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Chapter 1

Introduction

As the concept of precision medicine spreads, there is a growing need for developing better
algorithms that a) are sample efficient (i.e., require fewer samples to achieve the same accuracy
level), b) think beyond association (to identify the causation hidden in the data), and c) provide
insights to medical practice. In this dissertation, we investigate various problems in precision
medicine, the topics ranging from opioid use disorder (OUD) and cancer treatment, to sickle cell
disease (SCD). We leverage tools from stochastic learning, causal inference, and machine learning,
with the objective of reducing healthcare expenditure and improving the quality of care.

One of the US’s most recent health crises is the opioid overdose epidemic, and the resource
that we have to reverse is epidemic is limited. While various OUD treatments have shown to be
effective on a population level, individual patients react differently to these treatments. Wearable
devices, on the other hand, can potentially revolutionize treatments for OUD by measuring patient
responses to different treatment regimens in real-time, enabling the development of personalized
treatments. However, before we deploy the use of wearable devices in OUD treatments, we first
need to understand the practicality and the cost-effectiveness of such devices. Thus motivated,
in Chapter 2, we evaluate the use of wearable devices in OUD treatments when the budget is
limited. In particular, we consider a variety of wearable devices with different features, sensitivities,
and costs, and model our problem using a finite-horizon, non-stationary constrained partially

observable Markov decision process (CPOMDP). To facilitate the solution of our model, we provide
a novel budget reformulation that finds all optimal solutions lying on the original formulation’s
solution’s convex hull. Next, we show our reformulation can be solved using a binary search in
conjunction with an exact POMDP algorithm. We apply those elements, using extracted transition
matrices and rewards from past literature, to perform a numerical study to investigate the value
of incorporating different wearables in treatments for OUD under scenarios described by different
levels of budget, wearable precision, and patient treatment adherence (TA). We find that wearables
can be valuable at moderate budgets for patients with low or moderate TA; this benefit increases
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as the wearable accuracy increases. Outside of these settings, either the marginal benefit of
wearables is negligible relative to their cost, or their use increases the patients’ risk of overdose to
an unacceptable degree.

Chapters 3 and 4 both relate to cancer research. One of the fundamental goals in cancer research
is to identify the genetic mutations that can cause cancer. If such mutations were identified, then
targeted drugs can be produced to block the effect of thesemutations and hence curing cancer. Since
editing human genome is clinically unsafe at the currently stage, to derive such causal relations,
we can only use observational data collected from a patient population of interest. Motivated by the
fact that the majority of patients only have a subset of genes sequenced1, in Chapter 3, we consider
the benefit of incorporating a large confounded observational dataset (confounder unobserved)
alongside a small deconfounded observational dataset (confounder revealed) when estimating the
average treatment effect (ATE). Our theoretical results show that the inclusion of confounded data
can significantly reduce the quantity of deconfounded data required to estimate the ATE to within
a desired accuracy level. Moreover, in some cases—say, genetics—we could imagine retrospectively
selecting samples to deconfound. We demonstrate that by actively selecting these samples based
upon the (already observed) treatment and outcome, we can reduce our data dependence further.
Our theoretical results establish that the worst-case relative performance of our approach (vs.
random selection) is bounded while our best-case gains are unbounded. We perform extensive
synthetic experiments to validate our theoretical results. Finally, we demonstrate the practical
benefits of selective deconfounding using a large real-world dataset related to genetic mutation in
cancer.

Chapter 4 focuses on liquid biopsies—simple blood tests that can be used for accurate early
stage cancer detection. In particular, we study a set of problems that occur in the development
of liquid biopsies via the lens of active sequential hypothesis testing (ASHT). In the problem of
ASHT, a learner seeks to identify the true hypothesis from among a known set of hypotheses. The
learner is given a set of actions and knows the random distribution of the outcome of any action
under any true hypothesis. Given a target error 𝛿 > 0, the goal is to sequentially select the fewest
number of actions so as to identify the true hypothesis with probability at least 1− 𝛿 . Motivated by
applications in which the number of hypotheses or actions is massive (e.g., genomics-based cancer
detection), we propose efficient (greedy, in fact) algorithms and provide the first approximation
guarantees for ASHT, under two types of adaptivity. Both of our guarantees are independent of
the number of actions and logarithmic in the number of hypotheses. We numerically evaluate
the performance of our algorithms using both synthetic and real-world DNA mutation data,
demonstrating that our algorithms outperform previously proposed heuristic policies by large

1Often this subset is the same across the patient population because doctors will only order a gene to be sequenced
if there are known treatments for that gene.
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margins.
Finally, Chapter 5 is an empirical chapter, where we focus on solving real-world problems

where we collaborate with physicians. This chapter is motivated by improving the gap between
machine learning research in healthcare and what has been implemented in practice. In particular,
we collaborated closely with Dr. Patel and Dr. Novelli from University of PittsburghMedical Center
in predicting the 30-day readmission risk for patients with sickle cell disease. Reducing preventable
hospital readmissions in SCD could potentially improve outcomes and decrease healthcare costs.
In a retrospective study of electronic health records, we hypothesized machine learning (ML)
algorithms may outperform standard readmission scoring systems (LACE and HOSPITAL indices).
Participants (n=446) included patients with SCD with at least one unplanned inpatient encounter
between January 1, 2013, and November 1, 2018. Patients were randomly partitioned into training
and testing groups. Unplanned hospital admissions (n=3299) were stratified to training and testing
samples. Potential predictors (n=486), measured from the last unplanned inpatient discharge to
the current unplanned inpatient visit, were obtained via both data-driven methods and clinical
knowledge. Three standard ML algorithms, logistic regression (LR), support vector machine (SVM),
and random forest (RF) were applied. Prediction performance was assessed using the C-statistic,
sensitivity, and specificity. In this dataset, ML algorithms outperformed LACE (C-statistic 0.6,
95%CI 0.57-0.64) and HOSPITAL (C-statistic 0.69, 95%CI 0.66-0.72), with the RF (C-statistic 0.77,
95%CI 0.73-0.79) and LR (C-statistic 0.77, 95%CI 0.73-0.8) performing the best. We reported the
most important predictors in our best models, and derive clinical insights.

1.1 Review of Classical Results in Concentration Inequali-

ties for Subgaussian Random Variables

We first state some classic results that we will use frequently in Chapters 3 and 4. We will consider
the commonly used subgaussian distributions (Vershynin 2018). Loosely speaking, a random
variable is subgaussian if its tail vanishes at a rate faster than some Gaussian distributions.

Definition 1 (subgaussian norm). Let 𝑋 be a random variable, its subgaussian norm is defined as

‖𝑋 ‖𝜓2 ∶= inf{𝑡 ∶ 𝔼[𝑒𝑋 2/𝑡2] ≤ 2}. Moreover, 𝑋 is called subgaussian if ‖𝑋 ‖𝜓2 < ∞.

Many commonly used distributions satisfy this assumption, e.g., Bernoulli, uniform, and
Gaussian distributions etc. We introduce a standard concentration bound for subgaussian random
variables.

Theorem 1 (Hoeffding Inequality Vershynin 2018). Let 𝑋1, ..., 𝑋𝑛 be independent subgaussian
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random variables. Then for any 𝜂 > 0, it holds that

ℙ
[

|||||

𝑛

∑
𝑖=1

𝑋𝑖 −
𝑛

∑
𝑖=1

𝔼𝑋𝑖
|||||
≥ 𝜂

]
≤ 2 exp(−

2𝜂2

∑𝑛
𝑖=1 ‖𝑋𝑖‖2𝜓2)

.

1.1.1 Special Case: Bounded Random Variables

In addition to being subgaussian, if the random variable is bounded, then a stronger version of
Theorem 1 can be stated as follows:

Lemma 1 (Hoeffding’s Lemma). Let X be any real-valued random variable with expected value

𝔼[𝑋 ] = 0, such that 𝑎 ≤ 𝑋 ≤ 𝑏 almost surely. Then, for all 𝜆 ∈ 𝑅, 𝔼 [exp(𝜆𝑋 )] ≤ exp(
𝜆2(𝑏−𝑎)2

8 ).

Theorem 2 (Hoeffding’s inequality for general bounded r.v.s). Let 𝑋1, ..., 𝑋𝑁 be independent ran-

dom variables such that 𝑋𝑖 ∈ [𝑚𝑖 , 𝑀𝑖], ∀𝑖. Then, for 𝑡 > 0, we have 𝑃 (
|||∑

𝑁
𝑖=1 (𝑋𝑖 − 𝔼[𝑋𝑖])

||| ≥ 𝑡) ≤

2 exp(−
2𝑡2

∑𝑁
𝑖=1(𝑀𝑖−𝑚𝑖 )2).
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Chapter 2

Personalized Treatment for Opioid Use
Disorder

2.1 Introduction

The national opioid use disorder crisis in the United States leads to thousands of death annu-
ally (Skolnick 2018), affecting populations from all demographics. Since repeated opioid use can
alter how we perceive motivation and reward long-term (Humphreys et al. 2017), making a full
recovery from OUD is difficult and typically costly. In the United States, medication assisted treat-

ment (MAT)—the standard treatment for OUD—includes the use of medications in combination
with counseling and behavioral therapies. Effective treatment is made difficult by the fact that
patients react to medications for OUD differently, for example, due to genetic variations (Crist
et al. 2013), cultural or ethnic differences (Campbell and Edwards 2012), and stress (Sinha 2008).
As a result, the treatment retention rate among patients with OUD remains low while the death
rate remains high: studies have shown that the 2-month retention rate among patients with OUD
is 57% with few staying enrolled beyond 3 months (Skolnick 2018), and the 30-year (after the
initialization of the first treatments) death rate is 47% (Grella and Lovinger 2011). Thus, there is a
need to develop better, personalized, treatment for OUD.

One key step in developing personalized treatment for OUD is to measure patients’ treatment
responses. While most outpatient programs estimate the effectiveness of a treatment through
relapse rate (via urine tests), ecological momentary assessment (EMA) studies—in which patients
respond to daily surveys—find that addressing craving episodes before relapse can likely help
prevent actual relapse (Serre et al. (2012, 2015), Epstein et al. (2009)). However, EMA is not reliable
in detecting cravings because it is subject to response bias: for example, adolescents tend to
provide random information (McLellan et al. 1992), and patients ashamed about cravings may
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provide falsified information (Kleber et al. 2006).
In this work, we provide a framework to investigate the benefit of incorporating wearable

devices in treatments for OUD, where wearable devices are defined as smart electronic devices that
can be worn on wrists to collect data. There is an emerging trend of integrating wearable devices
in medical treatments (Cheol Jeong et al. 2018), and pilot studies demonstrate that wearables can
be useful in treating Parkinson’s disease (Suzuki et al. 2017), post-discharge monitoring of ICU
patients (Kroll et al. 2017), and detecting early-stage Alzheimer’s disease (Varatharajan et al. 2019).
Moreover, Fatseas et al. (2011, 2015) show that relapses and strong cravings could potentially be
captured by the sensors contained inside the wearables. As a result, many start-ups (Valant et al.
2018, Linder 2019) are integrating wearables into treatments for OUD, and there is thus an urgent
need to develop tools for assessing the value of wearable devices in those treatments. Throughout
this work, we assume there exists an algorithm that detects patient health states in real-time,
possibly with some uncertainty, using the features captured by wearables.

However, the potential advantage of wearables is constrained by the limited national budget
to fight this epidemic (NIDA 2020). Specifically, it is unclear whether reducing the amount of
money spent on MAT in favor of buying wearables is cost-effective. Complicating this problem,
there is a variety of wearables with different prices, sensors, and accuracies available. In this
work, we provide a framework to assess the cost-benefit trade-off of different wearables from the
perspective of the healthcare system, to help determine whether and which wearables should be
invested in by treatment programs for OUD.

Our contributions in this research are threefold. First, we provide a framework for understand-
ing the values of different wearable devices in OUD treatments under budget constraints. Since
patient health states are not always fully observable, we formulate a budget-constrained, discrete-
time, finite-horizon, non-stationary partially observable Markov decision process. We consider
three classes of MAT treatments in addition to counseling only and no treatment, incorporating
different transition matrices to model cases in which we have no wearables, have wearables that
provide different levels of information accuracy on patient health states, or have wearables that
provide perfect information, i.e., a full information MDP benchmark model.

Second, we provide a novel budget reformulation for our CPOMDP that could potentially be
applied to other CPOMDP models. To our knowledge, only two works have proposed methods to
solve finite-horizon CPOMDPs (Cevik et al. 2018, Undurti and How 2010). However, the former
has no feasibility guarantees, and neither have optimality guarantees. In contrast, our budget
reformulation finds all optimal solutions lying on the convex hull of the original formulation’s
solutions. Moreover, our reformulation can be solved using a binary search in conjunction with
an exact POMDP algorithm. (Similarly, in the case of CMDP, our formulation can be solved using
a binary search in conjunction with an exact MDP algorithm.) We show that our reformulation
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not only guarantees the feasibility of our solution, but also optimality when randomized policies
are allowed.

Third, we conduct a numerical study from the perspective of the healthcare system to provide
insights that could potentially guide future field studies. Incorporating different device costs
and accuracies, our objective is to maximize the total lifetime discounted quality-adjusted life

days (QALDs) of patients subject to the budget constraint. We discover that the health benefit of
incorporating wearables could be significant when the budget is not very generous, because if
the budget is very generous, we can afford the most expensive (and effective) treatment in every
period, and the marginal benefit of wearables is negligible. Furthermore, assuming that wearables
do not affect patient treatment adherence levels, different patient types obtain different levels
of benefit from wearables: patients with the highest treatment adherence benefit the least from
wearable devices at all budget levels, and patients with lower TAs benefit the most when the
budget is relatively low.

The paper is organized as follows. After a literature review in § 2.2, we formulate our model
in § 2.4. In § 2.5 we introduce our budget reformulation, review an exact solution method for
solving unconstrained POMDPs, and provide algorithms to solve our reformulation. In addition,
we develop and introduce a heuristic algorithm to speed up the solving time of our reformulation,
and provide a worst case error bound in § 2.15. In § 2.6 we compare wearables with various
features and accuracies, and discuss our numerical results. We conclude in § 2.7. A notation table
is included in § 2.3.

2.2 Literature Review

OUD Treatments In addition to the reasons listed in the introduction (genetics, cultural
and ethnic differences, and stress), the effectiveness of a treatment for OUD can be influenced
by comorbid medical conditions (Luo and Levin 2017), age (McLellan et al. 1994), co-occurring
mental health disorders (Morse and Bride 2017), education levels, psychiatric functioning, marital
separation or social functioning (Sayre et al. 2002), treatment enrollment duration (Eastwood et al.
2017), and multi-drug usage (Williamson et al. 2006). The breath of these features highlights the
potential of personalized treatments.

Many tools have been investigated to try to reverse the opioid epidemic. These include
strengthening the regulations for opioid prescription (Kolodny and Frieden 2017), predicting
opioid overdose via machine learning (Lo-Ciganic et al. 2019), and increasing the accessibility
of OUD treatments (Marshall et al. 2015). However, none address efficient treatments. Several
studies established that some treatment for OUD is more cost-effective than no treatment, due to
reduced hospital visits (e.g. Baser et al. (2011)), using either statistical tools or simulation models.
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None explored the use of personalized treatment.

MDP and POMDP in Personalized Treatment A few works in the Operations Research/-
Management Science literature have considered budget constraints in treatment decision models.
Ayvaci et al. (2012) and Cevik et al. (2018) used finite horizon MDP and POMDP respectively to
model the optimal breast cancer screening policy under budget constraints. Chen et al. (2018)
formulated a finite horizon POMDP to model optimal liver cancer screening policies for patients
with hepatitis C–infection under the constraint that the policies can change at most a given num-
ber of times, and conducted numerical experiments using a MDP. All three papers reformulated
their problems into mixed integer linear programs (MILPs). Ayvaci et al. (2012) showed that the
optimal patient health outcome is strictly concave with respect to budget if randomized policies
were allowed; to enforce a deterministic optimal solution, they must add integrality constraints in
their MILP model. Since the space of reachable belief states in a POMDP model is infinite, the
reformulation proposed by Cevik et al. (2018) is computationally intractable. As a result, they
discretized their belief space and obtained an approximate solution. Chen et al. (2018) showed
that the marginal benefit of surveillance is higher in patient populations with faster disease
progressions. Furthermore, as patients’ risk of developing cancer diminishes and their health
outcome improves, the frequency of surveillance should not increase.

Additional studies have used either an MDP or a POMDP to model clinical decisions, with the
majority focusing on maximizing quality-adjusted life years (QALYs). Zhang et al. (2012) studied
optimal prostate biopsy referral decisions using a infinite-horizon, non-stationary POMDP. Ayer
et al. (2012, 2015) and Alagoz et al. (2013) studied the optimal clinical decisions related to breast
cancer using finite-horizon POMDPs, and MDPs respectively. Erenay et al. (2014) and Suen et al.
(2017) studied optimal colonoscopy screening and optimal drug sensitivity test in tuberculosis
treatment, respectively, using finite-horizon, non-stationary POMDPs.

CPOMDPs in the Computer Science Literature Incorporating a cost constraint directly into a
POMDP yields a model that is computational intractable. Two lines of work in the computer science
literature address this problem in the setting of infinite horizon CPOMDPs and finite horizon
CPOMDPs, respectively, with the majority focusing on the former. Both directions heavily rely on
reformulating the problem into either an MILP or a linear program (LP). Within the infinite horizon
setting, Isom et al. (2008) modified the pruning step in an exact algorithm for solving unconstrained
POMDPs to incorporate the constraint. Kim et al. (2011) proposed a heuristic that uses point-based
value iteration in conjunction with an LP. Poupart et al. (2015) converted the problem into an LP
and considered only a subset of belief states. To ensure optimality, they proposed an iterative
algorithm to enlarge the subset of the belief states. However, this method cannot be adopted into
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the finite-horizon setting. Lee et al. (2018) assumed unknown transition matrices and proposed
to solve an unconstrained POMDP while optimizing its LP-induced parameters that control the
trade-off between rewards and costs. None of the methods above have feasibility guarantees,
and the majority do not guarantee that the final solution can be made sufficiently close to the
optimal solution. In the finite horizon setting, Undurti and How (2010) proposed an algorithm
that combines an offline finite lookahead and an online branch-and-bound algorithm to ensure
the feasibility of the solution, however without optimality guarantees. Furthermore, to calculate
the expected reward and cost, all methods mentioned above must either solve a system of linear
programs or conduct simulations.

In contrast, our finite-horizon budget reformulation guarantees the feasibility of the final
solution and admits optimal solutions when randomized policies are allowed; when deterministic
solutions must be enforced, our reformulation might find a sub-optimal solution. In addition, we
show that our reformulation can be solved using a binary search in conjunction with an exact
POMDP (or MDP) algorithm.

2.3 Notation Table

Notation Description
TA treatment adherence
MAT medication assisted treatment
EMA ecological momentary assessment
QALD quality-adjusted life days
QALY quality-adjusted life years
M methadone maintenance treatments with counseling
B buprenorphine maintenance treatments with counseling
NT; IN; CO no treatment; implant naltrexone with counseling; counseling only
Re, Dx, OD, Dt states of replase, detoxification, overdose, and death respectively
NC, C1, C2 states of no craving, low craving, and high craving intensity, respectively
Abs absorbing state
ATD average treatment dynamics
PTD personalized treatment dynamics
UT urine test
𝑁 number of treatment periods
𝑆 the set of all information states
𝐴 the set of all actions
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𝑂 the set of all observations
(𝑠𝑡+1|𝑠𝑡 , 𝑎) transition probability under action 𝑎 at time 𝑡
𝑎
𝑡 transition probability matrix under action 𝑎 at time 𝑡

𝑤(𝑜𝑡 |𝑠𝑡 , 𝑎);𝑊 observation probability; matrix containing 𝑤(𝑜𝑡 |𝑠𝑡 , 𝑎)
𝜎 ; �̄� sensitivity ; 1− sensitivity
𝑝; 𝑝 specificity ; 1− specificity
𝛽 ; 𝐵 belief state; the set of all belief states
ℎ𝑎𝑡 (𝑠), 𝑐𝑎𝑡 (𝑠) health reward and cost at state 𝑠 under action 𝑎 at time 𝑡 , respectively
𝑟𝑡(𝑎, 𝑠) immediate reward at state 𝑠 under action 𝑎 at time 𝑡
Γ𝑡 amount of budget allocated for the rest of horizon in month 𝑡
𝑉 ∗
𝑡 (𝛽𝑡) optimal expected value of the objective function at time 𝑡 under belief 𝛽𝑡

(𝑜𝑡+1|𝑎, 𝛽𝑡) probability of observing 𝑜𝑡+1 after taking action 𝑎 at belief state 𝛽𝑡
Π set of all feasible policies
𝜋 ′(Γ𝑡) optimal treatment policy under budget Γ𝑡 (in System (1))
𝛽0 initial belief state
𝐻 𝜋
𝛽𝑡 ,𝐶

𝜋
𝛽𝑡 expected health and cost under belief 𝛽𝑡 and policy 𝜋 , respectively

𝜃 tunable parameter that takes values between 0 and 1
𝑉 𝜋 (𝛽𝑡 , 𝜃) expected reward under policy 𝜋 , belief 𝛽𝑡 , and 𝜃
𝜋 ∗ optimal policy in System (2)
𝜃 ∗ optimal 𝜃 in System (2)
Π∗
𝜃 optimal solution set to the unconstrained POMDP in System (2) under 𝜃

𝜋 ∗
𝜃 solution with the lowest expected health in Π∗

𝜃

𝑉 𝜋 ∗(𝛽0, Γ𝑡) optimal value in System (2) under budget Γ𝑡
𝜋 ∗
𝜃 ∗ optimal policy with the lowest expected health under 𝜃 ∗ in Equation (2.9)
𝐹 (Γ𝑡) obtained by connecting the end points of the step function, 𝐻 𝜋 ′

𝛽0 (Γ𝑡)
𝐹 (Γ𝑡) point-wise smallest concave function whose hypograph contains that of 𝐹 (Γ𝑡)
𝛼𝑡 vector containing the expected reward at each state 𝑠𝑡
A 𝑎,𝑜

𝑡 minimal representation of the 𝛼-vector set for action 𝑎𝑡 , observation 𝑜𝑡+1
A 𝑎

𝑡 minimal representation of ⋃𝑜𝑡+1∈𝑂𝑡+1 A 𝑎,𝑜
𝑡

A𝑡 minimal representation of ⋃𝑎𝑡∈𝐴𝑡 A
𝑎
𝑡

𝜏 (𝛼𝑡+1, 𝑎𝑡 , 𝑜𝑡+1)(𝑠𝑡) scaled expected reward at state 𝑠𝑡 given 𝛼𝑡+1 after taking 𝑎𝑡 and observing 𝑜𝑡+1
𝜒𝑡 the vector containing the expected cost at each state 𝑠𝑡
𝑥𝑠 , nc𝑠 , 𝑐2𝑠 , probability of transitioning to Dx, NC, C2 from state 𝑠, respectively
𝑒𝑠 , od𝑠 , 𝑑𝑠 probability of transitioning to Re, OD, Dt from state 𝑠, respectively
𝑤 probability of withdrawing
{𝑇 𝑎

0 }𝑎∈𝐴 transition matrices for ATD
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{𝑇 𝑎
1 }𝑎∈𝐴 transition matrices for PTD

2.4 Constrained Partially Observable Markov Decision Pro-

cess

In this section we describe our CPOMDP model, where a CPOMDP is defined as a POMDP with
two additional components (Isom et al. 2008): 1) a cost incurred in each state for executing an
action, and 2) an upper bound on the cumulative cost. We consider three different cases: (1)
without any wearables; (2) with wearable devices that can detect cravings with various levels of
accuracy; and (3) with wearable devices that can capture craving episodes with perfect accuracy.
For each case, the objective of our model is to maximize the QALDs for an individual patient
subject to a predefined budget constraint for the patient (which would be a fraction of the overall
budget).

Time Horizon Let 𝑁 denote the number of treatment periods. Although our model can be
solved for longer horizons, to keep our model parsimonious, we use a one-year horizon to
mimic the federal budget allocation for treating OUD. We further discretize the horizon into
twelve months (𝑁 = 12)—the recommended change in treatments by the American Psychiatric
Association (Kleber et al. 2006) is less than once per month. Within each month, a patient can
transition between different states. Because the natural granularity of the clinical data makes daily
treatment transition parameters easier to define and estimate than monthly ones, our transition
probabilities and immediate rewards are defined in days.

Actions According to the American Society of Addiction Medicine (ASAM 2016), methadone,
buprenorphine, and naltrexone are three standard medical treatments for OUD; these treatments
are typically provided along with counseling and other support. Therefore, at the beginning of
each month, a care provider can decide which one of the following five actions to take: no treatment

(NT), methadone maintenance treatment with counseling (M), buprenorphine maintenance treatment

with counseling (B), implant naltrexone with counseling (IN), or counseling only (CO). Because
treatments M and B include prescribing medicine on a daily basis, their treatment outcomes are
positively correlated with patient treatment adherence levels. Treatment IN requires only monthly
implant procedures, and thus it works the same for all TA groups. Several treatment constraints
mentioned by Kleber et al. (2006) are not implemented in our model but can be added easily: for
example, treatment B is not suitable for patients with liver disease.
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States The information states (𝑆) in our models correspond to patient health states. We do
not define the state recovery in our model because OUD is unlikely to be cured within one year:
from our conversion with practitioners, a patient faces the risk of relapse even after 10 years of
abstinence. We assume that if a patient starts to use drugs again—relapses (Re)—in the program,
we will allow him or her to stay in the program. If a patient relapses, he or she can either go
through a detoxification (Dx) program to stop using drugs or stop on his or her own (Zarkin
et al. 2005). Because our optimization problem terminates once a patient withdraws from the
program, we create an absorbing state (Abs) representing that the patient has either withdrawn
from the program or died. In any given in-treatment day, (i.e., a day outside of states Re, Dx, or
Abs,) a patient can experience either no craving (NC) for drugs the entire day or some craving at
certain points of the day; clinical papers have found that not all cravings lead to relapse (Marsden
et al. 2014, Serre et al. 2018). Based on conversations with practitioners, we define a low craving

intensity state (C1) and a high craving intensity state (C2); the patient is more likely to relapse
in state C2 than in C1, and in state C1 than in NC. Any renewed opioid usage after a period of
abstinence carries an increased risk of overdose (OD) requiring medical attention due to loss of
tolerance (Chalana et al. 2016), which can lead to death (Dt). Thus, the health of a patient falls
into one of the following eight states, {Dx,NC,C1,C2,Re,OD,Dt,Abs} ∶= 𝑆.

Transition Probability Matrices The transition probability (𝑠𝑡+1|𝑠𝑡 , 𝑎) is the transition proba-
bility from state 𝑠𝑡 ∈ 𝑆 to state 𝑠𝑡+1 ∈ 𝑆 under action 𝑎 ∈ 𝐴 ∶= {NT,M,B, IN,CO}, where 𝑡 indicates
the number of days since the last (known) drug-use.1 To reflect different wearable accuracies in
detecting cravings and estimating individual reactions to treatments, we perturb the observation
and transition matrices governing our POMDP, respectively. We describe how the transition
probabilities were estimated or generated in § 2.6.2.

Observations and Observation Matrices Let 𝑜𝑡 ∈ 𝑂 denote the observation at time 𝑡 . In our
model, the set of feasible observations, 𝑂 = {Dx,NC,C1,C2,Re,OD,Dt,Abs}2, is the same for all
actions at all 𝑡 . At every period, we perform urine test to decide whether a patient has relapsed or
not. Since this assumption is potentially more conservative than necessary (as we could reduce the
frequency of urine tests if the wearable is sufficiently accurate), we relax this assumption in § 2.6.4.
We assume that urine tests can accurately detect drug usage within a three-day interval (Lautieri
2019). Let 𝑤(𝑜𝑡 |𝑠𝑡 , 𝑎) be the probability of making observation 𝑜𝑡 in state 𝑠𝑡 under action 𝑎, and

1To keep the our model Markovian, the transition probability out of the state detoxification was modeled as a
geometric distribution as indicated by Table 2.6.

2Note that as we will see in § 2.6, it is important that |𝑂| is the same as |𝑆| for the consistency of the model
evaluation.
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let𝑊 denote the matrix containing 𝑤(𝑜𝑡 |𝑠𝑡 , 𝑎), with columns corresponding to observations and
rows to true states.

Case 1 no wearables: When there is no wearable, we only observe either a negative urine test result,
ut−, or a positive result, ut+. Since we do not observe patients’ craving states—states NC, C1,
and C2—we maintain a uniform belief over these three states if we observe a negative urine
test. However, a positive urine test result does not necessarily indicate that the patient is
in the state relapse because a patient can stop using drugs on his or her own. Thus, a care
provider can partially observe state Re and has no information about state NC, C1, and C2
in this model. Let ncut+, C1ut+, and C2ut+ denote the probability of observing a positive urine
test when the patient is in fact in states NC, C1, and C2, respectively. Then,

𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dx NC C1 C2 Re OD Dt Abs

Dx 1 0 0 0 0 0 0 0
NC 0 (1 − ncut+)/3 (1 − ncut+)/3 (1 − ncut+)/3 ncut+ 0 0 0
C1 0 (1 − C1ut+)/3 (1 − C1ut+)/3 (1 − C1ut+)/3 C1ut+ 0 0 0
C2 0 (1 − C2ut+)/3 (1 − C2ut+)/3 (1 − C2ut+)/3 C2ut+ 0 0 0
Re 0 0 0 0 1 0 0 0
OD 0 0 0 0 0 1 0 0
Dt 0 0 0 0 0 0 1 0
Abs 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The calculations of ncut+ and C1ut+ are included in § 2.8. After plugging in our estimated
transitionmatrices derived from past literature, ncut+,C1ut+,C2ut+ < 0.01 since the probability
that a patient recovers from a relapse within 3 days is very small (Zarkin et al. 2005).
Therefore, the state Re is fully observable in this case.

Case 2 wearables with imperfect information: In this case, we assume there exists an algorithm
that takes urine test results and data collected via the wearables as inputs and returns an
estimate of the patient’s current health state. However, depending on the accuracy and
dimension of the inputs, the algorithm will have different sensitivities and specificities for
each partially observable state, where the sensitivity (𝜎𝑠) is the probability of observing
state 𝑠 ∈ 𝑆 given that the patient is in state 𝑠, and the specificity (𝑝𝑠) is the probability of not
observing state 𝑠 given that the patient is not in state 𝑠. To simplify the representation of
𝑊 , we parametrize3 𝑊 as follows, where we put more weights on worse health states:

3There are many equivalent parameterization of this problem.
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𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑠/𝑜 Dx NC C1 C2 Re OD Dt Abs

Dx 1 0 0 0 0 0 0 0
NC 0 𝑝Re𝑝C2𝑝C1 𝑝Re𝑝C2𝑝C1 𝑝Re𝑝C2 𝑝Re 0 0 0
C1 0 𝑝Re𝑝C2�̄�C1 𝑝Re𝑝C2𝜎C1 𝑝Re𝑝C2 𝑝Re 0 0 0
C2 0 𝑝Re�̄�C2𝑝C1 𝑝Re�̄�C2𝑝C1 𝑝Re𝜎C2 𝑝Re 0 0 0
Re 0 �̄�Re𝑝C2𝑝C1 �̄�Re𝑝C2𝑝C1 �̄�Re𝑝C2 𝜎Re 0 0 0
OD 0 0 0 0 0 1 0 0
Dt 0 0 0 0 0 0 1 0
Abs 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where �̄�𝑠 = 1 − 𝜎𝑠 , and 𝑝𝑠 = 1 − 𝑝𝑠 , for 𝑠 ∈ {Re,C1,C2}. As in the previous case, Re is fully
observed if monthly urine tests are present: we set 𝑝𝑅𝑒 = 𝜎𝑅𝑒 = 1.

Case 3 wearables with perfect information: In this case, wearables can correctly detect a patient’s
health state. Thus, the observation matrix is the identity matrix, and the model becomes a
Markov decision process.

Belief States The belief state at time 𝑡 , 𝛽𝑡 = (𝛽𝑡(Dx), 𝛽𝑡(NC), 𝛽𝑡(C1), 𝛽𝑡(C2), 𝛽𝑡(Re), 𝛽𝑡(OD), 𝛽𝑡(Dt), 𝛽𝑡(Abs)) ∈
𝐵, defines the probabilities that the care provider believes the patient is in before any action is taken.
If the patient is in a fully observable state, 𝑠, then 𝛽𝑡(𝑠) = 1 and 𝛽𝑡(𝑠′) = 0 for all 𝑠′ ≠ 𝑠. If a patient is
in one of the partially observable states, i.e., states NC,C1,C2, and Re, the belief vector can be rep-
resented as 𝛽𝑡 = (0, 𝛽𝑡(NC), 𝛽𝑡(C1), 𝛽𝑡(C2), 𝛽𝑡(Re), 0, 0, 0), where 𝛽𝑡(NC)+𝛽𝑡(C1)+𝛽𝑡(C2)+𝛽𝑡(Re) = 1.

Immediate Rewards In our CPOMDP, the immediate reward is the QALD. In this paper, we
will use the terms treatment outcome, QALDs, and health gain interchangeably. To represent the
QALDs, we assign a value, ℎ𝑎𝑡 (𝑠) ∈ [0, 1], in every period to every action and health state pair (𝑎, 𝑠).
That is, the immediate reward, 𝑟𝑡(𝑎, 𝑠), that a patient gains at state 𝑠 under treatment decision 𝑎 at
time 𝑡 is ℎ𝑎𝑡 (𝑠), for 𝑡 ∈ {0, ..., 𝑁 − 1}4. We denote the terminal reward 𝑟𝑁 (𝑎, 𝑠), which equals to ℎ𝑁 (𝑠)
in our model. Therefore, the belief state immediate health reward under treatment 𝑎 at time 𝑡 is
∑𝑠∈𝑆 𝑟𝑡(𝑎, 𝑠)𝛽𝑡(𝑠), and we denote this value ℎ𝑎𝑡 (𝛽𝑡). To avoid an overly myopic optimal policy, we
calculate the expected health gain for the patient under no treatment from day 360 to day 420 and
add it as the terminal reward. We discuss the significance and sensitivity of the terminal reward
in § 2.6.4.

4In our model the immediate health reward, ℎ𝑎𝑡 (𝑠), is independent of 𝑡 . That is ∀𝑡, ℎ𝑎𝑡 (𝑠) = ℎ𝑎(𝑠). We include the
parameter 𝑡 here for generality.
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Costs The expected cost at time 𝑡 under treatment 𝑎 at state 𝑠 , 𝑐𝑎𝑡 (𝑠), is always negative.5 When
𝑡 ∈ {0, ..., 𝑁 − 1}, 𝑐𝑎𝑡 (𝑠) includes the cost of detoxification if the patient is in the state Dx, the cost
of hospital visits if a patient overdoses (see § 2.9), and the cost of treatment if the patient is not
in the states Dx and Abs. Note that there is no terminal expected cost under this formulation,
i.e. 𝑐𝑎𝑁 (𝑠) = 0 for all states 𝑠 ∈ 𝑆 and actions 𝑎 ∈ 𝐴, since the cost that will incur next year should
be separated from the cost that will incur this year. Thus, the belief state expected cost under
treatment 𝑎 at time 𝑡 ∈ {0, ..., 𝑁 − 1} is ∑𝑠∈𝑆 𝑐𝑎𝑡 (𝑠)𝛽𝑡(𝑠), and we denote this quantity 𝑐𝑎𝑡 (𝛽𝑡).

Budget Constraint The budget constraint is incorporated via an open-loop optimization for-
mulation. Let Γ𝑡 > 0 denote the amount of budget that is allocated for the patient for the rest
of the horizon, in month 𝑡 . In each month 𝑡 , we solve a new optimize problem using the budget
Γ𝑡 . To reflect the costs of wearable devices, we deduct the cost of the specific wearable from the
annual budget before solving the optimization problem.

Optimality Equations The optimal treatment action sequence maximizes the expected re-
ward gained throughout the planning horizon. The optimal solution can be solved using dy-
namic programming techniques (for example, see Cassandra et al. (1997)). Let 𝑉 ∗

𝑡 (𝛽𝑡) denote
the optimal expected value of the objective function at time 𝑡 under belief 𝛽𝑡 . Let (𝑜𝑡+1|𝑎, 𝛽𝑡)
be the probability of making observation 𝑜𝑡+1 after taking action 𝑎 at belief state 𝛽𝑡 , that is
(𝑜𝑡+1|𝑎, 𝛽𝑡) = ∑𝑠𝑡+1∈𝑆 𝑤(𝑜𝑡+1|𝑠𝑡+1, 𝑎)∑𝑠𝑡∈𝑆 𝛽𝑡(𝑠𝑡)(𝑠𝑡+1|𝑠𝑡 , 𝑎). Let 𝛽𝑡+1 be the updated belief given the
old belief 𝛽𝑡 , observation 𝑜𝑡+1, and action 𝑎. Then, the optimal Bellman’s equation for an uncon-
strained POMDP satisfies:

𝑉 ∗
𝑡 (𝛽𝑡) = max

𝑎∈𝐴

{
∑
𝑠𝑡∈𝑆

𝑟𝑡(𝑠𝑡 , 𝑎)𝛽𝑡(𝑠𝑡) + ∑
𝑜𝑡+1∈𝑂

(𝑜𝑡+1|𝑎, 𝛽𝑡)𝑉 ∗
𝑡+1(𝛽𝑡+1)

}
(2.1)

= max
𝑎∈𝐴

∑
𝑠𝑡∈𝑆

𝛽𝑡(𝑠𝑡)
{
𝑟𝑡(𝑠𝑡 , 𝑎) + ∑

𝑜𝑡+1∈𝑂
∑
𝑠𝑡+1∈𝑆

𝑤(𝑜𝑡+1|𝑠𝑡+1, 𝑎)(𝑠𝑡+1|𝑠𝑡 , 𝑎)𝑉 ∗
𝑡+1(𝛽𝑡+1)

}
. (2.2)

We express 𝛽𝑡+1 in terms of known model parameters, that is, the transition probability (𝑠𝑡+1|𝑠𝑡 , 𝑎)
and observation probability 𝑤(𝑜𝑡+1|𝑠𝑡+1, 𝑎):

𝛽𝑡+1(𝑠𝑡+1) ∶= (𝑆𝑡+1 = 𝑠|𝑜𝑡+1, 𝑎, 𝛽𝑡)=
(𝑜𝑡+1, 𝑠|𝑎, 𝛽𝑡)
(𝑜𝑡+1|𝑎, 𝛽𝑡)

=
(𝑜𝑡+1|𝑠, 𝑎, 𝛽𝑡)(𝑠|𝑎, 𝛽𝑡)

(𝑜𝑡+1|𝑎, 𝛽𝑡)

=
𝑤(𝑜𝑡+1|𝑠, 𝑎)∑𝑠′∈𝑆 (𝑆𝑡+1 = 𝑠, 𝑆𝑡 = 𝑠′|𝑎, 𝛽𝑡)

(𝑜𝑡+1|𝑎, 𝛽𝑡)

=
𝑤(𝑜𝑡+1|𝑠, 𝑎)∑𝑠′∈𝑆 (𝑠|𝑠′, 𝑎)𝛽𝑡(𝑠′)

(𝑜𝑡+1|𝑎, 𝛽𝑡)
. (2.3)

5Similarly, the expected cost, 𝑐𝑎𝑡 (𝑠), in our model is also independent of 𝑡 .

15



The second to the last equality is because the observation 𝑜𝑡 is independent of the belief 𝛽𝑡 . Note
that the belief vector in conjunction with the belief update absorb the entire history of the model
and thus achieve the Markovian property (Smallwood and Sondik 1973).

Constrained POMDP Model The goal of the constrained POMDP model is to find the optimal
treatment plan, 𝜋 ′(Γ𝑡) ∈ Π, that yields the maximum expected reward through the planning horizon
while satisfying the budget constraint, Γ𝑡 , where Π denotes the set of of all feasible policies. Recall
ℎ𝑎𝑡 (𝛽𝑡) is the expected health reward of taking treatment 𝑎 at time 𝑡 under the clinicians’ belief
about patient’s health state 𝛽𝑡 , and let 𝐻 𝜋

𝛽0 denote the expected health under an initial belief 𝛽0 and
policy 𝜋 ∈ Π in our CPOMDP problem, i.e.,

𝐻 𝜋
𝛽0 = 𝔼𝜋

𝛽0 [

𝑁−1

∑
𝑡=0

ℎ𝑎𝑡 (𝛽𝑡) + ℎ𝑁 (𝛽𝑡)]
. (2.4)

Unless otherwise mentioned, we fix this initial belief 𝛽0 throughout the rest of the paper, and note
that 𝐻 𝜋

𝛽0 is always non-negative. Similarly, let 𝐶𝜋
𝛽0 be the expected cost under an initial belief 𝛽0

and the policy 𝜋 in our CPOMDP problem, i.e.

𝐶𝜋
𝛽0 = 𝔼𝜋

𝛽0 [

𝑁−1

∑
𝑡=0

𝑐𝑎𝑡 (𝛽𝑡)]
. (2.5)

Note that 𝐶𝜋
𝛽0 is always non-positive. We formulate the following optimization problem:

System I: 𝜋 ′(Γ𝑡) = argmax
𝜋∈Π

𝐻 𝜋
𝛽0 (2.6)

𝑠.𝑡. − 𝐶𝜋
𝛽0 ≤ Γ𝑡 . (2.7)

Constraint (2.7) guarantees that the expected cost of the treatment will be less than or equal to
the budget. Since we model the problem as an open loop problem (we reoptimize the problem
using an updated budget at each time step), it is guaranteed that our final solution would satisfy
the budget constraint if we could solve the problem using System I.

Let {𝜋 ′(Γ𝑡)}Γ𝑡∈(0,∞) be the set of optimal solutions in System I when we vary Γ𝑡 from 0 to ∞.
Let 𝐻 𝜋 ′

𝛽0 (Γ𝑡) denote the expected health under policy 𝜋 ′(Γ𝑡). Before discussing the tractability of
System I, we first list some properties that this optimal solution set satisfies:

Proposition 1. Properties of the optimal solution set in System I:

1(a) The optimal policy 𝜋 ′(Γ𝑡) is not necessarily unique, but the optimal expected health 𝐻 𝜋 ′

𝛽0 (Γ𝑡)
is unique for any fixed Γ𝑡 and 𝛽0.

1(b) The optimal expected health 𝐻 𝜋 ′

𝛽0 (Γ𝑡) is non-decreasing in Γ𝑡 .
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1(c) Let 𝜋 ′

𝛽0 denote the unique elements contained in the optimal solution set
{
𝐻 𝜋 ′

𝛽0 (Γ𝑡)
}

Γ𝑡∈(0,∞)
.

Then, the set 𝜋 ′

𝛽0 is finite.

Property 1(a) follows directly from uniqueness of Equation (2.6). Property 1(b) holds because
the current optimal solution remains feasible after budget increase. Property 1(c) holds because
the number of actions we can perform is finite and the initial belief 𝛽0 is fixed.

The objective function, Equation (2.6), can be solved through exact POMDP algorithms using
Equations (2.1)–(2.2). However, with Constraint (2.7), System I is numerically intractable to
solve (Poupart et al. 2015). To address this problem, we provide a novel reformulation of our
CPOMDP problem by incorporating the budget constraint into the objective function in the
next section, and show that our reformulation can be solved using exact POMDP algorithms in
conjunction with a binary search. When randomized policies are allowed, our reformulation solves
the original problem exactly, but when deterministic policies are enforced, our reformulation
might find a suboptimal solution.

2.5 Analytical Results

In this section we present our reformulation of the CPOMDP problem. The key idea in our budget
reformulation is to integrate the budget constraint into the objective function through a tunable
parameter, and optimize over this parameter. Mathematically, the immediate reward becomes a
convex combination of the expected health and cost in our reformulation. Thus, our immediate
reward at time 𝑡 under treatment 𝑎 at state 𝑠, 𝑟𝑡(𝑎, 𝑠), becomes 𝜃ℎ𝑎𝑡 (𝑠) + (1 − 𝜃)𝑐𝑎𝑡 (𝑠), where 𝜃 ∈ [0, 1],
ℎ𝑎𝑡 (𝑠) ∈ [0, 1] and 𝑐𝑎𝑡 (𝑠) < 0, for 𝑡 ∈ {0, ..., 𝑁 − 1}, and the terminal reward, 𝑟𝑁 (𝑎, 𝑠), becomes 𝜃ℎ𝑁 (𝑠).
The belief state immediate reward under treatment 𝑎, 𝑟𝑡(𝑎, 𝛽𝑡), takes the following form:

𝑟𝑡(𝑎, 𝛽𝑡) = ∑
𝑠∈𝑆

𝑟𝑡(𝑎, 𝑠)𝛽𝑡(𝑠) = 𝜃ℎ𝑎𝑡 (𝛽𝑡) + (1 − 𝜃)𝑐𝑎𝑡 (𝛽𝑡),

for 𝑡 ∈ {0, ..., 𝑁 − 1}, and the belief state terminal reward is 𝑟𝑁 (𝛽𝑁 ) = 𝜃ℎ𝑁 (𝛽𝑁 ). Let 𝑉 𝜋 (𝛽0, 𝜃) denote
the expected reward function under a policy 𝜋 , initial belief 𝛽0, and parameter 𝜃 . By the linearity
of expectation, we have the following Lemma (whose proof is included in § 2.10):

Lemma 2. If the immediate reward and terminal reward of a discrete time finite horizon POMDP

takes the form 𝜃ℎ𝑎𝑡 (𝛽𝑡) + (1 − 𝜃)𝑐𝑎𝑡 (𝛽𝑡) for every time step, then 𝑉 𝜋 (𝛽0, 𝜃) can be written as 𝑉 𝜋 (𝛽0, 𝜃) =
𝜃𝐻 𝜋

𝛽0 + (1 − 𝜃)𝐶𝜋
𝛽0 .

The rest of this section is organized as follows: we first state our CPOMDP reformulation in
§ 2.5.1 and then show the correctness of our reformulation in § 2.5.2 by comparing the solutions
obtained in System I and our reformulation. We will then review incremental pruning—one of the
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exact solutions for unconstrained POMDP—and show how to use it in conjunction with a binary
search to solve our reformulation in § 2.5.3.

2.5.1 CPOMDP Reformulation

For a fixed initial belief 𝛽0, our budget reformulation comprises the following optimization system:

System II: 𝜋 ∗ = argmax
𝜋∈Π∗

𝜃∗

{
−𝐶𝜋

𝛽0 ∶ −𝐶𝜋
𝛽0 ≤ Γ𝑡

}
(2.8)

𝜃 ∗ = max
{
𝜃 ∶ −𝐶𝜋 ∗

𝜃
𝛽0 ≤ Γ𝑡 , 𝜃 ∈ [0, 1]

}
(2.9)

𝜋 ∗
𝜃 = argmin

𝜋∈Π∗
𝜃

𝐻 𝜋
𝛽0 (2.10)

Π∗
𝜃 = argmax

𝜋∈Π

{
𝜃𝐻 𝜋

𝛽0 + (1 − 𝜃)𝐶𝜋
𝛽0

}
, (2.11)

and we denote the optimal policy under budget Γ𝑡 in System II by 𝜋 ∗(Γ𝑡). System II describes a two-
step optimization problem. First, in Equation (2.11), for a fixed 𝜃 , we find the set of optimal policies,
Π∗
𝜃 , that finds the maximum expected reward throughout the planning horizon. In Equation (2.10),

we pick the 𝜋 ∗
𝜃 that has the smallest expected health 𝐻 𝜋 ∗

𝜃
𝛽0 . Since the expected cost is negative,

Equation (2.10) is also equivalent to finding the 𝜋 ∗
𝜃 that yields the largest expected cost 𝐶

𝜋 ∗
𝜃

𝛽0 . Second,
in Equation (2.9), we find the largest 𝜃 , 𝜃 ∗, such that the absolute expected cost that we find in
Equation (2.11), −𝐶𝜋 ∗

𝜃
𝛽0 , is under the budget, Γ𝑡 . After finding 𝜃

∗, we resolve Equation (2.8) and
denote this optimal policy 𝜋 ∗, inside Π∗

𝜃 ∗ with the largest absolute cost such that the cost is under
the budget constraint. Thus, we obtain the optimal solution 𝜋 ∗(Γ𝑡). The purpose of Equations
(2.10) and (2.8) is to handle the situations where Π∗

𝜃 and Π∗
𝜃 ∗ contain multiple optimal solutions.

Since all policies inside Π∗
𝜃 ∗ have the same objective function value, 𝑉 𝜋 (𝛽0, 𝜃 ∗), maximizing the

expected cost is equivalent to maximizing the expected health in Equation (2.8). In other words,
Equation (2.8) is equivalent to argmax𝜋∈Π∗

𝜃∗

{
𝐻 𝜋
𝛽0 ∶ −𝐶𝜋

𝛽0 ≤ Γ𝑡
}
.

Let {𝜋 ∗(Γ𝑡)}Γ𝑡∈(0,∞) denote the set of optimal policies in System II when we vary Γ𝑡 from 0 to ∞,
and let 𝐻 𝜋 ∗

𝛽0 (Γ𝑡) denote the maximum expected health under policy 𝜋 ∗(Γ𝑡). Let 𝑉 𝜋 ∗(𝛽0, Γ𝑡) denote the
optimal value of System II under budget Γ𝑡 . Let 𝜋 ∗

𝜃 ∗ be the optimal policy with the lowest expected
health under the optimal parameter 𝜃 ∗ as defined in Equation (2.9), i.e., 𝜋 ∗

𝜃 ∗ = argmin𝜋∈Π∗
𝜃∗
𝐻 𝜋
𝛽0 .

