84 Relational Algorithms For K-Means Clustering

T T Tim T
f1| f2 fo | f3 fi | f2 | f3
11 1|1 111
21 12 1112
3|2 2|3 211|1
4| 3 5| 4 2112
5| 4 5|5 3123

Table 5.1 A join of table§; andT,. Each ha® rows and2 features, sharindp. The join
has all features from both tables. The rows with= x in the join is the cross product of
all rows with f, = x from Ty andT,. For example, forf, = 1, the four rows inTyo T, has
(f1; f3) valuesf (1;1);(1;2);(2;1);(2;2)g, this is the cross product df 2 f 1;2g from Ty
andfz 2f 1;2g from To.

2. Then interpret each row dfas a point in a Euclidean space and the columns as
the dimensions, corresponding to the features of data.

3. Import this design matrid into a standard algorithm.

A relational database is a highly compact data representation format. The dizarof
be exponentially larger than the input size of the relational datal&keHxtractingd makes
the standard practice inef cient. Theoretically, there is a potential for exponential speed-up
by running algorithmglirectly on the tables in relational data. We call such algorithms
relational algorithms if their running time is polynomial in the size of tables when the
database iacyclic Acyclic databases will be de ned shortly. This leads to the following
exciting algorithmic question.

The Relational Algorithm Question:

A. Which standard algorithms can be implemented as relational algorithms?

(2]

B. For standard algorithms that amet implementable by relational algorithms, i
there an alternative ef cient relational algorithm that has similar performance?

This question has recently been of interest to the community. However, few algorithmic
techniques are known. Moreover, we do not have a good understanding of which problems
can be solved on relational data and which cannot. Relational algorithm design has a
interesting combinatorial structure that requires a deeper understanding.

We design a relational algorithm f&¥means. It has a polynomial time complexity for
acyclicrelational databases. The relational database is acyclic if there exists a tree with the
following properties. There is exactly one node in the tree for each table. Moreover, for any
feature (i.e. columny, letV(f) be the set of nodes whose corresponding tables contain

5.1 Introduction 85

featuref. The subgraph induced &1 f) must be a connected component. Acyclicity can
be easily checked, as the tree can be found in polynomial time if it exists [136].

Luckily, most of the natural database schema are acyclic or nearly acyclic. Answering
seemingly simple questions on general (cyclic) databases, such as if the join is empty or not is
NP-Hard. For general databases, ef ciency is measured in terms &&itteonal hypertree
width of the database (denoted by “fhtw’)This measures how close the database structure
is to being acyclic. This parameteridor acyclic databases and larger as the database is
farther from being acyclic.

State-of-the-art algorithms for queries as simple as counting the number of rows in the
design matrix have linear dependencyrdi" wheren is themaximurmumber of rows in all
input tables §]. Running in time linear im™Y s the goal, as fundamental barriers need to
be broken to be faster. Notice that this is polynomial time when fhtw is a xed constant (i.e.
nearly acyclic). Our algorithm has linear dependency®¥, matching the state-of-the-art.

Relational algorithm for k-means. k-means is perhaps the most widely used data mining
algorithm (e.gk-means is one of the few models in Google's BigQuery ML packagg)i
The input to th&k-means problem consists of a collecti®of points in a Euclidean space

objective is to choose the centers to minimize the aggregate squared distance from each
original point to its nearest center.

Recall extracting all data points could take time exponential in the size of a relational
database. Thus, the problem is to nd the cluster centers without fully realizing all of the
data points the relational data represents.

[60] was the rst chapter to give a non-triviskmeans algorithm that works on relational
inputs. The chapter gives &(1)-approximation. The algorithm's running time has super-
linear dependency ok when the tables are acyclic and thus is not polynomial. Hése
the number of cluster centers adds the dimension (a.k.a number of features) of the points.
This is equivalently the number of distinct columns in the relational database. For a small
number of dimensions, this algorithm is a large improvement over the standard practice and
they showed the algorithm gives up to 350x speed up on real data versus performing the
query to extract the data points (not even including the time to cluster the output points).

Several questions remain. Is there a relational algorithrk-foeans? What algorithmic
technigues can we use as building blocks to design relational algorithms? Moreover, how
can we show some problems are hard to solve using a relational algorithm?

2See Appendix A.2 for a formal de nition.

86 Relational Algorithms For K-Means Clustering

Results. The main result of the chapter is the following.

Theorem 5.1.1.Given an acyclic relational database with tabl€s To;::: T, where the
design matrixJ hasN rows andd columns. Leh be the maximum number of rows in any
table. Then there is a randomized algorithm running in time polynomid) mandk that
computes an (1) approximate k-means clustering solution with high probability.

In Appendix A.2, we discuss the algorithm's time complexity for cyclic databases.

Challenges. To illustrate the challenges for nding such an algorithm as described in the
prior theorem, even when the database is acyclic, consider the following theorem.

Theorem 5.1.2.Given an acyclic relational database with tabl&€s To;::: Ty, where the

points inJ that are closest ta; for i 2 [K]. It is #P-Hard to computgJ;j for k 2 and
NP-Hard to approximatel;j to any factor for k 3.

The full proof is postponed until Section 5.2.1. We show this by reduciNg-ddard
problem to the problem of determiningJfis empty or not. Counting points closest to a
center is a fundamental building block in almostlkatheans algorithms. Moreover, we show
even performing one iteration of the classic Lloyd's algorithmRsHard.

Theorem 5.1.3.Given an acyclic join, and two centers, it#®-hard to compute the center
of mass for the points assigned to each center.

Together these two theorems necessitates the design of new techniques to address the
main theorem, shows that seemingly trivial algorithms are dif cult relationally, and suggests
computing a coreset is the right approach for the problem as it is dif cult to cluster the data
directly.

Overview of techniques. We rst compute acoresetof all points inJ. That is, a collection

of points with weights such that if we run &(1) approximation algorithm on this weighted
set, we will get aO(1) approximate solution for all of. To do so, we sample points
according to the principle ik-means++ algorithm and assign weights to the points sampled.
The number of points chosen will lig(klogN). Any O(1)-approximate weightek-means
algorithm can be used on the coreset to give Theorem 5.1.1.

k-means++: k-means++ is a well-knowk-means algorithmZ2, 10]. The algorithm it-
eratively chooses centets; Cp;:::. The rst centerc; is picked uniformly fromJ. Given

5.1 Introduction 87

thatcy;:::;¢ 1 are picked, a poink is picked asc; with probability P(x) = @ where

L(¥) = minji y(X ¢j g) andY = §,,5L(X). Here[i 1] denoted 1;2;:::;i 1g.

Say we sampl€(klogN) centers according to this distribution, which we call e
means++ distribution. It was shown in 10] that if we cluster the points by assigning them
to their closest centers, the total squared distance between points and their cluster centers is
at mostO(1) times the optimak-means cost with high probability. Note that this is not a
feasiblek-means solution because more tlkazenters are used. However, leveraging this,
the work showed that we can construct a coreset by weighting these centers according to the
number of points in their corresponding clusters.

We seek to mimic this approach with a relational algorithm. Let's focus on one iteration

tion. Consider the assignment of every point to its closest centgrir; ¢ 1. Notice that
thek-means++ probability is determined by this assignment. Indeed, the probability of a point
being sampled is the cost of assigning this point to its closest centepf; 17 X C;j ;)
normalized byY. Y is the summation of this cost over all points.

The relational format makes this distribution dif cult to compute without the design
matrix J. It is hard to ef ciently characterize which points are closest to which centers. The
assignmenpartitionsthe data points according to their closest centers, where each partition
may not be easily represented by a compact relational database @nlike

A Relational k-means++ Implementation: Our approach will sample every point according
to thek-means++ distribution without computing this distribution directly. Instead, we use
rejection sampling [39], which allows one to sample from a “hard” distributi®using
an “easy” distributiorQ. Rejection sampling works by sampling fragh rst, then reject
the sample with another probability used to bridge the gap bet®eerP. The process
is repeated until a sample is accepted. In our setkrigthek-means++ distribution, and
we need to nd aQ which could be sampled from ef ciently with a relational algorithm
(without computingd). Rejection sampling theory shows that for the sampling to be ef cient,
Q should be close t® point-wise to avoid high rejection frequency. In the end, we will
perfectly simulatéhe k-means++ algorithm.

We now describe the intuition for designing sucRaRecall thatP is determined by
the assignment of points to their closest centers. We will approximate this assignment up
to a factor ofO(i2d) when sampling thé" centerci, whered is the number of columns in
J. Intuitively, the approximate assignment makes things easier since for any center we can
easily nd the points assigned to it using an ef cient relational algorithm. T@es found
by normalizing the squared distance between each point and its assigned center.

88 Relational Algorithms For K-Means Clustering

The approximate assignment is designed as follows. Considerdmaensional Eu-
clidean space where the data pointgliare located. The algorithm divides space into a
laminar collection ofhyper-rectangles (i.e.,fx2 R9:v; x; wj;j= 1;:::;dg, herex;
is the value for featurd;). We assign each hyper-rectangle to a center. A point assigns itself
to the center that corresponds to #mallesthyper-rectangle containing the point.

The key property of hyper-rectangles that bene ts our relational algorithm is: we can
ef ciently represent all points frond inside any hyper-rectangle by removing some entries
in each table from the original database and taking the join of all tables. For example, if a
hyper-rectangle has constraipt x; wj, we just remove all the rows with value outside of
range[vj, w;] for column f; from the tables containing columi. The set of points assigned
to a given center can be found by adding and subtracting a laminar set of hyper-rectangles,
where each hyper-rectangle can be represented by a relational database.

Weighting the Centers: We have sampled a good set of cluster centers. In order to get a
coreset we need to assign weights to them. As we have already mentioned, adR @iy

the weights cannot be computed relationally. In fact, they cannot be approximated up to
any factor in polynomial time unle$3= NP. Rather, we design an alternative relational
algorithm for computing the weights. Each weight will not be an approximate individually,
but we prove that the weighted centers formG{i1)-approximate coreset in aggregate.

The main algorithmic idea is that for each certewe generate a collection of hyper-
spheres around containing geometrically increasing numbers of points. The space is then
partitioned using these hyperspheres where each partition contains a portion of pdints in
Using the algorithm from4], we then sample a poly-log sized collection of points from each
partition, and use this subsample to estimate the fraction of the points in this partition which
are closer ta; than any other center. The estimated weight; @ aggregated accordingly.

Chapter Organization: As relational algorithms are relatively new, we begin with some
special cases which help the reader build intuition. In Section 5.2 we give a warm-up
by showing how to implemerit-means++ an@-means++ (i.e. initialization steps &f
means++). In this section, we also prove Theorem 5.1.2 as an example of the limits of
relational algorithms. In Section 5.3 we go over background on relational algorithms that
our overall algorithm will leverage. In Section 5.4 we give tameans++ algorithm via
rejection sampling. Section 5.5 shows an algorithm to construct the weights and then analyze
this algorithm. Many of the technical proofs appear in the appendix due to space.

SA laminar set of hyper-rectangles means any two hyper-rectangles from the set either have no intersection,
or one of them contains the other.

5.2 Warm-up: Ef ciently Implementing 1-means++ and 2-means++ 89

5.2 Warm-up: Ef ciently Implementing 1-means++ and
2-means++

This section is a warm-up to understand the combinatorial structure of relational data. We
will show how to dok-means++ fok 2 f 1;2g (referred to as 1- and 2-means++) on a simple
join structure. We will also show the proof of Theorem 5.1.2 which states that counting the
number of points in a cluster is a hard problem on relational data.

First, let us consider relationally implementing 1-means++ and 2-means++. For better
illustration, we consider a special type of acyclic table structure ngmaédjoin. The
relational algorithm used will be generalized to work on more general join structures when
we move to the full algorithm in Section 5.4.

In a path join each tabl§ has two features/columrs, andf;+ ;. TableT; andTi+ 1 then
share a common columfy. 1. Assume for simplicity that each tablg containsn rows.

The design matrid = Tio Tom (0 Ty hasd = m+ 1 features, one for each feature (i.e.
column) in the tables.

Even with this simple structure, the size of the design maktdruld still be exponential
in the size of databaseJ-could contain up ta™?2 rows , anddn™? entries. Thus the
standard practice could require time and spateri™?) in the worst case.

T1 Tz J= T1ITD T2
fi| f2 fa | f3 fo| fa] f3
11 111 1111
21 1] 2 11| 2
3|2 213 2111
4 | 3 514 211 2
5| 4 5|5 31213

Table 5.2 A path join instance where the two tableandT, havem= 2 andn= 5. This
showsTsy, Ty, the design matri¥, and the resulting layered directed graphEverypath
from the left most layer to the right most layer of this grapleorresponds to one data point
for the clustering problem (i.e. a row of the design matrix).

Graph lllustration of the Design Matrix: Conceptually consider a directed acyclic graph

only point from nodes in layef; to layer fi 1.

The nodes irG correspond to feature values, and edges torrespond to rows in tables.
There is one vertexin layer f; for each value that appears in colurfirin tableT; 1 or T,
and one edge pointing fromin layer f; to vin layer fi; 1, if (u;Vv) is a row in tabléeT;. Then,

90 Relational Algorithms For K-Means Clustering

there is a one-to-one correspondence betvielkpaths in G (paths from layeif; to layer
fg) and rows in the design matrix.

A Relational Implementation of 1-means++:Implementing the 1-means++ algorithm is
equivalent tagenerating a full path uniformly at random fro& We generate this path by

layer f; to fp, f2 to fs, ..., such that concatenating all picked rows (arcs) will give a point in
J (full path in G).

To sample a row frondy, for every rowr 2 Ty, considerm J, which is all rows inJ
whose values in columr(d1; fp) are equivalent to. Let the functionF,(r) denote the total
number of rows i J. This is also the number of full paths passing ar@hen, every
r 2 T, is sampled with probabilitya#(g(rq, noticea oy, F1(r9 is the total number of full
paths. Let the picked row he.

After samplingri, we can conceptually throw away all other rowslinand focus only
on the rows inJ that uses to concatenate with rows from other tables (icem J). For any
rowr 2 Ty, let the functionF,(r) denote the number of rows i ri J, also equivalent
to the total number of full paths passing aiandr. We sample every with probability
%@- Notice thatd o, Fo(r9 = Fy(ry), the number of full paths passing arc Repeat
this procedure until we have sampled a row in the last tajlefor tableT; andr 2 T;,

other rows in previous tables and focusrgm :::m r; 1 J. F(r) is the number of rows
inrm rq ::: r; 1 Jandr is sampled with probability proportional &(r). It is easy
to verify that every full path is sampled uniformly.

For every tabld; we need to nd the functiofi() which is de ned on all its rows. There
aremsuch functions. For eadh(), we can nd allF(r) values forr 2 T; using a one-pass
dynamic programming and then sample according to the values. Repeating this pracedure
rounds completes the sampling process. This gives a polynomial time algorithm.

sampled and now we want to sample the second centdt-rBgans++ principles, any row

r 2 Jis sampled with probabilit%olz‘—rer%z. For a full path inG corresponding to a row
r2J

r 2 Jwe refer tokr xk? as theaggregated cosbver alld nodes/features.

Similar to 1-means++, we pick one row in each table frdgto Ty, and putting all the
rows together gives us the sampled point. Assume we have sampled theyows:;ri 1
from the rsti 1 tables and we focus on all full paths passiag::;r; 1 (i.e., the new
design matrixr1m :::m rj 1m0 J). In 1-means++, we computg(r) which is the total
number of full paths passing arg;:::;r; 1;r (i.e.,rm rim :::f r; 1 J.) and sample
r 2 T; from a distribution normalized usirg(r) values. In2-means++, we de né&i(r) to

5.2 Warm-up: Ef ciently Implementing 1-means++ and 2-means++ 91

be the summation of aggregated costs over all full paths which pass arcsr; 1;r. We
sampler 2 T; from a distribution normalized usirfg(r) values.

It is easy to verify the correctness. Again, e&f) could be computed using a one-pass
dynamic programming which gives the values for all rowdjiwhen we sample frorf;.
This would involvem rounds of such computations and give a polynomial algorithm.

5.2.1 Hardness of Relationally Computing the Weights

This section established the dif culty of relationally implementing khemeans algorithms
by proving Theorem 5.1.2 and 5.1.3.

Proof of [Theorem 5.1.2] Here we prove Theorem 5.1.2. We will focus on showing that given
a set of centers, counting the number of pointd that is closest to any of them#°-hard.
We prove#P-Hardness by a reduction from the well knowia-hard Knapsack Counting

of nonnegative integer weights, and a nonnegative integ&he output is the number of
subsets oV with aggregate weight at mokt To construct the relational instance, for each
i 2 [h], we de ne the table3y; 1 andTy as follows:

Toi 1 Toi
fai 1| fa foi | faiv1
0 0 0 0
0 W Wi 0

Table 5.3 NP-hardness Reduction

Let centers; andcy be arbitrary points such that points closectdhanc, are those
pointsp for which éid: 1P L. Then there ar@" rows inJ, sincew; can either be selected
or not selected in featur@. The weight ofc; is the number of points id closer toc; than
Cz, which is in turn exactly the number of subset&ivith total weight at most.

Then we prove the second part of Theorem 5.1.2 that given an acyclic database and a

subset ofA such that its summation Is We create the following acyclic schema. There are
mtables. Each tabl§ has a single unique colum@with two rowsw;; 0. Then the join of

the tables ha&™ rows, and it is a cross product of the rows in different tables in which each
row represents one subset/Af

92 Relational Algorithms For K-Means Clustering

Then consider the following three centerg:= (51510 L) oo = (L k),
andcy = (LLml; LLml; :::: 221 The Voronoi diagram that separates the points assigned to each
of these centers consists of two parallel hyperplades:= L 1=2anda;x = L+ 1=2
where the points between the two hyperplanes are the points assignediace all the
points in the design matrix have integer coordinates, the only points that are between these
two hyperplanes are those points for whigh = L. Therefore, the approximation for the
number of points assigned ¢g is non-zero if and only if the answer to Subset Sum is True.

]

Proof of [Theorem 5.1.3] We prove by a reduction from a decision version of the counting
knapsack problem. The input to the counting knapsack problem consists of aWe-set

to determine whether there are at le@stubsets oW with aggregate weight at mokt The
points in our instance d&means will be given relationally. We construct a join query with

1 columns/attributes, amltables. All the tables have one column in common and one distinct
column. The-th table ha® columns(d;;dy+ 1) and three row$(w;; 1);(0; 1);(0;D)g.
Note that the join hag" rows with 1 in dimensionn+ 1, and one row with values

in their rst n dimensions. Let the two centers filmeans problem be any two centers
c1 andcy such that a poink is closer toc; if it satis es & -, Xq < L and closer ta; if it
satis esd |- ; X4 > L. Note that the row0;0;:::;0; D) is closer toc;. Therefore, the value
of dimensiom+ 1 of the center of mass for the tuples that are closeitisY =(D C)=C
whereC is the actual number of subsets\Wfwith aggregate weight at mokt If Y is
negative, then the number of solutions to the counting knapsack instance is &t.least

5.3 Related Work and Background

Related Work on K-means: Constant approximations are known for theneans problem

in the standard computational settidgp, 84]. Although the most commonly used algorithm

in practice is a local search algorithm called Lloyd's algorithm, or sometimes confusingly
just called “the k-means algorithm”. THemeans++ algorithm from2] is a Q(logk)
approximation algorithm, and is commonly used in practice to seed Lloyd's algorithm. Some
coreset construction methods have been used before to design algorithmskonehes
problem in other restricted access computational models, including stearjrg$], and

the MPC model [66, 26], as well as speeding up sequential methods [111, 128].

5.3 Related Work and Background 93

Relational Algorithms for Learning Problem: Training different machine learning models

on relational data has been studied; however, many of the proposed algorithms are not
ef cient under our de nition of a relational algorithm. It has been shown that using repeated
patterns in the design matrix, linear regression, and factorization machines can be imple-
mented 121] more ef ciently. [92, 126, 6] has improved the relational linear regression and
factorization machines for different scenarios. A uni ed relational algorithm for problems
such as linear regression, singular value decomposition and factorization machines proposed
in [7]. Algorithms for training support vector machine is studiedYaifig et al, 5]. In [50],

a relational algorithm is introduced for Independent Gaussian Mixture Models, and they have
shown experimentally that this method will be faster than materializing the design matrix.

Relational Algorithm Building Blocks: In the path join scenario, tHe and2-means++
sampling methods introduced in subsection 5.2 have similar procedures: starting with the
rst table Ty, iteratively evaluate some general functigi) de ned on all rows in the table
T;, sample one row; according to the distribution normalized frdf{). The functionF;()
for tableT; is de ned on the matrixyo ::: r; @ Jwherelis the design matrix. This
matrix is also the design matrix of a new relational database, constructed by throwing away
all rows in previous tables apart from the samplgd::;ri 1.

We can generalize the computationFef) functions into a broader class of queries
that we know could be implemented ef ciently @amyacyclic relational databases, namely
SumProd queries See 8] for more details. In the following lemmas assume the relational

rows in each tabld;, m be the number of tables andoe the number of columns ih

De nition 5.3.1. For thej'" feature { 2 [d]) letg; : R! Shbe an ef ciently computable
function that maps feature values to someSétet the binary operations and be any
operators suchthg§ ;) forms acommutative semiring. The value of,; j2[q1dj (X))
is a SumProd query.

Lemma 5.3.1([8]). Any SumProd query can be computed ef ciently in tBed®n™log(n))
where fhtw is the fractional hypertree width of the database. For acyclic databases fhtw=1
so the running time is polynomial.

Despite the cumbersome formal de nition of SumProd queries, below we list their key
applications used in this paper. With a little abuse of notation, throughout this paper we use
Y (n;d; m) to denote the worst-case time bound on any SumProd queries.

Lemma 5.3.2.Given a pointy 2 R9 and a hyper-rectanglb= fx2 R9:v; % wi=

94 Relational Algorithms For K-Means Clustering

by rows ofJ that also fall intob. Pick any tableT;. Using one single SumProd query we
can compute for alt 2 T; the valuea po i 5\ HKP ykg. The time required is at most that
required by one SumProd queiy(n;d; m).

Lemma 5.3.2 is an immediate result of Theorem A.2.3 and the fact that we can ef ciently
represent all points frord inside any hyper-rectangle by removing some entries in each table
from the original database and taking the join of all tables. The following lemma follows by
an application of the main result id][In Appendix A.1 we formally show to apply their
result to give the following lemma.

Lemma 5.3.3([4]). Given a hyperspherex2 R9: kx ygk? z%g whereyj is a given point

andz is the radius, g1+ e)-approximation of the number of pointsJdrthat lie inside this
6 1~rd

hypersphere could be computed in @%Y(n;d; m) time.

Notice that a SumProd query could be used to output either a scalar (similar to Lemma
5.3.3) or a vector whose entries are function values for every liova chosen tablg; (in
Lemma 5.3.2). We say the SumProd quergnsuped by Tj in the latter case.

5.4 Simulating thek-means++ Algorithm

In this section we describe a relational implementation oktheeans++ algorithm. To give
some intuition, we rst explained the special case of implementing the algorithm wheB
Then we generalize this to arbitrary valued

5.4.1 Relational Implementation of 3-means++

Recall that the 3-means++ algorithm picks a paitd be the third centers with probability
P(x) = @ whereL(x) = min(kx c1kZ; kx czkg) andY = a,,;L(X) is a normalizing
constant. Conceptually think &fas being a "hard” distribution to sample from.

Description of the Implementation: The implementation rst constructs two identically-
sized axis-parallel hypercubes/boxssandb, centered around; andc, that areas large
as possiblesubject to the constraints that the side lengths have to be non-negative integral
powers of2, and thab; andb, can not intersect. Such side lengths could be found since we
may assume; andc, have integer coordinates or they are suf ciently far away from each
other that we can scale them and increase their distance. Conceptually the implementation
also considers a bdx that is the whole Euclidean space.