Then, similar to Proposition 1, we first list the properties that the optimal solutions in System II
satisfy:

Proposition 2. Properties of the solution set in System II:

2(a) The optimal policy 𝜋 ∗(Γ𝑡) is not necessarily unique, but the values 𝐻 𝜋 ∗

𝛽0 (Γ𝑡), 𝐶
𝜋 ∗

𝛽0 (Γ𝑡) are
unique for any fixed Γ𝑡 .
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Figure 2.1: Construction of the efficiency frontier of the original formulation’s feasible solution
set convex hull

2(b) 𝐻 𝜋 ∗
𝜃

𝛽0 , −𝐶
𝜋 ∗
𝜃

𝛽0 , and the objective function 𝜃𝐻
𝜋 ∗
𝜃

𝛽0 + (1 − 𝜃)𝐶𝜋 ∗
𝜃

𝛽0 are all non-decreasing in 𝜃 . Fur-
thermore, as Γ𝑡 increases, 𝜃 ∗ is non-decreasing.

2(c) 𝐻 𝜋 ∗

𝛽0 (Γ𝑡) is non-decreasing in Γ𝑡 .

2(d) If 𝛾2 > 𝛾1 and 𝑉 𝜋 ∗(𝛽0, 𝛾2) > 𝑉 𝜋 ∗(𝛽0, 𝛾1), 𝐻
𝜋 ∗
𝜃∗

𝛽0 (𝛾2) > 𝐻 𝜋 ∗

𝛽0 (𝛾1).

2(e) Let 𝜋 ∗

𝛽0 denote the unique elements contained in the set
{
𝐻 𝜋 ∗

𝛽0 (Γ𝑡)
}

Γ𝑡∈(0,∞)
. Then, the set

𝜋 ∗

𝛽0 is finite.

Proposition 2 shows that the optimal solution set in System II satisfies the properties of the
optimal solutions in System I. Property 2(a) is directly implied by Equation (2.8). We prove Property
2(b) via construction, and the proof is included in § 2.11.1. Property 2(c) follows from Property 2(b),
and the proof can be found in § 2.11.2. Property 2(d) states that under the same initial belief
𝛽0, for any budget 𝛾2 that is sufficiently larger than budget 𝛾1 so as to obtain a strictly higher
objective value, the lowest possible expected health among the set of optimal policies, 𝐻 𝜋 ∗

𝜃∗
𝛽0 (𝛾2),

is always greater than the highest expected health that we can obtain under budget 𝛾1, 𝐻 𝜋 ∗

𝛽0 (𝛾1).
Property 2(d) is implied directly by Property 2(c) and also the proof of Property 2(b). After showing
the correctness of our reformulation, Property 2(e) follows from Property 1(c) since the solutions
that we find in System II is a subset of that in System I.

Note that our budget reformulation can be applied to any CPOMDP problem with one con-
straint, e.g., the optimal breast cancer diagnose problem with budget constraint proposed in Ayvaci
et al. (2012), or the quickest change detection problem proposed in Isom et al. (2008). In addition, in
§ 2.13 we show that our reformulation can be extended to the case where we have multiple con-
straints. However, the running time of the current solution algorithm might grow exponentially
as the number of constraints increases. Novel algorithms to solve the extended reformulation
could be proposed, however this is beyond the scope of this paper.
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2.5.2 Correctness of Our Reformulation

Proposition 1 suggests that, in System I, 𝐻 𝜋 ′

𝛽0 (Γ𝑡) is a non-decreasing step function in Γ𝑡 . Figure 2.1
(left) shows a plausible 𝐻 𝜋 ′

𝛽0 (Γ𝑡) function, where each solid dot represents a set of optimal solutions
that yield the same maximum expected health and the same expected cost which is under the
budget Γ𝑡 , and each solid line represents that the optimal solution set stays the same over an
interval of budget values. Note that in System I it is possible that there are multiple solid dots on
each red line segment, i.e., there exists multiple optimal solutions with different expected costs
but the same expected health. However, this is not allowed in our reformulation, System II. This
is because when there are multiple sets of solution with the same expected health but different
expected costs, our objective function, Equation (2.11) will always prefer the solution set with the
lowest expected cost.

If we connect the end points of this step function, 𝐻 𝜋 ′

𝛽0 (Γ𝑡), then we obtain a piecewise linear,
non-decreasing function 𝐹 (Γ𝑡). Fig. 2.1 (middle) illustrates the construction of 𝐹 (Γ𝑡) defined on
[𝑙, 𝑢], where each point on the solid line represents a randomize policy that is a convex combination
of the two nearest optimal solution sets (i.e., the two nearest solid dots). However, depending on
the structure of each individual problem, this function 𝐹 (Γ𝑡) is not necessarily concave (as in our
illustrating example, the middle figure in Fig. 2.1 ). Let 𝐹 (Γ𝑡) be the point-wise smallest concave
function whose hypograph contains the hypograph of 𝐹 (Γ𝑡). Then, 𝐹 (Γ𝑡) is the efficiency frontier
of the convex hull of the original formulation’s (System I’s) feasible solution set. That is, when
randomized policies are allowed, the solutions that lie on 𝐹 (Γ𝑡) are optimal. If 𝐹 (Γ𝑡) is concave,
then 𝐹 (Γ𝑡) = 𝐹 (Γ𝑡), and if it is not, then when randomized policies are allowed, we will be able to
find solutions lying on 𝐹 (Γ𝑡) that either dominate or are equal to the solutions lie on 𝐹 (Γ𝑡). Fig. 2.1
(right) illustrates the construction of 𝐹 (Γ𝑡), where 𝐹 (Γ𝑡) is denoted with the solid curves. Indeed,
this function 𝐹 (Γ𝑡) is piecewise linear, concave, and strictly increasing.

Next, in Theorem 3 we show that the our formulation, System II, recovers the convex hull of
the feasible solution set in System I :

Theorem 3 (Correctness of our reformulation). Let 𝐹 (Γ𝑡) be piecewise linear, concave, and strictly
increasing on [𝑙, 𝑢]6 as defined above, then 𝐻 𝜋 ′

𝛽0 = 𝐻 𝜋 ∗

𝛽0 when −𝐶𝜋 ′

𝛽0 lies on 𝐹 (Γ𝑡). That is, our reformu-

lation, System II finds all solutions that lie on the efficiency frontier of the convex hull of the solutions

of System I.

The proof of Theorem 3 can be found in § 2.12. Theorem 3 implies that System II recovers
the convex hull of the feasible solution set in our original formulation. That is, when randomized
policies are allowed, our reformulation finds the exact solution to the original problem. However,

6We pick 𝑙, 𝑢 such that 𝐹 is −∞ on [0, 𝑙) (i.e., infeasible) and constant on [𝑢,∞)
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when deterministic solutions are enforced, our reformulation will miss any optimal solutions that
lie strictly within the convex hull of solutions. In our illustrating example, when deterministic
policies are enforced, our System II will find the optimal policies that correspond to 𝑙, Γ1, Γ3, Γ4,
and 𝑢, but it will fail to find the optimal policy that corresponds to Γ2 in Fig 2.1 (right). Note
that Theorem 3 agrees with the findings in Ayvaci et al. (2012) where they show that when
randomized policies are allowed, the optimal health outcome is strictly concave with respect to the
budget. Although our reformulation provides stronger theoretical guarantees when randomized
policies are allowed, to align our results with past literature on clinical decisions, we consider
only deterministic optimal policies in our experiments.

2.5.3 Solution Method for Our Reformulation

In System II, we can compute Equations (2.8), (2.10), and (2.11) using the exact POMDP algorithm—
incremental pruning (Zhang and Liu 1996, Cassandra et al. 1997). To solve for Equation (2.9), we
observe that the monotonicity of 𝐻 𝜋 ∗

𝜃
𝛽0 and −𝐶𝜋 ∗

𝜃
𝛽0 with respect to 𝜃 in Property 2(b) implies that the

feasible region of 𝜃 ∈ [0, 1] in Equation (2.9) is continuous, and thus we can solve for 𝜃 ∗ using a
binary search in conjunction with any exact solution method for finite-horizon POMDPs. Before
we provide a complete algorithm that solves our reformulation, we first review one of the exact
finite-horizon POMDP solution methods that we will use—incremental pruning.

Review of Incremental Pruning—An Exact POMDP Solution Method The incremental

pruning algorithm (Zhang and Liu 1996, Cassandra et al. 1997) can be applied to solve finite-horizon
POMDPs exactly using backward induction; it relies heavily on the following decomposition of
the optimal Bellman’s equation (Equation (2.2)):

𝑉 𝑎𝑡 ,𝑜𝑡+1
𝑡 (𝛽𝑡) = ∑

𝑠𝑡∈𝑆
𝛽𝑡(𝑠𝑡)

{
𝑟(𝑎𝑡 , 𝑠𝑡)
|𝑂|

+ ∑
𝑠𝑡+1∈𝑆

𝑤(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡)(𝑠𝑡+1|𝑠𝑡 , 𝑎)𝑉 ∗
𝑡+1(𝛽𝑡+1)

}

, (2.12)

𝑉 𝑎𝑡
𝑡 (𝛽𝑡) = ∑

𝑜𝑡+1∈𝑂
𝑉 𝑎𝑡
𝑡 (𝑜𝑡+1, 𝛽𝑡), (2.13)

𝑉 ∗
𝑡 (𝛽𝑡) = max

𝑎𝑡∈𝐴
𝑉 𝑎𝑡
𝑡 (𝛽𝑡). (2.14)

In Equation (2.12), for a fixed belief 𝛽𝑡 , we calculate the expected reward for each fixed observation
𝑜𝑡+1 after we have taken action 𝑎𝑡 , and we denote this value 𝑉 𝑎𝑡 ,𝑜𝑡+1

𝑡 (𝛽𝑡). In Equation (2.13), we then
sum over all possible observations and thus obtain 𝑉 𝑎𝑡

𝑡 (𝛽𝑡). Lastly, in Equation (2.14), we take the
maximum over the set of all possible actions, selecting the action that yields the highest expected
reward. One can easily verify that the above decomposition is equivalent to Equation (2.2).

To distinguish the belief state expected values from the expected value at each underlying
state 𝑠 ∈ 𝑆 at time 𝑡 , we introduce 𝛼-vectors, 𝛼𝑡 , to represent the vector containing the expected
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reward at each state 𝑠𝑡 . Let 𝑉𝑁 (𝑠𝑖) be the expected reward of state 𝑠𝑖 at time 𝑁 . Then,

𝛼𝑁 ∶= ⟨𝑉𝑁 (𝑠1), ..., 𝑉𝑁 (𝑠|𝑆|)⟩. (2.15)

Note that since we do not make decisions in period 𝑁 , 𝛼𝑁 is independent of actions. Thus, the
belief state expected reward becomes 𝑉𝑁 (𝛽𝑁 ) = ∑𝑠𝑁 ∈𝑆 𝛽𝑁 (𝑠𝑁 )𝑉𝑁 (𝑠𝑁 ) = 𝛽𝑁 ⋅ 𝛼𝑁 .

Since the transformations (2.12)–(2.14) preserve the piecewise linearity and convexity of the
optimal Bellman’s equation with respect to the belief 𝛽𝑡 (Sondik 1971, Smallwood and Sondik
1973, Cassandra et al. 1997), there exists some unique finite parsimonious representations of the
value functions 𝑉 𝑎𝑡 ,𝑜𝑡+1

𝑡 , 𝑉 𝑎𝑡
𝑡 , and 𝑉 ∗

𝑡 (Sondik 1971, Zhang and Liu 1996). Let A 𝑎,𝑜
𝑡 denote the set of

𝛼-vectors under a fixed action 𝑎𝑡 , observation 𝑜𝑡+1 at time 𝑡 . Let A 𝑎
𝑡 be the set of 𝛼-vectors under a

fixed action 𝑎𝑡 at time 𝑡 summed over the set of all possible observations 𝑜𝑡+1 ∈ 𝑂 as described
in Equation (2.13). Let A𝑡 be the set of 𝛼-vectors at time 𝑡 that includes all actions 𝑎𝑡 ∈ 𝐴. We
will provide the formal definition of those three variables below in Equations (2.20)–(2.22). Using
induction, for some 𝛼-vector sets A 𝑎,𝑜

𝑡 , A 𝑎
𝑡 , and A𝑡 , we can write

𝑉 𝑎𝑡 ,𝑜𝑡+1
𝑡 (𝛽𝑡) = max

𝛼∈A 𝑎,𝑜
𝑡

𝛽𝑡 ⋅ 𝛼, (2.16)

𝑉 𝑎𝑡
𝑡 (𝛽𝑡) = max

𝛼∈A 𝑎
𝑡
𝛽𝑡 ⋅ 𝛼, (2.17)

𝑉 ∗
𝑡 (𝛽𝑡) = max

𝛼∈A𝑡
𝛽𝑡 ⋅ 𝛼. (2.18)

Equations (2.16)–(2.18) can effectively reduce the number of vectors that we need to keep track
of in Equations (2.12)–(2.14). So the idea of the algorithm is to find the set of 𝛼-vectors that are
undominated at every belief state in each backward induction step.

Let 𝑝𝑢𝑟𝑔𝑒(⋅) be the minimal representation of a set by removing the pointwise dominated
vectors, and let ⊕ be the Minkowski sum of two sets7. Let 𝛼𝑡+1(𝑠𝑡+1) be the expected reward at state
𝑡 + 1 with 𝛼𝑡+1 ∈ A𝑡+1, i.e., 𝛼𝑡+1(𝑠𝑡+1) = 𝑉𝑡+1(𝑠𝑡+1). Then, we define 𝜏 (𝛼𝑡+1, 𝑎𝑡 , 𝑜𝑡+1)(𝑠𝑡) to be the scaled
expected reward at state 𝑠𝑡 after taking action 𝑎𝑡 and making the observation 𝑜𝑡+1, i.e.,

𝜏 (𝛼𝑡+1, 𝑎𝑡 , 𝑜𝑡+1)(𝑠𝑡) =
𝑟(𝑎𝑡 , 𝑠𝑡)
|𝑂|

+ ∑
𝑠𝑡+1∈𝑆

𝑤(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡)(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)𝛼𝑡+1(𝑠𝑡+1). (2.19)

Thus, the minimal representation of the sets A 𝑎,𝑜
𝑡 ,A 𝑎

𝑡 ,A𝑡 at time t can be represented by

A 𝑎,𝑜
𝑡 = 𝑝𝑢𝑟𝑔𝑒( {𝜏 (𝛼, 𝑎, 𝑜)|𝛼 ∈ A𝑡+1}), (2.20)

A 𝑎
𝑡 = 𝑝𝑢𝑟𝑔𝑒

(
⨁
𝑜∈𝑂𝑡+1

A 𝑎,𝑜
𝑡 )

, (2.21)

A𝑡 = 𝑝𝑢𝑟𝑔𝑒(
⋃
𝑎∈𝐴𝑡

A 𝑎
𝑡 )

. (2.22)

7𝑋 ⊕ 𝑌 = {𝑥 + 𝑦 ∶ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}
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Equation (2.20) corresponds to Equation (2.16), where we calculate the set of scaled expected reward
vectors for all 𝛼-vectors obtained from the last iteration 𝛼 ∈ A𝑡+1 using Equation (2.19), under
a fixed observation 𝑜𝑡+1 and action 𝑎. We then remove all vectors that are pointwise dominated
by another vector inside this set as those vectors will never appear in the optimal solution.
Similarly, Equations (2.21) and (2.22) correspond to Equations (2.17) and (2.18), where we sum
over the set of all observations and combine the 𝛼-vectors under different actions respectively, and
obtain the set of undominated vectors. Equation (2.21) can be solved efficiently using incremental

pruning (Cassandra et al. 1997), and Equations (2.20) and (2.22) can be implemented efficiently
using the algorithm Lark Prune (White 1991). The pseudocode of these two algorithms are provided
in § 2.14).

Algorithm 1 Solving unconstrained POMDP
Solve POMDP (𝜃, 𝛽0)

1: A𝑁 ← (𝛼𝑁 = ⟨𝑉𝑁 (𝑠1), ..., 𝑉𝑁 (𝑠|𝑆|)⟩, 𝑐𝑁 = 0⃗) ⊳ each element in A𝑁 is a tuple
2: for 𝑡 in {𝑁 − 1, ..., 0} do ⊳ iterate over time backwards
3: for 𝑎 in 𝐴𝑡 do ⊳ iterate over actions
4: for 𝑜 in 𝑂𝑡+1 do ⊳ iterate over observations
5: for 𝑣 in A𝑡+1 do ⊳ iterate over alpha-vector sets obtained from the last iteration
6: 𝑢 ← 𝑣[0], 𝜒 ← 𝑣[1] ⊳ initialize 𝑢, 𝜒 to be the 1st and 2nd element of 𝑣, respectively
7: 𝑈 ← ∅
8: for 𝑑 in [29] do ⊳ calculate the expected reward and cost in the next 29 days
9: 𝑢 = ⟨𝑟𝑡(𝑎, 𝑠1), ..., 𝑟𝑡(𝑎, 𝑠|𝑆|)⟩ + 𝑎

𝑡 ⋅ 𝑢
10: 𝜒 = ⟨𝑐𝑎𝑡 (𝑠1), ..., 𝑐𝑎𝑡 (𝑠|𝑆|)⟩ + 𝑎

𝑡 ⋅ 𝜒
11: end for
12: 𝑈 .𝑎𝑑𝑑((𝜏 (𝑢, 𝑎, 𝑜), 𝜏𝑐(𝜒 , 𝑎, 𝑜))) ⊳ calculate alpha-vector using Equations (2.19,2.23)
13: end for
14: A 𝑎,𝑜

𝑡 ← Lark Prune(𝑈 ) ⊳ whether (𝑢, 𝜒 ) ∈ 𝑈 will be pruned depends on 𝑢, i.e., reward
15: end for
16: A 𝑎

𝑡 ← Incremental Pruning(A 𝑎,𝑜1
𝑡 , ...,A 𝑎,𝑜|𝑂|

𝑡 ) ⊳ similar to Line 14
17: end for
18: A𝑡 ← Lark Prune (⋃𝑎 A 𝑎

𝑡 ) ⊳ similar to Line 14, and we keep each set A 𝑎
𝑡 separate in A𝑡

19: end for
20: 𝐸 ← argmax{𝛽0 ⋅ (𝑒[0]) ∶ 𝑒 ∈ A0} ⊳ find all elements in A0 with maximum expected reward
21: return 𝐸, 𝐸.action ⊳ return set 𝐸 and its associated action set 𝐸.action
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Algorithm 2 Solving System II
Main Solver (Γ𝑡 , 𝛽0)
1: 𝜃0 ← 0, 𝜃1 ← 1 ⊳ keep track of the lower bound and upper bound of the current 𝜃
2: 𝐶𝑜𝑙𝑑 ← −∞ ⊳ keeps track of the expected cost from the last iteration
3: Δ𝜃, Δ𝐶 ← 1 ⊳ initialize the change in 𝜃 and the optimal expected cost 𝐶 to some number > 𝜖
4: 𝑌0, 𝑌0.action ← Solve POMDP(𝜃 = 0, 𝛽0) ⊳ check the extreme points
5: 𝑌1, 𝑌1.action ← Solve POMDP(𝜃 = 1, 𝛽0)
6: 𝑚0 ← argmax𝑦∈𝑌0 𝑦[1] ⊳ find the feasible policy with lowest expected cost
7: 𝑚1 ← argmin𝑦∈𝑌1 𝑦[1] ⊳ find the feasible policy with highest expected cost
8: if |𝛽0 ⋅ (𝑚0[1])| > Γ𝑡 then return problem not feasible
9: else if |𝛽0 ⋅ (𝑚0[1])| = Γ𝑡 then return 𝑚0.action, 𝛽0 ⋅ (𝑚0[0]), 𝛽0 ⋅ (𝑚0[1])
10: else if |𝛽0 ⋅ (𝑚1[1])| ≤ Γ𝑡 then return 𝑚1.action, 𝛽0 ⋅ (𝑚1[0]), 𝛽0 ⋅ (𝑚1[1])
11: end if
12: while Δ𝜃 > 𝜖 or Δ𝐶 > 𝜖 do ⊳ the loop stops if both Δ𝜃 ≤ 𝜖 and Δ𝐶 ≤ 𝜖
13: 𝜃 ← (𝜃0 + 𝜃1)/2 ⊳ calculate current 𝜃 value
14: 𝑌 , 𝑌 .action ← Solve POMDP(𝜃, 𝛽0) ⊳ obtain the set of optimal solutions
15: 𝑚 ← argmax𝑦∈𝑌 𝑦[1] ⊳ find the element with the lowest expected health
16: if |𝛽0 ⋅𝑚[1]| = Γ𝑡 then break loop ⊳ we have found the optimal 𝜃 ∗

17: else if |𝛽0 ⋅𝑚[1]| < Γ𝑡 then 𝜃0 ← 𝜃 ⊳ if feasible, update the lower bound 𝜃0 to the current 𝜃
18: else 𝜃1 ← 𝜃 ⊳ update the upper bound 𝜃1 to 𝜃
19: end if
20: Δ𝜃 ← (𝜃1 − 𝜃0), Δ𝐶 ← |𝐶𝑜𝑙𝑑 − (𝑚[1]) ⋅ 𝛽0| ⊳ update the change in 𝜃 and 𝐶
21: 𝐶𝑜𝑙𝑑 ← (𝑚[1]) ⋅ 𝛽0 ⊳ update 𝐶𝑜𝑙𝑑
22: end while
23: 𝜃 ∗, 𝑌 ∗, 𝑌 ∗.action ← 𝜃, 𝑌 , 𝑌 .action ⊳ we have found 𝜃 ∗ in the above while loop
24: 𝑚∗ ← argmin𝑦∈𝑌 ∗{𝑦[1] ∶ 𝑦[1] ≤ Γ𝑡} ⊳ solve Equation (2.8)
25: return 𝑚∗.action, 𝛽0 ⋅𝑚[0], 𝛽0 ⋅𝑚[1], 𝜃 ∗ ⊳ return optimal action, expected reward, cost, and 𝜃
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The Solution to Our Reformulation To compute the expected cost as defined in System II,
similar to the definition of 𝛼𝑡 , we let 𝜒𝑡 be a vector denoting the expected cost at each state 𝑠𝑡 at
time 𝑡 . Thus, we have

𝜏𝑐(𝜒𝑡+1, 𝑎𝑡 , 𝑜𝑡+1)(𝑠𝑡) =
𝑐𝑎𝑡
|𝑂|

+ ∑
𝑠𝑡+1∈𝑆

𝑤(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡)(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)𝜒𝑡+1(𝑠𝑡+1). (2.23)

Let 𝜏 (𝑢, 𝑎, 𝑜) and 𝜏𝑐(𝜒 , 𝑎, 𝑜) be two 𝛼-vectors of length |𝑆|, where the 𝑖th element of 𝜏 (𝑢, 𝑎, 𝑜) and
𝜏𝑐(𝜒 , 𝑎, 𝑜) are 𝜏 (𝑢, 𝑎, 𝑜)(𝑠𝑖) and 𝜏𝑐(𝜒 , 𝑎, 𝑜)(𝑠𝑖), respectively. Algorithm 1 describes the complete
algorithm to solve the unconstrained POMDP problem (Equation (2.11) in System II) aligning
the transition and reward matrices with our one-month decision period (since the transition and
reward matrices are defined in days). Note that the inputs of the three pruning steps, in Lines
(14)–(18) of Algorithm 1, are sets of tuples with length 2, and whether a tuple will be pruned in
those steps depends on the first entry of the tuple. That is, the three pruning steps are performed
over the first entry of each element in the input sets.

In order to solve System II, one slight modification to the algorithm Lark Prune is necessary.
In the original Lark Prune algorithm, if there are two policies that give the same optimal objective
value, then the tie is broken arbitrarily. However, in our algorithm, we maintain all policies that
produce the same optimal objective value and only discard an optimal policy if it admits the same
expected health and cost with another policy.

Algorithm 1 includes only the necessary variables to demonstrate the solution methods of
System II. For example, to obtain the expected health directly from the algorithm, one could add
an additional element ℎ𝑁 towards the end of the tuple A𝑁 in Line 1 and update the rest of the
algorithm accordingly. Similarly, we could add variables to keep track of the expected health
coming from the terminal reward. Furthermore, this structure allows us to plug in different
transition matrices 𝑎

𝑡 in Lines (9)–(12) when comparing different models. We will discuss this in
more detail in our numerical section, § 2.6.

Algorithm 2 solves our reformulation System II, where a binary search over the 𝜃 space is
implemented to find the optimal 𝜃 ∗ value given the budget constraint and an initial belief state.
To obtain randomized policies, one could discretize the space of Γ𝑡 and find the convex hull of
the optimal solution set. The complexity of our algorithm is exponential in the numbers of states
and actions, and polynomial in the parameter 𝜖. In the case where all states are fully observable,
i.e., we have a MDP, Algorithm 2 can be modified to incorporate any exact solution methods for
finite-horizon MDPs, and the complexity of our algorithm is polynomial in the numbers of states
and actions, and 𝜖.

Note that since the costs are always negative, the expected cost at a state 𝑠,

𝜒𝑡(𝑠) = ∑
𝑜∈𝑂𝑡+1

𝜏𝑐(𝜒𝑡+1, 𝑎, 𝑜)
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is non-increasing as 𝑡 decreases in Algorithm 1 for all action 𝑎 and state 𝑠. Thus, to reduce the
run-time of our algorithm, in addition to pruning (Lines 14-18), we could remove an element in
the set A𝑡 if the expected cost evaluated at 𝛽0 exceeds the budget. While our reformulation can
be solved optimally within a reasonable time window when problem size is comparatively small
(as in our problem), we provide a heuristic algorithm (with a worst-case error bound) in § 2.15 to
further reduce the run-time.

2.6 Numerical results

In this section, we numerically investigate the benefit of incorporating wearable devices in OUD
treatments using the reformulation and Algorithm 2 presented in § 2.5. We are collaborating
with a startup8 to test the feasibility of different wearables (Fitbit, Garmin, and Empatica E4) in
capturing patients’ craving states: thirty patients from Jade Wellness Center in Pennsylvania are
participating in this pilot study. One initial observation is that craving frequencies differ greatly
across patients9, confirming the need to study the benefits of a personalized treatment strategy.
However, since the data that we have collected thus far is insufficient for accurate parameter
estimation, the majority of the parameters of our CPOMDP model were estimated from past
literature. (We can confirm that these are in the range of the observed pilot data.) For those that
were not available from the literature, we perform extensive sensitivity analysis. Our model is
written in Python and takes an average of 60 (±25) seconds to run all 7 cases (Case 1, Case 2a, Case
2b, Case 2c, Case 2d, Case 3, and the benchmark case) to completion on a 3.2 GHz Core i7-8700
machine with 64 GB Ram. All cases took on average 14 iterations to terminate.

In § 2.6.1 we describe the various types of wearable devices. In § 2.6.2 we describe our
transition matrices and parameter estimation. In § 2.6.3 we describe our numerical results. We
discuss sensitivity analysis and case extensions in § 2.6.4. We denote the average transition
probabilities of the entire patient population as the average treatment dynamics (ATD).

2.6.1 Comparison of Cases

Table 2.2 summarizes all cases that we study. Case 1 contains only monthly urine tests (cost $360
per year), while Cases 2 and 3 additionally study three types of wearables (and two hypotheticals).
The first type costs $120 (Fitbit); the second type costs $258 (Garmin); the third type costs $1200

8We provided them with a first set of wearables. This startup subsequently received funding by the NSF to
complete their SBIR Phase I study.

9Also observed in various past literature (Chalana et al. 2016). A more detailed discussion on factors that could
affect patient treatment response can be found in § 2.2 and § 2.6.2.
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Case Num. Technology Device Cost Device Accuracy Device Life Span
1 UT - - -
2a wearables with UT $120 0.6 1
2b wearables with UT $258 0.7 1.5
2c wearables with UT $500 0.8 2
2d wearables with UT $800 0.9 2.5
3 wearables $1200 1 3
4 benchmark 0 1 -

Table 2.2: Costs associated with different cases. In Cases 1, 2, and 3, we assume the urine tests all
cost $360 per year. The device accuracy is measured in its sensitivity and specificity in detecting
patients’ craving episodes, and the device life spans are measured in years. UT stands for urine
test.

(Empatica E4). Recall that in § 2.4, we defined the sensitivity (𝜎𝑠) and specificity (𝑝𝑠) for every
partially observable state, 𝑠 ∈ 𝑆, for each type of wearable. Because our experimental results are
robust under small perturbations in 𝜎𝑠 and 𝑝𝑠 , we set 𝜎𝑠 = 𝑝𝑠 for all partially observable states 𝑠,
and 𝜎𝑠 = 𝜎𝑠′ for every partially observable states pair (𝑠, 𝑠′). Henceforth, we refer to the value of 𝜎𝑠
associated with each wearable type as the device accuracy. According to the number of features
that each type of wearable collects, we set the device accuracy to be 0.6, 0.7, and 1 for types 1, 2, and
3 wearables, respectively, where a device accuracy of 0.5 is equivalent to guessing randomly. To
fill out intermediate values, we consider two additional hypothetical types of wearables: accuracy
of 0.8 and cost $500, and accuracy of 0.9 and cost $800. Because costlier wearables have longer life
spans, we spread the price over their life spans. We obtain our benchmark case, Case 4, by setting
the cost of the wearable devices and urine test in Case 3 to zero.

Wearables can also help to determine patient response to different treatments (personalized
treatment dynamics, PTD) in Cases 2, 3, and 4 (there is no information in Case 1 that will allow us
to do that). In our experiments, we compare the scenarios where PTD is equal to or divergent
from ATD. In addition, we consider three levels of patient treatment adherence levels, where high,
medium, and low TAs represent that the patient follows the treatment above 90%, between 70%
and 90%, and below 70% of the time, respectively.

2.6.2 Transition Probability and Parameter Estimation

Transition Probability Matrices Recall that (𝑠𝑡+1|𝑠𝑡 , 𝑎) is the transition probability from state
𝑠𝑡 ∈ 𝑆 to state 𝑠𝑡+1 ∈ 𝑆 under action 𝑎 ∈ 𝐴, where 𝑡 indicates the number of days since the last
drug-use. Let 𝑎

𝑡 be the daily transition probability matrix in which the rows correspond to 𝑠𝑡
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and columns to 𝑠𝑡+1. Since patients’ treatment adherence levels can affect the evolution of their
conditions and hence the transition probabilities, having different treatment adherence levels
could potentially affect the additional health benefits brought by wearable devices. Thus, 𝑎

𝑡 is
also a function of a patient’s treatment adherence level.

Although past literature also suggests that other variables—including the patient’s age, jail
history, comorbid medical conditions, drug injection history, number of past overdoses, and
number of relapses—could also affect the transition probabilities, we assume that theses variables
are automatically captured in the resulting transition matrices. In addition, since the horizon
in our model is short (at most twelve months), we assume that the numbers of past overdoses
and relapses remain the same (regardless of the possibility that the patient might reach states
OD or Re in the rest of the horizon), to ensure the tractability of our model. Since the budget is
modeled as an open-loop optimization problem (i.e. at the beginning of each month, we solve a
new optimization problem with an updated budget and the patient’s information), if the patient
relapsed within a month, then the transition matrices will first be updated in the following month
to incorporate this information.

Omitting 𝑡 and 𝑎, let 𝑥𝑠 , nc𝑠 , 𝑐2𝑠 , 𝑒𝑠 , and od𝑠 be the probability of transitioning to Dx, NC, C2,
Re, and OD, from health state 𝑠, respectively; let 𝑑𝑠 be the probability of dying at state 𝑠 and 𝑤 be
the probability of withdrawing from any state with any action at any time.10 We represent the
transition probability matrices as follows:

𝑎
𝑡 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑓 𝑟𝑜𝑚/𝑡𝑜 Dx NC C1 C2 Re OD Dt Abs

Dx 𝑥Dx ncDx 𝑍1 𝑐2Dx 0 odDx 𝑑Dx 𝑤
NC 0 ncNC 𝑍2 0 0 0 𝑑𝑁𝐶 𝑤
C1 0 ncC1 𝑍3 𝑐2C1 𝑒C1 odC1 𝑑C1 𝑤
C2 0 0 𝑍4 𝑐2C2 𝑒C2 odC2 𝑑C2 𝑤
Re 𝑥Re 0 𝑍5 𝑐2Re 𝑒Re odRe 𝑑Re 𝑤
OD 1 − 𝑑OD 0 0 0 0 0 𝑑OD 0
Dt 0 0 0 0 0 0 0 1
Abs 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝑍1 = 1 − 𝑥Dx − ncDx − 𝑐2Dx − odDx − 𝑑Dx −𝑤, 𝑍2 = 1 − ncNC − 𝑑NC −𝑤, 𝑍3 = 1 − ncC1 − 𝑐2C1 − 𝑒C1 −
odC1 − 𝑑C1 − 𝑤, 𝑍4 = 1 − 𝑐2C2 − 𝑒𝐶2 − odC2 − 𝑑C2 − 𝑤, 𝑍5 = 1 − 𝑥Re − 𝑐2Re − 𝑒Re − odRe − 𝑑Re − 𝑤.

Throughout our paper, we assume that if a patient reaches any of the states Dx,OD,Dt, or Abs,
clinicians will be notified immediately; that is, these states are always observable. Fig. 2.2 depicts
the transition diagram between our health states.

10The assumption that 𝑤 is independent of states and action is observed by Termorshuizen et al. (2005).
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Dx

C1

Dt Abs

ReOD

NC C2

Figure 2.2: Transition diagram. States C1 and C2 share the same types of transitions, however the
transition probabilities need not to be the same.

According to Chalana et al. (2016), if patients relapse right after detoxification, they will
overdose with high probability due to the loss of tolerance. After experimenting with various
values, we find that our results are robust with respect to the probability transitioning from Dx to
Re, 𝑒Dx, and thus we set it to be 0 (i.e. a patient will overdose with probability 1 if relapsing the
day after detoxification). Moreover, in our transition matrices, the probability of transitioning
to state OD decreases as 𝑡 increases. We assume that patients either die or receive treatments
followed by detoxification if they overdose, and that patients must experience some craving the
day before relapse if they are not in state Dx.

Parameter Estimation We initialize two sets of transition matrices {𝑇 𝑎
0 }𝑎∈𝐴 and {𝑇 𝑎

1 }𝑎∈𝐴. The
former is estimated from past literature (§ 2.16) and reflects how a patient reacts to different
treatments on average, i.e., the ATD. The latter matrix is randomly perturbed around the ATD to
represent the true treatment dynamics of a given patient (patient ground truth). Therefore, to find
the optimal policy, we set the transition matrices to be {𝑇 𝑎

0 }𝑎∈𝐴 in Case 1 (since we do not have
access to wearables and thus could not develop PTD), and set them to be {𝑇 𝑎

1 }𝑎∈𝐴 in Cases 3 and 4.
In Case 2, since the wearables provide imperfect information, we assume that the accuracy of the
estimated transition probability matrices increases as the accuracy of the wearable increases. Thus,
we randomly perturb the transition matrices {𝑇 𝑎

1 }𝑎∈𝐴 in Case 2 with the perturbation magnitude
decreasing as the wearable accuracy increases11. We refer to the resulting expected health and
cost as the estimated (or observed) expected health and cost respectively.

To evaluate and compare the expected health in each case, we use {𝑇 𝑎
1 }𝑎∈𝐴 as our transition

probability matrices and the identity matrix as our observation matrix to calculate the expected
health, and we refer to these as the true expected health and cost respectively. Past literature shows
that the treatment IN is superior to treatment M and B; therefore, we assume in our experiment

11Thus the information our algorithm uses is a more accurate estimate of the true transition matrices.
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that  IN
𝑡 is stochastically equal to or better than M

𝑡 and B
𝑡 . The effects of TA are estimated from

Nosyk et al. (2009). In the rest of this section, unless otherwise stated, the expected health refers to
the true expected health.

In our experiments, we consider a patient with the following characteristics: the patient has
relapsed 5 times, overdosed once, and has just completed a 21-day detoxification program. (We
experimented with different patient characteristics, and the results are similar.) We assume that
the initial belief state is high craving intensity (C2), and that an average patient reacts to treatment
B better than to treatment M. To avoid overly myopic solutions, we calculate the expected health
gain for the patient under no treatment from day 360 to day 420, weight it by 𝜃 , and add it as the
terminal reward.

2.6.3 Results

In our baseline scenario (§ 2.6.3), we examine the benefit of adopting wearables in OUD treatments
in the case where the patient reacts to treatments exactly as the average treatment dynamics
predict, implying that, by definition, there is no benefit of implementing PTD. We consider three
budget levels: low ($9K), medium ($15K), and high ($21K). When the budget is low, we could not
afford MAT in every single period; when the budget is medium, we could afford MAT is all periods
and can afford to treatment IN occasionally; when the budget is high, we could afford treatment
IN in the majority of periods. Finally, we explore two possibilities within PTD: when the patient
reacts to treatment M better than to B (§ 2.6.3) and when the patient reacts to treatment B better
than to M (§ 2.6.3).

Since all cases contain monthly urine tests, we assume the state relapse is observable (at the
end of the month). Thus, in this section, we have only three partially observable states: NC, C1,
and C2, and all cases are solved using the exact algorithm. Unless stated otherwise, our results are
robust with respect to terminal rewards. Because our budget formulation finds only the points
that lie on the efficiency frontier of the health-budget curve, and we consider only deterministic
optimal policies in our numerical experiments below (as randomized policies may be problematic
in the field), we sometimes observe that our optimal solution does not spend all the budget. The
cost gap, the gap between the observed expected cost and our budget, indicates how close our
solution is to the optimal solution when the problem is fully observable. We define the values of
wearables to be the difference between the expected health when we incorporate wearables and
that of Case 1.
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Figure 2.3: The Baseline Scenario. Left: 9K budget with medium TA. Middle: 15K budget with
mediumTA. Right: 21K budget withmediumTA. At termination, the optimal 𝜃 ’s are approximately
[0.053, 0.039, 0.077] (left), [0.294, 0.269, 0.274] (middle), and [0.301, 0.303, 0.310] (right), where
the number of digits that 𝜃 ∗ contains equals to the number of iterations that took System II to
terminate; the expected QALDs received from treatments (excluding the terminal reward) are
[285.44, 280.98, 289.58] (left), [313.0, 316.03, 317.9] (middle), and [326.18, 329.49, 311.36] (right).

Baseline scenario

In this scenario, the patient reacts to different treatments in keeping with the average treatment
dynamics. Fig. 2.3 (left top) shows the true expected QALD gains under the optimal policy for
different cases. In Fig. 2.3 (left bottom), the estimated expected cost is represented by the triangle;
the true expected costs of different elements are represented by the colored bars. Since the
improvement in health between the benchmark model and Case 1 is limited, in Fig. 2.3 we omit
Case 2 for ease of illustration. As we will see later, the values of Case 2 wearables are often
dominated by that of Case 3.

When the budget is $9K (Fig. 2.3 left), the value of the wearable is negative. This is because
the benefit of observing health states with higher certainty is undermined by the fact that we are
left with less money to treat the patient. As the budget increases to $15K and $21K (Fig 2.3 middle
and right), the value of the wearables is positive but remains negligible: the health state relapse is
observable and the rewards for different craving states are similar, so the benefits of wearables are
limited. Further experiments suggest that this observation holds for patients with different TA
levels and different transition matrices. In addition, we observe in Fig. 2.3 that for each case, as
the budget increases, the optimal 𝜃 value indeed increases as indicated by Proposition 2(b). In
this section, we conclude that if all patients react to treatments in accordance with the average
treatment dynamics—that is, individual variability is low, then we should not adopt wearables in
OUD treatments.
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Figure 2.4: Scenario 1 where the patient reacts to treatment M better than B. Top row: 9K budget.
Middle row: 15K budget. Bottom row: 21K budget. Left column: medium TA. Middle column:
high TA. Right column: low TA. At termination, from top left to bottom right, the optimal 𝜃 ’s are
approximately [0.052, 0.039, 0.030, 0.043, 0.037, 0.036, 0.040], [0.406, 0.115, 0.205], [0.099, 0.055,
0.056], [0.294, 0.187, 0.135, 0.121, 0.106, 0.102, 0.103], [0.534, 0.335, 0.339], [0.126, 0.058, 0.058],
[0.300, 0.222, 0.181, 0.165, 0.145, 0.133, 0.141], [0.551, 0.419, 0.432], and [0.146, 0.060, 0.060].

32



Scenario 1

In this scenario, the patient reacts to treatmentM better than to B, and PTD is implemented in Cases
2, 3, and 4. We first assume that the patient is allocated with a $9K budget and has medium TA.
We observe in Fig. 2.4 (top left) that the expected health increases as the accuracy of the wearable
device increases. In addition, the cost gap decreases significantly as the device accuracy increases.
In Fig. 2.4 (top middle) we observe that the value of wearable devices decreases significantly. This is
because the high adherence causes the outcome of less expensive treatment (for example, treatment
M) to become comparable to that of the most expensive treatment, treatment IN. Similarly, Fig. 2.4
(top right) shows that the value of wearables decreases when comparing to Fig. 2.4 (top middle),
this time because patients with poor treatment adherence react poorly to both treatments M and B.
When comparing figures in Fig. 2.4 top row, we observe that when the budget is low, the expected
costs of overdose and detoxification increases as the patient treatment adherence level decreases.
This is because patients with lower adherence levels are more likely to relapse when the treatment
is inconsistent, i.e., when we cannot afford to provide treatment in every single period.

Now, if we increase the budget from $9K to $15K, in Fig. 2.4 (middle left), we find that the value
of more expensive wearables increases slightly when compared with Fig. 2.4 (top left) Although
the values of wearables remain positive when budget is increased to $21K in Fig. 2.4 (bottom left)
they are reduced as the more expensive treatment is utilized more frequently. Again, when TA
is high or low, we observe in Fig 2.4 (middle middle and right, bottom middle and left) that the
value of the wearable is less than that when TA is medium. Moreover, the value of the wearables
slightly decreases as the budget increases because we can afford treatment IN more frequently.
Overall, the value of wearables increases when patients’ PTD vary from the ATD.

Scenario 2

In this scenario, the patient reacts to different treatments in the same order as the ATD (i.e., reacts
to treatment B better than M), but with a different magnitude. Because many patterns we observe
in this scenario are similar to those in Scenario 1, we highlight the differences. We observe that in
Fig. 2.5 (middle), the value of the wearable becomes negative when compared with Fig. 2.4 (top
middle). In Fig. 2.5 (left) because the cost of the urine test and wearable device is high in Case 3
when compared to our budget, although the increase in treatment outcome between Cases 4 and 1
is relatively large, the health improvement is relative minor in Case 3. In Fig. 2.5 (right) when the
patient has low treatment adherence, we observe that the value of wearables increases slightly
when compared with that of Scenario 1 in Fig. 2.4 (top right). In addition, this value is similar to
the one observed in Fig. 2.5 (top left) When we increase the budget in Scenario 2, we observe in
Fig. 2.7 (§ 2.17) that wearables can still improve patient treatment outcomes. Finally, in § 2.6.3 and
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Figure 2.5: Scenario 2 where the patient reacts to treatment B better than M but with a different
magnitude than in the average treatment dynamics. Budget level equals to 9K. TA equals to
medium, high, and low from left to right. At termination, from left to right, the optimal 𝜃 ’s
are approximately [0.052, 0.034, 0.025, 0.025, 0.025, 0.027, 0.029], [0.406, 0.026, 0.106], and [0.099,
0.052, 0.053]; the expected QALDs received from treatments (excluding the terminal reward) at
termination are [200.73, 202.68, 200.19, 200.97, 172.13, 206.40, 224.61], [297.29, 293.30, 301.72], and
[125.33, 135.47, 152.74].

§ 2.6.3, we observe that when the accuracy of the wearables is low, we often observe a large gap
between the observed and actual expected cost and thus either undertreat the patients or exceed
the budget constraint.

2.6.4 Sensitivity Analysis and Case Extensions

Sensitivity to the Cost of Urine Tests Recall that the cost of urine tests is $360 per year, which
is higher than the cost of a wearable with device accuracy less than 0.8. On the other hand, if the
wearable has high device accuracy, then monthly urine tests become less valuable. Thus, in our
experiments, we also explored the possibility of having less frequent urine tests for Case 2 (while
the state relapse remains fully observed). Similar to § 2.6.3 and § 2.6.3, we observe wearables with
low to medium device accuracies often underestimate the costs (e.g., in Fig. 2.8 in § 2.17). When
we compare Fig. 2.8 with Fig.s 2.4, 2.5, and 2.7, we find that having less frequent urine tests often
increases the health outcome even when the device accuracy is low, as the money can be better
spent. However, under different matrix perturbation schemes, we sometimes observe that having
more frequent urine tests is beneficial when device accuracy is low.12 In contrast, having less

12Recall that the actions in our model can only be changed once per month, and we assume that the urine test
result is obtained right before considering the change of treatment in the next period.
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frequent urine tests always increases the health outcome when device accuracy is high.

Sensitivity to Other Model Parameters To check the robustness of our results, we exper-
imented with different mechanisms to perturb the transition probability matrices and observe
similar results with a few exceptions: 1) the magnitude of the value of wearables when the patient
has low treatment adherence and reacts to treatment M better than B is sensitive to different
matrix perturbation mechanisms (e.g., see Fig. 2.9 (left) in § 2.17); 2) when the device accuracy
is medium, we sometimes observe that the value of wearables could also be negative (e.g., see
Fig. 2.9 (right) in § 2.17) because the increase in the cost of the wearables exceeds the benefit of
the additional information gathered by the wearables. Both observations highlight the importance
of knowing the exact device cost-accuracy tradeoffs, and could be potential research topics for
future field studies.

We found that the rest of our insights are robust under small perturbations in the transition
matrices, as long as the stochastic order of patient reaction to different treatments remains the
same. This robustness also holds for immediate rewards, costs, and the initial belief state. However,
our model can be sensitive to the terminal rewards. In particular, if the terminal reward is 0 and
the budget is low, our optimal solution becomes myopic, in the sense that the patient might end up
in bad health states in the end of the horizon with high probability. On the other hand, one should
also be cautious when setting a high terminal reward, as the optimal policy might be changed:
intuitively, when the terminal reward is too large, we will treat patients with the most expensive
treatment towards the end of the horizon to try to gather the terminal reward.

Extensions We extended our cases to incorporate EMA survey devices where daily survey
responses are collected from patients. In particular, we consider the possibility that the patient
may provide truthful, random, or falsified information. We describe the model for this extension in
§ 2.18. In this case the transition probability matrices could be directly estimated from the survey
results. Thus, the accuracy of the transition probability matrices would decrease when the patient
provides noisy or falsified information more frequently. While the value of EMA survey devices
dominates that of wearables when completion frequency is high and the patient is completely
honest, we see that in our field study that patients or their surrogates do not answer surveys very
regularly, thus reducing the feasibility of EMA devices. At the extreme, the value of EMA device
can be negative when the patient provides only noisy information.
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2.7 Summary of Findings and Concluding Remarks

In this work, we have built a POMDPmodel with budget constraints to evaluate the potential value
of incorporating different wearables in OUD treatments. We provide a novel budget reformulation
and show that it can be solved efficiently.

Our experiments with our model, incorporating parameters calibrated to literature, show that
value of wearables increases as the patient treatment dynamics deviate from the ATD. In addition,
as the budget increases, the value of wearable devices eventually decreases when compared to
our baseline model. This is because when the budget is relatively low, choosing the cost-effective
treatment could potentially increase patient treatment outcome by a large margin. When the
budget is sufficiently high, treatment IN guarantees the same treatment outcome for all patient
treatment adherence groups and is superior to all other treatments. The value of wearables thus
becomes negligible.

We also discover that wearables are more beneficial to patients with medium to low treatment
adherence levels; patients with high treatment adherence react to cheaper treatments better than
those with lower treatment adherence, and it becomes more cost-effective to treat the patient
even without the wearables. Similarly, we observe that when the budget is fixed, as the patient
treatment adherence decreases, the patient is more prone to relapse; thus, incorporating wearables
can effectively reduce the risk of relapse. Not surprisingly, as the budget increases, the marginal
return of money spent on treatments or wearables decreases the fastest for patients with high
treatment adherence.

These observations imply that when the budget that we have is large enough to treat every
patient with treatment IN, there is no benefit of adopting wearables. On the other hand, if the
budget is smaller, to maximize the treatment outcome for the entire patient group, we should
prioritize patients with higher treatment adherence; in this case, the benefit of incorporating
wearables in OUD treatments is also limited. However, in the situation where we have enough
budget to treat every patient but cannot afford treatment IN for everyone, to maximize the
treatment outcome for the entire patient group, we should allocate more money to patients with
lower treatment adherence and incorporate wearables for those patients. Although maximizing
treatment outcome for the entire patient population is a reasonable objective, the ethics behind
which patient we should allocate resources to is debatable. This question, however, is beyond the
scope of this paper.

Future work includes collecting data from planned field studies in collaboration with rehab
centers and start-ups that are developing wearable devices for tackling OUD to fine tune our
models and analysis. Throughout the paper, we have assumed that the use of wearables in
OUD treatments does not affect patient TA levels as well as treatment outcomes. It would also
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be interesting to see if there are behavioral changes attributable to wearables, even if we only
passively collect data, i.e., not sending warnings/reminders, as not all types of wearables have this
capability. We hope our work here adds to the growing literature and motivates further work to
tackle this important issue.

2.8 Case 1 Parameter Calculation

Let 30C1 be the event of experiencing C1 on day 30. Then

𝑐1𝑢𝑡+ = 𝑃 (𝑢𝑡 + |30C1) =
𝑃 (𝑢𝑡 + ∩ 30C1)

𝑃 (30C1)
=
𝑃 (𝑢𝑡 + ∩ 30C1)

8
∑
𝑖=1
((𝑓 𝑎𝑡 )

30)𝑖,3/8
,

where ((𝑓 𝑎𝑡 )
30)𝑖,3 is the 𝑖th row and 3rd entry of (𝑓 𝑎𝑡 )

30. Because all rows of (𝑓 𝑎𝑡 )
30)𝑖,3 sum up to 8,

which is the number of our states, we renormalize the value of 𝑃 (C1 on day 30) such that it is
between 0 and 1. Furthermore,

𝑃 (𝑢𝑡 + ∩ 30C1) = 𝑃 (30C1| 27Re)𝑃 (27Re) + 𝑃 (30C1|28Re)𝑃 (28Re) + 𝑃 (30C1|29Re)𝑃 (29Re),

where 27Re, 28Re, and 29Re are defined the same way as 30C1, that is, experiencing relapse on day

27, 28, and 29, respectively. For example, 𝑃 (30C1|27Re) = ((𝑓 𝑎𝑡 )
3)5,3 and 𝑃 (27Re) =

8
∑
𝑖=1
((𝑓 𝑎𝑡 )

27)𝑖,5/8.

2.9 Values of Immediate Rewards and Costs

States Health
Dx 0.6*
NC 1 †
C1 0.9
C2 0.75
Re 0.683
OD 0.1*
Dt 0
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Abs

withdraw the program from state Dx:
from state NC:
from state C1:
from state C2:
from state Re:
from state Dx:

0.5 × remaining horizon*
1 × remaining horizon
0.9 × remaining horizon
0.75 × remaining horizon
0.678 × remaining horizon
0.5 × remaining horizon

Table 2.3: Health reward associated with each state. *: assumptions that we made based on
conversations with clinicians. In sensitivity analysis, we found that our results are robust under
small perturbations of those parameters. The rest of the values are generated according to Connock
et al. (2007). †: the health reward of state NC is the baseline utility.

Item Cost type Costs
Urine tests model cost $30/month (Schackman et al. 2012)
Wearable devices model cost see Table 2.2
EMA survey device messaging cost model cost $60/year (Model in Appendix 2.18)
Physician and nursing time treatment cost $50/month (Schackman et al. 2012)
Methadone maintenance treatment treatment cost $20/month (Barnett 2009)
Buprenorphine maintenance treatment treatment cost $200/month (Barnett 2009)
Implant Naltrexone (Vivitrol) treatment cost $1200/month
Counseling treatment cost $600/month
OD state cost $2500/episode*
Detoxification state cost $1500/episode

Table 2.4: The costs considered in the model. The values without references in the table were
determined through conversations with clinicians from the perspective of the healthcare system.
*: the expected cost of overdose includes the expected cost of hospitalization and emergency room
visit.

Action/Treatment Costs
No treatment 0
Methadone maintenance treatment with counseling $670/month
Buprenorphine maintenance treatment with counseling $850/month
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Implant Naltrexone with counseling $1800/month
Counseling $600/month

Table 2.5: Action associated costs. This table summarizes the cost of taking each action using the
values provided in Table 2.4.

2.10 Proof of Lemma 2

Lemma 2. If the immediate reward and terminal reward of a discrete time finite horizon POMDP

takes the form 𝜃ℎ𝑎𝑡 (𝛽𝑡) + (1 − 𝜃)𝑐𝑎𝑡 (𝛽𝑡) for every time step, then 𝑉 𝜋 (𝛽0, 𝜃) can be written as 𝑉 𝜋 (𝛽0, 𝜃) =
𝜃𝐻 𝜋

𝛽0 + (1 − 𝜃)𝐶𝜋
𝛽0 .

Proof. Proof of Lemma 2 Let 𝑁 be the length of the horizon. We will proceed by induction,
and show that at each step 𝑡 , the value function of an action 𝑎𝑡 and belief 𝛽𝑡 , 𝑉 𝑎𝑡

𝑡 (𝛽𝑡 , 𝜃), can be
transformed into

𝑉 𝑎𝑡
𝑡 (𝛽𝑡 , 𝜃) = 𝜃ℎ̂𝑎𝑡 (𝛽𝑡) + (1 − 𝜃)𝑐𝑎𝑡 (𝛽𝑡). (2.24)

First, recall that the value function of an action 𝑎 with belief 𝛽𝑡 of a general POMDP is

𝑉 𝑎
𝑡 (𝛽𝑡) = ∑

𝑠𝑡∈𝑆
𝑟𝑡(𝑠𝑡 , 𝑎)𝛽𝑡(𝑠𝑡) + ∑

𝑜𝑡+1∈𝑂
(𝑜𝑡+1|𝑎, 𝛽𝑡)𝑉 ∗

𝑡+1(𝛽𝑡+1)

Note first that our immediate reward at time 𝑡 under treatment 𝑎 at state 𝑠 has the form
𝑟𝑡(𝑎, 𝑠) = 𝜃ℎ𝑎𝑡 (𝑠) + (1 − 𝜃)𝑐𝑎𝑡 (𝑠), where 𝜃 ∈ [0, 1], ℎ𝑎𝑡 (𝑠) ∈ [0, 1] and 𝑐𝑎𝑡 (𝑠) < 0, for 𝑡 ∈ {0, ..., 𝑁 − 1}, and
our terminal reward at state 𝑠 at time 𝑁 is 𝑟𝑁 (𝑎, 𝑠) = 𝜃ℎ𝑁 (𝑠) + (1 − 𝜃)𝑐𝑁 (𝑠).13

Base case: Equation (2.24) holds when 𝑡 = 𝑁 − 1. First, at 𝑡 = 𝑁 for a fixed 𝜃 , the value function
is

𝑉𝑁 (𝛽𝑁 , 𝜃) = ∑
𝑠𝑁 ∈𝑆

𝜃ℎ𝑁 (𝑠)𝛽𝑁 (𝑠) + (1 − 𝜃)𝑐𝑁 (𝑠)𝛽𝑁 (𝑠) = 𝜃ℎ𝑁 (𝛽𝑁 ) + (1 − 𝜃)𝑐𝑁 (𝛽𝑁 ).

Then, at 𝑡 = 𝑁 − 1 with action 𝑎 and belief 𝛽𝑁−1, the value function of our POMDP satisfies

𝑉 𝑎
𝑁−1(𝛽𝑁−1, 𝜃) = ∑

𝑠∈𝑆𝑁−1

𝑟𝑁−1(𝑠, 𝑎)𝛽𝑁−1(𝑠) + ∑
𝑜∈𝑂𝑁

(𝑜|𝑎, 𝛽𝑁−1)𝑉𝑁 (𝛽𝑁 , 𝜃)

= 𝜃ℎ𝑎𝑁−1(𝛽𝑁−1) + (1 − 𝜃)𝑐𝑎𝑁−1(𝛽𝑁−1) + ∑
𝑜∈𝑂𝑁

(𝑜|𝑎, 𝛽𝑁−1) (𝜃ℎ𝑁 (𝛽𝑁 ) + (1 − 𝜃)𝑐𝑁 (𝛽𝑁 ))

= 𝜃𝐻 𝑎
𝑁−1(𝛽𝑁−1) + (1 − 𝜃)𝐶𝑎

𝑁−1(𝛽𝑁−1),

13Note that in our problem, 𝑐𝑁 (𝑠) = 0, but we want to prove our theorem under the most general setup.
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where 𝐻 𝑎
𝑁−1(𝛽𝑁−1) and 𝐶𝑎

𝑁−1(𝛽𝑁−1) are the expected health and cost at time 𝑁 − 1 under action 𝑎
and belief 𝛽𝑁−1, respectively:

𝐻 𝑎
𝑁−1(𝛽𝑁−1) = ℎ𝑎𝑁−1(𝛽𝑁−1) + ∑

𝑜∈𝑂𝑁

(𝑜|𝑎, 𝛽𝑁−1)ℎ𝑁 (𝛽𝑁 ), and

𝐶𝑎
𝑁−1(𝛽𝑁−1) = 𝑐𝑎𝑁−1(𝛽𝑁−1) + ∑

𝑜∈𝑂𝑁

(𝑜|𝑎, 𝛽𝑁−1)𝑐𝑁 (𝛽𝑁 ).

Induction step: to show Equation (2.24) holds for any step 𝑡 , we assume it holds for step 𝑡 + 1,
and show that it also holds for step 𝑡 :

𝑉 𝑎
𝑡 (𝛽𝑡 , 𝜃) = ∑

𝑠∈𝑆
𝑟𝑡(𝑎, 𝑠)𝛽𝑡(𝑠) + ∑

𝑜∈𝑂𝑡+1

𝑃 (𝑜|𝑎, 𝛽𝑡)𝑉 𝑎𝑡+1
𝑡+1 (𝛽𝑡+1, 𝜃)

= 𝜃ℎ𝑎𝑡 (𝛽𝑡) + (1 − 𝜃)𝑐𝑎𝑡 (𝛽𝑡) + ∑
𝑜∈𝑂𝑡+1

𝑃 (𝑜|𝑎, 𝛽𝑡) (𝜃𝐻 𝑎𝑡+1
𝑡+1 (𝛽𝑡+1) + (1 − 𝜃)𝐶𝑎𝑡+1

𝑡+1 (𝛽𝑡+1))

= 𝜃𝐻 𝑎
𝑡 (𝛽𝑡) + (1 − 𝜃)𝐶𝑎

𝑡 (𝛽𝑡),

where 𝐻 𝑎
𝑡 (𝛽𝑡) and 𝐶𝑎

𝑡 (𝛽𝑡) are the expected health and cost at time 𝑡 under action 𝑎 and belief 𝛽𝑡 ,
respectively:

𝐻 𝑎
𝑡 (𝛽𝑡) = ℎ

𝑎
𝑡 (𝛽𝑡) + ∑

𝑜∈𝑂𝑡

(𝑜|𝑎, 𝛽𝑡)𝐻 𝑎𝑡+1
𝑡+1 (𝛽𝑡+1), and

𝐶𝑎
𝑡 (𝛽𝑡) = 𝑐

𝑎
𝑡 (𝛽𝑡) + ∑

𝑜∈𝑂𝑡

(𝑜|𝑎, 𝛽𝑡)𝑐𝑎𝑡+1𝑡+1 (𝛽𝑡+1).

■

2.11 The Remaining Proofs of Proposition 2

Let’s first recall Proposition 2:

Proposition 2. Properties of the solution set in System II:

2(a) The optimal policy 𝜋 ∗(Γ𝑡) is not necessarily unique, but the values 𝐻 𝜋 ∗

𝛽0 (Γ𝑡), 𝐶
𝜋 ∗

𝛽0 (Γ𝑡) are
unique for any fixed Γ𝑡 .

2(b) 𝐻 𝜋 ∗
𝜃

𝛽0 , −𝐶
𝜋 ∗
𝜃

𝛽0 , and the objective function 𝜃𝐻
𝜋 ∗
𝜃

𝛽0 + (1 − 𝜃)𝐶𝜋 ∗
𝜃

𝛽0 are all non-decreasing in 𝜃 . Fur-
thermore, as Γ𝑡 increases, 𝜃 ∗ is non-decreasing.

2(c) 𝐻 𝜋 ∗

𝛽0 (Γ𝑡) is non-decreasing in Γ𝑡 .

2(d) If 𝛾2 > 𝛾1 and 𝑉 𝜋 ∗(𝛽0, 𝛾2) > 𝑉 𝜋 ∗(𝛽0, 𝛾1), 𝐻
𝜋 ∗
𝜃∗

𝛽0 (𝛾2) > 𝐻 𝜋 ∗

𝛽0 (𝛾1).

2(e) Let 𝜋 ∗

𝛽0 denote the unique elements contained in the set
{
𝐻 𝜋 ∗

𝛽0 (Γ𝑡)
}

Γ𝑡∈(0,∞)
. Then, the set

𝜋 ∗

𝛽0 is finite.
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2.11.1 Proof of Property 2(b)

Recall by Lemma 2, at each time 𝑡 , for a fixed belief 𝛽𝑡 , the optimal Bellman’s equation for our
POMDP (Equation (2.11)) at time 𝑡 and belief state 𝛽𝑡 can be written as a convex combination of
the expected health and expected cost:

𝑉 ∗
𝑡 (𝛽𝑡 , 𝜃) = max

𝑎∈𝐴𝑡

{

𝜃ℎ𝑎𝑡 (𝛽𝑡) + (1 − 𝜃)𝑐𝑎𝑡 (𝛽𝑡) + ∑
𝑜∈𝑂𝑡+1

(𝑜|𝑎, 𝛽𝑡)𝑉 ∗
𝑡+1(𝛽𝑡+1)

}

= max
𝑎∈𝐴𝑡

{𝜃𝐻 𝑎
𝑡 (𝛽𝑡) + (1 − 𝜃)𝐶𝑎

𝑡 (𝛽𝑡)} ,

where 𝐻 𝑎
𝑡 (𝛽𝑡) and 𝐶𝑎

𝑡 (𝛽𝑡) are the expected health and cost at time 𝑡 under action 𝑎 and belief 𝛽𝑡
(as defined in § 2.10). Let 𝑉 𝑎

𝑡 (𝛽𝑡 , 𝜃) = 𝜃𝐻 𝑎
𝑡 (𝛽𝑡) + (1 − 𝜃)𝐶𝑎

𝑡 (𝛽𝑡). Note that 𝐻 𝑎
𝑡 (𝛽𝑡) and 𝐶𝑎

𝑡 (𝛽𝑡) are fixed
under the optimal value function from the last iteration, 𝑉 ∗

𝑡+1(𝛽𝑡+1), current belief 𝛽𝑡 , and action 𝑎,
where 𝑉 ∗

𝑡+1(𝛽𝑡+1) is treated as a constant in the the optimal Bellman’s equation. To ease notation,
for a fixed 𝛽𝑁−1, let 𝑎∗(𝜃) be the action that yields the highest expected reward at time 𝑁 − 1 for
some fixed parameter 𝜃 , that has the lowest expected health:

𝑎∗(𝜃) = argmin
𝑎′∈argmax𝑎∈𝐴𝑁−1

𝑉 𝑎
𝑁−1(𝛽𝑁−1,𝜃)

𝐻 𝑎′
𝑁−1(𝛽𝑁−1).

It suffices to show that at time 𝑡 = 𝑁 − 1, for every fixed 𝛽𝑁−1, the first part of Property 2(b) holds,
that is,

Claim 1. as 𝜃 increases, 𝐻 𝑎∗(𝜃)
𝑁−1 (𝛽𝑁−1, 𝜃) −𝐶𝑎∗(𝜃)

𝑁−1 (𝛽𝑁−1, 𝜃), and 𝑉 𝑎∗(𝜃)
𝑁−1 (𝛽𝑁−1, 𝜃) are non-decreasing in 𝜃 .

This is because 1) the optimal Bellman’s equation at any time step 𝑡 can be written in the same
format as 𝑡 = 𝑁 − 1, and 2) the exact backward induction algorithms in solving POMDP relies on
fixing the belief state at every searching point. (See § 2.5.3 for detailed discussion on one of the
exact POMDP solution method)

Before proving Claim 1, we first introduce some notation and a key concept in the proof—the
effective action set. Since we fix the belief 𝛽𝑁−1 for the rest of the proof, we abbreviate 𝐻 𝑎𝑖

𝑁−1(𝛽𝑁−1)
with 𝐻𝑎𝑖 , abbreviate 𝐶𝑎𝑖

𝑁−1(𝛽𝑁−1) with 𝐶𝑎𝑖 , and abbreviate 𝑉 𝑎
𝑁−1(𝛽𝑁−1, 𝜃) with 𝑉 (𝑎, 𝜃). Under a fixed

belief state 𝛽𝑁−1, given a set of actions at time 𝑁 − 1, 𝐴𝑁−1, we define the effective action set 𝐴𝛽𝑁−1

to be the largest subset of 𝐴𝑁−1 such that all actions lie on the efficiency frontier of the health-cost
curve. That is, for every pair of actions in 𝑎1 and 𝑎2 in 𝐴𝛽𝑁−1 , if 𝐻𝑎1 < 𝐻𝑎2 , then −𝐶𝑎1 < −𝐶𝑎2 . In
other words, we remove all actions that yield equal or worse treatment outcome but have higher
cost when compared with another action in set 𝐴𝑁−1. For a given 𝜃 , let 𝐺𝛽𝑁−1(𝜃) denote the set
of optimal solutions that satisfy 𝐺𝛽𝑁−1(𝜃) = argmax𝑎∈𝐴𝛽𝑁−1

𝑉 (𝑎, 𝜃). Then, the actions that yield the
largest 𝑉 (𝑎, 𝜃) value are contained in 𝐴𝛽𝑁−1 :
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Lemma 3. argmax𝑎∈𝐴𝑁−1
𝑉 (𝑎, 𝜃) = 𝐺𝛽𝑁−1(𝜃).

Proof. Proof of Lemma 3 For any fixed 𝜃 ∈ [0, 1], let 𝑎1 and 𝑎2 be two actions in set 𝐴𝑁−1. If
−𝐶𝑎1 > −𝐶𝑎2 , and 𝐻𝑎1 ≤ 𝐻𝑎2 , then 𝑎1 ∉ 𝐴𝛽𝑁−1 , and we must have 𝑉 (𝑎1, 𝜃) < 𝑉 (𝑎2, 𝜃). Thus, action 𝑎1

will never appear in the optimal solution. ■

Recall that 𝑎∗(𝜃) = argmin𝑎∈𝐺𝛽𝑁−1 (𝜃)
𝐻𝑎. Given a set of effective actions 𝐴𝛽𝑁−1 , without loss of

generality, we sort the actions in 𝐴𝛽𝑁−1 according to their expected health from the smallest to the
largest, and rename those actions from 1, ..., 𝑚, where 𝑚 is the cardinality of the set 𝐴𝛽𝑁−1 . That
is, 𝐻1 < 𝐻2 < ... < 𝐻𝑚. Thus, proving the first part of Claim 1 is equivalent to showing that 𝑎∗(𝜃)
is non-decreasing as 𝜃 increases; this is because as 𝑎∗(𝜃) increases, 𝐻𝑎∗(𝜃) increases, and by the
definition of the effective action set, −𝐶𝑎∗(𝜃) also increases. To complete the proof of the first part of
Property 2(b), it suffices to show the following propositions:

Proposition 3. The optimal objective function value, 𝑉 (𝑎∗(𝜃), 𝜃), is non-decreasing with respect to 𝜃 .

Proposition 4. For a fixed 𝛽𝑁−1, given a sorted effective action set 𝐴𝛽𝑁−1 as indexed above, then the

function 𝑎∗(𝜃) is non-decreasing with respect to 𝜃 .

Proof. Proof of Proposition 3 Because 𝐻𝑖 > 𝐶𝑖 , for a fixed action 𝑎, the value of 𝑉 (𝑎, 𝜃) is strictly
increasing in 𝜃 . Thus, for every 𝜃𝑖 > 𝜃𝑗 , max𝑎 𝑉 (𝑎, 𝜃𝑖) = 𝑉 (𝑎∗(𝜃𝑖), 𝜃𝑖) ≥ 𝑉 (𝑎∗(𝜃𝑗), 𝜃𝑖) ≥ 𝑉 (𝑎∗(𝜃𝑗), 𝜃𝑗) =
max𝑎 𝑉 (𝑎, 𝜃𝑗). ■

Before proving Proposition 4, we will first introduce another key concept that we will use
throughout the rest of proof. Given two pairs of points (𝐻𝑖 , 𝐶𝑖) and (𝐻𝑗 , 𝐶𝑗) in the effective action
set, with 𝑖 < 𝑗, we define 𝜃 ∗𝑖,𝑗 =

𝐶𝑖−𝐶𝑗
𝐻𝑗−𝐻𝑖+𝐶𝑖−𝐶𝑗

, where 𝜃 ∗𝑖,𝑗 ∈ (0, 1) is obtained by solving the equation
𝜃𝐻𝑖 + (1 − 𝜃)𝐶𝑖 = 𝜃𝐻𝑗 + (1 − 𝜃)𝐶𝑗 for 𝜃 . Note that 𝜃 ∗𝑖,𝑗 is well-defined when 𝑖 < 𝑗 because by
construction of the effective action set, 𝐻𝑗 > 𝐻𝑖 and thus −𝐶𝑗 > −𝐶𝑖 . By the construction of 𝜃 ∗𝑖,𝑗 , we
have:

Lemma 4. when 𝜃 ∈ [0, 𝜃 ∗𝑖,𝑗), 𝑉 (𝑖, 𝜃) > 𝑉 (𝑗, 𝜃). Similarly, when 𝜃 ∈ (𝜃 ∗𝑖,𝑗 , 1], 𝑉 (𝑖, 𝜃) < 𝑉 (𝑗, 𝜃).

To complete the proof of Proposition 4, we need the following corollary implied by Lemma 4:

Corollary 1. If we have a sequence of 𝜃 ∗s satisfying 𝜃 ∗𝑥1,𝑥2 ≤ 𝜃
∗
𝑥2,𝑥3 ≤ ... ≤ 𝜃

∗
𝑥𝑚−1,𝑥𝑚 with 𝑥𝑘 < 𝑥𝑘+1∀𝑘 ∈

{1, 2, ..., 𝑚 − 1} where 𝑥𝑘 ∈ 𝐴𝛽𝑁−1∀𝑘, then 𝑎∗(𝜃) is non-decreasing with respect to 𝜃 .

Proof. Proof of Proposition 4 We will proceed by construction. Given a sorted effective action set
𝐴𝛽𝑁−1 , we can find the solution to 𝑉 (𝑎, 𝜃) by adding one action from 𝐴𝛽𝑁−1 at a time starting from
the smallest indices. We show constructively that adding an action with higher health does not
change the monotonicity of 𝑎∗(𝜃).
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0 1θ

θ∗1,2θ∗2,3

action 2 > action 1
action 3 > action 2

implies action 3 > action 2 > action 1

action 1 > action 2
action 2 > action 3

implies action 1 > action 2 > action 3

action 1 > action 2
action 3 > action 2

implies
either action 1 or action 3
is better depending on θ∗1,3

0 1θ

θ∗1,3

Figure 2.6: Proof of Proposition 4 step 2 case II.

Step 0: create an empty list 𝐿 to keep track of the list of 𝜃 ∗ that are needed to select the optimal
action given an input 𝜃 .

Step 1: add 𝜃 ∗1,2 to 𝐿: by Lemma 4, we have monotonicity.
Step 2: add action 3 into the first two actions, {1, 2}, and calculate 𝜃 ∗2,3.
Case I 𝜃 ∗1,2 < 𝜃 ∗2,3: 𝑎∗(𝜃) = 1 if 𝜃 ∈ [0, 𝜃 ∗1,2], 𝑎∗(𝜃) = 2 if 𝜃 ∈ (𝜃 ∗1,2, 𝜃 ∗2,3], and 𝑎∗(𝜃) = 3 if 𝜃 ∈ (𝜃 ∗2,3, 1].

We add 𝜃 ∗2,3 to 𝐿. Note that at 𝜃 ∗𝑖,𝑗 with 𝑖 < 𝑗 we choose action 𝑖 by the definition of 𝑎∗(𝜃), that is,
when there are actions with equivalent objective function under the same 𝜃 , we always pick the
one with smaller expected health.

Case II 𝜃 ∗2,3 < 𝜃 ∗1,2 (see Figure 2.6): when 𝜃 < 𝜃 ∗2,3, we have 𝑉 (2, 𝜃) > 𝑉 (3, 𝜃), and 𝑉 (1, 𝜃) > 𝑉 (2, 𝜃).
This implies that𝑉 (1, 𝜃) > 𝑉 (2, 𝜃) > 𝑉 (3, 𝜃). Thus, when 𝜃 ≤ 𝜃 ∗2,3, 𝑎∗(𝜃) = 1. Similarly, when 𝜃 > 𝜃 ∗1,2,
we have 𝑉 (2, 𝜃) > 𝑉 (1, 𝜃), and 𝑉 (3, 𝜃) > 𝑉 (2, 𝜃). This implies that 𝑉 (3, 𝜃) > 𝑉 (2, 𝜃) > 𝑉 (1, 𝜃).
Therefore, when 𝜃 ≥ 𝜃 ∗1,2, 𝑎∗(𝜃) = 3. Lastly, when 𝜃 ∗2,3 < 𝜃 < 𝜃 ∗1,2, we have 𝑉 (3, 𝜃) > 𝑉 (2, 𝜃) and
𝑉 (1, 𝜃) > 𝑉 (2, 𝜃). This implies that 𝑎∗(𝜃) = 1 or 3. Thus, we calculate 𝜃 ∗1,3. In this case, we add 𝜃 ∗1,3
to 𝐿 and remove 𝜃 ∗1,2 from 𝐿 (see Figure 2.6).

Case III 𝜃 ∗1,2 = 𝜃 ∗2,3: 𝑎∗(𝜃) = 1 if 𝜃 ∈ [0, 𝜃 ∗1,3] and 𝑎∗(𝜃) = 2 if 𝜃 ∈ (𝜃 ∗1,3, 1]. We do not change 𝐿. The
reasoning is the same as that in Case I.

In all cases, we have monotonicity.
Step 𝑖, 𝑖 ≥ 3: add action 𝑖 + 1 to the previous actions and calculate 𝜃 ∗𝑖,𝑖+1. Let 𝜃 ∗𝑗,𝑖 ∈ 𝐿 for some

𝑗 ∈ {1, 2, ..., 𝑖−}. Note that this index 𝑗 is in unique in 𝐿 by construction.
Case I 𝜃 ∗𝑖,𝑖+1 > 𝜃 ∗𝑗,𝑖: when 𝜃 ≤ 𝜃 ∗𝑖,𝑖+1, 𝑎∗(𝜃) is monotone by previous steps; when 𝜃 > 𝜃 ∗𝑖,𝑖+1, 𝑎∗(𝜃) = 𝑖.

We add 𝜃 ∗𝑖,𝑖+1 to 𝐿.
Case II 𝜃 ∗𝑖,𝑖+1 < 𝜃 ∗𝑗,𝑖: then using the same logic as in step 2, we calculate 𝜃 ∗𝑗,𝑖+1, add it to 𝐿

and remove 𝜃 ∗𝑗,𝑖 from 𝐿. We will now check whether 𝜃 ∗𝑗,𝑖+1 violates the condition we defined in
Corollary 1. We perform this procedure iteratively for all elements in 𝐿 until no violation can be
found. This procedure terminates in finite time because the number of elements in 𝐿 is finite, and
by construction, when it terminates, we obtain an 𝐿 that satisfies Corollary 1.
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Case III 𝜃 ∗𝑖,𝑖+1 = 𝜃 ∗𝑗,𝑖: similar to Case III in step 2, we do not modify the set L, and 𝑎∗(𝜃) remains
monotone according to the previous step.

■

Remark 1. In the above we have shown that for every fixed belief state, the first part of Property 2(b)

holds. Just to reiterate, this suffices to show Property 2(b) because the exact backward induction

algorithms used in solving a POMDP relies on fixing the belief state at every searching point. (See

§ 2.5.3 for detailed discussion on one of the exact POMDP solution methods.) Note that since an MDP

is a special case of POMDP with the belief state being standard unit vectors, this proof also applies to

MDPs.

So far, we have showed that as 𝜃 increases, the value of the objective function, 𝜃𝐻 𝜋 ∗
𝜃

𝛽0 +(1−𝜃)𝐶
𝜋 ∗
𝜃

𝛽0 ,
the minimum optimal expected health, 𝐻 𝜋 ∗

𝜃
𝛽0 , and the minimum absolute expected cost, |𝐶𝜋 ∗

𝜃
𝛽0 |, are

non-decreasing. The proof of Proposition 4 further implies that |𝐶𝜋 ∗
𝜃

𝛽0 | increases if and only if 𝜃
increases. To complete the proof of Property 2(b), it remains to show that as Γ𝑡 increases, the
optimal 𝜃 ∗ is non-decreasing. To observe this, we let 𝛾1 and 𝛾2 be two budget levels with 𝛾1 > 𝛾2.
Because the set of all feasible policies under budget 𝛾2 is also feasible under budget 𝛾1, Equations
(2.9)–(2.11) imply that the set of feasible 𝜃 under budget 𝛾2 is also feasible under budget 𝛾1. Let
𝜃1 and 𝜃2 be the optimal 𝜃 ∗ under budgets 𝛾1 and 𝛾2 respectively. Then, we must have 𝛾1 ≥ 𝛾2 by
Equation (2.9).

2.11.2 Proof of Property 2(c)

Proof. To show that 𝐻 𝜋 ∗

𝛽0 (Γ𝑡) is non-decreasing in Γ𝑡 , we proceed by contradiction. Let 𝛾1 > 𝛾2, and
let the optimal policies of System (2) under Γ = 𝛾1 and Γ = 𝛾2 be 𝜋 1 and 𝜋 2, respectively. Let 𝜃1
and 𝜃2 be the optimal 𝜃 in Equation (2.9) under 𝜋 1 and 𝜋 2, respectively. Property 2(b) implies that
since 𝛾1 > 𝛾2, 𝜃1 ≥ 𝜃2. For the sake of contradiction, we assume 𝐻 𝜋1

𝛽0 < 𝐻 𝜋2

𝛽0 . Since 𝜋2 is a feasible
solution when Γ𝑡 = 𝛾1, Equation (2.11) implies that

𝜃1𝐻 𝜋1

𝛽0 + (1 − 𝜃1)𝐶𝜋1

𝛽0 > 𝜃1𝐻
𝜋2

𝛽0 + (1 − 𝜃1)𝐶𝜋2

𝛽0 . (2.25)

Since we assume 𝐻 𝜋1

𝛽0 < 𝐻 𝜋2

𝛽0 , we must have 𝐶𝜋1

𝛽0 ≥ 𝐶𝜋2

𝛽0 , that is −𝐶
𝜋1

𝛽0 ≤ −𝐶𝜋2

𝛽0 . In other words, policy
𝜋 1 is cheaper than policy 𝜋 2 but yields worse outcomes. This implies that 𝜋 1 is also a feasible
solution when Γ𝑡 = 𝛾2. Again, by Equation (2.11), when budget equals to 𝛾2, we have that

𝜃2𝐻 𝜋1

𝛽0 + (1 − 𝜃2)𝐶𝜋1

𝛽0 < 𝜃2𝐻
𝜋2

𝛽0 + (1 − 𝜃2)𝐶𝜋2

𝛽0 . (2.26)

Comparing Equations (2.25) and (2.26), wemust have 𝜃2 > 𝜃1. Thus we have reached a contradiction.
■
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2.12 Proof of Theorem 3

Theorem 3 (Correctness of our reformulation). Let 𝐹 (Γ𝑡) be piecewise linear, concave, and strictly
increasing on [𝑙, 𝑢]14 as defined above, then 𝐻 𝜋 ′

𝛽0 = 𝐻 𝜋 ∗

𝛽0 when −𝐶𝜋 ′

𝛽0 lies on 𝐹 (Γ𝑡). That is, our reformu-

lation, System II finds all solutions that lie on the efficiency frontier of the convex hull of the solutions

of System I.

Since the initial belief 𝛽0 is fixed throughout this section, for a policy 𝜋 , we will abbreviate 𝐻 𝜋
𝛽0

with 𝐻𝜋 and abbreviate 𝐶𝜋
𝛽0 with 𝐶𝜋 . Because 𝐹 is concave and strictly increasing on [𝑙, 𝑢], 𝐹 is

bijective. Thus, 𝐹 −1(𝐻𝜋 ′
𝑖
) is well-defined and 𝐹 −1(𝐻𝜋 ′

𝑖
) = −𝐶𝜋 ′

𝑖
. Before we prove Theorem 3, we first

show the following proposition:

Proposition 5. Let 𝜃 ∗𝜋 ′
𝑖 ,𝜋 ′

𝑗
=

𝐶𝜋′𝑖
−𝐶𝜋′𝑗

𝐻𝜋′𝑗
−𝐻𝜋′𝑖

+𝐶𝜋′𝑖
−𝐶𝜋′𝑗

. If 𝐹 is piecewise linear, concave, and strictly increasing,

and −𝐶𝜋 ′
𝑗
is a non differentiable point on 𝐹 , then 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
< 𝜃 ∗𝜋 ′

𝑗 ,𝜋 ′
𝑘
∀𝜋 ′

𝑖 , 𝜋 ′
𝑗 , 𝜋 ′

𝑘 , s.t. −𝐶𝜋 ′
𝑖
< −𝐶𝜋 ′

𝑗
< −𝐶𝜋 ′

𝑘
. In

particular, there exists 𝜃 ∗𝜋 ′
𝑗
s.t. 𝜃 ∗𝜋 ′

𝑗
𝐻𝜋 ′

𝑗
+ (1 − 𝜃 ∗𝜋 ′

𝑗
)𝐶𝜋 ′

𝑗
> 𝜃 ∗𝜋 ′

𝑗
𝐻𝜋 + (1 − 𝜃 ∗𝜋 ′

𝑗
)𝐶𝜋 for all policy 𝜋 ≠ 𝜋 ′

𝑗 .

We observe that 𝜃 ∗𝜋 ′
𝑖 ,𝜋 ′

𝑗
is simply an equivalence point of 𝜋 ′

𝑖 and 𝜋 ′
𝑗 in the objective function

𝜃𝐻𝜋 +(1−𝜃)𝐶𝜋 in System (2); that is, 𝜃 ∗𝜋 ′
𝑖 ,𝜋 ′

𝑗
𝐻𝜋 ′

𝑖
+(1−𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
)𝐶𝜋 ′

𝑖
= 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
𝐻𝜋 ′

𝑗
+(1−𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
)𝐶𝜋 ′

𝑗
. Furthermore,

if 𝜃 > 𝜃 ∗𝜋 ′
𝑖 ,𝜋 ′

𝑗
, then 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
𝐻𝜋 ′

𝑖
+ (1 − 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
)𝐶𝜋 ′

𝑖
< 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
𝐻𝜋 ′

𝑗
+ (1 − 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
)𝐶𝜋 ′

𝑗
, and if 𝜃 < 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
, then

𝜃 ∗𝜋 ′
𝑖 ,𝜋 ′

𝑗
𝐻𝜋 ′

𝑖
+ (1 − 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
)𝐶𝜋 ′

𝑖
> 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
𝐻𝜋 ′

𝑗
+ (1 − 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
)𝐶𝜋 ′

𝑗
.

Proof. Proof of Proposition 5 Because 𝐹 −1(𝐻𝜋 ′
𝑖
) = −𝐶𝜋 ′

𝑖
, we rewrite 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
=

𝐶𝜋′𝑖
−𝐶𝜋′𝑗

𝐹 (−𝐶𝜋′𝑗
)−𝐹 (−𝐶𝜋′𝑖

)+𝐶𝜋′𝑖
−𝐶𝜋′𝑗

. We
first notice that 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
is well-defined for all 𝜋 ′

𝑖 , 𝜋 ′
𝑗 if −𝐶𝜋 ′

𝑖
> −𝐶𝜋 ′

𝑗
, and 𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
∈ [0, 1]. Now,

𝜃 ∗𝜋 ′
𝑖 ,𝜋 ′

𝑗
< 𝜃 ∗𝜋 ′

𝑗 ,𝜋 ′
𝑘
⟺

𝐶𝜋 ′
𝑖
− 𝐶𝜋 ′

𝑗

𝐹 (−𝐶𝜋 ′
𝑗
) − 𝐹 (−𝐶𝜋 ′

𝑖
) + 𝐶𝜋 ′

𝑖
− 𝐶𝜋 ′

𝑗

<
𝐶𝜋 ′

𝑗
− 𝐶𝜋 ′

𝑘

𝐹 (−𝐶𝜋 ′
𝑘
) − 𝐹 (−𝐶𝜋 ′

𝑗
) + 𝐶𝜋 ′

𝑗
− 𝐶𝜋 ′

𝑘

⟺
𝐹 (−𝐶𝜋 ′

𝑗
) − 𝐹 (−𝐶𝜋 ′

𝑖
) + 𝐶𝜋 ′

𝑖
− 𝐶𝜋 ′

𝑗

𝐶𝜋 ′
𝑖
− 𝐶𝜋 ′

𝑗

>
𝐹 (−𝐶𝜋 ′

𝑘
) − 𝐹 (−𝐶𝜋 ′

𝑗
) + 𝐶𝜋 ′

𝑗
− 𝐶𝜋 ′

𝑘

𝐶𝜋 ′
𝑗
− 𝐶𝜋 ′

𝑘

⟺
𝐹 (−𝐶𝜋 ′

𝑗
) − 𝐹 (−𝐶𝜋 ′

𝑖
)

𝐶𝜋 ′
𝑖
− 𝐶𝜋 ′

𝑗

>
𝐹 (−𝐶𝜋 ′

𝑘
) − 𝐹 (−𝐶𝜋 ′

𝑗
)

𝐶𝜋 ′
𝑗
− 𝐶𝜋 ′

𝑘

.

𝐹 is piecewise linear, concave, and strictly increasing, and −𝐶𝜋 ′
𝑗
is a non differentiable point;

therefore, we have
𝐹 (−𝐶𝜋 ′

𝑗
) − 𝐹 (−𝐶𝜋 ′

𝑖
)

𝐶𝜋 ′
𝑖
− 𝐶𝜋 ′

𝑗

≥ 𝐹 ′
−(−𝐶𝜋 ′

𝑗
) > 𝐹 ′

+(−𝐶𝜋 ′
𝑗
)15 ≥

𝐹 (−𝐶𝜋 ′
𝑘
) − 𝐹 (−𝐶𝜋 ′

𝑗
)

𝐶𝜋 ′
𝑗
− 𝐶𝜋 ′

𝑘

.

Because this holds for all 𝜋𝑖 , 𝜋𝑘 s.t. −𝐶𝜋 ′
𝑖
< −𝐶𝜋 ′

𝑗
< −𝐶𝜋 ′

𝑘
, without loss of generality, let −𝐶𝜋 ′

𝑖
be the

non differentiable point right before −𝐶𝜋 ′
𝑗
and −𝐶𝜋 ′

𝑘
be the next non differentiable point after −𝐶𝜋 ′

𝑗
;

14We pick 𝑙, 𝑢 such that 𝐹 is −∞ on [0, 𝑙) (i.e., infeasible) and constant on [𝑢,∞)
15𝐹 ′−(𝑥) ∶= lim

𝑡→0−
𝐹 (𝑥+𝑡)−𝐹 (𝑥)

𝑡 ; 𝐹 ′+(𝑥) ∶= lim
𝑡→0+

𝐹 (𝑥+𝑡)−𝐹 (𝑥)
𝑡
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then for any 𝜃 ∗𝜋 ′
𝑗
∈ (𝜃 ∗𝜋 ′

𝑖 ,𝜋 ′
𝑗
, 𝜃 ∗𝜋 ′

𝑗 ,𝜋 ′
𝑘
) satisfies 𝜃 ∗𝜋 ′

𝑗
𝐻𝜋 ′

𝑗
+ (1 − 𝜃 ∗𝜋 ′

𝑗
)𝐶𝜋 ′

𝑗
> 𝜃 ∗𝜋 ′

𝑗
𝐻𝜋 + (1 − 𝜃 ∗𝜋 ′

𝑗
)𝐶𝜋 for all policy

𝜋 ≠ 𝜋 ′
𝑗 . ■

Proof. Proof of Theorem 3 Let 𝜋 ∗
𝜃 ∗ be an optimal policy in System II under budget −𝐶𝜋 ∗

𝜃∗
such

that −𝐶𝜋 ∗
𝜃∗
corresponds to a non-differentiable point on 𝐹 (Γ𝑡) in System I on the X-axis. To prove

Theorem 3, it suffices to show that 𝜋 ∗
𝜃 ∗ is the optimal policy in System I when the budget equals

−𝐶𝜋 ∗
𝜃∗
. In other words, we want to show that Equations (2.9)-(2.11) find all non-differentiable

points that lie on 𝐹 (Γ𝑡). Once we have established this, Equation (2.8) will ensure that we find all
solutions that lie on the 𝐹 (Γ𝑡) and are differentiable. To complete the proof, we will proceed by
contradiction.

First, the solution pair (𝐻𝜋 ∗
𝜃∗
, 𝐶𝜋 ∗

𝜃∗
) is unique. For the sake of contradiction, assume that when

the budget equals −𝐶𝜋 ∗
𝜃∗
, there exists another policy �̃� s.t. −𝐶�̃� = −𝐶𝜋 ∗

𝜃∗
. If 𝐻�̃� > 𝐻𝜋 ∗

𝜃∗
, then we have

𝜃 ∗𝐻�̃� + (1 − 𝜃 ∗)𝐶�̃� > 𝜃 ∗𝐻𝜋 ∗
𝜃∗
+ (1 − 𝜃 ∗)𝐶𝜋 ∗

𝜃∗
. This contradicts that 𝜋 ∗

𝜃 ∗ is the optimal policy in System
II. If 𝐻�̃� < 𝐻𝜋 ∗

𝜃∗
, then 𝜃 ∗𝐻�̃� + (1 − 𝜃 ∗)𝐶�̃� < 𝜃 ∗𝐻𝜋 ∗

𝜃∗
+ (1 − 𝜃 ∗)𝐶𝜋 ∗

𝜃∗
for all 𝜃 . Thus, policy �̃� is always

dominated by policy 𝜋 ∗ and cannot be an optimal solution.
Second, we want to show 𝐻𝜋 ′ = 𝐻𝜋 ∗

𝜃∗
. To show (𝐻𝜋 ′ ≥ 𝐻𝜋 ∗

𝜃∗
), we observe that all optimal policies

in System II: {𝜋 ∗
𝜃 : −𝐶𝜋 ∗

𝜃
≤ Γ𝑡 }, are feasible in System I. To show that (𝐻𝜋 ′ ≤ 𝐻𝜋 ∗

𝜃∗
), we again proceed

by contradiction. Note that all feasible policies in System I are still feasible in System II; however,
since feasibility does not imply optimality in System II, we need to argue more carefully. Assume
there exists an optimal solution of System I, 𝜋 ′, that satisfies 𝐻𝜋 ′ > 𝐻𝜋 ∗

𝜃∗
.

Case I −𝐶𝜋 ′ ≤ −𝐶𝜋 ∗
𝜃∗
: since 𝜋 ′ is also feasible in System II, we have 𝜃 ∗𝐻𝜋 ′ + (1 − 𝜃 ∗)𝐶𝜋 ′ >

𝜃 ∗𝐻𝜋 ∗
𝜃∗
+ (1 − 𝜃 ∗)𝐶𝜋 ∗

𝜃∗
. This contradicts that 𝜋 ∗

𝜃 ∗ is the optimal policy.
Case II Γ𝑡 ≥ −𝐶𝜋 ′ > −𝐶𝜋 ∗

𝜃∗
: Because 𝜋 ∗

𝜃 ∗ is a optimal solution to argmax𝜋 𝜃 ∗𝐻𝜋 + (1 − 𝜃 ∗)𝐶𝜋 ,
we must have 𝜃 ∗𝐻𝜋 ∗

𝜃∗
+ (1 − 𝜃 ∗)𝐶𝜋 ∗

𝜃∗
≥ 𝜃 ∗𝐻𝜋 ′ + (1 − 𝜃 ∗)𝐶𝜋 ′ . Because 𝐻𝜋 ′ > 𝐻𝜋 ∗

𝜃∗
and −𝐶𝜋 ′ > −𝐶𝜋 ∗

𝜃∗
,

Proposition 5 implies that there must exists16 𝜃 = 𝜃𝜋 ∗
𝜃∗ ,𝜋 ′+𝜖 > 𝜃 ∗,17 with 𝜖 > 0 s.t. 𝜃𝐻𝜋 ∗

𝜃∗
+(1−𝜃)𝐶𝜋 ∗

𝜃∗
<

𝜃𝐻𝜋 ′ + (1 − 𝜃)𝐶𝜋 ′ . This contradicts that 𝜃 ∗ = max{𝜃 ∶ −𝐶𝜋 ∗
𝜃
≤ Γ𝑡}. ■

2.13 Extension to Multiple Constraints

Kim et al. (2011) extends the definition of CPOMDP proposed in Isom et al. (2008) to multiple
constraints, where a CPOMDP is defined as a POMDP with two additional components: 1)
𝑐𝑘(𝑠, 𝑎) < 0 is the cost of type 𝑘 incurred for executing action 𝑎 in state 𝑠, and 2) 𝛾𝑘 > 0 is the upper

16the existence is implied by the second statement in Proposition 5.
17𝜃 > 𝜃 ∗ is implied by the first statement in Proposition 5.
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bound on the absolute cumulative cost of type 𝑘. We can formally state these constraints as

𝔼𝜋 [

𝑁

∑
𝑡=1

−𝑐𝑘(𝑠, 𝑎)]
≤ 𝛾𝑡 ∀𝑘.

Recall that when we have only one constraint, we reformulated our CPOMDP as follows:

System II: 𝜋 ∗ = argmax
𝜋∈Π∗

𝜃∗

{
−𝐶𝜋

𝛽0 ∶ −𝐶𝜋
𝛽0 ≤ Γ𝑡

}

𝜃 ∗ = max
{
𝜃 ∶ −𝐶𝜋 ∗

𝜃
𝛽0 ≤ Γ𝑡 , 𝜃 ∈ [0, 1]

}

𝜋 ∗
𝜃 = argmin

𝜋∈Π∗
𝜃

𝐻 𝜋
𝛽0

Π∗
𝜃 = argmax

𝜋∈Π

{
𝜃𝐻 𝜋

𝛽0 + (1 − 𝜃)𝐶𝜋
𝛽0

}
.

We first illustrate how to incorporate two different types of cost constraints using this reformula-
tion. The extension to the case where 𝑘 > 2 is straightforward. To ease notation, we will omit
the initial belief 𝛽0. Let 𝐻 𝜋 denote the expected reward under policy 𝜋 . Let 𝐶𝜋

1 and 𝐶𝜋
2 denote

the expected cost of type 1 and type 2 under policy 𝜋 , where 𝐶𝜋
1 and 𝐶𝜋

2 are always negative. We
denote the upper bound on the absolute cumulative type 1 cost to be 𝛾1, and similarly 𝛾2 is the
upper bound on the absolute cumulative type 2 cost. Furthermore, let 𝜃, 𝜂 ∈ [0, 1] be two tunable
parameters corresponding to the types 1 and 2 constraints, respectively. Then the idea is to solve
two separate problems using System II, where the last steps in our budget reformulations are

Π∗
𝜃 = argmax

𝜋∈Π
{(1 − 𝜃)𝐻 𝜋 + 𝜃𝐶𝜋

1 } ,

Π∗
𝜂 = argmax

𝜋∈Π
{(1 − 𝜂)𝐻 𝜋 + 𝜂𝐶𝜋

2 } ,

respectively. To solve our reformulation, we perform the following two steps:

Step 1 We solve the problem by pretending only constraint 1 exists (using System II) and find
the corresponding optimal parameter 𝜃 ∗ and optimal solution 𝜋 ∗

1. Similarly, solve the problem
using only constraint 2 and obtain 𝜂∗ and 𝜋 ∗

2. If one of those solutions also satisfies the other
constraint, then we terminate and return that policy.

Step 2 If neither of the optimal solutions 𝜋 ∗
1 and 𝜋 ∗

2 are feasible, then we need to increase18 the
values of 𝜃 and 𝜂 iteratively by a small amount until we find a policy that satisfies both constraints
with the smallest possible values for 𝜃 and 𝜂.

18Note that in this new formulation, we have flipped the role of 𝜃 and 1 − 𝜃 in System II: we need to increase the
value of 𝜃 here instead of decrease.
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The correctness of this extension follows directly from the correctness of our algorithm.
However, instead of performing a binary search over the value of 𝜃 when we only have one
constraint, we now need to search over the grid of possible values of (𝜃, 𝜂) pairs in Step 2 above.
As the number of constraints grows, the running time of our algorithm will grow exponentially
with respective to the number of constraints in the problem, and the problem might become
computationally intractable. A smarter search mechanism could be proposed in this scenario
(e.g., using ideals from the EM algorithm, gradient descent, or bi-objective optimization with
𝜖-constraints (Mavrotas 2009)), however this is beyond the scope of this problem.

2.14 Algorithms

Algorithms 3-5 are adopted from Cassandra et al. (1997). Let 𝑒𝑠 be the standard basis vector that
has 1 on the 𝑠𝑡ℎ entry and 0 everywhere else.