5.4 Simulating th&k-means++ Algorithm 95

Fig. 5.1 Boxes used for sampling the third center

To de ne our “easy” distributiorQ, for each poink de ne R(x) to be
8
Skx ks X2 by
RX) = _kx ck3 x2 by
- kx clkg X2 bz andx2b; andx 2 b,

In the above de nition, note that wheqi2 b; andx 2 by, the distance ok to both centers are
relatively similar; therefore, we can assigto either of the centers — here we have assigned
it to c1. ThenQ(X) is de ned to be@, whereZ = §,,3R(X) is normalizing constant. The
implementation then repeatedly samples a poinith probability Q(x). After samplingx,
the implementation can either (A) rejectand then resample or (B) accepivhich means
setting the third centeas to bex. The probability thak is accepted after it is sampled%{:l,
and thus the probability thatis rejected is 1 %.

It is straightforward to see how to computeandb, (note that; andb, can be computed
without any relational operations), and how to comgL(e andR(x) for a particular poink.
Thus, the only non-straight-forward part is sampling a pewith probability Q(x), which

we explain now:

» The implementation uses a SumProd query to compute the aggregate 2-norm squared
distance front; constrained to points ibz (all the points) and grouped by table
using Lemma 5.3.2. Let the resulting vector®e SoC; is the aggregate 2-norm
squared distance from of all rows in the design matrix that are extensions of row
in T1.

* Then the implementation uses a SumProd query to compute the aggregated 2-norm
squared distance fromp, constrained to points iby, and grouped by;. Let the

96 Relational Algorithms For K-Means Clustering

resulting vector b®. Notice that an axis-parallel box constraint can be expressed as a
collection of axis-parallel hyperplane constraints, and for every axis-parallel constraint
it is easy to remove the points not satisfying it from the join by Itering one of the
input tables having that dimension/feature. Then the sum product query is the same as
the sum product query in the previous step.

* Then the implementation uses a SumProd query to compute the aggregated 2-norm
squared distance fromy, constrained to points iby, and grouped byl; Let the
resulting vector bé&.

» Then pick a row of Ty with probability proportional t&C, E; + Dy.
» The implementation then replacésby a table consisting only of the picked raw
* The implementation then repeats this process on fBhldnen tableT; etc.

» At the endJ will consist of one point/rowx, where the probability that a particular
pointx ends up as this nal row iQ(X). To see this note that in the iteration performed
for T, C E is the aggregate 2-norm squared distances for all points not inby
grouped byT;, andD is the aggregated squared distances of the poirits to ¢,
grouped byT;.

We now claim that this implementation guarantees that x with probability P(x). We
can see this using the standard rejection sampling calculation. At each iteration of sampling
from Q, let §x) be the event that pointis sampled and\(x) be the event thatis accepted.
Then,

PIS(Y) andA()] = PrAX)] | S9] PrSXI= =0 Qx = =2

R(X) Z
Thusx is accepted with probability proportional kgx), as desired.
As the number of times that the implementation has to sample @asrgeometrically
distributed, the expected number of times that it will have to sample is the inverse of

the probability of success, which max R It is not too dif cult to see (we prove it

L~
formally in Lemma 5.4.3) thatna&% = O(d). It takes3m SumProd queries to sample

from Q. Therefore, the expected running time of our implementation of 3-means++ is
O(may (n;d; m)).

5.4 Simulating th&k-means++ Algorithm 97

5.4.2 Simulatingk-means++

It is suf cient to explain how centec; is picked given the previous centers. Recall that
the k-means++ algorithm picks a poirtto be the centec; with probability P(x) = @
whereL(x) = minj;; (X € ;) andY = 4,,;L(X) is a normalizing constant. The
implementation consists of two parts. The rst part, described in subsubsection The second
part, described in subsubsection 5.4.2 samples according to probability distriButsing
rejection sampling and an “easy” distributi@nthat is derived from the boxes constructed in

the rst part.

Box Construction

Here we explain the algorithm to construct a set of laminar boxes given the centers sampled
in the previous rounds. Note that the centers are explicitly present and we don't need any
relational operation for this algorithm.

Algorithm Description: The algorithm maintains two collection§ and B ; of tuples
consisting of a box and a point in that box that we refer to as the representative of the box.
When the algorithm terminateB,; will be a laminar collection of boxes that we will use to
de ne the “easy” probability distributioQ.

Initially G consists of a hypercube centered at each previous cgnte2 [i 1] where
eachd 1dimensional simplex is at distance 1 fray) with the representative point being
cj. And initially B j is empty. Without loss of generality we can scale so that no pair of
these boxes intersect. Over time, some of the box& will grow in size, some boxes will
be added t@5 and some boxes will be moved frogto B i. So one can think o as a
collection of active boxes that might change in the future, and thirikiads a collection of
inactive boxes that are frozen.

The algorithm repeats the following steps. If there are no pair of box@sthmat intersect,
then a doubling step is performed. In a doubling step every b@& is doubled, which
means that eaath 1 dimensional simplex is moved twice as far away from its representative
point. Otherwise the algorithm picks two arbitrary intersecting boxes fegrsayb; with
representative; andb, with representative,, and executes what we call a meld step. A
meld step consists of

» Computing the smallest bdxg that contains both; andb,.
» Adding(bs;ri) to G.

» Deleting(by;r1) and(by;r,) fromG.

98 Relational Algorithms For K-Means Clustering

* If by was created before the last doubling step (thatjisyas not melded with another
box since the last doubling step), the implementation computes bcl’dorxm b, by
halving, which means that eadh 1 dimensional simplex is moved so that its distance
to the box’s representative is halved. Tr(daﬁ; ri) is added td3 ;.

* If by was created before the last doubling step, then the implementation computes a
box bg from by by halving, which means that eadh 1 dimensional simplex is moved
so that its distance to the box's representative is halved. Ilbﬁsng) is added tdB ;.

The algorithm terminates when there is only one elenflen) left in G, at which point the
algorithm adds a box that contains the whole Euclidean space with representatie.

Note that at each iteration of the doubling and melding, the boxes which are ad8edte

the ones that after doubling were melded with other boxes (and they are added at their size
before doubling)[]

Lemma 5.4.1. The collection of boxes iB ; constructed the above algorithm is laminar.

Proof of [Lemma 5.4.1]

Note that right before each doubling step, the boxeg iare disjoint and that is because
the algorithm in the previous iteration melds all the boxes that have intersection with each
other. Now we prove by induction that for every bioin B ; there exist a bok®in G such
thatb b% Since the boxes added By; in each iteration are a subset of the boxe&in
before the doubling step, Laminarity Bf; is a straight-forward consequence.

Now we prove that in all time for every baxin B there exist a box®in G such
thatb bC Initially B ; is empty and therefore the claim holds. Assume in some arbitrary
iteration” this claim holds right before the doubling step, then after the doubling step since
every box inG still covers all of the area it was covering before getting doubled, the claim
holds. Furthermore, in the melding step every bgxhat is resulted from melding of two
boxesb; andb, covers bottb; andb,; therefore s will cover b; andbs if they are added to
B i, and if a box inB j was covered by either dif; or by, it will be still covered bybz. [

Sampling

To de ne our easy distributio, let b(x) be the minimal box irB ; that contains poink
- _ 2 _ R(X)
and letr(x) the representative df(x). De ne R(x) = kx r(x)k5, andQ(x) = == where
Z = a,3R(X) is a normalizing constant.
Implementation Description: The implementation then repeatedly samples a point

with probability Q(x). After samplingx, the implementation can either (A) rejegtand then

5.4 Simulating th&k-means++ Algorithm 99

resample or (B) accept which means setting the next centers X. The probability thak is
accepted afteritis sampledi%, and thus the probability thatis rejected is 1 %.

If S(x) is the the event of initially samplingfrom distributionQ, andA(x) is the event
of subsequently acceptingwe can calculate the probability of acceptii a particular
round using the standard rejection sampling calculation:

PIS(Y andAX)] = PIAK) | SXIPASXI= S0 Q) = =

R(X) Z
Thus we can see that the probability tkas sampled is proportional to(x), as desired.

We now explain how to relationally implement the generation of a paivith probability
Q(X). The implementation rst generates a single row from talalethen a single row from
tableT,, etc. Thenx would be the concatenation of these rows (join of them). So it is
suf cient to explain how to implement the generation of a row from an arbitrary table
To generate a row fror®, the implementation recursively computes a ve€tothat has
one entryC} for each rowr of T. Initially C is the all zeros vector. The recursion starts
with the box inB ; that is the whole Euclidean space. Assume that it is currently operating
on boxb with representative. FirstC is incremented by the aggregate 2-norm squared
distances of points ib from r grouped byT-, which can be computed by a SumProd query
with box constrainb and grouped byi~. Then let(by;r1);:::(bn;rn) be the children ofb;r)
in the laminar decompositioB ;. If no such boxes exists, then this is a base case of the
recursion, and no further action is taken. Otherwise for ga2lih], C is decremented
by a the aggregate 2-norm squared distances of poifsfrom rj grouped byT-, which
can computed by a SumProd query with box constrajrgrouped by tabld-. Then the
implementation recurses on eddi; r;) for j 2 [h]. OnceC: is computed, then a rowis
selected fronT~ with probability proportional t((:;, andT is replaced by a table with a
single rowr. [

Lemma 5.4.2. Consider the state of the implementation just before it is going to execute
doubling step + 1. Consider an arbitrary box in G at this time, and leh(b) be the number
of centers in b at this time. Lef ®e an arbitrary one of thesg b) centers. Then:

A. The distance fromydo any d 1 dimensional simplex of b is at leat
B. Each side length of b is at mogtfH2/+ 1.

Proof. The rst statement is a direct consequence of the de nition of doubling and melding
since at any point of time the distance of all the centers in a box is at2éa3b prove
the second statement, we de ne the assignment of the centers to the boxes as following.

100 Relational Algorithms For K-Means Clustering

Consider the centers inside each liaxght before the doubling step. We call these centers,
the centers assigned baand denote the number of them bYb). When two boxe®; and
b, are melding into boks, we assign their assigned center®io

We prove each side length bfis at mosthqb)2/*1 by induction on the numbeyr of
executed doubling steps. Sinld¥b) = h(b) right before each doubling, this will prove the
second statement. The statement is obvious in the base jcas®, The statement also
obviously holds by induction after a doubling stepjas incremented and the side lengths
double and the number of assigned boxes don't change. It also holds during every meld step
because each side length of the newly created larger box is at most the aggregate maximum
side lengths of the smaller boxes that are move {cand the number of assigned centers
in the newly created larger box is the aggregate of the assigned centers in the two smaller
boxes that are moved ®;. Note that since for any bdxall the assigned centers licare
insideb at all times h{b) is the number of centers insitkbefore the next doubling. [

Lemma 5.4.3.For all points x, RX) O(i°d) L(X).

Proof. Consider an arbitrary poilt Letc:, " 2 [i 1], be the center that is closestxo
under the 2-norm distance. Assumis minimal such that just before tif¢ + 1)-th doubling
round,x is contained in a bok in G. We argue about the state of the algorithm at two times,
the timesjust before doubling roungland the time just before doubling roungl+ 1. Let

b be a minimal box i that containx at timet, and lety be the representative for bax
Notice that we assigrto the representative of the smallest boBinthat contains it, sa

will be assigned tg. Indeed, none of the boxes added iBtpbefore timet containsx by the
minimality of j, and when bo) gets added int8 ; (potentially after a few more doubling
rounds) it still has the same representativ®8y Lemma 5.4.2 the squared distance from
fromxtor is at most(i 1)2d22/*2. So it is suf cient to show that the squared distance
from xto ¢ is W(2).

Let b®be the box inG that containg: at times. Note thatx could not have been inside
b%at times by the de nition oft ands. Then by Lemma 5.4.2 the distance frento the
edge ofb%at timet is at leas?! 2, and hence the distance framnto x is also at leasp?! 2
asx is outside o’ n

Theorem 5.4.4.The expected time complexity for this implementation of k-means++ is
o(k3dmY (n;d; m)).

Proof. When picking centec;, a pointx can be sampled with probabilif@(x) in time
O(miY (n;m;d)) time. This is becausB ; is sizeO(i), as the laminar decomposition can
be thought of as a tree with 1 leaves, the implementation needs to group by each of the

5.5 Weighting the Centers 101

tables. By Lemma 5.4.3, the expected number of times that the implementation will have to
sample fromQ is O(i%d). Summing over 2 [K], we getO(k3dmY (n;d; m)) O

5.5 Weighting the Centers

Our algorithm samples a collectiod of k= Q(klogN) centers using th&means++
sampling described in the prior section. We give weights to the centers to get a coreset.

Ideally, we would compute the weights in the standard way. That isy; ldenote the
number of points that are closest to panamong all centers i€. These pairs of centers
and weightqci;w;) are known to form a coreset. Unfortunately, as stated in Theorem 5.1.2,
computing suchv;'s even approximately islP hard. Instead, we will nd a different set of
weights which still form a coreset and are computable.

Next we describe a relational algorithm to compute a collectifrof weights, one
Weightwi0 2 WOfor each centec; 2 C. The proof that the centers with these alternative
Weights(ci;vvf) also form a coreset is postponed until the appendix.

Algorithm for Computing Alternative Weights: Initialize the weightwiofor each center

¢ 2 C to zero. In thed-dimensional Euclidean space, for each cegt@rC, we generate a
collection of hyperspheres (also nantedls) f B;;jgj2ign), WhereB;;; contains approximately

21 points fromJ. The space is then partitioned int&;.0;Bi:1 Bi:0o;Bi2 Bi:1;:::0. For

each partition, we will sample a small number of points and use this sample to estimate
the number of points in this partition that are closecitthan any other centers, and thus
aggregatingv?by adding up the numbers. Fix small constagid > 0. The following steps

are repeated foy 2 [IgN]:

* LetB;;j be a ball of radius;:; centered at;. Find arj;; such that the number of points in
J\ B;;j liesin the rangg(1 d)2;(1+ d)2)]. This is an application of Lemma 5.3.3.

» Lett be a constant that is at lee8). A collectionT;;; of ék‘ﬁlogzN “test” points
are independently sampled following the saap@roximately uniform distribution
with replacement from every bah.j. Here an “approximately uniform” distribution
means one where every poiptin B;;; is sampled with a probabilitgy;:j 2 [(1
d)=Bi;jj; (1+ d)5B;;jj] on each draw. This can be accomplished ef ciently similar
to the techniques used in Lemma 5.3.3 frath Further elaboration is given in the
Appendix A.1.

« Among all sampled point3;;j, nd S;j, the set of points that lie in th&onut”
Di;j = Bi;j; Bi;j 1. Thenthe cardinalitg;; = jS;:;j is computed.

102 Relational Algorithms For K-Means Clustering

« Findt;j, the number of points if§;j that are closer tg; than any other center i@.
« Compute the ratio ratf = (|f S;j = ti;j = O then ratig; = 0).

* If ratio?; Wthenwols incremented by ratfy 2/ 1, elsew?stays the same.

At rst glance the algorithm appears naiva?can be signi cantly underestimated if in
some donuts only a small portion of points are closest,tmaking the estimation inaccurate
based on sampling. However, in Appendix 5.5.1, we prove the following theorem which
shows that the alternative weights computed by our algorithm actually form a coreset.

The running time of a naive implementation of this algorithm would be dominated
by sampling of the test points. Sampling a single test point can be accomplisheah with
applications of the algorithm frond] and setting the approximation errordo= e=m. Recall
the running time of the algorithm from#] is O P 'Og M9 Y (n;d;m) . Thus, the time to

sample all test points i® %Y(n;d; m) . Substituting fok® and noting thaN n™,

8
we obtain a total time for a naive implementationf %Y(n; d;m) .

5.5.1 Analysis of the Weighting Algorithm

The goal in this subsection is to prove the following Theorem 5.5.1 which states that the
alternative weights form a@(1)-approximate coreset with high probability. Throughout our
analysis, “with high probability” means that for any constant 0 the probability of the
statement not being true can be made less ﬂ;raausymptotically by appropriately setting

the constants in the algorithm.

Theorem 5.5.1.The center€, along with the computed weigh¢®, form anO(1)-approximate
coreset with high probability.

Intuitively if a decent fraction of the points in each donut are closer to centean
any other center, then Theorem 5.5.1 can be proven by using a straight-forward application
of Chernoff bounds to show that each alternate weigis likely close to the true weight
wi. The conceptual dif cultly is if only a very small portion of points in a doriyt; are
closer toc; than any other points, in which case the estimamhho W and thus
the “uncounted” points i;j;; would contribute no weight to the computed welgﬁtWe
call this theundersampledcase. If many docuts around a centare undersampled, the
computed Weighw?may well poorly approximate the actual weight

To address this, we need to prove that omitting the weight from these uncounted points
does not have a signi cant impact on the objective value. We break our proof into four parts.

5.5 Weighting the Centers 103

The rst part, described in subsubsection 5.5.1, involves conceptually de ning a fractional
weightwif for each centec; 2 C. Each point has a weight df, and instead of giving

all this weight to its closes center, we allow fractionally assigning the weight to various
“near” centers.wif is then the aggregated weight over all pointsdor The second part,
described in subsubsection 5.5.1, establishes various properties of the fractional weight that
we will need. The third part, described in subsubsection 5.5.1, shows that each fractional
weightwif is likely to be closely approximated the computed we'rgﬁtThe fourth part,
described in subsubsection 5.5.1, shows that the fractional weights for the ce@dasrnm
aO(1)-approximate coreset. Subsubsection 5.5.1 also contains the proof of Theorem 5.5.1.

De ning the Fractional Weights

To de ne the fractional weights we rst de ne an auxiliary directed acyclic gr&aphk (S E)
where there is one node #icorresponding to each row th For the rest of this section,
with a little abuse of notation we u§to denote both the nodes in gra@hand the set of
d-dimensional data points in the design matrix. pdde an arbitrary pointis C. Leta(p)
denote the subscript of the center closegt,toe., if ¢; 2 C is closest tgp thena (p) = i. Let
Di;j be the donut around that containg. If D;;j is not undersampled themwill have one
outgoing edggp; ci). So let us now assume that;j is undersampled. De ning the outgoing
edges fronp in this case is a bit more complicated.

LetA;;j be the pointg) 2 D;;j that are closer to; than any other center @ (i.e.,a () =).
If j = 1thenD;.1 contains only the poinp, and the only outgoing edge fromgoes toc;.
So let us now assumie> 1. Letcy the center that is closest to the most pointBi 1, the
next donut in toward; from D;;j. Thatisc, = argmax ¢ aqepy; 1 la(g=c;- LetMi;j 1be
points inD;;j 1 that are closer ta, than any other center. Thath4;; 1 is the collection of
g2 Dj;j 1suchthai(q) = h. Then there is a directed edge frgnto each point irM;;j 1.
Before de ning how to derive the fractional weights frd& let us take a detour to note that
Gis acyclic.

Lemma5.5.2.G is acyclic.

Proof. Consider a directed edde;q) 2 E, andc; be the center irC that p is closest

to, andD;;j the donut around; that containg. Then sincep 2 D;;; it must be the case
thatkp cik§> ri.j 1. Sinceq2 Bj;; 1 it must be the case thag cik§ r.;j 1. Thus

kp cik3> kg ciks. Thus the closest center gamust be closer tg than the closest center

to pis to p. Thus as one travels along a directed patG,jmlthough identify of the closest

center can change, the distance to the closest center must be monotonically decreasing. Thus,
G must be acyclic.]

104 Relational Algorithms For K-Means Clustering

We explain how to compute a fractional weigbé for each pointp 2 Susing the network
G. Initially eachw{) is set to 1. Then conceptually these weights ow toward the sinkg,in
splitting evenly over all outgoing edges at each vertex. More formally, the following ow
step is repeated until is no longer possible to do so:

Flow Step: Let p2 Sbe an arbitrary point that currently has positive fractional weight and
that has positive outdegréen G. Then for each directed edgp; q) in G incremenwv(f] by
W,';:h. Finally setw,'; to zero.

As the sinks inG are exactly the centers @, the centers i€ will be the only points
that end up with positive fractional weight. Thus we wgfeto refer to the resulting fractional
weight on centec; 2 C.

Properties of the Fractional Weights

Letratio:; be the fraction of points that are closestt@mong all centers i€ in this donut
Di;j = Bi;; Bi;j 1. We show in Lemma 5.5.3 and Lemma 5.5.5 that with high probability,
either the estimated ratio is a good approximatioratify;j, or the real ratioatig;j is very
small.

We show in Lemma 5.5.7 that the maximum ow through any node is bounddd-by
whenN is big enough. This follows using induction because each point\&%ogN)
neighbors and every point can have in degree from one set of nodes per center. We further
know every point that is not uncounted actually contributes to their centers weight.
Lemma 5.5.3. With high probability eithejratio;; ratio?;j ~eratia;j or ratiof m.

To prove Lemma 5.5.3, we use the following Chernoff Bound.

foranyl > O:

2
PriX m+I1] exp |

e | Upper Chernoff Bound

| 2

— Lower Chernoff Bound
3m

PrIX m I] exp
Proof. Proof of Lemma 5.5.3: Fix any centgr2 C andj 2 [logN]. By applying the low
Chernoff bound from Lemma 5.5.4 it is straight forward to concludetthatarge then with
high probability at least a third of the test points in edghare in the donub;.j. That is,
with high probabilitys;: %zkdzlogzN . So let us consider a particul&rj and condition
S:j having some xed value that is at Iea%gk‘glogzN. Sos;j is conditioned on being large.

5.5 Weighting the Centers 105

Recallt;;j = épzw;j(lpzﬁ;j)(la(p):i), and the indicator random variablég,,; are
Bernoullitrials. Further note by the de nition @f;;;j itis the case the[t;;j] = a p2w; Gpii; (La(p)=i)-
Further note that as the sampling of test points is nearly unifornfithet d)s.; E[t;;j]
fi.j(1+ d)s;j. For notational convenience, let= E[tj;;]. We now break the proof into three
cases, that cover the ways in which the statement of this lemma would not be true. For each
case, we show with high probability the case does not occur.

Case l:ratid m and ratio;j > yay andratic); (1+ e)ratio;j. We are
going to prove the probability of this case happening is very low. If wé setem then
using Chernoff bound, we have

Priti;j (1+e)m exp ZE::T):m [Upper Chernoff Bound]
exp e glr‘:[iq;jsi;j [m (1 d)ratia;;s;]]
exp ez%(zsé(ligNe))s;j ! [ratioy;j > 2kf12|oZN]
exp 82(13(;2((2}092;(22?92'“ [s;j ék‘glogN]

= exp (1 d)(1 e)tlogN

18

Therefore, fod e=2 1=10andt 30 this case cannot happen with high probability.
Case 2:ratic; Wllo_gl\l and ratio;.j > ﬁﬁgN andratio?; < (1 e)ratig;j. We can
use Lower Chernoff Bound with = emto prove the probability of this event is very small.

(em)?
Prlt;j (1 eml exp 3m
e?(1 d)ratia.is:; .
op &)3 A3 [m (1 d)ratiojs;]
e2(1 d)(1 e)s; 1 e
&P 3(2kZlogN) o o> eiogn!
(1 d)(1 e)tk®log?N ot
exp 3(2kZIogN)(3ed) [Si) g2k logN]
- exp (1 d)(1 e)tlogN

18

Therefore, fod e=2 1=10andt 30this case cannot happen with high probability.

106

Relational Algorithms For K-Means Clustering

craticd 1 i
Case 3:ratiqy; mand ratig; ? Since rat|<$J = 21, inthis case:
S.
ti —m—— 51
"l 2k®logN 1)
Sincem fj;j(1+ d)s;j, in this case:
1+d 5.2
2k02| ()Si] (5.2)
Thus subtracting line 5.1 from line 5.2 we conclude that:
e d+ ed)s:
t (- S (5.3)
2k¥ logN
Letl = ““f;ﬂ We can conclude that
2k¥logN
| 2
Prit;: +
[tij m+l] exp S | Upper Chernoff Bound
0 1
exp T e : Using line 5.2
2kdzlogN(l+ d)sij+ |
2 1
(e_d+ed)s;;
ol
= exp@ 2k%logN g
1le (1 d)S (e d+ed)s;;
Zk&IogN j WlogN 1
(e d+ed)?s;
k®logN

= exp@

201 e)(1+d)+ 2(e d+ed

2 .
exp (e d+ed)’s;
12k®logN
_ (e d+ed)? logN
= €xp 1262
Therefore, fod e=2 1=10 andt

Substituting our lower bound ca |

30 this case cannot happen with high probability.

]

The next case proves the how Iarg%e is when we know thaf;.j is large.

1+e

Lemma 5.5.5.If ratig;j > HClogN

then with high probabllltyath]

_1
2kZlogN

5.5 Weighting the Centers 107

ili in0 1 i, l+te
Proof. We can prove that the probability cdtig;; < HElogN andratio;;; HlogN lIS small.
Multiplying the conditions for this case by.; we can conclude thadf; < ﬁ and

(1+e)s;j _ (e d eds;
m (1 d)2k(jZI . And thusti;j; m | wherel = iGN Then we can conclude
that:

| 2
Prlt;j m] exp am [Lower Chernoff Bound]
1
(e d eds; 2

_ exp% 2k®logN g

3m

(e d eds; 2
exp%) 2ZlogN

ZkalogN(l d)S]

(e d ed?s;

_ ~ 2@logN
= exp@ A1 o)1+ ol)X

(e d ed)?s;
ex : d<e 1
P 12k®logN | []
(e d ed?(3,Klog?N) _
ex Using our lower bound 08;:
P 12k®|ogN [Using ;5]

Therefore, fod e=2 1=10andt 30 this case cannot happen with high probability.
0

We now seek to bound the fractional weights computed by the algorithmD; e}
denote the total weight received by a pao2 SnC from other nodes (including the initial
weight one o). Furthermore, leDy(p) denote the total weight sent Ipyto all other nodes.
Notice that in the ow stey(p) = Di(p) for all pin SnC.

Lemma 5.5.6.LetD;(p) denote the total weight received by a pog2 SnC from other
nodes (including the initial weight one qu). Furthermore, letDy(p) denote the total

weight sent byp to all other nodes. With high probability, for aj 2 S D(q) 1+

?—ggzl\? maXy:(pg)2€ Do(P).

Proof. Fix the pointq that redirects its weight (has outgoing arc€3n Cogsider its direct
predecessors?(q) = fp: (p;g) 2 Eg. PartitionP(q) as follows:P(q) = = 1....x0P (0),

108 Relational Algorithms For K-Means Clustering

whereP; (q) is the set of points that have owed their weights itdoutc; is actually their
closest center i€. Observe the following. The poitcan only belong to one donut around
¢i. Due to this P (q) is either empty or contains a set of points in a single donut around
that redirect weight ta.

Fix P (q) for someg;. If this set is non-empty suppose this set is in jft& donut around
¢i. Conditioned on the events stated in Lemmas 5.5.3 and 5.5.5, since the p&#(s)irare
undersampled, we hayg; ()] (21;(;')02;;. Consider anyp 2 P;(q). Letb; be the number
of points thatp charges its weight to (this is the same for all such pomtdt is the case that
b; is at Ieasl(l—gl)(gj—1 sincep ows its weights to the points that are assigned to the center
that has the most number of points assigned to it fogsn(j 1)th donut.

Thus,q receives weight fromP (9)] (21;(;')02;; points and each such point gives its

weight to at Ieasfl—g&gj—l points with equal split. The total weight thatreceives from
points inP () is at most the following.

2kO o
——=71 a Do(p)
1
1 2% op @
2kO

1 a2 T a max Do(p)
(1)2 p2P; (0) p2P; ()

2k0 (1+e) 21 1 _ ez !

(1 d)2i 1 2k®logN pzrrF]>2()<(q)D°(p) [P (a)] 2|<02|ogN]
1+ 2e

max Do(p) d ¢ 2

kAogN p2r; (9)

Switching the max tanaxy,p,g)2e Do(p), sSumming over all centers 2 C and adding
the original unit weight omg gives the lemma.
O

The following crucial lemma bounds the maximum weight that a point can receive.

Lemma 5.5.7.Fix h to be a constant smaller tha'ﬁ% ande < 1. Say that for alig2 SnC
it is the case thaDy(q) = hDi(qg). Then, with high probability for anp 2 SnC it is the case
thatDi(p) 1+ oy

Proof. We can easily prove this by induction on nodes. The lemma is true for all nodes
that have no incoming edges® Now assume it is true for all nodes whose longest path
that reaches them i@ has lengtht 1. Now we prove it for nodes whose longest path
that reaches then i@ ist. Fix such a nodeg. For any nodep such that(p;q) 2 E, by

5.5 Weighting the Centers 109

induction we havdd(p) 1+ |OgN, soDy(p) 2(1+ N) By Lemma 5.5.6D(q)

log
1+ 2e h (1+ 2e) 2h _ h 2(1+2e)h+2e
1+ TogN maxp(IOQ)ZEDO(p) 1+ logN 1+ logN =1+ IogN + logN logN
1+ 2h

logN"*

Comparing Alternative Weights to Fractional Weights

It only remains to bound the cost of mapping points to the centers they contribute weight
to. This can be done by iteratively charging the total cost of reassigning each node with the
ow. In particular, each point will only pass its weight to nodes that are closer to their center.
We can charge the ow through each node to the assignment cost of that node to its closest
center, and argue that the cumulative reassignment cost bounds the real fractional assignment
cost. Further, each node only s e ow going through it. This will be suf cient to bound

the overall cost in Lemma 5.5.9.

Lemma 5.5.8. With high probability, for every centes, it is the case that the estimated
weightwf computed by the weighting algorithm(is 2e)wif wherewif is the fractional
weight of i.

Proof. Apply union of bounds to Lemma 5.5.3 and 5.5.5 over alhd j.

Fix a centerc;. Consider all of the points that are closestitand are not undersampled.
Let w? denote the number of these points. All the incomming edgesitoG, are coming
from these points; therefore based on Lemma 5@57 w-f wWi(1+ ﬁ). On the other

w0 (1+e)w'. Assuming

handwPis (1 e) approximation ofne. Therefore,1 W,
53
that logN is suf ciently larger thare, the lemma follows.

]

Comparing Fractional Weights to Optimal

Next we bound the total cost of the fractional assignment de ned by the ow. According
to the graplhG, any pointp 2 Sandc; 2 C, we letw(p;c;) be the fraction of weights that
got transferred fronp to ¢;. Naturally we havei.,c w(p;c) = 1for anyp2 Sand the
fractional WeightSNif = & p2sW(p;ci) foranyci 2 C.

Lemma 5.5.9. Let f ot be the optimak-means cost on the original s& With high
probability, it is the case that:

a & w(pc)kp ck® 1601+ e)f opr
p2Sc2C

110 Relational Algorithms For K-Means Clustering

Proof. Letf = & ,skp ca(p)kz. Consider anyp 2 Sand centec; such thawv(p;c;) > 0.
Let P be any path fronp to ¢; in G. If node p's only outgoing arc is to its closest center
Ca(p = G, thenP = p! ¢, we haved pc W(p;c)kp ck?= kp cy(pk? Otherwise
assumé”= p! gi! qg! ! g! c¢. Note that the closest centerqois c;. Let D(P)
be the fraction of the original weight dfon p that is given tac; along this path according to
the ow of weights. As we observed in the proof of Lemma 5.5.2, we Have ¢, pk >
kap Capk ka1 Caqpk> ka2 cyqpk k a2 Cygpk>:i1> kg cyq)k. This
follows because for any afe;v) in the graphy is in a donut closer to, than the donut
is in, andv is closer toc, () thanc,).

We make use of the relaxed triangle inequality for squagatbrms. For any three points
X;y;z, we havekx zk?> 2(kx yk?+ ky zk?). Thus, we boundép ck? by

kp Gk?=Kp Cagpy+ Caqy G+ GK?
2Kp Ca(p* Ca(p GikP+ 2kap cik? [relaxed triangle inequality]
2(kp Ca(pk+ keap k)?+ 2kap ck? [triangle inequality]
8kp Ca(pk®+ 2kay Gk? [kp Capk K Carp GuK:

Applying the prior steps to eadh gives the following.

kp ck® 8(kp Capk®+ & 2'kaj Ca(qpk?)
=1

Let P 4(j) be the set of all pathB that reach point using j edges. Ifj = 0, it meansP
starts with pointy. We seek to bound8 . 2! & pop (j) D(P)kG Cq(g;)k?. This will bound
the charge on poirg above over all patP that contains it.

De ne a weight functionD{ p) for each nodep 2 SnC. This will be a new ow of
weights likeD, except now the weight increases at each node. In particular, give each node
initially a weight of 1. Let DJ(p) be the total weight leaving. This will be evenly divided
among the nodes that have outgoing edges fpoe ne Dlo(p) to be the weight incoming
to p from all other nodes plus one, the initial weightpnfSeth(p) to be2D,0(p), twice the
incoming weight.

Lemma 5.5.7 implies that the maximum weight of any pqin D,O(p) 1+ ﬁ. Further
notice that for any it is the case tth.O(Q) = éT=02j apop o(j) D(P). LettingP (p;ci) be
the set of all paths that start pto centerc;. Notice such paths correspond to hpis unit
weight goes t@;j. We havew(p;ci) = apop (p) D(P). LetP denote the set of all paths,
"(P) denote the length of patd (number of edges oR) , and letP(j) denote thgth node
on pathP. Thus we have the following.

5.5 Weighting the Centers 111

A & w(pc)kp cik?
p25Gi2C
= aa a DPkp ck
p2Sci2C P2P (p;ci)
o o o (%) 1 . 2
8a a a DP(a 2'kP(j) caryk?)
p2Sci2C P2P (p;ici) j=0
R :
= 8a DP(a 2’kP(j) cawr(pk?)
P2P i=0
[} +°¥ [} i
= 83 a a 2DPkd cygk’
42Sj=0P2P o(j)

= 84 Do)k cu(gk?

g2S
o 4 2 4

Lemma 5.5.9 follows becausekf 106%klogN, f 20f opt With high probability by

Theorem 1 in [10].
O

Finally, we prove that nding anyD(1)-approximation solution for optimal weighted
k-means on the séC;W9 gives a constant approximation for optimaimeans for the

denote the optimal weightddmeans cost ofiC; W), andf wo denote the optimal weighted
k-means cost ofC;W9. We rst prove thatf,, ; = O(1)f opr, Wheref opr denote the
optimalk-means cost on s&

Lemma 5.5.10.Let (C; W) be the set of points sampled and the weights collected by
fractional assignment. With high probability, we havg,, ; = O(1)f opr.

Proof. Consider the cost of the fractional assignment we've designed; RoC , the weight
is Wif = & p2sW(p;ci). Denote thek-means cost ofv by f = & jos8 c2c W(P; C)kp ck?2.
By Lemma 5.5.9, we have tha}, 160(1+ €)f opr.

Intuitively, in the following we show Wi is close tof . As always, we leCopr denote
the optimal centers fd--means on se. For set of pointX with weightsY : X! R* and a
set of centerZ, we letf (x.v)(Z2) = &,ox Y(X) mingpzkx Zk? denote the cost of assigning

112 Relational Algorithms For K-Means Clustering

the weighted points iX to their closest centers i Note thaff,,; f c.wt)(Copr) since
Copr is chosen with respect &

fwf f (C;Wf)(COPT)

a (& w(pia) gin ko ok [w = & p2sW(pici)]
c2C p2S PT

a & min w(p;c)ke ck?

¢2C p2st2Corr

a & min w(p;c) 2(kp cik?®+ kp ck?) [relaxed triangle inequality]
2C p2steoeT

2fw+ 2f opr 3221+ €)f opr

]

Using the mentioned lemmas, we can prove the nal approximation guarantee.

Proof of [Theorem 5.5.1] Using Lemma 5.5.8, we knm@z (1 2e)wif for any center

. Let CkO bek centers for(C ;W9 that is ag-approximate for optimal weightddmeans.
Let CéPT be theoptimalk centers fo(C;W'), andC3,, optimal for (C;W9. We have
f(C;Wf)(Clg (1+ 2e)f (C;WQ(CQ for the reason that the contribution of each point grows
by at most(1+ 2e) due to weight approximation. Using the same anal;fq@,wg(cofm)

(1+ 2e)f,, ;. Combining the two inequalities, we have

fewn(C) (1+26)%f cwo(C) (1+ 2€)gfyyo
(1+ 2)%gf w9 (Clor) [by optimality off,J (5.4)
(1+ 2e)%gf, 322(1+ 2€)* opr [using Lemma 5.5.10]

Letf(CY= & pzsmincchkp ck?. For every poinp 2 S, to bound its cosminczcl?kp
ck?, we use multiple relaxed triangle inequalities for every cent@ C , and take the
weighted average of them usimg p; c;).

5.6 Conclusion 113

fs(CY= & minkp ok?

p25C2Cx

= & & w(pc)minkp ok [Ac2cw(pic) = 1]
p2Sci2C c2Cy
a a w(p;c)min2(kp ck?+ ke ck?) [relaxed triangle inequality]
p2562C c2¢y

= 2fw+ 2f cwny(C) [& p2sW(p;ci) = w]
2f w+ 2 3229(1+ 2e)%f opr [inequality (5.4)]
2 1601+ e)f opr+ 2 3229(1+ 2€)*f opr [Lemma 5.5.9]

= O(9)f opr

5.6 Conclusion

The next natural steps in this line of research are to determine which other standard learning
algorithms can be implemented relationally, and which other standard learning problems
admit relational algorithms. The hope would be that such algorithms would/could eventually
be implemented in software products like BigQuery ML [big].

Looking further out, one could imagine a middleware of relational algorithms incorpo-
rated into a database that application builders could use in the development of algorithms
for their homegrown optimization problem (which may or may not arise from a learning
application). Thus natural broader research goals are to develop generally applicable algo-
rithmic design and analysis tools, and to determine what are the “right” relational algorithms
to include in such a middleware (because the problem that they solve is a commonly useful
basic building block for the development of other algorithms).

Chapter 6

Scalable Hierarchical Clustering in
General Metric Spaces

6.1 Introduction

In Chapter 4 we have studied the scalable agglomerative hierarhical clustering problem.
In this chapter we revisit the problem in a more general setting, where previous algorithm
designs cannot be directly applied.

For ", metrics, both Abboud et aJ3] and Lavastida et a[100] showed how to use
Approximate Nearest Neighbor (ANN) data structure to improve the running time to be
subquadratic for average linkage. The ANN data structure, constructed based on locality
sensitive hashing (LSH), can be used to quickly nd points that are close to any given point.
In this work we generalize their approach and show how to implement it in any space where
a hashing function like LSH exists so that an ANN data structure can be constructed. Our
rst key technical contribution is a new way to use ANN data structures to compute average
similarity between a pair of clusters.

Many problems, however, are best captured by general metric spaces forAich
schemes do not exis€Consider, for instance, the shortest path metric on a road graph. A
general road network does not have a good ANN and therefore there is no fast average-linkage
algorithm known. To overcome this we could use the latitude and longitude as the Euclidean
location of points and use distance to be proxy for the road network distance. Then we
have a space where LSH and an ANN data structure exists and we can leverage our algorithm.
This has issues though because while the road distance and proxy are often close, natural
obstacles like mountains and rivers may cause two points that are in close proximity in the
Euclidean space are far apart according to the road metric.

116 Scalable Hierarchical Clustering in General Metric Spaces

This phenomenon is common. In several instances we have a well-behaved proxy
metric that approximately preserves distances for majority of point pairs in the input.
For instance, the distances between points after applying dimension reduction like John-
son—-Lindenstraus$p] or metric embedding7q8]. Using these techniques, most pairwise
distances are approximately preserved, but a few of the pairs have high error.

This paper investigate how one can use such proxies to improve running times of hierar-
chical clustering in general metric spaces. One can, of course, directly use them in place of
the true metric to compute a hierarchical clustering in linear time. This approach has two
drawbacks. First it leads to poor solutions as small errors can propagate and lead to a very
different solution. Second, it is brittle and offers no trade-off between the quality of the
solution and the running time. In contrast, we show how to use proxy metrics, ANN data
structures, and the original metric in a way that allows us to keep the subquadratic running
time and only pay a small cost in the accuracy of the nal clustering. Our methods are
applicable to any general metric for which such a proxy exists. The algorithm is evaluated
with theoretical analysis and we further verify its effectiveness in several experiment settings
derived from real-life scenarios. We show that despite the proxy locally distorting the original
metric for some pairs, empirically our algorithm is able to make up for the distortion and
identi es the approximately closest clusters to merge.

Related work. Hierarchical clustering received renewed attention in the community with
a breakthrough result by6{] followed by [58] and [115. [13] and [43] gave stronger
theoretical justi cations. These developments have been covered in previous chapters, mostly
in Section 2.2.

The focus of our work is on improving the running time of hierarchical clustering
algorithms in general metric spaces. Our main tool will be that of locality sensitive hashing
(LSH), rstintroduced by 9], that has had many developments, see for instari@. [
However, as $4] showed formally, not all metric spaces support such Approximate Nearest
Neighbor (ANN) data structures.

For hierarchical clustering speci cally3] recently gave a way to use locality sensitive
hashing to speed up average linkage algorithms. Critically, however, the metho8s in |
only work for "1 spaces. We extend them to use arbitrary ANN data structures by identifying
invariant properties that make speed improvements possible.

Our Contributions In this work we give new algorithms for improving the running time
of hierarchical clustering algorithms.

6.2 Preliminaries 117

1. We show how to use Approximate Nearest Neighbor (ANN) data structures to speed
up running times of single-linkage and average-linkage algorithms.

2. In general metric spaces, when ANN data structures are not available, we show how to
use proxy metrics to trade-off accuracy with running time.

3. We demonstrate such a trade-off empirically, and show how to nd hierarchical clus-
terings within a few percent of optimal in near linear running time.

6.2 Preliminaries

Linkage-based algorithms. Both average-linkage and single linkage have been de ned

in Section 2.2. Here we note that the single linkage algorithm is equivalent to Kruskal
algorithm for computing the Minimum Spanning Tree (MST) on the complete graph where
edge weights correspond to the distance between points. We will also be interested in
the approximate version of Kruskal algorithm, which selects any edge at each step whose
distance is within a factar of the smallest edge between different components. This version
always returns a tree of weight at magtmes optimal [37].

Approximate Nearest Neighbors. A key building block of our techniques will be the

approximate nearest neighbor (ANN) data structure, as is already de ned in Section 4.2.2.

We recall here key facts about LSH and ANN, adopting the new notation in this chapter.
The ANN data structure relies on an existence of a family of hash functonsith

eachh2 H a function fromSto Z, that map nearby points to the same hash value. Let

Bs(q;r) denote the set of points that has distance at masfrom pointqg2 S. We have

the de nition of (r; gr; p1; p2)-sensitiveness:

De nition 6.2.1 ((r;gr; p1; p2)-sensitiveness)For any target distanag point setSand any
guery pointg 2 S, given a constant factay (g > 1), the hash functiom is (r;gr; p1; p2)-
sensitive, if forpy > po:

* 8v2 Bg(q;r), Pih(a) = h(v)] p1

* 8vZBg(q;gr), Pih(g) = h(v)] p2

FamiliesH satisfying these constraints are known to exist fpnorm distances in
Euclidean space fgo 2 (0; 2] [64], and are known not to exist for some metric spaces [54].

Using a family of such functiond we can construct a data structure for approximate
nearest neighbor queries.

118 Scalable Hierarchical Clustering in General Metric Spaces

As we mentioned, such a family of functiokls might not exist for a general distance
functiond : S S7! R* we are considering. However, assume we hapeoxy metric
d’: S S7! R* that approximated by a factor ob 1. Up to scaling, we assume that for
any pair of pointgx;y)2S S % %2(;;’)) 1. If there exists an ANN data structure for
d® usingd®as a proxy ford and applying 4r;g%; p1; p2)-sensitive function o®gives a
(r;:b g%: p1; p2)-sensitive function fod. Then, we can combine the proxy metditand its
LSH function to construct a data structure that worksdas well.

De nition 6.2.2. For any set of point® S, Qp(q;r) is a valid(r; g)-Near-Neighbor (NN)
guery, if it satis es these conditions:

» If Bp(q;r) = 0, thenQp(q;r) returns 0.

 If Bp(q;r) 6 0, thenQp(q;r) gives a poinpp6 g2 P, such thad(p;q) g r.

We call the point found by an approximate NN-quenmyeaghbor.

[79] and [64] described the way to build a data structiréS;r; g) that allows one to
answer(r; g)-NN queries on any subsBtusing(r; gr; p1; p2)-sensitive hashes. Importantly,
the queries run in time sublinearji§.

We letn = j§ andH(n) denote the time needed to construct a hash function. By the
scheme described i®4], D (Sr;g) is constructed by concatenati@flogn) hashes and
repeating forO(n" logn) times. Thus the construction time for(S;r;g) is bounded by
O(n" log?nH(n)), wherer = :28223 2 (0;1).

Moreover, assuming it takes constant time to insert, delete or access an arbitrary point
in any bucket, the query time @p(q;r) is T(n;g) = O(n" logn), while the insert/delete
time isD(n;g) = O(n" log®n). We note that for a xedp;, p, decreases agpgrows, hence
makingr a function ofg.

6.3 Warm-up: Using ANNSs to Approximate Single Linkage

In this section, we give a brief description of how an ANN data structure can be used to
implement single linkage clustering.

Both [79] and [35] proposed algorithms that uge g)-Near-Neighbor to compute an
Approximate Minimum Spanning Tree. Here we provide a modi ed version that is more in
line with our average-linkage algorithm described in the next section.

The goal is to implement the approximate variant of Kruskal's algorithm. Initially the
treeT is empty. The algorithm iteratively selects an eégend adds to td@ if (1) T [f eg
does not form a cycle and (2) it is within a factor(df+ e) of the cheapest such edge.

6.3 Warm-up: Using ANNSs to Approximate Single Linkage 119

We now re-interpret this approach in the language of single linkage. Initially all points
are clusters. In each step, clust€sandC; are merged ifninazci;bzcj d(a;b) is at most
(1+ €) minigg jomingacghac,od(a;b).

Let Sbe the set of input points. Without loss of generality, assume the smallest interpoint
distance idl and theaspect ratiois D= max;2sd(u;v). We want to nd a pair of clusters
to merge. We x somal > 0O, and proceed by merging all clusters with distance at rmost
between them. When no more merges are possible, we increhigrd (1+ e) factor and re-

We will nd edges with weights at moggd between components and merge components that
share such an edge. Itis easy to see that this resultElitt &) g-approximation of the MST.

How then to use the ANN data structure to nd clusters to merge? For a threghold
construct a data structul2 = D (S;d;g). Pick any componer@; 2 C, remove the points in
Ci from D, and add all points i to a query list. Query the rst point in the lisp, using
the currenD.. If the query returns a neighbgy letCj be the component containirng Add
edge(p; q) to the treelT. Then add all points i€; to the query list and remov@; fromD.
Repeat until the query returns an empty setdpthen use next point in the query list and
repeat. If the query list becomes empty but there are components that haven't been queried
before, pick an arbitrary component and do repeat the process again. The querying stops
whenD becomes empty.

The de nition of the data structures immediately yields the following theorem.

Theorem 6.3.1.With high probability, the algorithm returns@ + e)g-approximate mini-
mum spanning tree or singe-linkage tree, and ha&é l©gDlog?n" H(n)) running time.

Proof. First we analyze the approximation ratio. Notice that after all merges for thredhold
there is no edge of weight at masthat can be added without creating a cycle. Indeed, say
such an edgép; g) exists. Assume gets added into the query list befajeConsider the
time whenp is deleted from the query list} is not in the same component wigh so since
d(p;g) d, queryingp should have returned another point gnshould not be deleted at
this time, contradiction. Thus for threshaldwe have guarantee that the shortest edge that
could be added has distance at Iefg%t. Since all queries ar@; g)-NN queries, the edges
found have weights bounded by, giving the approximation ratig(1+ e).

Now we analyze the running time. There &vg;, D= Q(% logD) threshold values in
total. Fix any threshold valué. The construction of data structure takeg’n n’ H(n).
For every pointp, every query ofp either results in merging the component containing
with some other component, or deletipgrom the query list and thus never queryipg
again for the current threshottl So the total number of queries performed for any point in
Sis bounded byD(n), takingO(nQ(n;g)) = O(n**" log?n) time in total. Any pointp2 S

120 Scalable Hierarchical Clustering in General Metric Spaces

gets deleted once from the data structure, so the algorithm per@msleletions, taking
O(nD(n;g)) = O(n'*" log?n) time. The time spent on adding and deleting points to the
query list can be i©(n). AssumingH(n) = Wn), the data construction time dominates the
run time of algorithm, thus the run time @&(n" log®nlogDH (n)).]