Algorithm 3 Lark’s algorithm for purging a set of vectors
Lark Prune(𝐴)
1: 𝐹 ← 𝐴 ⊳ dirty set
2: 𝑄 ← ∅ ⊳ clean set
3: for s in S do
4: 𝜔 ← argmax𝑣∈𝐹 𝑒𝑠 ⋅ 𝑣
5: 𝑄 ← 𝑄 ∪ {𝜔}
6: 𝐹 ← 𝐹 ⧵ {𝜔}
7: end for
8: while 𝐹 is not empty do
9: for 𝑣 in 𝐹 do
10: 𝑥 ← Donimate(v,Q)
11: end for
12: if 𝑥 = donimtaed then
13: 𝐹 ← 𝐹 ⧵ {𝑣}
14: else
15: 𝜔 ← argmax𝑣∈𝐹 𝑥 ⋅ 𝑣
16: 𝑄 ← 𝑄 ∪ {𝜔}
17: 𝐹 ← 𝐹 ⧵ {𝜔}
18: end if
19: end whilereturn Q
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Algorithm 4 An LP approach to finding an information state in a vector’s witness region
Dominate(𝛼, 𝐴)
1: 𝐿 ← 𝐿𝑃 (variable ∶ 𝑥1, ..., 𝑥|𝑆|, 𝛿 , objective ∶ max 𝛿)
2: for 𝛼 ′ in 𝐴 ⧵ {𝛼} do
3: add constraint (𝐿, 𝑥 ⋅ 𝛼 ≥ 𝛿 + 𝑥 ⋅ 𝛼 ′)
4: add constraint (𝐿, 𝑥 ⋅ ⨘ = 1)
5: end for
6: if Infeasible (L) then return dominated
7: else
8: (𝑥, 𝛿) ← SolveLP(L)
9: if 𝛿 ≤ 0 then return 𝑥
10: else return dominated
11: end if
12: end if

Algorithm 5 Incremental pruning
Incremental Pruning(A 𝑎,𝑜1 , ...,A 𝑎,𝑜|𝑂|)

1: 𝑊 ← Lark Prune(A 𝑎,𝑜1 ⊕A 𝑎,𝑜3)
2: for i in [3 ∶ |𝑂|] do
3: 𝑊 ← Lark Prune(𝑊 ⊕A 𝑎,𝑜𝑖 )
4: end forreturnW
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Algorithm 6 Group A 𝑎,𝑜
𝑡 into subsets according to 𝑑𝑣

regroup(A 𝑎,𝑜
𝑡 , 𝑑𝑣)

1: 𝐹 ← A 𝑎,𝑜
𝑡 ⊳ dirty set; each element in 𝐹 is a tuple of the form (𝑣, 𝑐)

2: 𝑄 ← array of −1 with length |𝐹 | ⊳ store the group index that each element in 𝐹 belongs to
3: q_index← 0 ⊳ initialize group index for 𝑄
4: for i in range(len(𝐹 )) do
5: if 𝑄[𝑖] ≠ −1 then Continue ⊳ we have already assigned a group index to this element
6: else 𝑄[𝑖] ← q_index
7: end if
8: for j in range(i, len(F)) do
9: if 𝑄[𝑗] ≠ −1 then Continue
10: else if ‖𝑄[𝑖].𝑣 − 𝑄[𝑗].𝑣‖1 < 𝑑𝑣 then
11: 𝑄[𝑗] ← q_index
12: end if
13: end for
14: q_index + = 1 ⊳ increment the group index
15: end for
16: return Q, q_index ⊳ return the group index of each element in F, and the total number of groups

2.15 Heuristic Algorithm for SolvingUnconstrained POMDP

Algorithm 2, incorporating the removal of 𝛼-vectors that exceed the budget constraint, can be
solved within several hours when the size of the problem is comparatively small. While a few
heuristic methods have been proposed to speed up the run-time of finite-horizon POMDPs (Wal-
raven and Spaan 2019), in this section we provide a heuristic algorithm to speed up the running
time of our CPOMDP, Algorithm 2, when the complexity of the problem that we are trying to solve
increases. This heuristic algorithm relies on reducing the size of the 𝛼-vector set, A 𝑎,𝑜

𝑡 , described
in Equation (2.20) in the pruning step. Note that: (i) the model described in § 2.4 of this paper
can be solved exactly, and (ii) this heuristic algorithm could also be applied to unconstrained
discrete-time finite-horizon POMDPs.

First, we observe that in our problem, when the size of the set A 𝑎,𝑜
𝑡 is large, the time needed

to solve our CPOMDP increases, often because the absolute element-wise difference between
some 𝛼-vectors is very small. Since the sets A 𝑎

𝑡 and A𝑡 are obtained by performing set operations
on A 𝑎,𝑜

𝑡 , reducing the size of A 𝑎,𝑜
𝑡 can also effectively reduce the size of A 𝑎

𝑡 and A𝑡 . Thus, the
idea of our heuristic algorithm is to remove the 𝛼-vector tuples that are “too close" to each other
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in the objective vector. We use the L1-norm as our distance metric, but it can be replaced with
any 𝑝-norms for 𝑝 ≥ 2 in practice. In addition, since for a fixed vector 𝑥 its 𝑝-norms, ‖𝑥‖𝑝 , is
monotonically decreasing with respect to 𝑝 (Raıssouli and Jebril 2010), our theoretical guarantee
below holds for all 𝑝-norms where 𝑝 ≥ 2.

Let 𝑚𝑣 be a positive tunable parameter that control the threshold distance between two 𝛼-
vectors. Algorithm 7 describes the heuristic that we use to reduce the size of A 𝑎,𝑜

𝑡 , where |𝑂𝑝 | is the
number of all possible observations that we can have in a partially observable state. The function
regroup(A 𝑎,𝑜

𝑡 , 𝑑𝑣) clusters the elements in A 𝑎,𝑜
𝑡 so that any two vectors within the same cluster

have an L1 distance that is smaller than or equal to 𝑑𝑣 (see § 2.14, Algorithm 6). Algorithm 7 can
be used inside the incremental pruning (Algorithm 5 in § 2.14) to reduce the running time (from
over 24 hours to 20 minutes on randomly generated instances).

Algorithm 7 Reduce the size of the A 𝑎,𝑜
𝑡 set

𝑟𝑒𝑑𝑢𝑐𝑒(A 𝑎,𝑜
𝑡 , 𝑚𝑣 , |𝑂𝑝 |)

1: 𝐹 ← A 𝑎,𝑜
𝑡 ⊳ dirty set; each element in 𝐹 is a tuple of the form (𝑣, 𝑐)

2: 𝑑𝑣 ← 𝑚𝑣/2|𝑂𝑝 | ⊳ initialize the cutoff distance for the objective function
3: 𝑄, total_group ← regroup(A 𝑎,𝑜

𝑡 , 𝑑𝑣) ⊳ 𝑄 store the group index that each element in 𝐹 belongs to
4: 𝑈 ← ∅ ⊳ clean set;
5: for 𝑔 in range(total_group) do
6: 𝑀 ← elements in F that are assigned to group 𝑔 in 𝑄
7: add a random element in 𝑀 to 𝑈
8: end for
9: return 𝑈

First, let 𝑉 ∗ be the optimal value of the objective function of an unconstrained POMDP problem
(Equation (2.11) of our reformulation) solved using the exact solution, and let 𝑉 be the solution
obtained by applying Algorithm 7 to Line (14) in Algorithm 1. Let 𝑙 be the number of horizons
that we apply Algorithm 7 to Algorithm 1 in Algorithm 2. Note that 𝑙 ≤ 𝑁 , where 𝑁 is the length
of horizon. First, we show that the objective value that we obtain in Equation (2.11) by applying
our heuristic algorithm (Algorithm 7) is at most 𝑚𝑣 × 𝑙 away from the optimal solution:

Theorem 4. 𝑉 ∗ − 𝑉 ≤ 𝑚𝑣 × 𝑙.

The proof of Theorem 4 can be found in § 2.15.1; this result holds for all unconstrained
discrete-time, finite-horizon POMDPs.

2.15.1 Proof of Theorem 4

Theorem 4. 𝑉 ∗ − 𝑉 ≤ 𝑚𝑣 × 𝑙.
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Proof. Proof of Theorem 4 Recall that 𝑉 ∗ and 𝑉 are the optimal values of an unconstrained POMDP
problem solved using the exact solution and by applying reduce(A 𝑎,𝑜

𝑡 , 𝑚𝑣 , 1), respectively. Let 𝑉 be
the optimal value of the POMDP problem solved by applying our heuristic algorithm, Algorithm 7,
to Line (18) of Algorithm 1, i.e., reduce(A𝑡 , 𝑚𝑣 , 1). We first show that 𝑉 ∗ − 𝑉 ≤ 𝑚𝑣 × 𝑙 by induction,
and then show that 𝑉 ∗ − 𝑉 ≤ 𝑉 ∗ − 𝑉 .

Base case 𝑙 = 1: note that since the set A𝑁 contains only a singleton according to Equation
(2.15), without loss of generality, assume that we reduce the size of A𝑡 at 𝑡 = 𝑁 − 1, that is, in
the Second To the Last Step (STLS) of the backward induction. Let 𝛼 ∗

𝑁−1(𝑠) be the 𝑠th entry of the
𝛼-vector that we removed from A𝑁−1 but is used to compute 𝑉 ∗ in the exact solution, and �̂�𝑁−1(𝑠)
be the value that is used to compute 𝑉 . By construction, we have ∑

𝑠∈𝑆
|𝛼 ∗
𝑁−1(𝑠) − �̂�𝑁−1(𝑠)| ≤ 𝑚𝑣 . This

implies that |𝛼 ∗
𝑁−1(𝑠) − �̂�𝑁−1(𝑠)| ≤ 𝑚𝑣 ∀𝑠. Recall that by Equation (2.19), at time 𝑡 equals to 𝑁 − 2,

any element inside A 𝑎𝑁−2,𝑜𝑁−1
𝑁−2 has the following form:

𝜏 (𝛼𝑁−1, 𝑎𝑁−2, 𝑜𝑁−1)(𝑠) =
𝑟(𝑎𝑁−2, 𝑠)

|𝑂|
+∑

𝑠′∈𝑆
𝛼𝑁−1(𝑠′)𝑤(𝑜𝑁−1|𝑠′, 𝑎)(𝑠′|𝑠, 𝑎𝑁−2),

where 𝑟(𝑎𝑁−2,𝑠)
|𝑂| is a model specific constant, and 𝛼𝑁−1 is some vector inside A𝑁−1. Let 𝛼 ∗,𝑎

𝑁−2, �̂�𝑎𝑁−2 ∈
A 𝑎

𝑁−2 be the 𝛼-vectors that are used to compute 𝑉 ∗ and 𝑉 , respectively, in the set A 𝑎
𝑁−2 at time

𝑁 − 2. Let Â𝑁−1 denote the set of 𝛼-vectors that we obtained after applying Algorithm 7 to the
set A𝑁−1. Thus, we have 𝛼 ∗,𝑎

𝑁−2 ∉ Â𝑁−1 and �̂�𝑎𝑁−2 ∈ Â𝑁−1. By Algorithm 1, 𝛼 ∗,𝑎
𝑁−2 and �̂�𝑎𝑁−2 are

obtained by some summing over the set of all possible observations over 𝜏 (𝛼𝑁−1, 𝑎𝑁−2, 𝑜𝑁−1), for
some 𝛼-vectors 𝛼𝑁−1 ∈ 𝑁−1. Abusing the notation a bit, let {𝛼 ∗

𝑥𝑖}𝑖 and {�̂�𝑦𝑖}𝑖 denote two sequences
of 𝛼-vectors inside the set A𝑁−1 and Â𝑁−1, respectively, where the index 𝑖 corresponds to some
observation 𝑜𝑖 . (Note that 𝛼 ∗

𝑥𝑖 could equal 𝛼 ∗
𝑥𝑗 for 𝑖 ≠ 𝑗.) In particular, those two sequences of

𝛼-vectors were used to generated 𝛼 ∗,𝑎
𝑁−2, and �̂�𝑎𝑁−2 respectively, i.e., 𝛼 ∗,𝑎

𝑁−2(𝑠) = ∑|𝑂|
𝑖=1 𝜏 (𝛼 ∗

𝑥𝑖 , 𝑎, 𝑜𝑖)(𝑠)
and �̂�𝑎𝑁−2(𝑠) = ∑|𝑂|

𝑖=1 𝜏 (�̂�𝑦𝑖 , 𝑎, 𝑜𝑖)(𝑠). Because 0 ≤ 𝑤(𝑜|𝑠′, 𝑎),(𝑠′|𝑠, 𝑎) ≤ 1, ∑
𝑠′∈𝑆

(𝑠′|𝑠, 𝑎) = 1, and
|𝑂|
∑
𝑖=1
𝑤(𝑜𝑖 |𝑠′, 𝑎) = 1, we can bound the absolute difference between 𝛼 ∗,𝑎

𝑁−2(𝑠) and �̂�𝑎𝑁−2(𝑠) as follows:

||𝛼
∗,𝑎
𝑁−2(𝑠) − �̂�

𝑎
𝑁−2(𝑠)|| =

|||||

|𝑂|

∑
𝑖=1

∑
𝑠′∈𝑆

𝛼 ∗
𝑥𝑖 (𝑠

′)(𝑠′|𝑠, 𝑎)𝑤(𝑜𝑖 |𝑠′, 𝑎) −
|𝑂|

∑
𝑖=1

∑
𝑠′∈𝑆

�̂�𝑦𝑖 (𝑠
′)(𝑠′|𝑠, 𝑎)𝑤(𝑜𝑖 |𝑠′, 𝑎)

|||||

=
|||||
∑
𝑠′∈𝑆

|𝑂|

∑
𝑖=1

[𝛼 ∗
𝑥𝑖 (𝑠

′) − �̂�𝑦𝑖 (𝑠
′)]𝑤(𝑜𝑖 |𝑠′, 𝑎)(𝑠′|𝑠, 𝑎)

|||||

≤ ∑
𝑠′∈𝑆

|𝑂|

∑
𝑖=1

||𝛼
∗
𝑥𝑖 (𝑠

′) − �̂�𝑦𝑖 (𝑠
′)||𝑤(𝑜𝑖 |𝑠

′, 𝑎)(𝑠′|𝑠, 𝑎)

≤ ∑
𝑠′∈𝑆

|𝑂|

∑
𝑖=1

𝑚𝑣𝑤(𝑜𝑖 |𝑠′, 𝑎)(𝑠′|𝑠, 𝑎) = 𝑚𝑣 .
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So far, we have shown that |𝛼 ∗,𝑎
𝑁−2(𝑠) − �̂�𝑎𝑁−2(𝑠)| ≤ 𝑚𝑣 ∀𝑠 given a fixed action 𝑎. Now let 𝑎∗𝑡 and �̂�𝑡

be the optimal action that is chosen at time 𝑡 in our exact solution and approximate solution,
respectively.

Case I 𝑎∗𝑡 = �̂�𝑡 ∀𝑡 ∈ {𝑁 − 3, ..., 1}: because 𝑎∗𝑁−1 = �̂�𝑁−1, we have |𝛼 ∗
𝑁−2 − �̂�𝑁−2| ≤ 𝑚𝑣 . Applying

the same argument inductively, we can easily show that ||𝛼
∗,𝑎
𝑡 (𝑠) − �̂�𝑎𝑡 (𝑠)|| ≤ 𝑚𝑣 for all 𝑡 , and this

implies that

𝑉 ∗ − 𝑉 = ∑
𝑠∈𝑆

𝛼 ∗
1(𝑠)𝛽0(𝑠) −∑

𝑠∈𝑆
�̂�1(𝑠)𝛽0(𝑠) ≤ ∑

𝑠∈𝑆
|𝛼 ∗

1(𝑠) − �̂�1(𝑠)|𝛽0(𝑠) ≤ 𝑚𝑣 ,

where 𝛽0(𝑠) is the initial belief at state 𝑠 with ∑𝑠∈𝑆 𝛽0(𝑠) = 1.
Case II 𝑎∗𝑡 ≠ �̂�𝑡 for some 𝑡 ∈ {𝑁 − 3, ..., 1}: recall that during the reduction process, our heuristic

algorithm only removed some elements in A𝑁−1 (since 𝑙 = 1). This implies that the set of feasible
actions at every time step 𝑡 ∈ {𝑁 − 3, ..., 1} remains the same. Thus, the action 𝑎∗𝑡 is feasible at
every time step 𝑡 also for our heuristic algorithm. If the action 𝑎∗𝑡 is indeed picked by our heuristic
algorithm, then �̂�𝑡 = 𝑎∗𝑡 . By case I, we have our desired results, i.e., 𝑉 ∗ − 𝑉 ≤ 𝑚𝑣 . If another action
is chosen instead in our heuristic algorithm, i.e., �̂�𝑡 ≠ 𝑎∗𝑡 , then let 𝑉 be the value of the policy
where at each time 𝑡 , we are forced to pick the same action as 𝑎∗𝑡 . Because 𝑉 is the optimal solution
in our heuristic algorithm, we must have 𝑉 ≥ 𝑉 . Using the proof from Case I, this implies that
𝑉 ∗ − 𝑉 ≤ 𝑚𝑣 .

Induction step: Assume that 𝑉 ∗ − 𝑉 ≤ 𝑚𝑣 × 𝑙 is valid for 𝑙 = 𝑖; show that the inequality holds
when 𝑙 = 𝑖 + 1. From the base case, we observe that our worst case error bound holds constant
if no additional reduction in the size of A𝑡 for 𝑡 = 1, ..., 𝑁 − 2 is performed. Thus without loss of
generality, we can assume that the horizon of our POMDP problem has length 𝑖 + 1. However,
repeating the same argument as in the base case, we obtain that the worst case error increases by
an additional factor of 𝑚𝑣 .

To show that 𝑉 ∗ −𝑉 ≤ 𝑉 ∗ −𝑉 , we first claim that when the observation 𝑜 is always observable,
|A 𝑎,𝑜

𝑡 | = 1 (we prove this below). When |A 𝑎,𝑜
𝑡 | = 1, there is no need to reduce the size of

A 𝑎,𝑜
𝑡 . Thus, invoking reduce(A 𝑎,𝑜

𝑡 , 𝑚𝑣 , |𝑂𝑝 |) when 𝑜 is observable does not produce additional
error. Consequently, the error on 𝑉 is only induced by invoking reduce(A 𝑎,𝑜

𝑡 , 𝑚𝑣 , |𝑂𝑝 |) for these
sets where 𝑜 is partially observable. More specifically, recall that the construction of algorithm
reduce(A 𝑎,𝑜

𝑡 , 𝑚𝑣 , |𝑂𝑝 |) implies that |||𝜏 (𝛼
∗
𝑥𝑖 , 𝑎, 𝑜𝑖) (𝑠) − 𝜏 (�̂�𝑦𝑖 , 𝑎, 𝑜𝑖) (𝑠)

||| ≤ 2𝑑𝑣 = 𝑚𝑣
𝑂𝑝

for all states 𝑠.
Thus, indeed in the base case above, at time 𝑡 , we have

||𝛼
∗,𝑎
𝑁−2(𝑠) − �̂�

𝑎
𝑁−2(𝑠)|| =

|||||

|𝑂|

∑
𝑖=1

(𝜏 (𝛼 ∗
𝑥𝑖 , 𝑎, 𝑜𝑖)(𝑠) − 𝜏 (�̂�𝑦𝑖 , 𝑎, 𝑜𝑖)(𝑠))

|||||
=
||||||

|𝑂𝑝 |

∑
𝑖=1

(𝜏 (𝛼 ∗
𝑥𝑖 , 𝑎, 𝑜𝑝𝑖 )(𝑠) − 𝜏 (�̂�𝑦𝑖 , 𝑎, 𝑜𝑝𝑖 )(𝑠))

||||||

≤
|𝑂𝑝 |

∑
𝑖=1

|||𝜏 (𝛼
∗
𝑥𝑖 , 𝑎, 𝑜𝑝𝑖) (𝑠) − 𝜏 (�̂�𝑦𝑖 , 𝑎, 𝑜𝑝𝑖) (𝑠)

||| ≤
𝑚𝑣

|𝑂𝑝 |
× |𝑂𝑝 | = 𝑚𝑣 .
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Following the same induction above, we obtain the desired result.
To show that |A 𝑎,𝑜

𝑡 | = 1 when 𝑜 is observable, we notice 𝑤(𝑜|𝑠′, 𝑎) is either 1 or 0 for A 𝑎,𝑜
𝑡 . In

the case where 𝑤(𝑜|𝑠′, 𝑎) = 0 when fixing 𝑎, 𝑜, then A 𝑎,𝑜
𝑡 = {0⃗}; in the case where 𝑤(𝑜|𝑠′, 𝑎) = 1,

we are simply back to the MDP case where the optimal value of the state is unique. ■

2.16 Transition probability matrix

Recall the transition probability matrix from § 2.6.2:

𝑎
𝑡 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑓 𝑟𝑜𝑚/𝑡𝑜 Dx NC C1 C2 Re OD Dt Abs

Dx 𝑥𝐷𝑥 𝑛𝑐𝐷𝑥 𝑍1 𝑐2𝐷𝑥 0 𝑜𝑑𝐷𝑥 𝑑𝐷𝑥 𝑤
NC 0 𝑛𝑐𝑁𝐶 𝑍2 0 0 0 𝑑𝑁𝐶 𝑤
C1 0 𝑛𝑐𝐶1 𝑍3 𝑐2𝐶1 𝑒𝐶1 𝑜𝑑𝐶1 𝑑𝐶1 𝑤
C2 0 0 𝑍4 𝑐2𝐶2 𝑒𝐶2 𝑜𝑑𝐶2 𝑑𝐶2 𝑤
Re 𝑥𝑅𝑒 0 𝑍5 𝑐2𝑅𝑒 𝑒𝑅𝑒 𝑜𝑑𝑅𝑒 𝑑𝑅𝑒 𝑤
OD 1 − 𝑑𝑂𝐷 0 0 0 0 0 𝑑𝑂𝐷 0
Dt 0 0 0 0 0 0 0 1
Abs 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝑍1 = 1 − 𝑥𝐷𝑥 − 𝑛𝑐𝐷𝑥 − 𝑐2𝐷𝑥 − 𝑜𝑑𝐷𝑥 − 𝑑𝐷𝑥 −𝑤, 𝑍2 = 1 − 𝑛𝑐𝑁𝐶 − 𝑑𝑁𝐶 −𝑤, 𝑍3 = 1 − 𝑛𝑐𝐶1 − 𝑐2𝐶1 −
𝑒𝐶1 − 𝑜𝑑𝐶1 − 𝑑𝐶1 − 𝑤, 𝑍4 = 1 − 𝑐2𝐶2 − 𝑒𝐶2 − 𝑜𝑑𝐶2 − 𝑑𝐶2 − 𝑤, 𝑍5 = 1 − 𝑥𝑅𝑒 − 𝑐2𝑅𝑒 − 𝑒𝑅𝑒 − 𝑜𝑑𝑅𝑒 − 𝑑𝑅𝑒 − 𝑤.

Define: Nod: the number of overdoses that maps non-negative integer inputs to either 0 or 1.
Nr: the number of relapses that maps non-negative integer inputs to 1, 2, 3, 4, 5, or 6.
Tu: time since last use of drugs, measured in days.
TA: treatment adherence takes value 1(≥90%), 2(70%-90%), 3(<70%).
Let DL be the length of the detoxification program the patient chooses.

Variable Action Formula/Function of
𝑥𝐷𝑥 action independent 1 − 1

DL

𝑛𝑐𝐷𝑥 action independent (1 − 𝑥𝐷𝑥 − 𝑜𝑑𝐷𝑥 − 𝑑𝐷𝑥 − 𝑤) × 0.1
𝑐2𝐷𝑥 action independent (1 − 𝑥𝐷𝑥 − 𝑜𝑑𝐷𝑥 − 𝑑𝐷𝑥 − 𝑤) × 0.7

𝑜𝑑𝐷𝑥 action independent
if 𝑁𝑜𝑑 > 0: 0.524/2-year (Wines et al. 2007)
if 𝑁𝑜𝑑 = 0: 0.11/2-year (Wines et al. 2007)

𝑑𝐷𝑥 action independent
if 𝑁𝑟 = 0 ∶ 0.001/𝐷𝐿 (Krebs et al. 2017)
if 𝑁𝑟 > 0: 0.001
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𝑤 action independent
0.02/year (Morral et al. (1997),
O’Toole et al. (2006),
TERMORSHUIZEN2005231)

𝑛𝑐𝑁𝐶 action dependent -
𝑑𝑁𝐶 action independent 0.005/263-day
𝑛𝑐𝐶1 action dependent -
𝑐2𝐶1 action dependent -

𝑒𝐶1, 𝑒𝐶2 action dependent

one year relapse rate of 72%
is obtained from (Chalana et al. 2016)
the effect of treatment adherence
is estimated from (Nosyk et al. 2009)

𝑜𝑑𝐶1 action dependent estimated from (Wines et al. 2007)
𝑑𝐶1 action independent 0.008/263-day
𝑐2𝐶2 action dependent -
𝑜𝑑𝐶2 action dependent estimated from (Wines et al. 2007)
𝑑𝐶2 action independent 0.01/263-day

𝑥𝑅𝑒

NT
M, B, IN, C
M, B, C

0.18/month
TA 1: 0.4/month;
TA 2: 0.3/month; TA 3: 0.2/month

E
NT (Zarkin et al. 2005)
M, B, IN, C (Zarkin et al. 2005)
M, B, C (Zarkin et al. 2005)

0.007/month
TA 1: 0.018/month;
TA 2:0.016/month; TA 3: 0.0144/month

𝑐2𝑅𝑒

NT (Zarkin et al. 2005)
M, B, IN, C (Zarkin et al. 2005)
M, B, C (Zarkin et al. 2005)

0.004/month
TA 1: 0.012/month;
TA 2:0.01/month; TA 3:0.0084/month

𝑜𝑑𝑅𝑒 action independent (Krebs et al. 2017) 0.001 × 𝑁𝑜𝑑 + 0.009
𝑑𝑅𝑒 action independent (Krebs et al. 2017) 0.021/263-day

𝑑𝑂𝐷

NT (Kelty and Hulse 2017), C
M (Kelty and Hulse 2017)
M (Kelty and Hulse 2017), IN
B (Kelty and Hulse 2017), IN
B (Kelty and Hulse 2017)

if 𝑇𝑢 ≥ 29 + DL: 0.158 + 0.01 × 𝑁𝑜𝑑
if 𝑇𝑢 < 29 + DL: 0.25+ 0.01 × 𝑁𝑜𝑑
if 𝑇𝑢 ≥ 29 + DL: 0.11+ 0.01 × 𝑁𝑜𝑑
if 𝑇𝑢 < 29 + DL ∶ 0.15 + 0.01 × 𝑁𝑜𝑑
if 𝑇𝑢 ≥ 29 + DL ∶ 0.09 + 0.01 × 𝑁𝑜𝑑
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Table 2.6: The description of the parameters in the transition probability matrix. -: assumptions
that we made to fill out the transition probability matrices.

2.17 Additional Figures
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Figure 2.7: Additional Figures for Scenario 2 where the patient reacts to treatment B better than
M but with a different magnitude than the average treatment dynamics. Top row: budget 15K.
Bottom row: budget 21K. Left column: medium TA. Middle column: high TA. Right column:
low TA. The optimal 𝜃 ’s, from top left to bottom right are approximately [0.294, 0.234, 0.201,
0.185, 0.162, 0.154, 0.158], [0.534, 0.421, 0.429], [0.126, 0.058, 0.058], [0.300, 0.272, 0.256, 0.239,
0.214, 0.202, 0.216], [0.551, 0.481, 0.483], and [0.146, 0.061, 0.061]; The expected QALDs received
from treatments (excluding the terminal reward) are [284.91, 293.96, 294.88, 296.21, 296.32, 296.14,
298.78], [313.46, 315.26, 315.84], [229.57, 225.76, 237.29], [312.11, 318.27, 318.70, 318.72, 318.72,
318.80, 321.43], [320.14, 322.28, 322.86], and [297.28, 304.21, 314.31].
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Figure 2.8: Reduced urine tests the frequency of urine tests in Cases 2a–2d is reduced to one
third of the original frequency, and we remove urine tests in Case 3. In all subfigures, the patient
has medium TA. Top row: Scenario 1. Top left: 9K budget. Top right: 15K budget. Middle left:
21K budget, Scenario 1. Middle right: 9K budget, Scenario 2. Bottom left: 15K budget, Scenario
2. Bottom right: 21K budget, Scenario 2. The optimal 𝜃 ’s, from top left to bottom right, are
approximately [0.052, 0.065, 0.054, 0.045, 0.038, 0.037, 0.040], [0.294, 0.187, 0.139, 0.125, 0.110, 0.103,
0.103], [0.300, 0.222, 0.181, 0.165, 0.146, 0.138, 0.141], [0.052, 0.039, 0.036, 0.033, 0.026, 0.029, 0.029],
[0.294, 0.234, 0.201, 0.185, 0.162, 0.158, 0.158], and [0.300, 0.274, 0.256, 0.239, 0.214, 0.208, 0.216].
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Figure 2.9: Additional figures for sensitivity analysis. Left: 9K budget, Scenario 1. Right: 15K
budget, Scenario 2. the frequency of urine tests in Cases 2a–2d is reduced to one third of the
original frequency, and we remove urine tests in Case 3. In both subfigures, the patient has low
TA. Left: generate with a different matrix perturbation magnitude than that in Fig. 2.4(top right);
right: generate with the same matrix perturbation as in Fig. 2.8. The optimal 𝜃 ’s, from left to right,
are approximately [121.27, 130.31, 132.77, 129.19, 113.58, 132.38, 139.45] and [0.126, 0.081, 0.069,
0.065, 0.060, 0.058, 0.059]; the expected QALDs received from treatments (excluding the terminal
reward) are [0.099, 0.065, 0.061, 0.061, 0.060, 0.056, 0.056] and [229.57, 232.98, 229.99, 212.17, 216.07,
229.55, 237.29].

2.18 Case Extension—A POMDP Formulation for Survey De-

vices

In this case, in addition to urine test results, we now have access to daily self-reports on cravings.
However, a challenge arises because patients may not tell the truth all the time. In particular, a
patient may provide true, noisy, or falsified information. We assume that monetary incentives
are provided to encourage patients to respond to the surveys over 80% of the time (Serre et al.
2012). 19 We have the same setup for treatment dynamics, 𝑎

𝑡 , and belief update, 𝛽𝑡 , as in Case
1, but a different observation matrix,𝑊 . Notice that if a patient tells the truth all the time, the
case will become equivalent to Case 4; if a patient provides only noisy information, this case is
equivalent to Case 1. Consequently, we are interested only in the cases where patients provide
falsified information or change their behaviors throughout the program.

To classify a patient’s behavior, we first map the numbers 1 to 4 to the partially observable
19Any missing entries in the self-report of a patient can be regarded as either noisy or falsified information as

needed in our case.
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states by a function 𝑛: 𝑛(NC) = 1, 𝑛(C1) = 2, 𝑛(C2) = 3, and 𝑛(Re) = 4. We then find the worst
health state (𝑠𝑤) that a patient reported up to three days before the urine test, and compare it with
the test result. If 𝑠𝑤 matches the urine test, we say the patient is telling the truth. If 𝑠𝑤 = Re, but we
have a negative urine test result, we say the patient is providing noisy information. If 𝑠𝑤 ≠ Re, but
the urine test result is positive, we say the patient is providing falsified information.20 In particular,
we define the distance 𝑑(𝑠𝑤 ,Re) = 4 − 𝑛(𝑠𝑤). For example, if 𝑠𝑤 = NC, then 𝑑(NC,Re) = 4 − 1 = 3.
We also maintain an average distance and map the patient self-report state to the two closest
states21 accordingly: if the input label is NC and the average distance is 2.3, then we will map NC
to C2 with a probability of 0.7 and to Re with a probability of 0.3.

We use the tuple (𝑙𝑡 , 𝑙𝑟 , 𝑙𝑠) to keep track of the likelihood that a patient is telling the truth,
providing noisy reports, or giving falsified information, where 𝑙𝑡 + 𝑙𝑟 + 𝑙𝑠 = 1. After plugging in our
estimated transition probability matrix in Case 1, 1 − 𝑛𝑐𝑢𝑡+ > 0.99 with 𝑛𝑐𝑢𝑡+ defined in Case 1, so
we assume that Re is fully observable in this case. The set of observations thus becomes patients’
self-reports, and the observation matrix is 𝑊 = 𝑙𝑡 ×𝑊𝑇 + 𝑙𝑟 ×𝑊𝑅 + 𝑙𝑠 ×𝑊𝑆 , where 𝑊𝑇 = 𝐼8×8 is
the observation matrix when a patient is completely truthful. 𝑊𝑅 and 𝑊𝑆 are the observation
matrices when a patient is providing random information and strategic information, respectively,
and they are defined as follows:

𝑊𝑅 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑠/𝑜 Dx NC C1 C2 Re OD Dt Abs

Dx 1 0 0 0 0 0 0 0
NC 0 1/3 1/3 1/3 0 0 0 0
C1 0 1/3 1/3 1/3 0 0 0 0
C2 0 1/3 1/3 1/3 0 0 0 0
Re 0 0 0 0 1 0 0 0
OD 0 0 0 0 0 1 0 0
Dt 0 0 0 0 0 0 1 0
Abs 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let 𝑑 be the average distance, ⌊𝑑⌋ be the integer part of d, and {𝑑} = 𝑑 − ⌊𝑑⌋ be the fractional part

20It could also be the case that the patient is providing noisy information. However, this scenario will be captured
by parameter 𝑙𝑡 below.

21If the average distance is an integer, we map it to only one label.
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of d. Then

𝑊𝑆(𝑑 |⌊𝑑⌋ = 1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑠/𝑜 Dx NC C1 C2 Re OD Dt Abs

Dx 1 0 0 0 0 0 0 0
NC 0 1 0 0 0 0 0 0
C1 0 1 0 0 0 0 0 0
C2 0 {𝑑} 1 − {𝑑} 0 0 0 0 0
Re 0 0 0 0 1 0 0 0
OD 0 0 0 0 0 1 0 0
Dt 0 0 0 0 0 0 1 0
Abs 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Similarly, we can enumerate the cases where ⌊𝑑⌋ = 0, 2, 3:

𝑊𝑆(𝑑 |⌊𝑑⌋ = 0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑠/𝑜 Dx NC C1 C2 Re OD Dt Abs

Dx 1 0 0 0 0 0 0 0
NC 0 1 0 0 0 0 0 0
C1 0 {𝑑} 1 − {𝑑} 0 0 0 0 0
C2 0 0 {𝑑} 1 − {𝑑} 0 0 0 0
Re 0 0 0 0 1 0 0 0
OD 0 0 0 0 0 1 0 0
Dt 0 0 0 0 0 0 1 0
Abs 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝑊𝑆(𝑑 |⌊𝑑⌋ = 2) = 𝑊𝑆(𝑑 |⌊𝑑⌋ = 3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑠/𝑜 Dx NC C1 C2 Re OD Dt Abs

Dx 1 0 0 0 0 0 0 0
NC 0 1 0 0 0 0 0 0
C1 0 1 0 0 0 0 0 0
C2 0 1 0 0 0 0 0 0
Re 0 0 0 0 1 0 0 0
OD 0 0 0 0 0 1 0 0
Dt 0 0 0 0 0 0 1 0
Abs 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To perform the belief update, we first calculate the observation matrix𝑊 = 𝑙𝑡 ×𝑊𝑇 + 𝑙𝑟 ×𝑊𝑅 +
𝑙𝑠 ×𝑊𝑆 , and then follow the same procedures as in Case 1.
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Chapter 3

Causal Inference with Selectively
Deconfounded Data

3.1 Introduction

Say that we wished to determine whether sleep deprivation affects the likelihood of developing
Alzheimer’s disease. While we might easily observe that across a large population, sleep depri-
vation is highly correlated with Alzheimer’s, this fact alone is not sufficient to establish whether
sleep deprivation actually causes Alzheimer’s. This is because the two variables might share a
common cause (a confounder) accounting for the observed association, e.g., a genetic mutation
that causes both sleep disorders and Alzheimer’s.

The field of causal inference is concerned with precisely this type of problem. Generally, we
wish to estimate the effect of assigning a given treatment (e.g., sleep deprivation) on a given outcome

(e.g., Alzheimer’s disease) in the presence of possible confounders (e.g., a genetic mutation).1 One
of the most fundamental problems in causal inference is to estimate the average treatment effect

(ATE), i.e., the difference in the average outcomes that would be observed if everyone in the
population did (versus did not) receive the treatment. The challenge of estimating the ATE in spite
of unobserved confounding has been formalized mathematically (Pearl 1995, Rubin 1974), making
clear that, in general, no amount of observational data is sufficient to identify the ATE. Specifically,
there can (and typically do) exist multiple models consistent with the joint distribution over the
observed variables that suggest different values of the ATE.

To bypass the challenge posed by confounding, research in causal inference has produced a
variety of methods that tend to fall into two broad groups. The first group consists of performing

1Note here that in the technical sense, any variable upon which we could conceivably intervene and thereby
influence the outcome can be called a treatment.
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experiments on members of the population of interest, typically by assigning treatments randomly.
The advantage of such randomized controlled trials (RCTs) is that they can eliminate unobserved
confounding. However, while RCTs are often regarded as the gold standard for estimating causal
effects, active experimentation is often infeasible, e.g., for ethical or financial reasons. The
second group consists of leveraging domain knowledge to impose structural assumptions that
render the parameter of interest identifiable. For example, if we assume that a sufficient set of
confounders are observed (e.g., satisfying the backdoor criterion (Pearl 1995)), then under some
mild statistical assumptions, the ATE can be estimated from observational data. Alternatively, even
with unobserved confounding, other structural assumptions (e.g., valid instrumental variables or
mediators) can render a causal effect estimable from observational data.

All of this is to say that the academic literature typically addresses the setting in which the
confounders are either observed for all samples or for none. However, in many applications, it may
be possible to revisit individuals represented in the dataset to retrospectively observe additional
variables, such as the values of postulated confounders. For example, genetic information is stable
over time, and thus when a genetic mutation is suspected to be a confounder, we might contact
members of a study retrospectively to perform an additional test. Moreover, note that, as with
this genetic example, even when the revelation of a variable is feasible it may nevertheless be
expensive. In such settings, while it might be prohibitively expensive to reveal a confounder’s
value for every sample, we might still hope to reveal its value for a selected subset of our data.
Consider the following examples:

1. Drug Repositioning: Here, drugs that have already been approved for a given disease
are applied to treat a separate disease. Since these drugs are already proven to be safe,
repositioning can be done in half the time and for a tenth of the cost when compared with
the typical drug discovery process. To generate candidates for repositioning, correlations
between drugs and diseases can easily be mined from health records. However, these
relationships could plausibly be confounded by other drugs, which could both (a) affect the
target disease and (b) trigger a side effect causing the candidate drug to be taken. While
existing longitudinal studies aimed at assessing a drug’s efficacy for a given disease A might
have taken care to collect data on suspected confounders that might influence both treatment
and disease A, when evaluating the drug as a candidate to treat disease B, we might need to
reveal the value of other confounders. Moreover, due to the high costs of contacting patients
and performing additional tests, such data collection efforts would be costly. Even for other
known confounders, due to the digital divide of health records across disconnected systems,
an expensive, manual effort, might be needed to collect the required data.

2. Genetic Factors for Disease: In the process of establishing the cause of different diseases,
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genetic mutations are often implicated as potential confounders, such as in our initial
motivating example for Alzheimer’s. Due to the cost of DNA sequencing, it might only be
possible to observe the genetic confounder for a subset of patients.

Succinctly, this paper addresses ATE estimation with selectively deconfounded data. We assume
that we are given a large set of confounded data. At the outset only the treatment and outcomes
are observed, but we have the ability to deconfound any of these samples, i.e., to reveal the sample’s
confounder. Naively, one could deconfound an arbitrary set of samples, and estimate the ATE
with standard methods using only the subset of data that was deconfounded. However, this would
discard a substantial amount of data. Thus motivated, we ask the following questions:

1. What is the value of confounded data? Specifically, howmuch can we improve ATE estimation
by incorporating confounded data, relative to approaches that rely on deconfounded data
alone?

2. What is the additional value of selective deconfounding? Specifically, howmuch can we further
improve ATE estimation by intelligently selecting which confounded data to deconfound
based upon the (observed) values of the treatments and outcomes?

To our knowledge, this is the first paper that focuses on the case where ample (cheaply-acquired)
confounded data is available, andwemay select only a limited number of samples to (at considerable
cost) deconfound.2

3.1.1 Our Contributions

We address these questions for a standard confounding graph where the treatment and outcome
are binary, and the confounder is categorical. More generally, we introduce a class of optimization
problems that we dub selective deconfounding, where the values of the confounders are initially
unobserved and can be subsequently revealed. Concretely, our ultimate goal is to find sample-

efficient selection policies – policies for deciding which samples to deconfound in order to estimate
the ATE most accurately. Our contributions are threefold:

1. The Value of Confounded Data (§ 3.3): We show (in Theorem 5) that a simple method for
incorporating confounded data achieves a constant-factor improvement in ATE estimation error
over using deconfounded data alone. Loosely, the reason for this is the following: in our non-
parametric causal inference model, estimating the ATE boils down to estimating the parameters of

2Throughout this paper, we implicitly assume that the confounded data was sampled i.i.d. from the target population
of interest (but that our policy for selecting data to deconfound need not be).
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the data-generating distribution. The inclusion of (infinite) confounded data reduces the number of
free parameters to be estimated, improving our estimates of the remaining parameters. Moreover,
since the causal functional (the expression for the ATE) is non-linear in the parameters to be
estimated, the error the estimated ATE can be much greater than the individual errors in parameter
estimates. Thus, our improvements in parameter estimates yield greater benefits in estimating
treatment effects. For binary confounders, our numerical results show that on average, over
problem instances selected uniformly on the parameter simplex, our method achieves roughly a
2.5 factor reduction in ATE estimation error.

2. The Additional Value of Selective Deconfounding (§ 3.4): We show that selective
deconfounding can in fact reduce ATE estimation error further, and we propose our own policy
for doing so. We first establish (in Proposition 8) that there cannot exist an optimal policy for
selective deconfounding, in the sense that no policy is universally optimal for all data-generating
distributions. Thus, instead we compare our proposed policy against two benchmark policies
(which we call “A” and “B” just for now), along different metrics. Assuming access to infinite
confounded data, we find that:

1. With respect to the upper bounds on each policy’s sample complexity that we show (The-
orems 6 and 7), the guarantee for our proposed policy (a) entirely dominates benchmark
policy A, and (b) is independent of (and therefore robust to) the observed distribution over
treatment and outcome.

2. With respect to the (upper bound on) sample complexity of each policy under its worst-
case data-generating distribution (Corollary 3.4), our proposed policy (a) dominates both
benchmark policies, and (b) is independent (and again robust to) the entire data-generating
distribution.

3. Among all estimators, we show (in Theorem 8) that our proposed policy requires no more
than twice as many samples as benchmark policy B in the worst case, whereas benchmark
policy B may require infinitely more samples as our policy.

We extend our work to the scenario where only a finite amount of confounded data is present,
demonstrating that our qualitative insights continue to apply.

3. Experimental Evidence (§ 3.5): Our synthetic experiments suggest that our proposed
policy dominates both benchmark policies when averaging over the unknown data-generating
distributions. Moreover, our experiments also characterize those data-generating distributions
most favorable/unfavorable for our policy. We validate our methods on COSMIC (Tate et al. 2019,
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Cosmic 2019), a real-world dataset containing cancer types, genetic mutations, and other patient
features, showing that the practical benefits of our proposed sampling policy. We show that on
average, to achieve an ATE estimation error of 0.006, our proposed selection policy reduces the
number of deconfounded samples by a factor of up to 10 when compared with the two benchmark
policies.

3.1.2 Related Work

Causal Inference Without Unobserved Confounders: Causal inference has been studied
thoroughly under the ignorability assumption, i.e., no unobserved confounding (Neyman 1923,
Rubin 1974, Holland 1986). Some approaches for estimating the ATE under ignorability include the
backdoor adjustment (Pearl 1995, Huang and Valtorta 2006), using either outcome regression (Ru-
bin 1974), inverse propensity score weighting (Rosenbaum and Rubin 1983, Hirano et al. 2003,
McCaffrey et al. 2004), matching (Dehejia and Wahba 2002), or the use of instrumental variables
when causal structural models are assumed (Sargan 1958, Angrist et al. 1996). Some related papers
look to combine various sources of information, for instance from RCTs and observational data
to estimate the ATE (Stuart et al. 2011, Hartman et al. 2015, Rosenman et al. 2018). Other papers
leverage machine learning techniques, such as random forests, for estimating causal effects (Alaa
and van der Schaar 2017, Wager and Athey 2018). Other techniques include using time-series data
to estimate the ATE (Athey et al. 2016), and targeted learning (Van der Laan and Rose 2011). In the
operations research and management science literature, several optimization problems have been
proposed. Nikolaev et al. (2013) propose a new objective for matching such that the bias of the
estimated treatment effect is minimized. Under resource constraints, Gupta et al. (2020) propose
a new method for selecting individuals for treatment intervention to maximize the worst-case
aggregate intervention effectiveness.

Under the ignorability assumption, missing data has also been thoroughly studied. Under the
assumption that either the missing mechanism or the distribution of the complete data is correctly
specified, doubly robust estimators (the estimators that remain consistent under this assumption)
have been proposed when data is missing at random and when the missing probabilities are either
known or can be parametrized (Robins et al. 1994, Hannah et al. 2010). Doubly-robust estimators
have also been studied when outcome is missing not at random (Rotnitzky et al. 1998, Scharfstein
et al. 1999), and been proposed for sequential (Robins 2000) and longitudinal (Bang and Robins
2005) missing data.

Causal Inference With Unobserved Confounders: Since an unaccounted for unobserved
confounder can invalidate an estimate of the ATE, three lines of work attempt to address/remove
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Obs./exp. data Confounders Guarantee Active

Robins et al. (1994) Observational Missing at random Asymptotic No
Kallus et al. (2018) Both Unconfounded exp. data Asymptotic No
This work Observational Selectively deconfounded PAC Yes

Table 3.1: Literature that are closely related to our paper

the ignorability assumption: one using observational data alone, another by combining confounded
observational data with experimental (and thus unconfounded) data, and finally by conducting
sensitivity analysis.

The first line includes papers using proxies (Miao et al. 2018) and mediators (Pearl 1995). Kuroki
and Pearl (2014) identify graphical structures under which causal effect can be identified. Miao et al.
(2018) propose to use two different types of proxies to recover causal effects with one unobserved
confounder. Shi et al. (2018) extend the work by Miao et al. (2018) to multiple confounders.
However, both methods require knowledge of proxy categories a priori and are not robust under
misspecification of proxy categories. Louizos et al. (2017) use variational autoencoders to recover
the causal effect under the model where when conditioned on the unobserved confounders,
the proxies are independent of treatment and outcome. Pearl (1995) introduces the front-door
adjustment, a procedure whereby the causal effect can be expressed as a functional that concerns
only the (possibly confounded) treatment and outcome, and an (unconfounded) mediator that
transmits the entire effect. This procedure was further improved by Tian and Pearl (2002) and
Shpitser and Pearl (2006a,b).

The second line combines confounded observational and experimental data to estimate the
ATE. Bareinboim and Pearl (2013) propose to combine observational and experimental data under
distribution shift, learning the treatment effect from the experimental data and transporting it to
the confounded observational data to obtain a bias-free estimator for the causal effect. Recently,
Kallus et al. (2018) propose a two-step process to remove hidden confounding by incorporating
experimental data, relaxing the assumption that the confounded data and experimental data have
the same support region.

Finally, to better interpret the estimated ATE and to address the possibility of unobserved
confounders, a third line of the work aims to test the robustness of the ATE estimate via sensitivity
analysis. Note that this line of work does not address the existence of unobserved confounding,
but rather examines how the estimated ATE would changed under one additional (hypothetical)
confounder. These work include Cornfield et al. (1959), Rosenbaum (1987, 2002), Rosenbaum
et al. (2010), Rosenbaum (2011, 2014), Shen et al. (2011), VanderWeele and Ding (2017), Zhao et al.
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Figure 3.1: Causal graph with treatment 𝑇 , outcome 𝑌 , and confounder 𝑍

(2017), Miratrix et al. (2018). Fogarty and Small (2016) extend the analysis to multiple unobserved
confounders by enforcing all unmeasured confounders to have the same impact on the treatment
assignment probabilities.

Unlike most prior work, we (i) address confounded and deconfounded (but not experimental)
observational data, (ii) perform finite sample analysis to quantify the relative benefit of additional
confounded and deconfounded data towards improving our estimate of the average treatment
effect, and (iii) investigate sample-efficient policies for selective deconfounding.

3.2 Model and Estimator

We begin by introducing the process through which (we assume) the data is generated and
observed (Fig. 3.1). Let 𝑇 and 𝑌 be binary random variables representing the treatment and
outcome, respectively. The binary values can be taken, for example, as indicating whether a
particular treatment has been applied (in the case of 𝑇 ) and whether the outcome was “successful”
(in the case of 𝑌 ). We assume the existence of a (potential) confounder, denoted 𝑍 , that can take
up to 𝑘 categorical values. Although there only exists a single confounder in our model, because
the variable is categorical, the model subsumes scenarios with multiple categorical confounders.
We will expand on this assumption later on in this section.

Let ℙ𝑌 ,𝑇 ,𝑍 denote the joint distribution of the random vector (𝑌 , 𝑇 , 𝑍 ), the randomness corre-
sponding to draws from a given population. We will use similar subscripts to denote conditional
distributions (e.g., ℙ𝑌 |𝑇 ,𝑍 ) and marginal distributions (e.g., ℙ𝑍 ). Confounded data then consists
of i.i.d. draws from ℙ𝑌 ,𝑇 (marginalized over the confounder 𝑍 ), and deconfounded data consists
of i.i.d. draws from ℙ𝑌 ,𝑇 ,𝑍 . Thus, the confounded and deconfounded data are (𝑦, 𝑡) and (𝑦, 𝑡, 𝑧)
tuples, respectively. We use the term selective deconfounding to mean selecting a confounded data
point (𝑦, 𝑡), and revealing the value of its confounder 𝑧 – this corresponds to sampling 𝑧 from
ℙ𝑍 |𝑌 ,𝑇 (⋅|𝑦, 𝑡).

Our goal is to estimate the average treatment effect (ATE). Now there are a number of (equivalent)
formalizations of the ATE. One formalization follows the now-classical nomenclature established
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by Pearl (2000): let the so-called “do-conditional” expression ℙ(𝑌 = 𝑦 |do(𝑇 = 𝑡)) be defined as

ℙ(𝑌 = 𝑦 |do(𝑇 = 𝑡)) ∶= ∑
𝑧∈[𝑘]

ℙ𝑌 |𝑇 ,𝑍 (𝑦 |𝑡, 𝑧)ℙ𝑍 (𝑧).

Intuitively, ℙ(𝑌 = 𝑦 |do(𝑇 = 𝑡)) describes the probability of {𝑌 = 𝑦} when we “force” the treatment
to take value 𝑡 , regardless of what value it would have otherwise taken. For instance, in the
Alzheimer’s example, this corresponds to forcing an individual to sleep or not sleep.