6.4 Main Algorithm for Scalable Average Linkage

We now expand our method to show how to use ANNSs to construct a provably approximate
average-linkage for input using general metric distance scores. Similar to the single linkage
case, the average linkage algorithm will consider a geometric series of threshofds

the form(1+ e)X for k 2 [dogDe]. For any xedd, the algorithm merges clusters within
g(1+ O(e))d of each other.

Like what we have seen in Chapter 4, the algorithm uses ANN to iteratively merge
clusters with approximately smallest average distance for each threshold. Naively computing
the distance between two clusters requires comparing the total distance of all pairs of points
in the two clusters; ANN helps us avoid this quadratic dependence. Howevetugter
embeddingtechnique described Chapter 4 will no longer apply here as the points are no
longer assumed to be in a Euclidean space, while the embedding requires knowing the
coordinates of the input points.

Algorithmic structure. We now detail how to use ANNs to nd clusters with average
linkage distancg(1+ O(e))d or smaller.

Let C be the current set of clusters. We represent every clustérbg a point in the
cluster that is close to the cluster center. (If points were in Euclidean space, we would use
the centroid of the cluster.) L&{(C;) be the point irC; we use to represent this cluster, we
de ne this formally in the next section. We will maintain a data structure of the poif@s)
for C; 2 C. This data structure allows for queries of the fa@¢f (C;);r) for ar close tod.

The query nds all pair<;;C; such thad(f (Gj);f (Cj)) gr. Intuitively, the mappind is
chosen such that for any two clusters, the distance between the mapped points preserves their
average distance up to some constant factor.

Unfortunately, it is hard to selectfasuch thad(f (Cj);f (C;)) approximated(C;;C;) for
any pair of cluster€;;Cj. For example, consider two clusters with overlapping centers, but
points are close to the center in one of them, and far away from the center in another.

To make up for the information loss, for every clugie2 C, we maintain two values:
one isf (C) and the other is (C) = jc%jévzq d(v;f (G)). Intuitively s (C) represents the

6.4 Main Algorithm for Scalable Average Linkage 121

"deviation" of points inC from the centef (C). Given any two cluster§;;C; 2 C, we use
thed(f (G);f (Cj)) ands (C) to approximate the average distance &ugC;).

At a high level, the following properties should hold fof) ands (). These properties
will allow us to identify clusters whose average linkage distance is small enough to merge
them. (Formally, we will need slight variations on these, see the paragraph on Construction
of Center and Deviation for exact details.)

1L d(f (G)if(C))) s(C) s(C) Avg(GiC) d(f (G):f (C)+ s(C)+ s(Cy).
2.s(G);s(Cj) c Avg(G;;C;j) for a constant.

We now describe how we nd which pairs of clusters can be merged and which ones
we should not consider merging. For any clu€igemwe use the deviation ters)(Cj) as a
lter. Observe that ifs (Cj) > cd, thenAvg(C;;C;) > d for anyC; by the above property.

This implies that n&; with s (C;) > cd needs to be considered for merging with any other
cluster.

We thus remove all such clusters from consideration. Since the deviation terms for all
remaining clusters are small, property one will allow the algorithm to merge any pair of
clusters wherél(f (Gj);f (Cj)) is small compared td. To that end, as stated before we build
a nearest neighbor data structure based on the do{@}3 for all remaining clusters.

There is one problem remaining. After a merge the new cluster needs to be considered
for subsequent merges. The question is how to adapt the data structure ef ciently such that
the query is still valid? There are two steps involved: 1) nding a representative point for the
new cluster and measuring deviation, and 2) deleting the old clusters and inserting the new
cluster into the data structure.

For both, we will develop a fast algorithm that constructs a randomized approximation to
f ands.

Construction of center and deviation. For each cluste€ in C we show how to construct

f (C) ands (C). The purpose of this section is to establish that these quantities exist for every
cluster such that they have the requisite properties. Algorithmically, this section will allow
us to discover any clust€rto discard based os(C). For the kept clusters we will put their

f (C)'s into the data structure, then use ANN queries to decide which pairs to merge.

If jCj % setf (C) = argmin,,cAvg(C; p) for some constari< e < 1to be set later.
This takesO(jCj) time to determine. Now, considérsuch thajCj 1. To begin, we
calculate(f (C);s (C)) as follows. Samplen points uniformly fromC to get a sampl€®
Find the pointv 2 COsuch that p2cd(V; p) is minimized. Set (C) equal tov. Then set
s (C) = Avg(C;f (C)) = Avg(C;v).

122 Scalable Hierarchical Clustering in General Metric Spaces

We now aim to show the properties regardfngnds .

Lemma 6.4.1.If m= Q(%Iogn), with high probability,s (C) = Avg(f (C);C) (1+
1—16) minp2sAvg(p;C) 2(1+ e) minpzsAvg(p;C) fore 0.5.

Proof. Let ¢y be the point that minimize&vg(C;cp) in S. Let Bc(cp;r) be a ball around
Co of radiusr, which contains the set of points @with distance less than somndrom
Co. Correspondingly leBc(co;r) denote the ball with same center and radius, but includ-
ing its boundaries. For any radius, to simplify the notation we denote the two balls by
Be andBe respectively. We can nd & such thaiBgj < €jCj, butB. €jCj. We will
prove any point inBe is a good center fo€. For any pointg 2 Be, by the triangle in-
equality,a pocd(p;d) & pocd(p;co)+ & p2cd(g;co) & pocd(p;co)+ jCire. Notice that
& p2cd(p;Co) = & 2B, d(P;Co)*+ & pzg. d(PiCo) (1 €)jCire, sinced(p;Co) reif p2ZBe.
ThereforejCire 1558 pacd(pico), giving us& pocd(pid) (1+ 115) & poc d(p;co)
2(1+ €)@ pacd(p;co), so AvgC;a) 2(1+ e) Avg(C;co).

This implies that it is suf cient to sample a single point frdg. There areejCj points
in the ballBe. Every time we sample we haegprobability of getting a poinp such that
Avg(C;p) 2(1+ e) Avg(C;cp). Chernoff bounds ensure a such a point is sampled with
probability at least 1 ;. O

The prior lemma immediately gives the following corollary.

Corollary 6.4.1.1. For any clusteIC; with high probability ifs (C;)) 2(1+ e)d then given
any other cluster G Avg(C;;Cj) dfore 0:5.

The corollary ensures that §(C;) > 2(1+ e)d then w.h.p.C; has average linkage
distance greater thahfrom every cluster irC. Thus,C; need not be considered for a merge.
Moreover, since average linkage distance increases as clusters get merged, we never need to
considelC; for thisd.

The following lemma is a direct application of triangle inequality of average distances.

Lemma 6.4.2. For any two clusters Cand G,
d(f (G):f (Cj)) s(G) s(Cj) Avg(G;Cj) d(f (G):f (Cj)+ s(C)+ s(Cy)

The following run time lemma bounds the running time of the constructien ahdf .
Lemma 6.4.3. For a cluster C, calculatingf (C);s (C)) takes Q%jCj logn) time.

Proof. It takesO(ZjCjlogn) time to samplet logn points, andD(2jCjlogn) time to measure
the average distance frogito every one of them, picking the center and calculating deviation.
0

6.5 Correctness and Run Time of Average Linkage Algorithm 123

Formal algorithm. We present the formal algorithm which follows the intuition given in
the previous section and the developed de nition$ @nds .

See Algorithm 4 for the pseudocode. As stated, the algorithm considdigeometrically
increasing values. Fid = (1+ e) 1 andC to be the current set of clusters. Initiatly= 1
andC has a cluster for each individual point. Li&tbe the set of centers of clusters with
small deviationR = ff (C) j C2C;s(C) 2(1+ e)dg.

The setP contains centers of clusters @ for which there may exist another cluster
within average distancg. We maintain a data structure that suppérig)-NN queries orb
for a chosenm = O(d), denoted byDy. While B is not empty, we pick a poirit(C;) from
it and use it as a query Dk to nd a nearest neighbor. If there is no such pofinfC;) is
discarded fronB andDy. Otherwise, if the data structures returns another goi@y), we
mergeC; andCj, adopting the merging procedure proposed by [3]. This new point is added
to B, andDy,.

For ef ciency, the pair(f ();s () is not recalculated at every merge. Rather, an update
happens after a merge only if the cluster size grows signi cantly. We maintain a quantity
s(C) which denotes the size of clustéithe last timgf (C);s (C)) was recalculated. When
we mergeC; andC; into a new cluste€, if jCj (1+ h) max s(C;);s(Cj)g for some xed
h, the center and deviatiqii (C);s (C)) are recalculated, arg{C) is updated. Otherwise
we use the center and deviation of the cluster with biggé¢nvalue. See Algorithm 5 for
details about merging.

In the next section we provide performance and running time guarantees for Algorithm 4.

6.5 Correctness and Run Time of Average Linkage Algo-
rithm

The following theorems show that the algorithm approximates the decision of average-
linkage up to a constant factor, and the algorithm runs in near-linear time. The value of
asdescribed in the data strcutre in the preliminaries.

Theorem 6.5.1(Running Time) Letn= j§ andD be the aspect ratio is. The run time of
the algorithm is @2n' log?n logD H(n)).

Proof. We rst analyze the time needed to construct the data structures. theédsoglé
number of thresholdi's. For everyd, it takesO(n" log?nH(n)) time to build the data
structure. The total time to construct each of these data structures is bourﬂ(agi’r'?)yog2 n
logD H(n)).

Now we analyze the total time the algorithm spends querying the data structure or deleting
a point. These queries occur to discover whether a cluster can be merged. If a cluster cannot

124 Scalable Hierarchical Clustering in General Metric Spaces

Algorithm 4 Main Algorithm

1. FASTAVERAGEL INKAGE(S, g;€):

2. C ff pgjp2 Sg{Make leaf clusters.}

3:f(fpg) p,s(fpg) O,s(fpg) 1forp2 S{lnitialize center and deviation.}
4: for k= 1;2;:::;l09;, . Ddo

5 d (1+ek!?

6: R f f(C)forC2C:s(C) 2(1+ e)dg({Filterthe clusters.}

7. r 51+e)d
8
9

Dy D(R:r;0)
while Dy is not emptydo
10: Get an arbitrary (Cj) from R..

11: Deletef (C) from Dy andR;. {Maintain the data structure.}
12: while Qp (f (Gi);r) 6 0do
13: f(C) Qg(f (G):1)
14: X (1+ e)®5g+ 4)
2
15: h 55
16: MERGHG;;Cj; Di; R h)
17: end while
18: end while
19: end for

20: Return the resulting tree.

Algorithm 5 Merge Algorithm
1: MERGHG;;Cj; Dy; R h):
if jGij+ JCjj (1+ h)max S(Ci);s(Cj)g then
Update(f (Gi[Cj);s (Gi[Cj)) {Update only when cluster size increases by a factor.}

w N

SCIC) | Cj+iCj

. else

if S(Gj) s(Cj) then
(F(GLCis(GLCy)) (F(C)is(C))
S(G[Cj)) s(G)

else

100 (FGLC)s(GLC) (F(C)is(Cy)

1 S(G[C) S(C)

12: endif

13: end if

14: Deletef (C;j) from Dy andR;, insertf (Ci[C;) into Dy andR only if s (Ci[Cj)

2(1+ e)d.

© © XN Ok

N

be merged, its corresponding point is removed from the data structure for the given threshold

6.5 Correctness and Run Time of Average Linkage Algorithm 125

d. Thus the total number of queriesGl(%(Iog D)n). Every query take®(n" logn) time. In
total more time is spent constructing the data structures.

Next, we analyze the total time it takes to update the data structures. By Lemma 6.4.3,
every time we update the center and deviation for cIL@ﬁetakesO(%jCj logn) time. The
amortized cost on every point @is O(% logn). Pick any pointp 2 S, every timep receives
an amortized cost c®(% logn), the size of the clustep belongs to grows by a factor of
1+ h whereh = % Thus the total merging and updating cost on p@irg bounded by
O(logy,h(n) Zlogn) = O(slogn %logn). This is bounded byD(Zlog®n). Taking the
sum over all points irs gives a total update time Gij(glgnlog2 n). This is a lower order term
because it is bounded by the time to construct the data structuién)i= Wn).

O
The next theorem bounds the approximate ratio of the algorithm.

Theorem 6.5.2(Approximation GuaranteesYVith high probability, Algorithm 4 gives an
approximation ratio of 5g+ 4)(1+ O(e)) for average-linkage and completes the hierarchical
clustering tree.

Our remaining goal is to prove Theorem 6.5.2. The theorem would be immediate from
Lemma 6.4.2 ifs andf were updated every time two clusters were merged. However, these
are not always updated to ensure an ef cient running time. Instead, we show the following
key properties of the algorithm. Intuitively, they guarantee that if the cluster size does not
grow signi cantly, "borrowing" the center and deviation from a cluster it is merged from will
only cause the distance to be slightly distorted. The rst property is critical and what allows
us to derive the second and third.

Lemma 6.5.3(Properties of Merging)During any iteration of Algorithm 5 for some xed,
these properties always hold.

1. Forany clustelC 2 C, use® to denote the subcluster 6fwhose center and deviation
are used byC. For any clusteiC; 2 C, and another cluste€j 6 C; 2 C. Then we have
the following two equations,

(1 S8 avgdic) Avg(GiCy)

(1+ L G180 avg(®;:C) (6.1)

126 Scalable Hierarchical Clustering in General Metric Spaces

and
iCii i
(1 JC'JJCJ:IJGJ(J de;” JJ)Avg(@l ®) Avg(G;C))
1+x jGjj &), . 1+xjCjj | @] 5

2. At the end of the iteration, no pairs of unmerged clusters have average distance less

d
than e

3. During this iteration, every pair of clusters we merge has distance at (dgst 4)(1+
e)3d.
Notice that Theorem 6.5.2 is a corollary of the lemma. The following proof of this lemma
follows logic similar to that of Lemma A.6 in [3].

Proof of [Lemma 6.5.3]

We prove this by induction. Assume we choose to mékgeith C; in thek-th iteration,
for thresholdd = (1+ e)k 1. Assume all properties hold in all iterations fbe= (1+ e)t for
t=10;1;:::;k 2, and all the time in the current iteration, until the merge. Speci cally, we
assume the algorithm nds the p&r andC; correctly before merging them. LEt be the
current partition ofS. We will prove that after the merge @f andCj, 1) the approximation
ratio in property one still holds, 2) the next pair of clusters we found are close to each other,
and eventually 3) there will be no clusters with average-linkage Iess(—ﬁlﬂg’a by the end
of iteration for current threshold.

Notice that the following always holds. Let= (1+ €)®(5g+ 4). For any other cluster
C2C,Avg(Gi;Cj) xminf Avg(Gi;C); Avg(Cj;C)g, and Avd®; &)
X minf Avg(@;@);Avg(@j;@)g. This will be used in the proof.

Since we choose to merge andC;j, by third property in Lemma 6.5.3 we must have
the following by inductionAvg(Ci;Cj) (1+ €)3(5g+ 4)d. We also havé\vg(8;®))
(1+ e)(5g+ 4)d. This is because thg; g)-NN query picked the paif®;®;). Assume the
clusterC comes from merging?;:::;C° wheref C?;:::;C% are clusters in the partition at
the end of the iteration for the previous threshg@%.

We rstproveAvg(Ci;Cj) x Avg(GCi;C). By property one, the average distance between
Ci and any 0(:1; ::Cls at Ieastw By an averaging argument we hateg(C;;C) =

at:quqjé\j/g(c.,q% @ e)3 Lettingx = (1+ €)8(5g+ 4) givesAvg(Ci;Cj) x Avg(C;;C).
Likewise we have Av(C;;Cj) x Avg(Cj;C).
Next we proveAvg(@. :0)) xAvg(8;®). By property onevg(8;®) (1 €)2Avg(Ci;C)

(1 e)? @ e)3 ' (1~fj—e)5' Since Avg(@.;@j) (5g+ 4)(1+ e)d, the inequality holds.

6.5 Correctness and Run Time of Average Linkage Algorithm 127

Now we prove the property one still holds after the merge.@%t G| Cj be the new
cluster. Assume rst thatf (C%:s (C%) got recalculated. The®®%= C%5(C% = jC°f and
for any clusteiC, Avg(6°9C) = Avg(C°9C). Both Inequality (6.1) and (6.2) are reduced to:

a 19 @J)Avg(Coo@) Avg(C®C) (1+ 1ex G) @J)Avg(Cood?)
By induction we have

1 9 @’)Avg(q & Agcio X @’>Avg(c. &)
and

@ 91 ngei®) agcio) ar X 9L e

Taking the weighted average gives the inequality we want.

For the following argument, assume tfi&(C°Y; s (C%) is not recalculated. WLOG, as-
sumes(C)) S(Cj) and we used the center of deviationGf so®®& &, Now, given another
clusterC 2 C, we have thativg(C;Cj) Avg(Gi;C)+ Avg(Ci;Cj) (1+ x)Avg(C;;C) by
triangle inequality of average distances. We rst prove Inequality (6.1). That is,

1+ x jCjJ @j

(1 jqj cj:j dgj)Avg(co?@) Avg(ClC) (1+ —) Avg(C™®)
And
(1 ’-—Cofcjoj)@?)Avg(€®°C) Avg(c™@C) (1+ 1J;X JCO?CJOP@O?) Avg(€0C)

The former inequality can be proved in the same way as the case @ffiseecalculated by
taking weighted average over two inequalities@andC;. Thus we only need to prove the
second one. This is done by expanding the expressi@ngﬂCO?@) as weighted average of
Avg(Ci;@) andAvg(Cj;@) and then leverage the fact thatg(Cj;C) (1+ x) Avg(G;;C).

128 Scalable Hierarchical Clustering in General Metric Spaces

For upper bound,

jGijAvg(Gi; C) + jCjj Avg(Cj;C)

Avg(C%C) = ARt L
9(CC) jCii+ JCjj
iCij Avg(Ci;C) + iCjj(1+ x) Avg(C;; C)
iGij+ iCjj
jGij + JCjj(1+ x) 1+ xjGj S(C)
M ot el 1+ - Avg(®:C
iCij+ iCi] (e jCj) Ag(&:0)
XjCijj 1+ xjGj S(C)
=(1+ ————)(1+ — Av G,C
I Eiric’t e g A&
We prove that
XjCjj 1+x jGj S(C) 1+x jc% <%
(JCiJ+JCjJ)(e iCij) e jCOp 63)
We have:
1+x jGj s(G), xiCj 1+x e
1+
S T e Tieivic YT e 1ex)
1+x jGj s(C) XjCijj
=(1+ — +(1l+e)——————
(e iCij ()JCil + JCjJ)
XjCij 1+x JCjis(C) . SC) 1+x e 1+x jCjis(C)
We pr‘:"etha(“ &) ciFici e iGCrG): SNCiG) TTex e [GIGGHIS)
1+ iCij xjCii
x e jCiJj+JjJij (1+ e)m—jlcﬂ. Therefore,
1+x jGj 9G) XjCijj
Avg(C%®C) Avg(®:C) (1+ A (14 @)
g(C*C) 9(8;C) (S iCi ()JQJHC”)
1+x jGj S(G), 1+x jCjs(C)
Avg(®:C) (1+ T
GO (e iCij e jGij(jGij+ iCjj)
1+ x jGj+iCjj S(C)
= Av C)(1+ —
9GO0 = e e

1+x jC% s(Cj)
e

= Avg(&%C)(1+ cop)

6.5 Correctness and Run Time of Average Linkage Algorithm 129

For lower bound,

jCij Avg(Ci; C) + jCjj Avg(Cj; C)
jCij + ICj]
jGij Avg(C;; C)
iCij + iCjj

Avg(€¥C) =

S(G) G

jGij jGij+jCjj
Vo) 1Gij + |Cj]

jC%® s(C%
jcp)

Avg(®;C)

= Avg(®®%) (1

Thus we've proved that the Inequalit§.1) holds after the new merge. Using the same
logic, we can prove Inequality (6.2).
For upper bound,

jGij Avg(C;; C) + JCjj Avg(Cj;C)
JCij + ICjj
jGij Avg(Ci;C) + jCjj(1+ x) Avg(C;; C)
jiGij+ iCjj
JGij + JCjj(1+ x) (1+ 1+x jGj s(C)
JCij+iCjj e iCij
e 7 5 S gty

Avg(C%C) =

)

e
Plugging Inequality (6.3) into the RHS gives us:

L X jC% s(C%
e jCo?)

1+x jCi s(C) .
(1+ = i) Avg(8; ®)

Avg(c®c) (1

130 Scalable Hierarchical Clustering in General Metric Spaces

Table 6.1 Comparing the performance of different average linkage methods, New York

Sample Size | 169 330 414 493 615 888 1141 1855

Aprx Ratio, mean, Proxy-AL | 1.923 1513 1.939 1.545 1.854 2.083 2.450 1.746

Aprx Ratio, mean, Proxy-Hash-AL| 1.402 1.503 1.479 1.640 1.656 1.636 1.784 1.780

Aprx Ratio, 90%, Proxy-AL | 3.705 2.096 3.678 1.813 2.865 3.913 3.240 2.372

Aprx Ratio, 90%, Proxy-Hash-AL | 1.925 1.975 1.973 2.268 2.234 2.188 2.452 2.407
Aprx Ratio, max, Proxy-AL | 21.391 13.930 28.233 20.042 54.844 44783 228.615 42.991

Aprx Ratio, max, Proxy-Hash-AL | 2.871 2.677 3.046 3.332 2.932 3.389 3.762 3.902

Global Obj, Proxy-AL | 0.999 0.989 0.999 0.998 0.999 0.994 0.963 1.001

Global Obj, Proxy-Hash-AL | 1.004 0.970 0.985 0.975 0.999 0.987 0.966 0.971

For lower bound,

JGij Avg(G;i;C) + |Cjj Avg(Cj;C)

Avg(C%C) = LA i
9(C0) iCi+iCij
iCij Avg(Ci;C)
iCii+iCij
iCj s(G) iCi_s(C), G
9EES i) IS G+ i)

- avge:) X&) O IGI
AG(E:E) iGj IC JGij+Cjj
AG(EE) IGj+]Cj) IC)

jc% s(C% iCi s(C)
oy %t g)

= Avg(8%0) (1

The rst property directly impliesvg(Ci;Cj) = (1 e)?Avg(®;®)) for all pairsC;;C;j 2 C.

For the second property, assume there is @%C?) whereAvg(CP C?) ﬁz So
Avg(@&) d. This implies that the deviatiors(®);s (&) 2(1+ e)d, so the two
centers (&9);f (&%) cannot be deleted until the query returns empty set. Sigéd? &)
d,d(f (8);f (&) Avg(@)+ s @)+ s(E) 5(1+ e)d. Sincer = 5(1+ e)d, a valid
r;g-NN query can't return empty set fcbr(Ci() andf (CJQ), contradiction.

For the third property, since after the mer@‘,@]@) is returned by a valiqr; g)-NN
query where = 5(1+ e)d, Avg(®&9) (1+ e)(5g+ 4)d. Using the rst property gives
us Avg(CPCD) (1+ e)3(5g+ 4)d.

[

6.6 Experiments

This section demonstrates the empirical effectiveness of our algorithms for both single
linkage and average linkage clustering.

6.6 Experiments 131

Fig. 6.1 Subsamples for New York, Bay Area and Great Lakes

Recall that one of our motivations was that ANNs may not exist for general metrics, but
often times there are well-behaved proxy metrics available; this is the setting we explore in
this Section.

Our single linkage and average linkage implementations are named Proxy-Hash-SL and
Proxy-Hash-AL, respectively. The goals of this section are to establish the following:

» Show that both Proxy-Hash-SL and Proxy-Hash-AL have strictly sub-quadratic running
times.

» Show that using single/average linkage directly on the proxy metrics results in poor
guality, yet Proxy-Hash-SL and Proxy-Hash-ALhave strong performance. This will
show that they new algorithms are able leverage the proxy metrics to achieve scalability,
while overcoming the shortcomings of using the proxy metrics directly.

» Demonstrate that using Proxy-Hash-SL and Proxy-Hash-AL, we can nd solutions with
only a small loss in quality compared with the solution found by using single/average
linkage on the real metric.

Implementation Details. We implemented the algorithms in Section 6.3 and 6.4 with
slight modi cations. While building the ANN data structure for querying, we set the number
of concatenations and repetitions to be constant. The values of the constants are tuned
according to different data sets.

To improve show the trade-off between accuracy and running time, while querying a point
using the data structure, we use LSH onpinexy distanceo identify the set of candidates
that are nearest neighbors to the query point, but then ugedhdistanceto pick the closest
candidate. We only take a constant number of neighbors from the point's LSH bucket and
pick the one with smalleseal distancdrom the query point. If the true distance is below
the thresholdly, we merge the clusters.

132 Scalable Hierarchical Clustering in General Metric Spaces

Data Set | Nodes Edges
New York | 264,346 366,923
Bay Area | 321,270 400,086

Great Lakes 2,758,119 3,442,829

Table 6.2 Dataset Details

Table 6.3 Ratio between total road distance of the tree and real MST, New York

Sample Size\ 169 330 727 1166 1825 3765 6710 14428 28985
Proxy-SL | 1.760 1.304 1554 1.784 1412 1805 1.753 1.883 1.511
Proxy-Hash-SL| 1.035 1.016 1.021 1.024 1.027 1.030 1.029 1.022 1.024

Experiment 1: Road Maps. We use datasets from The 9th DIMACS Implementation
Challengé. The data les include the road networks of different cities. The data is given
in graph format where nodes represent end points of roads, while edge weights represent
the road lengths. Each node's latitude and longitude are provided. We choose three areas to
study: New York, Bay Area, and the Great Lakes, see Table 6.2.

Based on the road network, the distance between any two points is the length of shortest
path between them, termedad distance This is correlated but not equivalent to the
Euclidean distance calculated using lat/long values. We remark that the true metric is a
general metricand we will use the Euclidean metric as a proxy.

Table 6.4 Ratio between total real distance of the spanning tree and real MST, Seizure

Sample Size| 100 200 400 800 1600
Proxy-SL | 1.284 1.331 1.416 1.462 1.521
Proxy-Hash-SL| 1.141 1.158 1.176 1.184 1.209

The original datasets have millions of points, so it is impractical to nd all pairwise
shortest-path road distances to compute the groundtruth average linkage clustering. We
perform the following subsampling method: for each city, we draw a rectangle at a random
position on the map. Then we take the subgraph induced by all points in this rectangle. If the
subgraph is not connected, we take the biggest connected component. Figure 6.1 contains a
map of all points for every city, and the boxes repre&amtctangles drawn for some given
lat/long lengths. This allows us to get subsamples with many different sizes and study the
ef ciency of our methods.

Experiment 2: Random Projections of High-Dimensional Datasets\We consider
Euclidean datasets in a large number of dimensions and use a Johnson-Lindenstrauss (see,
for instance, Dasgupta and Gup2] dimension reduction technique to reduce the number

thttp://users.diag.uniromal.it/challenge9/download.shtml

6.6 Experiments 133

Table 6.5 Comparing the performance of different average linkage methods, Seizure

Sample Size 100 200 400 800 1600

Aprx Ratio, mean, Proxy-AL| 1.723 1.955 2.141 2.651 3.159
Aprx Ratio, mean, Proxy-Hash-AlL 1.210 1.240 1.284 1.348 1.623
Aprx Ratio, 90%, Proxy-AL| 2.549 3.053 3.386 4.272 5.315

Aprx Ratio, 90%, Proxy-Hash-Al} 1.438 1.456 1.504 1.567 2.120

Aprx Ratio, max, Proxy-AL| 5.836 5.958 8.851 13.501 22.921

Aprx Ratio, max, Proxy-Hash-Al 1.763 1.757 1.891 1.969 2.973
Global Obj, Proxy-AL| 0.993 0.991 0.993 0.986 0.990

Global Obj, Proxy-Hash-AL| 1.012 1.013 1.018 1.013 1.012

of dimensions. We consider the distance between the original high-dimensional points as
the real distance, and the distance between the projected data points as the proxy distance.

We use theseizure data set from UCI data repositétyThe dataset hak79dimensions
and11500points, with every point a recording of brain activity. We project the daté to
dimensions and take subsamples of $i0, 200,400,800, 1600 from the original data set
and test Proxy-Hash-SL and Proxy-Hash-AL. For each of the data sizes wedakeamples,
and take the average of both performance and running time on these.

Performance Metrics. We use the following metrics to measure the performance of
hierarchical clustering trees. For MST (single linkage), we use the objective in the MST
problem. This is the total weight of the edges chosen in the spanning tree.

For average linkage, we use two metrics. Given a sequence of cluster merges, at every
merge, using the real distance, we calculate the ratio between the average linkage of the
merged clusters and the minimum average linkage. We call this metrapfireximation
ratio. Assuming there are points, a hierarchical clustering tree gives 1 such ratios. For
both datasets we show the me86%-percentile and the maximum of all approximation
ratios. For vanilla average linkage on tteal distancethis ratio is alwayd. Ifalln 1
ratios are close td, the hierarchical clustering tree closely resembles the tree produced
by average linkage. The other metric we use is the recently developed global objective for
hierarchical clustering tree introduced in Cohen-Addad et al. [58].

Running Time. The bottleneck in all computations is the time spent on computing true
distances between points. For the road map data set, every computation involves nding
the shortest path between a pair of points; andsézure |, it is time consuming since
the original data is high-dimensional. To give an implementation and problem independent
view into the performance of our methods, we report the total numbesabfdistance
computationgnade by Proxy-Hash-SL and Proxy-Hash-AL.

2https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition

134 Scalable Hierarchical Clustering in General Metric Spaces

(a) New York (b) Seizure

Fig. 6.2 Growth of distance computation, Proxy-Hash-AL

Results.We rst compare the performance of directly using proxy distance with using
Proxy-Hash-SL and Proxy-Hash-AL. Namely, we rst construct a hierarchical clustering
tree by running MST/average linkage on the dataset using proxy distance as the distance
metric. We use “Proxy-SL” and “Proxy-AL” to refer to the results produced in this way in all
tables and gures. Then we construct another tree using our implementation of Proxy-Hash-
SL/Proxy-Hash-AL. Then we compare the performance of these two hierarchical clustering
trees using the proposed performance metrics.

For road map dataset, Table 6.3 compares the spanning tree found by Proxy-SLand
Proxy-Hash-SL. The entries show the ratio of total weights of the spanning tree to the real
MST (lower is better). We report the results o= 0:2 in Proxy-Hash-SL. The results are
guantitatively similar on all three datasets, we only show results for New York here, and
postpone the other two cities to the Supplementary Material.

Table 6.1 compares the performance of hierarchical clustering tree by running average
linkage directly on the proxy metric and Proxy-Hash-AL for road map in New York. The
rst column shows the performance metric we are using. Here “Aprx Ratio” refers to the
approximation ratio, where “mean”, “90%” and “max” refers to the m&@9o-percentile and
maximum of all approximation ratios for the tree, respectively. Following that, “Proxy-AL"
or “Proxy-Hash-AL" speci es which algorithm we are using for that line in the table.

Performance analysis. The new algorithms perform signi cantly better than building a
tree directly from the proxy metric. Naively building the MST on the proxy metric has poor
performance, over 50% degradation in quality. At the same time Proxy-Hash-SL gives much
better results, with only 1-3% loss at= 0:1 to around 7-10% a¢ = 0:5. This result is
independent of the graph size, but lovearalues in Proxy-Hash-SL lead to higher quality
results. See the Supplementary Materials for more discussion about the impact of sample

6.6 Experiments 135

size anck on the performance of Proxy-Hash-SL. We note that in general the performance is
robust to small changes @

The results extend to average linkage. In Table 6.1 and 6.5, note that both Proxy-AL
and Proxy-Hash-AL perform well for the global objective in Cohen-Addad ¢58]. The
degradation is negligible (about 1%) compared to the real average linkage tree. However,
the statistics of approximation ratios show that on both datasets, Proxy-Hash-AL often beats
Proxy-AL on both data sets in mean a®@% percentile of all approximation ratios. On
seizure |, the advantage is more apparent than in road maps. Especially, Proxy-Hash-AL
has a signi cant advantage overProxy-ALin worst-case approximation ratios. This shows
Proxy-Hash-AL makes decisions which are similar to true average linkage. The quality of its
decision is stable and robust against large distortion between the proxy and real distances.

Running time analysis. Next, we look at the speed of our algorithms. The main bottleneck
in all of the approaches is the number of distance computations. For the naive algorithm, we
must compute distances for afl pairs of nodes, resulting in a quadratic running time.

Figure 6.2a and 6.2b show the growth of number of distance computations as sample
size grows. In both gures, sample sizes (the x-axis) are plotted on a log-scale for better
visualization. For both data sets, we draw another “benchmark” polynomial gere x1* "
to show that the growth is strictly sub-quadratic. The plots show that for road map and
seizure ,ther value is bounded b©:7 and0:3, respectively. The gain in running time
might depend on the data set. The running time plots for Proxy-Hash-SL and the road maps
in Bay Area and the Great Lakes can be found in Appendix B.

Chapter 7

Robust Online Correlation Clustering

7.1 Introduction

Clustering is a central unsupervised learning problem, which comes in many avors and
variants. For instance we may consider different objectives for the clustéririgstering

like k-means ok-median, spectral clustering, or correlation clustering. Or we may try to
perform the clustering in different computational models—batch, distributed, parallel, etc. A
clustering setting that has received a lot of interest in recent years is the online paradigm, see
for instance, Zhang et dlL37], Vidal [130], Lattanzi and Vassilvitskii99], Cohen-Addad

et al.[57], Guo et al[74, 75]. In online clustering elements arrive one by one and they are
irrevocably assigned to clusters at arrival time. A key property of this setting is that the
resulting clustering is stable. This is particularly important in real-world systems where
clusters are served directly to users or used in downstream machine learning tasks, and so
modifying the clustering has a high cost.

Clustering problems lik&-median ank-means are well studied in the online setting, see
for instance the groundbreaking work of Meyer$bhO] and Liberty et al[103]. This chapter
considers the online correlation clustering problem, which is less understood. Correlation
clustering was introduced by Bansal et [29]. In the problem we are given as input a
weighted graph witm nodes, where positive edges represent similarities and negative edges
represent dissimilarities between endpoints. A partition of the nodes into clusters should
minimize the sum of the negative edges contained in any cluster and the sum of positive
edges between clusters. That is, minimizingdisagreements the clustering. Correlation
clustering has many applications, for instance in nding clustering enser8dleduplicate
detection 1], community mining 9], disambiguation tasks8B], and automated labelling
[11, 42].

138 Robust Online Correlation Clustering

The problem is known to be NP-hard and admits approximation algorithms. For the most
studied version of the problem, where the weights are restricted tofbelint 1g, and a2:06
approximation algorithm was shown by Chawla e{4F]. When, in addition, the number of
clusters is upper-bounded Bya polynomial time approximation scheme was shown to exist
by Giotis and Guruswanj69]. For arbitrary weights &(logn) approximation is the best
known [65].

We consider the online correlation clustering problems when edges have weights in
f 1;,+1g. In the online setting, nodes arrive one by one and reveal their edges to nodes
that have arrived previously. The algorithm needs to make an irrevocable cluster assignment
when a node arrives. The most popular form of analysis of online algorithomsrpetitive
analysiswhere the performance of the online algorithm is compared to the best (in hindsight)
optimum solution.

It is impossibleto design an online algorithm for correlation clustering that has a good
competitive ratio. Consider the following example. Suppose that the rst two nodes to
arrive are connected by a positive edge. The algorithm has to commit to either placing them
in the same cluster, or in different clusters. If it places them in the same cluster then the
adversary places the remaining 2 nodes as follows. The nodes are split evenly between
two complete cliques with all positive edges. The two initial nodes are placed in different
cligues and there are no positive edges between cliques except the single edge between
the two initially arriving nodes. The optimal solution in hindsight makesagreement
by placing the cliques into two separate clusters, while the algorithm makes aR[est
disagreements.

On the other hand if the algorithm places the rst two nodes into different clusters then the
adversary chooses the remaining instance to be a single clique of positive edges containing
the two nodes. The competitive ratio of the algorithm will be unbounded as the optimal has
cost 0 and the algorithm has a positive objective value of at least one.

This lower bound example (rst observed ihQ7]) rules out nding a good algorithm via
competitive analysis, sinaveryalgorithm will have a worst case competitive ratiovfn).
However, in practice, instances are typically far from worst case. To rigorously study these
situations requires going beyond worst case analysis. For a rich body of work on this topic
see the recent text by Roughgard&®3]. This line of work considers broadly applicable
models that avoid pathological worst-case instances that are unlikely to occur in practice.

In practice, for online clustering problems, it is common to have some information about
nodes that will arrive. For example when clustering temporal data we have access to last
month's data and this data gives some insights on tomorrow's data. Motivated by this, it is
natural to study a model where one has access to few samples of the input data representing

7.1 Introduction 139

the past data that has been observed. Of course, if the sample is completely adversarial the
problem has not become any easier. To overcome this limitation we follow previous work
[90, 105 and consider a setting where the algorithm has access to a random sample of data.

The model considered is as follows. Suppose that for any (potentially adversarially
chosen) input, the algorithm is given a small number of random samples from the input
before the rest is revealed online. Can we prove that it is possible to design online algorithms
that are near optimal? If possible, can the model be strengthened such that some of the
sample is randomized while some is adversarial and we can design robust online algorithms
for this more challenging setting? We answer positively to both questions in this work.

Our Contributions. We introduce thesemi-onlinenodel for correlation clustering. In this
model elements arrive online in adversarial order but beforehand a small random fraction
of nodes are revealed. This setting captures situations where some part of the online input
is available beforehand, a common case when analyzing temporal data. A similar semi-
online model for bipartite matching is introduced 3], where a part of the input graph is
predictable and known of ine, while the remainder is unknown and arrives online.

We prove that the well-know Pivot algorithra§] obtains a constant fraction approxi-
mation in the online setting when a small fraction of points selected at random is revealed
beforehand. The key insight behind our proof is that the Pivot algorithm can use a small
random sample to “sparsify” the input instance so that it is easily clusterable.

Furthermore, we show that even if a fraction of the sample is adversarially corrupted the
Pivot algorithm can still recover a constant approximation. In other words, the approach is
provably robust.

Finally we analyze our nding empirically and verify that the theory is predictive of
empirical results. We show that even on “adversarial” inputs the Pivot algorithm obtains good
performance if it has access to a small sample of the data. Without the sample, Pivot performs
poorly. We further show similar behaviour can be observed when the sample is learned from
historical data. These results demonstrate the connection between the theoretical model and
practice.

Additional related work. The online correlation clustering problem has been studied by
[107] , where they give &(n)-competitive algorithm. However, their algorithm is allowed
to re-assign points by merging clusters. Ailon et{ 48] show that the Pivot algorithm is
3-competitive when vertices arrive in random order.

Our setting is also closely related to the algorithm with machine learning advice setting
Lykouris and Vassilvitski{106]. In this context, Ailon et al[17], Saha and Subramanian
[125] study the correlation clustering problem and show that it is possible to obtain better
performance guarantees using same-cluster queries.

140 Robust Online Correlation Clustering

7.2 Semi-Online Model for Correlation Clustering

In this paper, we consider the min-disagreenwantelation clusteringproblem. We rst
introduce the of ine version of the problem.

De nition 7.2.1 (Correlation Clustering)The input is a complete signed gra@h= (V;E) on
n vertices such that the edges are partitioned into positive and negativeledges [E
respectively.

The goal is to partition vertices into clusters, &/g= C1[[Cy, wherekis arbitrary, to
minimize the number of disagreements: number of positive edges with endpoints in different
clusters plus the number of negative edges within each cluster. We can write this objective
as:di<jffuv2 E* ju2 G;v2 Cjgj+ é!;ljf uv2 E juv2Gagj.

In theonlinemodel, the vertices of the graph arrive one-by-one online. The algorithm
has to maintain a partition of all arrived vertices into clusters at all times. Upon each vertex
arrival, its edges (and their signs) to all previous arrivals are revealed. Then the algorithm
must make an irrevocable cluster assignment for this arrival. We recall the lower bound in
this setting due to Mathieu et al. [107].

Lemma 7.2.1.[107] For anyn, there exists an instance of online correlation clustering where
vertices arrive in adversarial order such that every algorithm has competitivé\{aio

Semi-online model. As discussed, it is impossible to obtain any positive result in the online
model. Thus, we introduce the semi-online model for correlation clustering.

De nition 7.2.2 (Semi-Online Correlation Clusteringhet G = (V;E) be a complete signed
graph. In semi-online correlation clustering, there are two phases: an of ine and online
phase.

First, in the of ine phase, our algorithm is given the induced subgi@f# for some
vertex selS V. Then, in the online phase, the remainder of the vertteS arrive online.
Upon each online arrival, the algorithm must allocate the vertex to a cluster, either starting a
new singleton cluster, or assigning it to a previously de ned one.

The goal is to maintain a clustering of the vertices throughout to minimize the number of
disagreements.

We will consider different models for how the of ine vertic&are chosen. We note that
if Sis chosen adversarially, then the adversary can ch8tsée a graph with only negative
edges, an¥¥ nSto be a lower bound instance of sizgf §. This gives a lower bound of
W j §). Thus, we focus on models whe®as, at least, partially chosen randomly.

7.2 Semi-Online Model for Correlation Clustering 141

The algorithm we analyze for the semi-online correlation clustering is the natural adapta-
tion of thePivot algorithm developed by Ailon et a[18]. We describe it rst. The algorithm
takes the following steps.

Of ine Pivot Algorithm
1. Initially, all vertices araunclustered
2. Consider verticeg2 V in some order.

3. If vis currently unclustered, then mavlas apivot, and make a new cluster consisting
of v and its remaining unclustered, positive neighbors. Thus, the new cluster is

fvg[f u2Vjuv2 E*;uunclustered.
4. Repeat until all vertices are clustered, and output the nal clustering.

Pivot's performance critically depends on the ordering of the vertices. If the algorithm
considers vertices in random order, then Pivot is a 3-approximation in expectation [18].

Pivot can be adapted to the online setting by considering the vertices in their arrival
order. As we noted, this algorithm will perform poorly on adversarially ordered sequences;
moreover as we will see it has poor empirical performance as well. In the semi-online model,
we can take advantage of the of ine phase to nd better clusters for the online arriving
vertices via the pivots computed in the of ine phase.

Semi-Online Pivot

1. In the of ine phase, randomly order the verticesSrand then using the random
ordering run the Pivot algorithm c@[g).

2. In the online phase, we continue running the Pivot algorithm on the remainder of
given the pivots and resulting clustering GffS. Note that we consider vertices in the
order they arrive online.

Note that the pivots chosen in the of ine phase can potentially cluster vertices in the
online phase. In particular, if vertaxarrives in the online phase, amdhas a positive edge
to a pivotu chosen in the of ine phase, tharjoins u's cluster. We will show that iSis a
en-sized random sample of the input, then Pivcﬂ)(%)-competitive. Thus a small random
sample is suf cient to circumvent the strong lower bounds on any online algorithm. We also
show that this style of algorithm is robust, even wigis not fully random, semi-online
Pivot is guaranteed to perform well.

142 Robust Online Correlation Clustering

7.3 Warm-Up: Pivoting Using a Random Sample

In this section, we consider the case wh8rig a random sample from of sizeen for

e 2 (0;1). We call this thee-random sample modeT he analysis of this setting will illustrate

the main technical ideas. Later we generalize to the case where the random sample has a
fraction of adversarially chosen corruptions. In this section, we prove the following.

Theorem 7.3.1.Fixane 2 (0;1), and letShaveen samples chosen uniformly at random.
Then semi-online Pivot is((%)-competitive in expectation.

We also complement our upper bound with a matching lower bound.

Theorem 7.3.2.For anye 2 (0;1), every algorithm in thee-random sample model has
competitive ratioM 1).

Proof. To prove the lower bounds, it suf ces to considex % Fix a suf ciently largen
such tha%l + en n. We de ne a graph om nodes. All edges are negative except those on
a setl of % vertices. The edges dnform a lower bound instance of si%eguaranteed by
Lemma 7.2.1.

The probability that the random sam@eontains no vertex frorh is: P(S\ L= 0) =
(1 1%e):::(l %‘neﬂ) (1 %)e” = W1). Further, conditioned on this event, the
cost of any algorithm iy\/(%)-competitive, becaudearrives in adversarial order. O

We now prove the upper bound. Our proof will proceed in two parts. First, we bound the
cost of semi-online Pivot on the random sam@ldRecall that these vertices arrive in random
order, so we can leverage the analysis of the original Pivot algorithm.

Second, we bound the cost¥inS The main dif culty here is tha¥ nS arrives in
adversarial order. To overcome t¥¢n) lower bound, we rst prove a more re ned lower
bound on the optimal solution in terms of the positive degrees (hnumber of positive edges
incident on a vertex) in the input graph. Then we show that running semi-random Pigot on
sparsi es the remaining graph &hnS. That is, there are few positive edges on the nodes no
adjacent to a pivot in the sample. Finally, we relate the cost of Pivot to the positive degrees
to complete the proof.

7.3.1 Pivot Preliminaries

Throughout this section, |€PT denote the number of disagreements made by the optimal
of ine algorithm on G andALG denote the cost of semi-online Pivot. Note tR#T is a
xed quantity, while ALG depends on the random choiceSx¥ind its order.

7.3 Warm-Up: Pivoting Using a Random Sample 143

We begin with the concept dfad triangles which we use to lower boun@pPT and upper
bound ALG.

De nition 7.3.1 (Bad Triangle) A bad triangle inG is a triple of verticest = ijk such that
two edges among them are positive, and the remaining edge is negative. M\ieledte the
set of bad triangles ifs.

By case analysis one can check that any clustering must make at least one disagreement
in a bad triangle. Similarly, the Pivot algorithm makes a disagreement oni pdgand only
if there exists a bad trianglgk of unclustered vertices such thais chosen as pivot. This
motivates the de nition for any bad triangteof the event:

A; = fone vertex of is chosen as a pivot while all three are unclustgred

By linearity of expectation, we can write our expected cost as:

E[ALG]= & P(A): (7.1)
t2T

We emphasize that this expression holds for any distribution of arrivals. The only difference
is the probabilities of théy's. We will re-use the same notations and expression when we
consider a random sample with corruptions later. However, for the remainder of this section,
all probabilities are with respect to tieerandom sample model unless otherwise noted.

To formalize the two main steps in our proof sketch, we decompose the above quantity
into two parts: one fo6and one fol nS To this end, we de ne for each bad triangle
the event#\° = f one vertex of is chosen as pivot iSwhile all three are unclustergénd
Avnsz f one vertex ot is chosen as pivot i nSwhile all three are unclustergd

We can re-write:E[ALG] = cos{(S) + cosi(V nS); wherecos{(S) = 4,7 P(AY) and
costVnS = airt P(A,[V”S). We will analyze each of these two terms separately. In particular,
we rst show thatcost(S) = O(OPT) by relating to Pivot in random order. Then we show
costV nS = O(%)OPT by relating to the positive degrees. Combining these two bounds
with the above expression f&{ALG] completes the proof of Theorem 7.3.1.

7.3.2 Bounding Cost ofS

We showcost(S) = O(OpPT). Because the vertices 8fare a random subset ¥fand we
can analyze them in random order, the estarrivals of thee-random sample model are
distributed identically to the rsen arrivals in the model wherall vertices arrive in random
order. We rely on the next theorem from Ailon et[al8], which bounds the cost of Pivot
when vertices arrive in random order.

144 Robust Online Correlation Clustering

Theorem 7.3.3.[18] If vertices arrive in random order, then Pivot &competitive in
expectation.

Now we use that Equation (7.1) holds for both #deandom sample model and the ran-
dom order model. We denote the former distribution with a subs&@pid the latter with a
subscriptR. Let RAND denote the cost of running Pivot in the random order model. Then ap-
plying Equation (7.1) and Theorem 7.3.3, we has@si(S) = &27 Ps(AP) = &2 PR(AY)

&i>7 PR(A) = ER[RAND] 3OPT:

The second equality follows from the observation that theersarrivals in thee-random
sample model are distributed identically to the estarrivals in the random order model,
and the event® does not depend on the arrival ordeMafS. Thus for any bad triangle
Ps(AY) = Pr(AP). To understand the latter probability, in the random order model we use
the convention that the ordered &d6 the rsten arrivals.