The ATE then can be expressed, via the “back-door adjustment” (Pearl 1995), as

ATE(ℙ𝑌 ,𝑇 ,𝑍 ) ∶= ℙ(𝑌 = 1|do(𝑇 = 1)) − ℙ(𝑌 = 1|do(𝑇 = 0)) (3.1)

= ∑
𝑧∈[𝑘]

(ℙ𝑌 |𝑇 ,𝑍 (1|1, 𝑧) − ℙ𝑌 |𝑇 ,𝑍 (1|0, 𝑧))ℙ𝑍 (𝑧). (3.2)

In words, the ATE is the difference between the average outcome in the population were we
to always administer the treatment, and the average outcome were we to never administer the
treatment.

We make the following assumptions, all of which are by now standard in the causal inference
literature:3

Assumption 1. The following hold:

1. Ignorability [Rosenbaum and Rubin 1983]: 𝑌𝑡 ⊧𝑇 |𝑍 , where 𝑌𝑡 is the outcome that 𝑌 would

take if the treatment were 𝑡 .

2. Consistency [Robins 1986]: The observed outcome for an individual 𝑖 with treatment 𝑡 , is the
same as the one that we would observe if we were to assign treatment 𝑡 to individual 𝑖.

3. Positivity [Cole and Hernán 2008]: 0 < ℙ𝑇 |𝑍 (1|𝑧) < 1 for all 𝑧 such that ℙ𝑍 (𝑧) ≠ 0.

Recall our motivation – we cannot calculate the ATE from confounded data alone.4 Precisely,
even given an infinite amount of confounded data (which corresponds to knowing ℙ𝑌 ,𝑇 exactly),
there can exist multiple distributions ℙ𝑌 ,𝑇 ,𝑍 consistent with the confounded data, with different
values for ATE(ℙ𝑌 ,𝑇 ,𝑍 ). So given confounded data alone, the only available options are to collect
new deconfounded data, or selectively deconfound existing data.

3These assumptions are minimal: the ignorability assumption ensures the identifiability of the causal effect. The
consistency rule is so ubiquitous in causal inference as to be axiomatic at this point (Pearl 2010). Finally, positivity
ensures the estimability of the causal effect.

4We could if we intervene or make further assumptions on the structure of the causal graph, but these options are
often unavailable, as in our motivating applications.
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Aside: Model Generalizability: Our next step, in the coming subsection, will be to define
the estimator for the ATE that we will study. But before that, we pause in this (optional) aside to
address some of the components of our model that may appear to be restrictive at first glance.
First, on the use of discrete variables: there do indeed exist applications and a rich literature,
in which the variables are instead continuous. Now such variables can of course be quantized
to fit our model, but more importantly, we note that the use of categorical (even binary) data
is well-established in both theory (Bareinboim and Pearl 2013) and application (Knudson 2001,
Rayner et al. 2016), and not merely a simplifying proxy for continuous data. Moreover, models
with continuous variables, by and large, require some additional structural assumptions (e.g.,
linearity, an alternate parameterization, or smoothness). Our model requires no such assumption.

A second ostensible restriction is that we have a single confounder, whereas applications may
have multiple confounders. Our model in fact subsumes these scenarios. In particular, absent
additional distributional assumptions, our model captures multiple unobserved confounders by
simple concatenation without loss (since we impose no limit on the number of classes). Now, one
could make additional assumptions (indeed, a high-dimensional setting might necessitate such
assumptions) that could render alternative algorithms applicable. However, there exist many
applications where (a) the confounder is of moderate dimension; and (b) a practitioner would be
dubious of any additional assumption (Bates et al. 2020).

Now concatenating multiple confounders into a single confounder does implicitly require that
the set of confounders is either never observed or entirely observed, but this is also without loss
so long as the costs of revealing the confounders are equal (e.g., this is the case in the genetic
example). Intuitively, because we do not impose any independence assumption on the set of
confounders, revealing all confounders offers maximal information on the joint distribution of the
confounders. We formalize this statement in § 3.7.1.

Lastly, we have not considered pretreatment covariates. While for simplicity we focus only on
the setting where the confounder can be retroactively observed, we show in § 3.7.2 that our model
can be applied straightforwardly to handle additional pre-treatment covariates.

3.2.1 An ATE Estimator

We are ultimately concerned with the “value” of different sets of data: first to contrast combined
(confounded and deconfounded) data against deconfounded data alone, and second to contrast
different sets of selectively deconfounded data. Now the “value” of any data here is measured
with respect to the accuracy with which that data can be used to estimate the ATE. It is worth
emphasizing here that we are not directly concerned with the question of how data is used to
estimate the ATE – the design of such ATE estimators is an active area of research (Robins et al.
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1994, Robins 2000, Bang and Robins 2005), which we view as orthogonal to the questions we seek
to answer. Our approach will be to fix a particular ATE estimator to be applied on all sets of
data. We will now define this estimator, which is conceptually and algorithmically “simple,” and
corresponds to known, well-studied estimators (see § 3.2.2).

To ease notation slightly, let 𝑝𝑧𝑦𝑡 denote the probability of event {𝑌 = 𝑦, 𝑇 = 𝑡, 𝑍 = 𝑧}, let 𝑎𝑦𝑡
denote the probability of event {𝑌 = 𝑦, 𝑇 = 𝑡}, and let 𝑞𝑧𝑦𝑡 denote the conditional probability of
event {𝑍 = 𝑧|𝑌 = 𝑦, 𝑇 = 𝑡}:

𝑝𝑧𝑦𝑡 ∶= ℙ𝑌 ,𝑇 ,𝑍 (𝑦, 𝑡, 𝑧), 𝑎𝑦𝑡 ∶= ℙ𝑌 ,𝑇 (𝑦, 𝑡), 𝑞𝑧𝑦𝑡 ∶= ℙ𝑍 |𝑌 ,𝑇 (𝑧|𝑦, 𝑡).

We will further compact the notation by letting p denote the vector of all 4𝑘 (recall that 𝑌 and
𝑇 are binary-valued, and 𝑍 takes one of 𝑘 categorical values) values 𝑝𝑧𝑦𝑡 , in arbitrary order, and
similarly for a and q. As a sanity check, the ATE can be computed entirely from p, but the reason
to call out the decomposition a and q (it is a “decomposition” in the sense that 𝑝𝑧𝑦𝑡 = 𝑎𝑦𝑡𝑞𝑧𝑦𝑡 ) is that
it will highlight the different information contained in confounded data (a) versus deconfounded
data (q). Now on to our estimator, which differs slightly based on the type of data being used:

1. Deconfounded data alone: Given only deconfounded data, we first obtain empirical
estimates for each 𝑝𝑧𝑦𝑡 using the maximum likelihood estimator (MLE), which is simply the
empirical frequency, and we denote the corresponding estimates 𝑝𝑧𝑦𝑡 . We then obtain our
estimated average treatment effect, ÂTE, by plugging 𝑝𝑧𝑦𝑡 directly into the definition of ATE
in Eq. (3.2). Specifically, let ATE(p) ∶ [0, 1]4𝑘 → [−1, 1] denote the value of the ATE under
the distribution p:

ATE(p) = ∑
𝑧

⎛
⎜
⎜
⎜
⎝

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡)
(3.3)

(this is just a re-writing of Eq. (3.2)). Then our estimator under deconfounded data alone:

ÂTE = ATE(p̂). (3.4)

While this estimator is quite simple, in § 3.2.2 we show that absent additional causal structural
assumptions, it corresponds to the well-studied doubly-robust estimation method.

2. Incorporating confounded data: To assess the value of confounded data, recall we have
decomposed ℙ𝑌 ,𝑇 ,𝑍 into two components: (i) the confounded distribution ℙ𝑌 ,𝑇 , or a; and (ii)
the conditional distribution ℙ𝑍 |𝑌 ,𝑇 , or q. The process of deconfounding reveals the value of
𝑍 for one (initially confounded) sample, and so we gain no additional information about
the joint distribution ℙ𝑌 ,𝑇 . Thus, a is estimated entirely using the confounded data, and the
deconfounded data can then be used exclusively to estimate the conditional distribution q.
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(a) Infinite samples of confounded data: Much of our analysis concerns the case
where the amount of confounded data is effectively infinite, so that the confounded
distribution a is known exactly. Analogous to Eq. (3.3), we let ATE(a,q) ∶ [0, 1]4 ×
[0, 1]𝑘 → [−1, 1] denote the value of the ATE under the distribution decomposed as a
and q:

ATE(a,q) = ∑
𝑧

⎛
⎜
⎜
⎜
⎝

𝑎11𝑞𝑧11
∑
𝑦
𝑎𝑦1𝑞𝑧𝑦1

−
𝑎10𝑞𝑧10

∑
𝑦
𝑎𝑦0𝑞𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
. (3.5)

We estimate each value 𝑞𝑧𝑦𝑡 from deconfounded data using the MLE estimator, and
denote the estimates as �̂�𝑧𝑦𝑡 . We then calculate our estimated ATE by plugging the 𝑎𝑦𝑡 ’s
and �̂�𝑧𝑦𝑡 ’s into Eq. (3.5):

ÂTE = ATE(a, q̂). (3.6)

(b) Finite samples of confounded data: Finally, in the case where we have a finite num-
ber of samples of confounded data, we use the confounded data to produce estimates
�̂�𝑦𝑡 , via the MLE, and calculate our estimate ÂTE by plugging the �̂�𝑦𝑡 ’s and �̂�𝑧𝑦𝑡 ’s into
Eq. (3.5):

ÂTE = ATE(â, q̂). (3.7)

3.2.2 Aside: Our Estimator as the Doubly Robust Estimator

In this (optional) subsection, we show that when incorporating deconfounded data only, without
making any additional assumptions about the causal structure, our estimator, Eq. (3.4), is the same
as the one obtained by applying the well-established doubly-robust estimation method, i.e. there
is no benefit of doubly robustness under our problem setup. We do so by showing our estimator
is the same 1) as the one obtained through a generic outcome regression model, and 2) as the
one obtained via the inverse-propensity score weighting (IPW) method. In addition, we note that
under our current problem setup, the IPW estimator always yield the same estimators as the ones
in our paper, Eqs. (3.4) - (3.7). Finally, in § 3.8, we show that with infinite confounded data, a
straightforward extension of the outcome regression model leads to an optimization problem that
is not well-defined. This motivates us to provide estimator-independent theoretical guarantees in
§ 3.3.

Our Estimator as the Outcome Regression Estimator First, under deconfounded data only, we
observe only the tuples (𝑦, 𝑡, 𝑧) (and we do not know the confounded distribution ℙ𝑌 ,𝑇 ). Without
making any additional causal structural assumptions, we can only estimate the conditional average
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treatment effect (CATE) – the treatment effect when conditioned on the value of the confounder
𝑍 – by one-hot encoding the (𝑡, 𝑧) tuples. We can then obtain the ATE by reweighting the CATE
by ℙ(𝑍 ) (which can be estimated separately). We formally state the outcome regression process
below.

we first note that the ATE when conditioned on 𝑍 = 𝑧 equals to ℙ𝑌 |𝑇 ,𝑍 (1|1, 𝑧) − ℙ𝑌 |𝑇 ,𝑍 (1|0, 𝑧).
Let 𝑢𝑡𝑧 be a binary random variable that takes the value 1 if 𝑇 = 𝑡 and 𝑍 = 𝑧, and 0 otherwise. Let
𝑦 𝑡𝑧𝑖 to denote the values of 𝑌 when 𝑇 = 𝑡 and 𝑍 = 𝑧, where 𝑖 = 1, ..., 𝑁𝑡𝑧 and 𝑁𝑡𝑧 is the number of
samples where 𝑇 = 𝑡 and 𝑍 = 𝑧. Then, using the random variables 𝑢𝑡𝑧’s, we can estimate the value
of ℙ𝑌 |𝑇 ,𝑍 (1|1, 𝑧) by running the following logistic regression: ℙ𝑌 |𝑇 ,𝑍 (1|1, 𝑧) = 𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧), where
𝑤𝑡𝑧 and 𝑏𝑡𝑧 are the weight and bias respectively, and 𝜎 is the logistic function. Then, the MLE for
𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧) can be obtained through solving the following optimization problem:

argmax
𝑁𝑡𝑧
∑
𝑖=1

𝑦 𝑡𝑧𝑖 log(𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧) + (1 − 𝑦 𝑡𝑧𝑖 ) log(1 − 𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧)),

and we obtain the MLE estimate �̃� 𝑡𝑧 = ∑𝑁𝑡𝑧
𝑖=1 𝑦𝑡𝑧𝑖
𝑁𝑡𝑧

. Recall that 𝑝𝑧𝑦𝑡 is our estimated ℙ𝑌 ,𝑇 ,𝑍 (𝑦, 𝑡, 𝑧)
(using the MLE estimator), which can be calculated by dividing the number of samples where
𝑌 = 𝑦, 𝑇 = 𝑡, 𝑍 = 𝑧 by 𝑁𝑡𝑧 . Let 𝑁 be the total number of deconfounded samples. Then,

∑𝑁𝑡𝑧
𝑖=1 𝑦 𝑡𝑧𝑖
𝑁𝑡𝑧

=
𝑁𝑝𝑧1𝑡

𝑁𝑝𝑧0𝑡 + 𝑁𝑝𝑧1𝑡
=

𝑝𝑧1𝑡
𝑝𝑧0𝑡 + 𝑝𝑧1𝑡

.

Thus, the estimated CATE under the above logistic regression can be expressed as

ℙ𝑌 |𝑇 ,𝑍 (1|1, 𝑧) − ℙ𝑌 |𝑇 ,𝑍 (1|0, 𝑧) =
∑𝑁1𝑧

𝑖=1 𝑦1𝑧
𝑖

𝑁1𝑧
−
∑𝑁0𝑧

𝑖=1 𝑦0𝑧
𝑖

𝑁0𝑧
=

𝑝𝑧11
𝑝𝑧01 + 𝑝𝑧11

−
𝑝𝑧10

𝑝𝑧00 + 𝑝𝑧10
.

One could verify that the above expression is indeed the same as the estimated CATE that we
would have obtained using Eq. (3.4). Finally, to obtain the ATE, we can estimate ℙ𝑍 separately using
deconfounded data alone via the MLE and obtain that ℙ𝑍 (𝑧) = ∑𝑦,𝑡 𝑝𝑧𝑦𝑡 . Together, we conclude that
outcome regression yields the same estimator as in Eq. (3.4).

Our Estimator as the IPW Estimator Next, we show that under deconfounded data alone, the
IPW estimator yields the same estimator as in Eq. (3.4).

Let 𝜏 denote the estimated ATE. We define the propensity score 𝑒(𝑧) ∶= ℙ(𝑇 = 1|𝑍 = 𝑧), and
let 𝑒(𝑧) be the estimated propensity score from the data. Let 𝑡𝑖 , 𝑦𝑖 , and 𝑧𝑖 denote the value of the
treatment, outcome, and confounder for the 𝑖-th sample respectively. First, we recall that the IPW
estimator takes the following form:

𝜏 =
1
𝑁

𝑁

∑
𝑖=1

𝑡𝑖𝑦𝑖
𝑒(𝑧𝑖)

−
1
𝑁

𝑁

∑
𝑖=1

(1 − 𝑡𝑖)𝑦𝑖
1 − 𝑒(𝑧𝑖)

. (3.8)
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Note that in our problem, 𝑍 takes a finite number of discrete values. Thus, using the notation
above we can further decompose Eq. (3.8) as follows:

𝜏 =
1
𝑁

∑
𝑧 (

𝑁1𝑧

∑
𝑖=1

𝑦1𝑧
𝑖

𝑒(𝑧))
−

1
𝑁

∑
𝑧 (

𝑁0𝑧

∑
𝑖=1

𝑦0𝑧
𝑖

1 − 𝑒(𝑧))
(3.9)

= ∑
𝑧
(

1
𝑒(𝑧)

∑𝑁1𝑧
𝑖=1 𝑦1𝑧

𝑖

𝑁 ) −∑
𝑧
(

1
1 − 𝑒(𝑧)

∑𝑁0𝑧
𝑖=1 𝑦0𝑧

𝑖

𝑁 ) (3.10)

= ∑
𝑧
(

1
𝑒(𝑧)

𝑁𝑝𝑧11
𝑁 ) −∑

𝑧
(

1
1 − 𝑒(𝑧)

𝑁𝑝𝑧10
𝑁 ) = ∑

𝑧
(

1
𝑒(𝑧)

𝑝𝑧11) −∑
𝑧
(

1
1 − 𝑒(𝑧)

𝑝𝑧10) , (3.11)

where the second to the last equality is due to the fact that ∑𝑁𝑡𝑧
𝑖=1 𝑦 𝑡𝑧𝑖 = 𝑁𝑝𝑧1𝑡 . Now, to estimate

𝑒(𝑧) = ℙ̂𝑇 |𝑍 (1|𝑧), we note that without making any additional causal structural assumptions, 𝑒(𝑧)
can be expressed using our estimators as follows: 𝑒(𝑧) = ∑𝑦 𝑝𝑧𝑦1

∑𝑦𝑡 𝑝𝑧𝑦𝑡
, and 1 − 𝑒(𝑧) = ℙ̂𝑇 |𝑍 (0|𝑧) =

∑𝑦 𝑝𝑧𝑦0
∑𝑦𝑡 𝑝𝑧𝑦𝑡

.
Plugging in these values back into Eq. (3.11), we recover the Eq. (3.4) exactly. Finally, we observe
that the IPW estimator can be formally stated as

∑
𝑧

ℙ𝑌 ,𝑇 ,𝑍 (1, 1, 𝑧)
ℙ𝑇 |𝑍 (1, 𝑧)

−∑
𝑧

ℙ𝑌 ,𝑇 ,𝑍 (1, 0, 𝑧)
ℙ𝑇 |𝑍 (0, 𝑧)

. (3.12)

Thus, under our problem setup, without making any additional assumption, Eq. (3.12) always
yields the same estimate as Pearl’s backdoor adjustment formula Eq. (3.2).

3.3 The Value of Confounded Data

We are now prepared to answer our first question: how much can we improve ATE estimation by

incorporating confounded data. To that end, we first analyze and compare the sample complexity of
the MLE estimator described in § 3.2 for deconfounded data alone and for augmented with an
infinite amount of confounded data, while holding everything else the same. Throughout the
paper, we measure the sample complexity of an estimator ÂTE as the number of samples required
for ÂTE to be (𝜖, 𝛿)-close to the true ATE, where the notion of “(𝜖, 𝛿)-close” is defined as follows:

Definition 2. An estimator ÂTE is said to be (𝜖, 𝛿)-close to the true ATE if it satisfies

ℙ(|ÂTE − ATE| ≥ 𝜖) < 𝛿.

Deconfounded Data Alone: We begin with the baseline approach of using only deconfounded
data that has been sampled according to the deconfounded distribution, ℙ𝑌 ,𝑇 ,𝑍 . The following
theorem identifies a quantity of samples 𝑚base which is sufficient to estimate the ATE to within a
desired level of accuracy under the estimation process described above.
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Theorem 5. Using deconfounded data alone, the estimator ATE(p̂) as defined in Equation (3.4) is
(𝜖, 𝛿)-close if the number of deconfounded samples is at least

𝑚base ∶= 𝐶 max
𝑡,𝑧 (

∑
𝑦
𝑝𝑧𝑦𝑡)

−2

= 𝐶 max
𝑡,𝑧

1
ℙ𝑇 ,𝑍 (𝑡, 𝑧)2

,

where 𝐶 ∶= 12.5𝑘2 ln(8𝑘/𝛿)𝜖−2.

The proof of Theorem 5 (in § 3.9.1) relies on an additive decomposition of the estimation error
on ATE in terms of the estimation error on the 𝑝𝑧𝑦𝑡 ’s, along with concentration via Hoeffding’s
inequality.

Incorporating Infinite Confounded Data: Now consider the setup in which we have decon-
founded data, along with an infinite amount of confounded data, i.e., the marginal distribution
ℙ𝑌 ,𝑇 is known exactly. Analogous to Theorem 5, Theorem 6 identifies a sufficient number of
deconfounded samples 𝑚nsp.5

Theorem 6. Incorporating (infinite) confounded data, the estimator ATE(a, q̂) is (𝜖, 𝛿)-close if the
number of deconfounded samples is at least

𝑚nsp ∶= 𝐶 max
𝑡,𝑧

∑𝑦 𝑎𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 = 𝐶 max

𝑡,𝑧

ℙ𝑇 (𝑡)
ℙ𝑇 ,𝑍 (𝑡, 𝑧)2

, (3.13)

where 𝐶 ∶= 12.5𝑘2 ln(8𝑘/𝛿)𝜖−2.

The proof of Theorem 6 is included in § 3.9.5. A few observations can be made from comparing
Theorems 5 and 6:

1. 𝑚nsp is less than 𝑚base for any underlying distribution ℙ𝑌 ,𝑇 ,𝑍 , highlighting the value of
confounded data. In fact, the ratio 𝑚base/𝑚nsp, in addition to being strictly greater than 1,
can be arbitrarily large.

2. With respect to the accuracy parameters 𝜖 and 𝛿 , both 𝑚base and 𝑚nsp scale as Ω(𝜖−2 ln(𝛿−1)),
irrespective of the underlying distribution ℙ𝑌 ,𝑇 ,𝑍 . Now it might be that a better scaling is
achievable, either with a “smarter” estimator or a tighter analysis of our estimator, but the
following minimax lower bound shows that this is not the case:

Proposition 6. (Lower Bound with respect to 𝜖 and 𝛿) Fix any confounded distribution and

assume that infinite confounded data is given (or equivalently, ℙ𝑌 ,𝑇 is known). For any ATE
5The subscript “nsp” stands for natural selection policy. The motivation for this name will be explained in the next

section.
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estimator, there exists an underlying distribution ℙ𝑌 ,𝑇 ,𝑍 , whose confounded distribution is ℙ𝑌 ,𝑇 ,
for which the number of deconfounded samples6 required for the estimator to be (𝜖, 𝛿)-close is
at least Ω(𝜖−2 log(𝛿−1)).

The proof of Proposition 6 (§ 3.9.3) proceeds by construction. Proposition 6 states not only
that Theorems 5 and 6 are tight with respect to 𝜖 and 𝛿 , but moreover the Ω(𝜖−2 log(𝛿−1))
sample-complexity is necessary even for selectively deconfounded data, as we will study in
the next section.

3. Even fixing 𝑘, 𝜖, and 𝛿 , both 𝑚base and 𝑚nsp can be arbitrarily large for certain underlying
distributions ℙ𝑌 ,𝑇 ,𝑍 . In fact, even fixing any confounded distribution ℙ𝑌 ,𝑇 , both 𝑚base and
𝑚nsp can still be arbitrarily large for distributions ℙ𝑌 ,𝑇 ,𝑍 consistent with ℙ𝑌 ,𝑇 . As in the
previous point, this is necessary for any estimator:

Proposition 7. (Lower Bound with respect to ℙ𝑌 ,𝑇 ,𝑍 ) Fix any confounded distribution and

assume that infinite confounded data is given (or equivalently, ℙ𝑌 ,𝑇 is known). There exists

𝜖, 𝛿 > 0 such that no (𝜖, 𝛿)-close estimator exists. Specifically, for any number of deconfounded

samples 𝑚,7 there exist two underlying distributions ℙ1
𝑌 ,𝑇 ,𝑍 and ℙ2

𝑌 ,𝑇 ,𝑍 with the following

properties:

• Both of their confounded distributions are ℙ𝑌 ,𝑇 .

• No algorithm can correctly identify both of them with probability more than 1 − 𝛿 using

at most 𝑚 deconfounded samples.

• Their corresponding ATE’s are 𝜖 apart: ||ATE(ℙ
1
𝑌 ,𝑇 ,𝑍 ) − ATE(ℙ2

𝑌 ,𝑇 ,𝑍 )|| ≥ 𝜖.

The proof of Proposition 7 (§ 3.9.2) is constructive, and relies on 𝜖 being chosen as a function
of ℙ𝑌 ,𝑇 , and the distributions ℙ1

𝑌 ,𝑇 ,𝑍 and ℙ2
𝑌 ,𝑇 ,𝑍 being chosen as a function of 𝛿 and 𝑚. The

construction relies on values of the conditional distribution ℙ𝑍 |𝑌 ,𝑇 approaching 0 and 1, and
so later on, we will state certain guarantees with respect to a parameter 𝛽 , such that all
values of ℙ𝑍 |𝑌 ,𝑇 are bounded within an interval [𝛽, 1 − 𝛽].

3.4 The Additional Value of Selective Deconfounding

Having established the potential value of confounded data, we turn now to the second question:
what is the additional value of selective deconfounding? The path we will take to answering

6This applies when the deconfounded samples are generated according to ℙ𝑌 ,𝑇 ,𝑍 as in this section, or are selectively
deconfounded as in the following section.

7See footnote 6
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this question is to analyze different policies for selective deconfounding, and compare their
performances via instance-dependent sample complexity lower and upper bounds, and the instance-
independent worst-case sample complexity upper bounds when incorporating an infinite amount
of confounded data. Incidentally, this will yield a policy which we propose for use in practice.
Lastly, we extend our analysis to the scenario where we have access only to a finite amount of
confounded data.

Selective Deconfounding: One important consequence of our procedure for estimating the
ATE in § 3.2 is that the four conditional distributions are estimated separately: the deconfounded
data is partitioned into four groups, one for each (𝑦, 𝑡) ∈ {0, 1}2, and then the quantities 𝑞𝑧𝑦𝑡 are
estimated separately. This means that the procedure does not rely on the fact that the deconfounded
data is drawn from the exact distribution ℙ𝑌 ,𝑇 ,𝑍 . In particular, the draws might as well have been
made directly from the conditional distributions ℙ𝑍 |𝑌 ,𝑇 .

Suppose now that we can draw directly from these conditional distributions ℙ𝑍 |𝑌 ,𝑇 . This
situation may arise when the confounder is fixed (like a genetic trait) and can be observed ret-
rospectively. This leaves us with four sample selection options, namely selecting confounded
samples from the four groups, (𝑦, 𝑡) ∈ {0, 1}2, to deconfound. The problem of selective deconfound-
ing formally can be stated as: given a budget for selectively deconfounded samples, how should
we allocate our samples among the four groups: (𝑦, 𝑡) ∈ {0, 1}2?

Selection Policies: A sample selection policy knows the confounded distribution (assuming
infinite confounded data), and selects the number of samples to deconfound from each of the four
groups (𝑦, 𝑡) ∈ {0, 1}2. Equivalently, it is a mapping from confounded distributions 𝐚 (recall that
𝑎𝑦𝑡 = ℙ𝑌 ,𝑇 (𝑦, 𝑡)) to vectors 𝐱 ∶= (𝑥00, 𝑥01, 𝑥10, 𝑥11), where 𝑥𝑦𝑡 indicates the proportion of samples
allocated to each group. We will consider the following three sample selection policies:

1. Natural (NSP): 𝑥𝑦𝑡 = 𝑎𝑦𝑡 = ℙ𝑌 ,𝑇 (𝑦, 𝑡). This is “natural” in the sense that it is equivalent to
drawing directly from ℙ𝑌 ,𝑇 ,𝑍 , as we did in the previous section. Since it can be implemented
by deconfounding samples at random, it corresponds to “non-selective” deconfounding.

2. Uniform (USP): 𝑥𝑦𝑡 = 1/4. This splits the samples evenly across all four groups. While this
policy does not depend on 𝐚, it requires selective deconfounding to implement.8

3. Outcome-weighted (OWSP): 𝑥𝑦𝑡 = 𝑎𝑦𝑡/(2∑𝑦 𝑎𝑦𝑡) = ℙ𝑌 |𝑇 (𝑦 |𝑡)/2. This splits the samples
evenly across treatment groups (𝑇 = 0 vs. 1), but within each treatment group, the number
of samples is proportional to the outcome (𝑌 = 0 vs. 1).

8We also observe that USP with 4X number of samples (we simply select data from all 4 categories to deconfound
at each step) lower bounds the estimation error of the optimal selection policy in our problem.
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While the particular form of OWSP appears to be the least intuitive, we will soon show that
it provides an instance-independent guarantee when considering the worst-case conditional
distributions q.

As a sanity check, note that Theorem 6 corresponds to the sample complexity upper bound
for NSP.

3.4.1 Non-existence of an Optimal Policy

Before we analyze the sample complexities of the remaining sample selection policies, we first
establish that there does not exist a sample selection policy that is optimal. Now the notion of
“optimality” here needs to be defined carefully – for example, it should be independent of the
particular choice of ATE estimator, and it should apply across a set of underlying distributions. To
that end, we introduce the following definition:

Definition 3. Fix any 𝜖, 𝛿 > 0. For any sample selection policy x, any confounded distribution a, and
any set of conditional distributions , define 𝜇x(a,) to be the minimum number of deconfounded

samples such that there exists an estimator ÂTE which achieves ℙ(|ÂTE−ATE| ≥ 𝜖) < 𝛿 for all q ∈ :

𝜇x(a,) = min
{
𝑚 ∈ ℕ ∶ ∃ ÂTE s.t. ℙ(|ÂTE − ATE(a,q)| ≥ 𝜖) < 𝛿} ∀ 𝑞 ∈ 

}
.

As another sanity check, note that Theorem 6 implies an upper bound on 𝜇nsp: for all a and ,
𝜇nsp(𝑎,) ≤ sup𝑞∈𝑚nsp(𝑎, 𝑞).

Given this definition, it is natural to call a policy x “optimal” for a given confounded distribution
a and a given set of confounded distributions  if (and only if) it achieves the minimum value
𝜇x(a,) across all policies. We can now formally state the non-existence of such an optimal policy
for any a:

Proposition 8. For every confounded distribution a, there exists two sets of conditional distributions
1 and 2 such that any optimal sample selection policy under (a,1) is not optimal under (a,2).

The proof of Proposition 8 proceeds by construction (§ 3.9.4). Proposition 8 highlights the
need to compare the proposed selection policies via various performance metrics.

3.4.2 Analysis of Policies

Returning to our three defined sampling policies, we will in this subsection show four results that
each compare the policies along different metrics. Table 3.2 summarizes the comparison between
the three selection policies.
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Lower Bound Upper Bound Worst-Case Bound Independence

NSP 𝐶1
𝛽2 max𝑦,𝑡

𝑎𝑦𝑡 (∑𝑦 𝑎𝑦𝑡 )2

(∑𝑦 𝑎𝑦𝑡 )2
𝐶 max𝑡,𝑧

∑𝑦 𝑎𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)2
𝐶
𝛽2 max𝑡 1

∑𝑦 𝑎𝑦𝑡
—

USP 4𝐶1
𝛽2 max𝑦,𝑡

𝑎2𝑦𝑡 (∑𝑦 𝑎𝑦𝑡 )2

(∑𝑦 𝑎𝑦𝑡 )2
𝐶 max𝑡,𝑧

∑𝑦 4𝑎2𝑦𝑡
(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡 )2

4𝐶
𝛽2 max𝑡

∑𝑦 𝑎2𝑦𝑡
(∑𝑦 𝑎𝑦𝑡 )2

—

OWSP 2𝐶1
𝛽2 max𝑦,𝑡

𝑎𝑦𝑡 (∑𝑦 𝑎𝑦𝑡 )2

∑𝑦 𝑎𝑦𝑡
2𝐶 max𝑡,𝑧

(∑𝑦 𝑎𝑦𝑡 )2

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡 )2
2𝐶
𝛽2

𝑚owsp ⊧ℙ𝑌 ,𝑇
𝑀owsp ⊧ℙ𝑌 ,𝑇 ,𝑍

Table 3.2: Comparison between the instance-specific lower bound, sample complexity upper
bound (m), and the worst-case sample complexity upper bound (M). 𝑚owsp dominates 𝑚usp, but
neither𝑚owsp nor𝑚nsp dominates the other. Instead, Theorem 8 establishes the worst-case relative
performance of 𝜇owsp and 𝜇nsp. The last column illustrates that with sufficient samples, the sample
complexity upper bound guarantee for OWSP is independent of the confounded distribution
ℙ𝑌 ,𝑇 , and the worst-case sample complexity upper bound for OWSP is independent of the data
generating distribution ℙ𝑌 ,𝑇 ,𝑍 .

1. Upper Bounds on Sample Complexity: First, we provide an upper bound of the sample
complexity of 𝜇usp(a,) and 𝜇owsp(a,) for every a and  by analyzing our algorithm (analogous
to Theorems 5 and 6):

Theorem 7. Incorporating (infinite) confounded data, the estimator ATE(a, q̂) is (𝜖, 𝛿)-close if the
number of deconfounded samples, selected under the natural selection policy (NSP) is at least:

𝑚nsp ∶= 𝐶 max
𝑡,𝑧

∑𝑦 𝑎𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 = 𝐶 max

𝑡,𝑧

ℙ𝑇 (𝑡)
ℙ𝑇 ,𝑍 (𝑡, 𝑧)2

.

Under the uniform selection policy (USP):

𝑚usp ∶= 𝐶 max
𝑡,𝑧

4∑𝑦 𝑎2𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 = 𝐶 max

𝑡,𝑧

4∑𝑦 ℙ𝑌 ,𝑇 (𝑦, 𝑡)2

ℙ𝑇 ,𝑍 (𝑡, 𝑧)2
.

Under the outcome-weighted selection policy (OWSP):

𝑚owsp ∶= 𝐶 max
𝑡,𝑧

2 (∑𝑦 𝑎𝑦𝑡)
2

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 = 𝐶 max

𝑡,𝑧

2
ℙ𝑍 |𝑇 (𝑧|𝑡)2

.

Here, 𝐶 ∶= 12.5𝑘2 ln(8𝑘/𝛿)𝜖−2.

As a sanity check, note that the first statement in Theorem 7 is a restatement of Theorem 6,
reproduced here to make comparison with the rest of the theorem easier. The proof of Theorem 7
(§ 3.9.5), which differs from the proof of Theorem 5, requires a modification to Hoeffding’s inequal-
ity, which we derive to bound the sample complexity of the weighted sum of two independent
random variables. Theorem 7 points to two advantages of OWSP:
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1. OWSP has the nice property that 𝑚owsp does not depend on ℙ𝑌 ,𝑇 . This means that when we
have sufficient data, the sample complexity upper bound guarantee of OWSP is consistent
across all confounded distributions ℙ𝑌 ,𝑇 .

2. USP is entirely dominated by OWSP: 𝑚usp ≥ 𝑚owsp, since 4𝑎20𝑡 + 4𝑎21𝑡 − 2(𝑎0𝑡 + 𝑎1𝑡)2 = 2(𝑎0𝑡 −
𝑎1𝑡)2 ≥ 0.

We might hope for a similar result by comparing 𝑚owsp with 𝑚nsp, but neither strictly dominates
the other, and in fact Proposition 8 rules out the possibility of finding a policy which strictly
dominates all others.

2. Worst-Case Upper Bounds: Taking a slightly different tack, we might consider computing
what Theorem 7 guarantees for each policy, across all possible values of the conditional distribution
q – this is a reasonable re-interpretation of Theorem 7 since we do not know the value of q in
advance. One problem with this approach is that for any confounded distribution a, each of the
three values𝑚nsp,𝑚usp, and𝑚owsp, can be made arbitrarily large (which is consistent with the lower
bound in Proposition 7, which recall applies to any choice of estimator) by taking certain values
of q to be close to 0 or 1. So instead of considering all possible values of q, we will parameterize
this entire analysis by a constant 𝛽 ∈ (0, 1/2): (Worst-Case Upper Bound) Fix 𝛽 ∈ (0, 1/2), and let
𝛽 ∶= {𝐪 ∶ 𝑞𝑧𝑦𝑡 ∈ [𝛽, 1 − 𝛽] ∀ 𝑦, 𝑡, 𝑧}. Then,

𝑀nsp ∶= max
𝐪∈𝛽

𝑚nsp =
𝐶
𝛽2

max
𝑡

1
∑𝑦 𝑎𝑦𝑡

,

𝑀usp ∶= max
𝐪∈𝛽

𝑚usp =
4𝐶
𝛽2

max
𝑡

∑𝑦 𝑎2𝑦𝑡
(∑𝑦 𝑎𝑦𝑡)2

,

𝑀owsp ∶= max
𝐪∈𝛽

𝑚owsp =
2𝐶
𝛽2
.

A few observations to make on Corollary 3.4:

1. The maximum of 𝑚nsp, 𝑚usp, and 𝑚owsp are always obtained at 𝑞𝑧𝑦𝑡 = 𝛽 for some 𝑡, 𝑧. This
further justifies for our choice of parameterization by 𝛽 .

2. 𝑀owsp is independent of ℙ𝑌 ,𝑇 ,𝑍 . This means that when data is sufficient, the worst-case sample
complexity upper bound for OWSP is consistent across all data generating distributions.

3. OWSP has the lowest worst-case bound:

𝑀owsp ≤ 𝑀nsp and 𝑀owsp ≤ 𝑀usp.

To see the first inequality, note that minmax𝑡 1/(∑𝑦 𝑎𝑦𝑡) is achieved when∑𝑦 𝑎𝑦𝑡 = 1/2, so
max𝑡 1/(∑𝑦 𝑎𝑦𝑡) ≥ 2. To see the second inequality, note that for binary-valued 𝑌 , we have
2∑𝑦 𝑎2𝑦𝑡 ≥ ∑𝑦 𝑎2𝑦𝑡 + 2Π𝑦𝑎𝑦𝑡 = (∑𝑦 𝑎𝑦𝑡)2.
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3. Estimator-Independent Upper Bounds: Zooming back out to our goal of comparing the
three different selection policies, Theorem 7 effectively eliminated USP since it is dominated
by OWSP (𝑚usp ≥ 𝑚owsp) for every data-generating distribution. Regarding the comparison
between NSP and OWSP, Corollary 3.4 showed that OWSP dominates NSP for every confounded
distribution a, under each policy’s worst-case instance of q. To expand on the comparison between
OWSP and NSP, next we provide a stronger guarantee that holds for arbitrary estimators. Recall
from Definition 3 that 𝜇x(a,) is the minimum number of deconfounded samples, collected under
policy x, such that some estimator is (𝜖,𝛿)-close for all 𝐪 ∈ .

The following result (Proof in § 3.9.6) establishes that 𝜇nsp(a,) may be arbitrarily larger than
𝜇owsp(a,), but 𝜇owsp(a,) is never more than twice as large:

Theorem 8. Fix any 𝛽 ∈ (0, 1/2). For any 𝜖 ∈ (0, 0.5 − 2𝛽(1 − 𝛽)], there exist confounded distributions
a, and  ⊂ 𝛽 , such that 𝜇owsp(a,)/𝜇nsp(a,) is arbitrarily close to zero. In addition, for all a and

, 𝜇owsp(a,) ≤ 2𝜇nsp(a,).

4. LowerBounds on SampleComplexity: Finally, we show lower bounds on 𝜇nsp(𝑎, 𝑄𝛽), 𝜇usp(𝑎, 𝑄𝛽),
and 𝜇owsp(𝑎, 𝑄𝛽) that are analogous to Theorem 6:

Theorem 9. (Lower Bound) Fix any 𝛽 ∈ (0, 1/2) and any a. Then,

𝜇nsp(𝑎, 𝑄𝛽) ≥
𝐶1

𝛽2
max
𝑦,𝑡

𝑎𝑦𝑡(∑𝑦′ 𝑎𝑦′𝑡)2

(∑𝑦′ 𝑎𝑦′𝑡)2
,

𝜇usp(𝑎, 𝑄𝛽) ≥
𝐶1

𝛽2
max
𝑦,𝑡

4𝑎2𝑦𝑡(∑𝑦′ 𝑎𝑦′𝑡)2

(∑𝑦′ 𝑎𝑦′𝑡)2
,

𝜇owsp(𝑎, 𝑄𝛽) ≥
𝐶1

𝛽2
max
𝑦,𝑡

2𝑎𝑦𝑡(∑𝑦′ 𝑎𝑦′𝑡)2

∑𝑦′ 𝑎𝑦′𝑡
,

where 𝑡 = 1 − 𝑡 and 𝐶1 ∝ (𝑘𝛽 − 1)2 ln(𝛿−1)𝜖−2.

The proof (§ 3.9.7) proceeds by construction. When comparing the constants 𝐶 and 𝐶1, we
observe that the upper and lower bounds match in 𝑘, 𝜖, and 𝛿 , demonstrating the relative tightness
of our analysis.

3.4.3 Incorporating Finite Confounded Data

We have now shown that given an infinite amount of confounded data, OWSP outperforms the
NSP in the worst case. However, in practice, the confounded data will be finite. Recall that in this
case, deconfounding reveals the value of 𝑍 for one (initially confounded) sample, and thus we gain
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no additional information about ℙ𝑌 ,𝑇 . Thus, these 𝑛 confounded data provide us with an estimate

of the confounded distribution, ℙ̂𝑌 ,𝑇 (𝑦, 𝑡), �̂�𝑦𝑡 . To check the robustness of OWSP, we extend our
analysis to handle finite confounded data. With 𝑥𝑦𝑡 defined as above, we can derive a theorem
analogous to Theorems 5-7:

Theorem 10. Given 𝑛 confounded and𝑚 deconfounded samples, with 𝑛 ≥ 𝑚, ATEâ(q̂) is (𝜖, 𝛿)-close
when

min
𝑦,𝑡,𝑧

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2

1
𝑥𝑦𝑡𝑚

+ (𝑞𝑧𝑦𝑡 )2

𝑛

= min
𝑦,𝑡,𝑧

⎛
⎜
⎜
⎝

ℙ𝑇 ,𝑍 (𝑡, 𝑧)2

1
𝑥𝑦𝑡𝑚

+ (𝑞𝑧𝑦𝑡 )2

𝑛

⎞
⎟
⎟
⎠
≥ 4𝐶. (3.14)

Here, 𝐶 ∶= 12.5𝑘2 ln(8𝑘/𝛿)𝜖−2.

The proof of Theorem 10 (§ 3.9.8) requires a boundwe derive for the product of two independent
random variables. A few results follow from Theorem 10. First, a quick calculation shows that
when 𝑚 is held constant, ℙ (|ATEa(q) − ATEâ(q̂)| ≥ 𝜖) remains positive as 𝑛 → ∞. This means
that for a certain combinations of 𝜖, 𝛿, 𝑛, there does not necessarily exist a sufficiently large
𝑚 s.t. ℙ (|ATEa(q) − ATEâ(q̂)| ≥ 𝜖) ≤ 𝛿 can be satisfied. However, when there exists such an
𝑚, then 𝑚 ≥ max𝑦,𝑡,𝑧 𝑥−1𝑦𝑡 (ℙ𝑇 ,𝑍 (𝑡, 𝑧)2/(4𝐶) − (𝑞𝑧𝑦𝑡)2/𝑛)

−1. Although Theorem 10 does not recover
Theorem 7 exactly when 𝑛 → ∞,9 it provides insights into the relative performance of our
sampling policies. Moreover, a conclusion that is similar to Theorem 8 holds: 𝑚owsp/𝑚nsp ≤ 2, and
there exist distributions ℙ𝑌 ,𝑇 ,𝑍 such that 𝑚owsp/𝑚nsp is arbitrarily small. Theorem 10 also implies
that when 𝑛 ≫ (𝑞𝑧𝑦𝑡)2𝑥𝑦𝑡𝑚 ∀(𝑦, 𝑡) ∈ {0, 1}2, the majority of the estimation error comes from not
deconfounding enough data. This is because when the number of confounded data that we have
is more than Ω(𝑚), the error on the ATE in Eq. (3.14) is dominated by fact that we have enough
deconfounded data. Put another way, for a given 𝑚, it is sufficient to have 𝑛 = Ω(𝑚) confounded
samples.

One new issue that arises with finite confounded data is that a sampling policy may not be
feasible because there are not enough confounded samples to deconfound. This does not happen
for NSP (assuming𝑚 ≤ 𝑛), but can occur for USP and OWSP. When this happens, we approximate
the target sampling policy as closely as is feasible (see § 3.5.2).

3.5 Experiments

Since the upper bounds that we derived in § 3.3 are not necessarily tight, we first perform synthetic
experiments to assess the tightness of our bounds. For the purpose of illustration, we focus on

9We could apply Lemma 5 to obtain a bound that recovers Theorem 7 exactly as 𝑛 → ∞. However, this method
does not give us sufficient insights into the comparative performance of our sampling policies.
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binary confounders 𝑍 throughout this section, with 𝑞𝑦𝑡 = ℙ𝑍=1|𝑌 ,𝑇 (𝑦, 𝑡) and 𝐪 ∶= (𝑞00, 𝑞01, 𝑞10, 𝑞11).
We first compare the sampling policies in synthetic experiments on randomly chosen distributions
ℙ𝑌 ,𝑇 ,𝑍 , measuring both the average and worst-case performance of each sampling policy. In terms
of average performance, we find that OWSP outperforms NSP and USP (Fig. 3.2), and there exists
data generating distributions in which OWSP underperforms NSP and USP (Fig. 3.3). When
averaged over the conditional distribution, OWSP outperforms both NSP and OWSP (Fig. 3.4). In
addition, we numerically investigate the data generating distributions in which OWSP outperforms
NSP and USP (Fig. 3.4). We discover that 1) the advantage of OWSP over NSP is the largest when
the treatment group is highly inbalanced, and 2) the advantage of OWSP over USP is the largest
when the outcome is highly inbalanced within each treatment group. We then measure the effect
of having finite (vs. infinite) confounded data (Fig. 3.5), demonstrating that OWSP is robust under
finite confounded data. Finally, we test the performance of OWSP on real-world data taken from
a genetic database, COSMIC, that includes genetic mutations of cancer patients (Tate et al. 2019,
Cosmic 2019) (Fig. 3.6), showing the benefit of OWSP in real-world applications. Because this
is (to our knowledge) the first paper to investigate the problem of selective deconfounding, the
methods described in § 3.1.2 are not directly comparable to ours.

3.5.1 Infinite Confounded Data: Synthetic Experiments

Assuming access to infinite confounded data, we experimentally evaluate all four samplingmethods
for estimating the ATE: using deconfounded data alone, and using confounded data that has been
selected according to NSP, USP, and OWSP. We evaluate the performance of four methods in terms
of the absolute error, |ÂTE − ATE|. Because the variance of our estimators cannot be analyzed in
closed form, we report the variance of the absolute error averaged over different instances.

Performance on Randomly Generated Instances: We first evaluate the four methods over a
randomly-selected set of distributions. Fig. 3.2 was generated by averaging over 13,000 instances,
each with the distribution ℙ𝑌 ,𝑇 ,𝑍 drawn uniformly from the unit 7-Simplex. Every instance consists
of 100 replications, each with a random draw of 1,200 deconfounded samples. The absolute error
is measured as a function of the number of deconfounded samples in steps of 100 samples. Fig.
3.2 (top left) compares the use of deconfounded data along with the incorporation of confounded
data selected naturally (as in the comparison of Theorems 5 and 7). It shows that incorporating
confounded data yields a significant improvement in estimation error. For example, achieving
an absolute error of 0.02 using deconfounded data alone requires more than 1,200 samples on
average, while by incorporating confounded data, only 300 samples are required. We observe
that by incorporating infinite amount of confounded dataset, the variance of our estimator has
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decreased dramatically. Having established the value of confounded data, Fig. 3.2 (top middle)
compares the three selection policies. We find that, when averaged over joint distributions, OWSP
outperforms both NSP and USP in terms of both the average absolute error and the variance.
Fig. 3.2 (top right) compares the average squared error of the three selection policies. We find that
OWSP outperforms NSP and USP in terms of estimation bias as well. To compare the performance
of our sampling policies on an instance level, we provide three scatter plots in Fig. 3.2 (middle),
each containing the 13,000 instances in the top figures and averaged over 100 replications. The
number of deconfounded samples is fixed at 1,200. We observe that OWSP outperforms NSP and
USP in the majority of instances. Furthermore, to compare the variance of different sampling
policies on an instance level, we provide three additional scatter plots in Fig. 3.2 (bottom). At
each level of deconfounded samples, all figures in the bottom row of Fig. 3.2 contain the 13,000
instance in the top figures. Each dot is calculated by taking difference between the variances
of selected sampling policies, where the variance is calculated using the same 100 replications
contained in the top figures. Fig. 3.2 (bottom left) contains the difference between the variance of
NSP and the variance of USP on the same instances. A dot with a positive y-axis value represents
that the variance of USP on a particular instance is lower than that of NSP at the given level of
deconfounded data. We observe that the variance of USP is lower than NSP on the majority of
instances, and vice versa if the y-axis value is negative. Similarly, a dot with a positive y-axis
value on Fig. 3.2 (bottom middle and right) represents that the variance of OWSP is lower than
these of NSP and USP, respectively, on a particular instance at a given level of deconfounded data.
We observe that the variance of OWSP is lower than these of NSP and USP on the majority of
instances.

Worst-Case Instances: In Fig. 3.3, we evaluate the performance of the three selection policies
on joint distributions chosen adversarially against each. The three sub-figures (the columns)
correspond to instances where NSP, USP, and OWSP perform the worst, respectively, from the
left to the right. Each sub-figure is further subdivided: the top contains results for the single
adversarial example while the bottom is averaged over 500 𝐪’s sampled uniformly from [0, 1]4. The
absolute error is averaged over 10,000 replications in the top figures and over 500 in the bottom.
In all cases, we draw 500 deconfounded samples and measure the absolute error in steps of 50
samples. Fig. 3.3 (left) validates Corollary 8. We observe that when the distribution of 𝐚 is heavily
skewed towards (𝑌 = 0, 𝑇 = 0), OWSP and USP significantly outperform NSP. Fig. 3.3 (middle)
shows that USP can underperform NSP, but when averaged over all possible values of 𝐪, USP
performs better than NSP. Fig. 3.3 (right) illustrates that OWSP can underperform NSP and USP,
but, when compared with the left and middle column, the performance of OWSP is close to that of
NSP and USP. In Fig. 3.3 (bottom), when averaged over all possible values of 𝐪, OWSP outperforms
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both. Finally, OWSP’s variance is the lowest across all scenarios. § 3.10 provides representative
examples in which each of these joint distributions could appear.