7.3.3 Bounding CostoV nS

We showcost(V nS) = O(%)OPT. We begin with a lower bound o@PT in terms of the

positive degrees. Because every clustering must make at least one disagreement on each bad
triangle, we can interpret a clustering as covering all bad triangles using edges (which are the
disagreements that this clustering makes.) Further, every bad triangle has two positive edges,
so we show that the number of bad triangles that any edge can cover is proportional to the
positive degrees of its endpoints.

Lemma 7.3.4. Fix any clusteringC and letE denote the set of edges tiatmakes a
disagreement on. Thgij &g d* (i)+ d* (j), whered” () denotes the positive degree
of a vertex.

Proof. Cmust make at least one disagreement on each bad triangle. It follonvast cover
each bad triangle with at least one edgéin It suf ces to show that eachj 2 E can
be in at most™ (i) + d* (j) bad triangles. To see this, we consider two case§. AfE
then each bad triangle includimgmust also have two positive edgé&sand jk for somek.
There can be at mostin(d* (i);d* (j)) suchk. Otherwisejj 2 E*. Then each bad triangle
includingij must have one other positive edge — eitikeor jk for somek. There can be at
mostd* (i) + d* (j) suchk. O

To understand the utility of the above lemma, it is informative to upper boundda@h
by the max positive degree, sdy. Then Lemma 7.3.4 givggj = O(d)OPT. Further,
by Equation (7.1), the expected cost of Pivot @ory arrival distribution) isd o1 P(Ar)
jTj. Combining these two inequalities gives that Pivot B(@)-approximation even in

7.3 Warm-Up: Pivoting Using a Random Sample 145

adversarial order. In the worst case, we hdve W n) (as in the standard{n) lower bound
instance.)

To overcome this, note that some node¥ mSare “pre-clustered” by running Pivot &h
This occurs when a vertex inShas a positive edge to a pivot$ Bad triangles containing
such vertices do not contribute¢ostV nS), so it suf ces to consider the remaining subgraph
of vertices inV nSthat are not pre-clustered. We show that this random subgraph has small
positive degrees in expectation, so applying Lemma 7.3.4 to this sparse random subgraph
allows us to boundostV nS).

We can now show our key structural lemma about sparsi cation. The main idea of the
proof is that if a vertex has high positive degree, then it is likely that one of its positive
neighbors becomes a pivot $

Lemma 7.3.5. For anyv 2 V, de ne the random variabl®\, to beO if v is clustered
by running Pivot onS (i.e. v2 S or v has a positive edge to a pivot B or N, =
jf unclustered positive neighborswin V nSgj otherwise. TheEN, = O(%).

Proof. Fix v2 V andk 0. We rst upper boundP(N, k). De ne the eventC; =
fvis unclustered and has at le&giositive unclustered neighbors aftédr arrival inSg. Then

k+ 1 k
L5 (i 1 ol
where in the second inequality, we use the fact that conditiond€dl anv has at leask
unclustered neighbors before title arrival.
Recallingj§ = en, we haveP(N, k) (1 %)e” exp(ek). Using this tail bound, we
can bound the expectationhf: ENy= &5 ,P(Ny k) &f_ exp(ek)= O(S‘exp(ek)dk) =
o(d): O

To nish our bound orcost(V nS), it remains to combine Lemma 7.3.4 with Lemma 7.3.5.
To this end, we leGdenote the random subgraph®induced by all vertices iN nSthat
are not clustered by the pivots choserSirThe key properties d&%are:

« Let T9be the set of all bad triangles @ We haved ,t NG j TY. To see this, note

VnS

thatif A/ occurs, then no vertex ofis pre-clustered b, sot 2 T°

« The positive degree iG°of a vertexv is exactlyN, (as de ned in Lemma 7.3.5.) Note
that here we use the fact thawifs clustered by running Pivot d8 Ny, = O, sincev is
not a vertex inG°

146 Robust Online Correlation Clustering

« Let E%denote the edge set 68PandE the disagreements made By T on the whole
graphG. Recall thatOpPT is de ned onG, soE is invariant. TherOPT induces a
clustering ofG%that makes disagreemerS8\ E .

Using the above two lemmas and three properties, we concem®(V nS) EjTY
El&ij2ea £ dgoi)+ d&o(i)] &ij2e ENi+ ENj = O(2)OPT: This completes the proof of
Theorem 7.3.1.

7.4 Random Sample with Adversarial Corruptions

We now consider the case wheé3és a random sample from with adversarial corruptions.
Our goal is to show that even with adversarial additionS, pivot has strong approximation
guarantees. We assume tlgas generated by the following procedure, parameterized by
e2 (0;1) anda 2 (0;e):

e-Random Sample witha -Corruption

1. Given a complete signed gragh= (V;E), an adversary chooses a xed get V of
anvertices.

2. Then a uniform random subdeof size(e a)nis drawn fromV nA.
3. Our algorithm is givers= R[Ain the of ine phase.

We emphasize the order of events: rst the adversary choAsasd then a random
sampleRis drawn. In particular, the choice #fdoes not depend dR. Also, our algorithm
is givenSin the of ine phase, but critically it is unaware of which vertices belond\tor R.

We brie y discuss some slight variants of our model and their tractability. Sampling
(e a)nfromV nArather tharen fromV itself is mainly for technical convenience; the
latter model admits similar theoretical guarantees, bec&uaeis chose to uniform o nA
if Ris a uniform random sample ®f. However, if we change the order of events, so rst
sampleR, and then allow an adversary to remove/replacerertices from the sample, then
the competitive ratio degrades\Wdan). To see this, consider an input graph consisting of a
lower-bound instance of sizen guaranteed by Lemma 7.2.1 and all other edges are negative.
The adversary can guarantee that the lower-bound instance is always outside the sample and
thus arrives in adversarial order.

The main result of this section is that the corruptions do not degrade the performance of
semi-online pivot; in particular, the algorithm performs as if it had an uncorrupted sample of
size(e a)n (under the mild assumption thatis at most a constant fraction ef)

7.4 Random Sample with Adversarial Corruptions 147

Theorem 7.4.1.For e 2 (0;1) anda 2 (0;e), semi-online pivot in the-random sample
with a -corruption model is %)-competitive in expectation.

Similar to the random sample model, we have an almost matching lower bound for the
e-random sample with -corruption model under the mild assumption that the corruption is
at most half of the whole sample. The proof of this theorem is similar to Theorem 7.3.2.

Theorem 7.4.2.For anye 2 (0;1) anda 2 (0;35), every algorithm in the-random sample
with a -corruption model has competitive raﬁﬁ(ﬁ .

Proof. It suf ces to considere a < % Thene 2 (O; %). Consider any suf ciently large
nsuch thatﬁ + en n. Then we de ne the graph omvertices. All edges are negative
except those on a sktof ﬁ vertices. The edges dnare a lower bound instance of size
ﬁ guaranteed by Lemma 7.2.1.

The adversary chooses the corrupted nodes of the sample to be thosé.no¢tiRR be
the corrupted random sample given to the algorithm. Then the probabilitiRit@ttains no
vertex fromL is:

— = 1=(e a),... 1=(e a)
PRV L=0)=(1 (1 a)n)"'(1 (1 a)n (e a)n+ 7
1:(e a) (e a)n_—
Q) = W1)

Further, conditioned on this event, the cost of any aIgorithWigl—a)-competitive, because
L arrives in adversarial order. O

Proof Overview of Theorem 7.4.1:The proof of Theorem 7.4.1 has the same structure
as Theorem 7.3.1; in particular, we split the cost of semi-online Pivot into an of ine- and
online phase. The of ine- and online phases roughly correspo&htadV nS, respectively.
However, the corruptions introduce new challenges in both cases.

For the of ine phase, we can no longer argue t8& distributed as the rséen arrivals
in the random order model due to the adversarially chosen p&tloktead, we prove a
generalization of Theorem 7.3.3 via dual tting that allows us to handle more general arrival
distributions. Roughly, to bound the cost of the of ine phase, it suf ces to show thqt if
occurs in the of ine phase, then each vertex bhs reasonable probability to be the pivot
that “causes’.

For the online phase, we still argue by Lemma 7.3.4 that it suf ces to show that the
remaining vertices in the online phase have small positive degree. Here, we prove that even
with adversarial corruptions, running Pivot in the of ine phase still sparsi es the remaining
graph.

148 Robust Online Correlation Clustering

7.4.1 Analysis: Proof of Theorem 7.4.1

Throughout this section, |€ pt denote the number of disagreements made by the optimal
of ine algorithm on G andAlg denote the cost of semi-online Pivot. Note thgitis a xed
quantity, whileAlg depends on the random choiceSxdnd its order. Further, all probabilities
are taken with respect to tleerandom sample witl -corruption model.

By Equation (7.1), we can write our cost as:

EAlg= § P(A):
2T
Previously, we split this sum into the contributions®gndV nS. Now, we consider a slightly
different partition. To this end, we de ne the (random) ordered8et Sof the rst &2nar-
rivals inS. Recall thaASO: f one vertex of is chosen as pivot is°while all three are unclustergd

vns :
and analogously fof . Then we can re-write:

EAlg= cos(S)+ cos(V nS;

wherecos(S) = &1 P(AS) andcos(V nSd) = &p1 P(AtV”SO). Thus, now our of ine phase
corresponds t&°, and our online phase ¥n<S’. We will show thatcos(S) = O(z1;)Opt
andcost(VnS) = O(ﬁ)Opt. Combining these two bounds with the above expression
for EAlg completes the proof of Theorem 7.4.1.

Bounding Bad Triangles in the Cost ofS’

We show thatos{(S) = O(ﬁ)Opt. Recall thats®is part of the of ine phase which arrives
in random order. For any verteX V, we de ne the evenAiso analogously aAtSO for triangle

t. That is,AiS: fiis chosen as pivot i8Y. We begin with a technical lemma that analogous
to the dual tting analysis of Pivot in random order.

Lemma 7.4.3.Letc> 0. Suppose forall 2 T andi 2 t, we haveP(AiSOj A[g)> c. Then
&1a1 P(AS) iopt

Proof. Consider the primal-dual pair of linear programandD:

P= minféxejxij+xjk+ X 18ijk2 T;x 0Og:
X «E

D=maXgwj a % 18e2E;y Og:
Y 2T t2Tjent

7.4 Random Sample with Adversarial Corruptions 149

We observe thate = 1opt makes a disagreement of@r all e is feasible forP with objective value
Opt. Thus,Opt(P) Opt. Further, by strong dualit9pt(D) = Opt(P) Opt.

We now exhibit a feasible solution @. For allt 2 T, takey; = cP(AtSO). It suf ces to
show that this setting of is feasible foD, because theod o>t P(A?O) Opt. Itisimmediate
thaty 0, so we check for eadly 2 E:

a P A PIIAOPAS)= A P\ AS:;
k2Vijijk2T k2Vijijk2T kjijk2 T

where we observe that the eveng\ Aﬁll are disjoint for allk with ijk 2 T, and each such
event implies that Pivot makeg a disagreement. We conclude:

é cP(Aﬁ?() P(Pivot makes| a disagreemept 1:
k2Vijijk2T

Thus,y is feasible foD. O

Note that we can recover the proof of Theorem 7.3.3 using the above lemma. Take all
probabilities with respect to the random order model, &t V. ThenP(AY j AY) 1 for
allt 2 T andi 2 t. This is because each vertextdias equal probability of arriving rst
among the three in the random order model. This implies the expected cost of Pivot in the
random order model is at mosD®t.

In light of the above lemma, we study the probabilitl%(sA?)j A?O) fort2 T;i2t.
Roughly, we want to show that the probability of each vertekafiving rst among the
three is not too small. The case to keep in mind is if some vertices of a bad triangle are
adversarial and others are not. The next lemma bounds shows that the probability than the
next arrival inSis a particular vertex does not vary much between adversarial and random
vertices.

Lemma7.4.4.Letr j SJ. Fixan ordered pre xp=(py;:::;pr 1) ofthe rstr 1arrivals
in S° Then for anyi 2 p, we have:

e a 1 1
P(rth arrival isij rst r 1 arrivals ar _—
2 en (r 1) (J) en (r 1)

Proof. Fixi 2 p and letP be the evenP = f rst r 1 arrivals argpg. Noting thati 2 Sis
necessary forto be therth arrival, we have:

P(rth arrival isi j P) = P(rth arrival isij P,i 2 SP(i 2 Sj P):

150 Robust Online Correlation Clustering

Conditioned orP andi 2 S, therth arrival is a uniform random vertex fro®nP, so:

(. 1)
j9j P en (r 1)

To analyze the second terR(i 2 Sj P), we consider two cases. In the rst cais2 A,
soP(i 2 Sj P)= 1. Otherwise,i 2 V nA, so conditioned orP, i 2 Sif and only ifi 2
(e an)” L &2 where we

recallr j S} = w We concludef»2 P(i2 SjP) 1. Combining our expressions

for both terms gives the desired result. O

P(rth arrivalisijRi2 § =

Now we are ready to lower bourR(AiSOj Atgj) by considering the pre xes of arrivals
WhereA[SO occurs.

Lemma 7.4.5.Foranyt 2 T andi 2 t, P(AY] AS) &2,

Proof. Fixt2 Tandi2t. Forl r j S}, we de ne the event
A = fone vertex of is chosen as pivot in theth arrival while all three are unclustergd

Note that the event& forall1 r j Sj partitionAtSO . Then by the law of total probability:

iy it
PAT I AS) = & PAT T AT ADPAL | AS) = & P(rth arrival isi j A)P(A! j AS):

r=1 r=1

Becauseu?jriq1 P(A] AISO) = 1, it suf ces to lower boundP(rth arrival isi j A{) &2 for all
1 rj9.

To thisend, we xanyl r j S}, and lett = ijk. Noting that the events that théh
arrival isi, j, ork partition A{, we have:

P(rth arrival isi j A{) + P(rth arrival isj j A{) + P(rth arrival iskj A{) = 1
P(rth arrival isj j A) N P(rth arrival isk j A{)

o
Prtharmivalisi] A) = (1% 5 rinarrivalisi | A) T P(rth arrival isi | A)

) &

It remains to upper bound the raﬁéﬁﬂ 2??:52: 'Iz\‘jﬁ; for u;v 2 t. To this end, we de ne the

setP of all ordered pre xegp of r 1 arrivals such that after running Pivot gnall vertices
int are uncovered. In particulakl occurs if any only if the rstr 1 arrivals is somep 2 P

7.4 Random Sample with Adversarial Corruptions 151

and therth arrival is int. Then for anyu 2 t:

P(rth arrival isu; A))

P(rth arrival isuj A) =

P(A)
_ apepP(rtharrival isu; rst r 1 arrivals arep)
P(A)
_apepP(rtharrivalisuj rst r 1 arrivals arep)P(rst r 1 arrivals arep)
B P(A) '

Now consideru;v 2 t. Applying the upper- and lower bounds given by Lemma 7.4.4,
respectively, we have:

S 1 o P(rstr 1arrivals arep)
r .
P(rth arrival isuj A) en ¢ D SP =) ;
o a 1 o P(rstr 1arrivals arep)
P(rth arrival isvj A;) 2 en (r D p%P P(AD ;

: . P(rth arrival isUjA] . .
which taken together |mpl‘¥;gth e 'Iz\‘jjﬁ‘{i <2-1 We conclude:

2 2 e a e a
P(rth arrival isi j Al 1+ + 1= :
(IA) e a e a) 4+e a 5

]

Composing Lemma 7.4.3 and Lemma 7.4.5 gives(S) = 4,7 P(AS) 2. Opt=
1
O(g73)0pt.

Bounding Bad Triangles in the Cost ofV nS

Here we show thatostV nS) = O(ﬁ)Opt. Our strategy again is to show that Pivot on
Psparsi es the remaining graph, so every arrivaVin S has a small number of positive
unclustered neighbors. Then we apply Lemma 7.3.4. The next lemma is analogous to
Lemma 7.3.5, but the estimates are slightly more involved due to the more complex arrival
distribution.

Lemma 7.4.6. For anyv 2 V, de ne the random variabl®, to beO if v is clustered
by running Pivot onS’ (i.e. v2 S or v has a positive edge to a pivot B) or Ny =
jf unclustered positive neighborswin V nSYj otherwise. ThetEN, = O(ﬁz).

Proof. Fix v2 V andk 0. We rst upper boundP(N, K). De ne the eventC; =
fv is unclustered and has at le>ositive unclustered neighbors aftér arrival inSY. Then

152 Robust Online Correlation Clustering

It is convenient to describe the distribution of fttie arrival in S as follows: Suppose the rst
i 1arrivals consist of random arrival® V nA and adversarial arrivas® A, First, we
decide whether thigh arrival will be random (fronV nA) or adversarial (fromd.) Itis random
with probability &2 1R(] (e a)nj R] €2, using the factthat j Sj=(e a)n=2.
Similarly, theith arrival is adversarial with probabl|lt§’:J|fﬂ a”J Aq . After deciding
whether thath arrival will be random or adversarial, then we choose the arrival by drawing a
uniform random vertex fronV nA) nROor AnAS respectively.

Now we lower boundP(v clustered byith arrivalj C; 1;:::;C4). Conditioned orC; 1,V
has at leask unclustered positive neighbors before ttiearrival. Letr anda denote the
number of unclustered positive neighbord/inA andA, respectively. Note that+ a k.

Then we compute:

anjA‘] a
en anj Aj

la

)
nt
r,

2 n en
ak
n

RecallingjS} = (e a)n=2, we have:

e ak (e a)%k

(e a)n=2 .
PN b (1) exp(——):
Using this tail bound, we can bound the expectatioh\of
y 2 Zy 2
_ 0 (e a)k (e a)x _ e _
ENy = IS_OP(NV K) E_oe of —) O(. exp(e)dx)—O(—(e a)2)'
O

Composing Lemma 7.3.4 and Lemma 7.4.6, we can beostV nS). Let GPdenote
the subgraph o6 induced by all vertices i nS that are not clustered by the pivots chosen
in . Then we have the same three properties as in the proof of Theorem 7.4.1, which we
repeat for convenience:

« Let T%be the set of all bad triangles @&. We haved,t 1A}’”5° i T9.

7.5 Experiments 153

« The positive degree iG°0of a vertexv is exactlyN, (as de ned in Lemma 7.4.6.)

« Let E9denote the edge set 8PandE the disagreements made &pt. ThenOpt
induces a clustering @°that makes disagreemer&8\ E .

Using Lemma 7.3.4 and Lemma 7.4.6 and the above three properties, we conclude:

cos(Vns) ETY E[& dili)+ di()] & ENi+ENj= O(——)Opt
ij2EQ E ij2E (e a)

7.5 EXperiments

In this section, we empirically validate our theoretical ndings. Speci cally, we:

» Demonstrate that Pivot's performance can be poor when the arrival sequence is chosen
adversarially.

* Verify that with a small portion of nodes randomly drawn from the dataset (which we
refer to asadvice), semi-online Pivot is competitive with of ine Pivot in random order
(which is a3-approximation to optimum). Further, we show that the result is robust
across multiple parameter settings and additional corruptions.

» Show that when the advice is temporal (and not random) the performance is still strong.

Datasets. We use the following datasets from the Stanford Large Network Dataset Collec-
tion [101)%. Each dataset is a social network where the nodes represent entities such as users
or communities, and the edges represent connections between the entities such as communica-
tion or transactions. We use two non-temporal dataggis:Faceboolkndego-Gpluq108];

and two temporal datasetsoc-RedditHyperlinkg94] and soc-sign-bitcoin-ot¢96, 95]. The

temporal datasets hatienestamp®n the edges representing when the connection happened.
We refer to these datasetslasCEBOOK, GPLUS, REDDIT andBITCOIN respectively. See

Table 7.1 for a full description of the four data sources.

To generate signed complete graphs, on directed graphs we convert all arcs into undirected
edges, and on weighted graphs we only keep the edges with positive weights. These edges
represent the positive edges, and all the other edges are negative edges.

To perform a richer evaluation, we sub-sample from the datasets to obtain our input
graphs in the following manner. The two non-temporal data soufesEBOOK and

Ihttps://snap.stanford.edu/datafjo-Faceboak https://snap.stanford.edu/data/ego-Facebook. egu;
Gplus https://snap.stanford.edu/data/ego-Gplus.hsod;RedditHyperlinkshttps://snap.stanford.edu/data/soc-
RedditHyperlinks.htmlsoc-sign-bitcoin-otchttps://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

154 Robust Online Correlation Clustering

Table 7.1 Dataset desciption.

Dataset| (# Edges, # Nodes) Edge Features Edge Meaning
FACEBOOK | (4039, 88234) Undirected, unweighted, non-temporal Users are friends
GPLUS | (107614, 13673453) Directed, unweighted, non-temporal One user follows another
REDDIT | (55863, 858490) Directed, weighted, temporal A hyperlink between two subreddits
BiTcoin | (5881, 35592) Directed, weighted, temporal A trust rating between users

GPLUS, containego-networksvhich represent the lists of friends of pre-selected users and
the connections among them. We experiment on these ego-networks which are sub-graphs
induced from the entire graph by a subset of nodes. For the temporal data sources, we take
all edges with timestamps falling into a time interval and all nodes induced on these edges.

Performance Metrics. We use Pivot in uniformly random order as our benchmark.
For each arrival order constructed, we conduct multiple trials, take the ratio of the average
number ofdisagreement®r semi-online Pivot over that of random Pivot, and subtfatct
measure relative improvement, which we aradation.

Power of Advice.Our rst experiment studies the bene t of a random sample of nodes.
We compare the performance of Pivot with and without advice under different element
orderings.

We rst test Pivot on a uniform random ordering of the nodes. Recall that this is a
3-approximation 18] to the optimum. Then we test Pivot in the following adversarial orders:

(1) node degree in descending order; (2) number of bad triangles in a node's neighborhood
that contains this node, in descending ofdand (3) timestamp, in chronological order (only
for temporal datasets®)

Next, we explore the performance s¢mi-onlinePivot with advice in thee-random
sample model. We produce the advice by randomly samplingtfaaction of the nodes.

Then, in the online phase, the remaining nodes arrive in adversarial order. We test the same
adversarial orders as before.

Table 7.2 Mean degradation and standard deviation in Pivot's performance on different
sequences = 0:1, 30 trials.

- . ad Triangles - Time
Dataset| (# Nodes, # Edges) Random Degree Degree w. Advice Bad TnangFe\'ﬁ' Advice Time w. Advice
FACEBOOK | (534, 9626) 0 11.21% 108.61 % 4.33 12.68 % 108.54 % 3.53 13.46 % N/A N/A
FACEBOOK | (1034, 53498) 0 6.00 % 63.19 % 0.19 5.49 % 63.72 % 1.48 6.63 % N/A N/A
GPLUS | (1650, 166292) 0 20.79% 133.46% 9.90 23.30 % 133.46 % -0.80 17.03% N/A N/A
GPLUS | (3455, 435569) 0 1535% 22937% -3.9516.03% 229.38% -3.91 12.78% N/A N/A
REDDIT | (4277,9524) 0 4279% 610.64% 3.99 8.31% 610.97 % 5.71 8.49 % 139.26 % -4.88 10.43%
REDDIT | (7019, 20724) 0 11.36% 690.05% 21.2828.61% 690.27 % 18.40 11.74% 79.89% 4.59 8.65 %
REDDIT | (14042, 56567) 0 20.23% 822.60% 11.0942.99% 822.64 % 259 12.24% 50.24% -1.01 14.11%
BITCOIN | (2979, 14695) 0 21.83% 1070.07% 9.7524.32% 1066.81 % 11.7025.48% 579.06 % 8.50 40.54 %

2For a node wittk neighbors, this number is equivalent todtastering coef cient times&zl).

3The original temporal datasets only have timestamps on edges. We consider the timestamp of any node to
be the earliest timestamp of all edges adjacent to it.

7.5 Experiments 155

See Table 7.2 for data on the performance of Pivot in different scenarios. Each entry shows
the level of degradation compared with fully random Pivot ad@trials (mean standard
deviation). See Section C.1 for results on all input graphs. The rst two columns show the
data source and the size of the graph instance. Column “Random” shows random Pivot's
performance. Columns “Degree”, “Bad Triangles” and “Time” give Pivot's performance on
the three adversarial orders mentioned earlier, while the columns next to these three show the
performance of semi-online Pivot using the advice.

Compared with a fully random sequence, an adversarial sequence of online node arrivals
can cause Pivot's performance to degrade signi cantly, from 2-10x. Sorting the nodes accord-
ing to degrees or bad triangles in the neighborhood could causes Pivot's performance to be
1000%worse for some sub-samples. For the temporal node sequences, Pivot's performance
is about50 100% worse forREDDIT and500% worse forBITCOIN. However, when
e = 0:1, semi-online Pivot's performance is only slightly worse (abbdit 20%) than fully
random Pivot. Thus, with only a small advice set, semi-online Pivot almost completely
bridges the gap between adversarial and random order.

Robustness. Our next goal is to show that the gains of Pivot with advice are robust to
different choices o€ as well as adversarial corruptions. Recall that for a node set ohsize
the advice hagée a)nrandomly sampled nodes aadh adversarially chosen nodes. For
each of the four data sources, we select a suf ciently large sub-sample and ehande
while producing advice.

For the corrupted advice, for any one of the three adversarial sequences, we choose the

rst a fraction of nodes to be the corruptions (i.e. the “worst” nodes as evidenced by the
experiments with no advice). Then, we samf@e a)n nodes from the remaining nodes

to complete the advice. The online phase arrival order is the same as in the adversarial
sequence.

Figure 7.1(i) shows how degradation changes waitanges if0:01; 0:5] anda = 0 (no
corruptions), and (ii) shows how corruptions in the advice affect semi-online Pivot when
e = 0:2. Pivot's performance is robust against shrinking the size of the advice and against
adding corruptions. Fa 0:05, or with the advice set corrupted B%%, the performance
remains constant. See Section C.1 for results on more datasets.

Temporal advice. Finally, learning the advice from prior temporal data is suf cient for
Pivot to have good performance. We test both temporal dataRetsdIT and BITCOIN.

The advice is generated from older data just prior to the time interval of the test dataset. In
particular, our advice consists of all nodes in the older dataset, which are incident on edges

156 Robust Online Correlation Clustering

(i) (i)
Fig. 7.1 (i) Degradation v.s values,REDDIT, (# nodes, # edges) = (14042, 56567). (ii)
Degradation v.sa values, where = 0:2.

in the test dataset (i.e. the old data that is related to the new data.) After the advice, the test
data set arrives in adversarial order - including temporal order, where vertices arrive in order
of their timestamps.

Table 7.3 Degradation of semi-online Pivot when using advice from historicalRatzpiT,
100 trials, test dataset has the duration of 6 months.

Days e-value Random Degree Degree w. Advice Bad Triangles Bad Triangles w. Advice Time Time w. Advice
5 0.09 0 1457% 675.40 % 60.73 38.29 % 675.12 % 65.73 46.47 % 52.08 % 55.49 29.57 %
10 0.15 0 1457% 675.40 % 42.09 25.19 % 675.12 % 36.85 20.26 % 52.08 % 34.74 23.39 %
15 0.19 0 1457% 675.40 % 41.09 32.35% 675.12 % 36.85 20.26 % 52.08 % 36.58 37.41 %
20 0.22 0 1457% 675.40 % 30.76 23.27 % 675.12 % 36.43 32.97 % 52.08 % 41.66 48.21 %
25 0.25 0 1457% 675.40 % 35.28 50.72 % 675.12 % 30.97 32.24 % 52.08 % 30.54 28.82 %

Table 7.3 shows the results fRBEDDIT when we change the time interval used to generate
the advice, which is shown in Column “Days” in time unit of days. The time interval for
thetest datasets xed to be 6 months. Column é-value” gives the proportion of nodes
in test dataset that appeared in the old data, which corresponds to the pamamedter
e-random sample model. See Section C.1 for the result8focoIN. The rest of the
table shows the degradation of Pivot using the advice from the corresponding historical data.
Pivot's performance improves when we increase the time interval (equivalent to increasing
Starting withe = 0:15 (time interval for old data/test data is 10 days/6 months), the temporal
advice improves Pivot's performance on all adversarial orders. This demonstrates that Pivot
works well empirically using advice from historical data.

7.6 Conclusion

By augmenting a standard online algorithm for correlation clustering with a small random
sample of the data, we can overcome strong lower bounds for online correlation clustering.
We give near-optimal algorithms for semi-online correlation clustering given a random

7.6 Conclusion 157

sample (with corruptions), and further this theory is predictive of practical performance.
Empirically, with only a small random sample, semi-online pivot is competitive afithe

pivot in random order. Further, in temporal datasets, the sample can be practically obtained
from past data. We show that semi-online models, where we augment an online algorithm
with some of ine information, can be a powerful tool in both theory and practice to improve
the performance of online algorithms, and we believe they will nd further applications in
other problems.

References

[big] https://cloud.google.com/bigquery-ml/docs/bigqueryml-intro.

[2] (2018). Kaggle machine learning and data science survey. https://www.kaggle.com/
kaggle/kaggle-survey-2018.

[3] Abboud, A., Cohen-Addad, V., and Houdrougé, H. (2019). Subquadratic high-
dimensional hierarchical clustering. Mdvances in Neural Information Processing
Systemspages 11576-11586.

[4] Abo-Khamis, M., Im, S., Moseley, B., Pruhs, K., and Samadian, A. (2021a). Approximate
aggregate queries under additive inequalitiesSymposium on Algorithmic Principles of
Computer Systems (APOC$Bages 85-99. SIAM.

[5] Abo-Khamis, M., Im, S., Moseley, B., Pruhs, K., and Samadian, A. (2021b). A rela-
tional gradient descent algorithm for support vector machine trainin§yposium on
Algorithmic Principles of Computer Systems (APOQ@&pes 100-113. SIAM.

[6] Abo Khamis, M., Ngo, H. Q., Nguyen, X., Olteanu, D., and Schleich, M. (2018a).
Ac/dc: in-database learning thunderstruck Skecond Workshop on Data Management for
End-To-End Machine Learningage 8. ACM.

[7] Abo Khamis, M., Ngo, H. Q., Nguyen, X., Olteanu, D., and Schleich, M. (2018Db).
In-database learning with sparse tensorsA@M SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systemages 325—-340.

[8] Abo Khamis, M., Ngo, H. Q., and Rudra, A. (2016). Faqg: Questions asked frequently.
In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database SystemPODS '16, page 13-28, New York, NY, USA. Association for
Computing Machinery.

[9] Ackerman, M. and Ben-David, S. (2016). A characterization of linkage-based hierarchi-
cal clustering.Journal of Machine Learning Researcti7:232:1-232:17.

[10] Aggarwal, A., Deshpande, A., and Kannan, R. (2009). Adaptive sampling for k-means
clustering. Ininternational Conference on Approximation Algorithms for Combinatorial
Optimization Problemgages 15-28.

[11] Agrawal, R., Halverson, A., Kenthapadi, K., Mishra, N., and Tsaparas, P. (2009). Gen-
erating labels from clicks. IRroceedings of the Second ACM International Conference
on Web Search and Data Miningages 172-181.

160 References

[12] Ahmadi, S., Galhotra, S., Saha, B., and Schwartz, R. (2020). Fair correlation clustering.
arXiv:2002.03508

[13] Ahmadian, S., Chatziafratis, V., Epasto, A., Lee, E., Mahdian, M., Makarycheyv, K.,
and Yaroslavtsev, G. (2020a). Bisect and conquer: Hierarchical clustering via max-uncut
bisection. INAISTATS

[14] Ahmadian, S., Epasto, A., Knittel, M., Kumar, R., Mahdian, M., Moseley, B., Pham, P.,
Vassilvitskii, S., and Wang, Y. (2020b). Fair hierarchical clusteriddvances in Neural
Information Processing Systenss.

[15] Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M. (2019). Clustering without
over-representation. IKDD, pages 267-275.

[16] Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M. (2020c). Fair correlation
clustering. INAISTATS

[17] Ailon, N., Bhattacharya, A., and Jaiswal, R. (2018). Approximate correlation clustering
using same-cluster queries. llatin American Symposium on Theoretical Informatics
pages 14-27. Springer.

[18] Ailon, N., Charikar, M., and Newman, A. (2008). Aggregating inconsistent information:
ranking and clusteringlournal of the ACM (JACM)5(5):1-27.

[19] Andoni, A. and Indyk, P. (2008). Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensior@ommun. ACM51(1):117-122.

[20] Andoni, A., Nikolov, A., Onak, K., and Yaroslavtsev, G. (2014). Parallel algorithms for
geometric graph problems. BITOC

[21] Arasu, A., Ré, C., and Suciu, D. (2009). Large-scale deduplication with constraints
using dedupalog. 12009 IEEE 25th International Conference on Data Engineering
pages 952-963. IEEE.

[22] Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding.
In ACM-SIAM Symposium on Discrete Algorithmpages 1027-1035.

[23] Atserias, A., Grohe, M., and Marx, D. (2008). Size bounds and query plans for relational
joins. INnIEEE Symposium on Foundations of Computer Scignages 739—-748.

[24] Awasthi, P., Blum, A., and Sheffet, O. (2012). Center-based clustering under perturba-
tion stability. Inf. Process. Letf.112(1-2):49-54.

[25] Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., and Wagner, T. (2019).
Scalable fair clustering. ICML, pages 405-413.

[26] Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and Vassilvitskii, S. (2012). Scalable
k-means++PVLDB, 5(7):622—-633.

[27] Balcan, M., Blum, A., and Gupta, A. (2013). Clustering under approximation stability.
J. ACM 60(2):8:1-8:34.

References 161

[28] Balcan, M., Blum, A., and Vempala, S. (2008). A discriminative framework for
clustering via similarity functions. IRroceedings of STQ®@ages 671-680.

[29] Bansal, N., Blum, A., and Chawla, S. (2004). Correlation clustertachine learning
56(1):89-113.

[30] Barocas, S., Hardt, M., and Narayanan, A. (20F3irness and Machine Learning
www.fairmlbook.org.

[31] Bateni, M., Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Kiveris, R., Lattanzi,
S., and Mirrokni, V. S. (2017). Af nity clustering: Hierarchical clustering at scale. In
NeurlPS

[32] Bera, S., Chakrabarty, D., Flores, N., and Negahbani, M. (2019). Fair algorithms for
clustering. InNeurlPS pages 4955-4966.

[33] Bercea, I. O., Gro3, M., Khuller, S., Kumar, A., Résner, C., Schmidt, D. R., and
Schmidt, M. (2019). On the cost of essentially fair clusteringsARPROX-RANDOIM
pages 18:1-18:22.

[34] Bonchi, F., Gionis, A., and Ukkonen, A. (2013). Overlapping correlation clustering.
Knowledge and information systen3$(1):1-32.

[35] Borodin, A., Ostrovsky, R., and Rabani, Y. (1999). Subquadratic approximation
algorithms for clustering problems in high dimensional spacefrdceedings of the
thirty- rst annual ACM symposium on Theory of computipgges 435-444.

[36] Braverman, V., Frahling, G., Lang, H., Sohler, C., and Yang, L. F. (2017). Clustering
high dimensional dynamic data streamslriternational Conference on Machine Learnjng
pages 576-585.

[37] Calinescu, G., Chekuri, C., PAjl, M., and VondrAijk, J. (2011). Maximizing a monotone
submodular function subject to a matroid constrai®AM Journal on Computing
40(6):1740-1766.

[38] Carlsson, G. E. and Mémoli, F. (2010). Characterization, stability and convergence of
hierarchical clustering method3ournal of Machine Learning Researctil:1425-1470.

[39] Casella, G., Robert, C. P., Wells, M. T., et al. (2004). Generalized accept-reject sampling
schemes. I\ Festschrift for Herman Rubjipages 342—-347. Institute of Mathematical
Statistics.

[40] Celis, L. E., Huang, L., and Vishnoi, N. K. (2018a). Multiwinner voting with fairness
constraints. IMJCAI, pages 144-151.

[41] Celis, L. E., Straszak, D., and Vishnoi, N. K. (2018b). Ranking with fairness constraints.
In ICALP, pages 28:1-28:15.

[42] Chakrabarti, D., Kumar, R., and Punera, K. (2008). A graph-theoretic approach to
webpage segmentation. Rroceedings of the 17th international conference on World
Wide Webpages 377-386.

162 References

[43] Charikar, M. and Chatziafratis, V. (2017). Approximate hierarchical clustering via
sparsest cut and spreading metricsSDA pages 841-854.

[44] Charikar, M., Chatziafratis, V., and Niazadeh, R. (2019a). Hierarchical clustering better
than average-linkage. IBRODA pages 2291-2304.

[45] Charikar, M., Chatziafratis, V., Niazadeh, R., and Yaroslavtsev, G. (2019b). Hierarchical
clustering for euclidean data. In Chaudhuri, K. and Sugiyama, M., editivi,R
volume 89, pages 2721-2730. PMLR.

[46] Chatziafratis, V., Niazadeh, R., and Charikar, M. (2018). Hierarchical clustering with
structural constraints. IRroceedings of the ICMLlpages 773-782.

[47] Chawla, S., Makarychev, K., Schramm, T., and Yaroslavtsev, G. (2015). Near optimal
Ip rounding algorithm for correlationclustering on complete and complete k-partite graphs.
In Proceedings of the forty-seventh annual ACM symposium on Theory of computing
pages 219-228.

[48] Chen, X., Fain, B., Lyu, C., and Munagala, K. (2019). Proportionally fair clustering. In
ICML, pages 1032-1041.

[49] Chen, Y., Sanghavi, S., and Xu, H. (2012). Clustering sparse grapRsot¢eedings of
the 25th International Conference on Neural Information Processing Systems-Valume 2
pages 2204-2212.

[50] Cheng, Z. and Koudas, N. (2019). Nonlinear models over normalized da281mh
IEEE 35th International Conference on Data Engineering (ICDigges 1574-1577.
IEEE.

[51] Chhabra, A. and Mohapatra, P. (2020). Fair algorithms for hierarchical agglomerative
clustering.arXiv:2005.03197

[52] Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S. (2017). Fair clustering
through fairlets. INIPS pages 5029-5037.

[53] Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S. (2019). Matroids, match-
ings, and fairness. IAISTATSpages 2212-2220.

[54] Chierichetti, F., Kumar, R., and Mahdian, M. (2014). The complexity of LSH feasibility.
Theor. Comput. S¢i530:89-101.

[55] Chiplunkar, A., Kale, S., and Ramamoorthy, S. N. (2020). How to solvekfa@nter in
massive data models. IGML.

[56] Cochez, M. and Neri, F. (2015). Scalable hierarchical clustering: Twister tries with a
posteriori trie elimination. II8SCJ pages 756—763.

[57] Cohen-Addad, V., Hjuler, N., Parotsidis, N., Saulpic, D., and Schwiegelshohn, C.
(2019). Fully dynamic consistent facility location. NeurlPS'19-33rd Conference on
Neural Information Processing Systems

[58] Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., and Mathieu, C. (2018). Hierarchi-
cal clustering: Objective functions and algorithms S@®DA pages 378-397.

References 163

[59] Cohen-addad, V., Kanade, V., Mallmann-trenn, F., and Mathieu, C. (2019). Hierarchical
clustering: Objective functions and algorithnds ACM 66(4).

[60] Curtin, R. R., Moseley, B., Ngo, H. Q., Nguyen, X., Olteanu, D., and Schleich, M.
(2020). Rk-means: Fast clustering for relational data. In Chiappa, S. and Calandra, R., ed-
itors, The 23rd International Conference on Arti cial Intelligence and Statistics, AISTATS
2020, 26-28 August 2020, Online [Palermo, Sicily, Italdlume 108 ofProceedings of
Machine Learning Researchages 2742-2752. PMLR.

[61] Dasgupta, S. (2016). A cost function for similarity-based hierarchical clustering. In
STOC

[62] Dasgupta, S. and Gupta, A. (2003). An elementary proof of a theorem of johnson and
lindenstraussRandom Struct. Algorithm22(1):60—65.

[63] Dasgupta, S. and Long, P. M. (2005). Performance guarantees for hierarchical clustering.
J. Comput. Syst. S¢if0(4):555-569.

[64] Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive
hashing scheme based on p-stable distributionBrdeeedings of the twentieth annual
symposium on Computational geomepgges 253—-262.

[65] Demaine, E. D., Emanuel, D., Fiat, A., and Immorlica, N. (2006). Correlation clustering
in general weighted graph$heoretical Computer Sciencg61(2-3):172-187.

[66] Ene, A.,Im, S., and Moseley, B. (2011). Fast clustering using MapRedu&bDn
pages 681-689.

[67] Garey, M. R. and Johnson, D. S. (200€omputers and Intractability VH Freeman
New York.

[68] Ghoshdastidar, D., Perrot, M., and von Luxburg, U. (2018). Foundations of comparison-
based hierarchical clusterinGoRR abs/1811.00928.

[69] Giotis, I. and Guruswami, V. (2005). Correlation clustering with a xed number of
clusters.arXiv preprint cs/0504023

[70] Goodman, J. E. and O'Rourke, J., editors (199andbook of Discrete and Computa-
tional Geometry CRC Press, Inc., USA.

[Google Cloud Platform] Google Cloud Platform. https://cloud.google.com/.

[72] Guha, S., Meyerson, A., Mishra, N., Motwani, R., and O'Callaghan, L. (2003). Clus-
tering data streams: Theory and practiteEE Transactions on Knowledge and Data
Engineering 15(3):515-528.

[73] Guha, S., Rastogi, R., and Shim, K. (2001). Cure: An ef cient clustering algorithm for
large databasesnf. Syst, 26(1):35-58.

[74] Guo, X., Kulkarni, J., Li, S., and Xian, J. (2020). On the facility location problem
in online and dynamic models. Wpproximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2@&thloss Dagstuhl-
Leibniz-Zentrum fur Informatik.

164 References

[75] Guo, X., Kulkarni, J., Li, S., and Xian, J. (2021). Consistent k-median: Simpler, better
and robust. Irinternational Conference on Atrti cial Intelligence and Statistipaiges
1135-1143. PMLR.

[76] Huang, L., Jiang, S. H. C., and Vishnoi, N. K. (2019). Coresets for clustering with
fairness constraints. INeurlPS pages 7587—7598.

[77] Indyk, P. (2001). Algorithmic applications of low-distortion geometric embeddings. In
FOCS

[78] Indyk, P. and Matousek, J. (2004). Low-distortion embeddings of nite metric spaces.
In in Handbook of Discrete and Computational Geomgbgges 177-196. CRC Press.

[79] Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: towards removing
the curse of dimensionality. IRroceedings of the thirtieth annual ACM symposium on
Theory of computingpages 604—613.

[80] Jin, C., Chen, Z., Hendrix, W., Agrawal, A., and Choudhary, A. N. (2015a). Incremental,
distributed single-linkage hierarchical clustering algorithm using mapreduc¢¢P G

[81] Jin, C., Liu, R., Chen, Z., Hendrix, W., Agrawal, A., and Choudhary, A. N. (2015b). A
scalable hierarchical clustering algorithm using sparkBithnData Computing Service
and Applications

[82] Jones, M., Nguyen, T., and Nguyen, H. (2020). kagenters via maximum matching.
In ICML.

[83] Kalashnikov, D. V., Chen, Z., Mehrotra, S., and Nuray-Turan, R. (2008). Web people
search via connection analysiEEE Transactions on Knowledge and Data Engineering
20(11):1550-1565.

[84] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and
Wu, A. Y. (2004). A local search approximation algorithm for k-means clustering.
Computational Geometr28(2-3):89-112.

[85] Karloff, H. J., Suri, S., and Vassilvitskii, S. (2010). A model of computation for
mapreduce. IISODA

[86] Khamis, M. A., Ngo, H. Q., Ré, C., and Rudra, A. (2016). Joins via geometric
resolutions: Worst case and beyod®CM Transactions on Database SysteAiq4):22:1—
22:45.

[87] Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., and Mullainathan, S. (2017). Hu-
man decisions and machine predictionbe Quarterly Journal of Economic$33(1):237—
293.

[88] Kleindessner, M., Awasthi, P., and Morgenstern, J. (2019a).k-e@énter clustering for
data summarization. If/CML, pages 3448-3457.

[89] Kleindessner, M., Samadi, S., Awasthi, P., and Morgenstern, J. (2019b). Guarantees for
spectral clustering with fairness constraintsl@ML, pages 3448-3457.

References 165

[90] Korula, N., Mirrokni, V., and Zadimoghaddam, M. (2018). Online submodular wel-
fare maximization: Greedy beats 1/2 in random ordefAM Journal on Computing
47(3):1056-1086.

[91] Kull, M. and Vilo, J. (2008). Fast approximate hierarchical clustering using similarity
heuristics.BioData Mining 1.

[92] Kumar, A., Naughton, J., and Patel, J. M. (2015). Learning generalized linear models
over normalized data. IACM SIGMOD International Conference on Management of
Data, pages 1969-1984.

[93] Kumar, R., Purohit, M., Schild, A., Svitkina, Z., and Vee, E. (2019). Semi-online
bipartite matching. Ir1.0th Innovations in Theoretical Computer Science Conference,
ITCS 2019, January 10-12, 2019, San Diego, California, Us&es 50:1-50:20.

[94] Kumar, S., Hamilton, W. L., Leskovec, J., and Jurafsky, D. (2018a). Community
interaction and con ict on the web. IRroceedings of the 2018 world wide web confergnce
pages 933-943.

[95] Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., and Subrahmanian, V.
(2018b). Rev2: Fraudulent user prediction in rating platformsPrivceedings of the
Eleventh ACM International Conference on Web Search and Data Mipages 333—341.

[96] Kumar, S., Spezzano, F., Subrahmanian, V., and Faloutsos, C. (2016). Edge weight
prediction in weighted signed networks. 2016 IEEE 16th International Conference on
Data Mining (ICDM), pages 221-230. IEEE.

[97] Lattanzi, S., Lavastida, T., Lu, K., and Moseley, B. (2019). A framework for paralleliz-
ing hierarchical clustering methods. BECML.

[98] Lattanzi, S., Moseley, B., Vassilvitskii, S., Wang, Y., and Zhou, R. (2021). Robust
online correlation clusteringddvances in Neural Information Processing Syste3ds

[99] Lattanzi, S. and Vassilvitskii, S. (2017). Consistent k-clusteringlntarnational
Conference on Machine Learningages 1975-1984. PMLR.

[100] Lavastida, T., Lu, K., Moseley, B., and Wang, Y. (2021). Scaling average-linkage via
sparse cluster embeddings.Asian Conference on Machine Learnjmpges 1429-1444.
PMLR.

[101] Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data.

[102] Li, S. and Svensson, O. (2016). Approximating k-median via pseudo-approximation.
SIAM J. Comput.45(2):530-547.

[103] Liberty, E., Sriharsha, R., and Sviridenko, M. (2016). An algorithm for online k-means
clustering. In2016 Proceedings of the eighteenth workshop on algorithm engineering
and experiments (ALENE)X)ages 81-89. SIAM.

[104] Lichman, M. (2013). UCI ml repository.

166 References

[105] Lykouris, T., Mirrokni, V., and Paes Leme, R. (2018). Stochastic bandits robust to
adversarial corruptions. IRroceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computingpages 114-122.

[106] Lykouris, T. and Vassilvitskii, S. (2018). Competitive caching with machine learned
advice. Ininternational Conference on Machine Learnjqmpges 3296-3305. PMLR.

[107] Mathieu, C., Sankur, O., and Schudy, W. (2010). Online correlation clustering. In
27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010,
March 4-6, 2010, Nancy, Francpages 573-584.

[108] McAuley, J. J. and Leskovec, J. (2012). Learning to discover social circles in ego
networks. INNIPS volume 2012, pages 548-56. Citeseer.

[109] Menon, A. K., Rajagopalan, A., Sumengen, B., Citovsky, G., Cao, Q., and Kumar, S.
(2019). Online hierarchical clustering approximatio@®RR abs/1909.09667.

[110] Meyerson, A. (2001). Online facility location. Proceedings 42nd IEEE Symposium
on Foundations of Computer Scienpages 426—-431. IEEE.

[111] Meyerson, A., O'Callaghan, L., and Plotkin, S. A. (2004)kAnedian algorithm with
running time independent of data siadachine Learning56(1-3):61-87.