Insights: To better understand the properties of the confounded distributions in which OWSP
performs better than its counterparts, we conduct additional experiments. Fig. 3.4 is generated
with a different set of 13,000 data generating distributions than Fig. 3.2. In particular, the 13,000
distributions of ℙ𝑌 ,𝑇 ,𝑍 is generated with 130 different confounded distributions a, and under each
confounded distribution, we generate 100 different conditional distributions q. Similar to Fig. 3.2,
every instance consists of 100 replications, and the absolute error is measured as a function of the
number of deconfounded in steps of 100 samples. Fig. 3.4 (top row) investigate the relationship
between the performance of a pair of selected methods and the level of confoundedness in an
instance. Specifically, Fig. 3.4 (top row) contain 13,000 dots, each representing one instance and
the number of deconfounded samples is fixed at 1,200. A dot with a positive y-axis value in top left
figure represents that in this particular instance, USP yields a smaller average absolute estimation
error than NSP, and vice versa if the y-axis value is negative. Similarly, in the top middle and right
figures, a dot with a positive y-axis value represents that OWSP yields a smaller average absolute
estimation error than NSP and USP, respectively. The level of confoundedness (the y-axis) is the
absolute difference between the true ATE of an instance and the “confounded ATE” (ℙ𝑌 |𝑇 (1|1) −
ℙ𝑌 |𝑇 (1|0)), i.e., the level of confoundedness equals to ||ATEa(q) − ℙ𝑌 |𝑇 (1|1) + ℙ𝑌 |𝑇 (1|0)||. Fig. 3.4 (top
row) demonstrate that there is no obvious association between the level of confoundedness and
the relative performance of our algorithms.

Next, we investigate the association between the performance of a pair of selected methods and
the level of treatment inbalance of an instance, where the latter is calculated by | ∑𝑦 𝑎𝑦1 −∑𝑦 𝑎𝑦0|.
Fig. 3.4 (middle row left) shows that USP works better than NSP when averaged over the (initially
unobserved) conditional distribution q on the majority of instances. In particular, the benefit of
USP over NSP increases when the treatment inbalance of an instance increases. Fig. 3.4 (middle row
middle and right) first validate the observation that we made in Fig. 3.3 – when averaged over the
conditional distributions q, OWSP outperforms NSP and USP on almost all instances. In addition,
Fig. 3.4 (middle row middle) shows that the treatment inbalance of an instance alone explains the
scenarios in which OWSP significantly outperforms NSP, i.e., when the treatment is significantly
inbalanced in the observed confounded data. However, Fig. 3.4 (middle row right) shows that the
benefit of OWSP over USP cannot be explained using the level of treatment inbalance alone.

Finally, we investigate the relationship between the relative performance of a pair of selected
methods and the level of outcome inbalance within each treatment group in Fig. 3.4 (bottom). In
particular, the level of inbalance within each treatment group is calculated by taking the maximum
outcome inbalance of each treatment group, i.e., max𝑡(|𝑎1𝑡/∑𝑦 𝑎𝑦𝑡 − 0.5|). Fig. 3.4 (bottom right)
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illustrates that the benefit of OWSP over USP increases when the maximum level of outcome
inbalance within each treatment group increases.

3.5.2 Finite Confounded Data

Approximate Sampling policies under finite confounded data: To deconfound according
to NSP with finite confounded data is to deconfound the first 𝑚 confounded data. For USP, we
split the samples to the four groups as evenly as possible. That is, we max out the bottleneck
group/groups and distribute the excess data as evenly as possible among the remaining groups.
Under OWSP, we have 𝑥𝑦𝑡 = �̂�𝑦𝑡/∑𝑦 �̂�𝑦𝑡 , and when implementing OWSP, we will first ensure that
the deconfounded samples are split as evenly as possible across treatment groups, and then within
the each group, we split the samples close as possible according to the outcome ratio.

Results: Given only 𝑛 confounded data, we test the performance of the OWSP against that of
NSP and USP. In Fig. 3.5, the absolute error is measured as a function of the number of confounded
samples in step sizes that increment in the log scale from 100 to 10,000 while fixing the number
of deconfounded samples to 100. Fig. 3.5 (left) is generated by averaging over 13,000 instances,
each consisted of 100 replications, and it compares three offline sampling selection policies. Since
when we only have 100 confounded samples, the three sampling policies are identical, the error
curves corresponding to NSP, USP and OWSP start at the same point on the top left corner. We
observe that as the number of confounded samples increases, OWSP quickly outperforms NSP and
USP on average, and the gaps between OWSP and the other two selection policies widen. Since
we fix the number of deconfounded samples to be 100, all three sampling policies are equivalent
when there are only 100 confounded samples in the dataset (i.e., we need to deconfound all 100
confounded samples in all cases), and the average absolute errors of the three selection policies do
not converge to 0 in Fig. 3.5.

Fig. 3.5 (middle) contains the 13,000 instances described above averaged over 100 replications.
It compares the performance of OWSP with that of the NSP on an instance level. Similarly, Fig. 3.5
(right) compares the performance of OWSP with that of the USP. In both figures, we fix the
number of confounded samples to be 681. We observe that OWSP dominates NSP and USP in the
majority of instances by both the absolute error and variance. Note that if we fix the number of
confounded samples and increase the number of deconfounded samples (with 𝑚 ≤ 𝑛), we observe
that OWSP dominates USP and NSP when the number of deconfounded samples are small, and the
gap shrinks as the number of deconfounded samples increases. When at 𝑚 = 𝑛, all three methods
are equivalent.
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3.5.3 Real-World Experiments: Cancer Mutations

Data Previously, we chose the underlying distribution ℙ𝑌 ,𝑇 ,𝑍 uniformly from the unit 7-Simplex.
However, real-world problems of interest may not be uniformly distributed. Since causal-inference
methods can be hard to validate as the true causal effect is almost never observed, to illustrate
the practicality of our methods, we consider a real-world observational dataset, picking three
variables to be the outcome, treatment, and confounder, and artificially hiding the confounder for
some examples. Finally, we evaluate our proposed sampling methods under the assumption that
we have access to infinitely many confounded samples. The Catalogue Of Somatic Mutations In
Cancer (COSMIC) is a public database of DNA sequences of tumor samples. It consists of targeted
gene-screening panels aggregated and manually curated over 25,000 peer reviewed papers. We
focus on the variables: primary cancer site, and gene. Specifically, for 1,350,015 cancer
patients, we observe their type of cancer, and for a subset of genes, whether or not a mutation
was observed in each gene.

Causal Models In our experiments, we designate cancer type as the outcome, a particular
mutation as the treatment, and another mutation as the confounder – this setup seems reasonable
because it is well known that multiple genetic mutations are correlated with individual cancer
types (Knudson 2001), and that mutations can cause both cancer itself and other mutations. As a
concrete example, mutations in the genes that code RNA polymerases (responsible for ensuring
the accuracy of replicating RNA) are found to increase the likelihood of both other mutations
and certain cancer types (Rayner et al. 2016). The setting where the treatment mutation and
cancer outcome are observed and the confounding mutation is unobserved is plausible because
it is common that the majority of patients only have a subset of genes sequenced (e.g., from
a commercial panel). For the purpose of illustration, we assume there is no other unobserved
confounders in this subsection.

The top 6 most commonly mutated genes were selected as treatment candidates. For each
combination of a cancer type and one of these genes, we removed patients for whom this gene was
not sequenced, and kept all pairs that had at least 40 patients in each of the four treatment-outcome
groups (to ensure our deconfounding policies would have enough samples to deconfound). This
procedure gave us 275 unique combinations of a cancer (outcome), mutation (treatment), and
another mutation (confounder). Since on average, each {cancer, mutation, mutation} tuple contains
around 25,883 patients, we took the estimated empirical distribution as the data-generating
distribution and applied the ATE formula described in § 3.3 to obtain the “true” ATE. To model
the unobserved confounder, we hid the values of the confounder, only revealing the value to a
sampling policy when it requested a deconfounded sample. We compared the use of deconfounded
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data along with the incorporation of confounded data under the three sampling selection polices:
NSP, USP, and OWSP.

Results: Fig. 3.6 (left) was generated with these 275 instances each repeated for 10,000 replica-
tions. The absolute error is measured as a function of the number of deconfounded samples in
step sizes of 15. First, similar to Fig. 3.2, we observe that incorporating confounded data reduces
both the absolute estimation error and the variance of the estimator by a large margin. Note
the improvement of OWSP over NSP is larger in this case as compared to that seen in Fig. 3.2.
Furthermore, when the number of deconfounded samples is small, OWSP outperforms USP. Note
that Fig. 3.6 (left) does not start with 0 because absent any deconfounded data, the estimated ATE
is the same for all sampling policies. In Fig. 3.6 (middle, right), we fix the number of deconfounded
samples to be 45 and compare the performance of OWSP against that of NSP and USP, respectively.
Both figures contain the 275 instances in the left figure, averaged over 10,000 replications. We
observe that under this setup, OWSP dominates NSP in all instances, and outperforms USP in the
majority of instances.

3.6 Conclusion

Although extensive studies have been conducted in causal inference, none addresses the case
where revealing the value of the confounder is the only option to estimate the causal effect. In
this paper, we propose the problem of causal inference with selectively deconfounded data, and
provide a set of non-adaptive sample selection policies. Our theoretical results upper bound the
amount of deconfounded data required under each sample selection policy and provide insights
for why the outcome-weighted selection policy works better on average than natural selection
policy. Furthermore, we conduct extensive experiments using both synthetic and real-world data
to validate our theoretical results. Note that although missing data could potentially be a limiting
factor to deconfounding samples in our problem setting, when the amount of confounded data is
ample, we can often assume that we will be able to deconfound enough samples to derive correct
causal relationships. On the other hand, if indeed our confounded data does not contain enough
samples to deconfound and intervention is not feasible on the target treatment, then one is only
left with collecting new deconfounded data (potentially in additional to the confounded data).
Note that in this setting our method of selecting new samples to collect can still be applied. Finally,
we conclude by pointing to several promising directions for potential future research:

1. In our current model, we assume that the treatment and outcome variables are binary,
and the confounders are categorical. We plan to extend our results to more general causal
problems, including the cases where the causal model is linear or semi-parametric.
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2. Although for confounders like genetics, the only option to estimate the causal effect is to
reveal the value of the confounder, in practice, proxies and mediators might be available for
a subset of confounders. Thus, we may extend the idea of selective revelation of information
beyond confounders to incorporate other variables, such as mediators and proxies.

3. Finally, our work can be extended to an adaptive setting where we can dynamically update
the sample selection decision once more information about the conditional probability 𝑞𝑧𝑦𝑡
is revealed.

3.7 The Generalization of Our Models

3.7.1 Multiple Confounders

In this section, we show that because we do not impose any independence assumption on the set
of confounder, revealing the values of all confounders offers maximal information on the joint
distribution of the confounders. In particular, we will illustrate through the case where we have
two binary confounders. The extension to multiple categorical confounders is straight forward.

In the case where we have two binary confounders 𝑍1 and 𝑍2, we can express the ATE as
follows:

ATE = ∑
𝑧1,𝑧2

(𝑃𝑌 |𝑇 ,𝑍1,𝑍2(1|1, 𝑧1, 𝑧2) − 𝑃𝑌 |𝑇 ,𝑍1,𝑍2(1|0, 𝑧1, 𝑧2))𝑃𝑍1,𝑍2(𝑧1, 𝑧2).

With an infinite amount of confounded data, we are provided with the joint distribution 𝑃𝑌 ,𝑇 (𝑦, 𝑡).
Thus, it remains to estimate the conditional distributions 𝑃𝑍1,𝑍2 |𝑌 ,𝑇 . In our paper, we consider only
the non-adaptive policies, i.e., the number of samples to deconfound in each group (𝑦, 𝑡) is fixed a
priori. In the case where the costs of revealing the values of 𝑍1 and 𝑍2 are the same and we do
not have any prior knowledge on the distributions of 𝑍1 and 𝑍2, the variables 𝑍1 and 𝑍2 becomes
exchangeable. In the case where the sample selection policies are completely non-adaptive (which
is the case that we consider in this paper), by the symmetry of the variables 𝑍1 and 𝑍2, we have
that sampling from the joint distribution of 𝑍1 and 𝑍2 yields the maximum expected information
on the value of the ATE. (Note that if the confounders take categorical values of different sizes
and we allow adaptive policies, then we might be able to reduce the total cost of deconfounding
to estimate the ATE to within a desired accuracy level.)

3.7.2 Pretreatment Covariates

In the case where we have known pretreatment covariates 𝑋 , our model can be applied in
estimating the individual treatment effect where we make the common ignorability assumption
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on the pretreatment covariates 𝑋 and the confounder 𝑍 : given pretreatment covariates 𝑋 and
the confounder 𝑍 , the values of outcome variable, 𝑌 = 0 and 𝑌 = 1, are independent of treatment
assignment. In this case, the distributions 𝑃𝑌 ,𝑇 (𝑦, 𝑡) and 𝑃𝑋 (𝑥) are known and the Individual
Treatment Effect (ITE):

ITE = ∑
𝑧,𝑥

(𝑃𝑌 |𝑇 ,𝑍 ,𝑋 (1|1, 𝑧, 𝑥) − 𝑃𝑌 |𝑇 ,𝑍 ,𝑋 (1|0, 𝑧, 𝑥))𝑃𝑍,𝑋 (𝑧, 𝑥)

= ∑
𝑧,𝑥

(𝑃𝑌 |𝑇 ,𝑍 ,𝑋 (1|1, 𝑧, 𝑥) − 𝑃𝑌 |𝑇 ,𝑍 ,𝑋 (1|0, 𝑧, 𝑥))𝑃𝑍 |𝑋 (𝑧|𝑥)𝑃𝑋 (𝑥). (3.15)

Note that in Eq. (3.15) the only distributions we need to estimate are the conditional distributions
𝑃𝑍 |𝑌 ,𝑇 ,𝑋 . The values of 𝑃𝑌 |𝑇 ,𝑍 ,𝑋 and 𝑃𝑍 |𝑋 can be calculated from 𝑃𝑍 |𝑌 ,𝑇 ,𝑋 by first conditioning
the confounded distributions 𝑃𝑌 ,𝑇 on the values of the pretreatment covariates 𝑋 , i.e., we first
subsample all confounded (outcome, treatment) pairs for a fixed value of 𝑋 , 𝑋 = 𝑥 , and then
within each subsample, estimate the conditional distributions 𝑃𝑍 |𝑌 ,𝑇 ,𝑋 by applying our methods.
To obtain ITE, we weight the estimates we obtain from all subsamples by 𝑃𝑋 (𝑥).

3.8 DoublyRobust EstimatorWhen IncorporatingConfounded

Data

When incorporating (infinite) confounded data, we know the confounded distribution, i.e., ℙ𝑌 ,𝑇 (𝑦, 𝑡)’s
(or the 𝑎𝑦𝑡 ’s) are known. Thus, to obtain the maximum likelihood estimator for the outcome
regression model, we need to add the constraint indicating that the estimated ℙ𝑌 ,𝑇 (𝑦, 𝑡)’s, i.e.,
ℙ̂𝑌 ,𝑇 (𝑦, 𝑡)’s, should equal to the known distribution 𝑎𝑦𝑡 ’t. Thus, to integrate these constraints into
the estimation processes for the conditional outcomes ℙ𝑌 |𝑇 ,𝑍 (1|𝑡, 𝑧)’s, we need to estimate the
additional parameters ℙ𝑍 |𝑇 (𝑧|𝑡)’s. Let 𝑧𝑡𝑖 to denote the values of 𝑍 when 𝑇 = 𝑡 , where 𝑖 = 1, ..., 𝑁𝑡

(where 𝑁𝑡 is the total number of samples where 𝑇 = 𝑡 , and note that 𝑁𝑡 = ∑𝑧 𝑁𝑡𝑧). Now, we can
write the constraint as

∑
𝑧
ℙ̂𝑌 |𝑇 ,𝑍 (1|𝑡, 𝑧)ℙ̂𝑍 |𝑇 (𝑧|𝑡) =

𝑎1𝑡
∑𝑦 𝑎𝑦𝑡

,

and we will estimate the ℙ𝑍 |𝑇 (𝑧|𝑡) through the MLE estimator using regression: ℙ𝑍 |𝑇 (𝑧|𝑡) = 𝜎 (𝑤𝑡𝑢𝑡 +
𝑏𝑡), where 𝑤𝑡 and 𝑏𝑡 are the weights and bias respectively, and 𝑢𝑡 is a binary random variable that
takes the value 1 if 𝑇 = 𝑡 and 0 otherwise. Thus, to obtain the MLE estimator for the outcome
regression model when incorporating confounded data, we need to solve the following systems of

89



constrained MLE problem:

(1) for all 𝑡, 𝑧 ∶

argmax
𝑁𝑡𝑧
∑
𝑖=1

𝑦 𝑡𝑧𝑖 log(𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧) + (1 − 𝑦 𝑡𝑧𝑖 ) log(1 − 𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧))

s.t.∑
𝑧
𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧)𝜎 (𝑤𝑡𝑢𝑡 + 𝑏𝑡) =

𝑎1𝑡
∑𝑦 𝑎𝑦𝑡

(2) for all 𝑡, 𝑧 ∶

argmax
𝑁𝑡
∑
𝑖=1

𝑧𝑡𝑖 log(𝜎 (𝑤𝑡𝑢𝑡 + 𝑏𝑡) + (1 − 𝑧𝑡𝑖 ) log(1 − 𝜎 (𝑤𝑡𝑢𝑡 + 𝑏𝑡))

s.t.∑
𝑧
𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧)𝜎 (𝑤𝑡𝑢𝑡 + 𝑏𝑡) =

𝑎1𝑡
∑𝑦 𝑎𝑦𝑡

Although we can verify that our plugin estimator used in the paper (Eq. (3.6)) is feasible to
the above optimization system, a direct observation from the above optimization system (1 and
2) is that all decision variables that share the same treatment value, 𝑡 , share the same feasible
region, but their objective functions are not correlated. Thus, the above optimization system is not
well-defined. We conclude that extending the doubly-robust estimator to incorporate confounded
data is not straight-forward and requires further research.

Checking the Feasibility of Our Estimator Recall that our plugin estimator yields the
following estimated ℙ̂𝑌 |𝑇 ,𝑍 (1|𝑡, 𝑧)’s and ℙ̂𝑍 |𝑇 (𝑧|𝑡)’s:

𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧) =
𝑎1𝑡 �̂�𝑧1𝑡

∑𝑦 𝑎𝑦𝑡 �̂�𝑧𝑦𝑡

𝜎 (𝑤𝑡𝑢𝑡 + 𝑏𝑡) =
∑𝑦 𝑎𝑦𝑡 �̂�𝑧𝑦𝑡
∑𝑦 𝑎𝑦𝑡

Indeed, if we plugin 𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧) and 𝜎 (𝑤𝑡𝑢𝑡 + 𝑏𝑡) in our constraints, we have

∑
𝑧
𝜎 (𝑤𝑡𝑧𝑢𝑡𝑧 + 𝑏𝑡𝑧)𝜎 (𝑤𝑡𝑢𝑡 + 𝑏𝑡) = ∑

𝑧

𝑎1𝑡 �̂�𝑧1𝑡
∑𝑦 𝑎𝑦𝑡 �̂�𝑧𝑦𝑡

∑𝑦 𝑎𝑦𝑡 �̂�𝑧𝑦𝑡
∑𝑦 𝑎𝑦𝑡

= ∑
𝑧

𝑎1𝑡 �̂�𝑧1𝑡
∑𝑦 𝑎𝑦𝑡

=
𝑎1𝑡 ∑𝑧 �̂�𝑧1𝑡
∑𝑦 𝑎𝑦𝑡

=
𝑎1𝑡

∑𝑦 𝑎𝑦𝑡
,

where the last equality is because∑𝑧 �̂�𝑧1𝑡 = ∑𝑧 ℙ̂𝑍 |𝑌 ,𝑇 (𝑧|1, 𝑡) = 1.

3.9 Proofs

To begin, recall the notation introduced in § 3.3: we model the binary-valued treatment, the binary-
valued outcome, and the categorical confounder as the random variables 𝑇 ∈ {0, 1}, 𝑌 ∈ {0, 1},
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and 𝑍 ∈ {1,… , 𝑘}, respectively. The underlying joint distribution of these three random variables
is represented as 𝑃𝑌 ,𝑇 ,𝑍 (⋅, ⋅, ⋅). To save on space for terms that are used frequently, we define the
following shorthand notation:

𝑝𝑧𝑦𝑡 = 𝑃𝑌 ,𝑇 ,𝑍 (𝑦, 𝑡, 𝑧), 𝑎𝑦𝑡 = 𝑃𝑌 ,𝑇 (𝑦, 𝑡), 𝑞𝑧𝑦𝑡 = 𝑃𝑍 |𝑌 ,𝑇 (𝑧|𝑦, 𝑡).

These terms appear frequently because, to estimate the entire joint distribution on 𝑌 , 𝑇 , 𝑍 (the
𝑝𝑧𝑦𝑡 ’s), it suffices to estimate the joint distribution on 𝑌 , 𝑇 (the 𝑎𝑦𝑡 ’s), along with the conditional
distribution of 𝑍 on 𝑌 , 𝑇 (the 𝑞𝑧𝑦𝑡 ’s): 𝑝𝑧𝑦𝑡 = 𝑎𝑦𝑡𝑞𝑧𝑦𝑡 . Finally, let 𝑝𝑧𝑦𝑡 , �̂�𝑧𝑦𝑡 , and �̂�𝑧𝑦𝑡 be the empirical
estimates of 𝑝𝑧𝑦𝑡 , 𝑎𝑧𝑦𝑡 , and 𝑞𝑧𝑦𝑡 , respectively, using the MLE.

3.9.1 Proof of Theorem 5

Theorem 5. Using deconfounded data alone, the estimator ATE(p̂) as defined in Equation (3.4) is
(𝜖, 𝛿)-close if the number of deconfounded samples is at least

𝑚base ∶= 𝐶 max
𝑡,𝑧 (

∑
𝑦
𝑝𝑧𝑦𝑡)

−2

= 𝐶 max
𝑡,𝑧

1
ℙ𝑇 ,𝑍 (𝑡, 𝑧)2

,

where 𝐶 ∶= 12.5𝑘2 ln(8𝑘/𝛿)𝜖−2.

Proof. Proof of Theorem 5 This proof proceeds as follows: first, we prove a sufficient (deterministic)
condition, on the errors of our estimates of 𝑝𝑧𝑦𝑡 ’s, under which |ÂTE − ATE| is small. Second, we
show that the errors of our estimates of 𝑝𝑧𝑦𝑡 ’s are indeed small with high probability.

Step 1: First, we can write the ATE in terms of the 𝑝𝑧𝑦𝑡 ’s as follows:

ATE = ∑
𝑧
(𝑃𝑌 |𝑇 ,𝑍 (1|1, 𝑧) − 𝑃𝑌 |𝑇 ,𝑍 (1|0, 𝑧)) 𝑃𝑍 (𝑧) = ∑

𝑧

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡)

⎞
⎟
⎟
⎟
⎠

.

In order for the ATE to be well-defined, we assume∑𝑦 𝑝𝑧𝑦𝑡 ∈ (0, 1) for all 𝑡, 𝑧 throughout. We
can then decompose |ÂTE − ATE|:

|ÂTE − ATE| =

||||||||

∑
𝑧

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡)
−
⎛
⎜
⎜
⎜
⎝

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡)

⎞
⎟
⎟
⎟
⎠

||||||||

≤ ∑
𝑧

||||||||

⎛
⎜
⎜
⎜
⎝

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡)
−
⎛
⎜
⎜
⎜
⎝

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡)

||||||||

.
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Thus, in order to upper bound |||ÂTE − ATE||| by some 𝜖, it suffices to show that
||||||||

⎛
⎜
⎜
⎜
⎝

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡)
−
⎛
⎜
⎜
⎜
⎝

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

⎞
⎟
⎟
⎟
⎠
(
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡)

||||||||

≤
𝜖
𝑘
, ∀𝑧. (3.16)

Step 2: To bound the above terms, we first derive Lemma 5 for bounding the error of the product
of two estimates in terms of their two individual errors:

Lemma 5. For any 𝑢, �̂� ∈ [−1, 1], and 𝑣, �̂� ∈ [0, 1], suppose there exists 𝜖, 𝜃 ∈ (0, 1) such that all of

the following conditions hold: (1) |𝑢 − �̂�| ≤ (1 − 𝜃)𝜖, (2) |𝑣 − �̂�| ≤ 𝜃𝜖, (3) 𝑢 + 𝜖 ≤ 1, (4) 𝑣 + 𝜖 ≤ 1, and
(5) 𝜖 ≤ min(𝑢, 𝑣). Then, |𝑢𝑣 − �̂��̂�| ≤ 𝜖.

Proof. Proof of Lemma 5 Since |𝑢 − �̂�| ≤ (1 − 𝜃)𝜖, we have �̂� ∈ [𝑢 − (1 − 𝜃)𝜖, 𝑢 + (1 − 𝜃)𝜖], and
similarly, from |𝑣 − �̂�| ≤ 𝜃𝜖, we have �̂� ∈ [𝑣 − 𝜃𝜖, 𝑣 + 𝜃𝜖]. Thus,

|𝑢𝑣 − �̂��̂�| ≤ max (|𝑢𝑣 − (𝑢 + (1 − 𝜃)𝜖)(𝑣 + 𝜃𝜖)|, |𝑢𝑣 − (𝑢 − (1 − 𝜃)𝜖)(𝑣 − 𝜃𝜖)|) (because 𝑣, �̂� ≥ 0)

= max(||𝜃𝑢𝜖 + (1 − 𝜃)𝑣𝜖 + (1 − 𝜃)𝜃𝜖2|| , ||𝜃𝑢𝜖 + (1 − 𝜃)𝑣𝜖 − (1 − 𝜃)𝜃𝜖2||)

= ||𝜃𝑢𝜖 + (1 − 𝜃)𝑣𝜖 + (1 − 𝜃)𝜃𝜖2|| (because (1 − 𝜃)𝜃𝜖2 > 0)

≤ |𝜃(𝑢 + 𝜖)𝜖 + (1 − 𝜃)𝑣𝜖 | (because 𝜃𝜖2 > (1 − 𝜃)𝜃𝜖2)

≤ 𝜖 (because 𝑢 + 𝜖 ∈ [−1, 1], and 𝑣 ≤ 1)

We can apply Lemma 5 directly to the terms in Eq. (3.16) by setting

𝑢𝑧 =
𝑝𝑧11

∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

, �̂�𝑧 =
𝑝𝑧11

∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

, 𝑣𝑧 = ∑
𝑦,𝑡

𝑝𝑧𝑦𝑡 , �̂�𝑧 = ∑
𝑦,𝑡

𝑝𝑧𝑦𝑡 ,

and noting that 𝑢𝑧 , �̂�𝑧 ∈ [−1, 1], and 𝑣𝑧 , �̂�𝑧 ∈ [0, 1]. Lemma 5 implies that the upper bound in Eq.
(3.16) holds if, for some 𝜃 ∈ (0, 1), we have

|𝑣𝑧 − �̂�𝑧 | <
𝜃
𝑘
𝜖 and |𝑢𝑧 − �̂�𝑧 | <

1 − 𝜃
𝑘

𝜖.

While we can apply standard concentration results to the |𝑣𝑧 − �̂�𝑧 | terms, the |𝑢𝑧 − �̂�𝑧 | terms will
need to be further decomposed:

|𝑢𝑧 − �̂�𝑧 | =

|||||||

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

−
𝑝𝑧11

∑
𝑦
𝑝𝑧𝑦1

+
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

|||||||

≤

|||||||

𝑝𝑧11
∑
𝑦
𝑝𝑧𝑦1

−
𝑝𝑧11

∑
𝑦
𝑝𝑧𝑦1

|||||||

+

|||||||

𝑝𝑧10
∑
𝑦
𝑝𝑧𝑦0

−
𝑝𝑧10

∑
𝑦
𝑝𝑧𝑦0

|||||||

.

It will suffice to show that for each 𝑡 and 𝑧,
|||||||

𝑝𝑧1𝑡
∑
𝑦
𝑝𝑧𝑦𝑡

−
𝑝𝑧1𝑡

∑
𝑦
𝑝𝑧𝑦𝑡

|||||||

<
1 − 𝜃
2𝑘

𝜖. (3.17)
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Step 3: To bound these terms, we derive Lemma 6. Recall that 𝑝𝑧1𝑡 + 𝑝𝑧0𝑡 , 𝑝𝑧1𝑡 + 𝑝𝑧0𝑡 ∈ (0, 1).

Lemma 6. For any 𝑤 + 𝑠, �̂� + 𝑠 ∈ (0, 1), if |𝑤 + 𝑠 − �̂� − 𝑠| ≤ (𝑤 + 𝑠)𝜖 and |𝑤 − �̂� | ≤ (𝑤 + 𝑠)𝜖, then
||||
𝑤

𝑤 + 𝑠
−

�̂�
�̂� + 𝑠

||||
≤ 2𝜖.

Proof. Proof of Lemma 6 First, since |𝑤 + 𝑠 − �̂� − 𝑠| ≤ (𝑤 + 𝑠)𝜖, we have that
||||
𝑤 + 𝑠
�̂� + 𝑠

− 1
||||
≤
𝑤 + 𝑠
�̂� + 𝑠

𝜖,

or equivalently,
1 −

𝑤 + 𝑠
�̂� + 𝑠

𝜖 ≤
𝑤 + 𝑠
�̂� + 𝑠

≤ 1 +
𝑤 + 𝑠
�̂� + 𝑠

𝜖.

We can apply this inequality and rearrange terms as follows to conclude the proof:
||||
𝑤

𝑤 + 𝑠
−

�̂�
�̂� + 𝑠

||||
=
||||

1
𝑤 + 𝑠

||||

||||
𝑤 − �̂�

𝑤 + 𝑠
�̂� + 𝑠

||||

≤
||||

1
𝑤 + 𝑠

||||
max(

||||
𝑤 − �̂� (1 −

𝑤 + 𝑠
�̂� + 𝑠

𝜖)
||||
,
||||
𝑤 − �̂� (1 +

𝑤 + 𝑠
�̂� + 𝑠

𝜖)
||||)

=
||||

1
𝑤 + 𝑠

||||
max(

||||
𝑤 − �̂� +

𝑤 + 𝑠
�̂� + 𝑠

�̂�𝜖
||||
,
||||
𝑤 − �̂� −

𝑤 + 𝑠
�̂� + 𝑠

�̂�𝜖
||||)

= max(
||||
𝑤 − �̂�
𝑤 + 𝑠

+
�̂�

�̂� + 𝑠
𝜖
||||
,
||||
𝑤 − �̂�
𝑤 + 𝑠

−
�̂�

�̂� + 𝑠
𝜖
||||)

≤
||||
𝑤 − �̂�
𝑤 + 𝑠

||||
+
||||
�̂�

�̂� + 𝑠
||||
𝜖 ≤

||||
𝑤 + 𝑠
𝑤 + 𝑠

||||
𝜖 +

||||
�̂�

�̂� + 𝑠
||||
𝜖 ≤ 2𝜖.

The second to last inequality follows from the assumption that |𝑤 − �̂� | ≤ (𝑤 + 𝑠)𝜖.

Lemma 6 implies that Eq. (3.17) is satisfied if

||𝑝
𝑧
1𝑡 − 𝑝

𝑧
1𝑡
|| <

(∑𝑦 𝑝𝑧𝑦𝑡)(1 − 𝜃)
4𝑘

𝜖 and ||𝑝
𝑧
1𝑡 + 𝑝

𝑧
0𝑡 − 𝑝

𝑧
1𝑡 − 𝑝

𝑧
0𝑡
|| <

(∑𝑦 𝑝𝑧𝑦𝑡)(1 − 𝜃)
4𝑘

𝜖.

Step 4: We’ve shown above that |ÂTE − ATE| ≤ 𝜖 is satisfied when

|𝑣𝑧 − �̂�𝑧 | <
𝜃
𝑘
𝜖, ||𝑝

𝑧
1𝑡 − 𝑝

𝑧
1𝑡
|| <

(∑𝑦 𝑝𝑧𝑦𝑡)(1 − 𝜃)
4𝑘

𝜖, and ||𝑝
𝑧
1𝑡 + 𝑝

𝑧
0𝑡 − 𝑝

𝑧
1𝑡 − 𝑝

𝑧
0𝑡
|| <

(∑𝑦 𝑝𝑧𝑦𝑡)(1 − 𝜃)
4𝑘

𝜖, ∀𝑡, 𝑧.

Note that if ∀𝑡, ||𝑝𝑧1𝑡 + 𝑝𝑧0𝑡 − 𝑝𝑧1𝑡 − 𝑝𝑧0𝑡 || =
|||∑𝑦 𝑝𝑧𝑦𝑡 −∑𝑦 𝑝𝑧𝑦𝑡

||| <
(∑𝑦 𝑝𝑧𝑦𝑡 )(1−𝜃)

4𝑘 𝜖 then

|𝑣𝑧 − �̂�𝑧 | =
||||||
∑
𝑦,𝑡

𝑝𝑧𝑦𝑡 −∑
𝑦,𝑡

𝑝𝑧𝑦𝑡
||||||
≤ ∑

𝑡

||||||
∑
𝑦
𝑝𝑧𝑦𝑡 −∑

𝑦
𝑝𝑧𝑦𝑡

||||||
<
(∑𝑦,𝑡 𝑝𝑧𝑦𝑡)(1 − 𝜃)

4𝑘
𝜖 ≤

(1 − 𝜃)
4𝑘

𝜖.

Thus, to remove the first constraint |𝑣𝑧 − �̂�𝑧 | < 𝜃
𝑘 𝜖, we set

𝜃
𝑘
𝜖 =

(1 − 𝜃)
4𝑘

𝜖,

and obtain 𝜃 = 1
5 .
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Step 5: To summarize so far, Lemmas 5 and 6 allow us to upper bound the error of our estimated
ATE in terms of upper bounds on the error of our estimates of its constituent terms:

𝑃 (|ÂTE − ATE| < 𝜖) ≥ 𝑃 (
⋂
𝑡,𝑧

{
||𝑝
𝑧
1𝑡 − 𝑝

𝑧
1𝑡
|| <

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖
}
⋂
𝑡,𝑧

{
||𝑝
𝑧
1𝑡 + 𝑝

𝑧
0𝑡 − 𝑝

𝑧
1𝑡 − 𝑝

𝑧
0𝑡
|| <

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖
}

)
,

or equivalently,

𝑃 (|ÂTE − ATE| ≥ 𝜖) ≤ 𝑃 (
⋃
𝑡,𝑧

{
||𝑝
𝑧
1𝑡 − 𝑝

𝑧
1𝑡
|| ≥

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖
}
⋃
𝑡,𝑧

{
||𝑝
𝑧
1𝑡 + 𝑝

𝑧
0𝑡 − 𝑝

𝑧
1𝑡 − 𝑝

𝑧
0𝑡
|| ≥

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖
}

)
.

Applying a union bound, we have

𝑃 (|ÂTE − ATE| ≥ 𝜖) ≤ ∑
𝑡,𝑧
𝑃 (

||𝑝
𝑧
1𝑡 − 𝑝

𝑧
1𝑡
|| ≥

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖) + 𝑃 (
||𝑝
𝑧
1𝑡 + 𝑝

𝑧
0𝑡 − 𝑝

𝑧
1𝑡 − 𝑝

𝑧
0𝑡
|| ≥

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖) .

(3.18)

Step 6: Finally, we can applyHoeffding’s inequality (Theorem 2) to obtain the upper bound for the
inequality above. Let𝑋 𝑧

𝑦𝑡 be the randomvariable thatmaps the event (𝑌 = 𝑦, 𝑇 = 𝑡, 𝑍 = 𝑧) ↦ {0, 1}.
Then, 𝑋 𝑧

𝑦𝑡 is a Bernoulli random variable with parameter 𝑝𝑧𝑦𝑡 . Let 𝑚 denote the total number of
deconfounded samples that we have. Since 𝑝𝑦𝑡 is estimated through the MLE, we have 𝑝𝑧𝑦𝑡 =

∑𝑚
𝑖=1 𝑋 𝑧

𝑦𝑡
𝑚 .

Applying Theorem 2, we obtain:

𝑃
(

|||||

∑𝑚
𝑖=1 𝑋 𝑧

𝑦𝑡

𝑚
− 𝑝𝑧𝑦𝑡

|||||
≥
∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖
)

≤ 2 exp
(
−2𝑚(∑𝑦 𝑝𝑧𝑦𝑡)

2 𝜖2

25𝑘2 )
, and (3.19)

𝑃 (
||||
∑𝑚

𝑖=1 𝑋 𝑧
1𝑡 + 𝑋 𝑧

0𝑡

𝑚
− 𝑝𝑧1𝑡 − 𝑝

𝑧
0𝑡
||||
≥
∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖) ≤ 2 exp
(
−2𝑚(∑𝑦 𝑝𝑧𝑦𝑡)

2 𝜖2

25𝑘2 )
. (3.20)

Combining Eq.s (3.18), (3.19), and (3.20), we have

𝑃 (|ÂTE − ATE| ≥ 𝜖) ≤ ∑
𝑡,𝑧
𝑃 (

||𝑝
𝑧
1𝑡 − 𝑝

𝑧
1𝑡
|| ≥

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖) + 𝑃 (
||𝑝
𝑧
1𝑡 + 𝑝

𝑧
0𝑡 − 𝑝

𝑧
1𝑡 − 𝑝

𝑧
0𝑡
|| ≥

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖)

≤ 4𝑘max
𝑡,𝑧 (

2 exp
(
−2𝑚(∑𝑦 𝑝𝑧𝑦𝑡)

2 𝜖2

25𝑘2 ))
= 8𝑘max

𝑡,𝑧
exp

(
−2𝑚(∑𝑦 𝑝𝑧𝑦𝑡)

2 𝜖2

25𝑘2 )
≤ 𝛿,

where the second line follows from the fact that, since 𝑡 is binary, there are 4𝑘 terms in total.
Solving the above equation, we conclude that 𝑃 (|ÂTE − ATE| ≥ 𝜖) < 𝛿 is satisfied when the sample
size 𝑚 is at least

𝑚 ≥
12.5𝑘2 ln( 8𝑘𝛿 )

𝜖2
max
𝑡,𝑧

1

(∑𝑦 𝑝𝑧𝑦𝑡)
2 .
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3.9.2 Proof of Proposition 7

Proposition 7. (Lower Bound with respect to ℙ𝑌 ,𝑇 ,𝑍 ) Fix any confounded distribution and assume

that infinite confounded data is given (or equivalently, ℙ𝑌 ,𝑇 is known). There exists 𝜖, 𝛿 > 0 such that

no (𝜖, 𝛿)-close estimator exists. Specifically, for any number of deconfounded samples 𝑚,10 there exist

two underlying distributions ℙ1
𝑌 ,𝑇 ,𝑍 and ℙ2

𝑌 ,𝑇 ,𝑍 with the following properties:

• Both of their confounded distributions are ℙ𝑌 ,𝑇 .

• No algorithm can correctly identify both of them with probability more than 1 − 𝛿 using at

most 𝑚 deconfounded samples.

• Their corresponding ATE’s are 𝜖 apart: ||ATE(ℙ
1
𝑌 ,𝑇 ,𝑍 ) − ATE(ℙ2

𝑌 ,𝑇 ,𝑍 )|| ≥ 𝜖.

Proof. Proof of Proposition 7 It suffices to show for the case where confounder takes binary value.
The extension to categorical confounder is straightforward as illustrated in the proof of Theorem 9
in § 3.9.7. Let 𝑞𝑦𝑡 = 𝑃 (𝑍 = 1|𝑌 = 𝑦, 𝑇 = 𝑡). To show that Proposition 7 is true, it is sufficient to
show that there exist a positive constant 𝑐 (that depends on a) such that for all fixed a, there
exists a pair of q and q′ such that ‖ATE(a,q) − ATE(a,q′)‖ > 𝑐, with q and q′ close in distribution.
We proceed by construction. For fixed a, consider the following q pairs: q = (𝑞00, 0, 𝑞10, 𝛾 ) and
q′ = (𝑞00, 𝛾 , 𝑞10, 0). Then, we have

ATE(a,q) = (𝑎00𝑞00 + 𝑎10𝑞10 + 𝑎11𝛾 ) +
𝑎11(1 − 𝛾 )

𝑎11(1 − 𝛾 ) + 𝑎01
(1 − 𝑎00𝑞00 − 𝑎10𝑞10 − 𝑎11𝛾 )−

𝑎10𝑞10
𝑎10𝑞10 + 𝑎00𝑞00

(𝑎00𝑞00 + 𝑎10𝑞10 + 𝑎11𝛾 ) −
𝑎10(1 − 𝑞10)

𝑎10(1 − 𝑞10) + 𝑎00(1 − 𝑞00)
(1 − 𝑎00𝑞00 − 𝑎10𝑞10 − 𝑎11𝛾 ),

and similarly, we have

ATE(a,q′) =
𝑎11

𝑎11 + 𝑎01(1 − 𝛾 )
(1 − 𝑎00𝑞00 − 𝑎01𝛾 − 𝑎10𝑞10) −

𝑎10𝑞10
𝑎10𝑞10 + 𝑎00𝑞00

(𝑎00𝑞00

+ 𝑎01𝛾 + 𝑎10𝑞10) −
𝑎10(1 − 𝑞10)

𝑎10(1 − 𝑞10) + 𝑎00(1 − 𝑞00)
(1 − 𝑎00𝑞00 − 𝑎01𝛾 − 𝑎10𝑞10).

In particular,
lim
𝛾→0

ATE(a,q) − ATE(a,q′) = 𝑎00𝑞00 + 𝑎10𝑞10 ≤ 𝑎00 + 𝑎10, (3.21)

where we can choose 𝑞00 and 𝑞10 to be 1.
On the other hand, we can show that the number of samples needed to distinguish q from q′

is at least Ω(1/𝛾 ): since q and q′ are the same in two of the entries and symmetric on the rest two,
to distinguish q and q′ is to distinguish a Bernoulli random variable with parameter 0 (denoting

10See footnote 6

95



this variable 𝐵0) from a Bernoulli random variable with parameter 𝛾 (denoting this random
variable 𝐵𝛾 ). Let 𝑓 be any estimator of the Bernoulli random variable, and 𝑥𝑖 , ..., 𝑥𝑚 be the sequence
of 𝑚 observations. Then we have |𝔼𝑋∼𝐵𝑚0 [𝑓 ] − 𝔼𝑋∼𝐵𝑚𝛾 [𝑓 ]| ≤ ‖𝐵𝑚0 − 𝐵𝑚𝛾 ‖1 ≤

√
2(ln 2)KL(𝐵𝑚0 ‖𝐵𝑚𝛾 ) ≤

2
√
(ln 2)𝛾𝑚, where the last inequality is because when given 𝑚 samples, KL(𝐵𝑚0 ‖𝐵𝑚𝛾 ) ≤ (2𝛾 ln 2 +

(1 − 2𝛾 ) ln 1−2𝛾
1−𝛾 )𝑚 ≤ 2𝛾𝑚. On the other hand, any hypothesis test that takes n samples and

distinguishes between 𝐻0 ∶ 𝑋1, ..., 𝑋𝑛 ∼ 𝑃0 and 𝐻1 ∶ 𝑋1, ..., 𝑋𝑛 ∼ 𝑃1 has probability of error lower
bounded by max(𝑃0(1), 𝑃1(0)) ≥ 1

4𝑒
−𝑛KL(𝑃0‖𝑃1), where 𝑃0(1) indicates the probability that we identify

class 𝐻0 while the true class is 𝐻1. Since 𝑃0(1) + 𝑃1(0) ≤ 𝛿 , by contradiction, we can show that
𝑚 ∼ Ω(ln(𝛿−1)𝛾 −1).

Note that this lower bound on m can be arbitrarily large by choosing 𝛾 to be sufficiently
small. However their ATE values stay constant away as observed in Eq. (3.21). Thus, for every
fixed confounded distribution encoded by a and fixed number of deconfounded samples 𝑚, we
can always construct a pair of conditional distributions encoded by q and q′ such that their
corresponding ATEs are constant away while the probability that we correctly identify the true
conditional distribution from q and q′ is less than 1 − 𝛿 . In particular, 𝜖 = 𝑐 = 𝑎00 + 𝑎10 in
the above example. (Here, we implicitly assume that 𝑎00 + 𝑎10 is strictly greater than zero, i.e.,
𝑎00 + 𝑎10 > 0.)

3.9.3 Proof of Theorem 6

Proposition 6. (Lower Bound with respect to 𝜖 and 𝛿) Fix any confounded distribution and assume

that infinite confounded data is given (or equivalently, ℙ𝑌 ,𝑇 is known). For any ATE estimator, there

exists an underlying distribution ℙ𝑌 ,𝑇 ,𝑍 , whose confounded distribution is ℙ𝑌 ,𝑇 , for which the number

of deconfounded samples11 required for the estimator to be (𝜖, 𝛿)-close is at least Ω(𝜖−2 log(𝛿−1)).

Proof. Proof of Theorem 6 Again, it suffices to show for the case where the confounder is binary.
The extension to categorical confounder is straightforward as illustrated in the proof of Theorem 9
in § 3.9.7. Let 𝑞𝑦𝑡 = 𝑃 (𝑍 = 1|𝑌 = 𝑦, 𝑇 = 𝑡). We will proceed by construction. Consider q =
(𝑞00, 𝑞01, 𝛽, 𝛽 + 𝛾 ) and q′ = (𝑞00, 𝑞01, 𝛽 + 𝛾 , 𝛽), for some small 𝛾 . Then

ATE(a,q) =
𝑎11(𝛽 + 𝛾 )

𝑎11(𝛽 + 𝛾 ) + 𝑎01𝑞01
(𝑎00𝑞00 + 𝑎01𝑞01 + 𝑎10𝛽 + 𝑎11(𝛽 + 𝛾 )) +

𝑎11(1 − 𝛽 − 𝛾 )
𝑎11(1 − 𝛽 − 𝛾 ) + 𝑎01(1 − 𝑞01)

(1 − 𝑎00𝑞00 − 𝑎01𝑞01 − 𝑎10𝛽 − 𝑎11(𝛽 + 𝛾 )) −
𝑎10𝛽

𝑎10𝛽 + 𝑎00𝑞00
(𝑎00𝑞00 + 𝑎01𝑞01 + 𝑎10𝛽 + 𝑎11(𝛽 + 𝛾 ))−

𝑎10(1 − 𝛽)
𝑎10(1 − 𝛽) + 𝑎00(1 − 𝑞00)

(1 − 𝑎00𝑞00 − 𝑎01𝑞01 − 𝑎10𝛽 − 𝑎11(𝛽 + 𝛾 )),

11This applies when the deconfounded samples are generated according to ℙ𝑌 ,𝑇 ,𝑍 as in this section, or are selectively
deconfounded as in the following section.
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and similarly, we have

ATE(a,q′) =
𝑎11𝛽

𝑎11𝛽 + 𝑎01𝑞01
(𝑎00𝑞00 + 𝑎01𝑞01 + 𝑎10(𝛽 + 𝛾 ) + 𝑎11𝛽) +

𝑎11(1 − 𝛽)
𝑎11(1 − 𝛽) + 𝑎01(1 − 𝑞01)

(1 − 𝑎00𝑞00−

𝑎01𝑞01 − 𝑎10(𝛽 + 𝛾 ) − 𝑎11𝛽) −
𝑎10(𝛽 + 𝛾 )

𝑎10(𝛽 + 𝛾 ) + 𝑎00𝑞00
(𝑎00𝑞00 + 𝑎01𝑞01 + 𝑎10(𝛽 + 𝛾 ) + 𝑎11𝛽)−

𝑎10(1 − 𝛽 − 𝛾 )
𝑎10(1 − 𝛽 − 𝛾 ) + 𝑎00(1 − 𝑞00)

(1 − 𝑎00𝑞00 − 𝑎01𝑞01 − 𝑎10(𝛽 + 𝛾 ) − 𝑎11𝛽).

Ignoring the 𝛾 in the denominator, we have that

ATE(a,q) − ATE(a,q′) = (
𝑎11

𝑎11𝛽 + 𝑎01𝑞01
+

𝑎10
𝑎10𝛽 + 𝑎00𝑞00

)(𝑎00𝑞00 + 𝑎01𝑞01 + 𝑎10𝛽 + 𝑎11𝛽)𝛾

− (
𝑎11

𝑎11(1 − 𝛽) + 𝑎01(1 − 𝑞01)
+

𝑎10
𝑎10(1 − 𝛽) + 𝑎00(1 − 𝑞00)

)(1 − 𝑎00𝑞00 − 𝑎01𝑞01 − 𝑎10𝛽 − 𝑎11𝛽)𝛾

+
𝑎211 − 𝑎11𝑎10
𝑎11𝛽 + 𝑎01𝑞01

𝛽𝛾 −
𝑎211 − 𝑎11𝑎10

𝑎11(1 − 𝛽) + 𝑎01(1 − 𝑞01)
(1 − 𝛽)𝛾

+
𝑎210 − 𝑎11𝑎10
𝑎10𝛽 + 𝑎00𝑞00

𝛽𝛾 −
𝑎210 − 𝑎11𝑎10

𝑎10(1 − 𝛽) + 𝑎00(1 − 𝑞00)
(1 − 𝛽)𝛾

+
𝑎211

𝑎11𝛽 + 𝑎01𝑞01
𝛾 2 +

𝑎211
𝑎11(1 − 𝛽) + 𝑎01(1 − 𝑞01)

𝛾 2 +
𝑎210

𝑎10𝛽 + 𝑎00𝑞00
𝛾 2 +

𝑎210
𝑎10(1 − 𝛽) + 𝑎00(1 − 𝑞00)

𝛾 2

(3.22)

Similar to the proof above, let 𝐵1 denote the Bernoulli random variable with parameter 𝛽 , and
let 𝐵2 denote the Bernoulli random variable with parameter 𝛽 + 𝛾 . Then, given 𝑚 deconfounded
samples, we have KL(𝐵𝑚1 ‖𝐵𝑚2 ) ≤ 𝑚𝛽 ln(

𝛽
𝛽+𝛾 )+𝑚(1−𝛽) ln( 1−𝛽

1−𝛽−𝛾 ) ≤ 𝑚 ln(1+ 𝛾
1−𝛽−𝛾 ) ≤ 𝑚( 𝛾

1−𝛽−𝛾 −
𝛾 2

2(1−𝛽−𝛾 )2 ).
Thus, we have 𝑚 ∼ Ω( ln(𝛿

−1)
𝛾 2 ). From Eq. (3.22), we observe that 𝜖 = ‖ATE(a,q) − ATE(a,q′)‖ ∼ Ω(𝛾 ).