[112] Monath, N., Kobren, A., Krishnamurthy, A., Glass, M. R., and McCallum, A. (2019).
Scalable hierarchical clustering with tree grafting. SiGKDD.

[113] Moseley, B., Pruhs, K., Samadian, A., and Wang, Y. (2021a). Relational algorithms for
k-means clusteringnternational Colloquium on Automata, Languages, and Programming
(ICALP).

[114] Moseley, B., Vassilvitskii, S., and Wang, Y. (2021b). Hierarchical clustering in general
metric spaces using approximate nearest neighbordnténnational Conference on
Arti cial Intelligence and Statisticspages 2440-2448. PMLR.

[115] Moseley, B. and Wang, J. (2017). Approximation bounds for hierarchical clustering:
Average linkage, bisecting k-means, and local seafatvances in neural information
processing system30.

[116] Mullner, D. (2013). fastcluster: Fast hierarchical, agglomerative clustering routines
for r and python.Journal of Statistical Softwar&3(9).

[117] Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms.
Comput. J.26(4):354—-359.

[118] Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical clustering: an
overview. Wiley Interdisc. Rew.: Data Mining and Knowledge Discoy@(l1):86—97.

[119] Ostrovsky, R., Rabani, Y., Schulman, L. J., and Swamy, C. (2012). The effectiveness
of lloyd-type methods for the k-means probledournal of the ACM (JACM9(6):28.

[120] Plaxton, C. G. (2006). Approximation algorithms for hierarchical location problems.
J. Comput. Syst. S¢if2(3):425-443.

References 167

[121] Rendle, S. (2013). Scaling factorization machines to relational datrokeedings
of the VLDB Endowmenvolume 6, pages 337-348. VLDB Endowment.

[122] Roésner, C. and Schmidt, M. (2018). Privacy preserving clustering with constraints. In
ICALP, pages 96:1-96:14.

[123] Roughgarden, T. (2020Beyond the Worst-Case Analysis of Algorithi@ambridge
University Press.

[124] Roy, A. and Pokutta, S. (2017). Hierarchical clustering via spreading meiitisR
18:88:1-88:35.

[125] Saha, B. and Subramanian, S. (2019). Correlation clustering with same-cluster queries
bounded by optimal cosarXiv preprint arXiv:1908.04976

[126] Schleich, M., Olteanu, D., and Ciucanu, R. (2016). Learning linear regression models
over factorized joins. liProceedings of the 2016 International Conference on Management
of Data, SIGMOD '16, pages 3—-18. ACM.

[127] Schmidt, M., Schwiegelshohn, C., and Sohler, C. (2019). Fair coresets and streaming
algorithms for fair k-means. In Bampis, E. and Megow, N., editdf80A pages 232-251.

[128] Sohler, C. and Woodruff, D. P. (2018). Strong coresets for k-median and subspace
approximation: Goodbye dimension. 8ymposium on Foundations of Computer Science
pages 802-813.

[129] Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document
clustering techniques. IKDD workshop on text miningzolume 400, pages 525-526.
Boston.

[130] Vidal, R. (2006). Online clustering of moving hyperplanesdvances in Neural
Information Processing Systeni®:1433-1440.

[131] Wang, D. and Wang, Y. (2018). An improved cost function for hierarchical cluster
trees.CoRR abs/1812.02715.

[132] Wang, Y. and Moseley, B. (2020). An objective for hierarchical clustering in euclidean
space and its connection to bisecting k-mean®A®R\l, pages 6307-6314.

[133] Xu, R. and Wunsch, D. C. (2005). Survey of clustering algorithtfBEE Trans.
Neural Networks16(3):645-678.

[Yang et al.] Yang, K., Gao, Y., Liang, L., Yao, B., Wen, S., and Chen, G. Towards factorized
svm with gaussian kernels over normalized data.

[135] Yaroslavtsev, G. and Vadapalli, A. (2018). Massively parallel algorithms and hardness
for single-linkage clustering under Ip distancesI@ML.

[136] Yu, C. T. and Ozsoyoglu, M. Z. (1979). An algorithm for tree-query membership
of a distributed query. II€omputer Software and The IEEE Computer Society's Third
International Applications Conferencpages 306—-312. IEEE.

168 References

[137] Zhang, J., Ghahramani, Z., and Yang, Y. (2004). A probabilistic model for online
document clustering with application to novelty detectiddvances in neural information
processing system$7:1617-1624.

[138] Zhao, Y., Karypis, G., and Fayyad, U. M. (2005). Hierarchical clustering algorithms
for document dataset®ata Min. Knowl. Discoy.10(2):141-168.

Appendix A

Background Information for Relational
Database

A.1 Uniform Sampling From a Hypersphere

In order to uniformly sample a point from inside a ball, it is enough to show how we can
count the number of points located inside a ball grouped by a TabBecause, if we can
count the number of points grouped by input tables, then we can use similar technique to
the one used in Section 5.4 to sample. Unfortunately, as we discussed in Section 5.2, it is
#P-Hard to count the number of points inside a ball; however, it is possible to obfainch
approximation of the number of point][Bellow we brie y explain the algorithm in4] for
counting the number of points inside a hypersphere.

Given a centec and a radiug, the goal is approximating the number of tupkes J
forwhich&;(c’ x)? R. Consider the sedcontaining all the multisets of real numbers.
We denote a multisék by a set of pairs ofv; fa(v)) wherev is a real value and(v) is the
frequency ofvin A. For exampleA = f(2:3;10);(3:5;1)g is a multiset that has0 members
with value2:3 and1 member with valu&:5. Then, let be the summation operator meaning
C=A Bifandonlyifforallx2 R, fc(x) = fa(x)+ fg(x), and let be the convolution
operator such th&@ = A Bifand only if fc(X) = &jor fa(i)+ fg(x i). Then the claim is
(S ;)isacommutative semiring and the following SumProd query returns a multiset that
has all the squared distances of the point$from C:

M O .)
f(x)41y
x2J i

170 Background Information for Relational Database

Using the result of the multiset, it is possible to count exactly the number of tylelsfor
which kx ck% R2. However, the size of the result is as largagJj).

In order to make the size of the partial results and time complexity ahd operators
polynomial, the algorithm us€4 + d) geometric bucketing. The algorithm returns an array
where inj-th entry it has the smallest valuefor which there ar€1+ d)! tuplesx 2 J
satisfyingkx ck3 r2.

The query can also be executed grouped by one of the input tables. Therefore, using this
polynomial approximation scheme, we can calculate conditioned marginalized probability
distribution with multiplicative(1 d). Therefore, usingn queries, it is possible to sample a
tuple from a ball with probability distributioﬁ(l md) wheren is the number of points in-
side the ball. In order to get a sample with probabiﬁ()l e), allwe need is to sat = e=m,

hence, on [4], the time complexity for sampling each tuple wiIDJéTP'Oe—gf(“)Y(n; d;m)

A.2 Background Information About Database Concepts

Given a tuplex, de ne P (X) to be projection ok onto the set of featurds meaningP g (X)
is a tuple formed by keeping the entriesxithat are corresponding to the featurd=inFor
example lefl be a table with column@A; B;C) and letx = (1;2;3) be a tuple ofT, then

Piacg(¥) =(13).

Note that the above de nition of join is consistent with the de nition written in Section
5.1 but offers more intuition about what the join operation means geometrically.

De nition A.2.2 (Join Hypergraph)Given a joindJ= Tiyo o Ty, the hypergraph asso-
ciated with the join idH = (V; E) whereV is the set of vertices and for every columrin

J there is a vertex; in V, and for every tabld; there is a hyper-edg® in E that has the
vertices associated with the columnsTof

Theorem A.2.1(AGM Bound [23]). Givena joinJ= Tyo m T, with d columns and its

A.2 Background Information About Database Concepts 171

any feasible solution to the following Linear Programming:

m
minimize & log(Tjj)x;
=1

subject to ax 1 v2cC
jiv2e,
0 x5 1 j= 15t

Thend;jT;j% is an upper bound for the cardinality &c(J), this upperbound is tight X is
the optimal answer.

We give another de nition o&cyclicitywhich is consistent with the de nition in the main
body.

De nition A.2.3 (Acyclic Join). We call a join query (or a relational database schema)
acyclicif one can repeatedly apply one of the two operations and convert the set of tables to
an empty set:

1. Remove a column that is only in one table.
2. Remove a table for which its columns are fully contained in another table.

De nition A.2.4 (Hypertree DecompositionLet H = (V;E) be a hypergraph and =
(V2 E9 be a tree with a subset Wfassociated to each vertexut2 VCcalledbag of vPand
show it byb(\® V. T is called ahypertree decompositionof H if the following holds:

1. For each hyperedge? E there exists®2 VOsuch thae b(\9

2. For each vertex 2 E the set of vertices iv°that havev in their bag are all connected
inT.

De nition A.2.5. LetH = (V;E) be a join hypergraph arl = (V% E9 be its hypertree
decomposition. For eacf2 VO let XV = (x‘f; x‘z’o; o ;xxf) be the optimal solution to the
following linear programmin é‘jzlxj, subject tod j2¢, Xj 1;8vi 2 b(V9) where0 x;
1for eachj 2 [t]. Then thewidth of \2is &; X" denoted byw(v9 and thefractional width of

T is maxayow(\W).

De nition A.2.6 (fhtw). Given a join hypergrapi = (V;E), thefractional hypertree
width of H, denoted by fhtw, is the minimum fractional width of its hypertree decomposition.
Here the minimum is taken over all possible hypertree decompositions.

172 Background Information for Relational Database

Observation 1. The fractional hypertree width of an acyclic joinisand each bag in its
hypertree decomposition is a subset of the columns in some input table.

Theorem A.2.2(Inside-out B6]). There exists an algorithm to evaluate a SumProd query in
time O(T mdn™ [og(n)) wherefhtw is the fractional hypertree width of the query afids

the time needed to evaluateand for two operands. The same algorithm with the same
time complexity can be used to evaluate SumProd queries grouped by one of the input tables.

Theorem A.2.3. Let Qs be a function from domain of coluntnin J to R, andG be a vector
that has a row for each tuple2 T;. Then the query

a a Qr(xr)

X2J f

can be converted to a SumProd and the query returning G with de nition

G = é. é.Fl(Xf)
X2YoJ f

can be converted to a SumProd query groupediby T

Proof. LetS= f(a;b)ja2 R;b 2 Ig, and for any two pairs ofa; b); (c;d) 2 Swe de ne:
(&b) (cd)=(a+ cib+d)

and
(a;b) (c;d)=(ad+ cb;bd):

Then the theorem can be proven by using the following two claims:

1. (S ;) formsacommutative semiring with identity zdgo= (0; 0) and identity one
l1=(0;1).

2. Thequery x23 £(Qf(x¢);1) is a SumProd FAQ where the rst entry of the result is
ax23a Qs (Xs) and the second entry is the number of rows.in

proof of the rst claim: Since arithmetic summation is commutative and associative, it is
easy to see is also commutative and associative. Furthermore, based on the de nition of
we have(a;b) lp=(a+ 0;b+ 0)=(a;b).

A.2 Background Information About Database Concepts 173

The operator is also commutative since arithmetic multiplication is commutative, the
associativity of can be proved by

(a1;b1) ((az;b2) (as;bs)) =(a;b1) (azbs+ aghy;bobg)
= (‘aybzbz + byazbz + bybrag; bybobs)
= (agbz + biag;biby) (as;bg)
=((a1;b1) (azb2)) (as;bs)

Also note that based on the de nition of, (a;b) 1p= lgand(a;b) I,=(a;b). The
only remaining property that we need to prove is the distribution over

(&b) ((c;d1) (cz;d2)) =(ab) (Cy+ cpdi+ db)
=(ab) (c1+ cpdi+ dy)
=(cib+ cob+ ady + ady; bd; + bdp)
=(cib+ ady;bd;) (cob+ ady;bdh)
=((ab) (ci;d1)) ((ab) (cz;d2)

Now we can prove the second claim: To prove the second claim, since we have already
shown the semiring properties (5 ;) we only need to show what is the result of

x23 £(Qf(Xs);1). We have ¢(Qi(xt);1) =(a+Qi(xs);1), therefore

x23 QXD = x23(Q Qr(x);)=(& & Q(xr); A 1
f

X2J f X2J

where the rst entry is the result of the SumSum query and the second entry is the number of
rows inJ. O

Appendix B

Omitted Experimental Results for
Hierarchical Clustering in General
Metric Space

This chapter contains the experiment results omitted in the main body. We show the perfor-
mance table and running time plots for Proxy-Hash-SL And Proxy-Hash-AL on the three
road map datasets asdizure . These results lead to the same conclusions as in the main
body: both Proxy-Hash-SL and Proxy-Hash-AL are more accurate and ef cient than directly
using the proxy metric.

B.1 Performance And Running Time for Proxy-Hash-SL
And Proxy-Hash-AL

We defer the performance data for Proxy-Hash-SL on road map dataset in Bay Area and
Great Lakes until the next subsection, where we will show the complete data table containing
performance data for a range®falues in the LSH algorithm, gathered from the road map
datasets in all three cities. Here we show the performance for Proxy-Hash-AL on road maps
in Bay Area and Great Lakes in Table B.1 and B.2.

Running-time wise, Figure B.1a and B.1b show the growth in number of distance compu-
tations in Proxy-Hash-AL for road map in Bay Area and the Great Lakes, versus growth in
sample size. The sample sizes are plotted on log scale. Both curves are strictly sub-quadratic
as it is dominated by = cx'3 wherec is a constant.

176 Omitted Experimental Results for Hierarchical Clustering in General Metric Space

Table B.1 Comparing the performance of different average linkage methods, Bay Area

Sample Size | 299 440 481 830 909 1065 1280 1363

Aprx Ratio, mean, Proxy-AL | 3.608 2.491 3.423 2.830 2431 3.017 2.787 2.175

Aprx Ratio, mean, Proxy-Hash-AL| 1.484 1.647 1.493 1.725 1.629 1.709 1.821 1.730

Aprx Ratio, 90%, Proxy-AL | 6.554 4.327 5.324 3.759 3.816 5.156 4.711 3.418

Aprx Ratio, 90%, Proxy-Hash-AL | 2.024 2.300 1.987 2.402 2.214 2.313 2.550 2.353
Aprx Ratio, max, Proxy-AL | 85.784 126.459 89.782 116.732 44.144 96.401 215.839 64.011

Aprx Ratio, max, Proxy-Hash-AL | 2.553 3.223 3.184 3.759 3.816 3.646 4.507 3.418

Global Obj, Proxy-AL | 0.994 0.990 0.990 0.998 0.999 0.994 0.963 1.001

Global Obj, Proxy-Hash-AL | 1.004 0.970 0.985 0.975 0.999 0.987 0.966 0.971

Table B.2 Comparing the performance of different average linkage methods, the Great Lakes

Sample Size | 86 211 363 496 632 713 1064 1885

Aprx Ratio, mean, Proxy-AL | 1.539 1.457 1.935 1.971 1.975 1.742 1.828 1.837

Aprx Ratio, mean, Proxy-Hash-AL| 1.362 1.545 1.562 1.592 1.603 1.675 1.766 1.797

Aprx Ratio, 90%, Proxy-AL | 2.158 1.732 2.476 2516 3.280 2.839 2.466 2.658

Aprx Ratio, 90%, Proxy-Hash-AL | 1.890 2.311 2.112 2.172 2.158 2.268 2.523 2.412
Aprx Ratio, max, Proxy-AL | 14.361 8.603 55.200 45.255 28.929 17.767 65.448 51.816

Aprx Ratio, max, Proxy-Hash-AL| 2.428 3.367 3.043 2.971 3.079 3.137 5.073 3.943

Global Obj, Proxy-AL 0.992 0.996 0.990 1.001 0.988 0.997 0.990 0.996

Global Obj, Proxy-Hash-AL | 0.983 0.998 0.996 0.983 0.994 0.995 0.992 0.997

Table B.3 Ratio between total road distance of the tree and real MST, New York

Sample Sizel 169 330 727 1166 1825 3765 6710 14428 28985
Euclidean| 1.760 1.304 1.554 1.784 1412 1.805 1.753 1.883 1.511
Proxy-Hash-SL-0.1} 1.035 1.016 1.021 1.024 1.027 1.030 1.029 1.022 1.024
Proxy-Hash-SL-0.21 1.048 1.035 1.055 1.038 1.045 1.040 1.066 1.044 1.055
Proxy-Hash-SL-0.3 1.109 1.030 1.055 1.052 1.062 1.060 1.063 1.052 1.059
Proxy-Hash-SL-0.4 1.082 1.036 1.075 1.064 1.068 1.064 1.063 1.074 1.078
Proxy-Hash-SL-0.5 1.074 1.094 1.081 1.091 1.065 1.068 1.090 1.072 1.077

In the main body, we have also omitted the running time plots for Proxy-Hash-SL for all
data sets. See Figure B.2 for them. Clearly, all running time curves are strictly subquadratic,
and even only slightly super-linear on all road map datasets.

B.1.1 Robustness of Performance Against Sample Sizes And Parameter
Tuning

There are a lot of parameters in the implementation of both Proxy-Hash-SL and Proxy-Hash-
AL, which might affect the accuracy and ef ciency of our algorithms. One of the most
important parameters &- in every round of LSH the threshold merging value grows by a
factor of1+ e. In this section we show that the performance of our algorithms are robust
against differene values and the growth of sample sizes. We focus on Proxy-Hash-SL for
Now.

See Table 6.3, B.4, B.5 for partial statistics of Proxy-Hash-SL performance for Bay Area
and the Great Lakes. The sample sizes are picked to grow by approximately a feztor of
Here

B.1 Performance And Running Time for Proxy-Hash-SL And Proxy-Hash-AL 177

(a) Bay Area (b) the Great Lakes

Fig. B.1 Growth of distance computation, Proxy-Hash-AL, Bay Area and Great Lakes

Table B.4 Ratio between total road distance of the tree and real MST, Bay Area

Sample Size 251 424 909 1804 3732 7135 10106 22861
Euclidean| 2.241 1.643 1.954 1.407 1905 2.252 2198 2.397
Proxy-Hash-SL-0.1f 1.027 1.039 1.032 1.026 1.035 1.026 1.028 1.027
Proxy-Hash-SL-0.2l 1.058 1.045 1.038 1.046 1.058 1.038 1.049 1.047
Proxy-Hash-SL-0.3l 1.050 1.045 1.034 1.051 1.066 1.064 1.054 1.070
Proxy-Hash-SL-0.4 1.098 1.042 1.058 1.049 1.073 1.063 1.068 1.069
Proxy-Hash-SL-0.5 1.105 1.070 1.061 1.049 1.081 1.082 1.069 1.071

Table B.5 Ratio between total road distance of the tree and real MST, the Great Lakes

Sample Size | 616 1289 3063 6564 14056 26004
Euclidean | 1.434 1.586 1.433 1.623 1.799 1.824
Proxy-Hash-SL-0.1| 1.054 1.036 1.029 1.036 1.030 1.031
Proxy-Hash-SL-0.2| 1.053 1.067 1.038 1.046 1.057 1.049
Proxy-Hash-SL-0.3 | 1.111 1.081 1.042 1.079 1.052 1.071
Proxy-Hash-SL-0.4 | 1.108 1.100 1.043 1.084 1.074 1.082
Proxy-Hash-SL-0.5| 1.081 1.094 1.062 1.085 1.118 1.083

Figure B.3, B.4 and B.5 show the performance of our algorithm versus sample size and
differente values. Here Proxy-Hash-Strefers to spanning tree constructed by Proxy-Hash-
SL usinge as parameter.

Figure B.7 and B.8 show the number of distance computations that would be needed by
our algorithm, versus sample size andAs is the case with New York, it grows only slightly
super-linearly with sample size.

Figure B.6, B.7 and B.8 show the number of distance evaluations done by the algorithm.
The naive implementation this grows quadratically. We see that Proxy-Hash grows slightly
superlinearly with input size.

178 Omitted Experimental Results for Hierarchical Clustering in General Metric Space

(a) New York (b) Bay Area

(c) The Great Lakes (d) Seizure

Fig. B.2Number of distance computation, versus sample size (log), Proxy-Hash-SL

B.1 Performance And Running Time for Proxy-Hash-SL And Proxy-Hash-AL 179

Fig. B.3 Approximation ratio versus sample size andlue for New York

Fig. B.4 Approximation ratio versus sample size andilue for Bay Area

Fig. B.5 Approximation ratio versus sample size anghlue for the Great Lakes

	Table of contents
	1 Introduction
	1.1 Theoretical Framework for Clustering Problems
	1.1.1 Hierarchical Clustering: Objective Functions and Constraints
	1.1.2 Faster Clustering: Scalable Average Linkage and Relational Algorithms

	1.2 Improved Algorithm Design with Machine-Learned Predictions

	2 A New Objective Function for Hierarchical Clustering
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Objective Functions
	2.2.2 Common Hierarchical Clustering Algorithms in Practice

	2.3 Hierarchical-Split : Comparing Inter vs. Intra Cluster Distance
	2.4 Ground-truth Inputs
	2.4.1 Definition of Ground-Truth Inputs
	2.4.2 Optimality of Generating Trees

	2.5 Bisecting k-means Approximates Hierarchical-Split Objective
	2.6 Randomly Partitioning Poorly Approximates the Hierarchical-Split Objective
	2.7 Other Objectives for Data in Metric Space
	2.8 Empirical Results
	2.9 Conclusion

	3 Fair Hierarchical Clustering
	3.1 Introduction
	3.2 Formulation
	3.2.1 Generalized Objectives for Hierarchical Clustering
	3.2.2 Notions of Fairness

	3.3 Fairlet Decomposition
	3.3.1 Fairlet decomposition for the value objective

	3.4 Optimizing revenue with fairness
	3.5 Optimizing value with fairness
	3.6 Experiments
	3.7 Conclusions

	4 Scaling Average-Linkage via Sparse Cluster Embeddings
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Notation System
	4.2.2 Approximate Nearest Neighbors

	4.3 Sparse Cluster Embeddings for Average Distance
	4.4 Near Cluster Search
	4.5 Fast Approximate Average-Linkage
	4.5.1 A Sketch for ANN-based Average-Linkage
	4.5.2 Robust Merging

	4.6 Algorithm Analysis: Approximation Ratio and Running Time
	4.6.1 Running Time Analysis for Algorithm
	4.6.2 Approximation and Correctness

	4.7 Experiments
	4.8 Conclusions and Future Work

	5 Relational Algorithms For K-Means Clustering
	5.1 Introduction
	5.2 Warm-up: Efficiently Implementing 1-means++ and 2-means++
	5.2.1 Hardness of Relationally Computing the Weights

	5.3 Related Work and Background
	5.4 Simulating the k-means++ Algorithm
	5.4.1 Relational Implementation of 3-means++
	5.4.2 Simulating k-means++

	5.5 Weighting the Centers
	5.5.1 Analysis of the Weighting Algorithm

	5.6 Conclusion

	6 Scalable Hierarchical Clustering in General Metric Spaces
	6.1 Introduction
	6.2 Preliminaries
	6.3 Warm-up: Using ANNs to Approximate Single Linkage
	6.4 Main Algorithm for Scalable Average Linkage
	6.5 Correctness and Run Time of Average Linkage Algorithm
	6.6 Experiments

	7 Robust Online Correlation Clustering
	7.1 Introduction
	7.2 Semi-Online Model for Correlation Clustering
	7.3 Warm-Up: Pivoting Using a Random Sample
	7.3.1 Pivot Preliminaries
	7.3.2 Bounding Cost of S
	7.3.3 Bounding Cost of V S

	7.4 Random Sample with Adversarial Corruptions
	7.4.1 Analysis: Proof of thmadversarial

	7.5 Experiments
	7.6 Conclusion

	References
	Appendix A Background Information for Relational Database
	A.1 Uniform Sampling From a Hypersphere
	A.2 Background Information About Database Concepts

	Appendix B Omitted Experimental Results for Hierarchical Clustering in General Metric Space
	B.1 Performance And Running Time for Proxy-Hash-SL And Proxy-Hash-AL
	B.1.1 Robustness of Performance Against Sample Sizes And Parameter Tuning

	Appendix C Supplementary for Semi-online Correlation Clustering
	C.1 Experiments