Combining above, we have 𝑚 ∼ Ω( ln(𝛿
−1)

𝜖2 ).

3.9.4 Proof of Proposition 8

Proposition 8. For every confounded distribution a, there exists two sets of conditional distributions
1 and 2 such that any optimal sample selection policy under (a,1) is not optimal under (a,2).

Proof. Proof of Proposition 8 To show Proposition 8 holds, it suffices to construct two con-
ditional distributions sets 1 and 2 such that the corresponding optimal sample selection
policies differ under particular choices of a. Similar to previous proofs, it suffices to show
the case where the confounder is binary. Consider 1 = {(𝑞00, 𝜂2, 𝜂3, 𝜂4), (𝑞00, 𝜁2, 𝜁3, 𝜁4)} and
2 = {(𝜂1, 𝜂2, 𝜂3, 𝑞11), (𝜁1, 𝜁2, 𝜁3, 𝑞11)}, where the values 𝜂𝑖 and 𝜁𝑖 , 𝑖 = 1, ..., 4 are known, and 𝜂𝑖 ≠ 𝜁𝑖
for some 𝑖. Moreover, 𝑞00 and 𝑞11 represent two unknown parameters to be estimated. In particular,
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we will chose the values of 𝜂𝑖 and 𝜁𝑖 such that {ATE(a,q)}q∈1 are nonconstant functions of 𝑞00
and {ATE(a,q)}q∈2 are nonconstant functions of 𝑞11.

Observe that the optimal sample selection policy under 1 is x1 = (1, 0, 0, 0) while the optimal
selection policy under 2 is x2 = (0, 0, 0, 1). Thus, we complete the proof.

3.9.5 Proof of Theorems 6 and 7

Theorem 6. Incorporating (infinite) confounded data, the estimator ATE(a, q̂) is (𝜖, 𝛿)-close if the
number of deconfounded samples is at least

𝑚nsp ∶= 𝐶 max
𝑡,𝑧

∑𝑦 𝑎𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 = 𝐶 max

𝑡,𝑧

ℙ𝑇 (𝑡)
ℙ𝑇 ,𝑍 (𝑡, 𝑧)2

, (3.13)

where 𝐶 ∶= 12.5𝑘2 ln(8𝑘/𝛿)𝜖−2.

Theorem 7. Incorporating (infinite) confounded data, the estimator ATE(a, q̂) is (𝜖, 𝛿)-close if the
number of deconfounded samples, selected under the natural selection policy (NSP) is at least:

𝑚nsp ∶= 𝐶 max
𝑡,𝑧

∑𝑦 𝑎𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 = 𝐶 max

𝑡,𝑧

ℙ𝑇 (𝑡)
ℙ𝑇 ,𝑍 (𝑡, 𝑧)2

.

Under the uniform selection policy (USP):

𝑚usp ∶= 𝐶 max
𝑡,𝑧

4∑𝑦 𝑎2𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 = 𝐶 max

𝑡,𝑧

4∑𝑦 ℙ𝑌 ,𝑇 (𝑦, 𝑡)2

ℙ𝑇 ,𝑍 (𝑡, 𝑧)2
.

Under the outcome-weighted selection policy (OWSP):

𝑚owsp ∶= 𝐶 max
𝑡,𝑧

2 (∑𝑦 𝑎𝑦𝑡)
2

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 = 𝐶 max

𝑡,𝑧

2
ℙ𝑍 |𝑇 (𝑧|𝑡)2

.

Here, 𝐶 ∶= 12.5𝑘2 ln(8𝑘/𝛿)𝜖−2.

Proof. Proof of Theorem 7 In these theorems, we derive the concentration of the ÂTE assuming
infinite confounded data, and parametrize 𝑝𝑧𝑦𝑡 by 𝑝𝑧𝑦𝑡 = 𝑎𝑦𝑡𝑞𝑧𝑦𝑡 . Since under infinite confounded
data, 𝑎𝑦𝑡 ’s are known, and thus we only need to estimate the 𝑞𝑧𝑦𝑡 ’s. The key difference between
Theorem 7 and Theorem 5 is that now we define the random variables 𝑋 𝑧

𝑦𝑡 to map the event
(𝑍 = 𝑧|𝑌 = 𝑦, 𝑇 = 𝑡) to {0, 1}. Thus, 𝑋 𝑧

𝑦𝑡 is distributed according to Bernoulli(𝑞𝑧𝑦𝑡). Thus, to
decompose ||𝑎1𝑡𝑞𝑧1𝑡 + 𝑎0𝑡𝑞𝑧0𝑡 − 𝑎1𝑡 �̂�𝑧1𝑡 − 𝑎0𝑡 �̂�𝑧0𝑡 ||, we first show the following lemma:

Lemma 7. Let 𝑋1, ..., 𝑋𝑥1𝑚 and 𝑌1, ..., 𝑌𝑥2𝑚 be independent random variables in [0,1]. Then for any

𝑡 > 0, we have

𝑃
(

|||||
𝛼
∑𝑥1𝑚

𝑖=1 𝑋𝑖 − 𝔼 [𝑋𝑖]
𝑥1𝑚

+ 𝛽
∑𝑥2𝑚

𝑗=1 𝑌𝑗 − 𝔼 [𝑌𝑗]
𝑥2𝑚

|||||
≥ 𝛼𝑡 + 𝛽𝑘

)
≤ 2 exp

⎛
⎜
⎜
⎜
⎝

−
2𝑚(𝛼𝑡 + 𝛽𝑘)2

(
𝛼2
𝑥1
+ 𝛽2

𝑥2)

⎞
⎟
⎟
⎟
⎠

.
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Proof. Proof of Lemma 7 First observe that

𝑃
(
𝛼
∑𝑥1𝑚

𝑖=1 𝑋𝑖 − 𝔼 [𝑋𝑖]
𝑥1𝑚

+ 𝛽
∑𝑥2𝑚

𝑗=1 𝑌𝑗 − 𝔼 [𝑌𝑗]
𝑥2𝑚

≥ 𝛼𝑡 + 𝛽𝑘
)

= 𝑃(
𝛼
𝑥1

𝑥1𝑚

∑
𝑖=1

(𝑋𝑖 − 𝔼 [𝑋𝑖]) +
𝛽
𝑥2

𝑥2𝑚

∑
𝑗=1

(𝑌𝑗 − 𝔼 [𝑌𝑗]) ≥ 𝑚𝛼𝑡 +𝑚𝛽𝑘).

Now, let 𝑍𝑖 = 𝛼
𝑥1
𝑋𝑖 if 𝑖 ∈ [1, 𝑥1𝑚], and 𝑍𝑖 = 𝛽

𝑥2
𝑌𝑖 if 𝑖 ∈ [𝑥1𝑚+1, (𝑥1+𝑥2)𝑚]. Then applying Theorem 2,

we have

𝑃
(

|||||

(𝑥1+𝑥2)𝑚

∑
𝑖=1

(𝑍𝑖 − 𝔼[𝑍𝑖])
|||||
≥ 𝑚𝛼𝑡 +𝑚𝛽𝑘

)
≤ 2 exp(−

2𝑚2(𝛼𝑡 + 𝛽𝑘)2

∑(𝑥1+𝑥2)𝑚
𝑖=1 (𝑀𝑖 −𝑚𝑖)2)

= 2 exp
(

−
2𝑚(𝛼𝑡 + 𝛽𝑘)2

𝛼2
𝑥1
+ 𝛽2

𝑥2
)
.

■

As defined in § 3.3, let 𝑥𝑦𝑡 denote the percentage data we sample from the group 𝑦𝑡 .
Recall that from the proof of Theorem 5, we have

𝑃 (|ÂTE − ATE| ≥ 𝜖) ≤ ∑
𝑡,𝑧
𝑃 (

||𝑝
𝑧
1𝑡 − 𝑝

𝑧
1𝑡
|| ≥

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖) + 𝑃 (
||𝑝
𝑧
1𝑡 + 𝑝

𝑧
0𝑡 − 𝑝

𝑧
1𝑡 − 𝑝

𝑧
0𝑡
|| ≥

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖)

= ∑
𝑡,𝑧
𝑃 (

||𝑎1𝑡𝑞
𝑧
1𝑡 − 𝑎1𝑡 �̂�

𝑧
1𝑡
|| ≥

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
5𝑘

𝜖) + 𝑃 (
||𝑎1𝑡𝑞

𝑧
1𝑡 + 𝑎0𝑡𝑞

𝑧
0𝑡 − 𝑎1𝑡 �̂�

𝑧
1𝑡 − 𝑎0𝑡 �̂�

𝑧
0𝑡
|| ≥

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
5𝑘

𝜖)

= ∑
𝑡,𝑧
𝑃 (

||𝑞
𝑧
1𝑡 − �̂�

𝑧
1𝑡
|| ≥

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
5𝑘𝑎1𝑡

𝜖) + 𝑃 (
||𝑎1𝑡𝑞

𝑧
1𝑡 + 𝑎0𝑡𝑞

𝑧
0𝑡 − 𝑎1𝑡 �̂�

𝑧
1𝑡 − 𝑎0𝑡 �̂�

𝑧
0𝑡
|| ≥

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
5𝑘

𝜖)

≤ 4𝑘max
𝑡,𝑧

⎛
⎜
⎜
⎝
2 exp

(
−2𝑥1𝑡𝑚

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 𝜖2

25𝑘2𝑎21𝑡 )
, 2 exp

⎛
⎜
⎜
⎝
−2𝑚(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)

2 𝜖2

25𝑘2 ∑𝑦
𝑎2𝑦𝑡
𝑥𝑦𝑡

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠
≤ 𝛿,

where the second to last line follows from applying Lemma 7 to the second half of the line above
it.

Solving the equation above, we have

𝑚 ≥
12.5𝑘2 ln( 8𝑘𝛿 )

𝜖2
max
𝑡,𝑧 (

𝑎21𝑡/𝑥1𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 ,
∑𝑦 (𝑎2𝑦𝑡/𝑥𝑦𝑡)

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2)

=
12.5𝑘2 ln( 8𝑘𝛿 )

𝜖2
max
𝑡,𝑧

∑𝑦 (𝑎2𝑦𝑡/𝑥𝑦𝑡)

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 . (3.23)

The last equality is because 𝑎22/𝑥2, 𝑎21/𝑥1 > 0. Under NSP, 𝑥𝑦𝑡 = 𝑎𝑦𝑡 . Thus, we have

𝑚nsp ∶=
12.5𝑘2 ln( 8𝑘𝛿 )

𝜖2
max
𝑡,𝑧

∑𝑦 𝑎𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 .
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Similarly, under USP, 𝑥𝑦𝑡 = 1
4 , and we have

𝑚usp ∶=
12.5𝑘2 ln( 8𝑘𝛿 )

𝜖2
max
𝑡,𝑧

∑𝑦 4𝑎2𝑦𝑡

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 .

Lastly, under OWSP, 𝑥𝑦𝑡 = 𝑎𝑦𝑡
2∑𝑦 𝑎𝑦𝑡

, and we have

𝑚owsp ∶=
12.5𝑘2 ln( 8𝑘𝛿 )

𝜖2
max
𝑡,𝑧

2(∑𝑦 𝑎𝑦𝑡)2

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2 .

3.9.6 Proof of Theorem 8

Theorem 8. Fix any 𝛽 ∈ (0, 1/2). For any 𝜖 ∈ (0, 0.5 − 2𝛽(1 − 𝛽)], there exist confounded distributions
a, and  ⊂ 𝛽 , such that 𝜇owsp(a,)/𝜇nsp(a,) is arbitrarily close to zero. In addition, for all a and

, 𝜇owsp(a,) ≤ 2𝜇nsp(a,).

Proof. Proof of Theorem 8 We proceed by construction. For simplicity, we illustrate the correct-
ness of Theorem 8 for binary confounders. The extension to the multi-valued confounder is
straightforward and will be demonstrated in the proof of Theorem 9.

Consider the following example: 𝑎01 = 𝑎10 = 𝑎11 = 𝜂, 𝑎00 = 1 − 3𝜂, and consider the following
pair of q’s: q = (𝛽, 𝛽, 𝛽, 𝑐𝛽) and q′ = (𝛽, 𝛽, 𝛽, 𝛽), where 𝑐 ≤ 1−𝛽

𝛽 is some constant. Let  = {q, q′}.
Thus, to obtain an (𝜖, 𝛿)-close estimate over , it suffices to distinguish q from q′ with high
probability. To distinguish q from q′, it suffices to distinguish 𝑐𝛽 from 𝛽 , and thus the optimal
selection policy under is to allocate all samples to the last (y,t) group. Then, we have ATE(a,q) =
𝑐𝛽
1+𝑐 +

(1−𝑐𝛽)(1−𝛽)
2−𝑐𝛽−𝛽 − 𝜂

1−2𝜂 , and ATE(a,q′) = 1
2 −

𝜂
1−2𝜂 . Thus, ΔATE ∶= |ATE(a,q) − ATE(a,q′)|:

ΔATE =
||||
1
2
−

𝑐𝛽
𝑐 + 1

−
(1 − 𝑐𝛽)(1 − 𝛽)
2 − 𝑐𝛽 − 𝛽

||||
.

Note that when 𝑐 = 1−𝛽
𝛽 , ΔATE = 0.5 − 2𝛽(1 − 𝛽) ≈ 0.5. Thus, for any 𝜖 ∈ [0, 0.5 − 2𝛽(1 − 𝛽)],

there exists some 𝑐 such that 𝜖 = ΔATE. Then, for any 𝛿 , let 𝜇() denote the minimum expected
number of samples that we need to distinguish q from q′ under the best estimator and under
the optimal selection policy (described above). Note that since we only need to distinguish 𝑐𝛽
from 𝛽 , this Then under NSP, the minimum number of samples that we need under the best
estimator equals to 𝜇nsp(a,) ∶= 𝜇()/𝜂, and under OWSP, the minimum number of samples that
we need under the best estimator equals to 𝜇oswp(a,) = 4𝜇. (Note that x𝑦𝑡 = ( 1−3𝜂

2(1−2𝜂) ,
1
4 ,

𝜂
2(1−2𝜂) ,

1
4 )

under OWSP in this example.) Thus, 𝜇owsp(a,)/𝜇nsp(a,) = 4𝜂. Since in this example, 𝜂 is at
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most 1/4, 𝜇owsp(a,)/𝜇nsp(a,) ≤ 1 and can be arbitrarily close to 0 as 𝜂 → 0. (Intuitively, the first
statement is true because when∑𝑡 𝑎0𝑡 ≪ ∑𝑡 𝑎1𝑡 and 𝑎00 ≈ 𝑎01, it is equally important to estimate
𝑞𝑧0𝑡 ’s and 𝑞𝑧1𝑡 ’s according to the ATE expression. However, under this setup, the number of samples
allocated to groups (0, 𝑡)’s decreases as 𝑎0,𝑡 ’s approach to 0 under NSP, while under OWSP, half of
the deconfounded samples are always dedicated to estimate the 𝑞𝑧0𝑡 ’s.)

Next, we show the last sentence in Theorem 8 is true. For any fixed 𝜖, 𝛿 < 1 and for any , we
note that when 𝑤owsp ∶= 2𝜇nsp(a,) max𝑡 ∑𝑦 𝑎𝑦𝑡 also achieves 𝑃 (|ÂTE − ATE| ≥ 𝜖) < 𝛿 under the
outcome-weighted selection policy. The reason is that when using 𝑤owsp number of deconfounded
samples, the number of deconfounded data allocated to each 𝑦𝑡 group is at least as much as those
under the natural selection policy. Thus, we have 𝜇owsp(a,) ≤ 𝑤owsp ≤ 2𝜇nsp(a,), where the last
inequality is because max𝑡 ∑𝑦 𝑎𝑦𝑡 < 1.

3.9.7 Proof of Theorem 9

Theorem 9. (Lower Bound) Fix any 𝛽 ∈ (0, 1/2) and any a. Then,

𝜇nsp(𝑎, 𝑄𝛽) ≥
𝐶1

𝛽2
max
𝑦,𝑡

𝑎𝑦𝑡(∑𝑦′ 𝑎𝑦′𝑡)2

(∑𝑦′ 𝑎𝑦′𝑡)2
,

𝜇usp(𝑎, 𝑄𝛽) ≥
𝐶1

𝛽2
max
𝑦,𝑡

4𝑎2𝑦𝑡(∑𝑦′ 𝑎𝑦′𝑡)2

(∑𝑦′ 𝑎𝑦′𝑡)2
,

𝜇owsp(𝑎, 𝑄𝛽) ≥
𝐶1

𝛽2
max
𝑦,𝑡

2𝑎𝑦𝑡(∑𝑦′ 𝑎𝑦′𝑡)2

∑𝑦′ 𝑎𝑦′𝑡
,

where 𝑡 = 1 − 𝑡 and 𝐶1 ∝ (𝑘𝛽 − 1)2 ln(𝛿−1)𝜖−2.

Proof. Consider q = (𝑞𝑧00, 𝑞𝑧01, 𝑞𝑧10, 𝑞𝑧11) where 𝑞101 = 𝛽 , 𝑞111 = 𝛽 + 𝛾 , and 𝑞𝑧11 = 𝑞𝑧01 − 𝛾 /(𝑘 − 1) for
𝑧 = 2, ..., 𝑘, with∑𝑧 𝑞𝑧01 = ∑𝑧 𝑞𝑧11 = 1. We assume that 𝑞𝑧11, 𝑞𝑧01 ∈ [𝛽, 1 − 𝛽] for some suitable 𝛽 and 𝛾
for all values of 𝑍 . Similarly, we consider the q′ where the entries of 𝑞𝑧01 and 𝑞𝑧11 are flipped, i.e.,
q′ = (𝑞𝑧00, 𝑞𝑧11, 𝑞𝑧10, 𝑞𝑧01), for some small 𝛾 , where the 𝑞𝑧𝑦𝑡 ’s are defined above. Then,

ATE(a,q) = ∑
𝑧 ((

𝑎11𝑞𝑧11
∑𝑦 𝑎𝑦1𝑞𝑧𝑦1

−
𝑎10𝑞𝑧10

∑𝑦 𝑎𝑦0𝑞𝑧𝑦0)
∑
𝑦,𝑡

𝑎𝑦𝑡𝑞𝑧𝑦𝑡)

=
𝑎11(𝛽 + 𝛾 )

𝑎11(𝛽 + 𝛾 ) + 𝑎01𝛽
(𝑎00𝑞100 + 𝑎01𝛽 + 𝑎10𝑞

1
10 + 𝑎11(𝛽 + 𝛾 )) −

𝑎10𝑞110
𝑎10𝑞110 + 𝑎00𝑞100

(𝑎00𝑞100 + 𝑎01𝛽 + 𝑎10𝑞
1
10+

𝑎11(𝛽 + 𝛾 )) +
𝑘

∑
𝑧=2

𝑎11 (𝑞𝑧01 −
𝛾
𝑘−1)

𝑎11 (𝑞𝑧01 −
𝛾
𝑘−1) + 𝑎01𝑞

𝑧
01
(𝑎00𝑞

𝑧
00 + 𝑎01𝑞

𝑧
01 + 𝑎10𝑞

𝑧
10 + 𝑎11 (𝑞

𝑧
01 −

𝛾
𝑘 − 1))

−

𝑘

∑
𝑧=2

𝑎10𝑞𝑧10
𝑎10𝑞𝑧10 + 𝑎00𝑞𝑧00 (

𝑎00𝑞𝑧00 + 𝑎01𝑞
𝑧
01 + 𝑎10𝑞

𝑧
10 + 𝑎11 (𝑞

𝑧
01 −

𝛾
𝑘 − 1))

,
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and similarly, we have

ATE(a,q′) =
𝑎11𝛽

𝑎11𝛽 + 𝑎01(𝛽 + 𝛾 )
(𝑎00𝑞100 + 𝑎01(𝛽 + 𝛾 ) + 𝑎10𝑞

1
10 + 𝑎11𝛽) −

𝑎10𝑞110
𝑎10𝑞110 + 𝑎00𝑞100

(𝑎00𝑞100 + 𝑎01(𝛽 + 𝛾 )+

𝑎10𝑞110 + 𝑎11𝛽) +
𝑘

∑
𝑧=2

𝑎11𝑞𝑧01
𝑎11𝑞𝑧01 + 𝑎01 (𝑞𝑧01 −

𝛾
𝑘−1)

(𝑎00𝑞
𝑧
00 + 𝑎01 (𝑞

𝑧
01 −

𝛾
𝑘 − 1)

+ 𝑎10𝑞𝑧10 + 𝑎11𝑞
𝑧
01) −

𝑘

∑
𝑧=2

𝑎10𝑞𝑧10
𝑎10𝑞𝑧10 + 𝑎00𝑞𝑧00 (

𝑎00𝑞𝑧00 + 𝑎01 (𝑞
𝑧
01 −

𝛾
𝑘 − 1)

+ 𝑎10𝑞𝑧10 + 𝑎11𝑞
𝑧
01)

Ignoring the 𝛾 in the denominator, we have that

ATE(a,q) − ATE(a,q′) ≈
𝑎11

𝑎11𝛽 + 𝑎01𝛽
(𝑎00𝑞100 + 𝑎01𝛽 + 𝑎10𝑞

1
10 + 𝑎11𝛽)𝛾 +

𝑎10𝑞110(𝑎01 − 𝑎11)
𝑎10𝑞110 + 𝑎00𝑞100

𝛾

−
(

𝑘

∑
𝑧=2

(
𝑎11/𝑘 − 1

𝑎11𝑞𝑧01 + 𝑎01𝑞𝑧01
(𝑎00𝑞𝑧00 + 𝑎10𝑞

𝑧
10 + (𝑎01 + 𝑎11)𝑞𝑧10)))

𝛾 −
𝑘

∑
𝑧=2

𝑎10𝑞𝑧10(𝑎01 − 𝑎11)
𝑎10𝑞𝑧10 + 𝑎00𝑞𝑧00

1
𝑘 − 1

𝛾

+
𝑎211

𝑎11𝛽 + 𝑎01𝛽
𝛾 2 +

𝑘

∑
𝑧=2

𝑎211
𝑎11𝑞𝑧01 + 𝑎01𝑞𝑧01

𝛾 2

(𝑘 − 1)2

=
𝑎11

𝑎11𝛽 + 𝑎01𝛽
(𝑎00𝑞100 + 𝑎10𝑞

1
10)𝛾 +

𝑎10𝑞110(𝑎01 − 𝑎11)
𝑎10𝑞110 + 𝑎00𝑞100

𝛾 −
𝑎11
𝑘 − 1

𝑘

∑
𝑧=2

(
𝑎00𝑞𝑧00 + 𝑎10𝑞𝑧10
𝑎11𝑞𝑧01 + 𝑎01𝑞𝑧01)

𝛾

−
1

𝑘 − 1

𝑘

∑
𝑧=2

𝑎10𝑞𝑧10(𝑎01 − 𝑎11)
𝑎10𝑞𝑧10 + 𝑎00𝑞𝑧00

𝛾 +
𝑎211

𝑎11𝛽 + 𝑎01𝛽
𝛾 2 +

𝑘

∑
𝑧=2

𝑎211
𝑎11𝑞𝑧01 + 𝑎01𝑞𝑧01

𝛾 2

(𝑘 − 1)2
(3.24)

Since the second order terms in 𝛾 is dominated by the first order terms in 𝛾 , thus to find the
highest lower bound for sample complexity in this instance is to find the largest coefficient in
front of 𝛾 .

Assuming that 𝛽 ≪ 𝑘 and 𝑘𝛽 < 1, then themaximumof Eq. (3.24) is achievedwhen 𝑞𝑧00 = 𝑞𝑧10 = 𝛽
, 𝑞100 = 𝑞110 = 1 − 𝑘𝛽 , and 𝑞𝑧01 = (1 − 𝛽)/(𝑘 − 1), and the coefficient in front of 𝛾 is

𝑎11
𝑎11 + 𝑎01

(𝑎00 + 𝑎10)(
1
𝛽
−
𝑘 − 𝛽
1 − 𝛽

) ≈
𝑎11

𝑎11 + 𝑎01
(𝑎00 + 𝑎10)(

1
𝛽
− 𝑘) .

Similar to the proof of Theorem 6, we have 𝑚 ∼ Ω( ln(𝛿
−1)

𝛾 2 ). From Eq. (3.22), we observe that
𝜖 = ‖ATE(a,q) − ATE(a,q′)‖ ∼ Ω(𝛾 ). Combining above, we have 𝑚 ∼ Ω( ln(𝛿

−1)
𝜖2 ). In the case above,

𝜖 ≈ 𝑎11
𝑎11+𝑎01

(𝑎00 + 𝑎10) 1𝛽 𝛾 , thus, the number of deconfounded samples needed is approximately

𝑚 ∝
ln(𝛿−1)𝑎211(𝑎00 + 𝑎10)2

𝜖2(𝑎11 + 𝑎01)2 (
1
𝛽
− 𝑘)

2

.

Let 𝐶1 ∝ (𝑘𝛽 − 1)2 ln(𝛿−1)𝜖−2. Then 𝑚 ∼ Ω(
𝐶1
𝛽2

𝑎211(𝑎00+𝑎210)
(𝑎11+𝑎01)2 ).

If we flip the values of 𝑞𝑧01 and 𝑞𝑧11 with the values of 𝑞𝑧00 and 𝑞𝑧10 in both q and q′, then we
have 𝑚 ∼ 𝐶1

𝛽2
𝑎210(𝑎01+𝑎11)2
(𝑎10+𝑎00)2

. Note that this is because that the estimation error on ATE and 1 − ATE
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is symmetric. In addition, under natural selection policy, we need at least 𝑚
𝑎11

samples; uniform
selection policy, we need at least 4𝑚 deconfounded samples; under outcome-weighted selection
policy, we need at least 2 𝑎11+𝑎01𝑎11

𝑚 deconfounded samples. Combining all of the above, we obtained
Theorem 9.

3.9.8 Proof of Theorem 10

Theorem 10. Given 𝑛 confounded and𝑚 deconfounded samples, with 𝑛 ≥ 𝑚, ATEâ(q̂) is (𝜖, 𝛿)-close
when

min
𝑦,𝑡,𝑧

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2

1
𝑥𝑦𝑡𝑚

+ (𝑞𝑧𝑦𝑡 )2

𝑛

= min
𝑦,𝑡,𝑧

⎛
⎜
⎜
⎝

ℙ𝑇 ,𝑍 (𝑡, 𝑧)2

1
𝑥𝑦𝑡𝑚

+ (𝑞𝑧𝑦𝑡 )2

𝑛

⎞
⎟
⎟
⎠
≥ 4𝐶. (3.14)

Here, 𝐶 ∶= 12.5𝑘2 ln(8𝑘/𝛿)𝜖−2.

Proof. Proof of Theorem 10 In this theorem, we derive the concentration for the ÂTE under finite
confounded data. The difference between Theorem 7 and Theorem 10 is that now we need to
estimate 𝑎𝑦𝑡 in addition to 𝑞𝑧𝑦𝑡 . Thus, to decompose |𝑎𝑦𝑡𝑞𝑧𝑦𝑡 − �̂�𝑦𝑡 �̂�𝑧𝑦𝑡 |, we first derive Lemma 8.

Lemma 8

Lemma 8. Let 𝑋1, ..., 𝑋𝑛 and 𝑌1, ..., 𝑌𝑚 be two sequences of Bernoulli random variables independently

drawn from distribution 𝑝1 and 𝑝2, respectively. Let 𝑆𝑋 =
𝑛
∑
𝑖=1
𝑋𝑖 , 𝑆𝑌 =

𝑚
∑
𝑖=1
𝑌𝑖 . Then,

𝑃(
|||𝑆𝑋𝑆𝑌 − 𝔼 [𝑆𝑋 ]𝔼 [𝑆𝑌 ]

||| ≥ 𝑛𝑚𝑡) ≤ 2 exp
(

−2𝑡2
1
𝑚 + 𝑝22

𝑛
)
.
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Proof. Proof of Lemma 8 The proof follows the proof of Hoeffding’s inequality:

𝑃(𝑆𝑋𝑆𝑌 − 𝔼[𝑆𝑋 ]𝔼[𝑆𝑌 ] ≥ 𝑛𝑚𝑡) = 𝑃( exp(𝑎𝑆𝑋𝑆𝑌 − 𝑎𝔼[𝑆𝑋 ]𝔼[𝑆𝑌 ])) ≥ exp(𝑎𝑛𝑚𝑡)) (3.25)

≤ exp(−𝑎𝑛𝑚𝑡)𝔼 [exp(𝑎𝑆𝑋𝑆𝑌 − 𝑎𝔼[𝑆𝑋 ]𝔼[𝑆𝑌 ]))] , (because of Markov’s inequality)
(3.26)

= exp(−𝑎𝑛𝑚𝑡)𝔼 [exp(𝑎𝑆𝑋 (𝑆𝑌 − 𝔼[𝑆𝑌 ]) + 𝑎𝔼[𝑆𝑌 ](𝑆𝑋 − 𝔼[𝑆𝑋 ])]

≤ exp(−𝑎𝑛𝑚𝑡)𝔼 [exp(𝑎max(𝑆𝑋 )(𝑆𝑌 − 𝔼[𝑆𝑌 ]) + 𝑎𝔼[𝑆𝑌 ](𝑆𝑋 − 𝔼[𝑆𝑋 ]))] (because 𝑆𝑋 ≥ 0)
(3.27)

= exp(−𝑎𝑛𝑚𝑡)𝔼 [exp(𝑎𝑛(𝑆𝑌 − 𝔼[𝑆𝑌 ]) + 𝑎𝔼[𝑆𝑌 ](𝑆𝑋 − 𝔼[𝑆𝑋 ]))]

= exp (−𝑎𝑛𝑚𝑡)𝔼 [exp (𝑎𝑛(𝑆𝑌 − 𝔼[𝑆𝑌 ]))]𝔼 [exp(𝑎𝔼[𝑆𝑌 ](𝑆𝑋 − 𝔼[𝑆𝑋 ]))] (because𝑋 ⊧𝑌 )
(3.28)

= exp(−𝑎𝑛𝑚𝑡)
𝑚

∏
𝑖=1

𝑛

∏
𝑗=1

𝔼 [exp(𝑎𝑛(𝑌𝑖 − 𝔼[𝑌𝑖]))]𝔼 [exp(𝑎𝔼[𝑆𝑌 ](𝑋𝑗 − 𝔼[𝑋𝑗]))]

≤ exp(−𝑎𝑛𝑚𝑡)
𝑚

∏
𝑖=1

exp(
𝑎2

8
𝑛2)

𝑛

∏
𝑗=1

exp(
𝑎2

8
𝔼[𝑆𝑌 ]2) (3.29)

= exp(−𝑎𝑛𝑚𝑡 +
𝑎2

8
𝑚𝑛2 +

𝑎2

8
𝑛𝑚2𝑝22) (because the minimum is achieved at 𝑎 =

4𝑡
𝑛 +𝑚𝑝22

)

(3.30)

≤ exp(−
2𝑚𝑛𝑡2

𝑛 +𝑚𝑝22)
= exp

(
−

2𝑡2
1
𝑚 + 𝑝22

𝑛
)
.

Line (3.29) is because 𝑌𝑖 −𝔼[𝑌𝑖] ∈ {−𝔼[𝑌𝑖], 1−𝔼[𝑌𝑖]), and thus 𝑛(𝑌𝑖 −𝔼(𝑌𝑖)) ∈ [−𝑛𝔼[𝑌𝑖], 𝑛(1−𝔼[𝑌𝑖])].
Furthermore, 𝔼[𝑆𝑌 ](𝑋𝑖 − 𝔼[𝑋𝑖]) ∈ (−𝔼[𝑋 ]𝔼[𝑆𝑌 ], (1 − 𝔼[𝑋 ])𝔼[𝑆𝑌 ]). Finally, applying Hoeffding’s
Lemma (Lemma 1), we obtain line (3.29).

Now we are ready to prove Theorem 10.

Proof of Theorem 10

In this theorem, we assume that the number of confounded data is finite. Thus, instead of 𝑎𝑦𝑡 ,
we have estimates of them, namely �̂�𝑦𝑡 . Let 𝑛𝑦𝑡 denote the number of samples in the confounded
data such that (𝑌 = 𝑦, 𝑇 = 𝑡). Let 𝑚𝑧

𝑦𝑡 be the number of samples in the deconfounded data such
that (𝑌 = 𝑦, 𝑇 = 𝑡, 𝑍 = 𝑧). Furthermore, let 𝑛 = ∑𝑦,𝑡 𝑛𝑦𝑡 , 𝑚 = ∑𝑦,𝑡,𝑧 𝑚𝑧

𝑦𝑡 . Then, under our setup, we
estimate 𝑎𝑦𝑡 and 𝑞𝑧𝑦𝑡 as follows: �̂�𝑦𝑡 =

𝑛𝑦𝑡
𝑛 , and �̂�

𝑧
𝑦𝑡 =

𝑚𝑧
𝑦𝑡

∑𝑧 𝑚𝑧
𝑦𝑡
. Thus, following the proof of Theorem 5,
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we have

𝑃 (|ÂTE − ATE| < 𝜖) ≥ 𝑃 (
⋂
𝑡,𝑧

{
||𝑝
𝑧
1𝑡 − 𝑝

𝑧
1𝑡
|| <

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖
}
⋂
𝑡,𝑧

{
||𝑝
𝑧
1𝑡 + 𝑝

𝑧
0𝑡 − 𝑝

𝑧
1𝑡 − 𝑝

𝑧
0𝑡
|| <

∑𝑦 𝑝𝑧𝑦𝑡
5𝑘

𝜖
}

)

= 𝑃
(
⋂
𝑡,𝑧

{
||𝑎1𝑡𝑞

𝑧
1𝑡 − �̂�1𝑡 �̂�

𝑧
1𝑡
|| <

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
5𝑘

𝜖
}
⋂
𝑡,𝑧

{
||𝑎1𝑡𝑞

𝑧
1𝑡 + 𝑎0𝑡𝑞

𝑧
0𝑡 − �̂�1𝑡 �̂�

𝑧
1𝑡 − �̂�0𝑡 �̂�

𝑧
0𝑡
|| <

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
5𝑘

𝜖
}

)
.

Notice that ||𝑎1𝑡𝑞𝑧1𝑡 + 𝑎0𝑡𝑞𝑧0𝑡 − �̂�1𝑡 �̂�𝑧1𝑡 − �̂�0𝑡 �̂�𝑧0𝑡 || <
∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡

5𝑘 𝜖 is satisfied when both

||𝑎1𝑡𝑞
𝑧
1𝑡 − �̂�1𝑡 �̂�

𝑧
1𝑡
|| <

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
10𝑘

𝜖, and ||𝑎0𝑡𝑞
𝑧
0𝑡 − �̂�0𝑡 �̂�

𝑧
0𝑡
|| <

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
10𝑘

𝜖.

We have:

𝑃 (|ÂTE − ATE| < 𝜖) ≥ 𝑃 (
⋂
𝑡,𝑧

{
||𝑎1𝑡𝑞

𝑧
1𝑡 − �̂�1𝑡 �̂�

𝑧
1𝑡
|| <

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
10𝑘

𝜖
}
⋂
𝑡,𝑧

{
||𝑎0𝑡𝑞

𝑧
0𝑡 − �̂�0𝑡 �̂�

𝑧
0𝑡
|| <

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
10𝑘

𝜖
}

)

= 𝑃
(
⋂
𝑦,𝑡,𝑧

{
|||𝑎𝑦𝑡𝑞

𝑧
𝑦𝑡 − �̂�𝑦𝑡 �̂�

𝑧
𝑦𝑡
||| <

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
10𝑘

𝜖
}

)
.

Lemma 8 suggests that

𝑃 (|𝑎𝑦𝑡𝑞𝑧𝑦𝑡 − �̂�𝑦𝑡 �̂�
𝑧
𝑦𝑡 | ≥ 𝑡) ≤ 2 exp

⎛
⎜
⎜
⎝
−

2𝑡2

1
𝑥𝑦𝑡𝑚

+ (𝑞𝑧𝑦𝑡 )2

𝑛

⎞
⎟
⎟
⎠
.

Thus, applying a union bound and Lemma 8, we have

𝑃 (|ÂTE − ATE| ≥ 𝜖) ≤ ∑
𝑦,𝑡,𝑧

𝑃 (
|||𝑎𝑦𝑡𝑞

𝑧
𝑦𝑡 − �̂�𝑦𝑡 �̂�

𝑧
𝑦𝑡
||| <

∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡
10𝑘

𝜖) ≤ 8𝑘max
𝑦,𝑡,𝑧

exp
⎛
⎜
⎜
⎝
−2 (∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)

2 𝜖2

( 1
𝑥𝑦𝑡𝑚

+ (𝑞𝑧𝑦𝑡 )2

𝑛 )100𝑘2

⎞
⎟
⎟
⎠
≤ 𝛿.

Simplifying the equations above, we have

min
𝑦,𝑡,𝑧

(∑𝑦 𝑎𝑦𝑡𝑞𝑧𝑦𝑡)
2

( 1
𝑥𝑦𝑡𝑚

+ (𝑞𝑧𝑦𝑡 )2

𝑛 )
≥
50𝑘2 ln ( 8𝑘

𝛿 )
𝜖2

.

3.10 Corresponding Stories

In this section, we will provide an example for each selection method such that this particular
sampling performs the worst when compared with the other two methods. For the purpose of
illustration, we consider binary confounder throughout this section. To ease notation, let 𝑞𝑦𝑡
denote 𝑞1𝑦𝑡 .
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A Scenario in Which NSP Performs the Worst A drug repositioning start-up discovered that
drug 𝑇 can potentially cure a disease 𝛾 . which has no known drug cure and goes away without
treatments once a while. Since drug 𝑇 is commonly used to treat another disease 𝜂, the majority
patients who has disease 𝛾 do not receive any treatment. Among the ones who received drug
𝑇 , the start-up discovered that the health outcomes of the majority of patients have improved.
The start-up proposes to bring drug 𝑇 to an observational study to verify whether drug 𝑇 could
treat disease 𝛾 while not controlling for patient’s treatment adherence levels. As in most cases,
patient’s treatment adherence levels could influence doctors’ decision of whether to prescribe
drug 𝑇 and whether the treatment for disease 𝛾 will be successful. Translating this scenario into
our notations, we have 𝑎01 = 𝜖1, 𝑎10 = 𝜖2, 𝑎11 = 𝜖3, and 𝑎00 = 1 −∑3

𝑖=1 𝜖𝑖 , say 𝐚 = (0.9, 0.02, 0.01, 0.07).
Now, imagine in the clinical trial, the patients are given a drug case containing drug 𝑇 such that
the drug case automatically records the frequency that the patient takes the drug. Somehow
we know a priori that the patients who do not have health improvement have on average poor
treatment adherence, e.g., 𝑞00 = 0.9, 𝑞01 = 0.7; furthermore, those who have health improvement
on average have good treatment adherence, e.g., 𝑞10 = 0.01, 𝑞11 = 0.3. Deconfounding according to
NSP, i.e., 𝐱 = (𝑎00, 𝑎01, 𝑎10, 𝑎11), in this case, will select most samples from the group (𝑌 = 0, 𝑇 = 0).
Since the ATE depends on the estimation that relies on both 𝑇 = 0, and 𝑇 = 1, one would expect
that NSP and OWSP will outperform NSP. The left column in Fig. 3.3 confirms this hypothesis.

A Scenario in Which USP Performs the Worst A group biostatisticians discovered that
mutations on gene 𝑇 is likely to cause cancer 𝑌 in patients with a particular type of heart disease.
In particular, they discovered that among the those heart disease patients, 79% of patients have
neither mutation on 𝑇 nor cancer 𝑌 ; 18% patients have both mutation on 𝑇 and cancer 𝑌 . In
other words, 𝑎00 = 0.79, 𝑎11 = 0.18. Furthermore, we have 𝑎01 = 0.01, 𝑎10 = 0.02. This group of
biostatisticians want to run a small experiment to confirm whether gene 𝑇 causes cancer 𝑌 . In
particular, they are interested in knowing whether those patients also have mutations on gene 𝑍 ,
which is also suspected by the same group of biostatisticians to cause cancer 𝑌 . Somehow, we
know a priori that 𝑞00 = 0.5, 𝑞01 = 0.01, 𝑞10 = 0.05, 𝑞11 = 0.5. From the calculation of the ATE, it is
not difficult to observe that the error on the ATE is dominated by the estimation errors on 𝑞00, 𝑞11.
Thus, we should sample more from the groups (𝑌 = 0, 𝑇 = 0) and (𝑌 = 1, 𝑇 = 1).

A Scenario in Which OWSP Performs the Worst A team wants to reposition drug 𝑇 to
cure diabetes. Drug 𝑇 has been used to treat a common comorbid condition of diabetes that
appears in 31% of the diabetic patient population. Among those patients who receive drug 𝑇 ,
about 97% has improved health, that is 𝑎01 = 0.01 and 𝑎11 = 0.3. Among the patients who have
never received drug 𝑇 , about 70% have no health improvement, that is 𝑎00 = 0.5, and 𝑎10 = 0.19.
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Let 𝑞00 = 0.05, 𝑞01 = 0.5, 𝑞10 = 0.055, and 𝑞11 = 0.4. In the ATE, it is easy to observe that 𝑎11𝑞11
𝑎11𝑞11+𝑎01𝑞01

and 𝑎11(1−𝑞11)
𝑎11(1−𝑞11)+𝑎01(1−𝑞01)

are both dominated by 1 regardless of the estimates of 𝑞11 and 𝑞01. In this case,
USP outperforms OWSP and NSP when the sample size is larger than 200. On the other hand, the
bottom figure in the third column of Fig. 3.3 shows that, when averaged over all possible values of
𝐪, OWSP performs the best.
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Figure 3.2: Performance of the four sampling policies over 13,000 distributions ℙ𝑌 ,𝑇 ,𝑍 , assuming
infinite confounded data. Top row (left and middle): averaged absolute error over all 13,000
distributions for varying numbers of deconfounded samples. Top row (right): averaged squared
error over all 13,000 distributions. Middle row: error comparison (each point is a single distribution
averaged over 100 replications) for 1,200 deconfounded samples. Bottom row: variance comparison
(each point corresponds to one of the 13,000 distributions and the variance is calculated over the
100 replications) between selected sample selection policies. Bottom row: each dot corresponds to
the difference between the variance of a pair of selected methods under one instance and a fixed
number of deconfounded samples. Bottom left: a positive y-axis value implies that USP yields a
smaller variance than NSP. Bottom middle: a positive y-axis value implies that OWSP yields a
smaller variance than NSP. Bottom right: a positive y-axis value represents that OWSP yields a
smaller variance than USP.
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Figure 3.3: Comparison of selection policies for adversarially chosen instances. Top row left:
𝐚 = (0.9, 0.02, 0.01, 0.07) and 𝐪 = (0.9, 0.7, 0.01, 0.3), where NSP performs the worst. Top row
middle: 𝐚 = (0.79, 0.01, 0.02, 0.18) and 𝐪 = (0.5, 0.01, 0.05, 0.5), where USP performs the worst. Top
row right: 𝐚 = (0.5, 0.01, 0.19, 0.3) and 𝐪 = (0.05, 0.5, 0.055, 0.4), where OWSP performs the worst.
Bottom row: generated with the same 𝐚’s but averaged over 500 𝐪’s drawn uniformly from [0, 1]4.
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Figure 3.4: Performance Insights of the four sampling policies over a different set of 13,000
distributions ℙ𝑌 ,𝑇 ,𝑍 , assuming infinite confounded data. The y-axis of all figures is the average
absolute error (AAE) difference between a pair of selected methods. Each instance is averaged
over 100 replications. Top row: contains 13,000 dots, each representing an instance. The number
of confounded data is fixed at 1200. The x-axis is the level of confoundedness of an instance.
Middle and Bottom rows: at each level of deconfounded samples, each figure contains 130 dot,
each representing one confounded distribution a, averaged over 100 conditional distributions q.
The x-axis is the number of deconfounded samples measured in steps of 100. Middle row: the
color map corresponds to the level of treatment inbalance of an instance. Bottom row: the color
map corresponds to the level of (maximum) outcome inbalance within each treatment group of an
instance. 110
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Figure 3.5: Experiment on finite confounded data over 13,000 distributions 𝑃𝑌 ,𝑇 ,𝑍 , each averaged
over 100 replications. The number of deconfounded samples is fixed at 100. Left: averaged over
the 13,000 distributions. Middle and Right: error comparison at 681 confounded samples.
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Figure 3.6: Performance of the four sampling policies on the COSMIC dataset assuming infinite
confounded data. 275 unique (cancer, mutation, mutation) combinations were extracted. Left:
averaged over 275 instances, and each averaged over 10,000 replications. Middle and Right: error
comparison at 45 deconfounded samples.
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Chapter 4

Toward a Liquid Biopsy: Greedy
Approximation Algorithms for Active
Sequential Hypothesis Testing

4.1 Introduction

Among the most important open problems in cancer research today is the development of an
effective approach for the detection of cancer, particularly at its earliest stages. Indeed for quite
some time now, there has been vast, uncontroverted evidence that early detection substantially
enhances the possibility of successful treatment (Etzioni et al. 2003, Cuzick et al. 2014, Jerant et al.
2000). As a few examples, the five-year survival rates after early diagnosis (and treatment) of
breast, ovarian, and lung cancers are 90%, 90%, and 70%, respectively, compared to 15%, 5%, and
10% for patients diagnosed at the latest stages (Siegel et al. 2015, Jemal et al. 2010, Ferguson et al.
2000). In short, early detection is a silver bullet.

Unfortunately, although monitoring certain “warning signs” occasionally yields early diag-
noses, cancer screening is in general notoriously difficult, and existing approaches fall short.
Modern cancer diagnoses are for the most part made via biopsies, i.e., the surgical removal of
tissue for testing, and while biopsies are extremely accurate (with respect to identifying cancer in
the removed tissue itself), they are too invasive and expensive to be used as a general screening
procedure.1 But even beyond issues like cost and inconvenience to the patient, the use of biopsies
for early cancer screening is in fact fundamentally impossible for several cancer types, such as
lung and pancreatic cancers, which almost never show symptoms until after cancer cells have

1Less invasive screening tools do exist, but by and large none has achieved the requisite accuracy to be adopted
by the medical community for general screening.
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metastasized2 (Miller et al. 1981, Paez et al. 2004, O’Rourke and Edwards 2000).
Because of these difficulties, there has always existed a dream within the medical community

of developing a liquid biopsy, i.e., a blood test for cancer. This test would naturally be minimally
invasive, and ideally would have the same accuracy as a traditional biopsy. Most importantly,
the liquid biopsy would detect cancers at their earliest stages. What is particularly exciting
today is that liquid biopsies are no longer just a pipe dream – these tests have been under rapid
development over the last few years, largely fueled by advances in technology for collecting data
(next-generation DNA sequencing, in particular), and increasing computational and algorithmic
power for analyzing this new data. Development of these tests is being undertaken by major
academic research labs (Bettegowda et al. 2014, Manterola et al. 2014, Best et al. 2015, Kim et al.
2016, Banerjee et al. 2016, Razavi et al. 2017, Chan et al. 2017, Cohen et al. 2018, Liu et al. 2020)
along with a handful of biotechology startups (e.g., Grail, Guardant, Freenome).

4.1.1 The Genomic Approach and the Value of Adaptivity

Ultimately, this paper addresses a set of active learning problems that occur in the development
of liquid biopsies. To understand how such problems arise, it may be useful to review, at a high
level, the underlying biology here (this subsection can be skipped without loss of continuity).
Starting with a basic fact: cancer is caused by mutations in DNA, meaning the DNA within every
tumor cell has a set of mutations that identifies the cell as tumorous, along with its location in the
body (and thus the type of cancer).3 These mutations are the “signals” that genomic liquid biopsies
are designed to detect. The reason that these signals are detectable from blood is due to cell-free

DNA—the DNA of any dying cell is occasionally released into the bloodstream (rather than being
destroyed), and so an individual’s blood at any moment contains free floating DNA that we can
view as having been randomly “sampled” (in a probabilistic sense) from throughout the body.

Thus comes the main idea: if an individual has a tumor, some portion of their cell-free DNA
will contain mutations which signal the existence of that tumor. So performing the liquid biopsy
simply involves extracting cell-free DNA (a relatively easy task), and sequencing it in search of
these mutations. There is no purely biological reason why this approach should fail. Instead, the
constraint that we face today is the cost—human DNA consists of three billion addresses, but the
cost of DNA sequencing means that any reasonably-priced test can only include approximately

2Metastasis refers to the formation of a new cancer “colony” at a separate location in the body. The occurrence
of this process is generally used to define the line between early and late stage cancers, as once a primary tumor
metastasizes, successful treatment using established therapeutics becomes nearly hopeless.

3Identifying the specific mutations which cause a particular cancer to form is still an open problem. Fortunately
for the purposes of a liquid biopsy, correlation suffices.
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104 of those addresses.4 So the challenge is to design a liquid biopsy using just a panel of 104

pre-identified addresses.

Figure 4.1: Comparison of (non-adaptive) genomic panels from Cohen et al. (2018) with optimal

non-adaptive panels, and adaptive panels constructed using our greedy adaptive algorithm. For
each approach, detection rate (on the COSMIC dataset) is plotted as a function of panel size.
Results are reported for eight cancer types, in combination and individually. Figure format adapted
from Cohen et al. (2018).

To date, one of the twomost successful prototypes of a liquid biopsy is from Cohen et al. (2018).5

To select the panel of DNA addresses for their liquid biopsy, they used the publicly-available
dataset—Catalogue of Somatic Mutations in Cancer (COSMIC, Tate et al. 2019) which contains
complete DNA sequences from thousands of tumor cells, and this allows one to “simulate” the
accuracy of different combinations of addresses subject to any budget constraint and select the

4The back-of-the-envelope calculation works as follows: modern DNA sequencing costs approximately $10−6

(USD) per address. But because tumorous DNA only makes up a tiny proportion (about one in ten-thousand) of
a cancer patient’s cell-free DNA, each address used in a liquid biopsy needs to be sequenced 104 times (to avoid
false negatives). Finally, a screening test should cost at most $102, so $102 / ($10−2 per address) = 104 addresses. In
the adaptive problem that we will introduce later, we further relax the assumption that each address needs to be
sequenced 104 times. Instead, the number of repetition will be determined by our algorithms.

5The other is Liu et al. (2020).
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most accurate one.6 Cohen et al. (2018) did exactly this analysis, which is reproduced here as the
grey-colored curves in Fig. 4.1. Each of those curves shows how the proportion of detected cancer
patients increases with the number of addresses, for eight different cancer types.

Now the problem of identifying the subset of addresses, subject to cardinality constraint, that
maximizes the number of cancer patients detected (within the COSMIC dataset) is a well-defined
optimization problem (a maximum coverage problem, in fact), and while this application can
become quite large in practice (technically, each of the three billion DNA addresses is a “set,” and
there are tens of thousands of samples in COSMIC to “cover”), this particular instance can be
solved to optimality with an off-the-shelf integer programming solver. That is precisely what we
have done and represented as the red curves in Fig. 4.1, and we can see that the red curves indeed
dominate the grey curves of Cohen et al. (2018).

After a perhaps long-winded introduction, it is at this point that the problem we seek to
address has finally appeared. Reviewing Fig. 4.1 again, an unfortunate observation is that even the
optimal panels (the red curves) are insufficient for a practical liquid biopsy—in visual terms, the
curves do not reach far enough into the top-left area (representing low cost and high accuracy).
Now advances in DNA sequencing technology may eventually solve this problem (by further
reducing sequencing costs), but the purpose of this paper is to study a more immediate solution:
adaptive testing. We use the term “adaptive” to mean that the test for an individual can operate
over multiple rounds, with the choice of addresses in each round being made using the results
of prior rounds (the tests used by Cohen et al. (2018), along with our “optimal” panels, were
non-adaptive). The problem of identifying the optimal adaptive test can similarly be formalized
(as we will do), though that problem almost certainly does not admit a solution via computational
brute force. Instead, we will analyze fast approximation algorithms, whose practical value is partly
demonstrated by the blue curves in Fig. 4.1.

4.1.2 The Problem and Our Contributions

At this point, it is worth abstracting away the application, because the natural model for this is a
well-studied one. Consider the problem of learning the true hypothesis from among a (potentially
large) set of candidate hypotheses 𝐻 . Assume that the learner is given a (potentially large) set of
actions 𝐴, and knows the distribution of the noisy outcome of each action, under each potential
hypothesis. In the context of liquid biopsies, the candidate hypotheses are different types of cancers,
and the actions correspond to sequencing individual DNA addresses (actually combinations of

6Readers with experience in machine learning might interpret this entire procedure as training a classifier, with
COSMIC as the training set, and be concerned about over-fitting and generalization error. While we view this as
orthogonal to the problem we seek to address, it is worth noting that Cohen et al. (2018) actually observed higher
detection rates (i.e., accuracy) in practice than those predicted by COSMIC.
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Noise Approx. Ratio Objective Adaptivity Type

Kosaraju et al. (1999) No Yes Both Full
Chakaravarthy et al. (2009) No Yes Both Full
Nowak (2009) Yes No Worst-case Full
Naghshvar and Javidi (2013) Yes No Average Both
Im et al. (2016) No Yes Both Partial
Jia et al. (2019) Semi* No Both Both
This Work Yes Yes Both Both

Table 4.1: Summary of related work. *Semi refers to a restrictive special case. Approx. stands for
approximation.

addresses, as we will discuss later on). The learner incurs a fixed cost each time an action is
selected, and seeks to identify the true hypothesis with sufficient confidence, at minimum total
cost. Finally, and most importantly, the learner is allowed to select actions adaptively.

This well-studied problem is referred to as active sequential hypothesis testing, and as we will
describe momentarily, there exists a broad set of results that tightly characterizes the optimal
achievable cost under various notions of adaptivity. Unfortunately, the corresponding optimal
policies are typically only characterized as the optimal policy to a Markov decision process (MDP)—
thus, they remain computationally hard to compute when one requires a policy in practice. This
deficiency becomes particularly apparent in modern applications where both the set of hypotheses
and set of actions may be large: our own application has tens of hypotheses and billions of tests at
full scale. Thus motivated, our primary contribution is the first approximation algorithms for ASHT.

We study ASHT under two notions of adaptivity: partial and full, where partial adaptivity
requires the sequence of actions to be decided upfront (with adaptively chosen stopping time), and
full adaptivity allows the choice of action to depend on previous outcomes. For both problems, we
propose greedy algorithms that run in 𝑂(|𝐴||𝐻 |) time, and prove that their expected costs are upper
bounded by a non-trivial multiplicative factor of the corresponding optimal costs. Most notably,
these approximation guarantees are independent of |𝐴| (contrast this with the trivially-achievable
guarantee of 𝑂(|𝐴|)) and logarithmic in |𝐻 | (the optimal cost itself is often Ω(|𝐻 |)).

Our theoretical results rely on drawing connections to two existing problems: submodular

function ranking (SFR, see Azar and Gamzu 2011) and the optimal decision tree (ODT) problem
(Laurent and Rivest 1976). These connections allow us to tackle what is arguably the primary
challenge in achieving approximation results for ASHT, which is its inherent combinatorial nature.
We will argue that existing heuristics from statistical learning fail precisely because they disregard
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this combinatorial difficulty—indeed, they largely amount to solving the completely non-adaptive

version of the problem. At the same time, existing results for SFR and ODT fail to account for
noise in a manner that would map directly to ASHT—this extension is among our contributions.

Finally, we performed a set of large-scale experiments, including the ones that were built on
the same setup of Cohen et al. (2018). These experiments demonstrate that, in both the partial
and fully adaptive settings, our greedy algorithms (a) scale to the size of real-world problems, and
(b) outperform existing benchmarks for ASHT in practice. In the setting of liquid biopsies, our
results suggest that adaptive testing is sufficient to the achieve the remaining accuracy needed to
bring about a practical cancer screening test.

4.1.3 Related Work

Our work is closely related to three streams of research. Table 4.1 highlights the key differences
between our contributions and those of the most relevant previous works.

Hypothesis Testing and Asymptotic Performance In the classical binary sequential hypoth-
esis testing problem, a decision maker is provided with one action whose outcome is stochastic
(Wald 1945, Armitage 1950, Lorden 1977), and the goal is to use the minimum expected number
of samples to identify the true hypothesis subject to some given error probability. The ASHT
problem, first studied in Chernoff (1959), generalizes this problem to multiple actions. Most related
to our work is Naghshvar and Javidi (2013), who formulated a similar problem as an MDP. We
will postpone describing and contrasting their work until the experiments section.

Active Learning and Sample Complexity In active learning, the learner is given access to a
pool of unlabeled samples (cheaply obtainable) and is allowed to request the label of any sample
(expensive) from that pool. The goal is to learn an accurate classifier while requesting as few labels
as possible. Some nice surveys include Hanneke et al. (2014) and Settles (2009). Our model extends
the classical discrete active learning model Dasgupta (2005) in which outcomes are noiseless
(deterministic) for any pair of hypotheses and unlabeled sample. When outcomes are noisy, the
majority of provable guarantees are provided via sample complexity using minimax analysis
techniques. Castro and Nowak (2007) showed tight minimax classification error rates for a broad
class of distributions. Other sample complexity results on noisy active learning include Wang and
Singh (2016), Nowak (2009), Balcan et al. (2006), Awasthi et al. (2017), Hanneke and Yang (2015).

Approximation Algorithms for Decision Trees Nearly all optimal approximation algorithms
for minimizing cover time are known in the noiseless setting (Kosaraju et al. 1999, Adler and
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Heeringa 2008, Arkin et al. 1998). When the outcome is stochastic, Golovin and Krause (2011)
proposed a framework for analyzing algorithms in the active learning setting under the adaptive
submodularity assumption, with the goal of maximizing the information gained with a prescribed
budget. However, their assumption does not hold for many natural setups including ASHT.
Chen et al. (2015) considered a variant using ideas from the submodular max-coverage problem
without the adaptive submodularity assumption, and provided a constant factor approximation
to the problem using ideas from the submodular max-coverage problem. Other works based on
submodular function covering include Navidi et al. (2020), Guillory and Bilmes (2011), Krause et al.
(2008). Jia et al. (2019) provided approximation ratios under the constraint that the algorithm may
only terminate when it is completely confident about the outcome.

4.2 Model

In this section, we formally introduce the active sequential hypothesis testing problem; the
mapping of this generic problem to the liquid biopsy application is described in detail in § 4.6.
Let 𝐻 be a finite set of hypotheses, among which exactly one is the (unknown) true hypothesis
that we seek to identify. We denote this true hypothesis ℎ∗. In this paper, we study the Bayesian
setting, wherein ℎ∗ is drawn from a known prior distribution 𝜋 over the entire hypothesis set 𝐻 .

Let 𝐴 be the set of available actions, and let  be a given family of parametrized distributions
that encode the outcome distributions, i.e., the distributions from which the outcome is drawn
when an action is chosen. For ease of exposition, we parameterize the family of distributions by
Θ ⊆ ℝ, i.e.,  = {𝐷𝜃}𝜃∈Θ. Thus, selecting, or “playing”, an action yields a random outcome drawn
independently from a distribution within the given family  = {𝐷𝜃}𝜃∈Θ. In addition, we are given
a function 𝜇 that maps each pair of action and hypothesis to some 𝜃 ∈ Θ, i.e., 𝜇 ∶ 𝐻 × 𝐴 → Θ,
such that if ℎ ∈ 𝐻 is the true underlying hypothesis and we select action 𝑎 ∈ 𝐴 to play, then we
observe a random outcome that is drawn independently from distribution 𝐷𝜇(ℎ,𝑎). Note that in this
noisy setting, an action can (and often should) be played multiple times (in the same way that a
DNA address should be sequenced multiple times since each strand of cell-free DNA is effectively
sampled randomly from throughout the body).

An instance of the active sequential hypothesis testing problem is then fully specified by a
tuple: (𝐻,𝐴, 𝜋, 𝜇,). The goal is to sequentially select actions to identify the true hypothesis with
“sufficiently high” confidence, at minimal expected cost, where cost is measured as the number of
actions, and the expectation is with respect to the Bayesian prior and the random outcomes. The
notion of sufficiently high confidence is encoded by a parameter 𝛿 ∈ (0, 1), and requires that under
any true hypothesis ℎ ∈ 𝐻 , the probability of erroneously identifying a different hypothesis is at
most 𝛿 . An algorithm is said to have achieved 𝛿-PAC-error if it identifies the true hypothesis
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with this notion of sufficiently high confidence.
In this paper, we focus on two important families of the outcome distributions, 𝐷𝜃 ’s: the

Bernoulli distribution Ber(𝜃), and the Gaussian distribution 𝑁 (𝜃, 𝜎 2). In the latter, the variance 𝜎 2

is a known constant (with respect to 𝜃).7 By re-scaling, without loss of generality we may assume
𝜎 2 = 1. To state our guarantees, we require two additional assumptions. The first assumption is
needed for relating the sub-gaussian norm to the KL-divergence, in the partially adaptive setting.
It ensures that the parameterization Θ is a meaningful one, in the sense that if two parameters
𝜃, 𝜃 ′ ∈ Θ are far apart, then the corresponding distributions 𝐷𝜃 and 𝐷𝜃 ′ are also “far” apart,
(i.e., their KL divergence is “far” apart). Note that Assumption 2 is satisfied for the Bernoulli
distribution Ber(𝜃) when 𝜃 ∈ [𝜃min, 𝜃max] for some constants 0 < 𝜃min < 𝜃max < 1, and for the
Gaussian distribution 𝑁 (𝜃, 1) where 𝜃 lies in some bounded subset of ℝ.

Assumption 2. There exist two constants 𝐶1, 𝐶2 > 0 such that for any 𝜃, 𝜃 ′ ∈ Θ, we have

𝐶1 ⋅ KL(𝐷𝜃 , 𝐷𝜃 ′) ≤ (𝜃 − 𝜃 ′)2 ≤ 𝐶2 ⋅ KL(𝐷𝜃 , 𝐷𝜃 ′),

where KL(⋅, ⋅) is the Kullback-Leibler divergence.

Our second major assumption simply ensures the existence of a valid algorithm by ensuring
that every hypothesis is distinguishable via some action:

Assumption 3 (Validity). For any pair of distinct hypotheses 𝑔, ℎ ∈ 𝐻 , there exists an action 𝑎 ∈ 𝐴
with 𝜇(𝑔, 𝑎) ≠ 𝜇(ℎ, 𝑎).

Note that in Assumption 3, we do not preclude the possibility that for a given action 𝑎, there
exist (potentially many) pairs of hypotheses 𝑔 and ℎ such that the outcome distributions are the
same, i.e., 𝜇(𝑔, 𝑎) = 𝜇(ℎ, 𝑎). In fact, eliminating such possibilities would effectively wash out any
meaningful combinatorial dimension to this problem. On the other hand, any approximation
guarantee should be parameterized by some notion of separation (when it exists). For any two
hypotheses 𝑔, ℎ ∈ 𝐻 and any action 𝑎 ∈ 𝐴, we define the distance between these two hypotheses
under action 𝑎 as 𝑑(𝑔, ℎ; 𝑎) ∶= KL (𝐷𝜇(𝑔,𝑎), 𝐷𝜇(ℎ,𝑎)) . Let 𝑠 > 0 be some positive constant. The
following is the notion of separation, s-separability, that we use throughout the paper:

Definition 4 (𝑠-separated instance). An ASHT instance is said to be 𝑠-separated, if for any 𝑎 ∈ 𝐴
and 𝑔, ℎ ∈ 𝐻 , 𝑑(𝑔, ℎ; 𝑎) is either 0 or at least 𝑠.

Note that in real-world applications, the parameters 𝑠 could be arbitrarily small, and we
introduce the notation of 𝑠-separability for the sake of proofs. We will show in § 4.6 how our
algorithms can easily be modified to handle small 𝑠 values. In this paper, we will study two classes
of algorithms that differ in the extent to which adaptivity is allowed.

7Sub-Gaussianity with similar control over the sub-Gaussian norm would suffice.
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Definition 5. A fully adaptive algorithm is a decision tree,8 each of whose interior nodes is labeled

with some action, and each of whose edges corresponds to an outcome. Each leaf is labeled with a

hypothesis, corresponding to the output when the algorithm terminates.

Definition 6. A partially adaptive algorithm (𝜎, 𝑇 ) is specified by a fixed sequence of actions

𝜎 = (𝜎1, 𝜎2, ...), with each 𝜎𝑖 ∈ 𝐴, and a stopping time 𝑇 , such that the event {𝑇 = 𝑡} is independent
of the outcomes of actions 𝜎𝑡+1, 𝜎𝑡+2,…, under any true hypothesis ℎ∗ ∈ 𝐻 and for any 𝑡 ≥ 1. (At the
stopping time, the choice of which hypothesis to identify is trivial in our Bayesian setting—it is simply

the one with the highest “posterior” probability.)

Note that a partially adaptive algorithm can be viewed as a special type of fully adaptive
algorithm: it is a decision tree with the additional restriction that the actions at each depth are
the same. Therefore, a fully adaptive algorithm may be far cheaper than any partially adaptive
algorithm. However, there are many scenarios (e.g., content recommendation and web search (Azar
et al. 2009)) where it is desirable to fix the sequence of actions in advance. Furthermore, in many
problems the theoretical analysis of partially adaptive algorithms turns out to be challenging (e.g.,
Kamath and Tzamos 2019, Chawla et al. 2019).

Thus, given an ASHT instance, there are two problems that we will consider, depending on
whether the algorithms are partially or fully adaptive. In both cases, our goal is to design fast
approximation algorithms—ones that are computable in polynomial9 time and that are guaranteed
to incur expected costs at most within a multiplicative factor of the optimum. In the coming
sections, we will describe our algorithms and approximation guarantees. Before moving on to
this, it is worth noting that our problem setup is extremely generic and captures a number of
well-known problems related to decision-making for learning including best-arm identification
for multi-armed bandits (Bubeck et al. 2009, Even-Dar et al. 2002, Mannor and Tsitsiklis 2004),
group testing (Du et al. 2000), and causal inference (Gan et al. 2020), just to name a few.

4.3 Our Approximation Guarantees

In this section, we will state our approximation guarantees. We will define the corresponding
greedy algorithms in the next two sections. Let OPTPA

𝛿 and OPTFA
𝛿 denote the minimal expected

cost of any partially adaptive and fully adaptive algorithm that achieves 𝛿-PAC-error, respectively.
Theorem 11 summarizes the approximation guarantee for our greedy partially adaptive algorithm:

8By approximating 𝐷𝜃 ’s with discrete distributions, we may assume each node has a finite number of children.
9Throughout this paper, polynomial time refers to polynomial in (|𝐻 |, |𝐴|, 𝑠−1, 𝛿−1)

121



Theorem 11. Given an 𝑠-separated instance and any 𝛿 ∈ (0, 1/2), there exists a polynomial-time

partially adaptive algorithm that achieves 𝛿-PAC-error with expected cost

𝑂 (𝑠−1 (1 + log1/𝛿 |𝐻 |) log (𝑠−1|𝐻 | log 𝛿−1))OPTPA
𝛿 .

To help parse this result, if 𝛿 is on the order of |𝐻 |−𝑐 for some constant 𝑐, then the approximation
factor becomes 𝑠−1(log 𝑠−1 + log |𝐻 | + 𝑐 log log |𝐻 |). Theorem 12 summarizes the approximation
guarantee for our greedy fully adaptive algorithm:

Theorem 12. Given an 𝑠-separated instance and any 𝛿 ∈ (0, 1/2), there exists a polynomial-time

fully adaptive algorithm that achieves 𝛿-PAC-error with expected cost

𝑂 (𝑠−1 log (|𝐻 |𝛿−1) log |𝐻 |)OPTFA
𝛿 .

A few observations might clarify the significance of these approximation guarantees:

1. Dependence on action space: Both guarantees are independent of the number of actions
|𝐴|. This is extremely important since, as described in the Introduction, there exist many
applications where the the action space is massive. Moreover, since an approximation factor
of 𝑂(|𝐴|) is always trivially achievable (by cycling through the actions), instances where |𝐴|
is large are arguably the most interesting problems.

2. Dependence on |𝐻 |, 𝛿 and 𝑠: For fixed 𝑠 and 𝛿 , these are the first polylog-approximations for
both partially and fully adaptive versions. Further, for the partially adaptive version, the
dependence of the approximation factor on 𝛿 is 𝑂(log log 𝛿−1) when 𝛿−1 is polynomial in
|𝐻 |, improving upon the naive dependence 𝑂(log 𝛿−1). This is crucial since 𝛿 is often needed
to be tiny in practice.

3. Greedy runtime: While we have only stated in our formal results that our approximation
algorithms can be computed in poly(|𝐴|, |𝐻 |) time, the actual time is more attractive: 𝑂(|𝐴||𝐻 |)
for selecting each action. In contrast, the heuristic that we will compare against in the
experiments requires solving multiple Ω(|𝐴||𝐻 |2)-sized linear programs.

Despite their similar appearances, Theorems 11 and 12 rely on fundamentally different algo-
rithmic techniques and thus require different analyses. In § 4.4, we propose an algorithm inspired
by the submodular function ranking problem, which greedily chooses a sequence of actions ac-
cording to a carefully chosen “greedy score.” We then sketch the proof of Theorem 11. In § 4.5, we
introduce our fully adaptive algorithm and sketch the proof of Theorem 12.

Finally, by proving a structural lemma (in § 4.11), we extend the above results to a special case
of the total-error version (i.e., averaging the error over the prior 𝜋 ) where the prior distribution
is uniform. With 𝛿-total-error formally defined in § 4.11:
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Theorem 13. Given an 𝑠-separated instance with uniform prior 𝜋 and any 𝛿 ∈ (0, 14 ), for both
the partially and fully adaptive versions, there exist polynomial-time 𝛿-total-error algorithms with

expected cost 𝑂 (𝑠−1 (1 + |𝐻 |𝛿2) log (|𝐻 |𝛿−1) log |𝐻 |) times the optimum.

4.4 Partially Adaptive Algorithm

This section describes our algorithm and guarantee for the partially adaptive problem. We first
review necessary background from a related problem, and then state our algorithm (Algorithm 8).
Finally, we sketch the proof of the following more general version of Theorem 11 (complete proof
in § 4.9):

Proposition 9. Let 𝛿 ∈ (0, 14] and consider finding the optimal 𝛿-PAC error algorithm. Given any

boosting intensity 𝛼 ≥ 1 and coverage saturation threshold 𝐵 ∈ (0, 12 log 𝛿
−1], RnB(𝐵, 𝛼) (as defined in

Algorithm 8) produces a partially adaptive algorithm with error |𝐻 | exp (−Ω (𝛼𝐵)) and expected cost
𝑂 (𝛼𝑠 log

|𝐻 |𝐵
𝑠 )OPTPA

𝛿 .

By setting 𝛼 = 1 + log𝛿−1 |𝐻 | and 𝐵 = 1
2 log 𝛿

−1, we immediately obtain Theorem 11.

4.4.1 Background: Submodular Function Ranking

In the SFR problem, we are given a ground set 𝑈 of 𝑁 elements, a family  of non-decreasing
submodular functions 𝑓 ∶ 2𝑈 → [0, 1] with 𝑓 (𝑈 ) equaling 1 for every 𝑓 ∈  , and a weight
function 𝑤 ∶  → ℝ+. For any permutation 𝜎 = (𝑢1, ..., 𝑢𝑁 ) of 𝑈 , the cover time of 𝑓 is defined
as CT(𝑓 , 𝜎 ) = min{𝑡 ∶ 𝑓 ({𝑢1, ..., 𝑢𝑡}) = 1}. The goal is to find a permutation 𝜎 of 𝑈 with minimal
weighted cover time, ∑𝑓 ∈ 𝑤(𝑓 ) ⋅ CT(𝑓 , 𝜎 ).

A greedy algorithm was proposed in Azar and Gamzu (2011), and we will use this algorithm as
an important subroutine in our algorithm. This greedy algorithm constructs a sequence iteratively.
At each iteration, we say a function is covered if its value on the set of the elements selected so far
is 1, and the function is uncovered otherwise. The sequence is initialized to be empty. At each
iteration, let 𝑆 denote the set of elements selected so far. The algorithm selects the element 𝑢 with
the maximal coverage, defined as

Cov(𝑢; 𝑆) ∶= ∑
𝑓 ∈∶𝑓 (𝑆)<1

𝑤(𝑓 ) ⋅
𝑓 (𝑆 ∪ {𝑢}) − 𝑓 (𝑆)

1 − 𝑓 (𝑆)
.

Loosely, the algorithm chooses the element that maximizes the weighted sum of additional
immediate proportional coverage. The following approximation guarantee for this algorithm is
known to be the best possible among all polynomial-time algorithms:
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Theorem 14 (Im et al. 2016). For any SFR instance, the greedy algorithm described above returns a

sequence whose cost is 𝑂(log 𝜀−1) times the optimum, where

𝜀 ∶= min
{
𝑓 (𝑆 ∪ {𝑢}) − 𝑓 (𝑆) > 0 ∶ 𝑆 ∈ 2𝑈 , 𝑢 ∈ 𝑈 , 𝑓 ∈ 

}
.

Challenge: To motivate our algorithm, consider first the following simple idea: “boost” each
action, and hence reduce the problem to a deterministic problem 𝑃𝑑𝑒𝑡 . Then show that the existing
technique (submodular function ranking for partially adaptive and greedy analysis for ODT for
fully-adaptive) returns a policy with cost 𝑂(log |𝐻 |) times the no-noise optimum, and finally
show that this no-noise policy can be converted to a noisy version by losing anther factor of
𝑂(𝑠−1 log(𝛿−1|𝐻 |)). This analysis was in fact our first attempt. However, there are at least two
issues that one runs into along this path:

1. This analysis only compares the policy’s cost with the no-noise optimum, but our focus is
the 𝛿-noise optimum. In particular, the simpler analysis implicitly assumes that the 𝛿-noise
optimum is at least Ω(𝑠−1 log(𝛿−1|𝐻 |)) times the no-noise optimum, which is not necessarily
true. Moreover, it is challenging to analyze the gap between the no-noise optimum and the
𝛿-noise optimum.

2. The guarantee that results from this simple analysis is weaker than ours in terms of 𝛿 : it
yields a factor of log(1/𝛿), as opposed to the log log(1/𝛿) in our analysis. This distinction is
nontrivial, particularly in applications where the error is required to be exponentially small
in |𝐻 |.

4.4.2 Rank and Boost (RnB)

Our RnB algorithm (Algorithm 8) circumvents the issues above by drawing a connection between
ASHT and SFR. First, we observe that although an action is allowed to be selected multiple times,
we may assume each action is selected for at most 𝑀 = 𝑀(𝛿, 𝑠, |𝐻 |) = 𝑂(𝑠−1|𝐻 |2 log(|𝐻 |/𝛿)) times.
In fact,

Observation 1. Let 𝐴 be the (multi)-set obtained by creating 𝑀 copies of each 𝑎 ∈ 𝐴. Then there

exists a sequence 𝜎 of |𝐴| actions, such that ℎ∗, the true hypothesis, has the highest posterior with
probability 1 − 𝛿 after performing all actions in 𝜎 .

Thus, given 𝐴, we define 𝑓 𝐵ℎ ∶ 2𝐴 → [0, 1] for any coverage saturation level 𝐵 > 0 and ℎ ∈ 𝐻 as
𝑓 𝐵ℎ (𝑆) =

1
|𝐻 |−1 ∑𝑔∈𝐻 ⧵{ℎ} min{1, 1𝐵 ∑𝑎∈𝑆 𝑑(𝑔, ℎ; 𝑎)}.One can verify that 𝑓 𝐵ℎ is monotone and submodular.

Our algorithm computes a nearly optimal sequence of actions using the greedy algorithm for SFR,
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and creates a number of copies for each of them. Then we assign a timestamp to each ℎ ∈ 𝐻 , and
scan them one by one, terminating when the likelihood of one hypothesis is dominantly high.

Although a naive implementation of Algorithm 8 yields a running time that is linear in the
number of actions, however since Score(𝑎; 𝑆) (Line 6 of Algorithm 8) can be calculated indepen-
dently for each action 𝑎, one could paralyze this calculation for different actions and thus reducing
the dependency on |𝐴|. The same observation also holds for the rest algorithms to be introduced
in the paper.

4.4.3 Proof Sketch for Proposition 9

We sketch a proof here and defer the details to § 4.9. The error analysis follows from standard
concentration bounds, so we focus on the cost analysis. Suppose 𝛼 > 0, 𝛿 ∈ (0, 1/4], and 𝐵 ∈
(0, (1/2) log 𝛿−1]. Let (𝜎 ∗, 𝑇 ∗) be any optimal partially adaptive algorithm, and let (𝜎, 𝑇 ) be the
policy returned by RnB. Our analysis consists of the following steps:

(A) The sequence 𝜎 does well in covering the submodular functions, in terms of the total cover
time: ∑ℎ∈𝐻 𝜋 (ℎ) ⋅ CT(𝑓 𝐵ℎ , 𝜎 ) ≤ 𝑂 (log (|𝐻 |𝐵𝑠−1))∑ℎ∈𝐻 𝜋 (ℎ) ⋅ CT(𝑓 𝐵ℎ , 𝜎 ∗).

(B) The expected stopping time of our algorithm is not too much higher than the cover time of
its submodular function: 𝔼ℎ[𝑇 ] ≤ 𝛼 ⋅ CT(𝑓 𝐵ℎ , 𝜎 ), ∀ℎ ∈ 𝐻.

(C) The expected stopping time in (𝜎 ∗, 𝑇 ∗) can be lower bounded in terms of the total cover time:
𝔼ℎ[𝑇 ∗] ≥ Ω(𝑠) ⋅ CT(𝑓 𝐵ℎ , 𝜎 ∗), ∀ℎ ∈ 𝐻.

Proposition 9 follows by combining the above three steps. In fact,

∑
ℎ∈𝐻

𝜋 (ℎ) ⋅ 𝔼ℎ[𝑇 ] ≤ 𝛼∑
ℎ∈𝐻

𝜋 (ℎ) ⋅ CT(𝑓 𝐵ℎ , 𝜎 )

≤ 𝑂(𝛼 log
|𝐻 |𝐵
𝑠 )∑

ℎ∈𝐻
𝜋 (ℎ) ⋅ CT(𝑓 𝐵ℎ , 𝜎

∗)

≤ 𝑂(
𝛼
𝑠
log

|𝐻 |𝐵
𝑠 )∑

ℎ∈𝐻
𝜋 (ℎ) ⋅ 𝔼ℎ[𝑇 ∗],

where ∑ℎ 𝜋 (ℎ) ⋅ 𝔼ℎ[𝑇 ] is the expected cost of our algorithm, and ∑ℎ 𝜋 (ℎ) ⋅ 𝔼ℎ[𝑇 ∗] is the expected
cost of the optimal partially adaptive algorithm, OPTPA

𝛿 .
At a high level, Step A can be showed by applying Theorem 14 and observing that the marginal

positive increment of each 𝑓 𝐵ℎ is Ω(𝑠/(|𝐻 |𝐵)). Step B is implied by the correctness of the algorithm.
In our key step, Step C, we fix an arbitrary 𝛿-PAC-error partially adaptive algorithm (𝜎, 𝑇 ) and
a hypothesis ℎ ∈ 𝐻 . Denote CTℎ the cover time of 𝑓 𝐵ℎ under permutation 𝜎 , with 𝐵 chosen to
be 1

2 log 𝛿
−1, i.e., CTℎ = 𝐶𝑇 (𝑓 𝐵ℎ , 𝜎 ). Our goal is to lower bound 𝔼ℎ[𝑇 ] in terms of CTℎ. Given any
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Algorithm 8 Partially Adaptive Algorithm: RnB(𝐵, 𝛼)
1: Parameters: Coverage saturation level 𝐵 > 0 and boosting intensity 𝛼 > 0.
2: Input: ASHT instance (𝐻,𝐴, 𝜋, 𝜇,)
3: Initialize: 𝜎 ← ∅, �̃� ← ∅ ⊳ Store the selected of actions.
4: for 𝑡 = 1, 2, ..., |𝐴| do ⊳ Rank: Compute a sequence of actions.
5: 𝑆 ← {𝜎 (1), ..., 𝜎 (𝑡 − 1)}. ⊳ Actions selected so far.
6: for 𝑎 ∈ 𝐴 do ⊳ Compute scores for each action.

Score(𝑎; 𝑆) ← ∑
ℎ∶𝑓 𝐵ℎ (𝑆)<1

𝜋 (ℎ)
𝑓 𝐵ℎ (𝑆 ∪ {𝑎}) − 𝑓 𝐵ℎ (𝑆)

1 − 𝑓 𝐵ℎ (𝑆)
.

7: end for
8: 𝜎 (𝑡) ← argmax{Score(𝑎; 𝑆) ∶ 𝑎 ∈ 𝐴⧵𝑆}. ⊳ Select the greediest action.
9: end for
10: for 𝑡 = 1, 2, ..., |�̃�|: do ⊳ Boost: Repeat each action in 𝜎 for 𝛼 times.
11: for 𝑖 = 1, 2, ..., 𝛼 : do
12: �̃�(𝛼(𝑡 − 1) + 𝑖) ← 𝜎 (𝑡).
13: end for
14: end for
15: for 𝑡 = 1, ..., 𝛼 |�̃�|: do
16: Select action �̃� (𝑡) and observe outcome 𝑦𝑡 .
17: if 𝑡 = 𝛼 ⋅ CT(𝑓 𝐵ℎ , 𝜎 ) for some ℎ ∈ 𝐻 : then ⊳ If 𝑡 is the timestamp for some ℎ.
18: for 𝑔 ∈ 𝐻 ⧵{ℎ}: do
19: Λ(ℎ, 𝑔) ← ∏𝑡

𝑖=1 ℙℎ,�̃� (𝑖)(𝑦𝑖)/ℙ𝑔,�̃� (𝑖)(𝑦𝑖). ⊳ Compute the likelihood ratio.
20: end for
21: if log Λ(ℎ, 𝑔) ≥ 𝛼𝐵/2 for all 𝑔 ∈ 𝐻 ⧵{ℎ}, then
22: return ℎ. ⊳ Hypothesis identified.
23: end if
24: end if
25: end for
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𝑑1, ..., 𝑑𝑛, denote 𝑑 𝑖 = ∑𝑖
𝑗=1 𝑑𝑗 . To this aim, we first show that for suitable choices of 𝑑𝑖’s and 𝑡 , the

solution 𝑧𝑖 = ℙℎ[𝑇 = 𝑖] is feasible to the following LP:

𝐿𝑃 (𝑑, 𝑡) ∶ min
𝑧

𝑁

∑
𝑖=1

𝑖 ⋅ 𝑧𝑖

𝑠.𝑡.
𝑁

∑
𝑖=1

𝑑 𝑖𝑧𝑖 ≥
CTℎ−1

∑
𝑖=1

𝑑𝑖 ,

𝑁

∑
𝑖=1

𝑧𝑖 = 1,

𝑧 ≥ 0.

A feasible solution 𝑧 can be viewed as a distribution of the stopping time. When 𝑑𝑖 = 𝑑(𝑔, ℎ; 𝑎𝑖),
the first constraint says that the total KL-divergence “collected” at the stopping time has to reach
a certain threshold. We show that 𝑧𝑖 = ℙℎ[𝑇 = 𝑖] is feasible, and the objective value of 𝑧 is exactly
𝔼ℎ[𝑇 ], hence 𝔼ℎ[𝑇 ] is upper bounded by the LP-optimum 𝐿𝑃 ∗(𝑑, 𝑡). Finally, we lower bound
𝐿𝑃 ∗(𝑑,CTℎ − 1) by Ω(𝑠 ⋅ CTℎ). The complete proof of Step C could be found in § 4.9.1.

4.5 Fully Adaptive Algorithm

In this section, we introduce our greedy fully adaptive algorithm. For ease of presentation, we
only consider the scenario where the prior 𝜋 is uniform over all hypotheses in this work. However,
note that our guarantees hold for general priors. Our analysis is based on a reduction to the
classical ODT problem.

4.5.1 Background: Optimal Decision Trees

In the ODT problem, an unknown true hypothesis ℎ∗ is drawn from a set of hypotheses 𝐻 with
some known probability distribution 𝜋 . There is a set of known tests, each being a (deterministic)
mapping from 𝐻 to a finite outcome space set 𝑂. Thus, when performing a test, we can rule out

the hypotheses that are inconsistent with the observed outcome, hence reducing the number of
alive hypotheses. Moreover, the cost 𝑐(𝑇 ) of each test 𝑇 is known, and the cost of a decision tree is
defined to be the expected total cost of the tests selected until one hypothesis remains alive, in
which case we say the true hypothesis is identified. The goal is to find a valid decision tree with
minimal expected cost.

Note that the ODT problem can be viewed as a special case of the fully adaptive version of our
problem where there is no noise and 𝛿 is 0. Consider the following greedy algorithm: let 𝐴 be the
alive hypotheses. Define Score(T) for each test 𝑇 to be the minimal (over all possible outcomes)
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Algorithm 9 Fully Adaptive Algorithm
1: Input: ASHT instance (𝐻,𝐴, 𝜋, 𝜇,) and error 𝛿 ∈ (0, 1/2).
2: 𝐻alive ← 𝐻 . ⊳ Alive hypotheses.
3: while |𝐻alive| ≥ 2 do
4: 𝑎 ← argmax𝑎∈𝐴

{
min𝜔∈Ω𝑎 |𝐻alive⧵𝑇 𝜔

𝑎 |
}
. ⊳ Greedy step.

5: 𝑐(�̂�) ← ⌈𝑠(�̂�)−1 log(|𝐻 |/𝛿)⌉. ⊳ Num. of times to boost for sufficient confidence.
6: Select �̂� for 𝑐(�̂�) times consecutively and observe outcomes 𝑋1, ..., 𝑋𝑐(�̂�).
7: �̂� ← ∑𝑐(�̂�)

𝑖=1 𝑋𝑖 . ⊳Mean outcome.
8: �̂� ← argmin{|�̂� − 𝜔| ∶ 𝜔 ∈ Ω𝑎}. ⊳ Round �̂� to the closest 𝜔.
9: 𝐻alive ← 𝐻alive ∩ 𝑇 �̂�

�̂� . ⊳ Update the alive hypotheses.
10: end while

number of alive hypotheses that it rules out in 𝐴. Then, we select the test 𝑇 with the highest
“bang-per-buck” Score(T)/𝑐(𝑇 ). This algorithm is known to be an 𝑂(log |𝐻 |)-approximation:

Theorem 15 (Chakaravarthy et al. 2009). For any ODT instance with uniform prior, the above

greedy algorithm returns a decision tree whose cost is 𝑂(log |𝐻 |) times the optimum.

4.5.2 Our Algorithm

We will analyze our greedy algorithm by relating to the above result. Consider the following ODT
instance ODT for any given ASHT instance . The hypotheses set and prior in ODT are the same
as in . For each action 𝑎 ∈ 𝐴, let Ω𝑎 ∶= {𝜇(ℎ, 𝑎)|ℎ ∈ 𝐻} be the mean outcomes. By Chernoff
bound, we can show that when ℎ is the true hypothesis, with high probability the mean outcome is
“close” to 𝜇(ℎ, 𝑎) when 𝑎 is repeated for 𝑐(𝑎) times. This motivates us to define a test 𝑇𝑎 ∶ 𝐻 → Ω𝑎

s.t. 𝑇𝑎(ℎ) = 𝜇(ℎ, 𝑎), with cost 𝑐(𝑎) = ⌈𝑠(𝑎)−1 log(|𝐻 |/𝛿)⌉, where 𝑠(𝑎) = min{𝑑(𝑔, ℎ; 𝑎) > 0 ∶ 𝑔, ℎ ∈ 𝐻}
is the separation parameter under action 𝑎. Such a test corresponds to selecting action 𝑎 for 𝑐(𝑎)
times consecutively in a row.

For each 𝜔 ∈ Ω𝑎, abusing the notation a bit, let 𝑇 𝜔
𝑎 ⊆ 𝐻 denote the set of hypotheses whose

outcome is 𝜔 when performing 𝑇𝑎, i.e., 𝑇 𝜔
𝑎 = {ℎ ∶ 𝜇(ℎ, 𝑎) = 𝜔}. At each step, Algorithm 9 selects

an action �̂� using the greedy rule (Step 4) and then repeat �̂� for 𝑐(�̂�) times. Then we round the
empirical mean of the observations to the closest element �̂� in Ω𝑎, and rule out the hypotheses
that are inconsistent with the observed outcome, i.e., the ℎ’s with 𝜇(ℎ, 𝑎) ≠ �̂�. We terminate when
only one hypothesis remains alive.
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4.5.3 Analysis

We sketch a proof for Theorem 12 and defer the details to § 4.10. Let ℎ∗ be the true hypothesis.
By Hoeffding’s inequality, in each iteration, with probability 1 − 𝑒− log(|𝐻 |/𝛿) = 1 − 𝛿/|𝐻 | it holds
�̂� = 𝜇(ℎ∗, �̂�). Since in each iteration, |𝐻 | decreases by at least 1, there are at most |𝐻 | − 1 iterations.
Thus by union bound, the total error is at most 𝛿 .

Next we analyze the cost. Let GRE be the cost of Algorithm 9 and ODT∗ be the optimum of the
ODT instance ODT. For the sake of analysis, we consider a “fake” cost 𝑐′ ∶= ⌈𝑠−1 log(|𝐻 |/𝛿)⌉, which
does not depend on 𝑎. The definition of the ODT instance 𝐼𝑂𝐷𝑇 remains the same except that each
test has uniform cost 𝑐′ (as opposed to 𝑐(𝑎)). Let 𝑐(𝑇 ) and 𝑐′(𝑇 ) be the costs of the greedy tree 𝑇
returned by Algorithm 2 under 𝑐 and 𝑐′ respectively. Then by Theorem 15, 𝑐′(𝑇 ) ≤ 𝑂(log |𝐻 |)⋅ODT∗.
Note that 𝑐′ ≤ 𝑐(𝑎) for each 𝑎 since the separation parameter 𝑠 is no larger than 𝑠(𝑎) by definition.
Hence,

GRE ≤ GRE = 𝑐(𝑇 ) ≤ 𝑐′(𝑇 ) ≤ 𝑂(log |𝐻 |) ⋅ ODT∗. (4.1)

We relate ODT∗ to OPT𝐹𝐴𝛿 using the following result (see proof in § 4.10):

Proposition 10. ODT∗ ≤ 𝑂(𝑠−1 log(|𝐻 |/𝛿)) ⋅ OPT𝐹𝐴𝛿 .

The above is established by showing how to convert a 𝛿-PAC-error fully adaptive algorithm to
a valid decision tree, using only tests in {𝑇𝑎}, and inflating the cost by a factor of 𝑂(𝑠−1 log(|𝐻 |/𝛿)).
Combining Proposition 10 with Eq. (4.1), we obtain

𝐺𝑅𝐸 ≤ 𝑂(𝑠−1 log
|𝐻 |
𝛿

log |𝐻 |) ⋅ OPT𝐹𝐴𝛿 .

Finally we remark that this analysis can easily be extended to general priors by reduction to
the adaptive submodular ranking (ASR) problem (Navidi et al. 2020), which captures ODT as a
special case. One may easily verify that the main theorem in Navidi et al. (2020) implies that a
(slightly different) greedy algorithm achieves 𝑂(log(|𝐻 |))-approximation for the ODT problem
with general prior, test costs, and an arbitrary number of branches in each test. Thus for general
prior, the same analysis goes through if we first reduce ASHT to ASR, and then replace the greedy
step (Step 4 in Algorithm 9) with the greedy criterion for ASR.

4.6 Experiments

We performed a large set of numerical experiments, on both synthetic and real-world data (extend-
ing the analysis on the cancer genomic data from Cohen et al. (2018) described in the Introduction).
Our results demonstrate the following:
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1. Our algorithms can be applied to the liquid biopsy application, potentially yielding a cost
that is substantially lower than the existing commercial panels and those constructed by
state-of-art benchmarks.

2. Unlike existing benchmarks, our algorithms can explicitly account for prior information,
yielding superior performance under more realistic priors.

3. Although our theoretic guarantees depend on the separability parameters 𝑠 (which was in-
troduced by the boosting steps), with small modifications our algorithms perform well when
𝑠 is small on both synthetic and real-world data, outperforming state-of-art benchmarks.

Our benchmarks include two algorithms (one partially adaptive and one fully adaptive) based on
a polynomial-time policy proposed by Naghshvar and Javidi (2013) (Policy 110) and a completely
random policy. The rest of this section is organized as follows: we first describe the benchmark
policies and the implementation of our own policies. Then in § 4.6.2, we describe the setup and
results of our synthetic experiments. Finally, in § 4.6.3, we test the performance of our algorithms
on a publicly-available dataset of genetic mutations for cancer—COSMIC (Tate et al. 2019).

4.6.1 Algorithm Details

In all algorithms, we start with a uniform prior, and update our prior distribution (over the
hypotheses space) each time an observation is revealed. Unless otherwise mentioned, the algorithm
terminates if the posterior probability of a hypothesis is above the threshold 1−𝛿 . We first describe
the random baseline and NJ’s algorithms, and then discuss the modifications that we made to our
algorithms.

Random Baseline At each step, an action was uniformly chosen from the set of all actions.

NJ’s Algorithms NJ Adaptive Naghshvar and Javidi (2013) is a two-phase algorithm that
solves a relaxed version of our problem, where the objective is to minimize a weighted sum of the
expected number of tests and the likelihood of identifying the wrong hypothesis, i.e.,min𝔼(𝑇 )+𝐿𝑒,
where 𝑇 is the termination time, 𝐿 is the penalty for a wrong declaration, and 𝑒 is the probability
of making that wrong declaration. The problem was formulated as a Markov decision process
whose state space is the posterior distribution over the hypotheses. In Phase 1, which lasts as
long as the posterior probability of all hypotheses is below a carefully chosen threshold, the
action is sampled according to a distribution that is selected to maximize the minimum expected

10Policy 2 in Naghshvar and Javidi (2013) does not have asymptotic guarantees and so is not considered in our
experiments.
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KL divergence among all pairs of outcome variables. In Phase 2, when one of the hypotheses
has posterior probability above the chosen threshold, 𝑟 , the action is sampled according to a
distribution selected to maximize the minimum expected KL divergence between the outcome of
this hypothesis and the outcomes of all other hypotheses. This threshold was optimized over in
both synthetic and real-world experiments. The algorithm stops if the posterior of a hypothesis is
above the threshold 1 − 𝐿−1. NJ Partially Adaptive contains only the Phase 1 policy.

Partially Adaptive In our synthetic experiments, we implement Algorithm 8 described in
§ 4.4 exactly, and set the boosting factor, 𝛼 , to be 1. In our real-world experiments, we consider a
variant of our algorithm. In particular, we consider the following modifications: 1) the amount
of boosting is now a built-in feature of the algorithm, and 2) breaking ties according to some
heuristic. Algorithm 10 formally describes our modified algorithm. To consider the amount of
boosting as a built-in feature of the algorithm, we first generate a sequence of actions of length 𝜂
for some large 𝜂 value (with replacement) and then truncate the sequence to the minimum length
to include all unique actions that have appeared in the sequence. When all actions in sequence 𝜎
has performed and we did not reach the target accuracy, then we repeat the entire sequence again.
Our partially adaptive algorithm on COSMIC was generated by initializing 𝜂 to be 800. Across all
accuracy levels, the maximum truncated sequence length is 97.

Fully Adaptive We implement our algorithm described in § 4.5, with the modifications that 1)
the amount of boosting is considered as a tunable parameter, 2) a hypothesis is only considered to
be ruled out when we are deciding which action to perform, 3) we do not boost if no action can
further distinguish any hypotheses in the alive set, 4) we break ties according to some heuristic.
In particular, Modification 1) addresses the issues that our fully adaptive algorithm in § 4.5 over-
boosts. Modification b) controls the error probability 𝛿 when we decrease the amount of boosting.
Modification c) handles small 𝑠 without increasing the boosting factor. We formally describe this
modified algorithm below.

Similar to NJ’s algorithm, we maintain a probability distribution, 𝜌, over the set of hypotheses
to indicate the likelihood of each hypothesis being the true hypothesis ℎ∗. A hypothesis is
considered to be ruled out at each step if the probability of that hypothesis is below a threshold in
𝜌. Throughout our experiments, we set this threshold to be 𝛿/|𝐻 |. At each step, after an action
is chosen with certain repetitions and observation(s) is (are) revealed, we update 𝜌 according to
the realizations that we observed. Thus, under this setup, a hypothesis that was considered to be
ruled out in the previous steps (due to “bad luck”) could potentially become alive again.

At each iteration, for each action 𝑎 ∈ 𝐴 and 𝑘 ∈ N, we define 𝑇𝑎,𝑘 to be the meta-test that repeats
action 𝑎 for 𝑘 times consecutively, and we define its cost to be 𝑐(𝑇𝑎,𝑘) = 𝑘𝑐𝑎. By Chernoff bound,
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Algorithm 10 Partially Adaptive Algorithm in the COSMIC Experiment
1: Parameters: Coverage saturation level 𝐵 > 0 and maximum sequence length 𝜂 > 0.
2: Input: ASHT instance (𝐻,𝐴, 𝜋, 𝜇)
3: Output: actions sequence 𝜎
4: Initialize: 𝜎 ← ∅ ⊳ Store the selected of actions
5: for 𝑡 = 1, 2, ..., 𝜂 do do ⊳ Rank: Compute a sequence of actions of length 𝜂
6: 𝑆 ← {𝜎 (1), ..., 𝜎 (𝑡 − 1)}. ⊳ Actions selected so far
7: for 𝑎 ∈ 𝐴 do ⊳ Compute scores for each action

Score(𝑎; 𝑆) ← ∑
ℎ∶𝑓 𝐵ℎ (𝑆)<1

𝜋 (ℎ)
𝑓 𝐵ℎ (𝑆 ∪ {𝑎}) − 𝑓 𝐵ℎ (𝑆)

1 − 𝑓 𝐵ℎ (𝑆)
.

8: end for
9: 𝜎 (𝑡) ← argmax{Score(𝑎; 𝑆) ∶ 𝑎 ∈ 𝐴}. ⊳ Select the greediest action and break ties

according the heuristic described in Algorithm 11
10: end for
11: Let i be the largest index for which the an action appears the first time in sequence 𝜎 , then

we return the sequence (𝜎 (1), ...., 𝜎 (𝑖)).

with 𝑘 i.i.d. samples, we may construct a confidence interval of width ∼ 𝑘−1/2. This motivates us to
rule out the following hypotheses when 𝑇𝑎,𝑘 is performed. Let �̄� be the observed mean outcome
of these 𝑘 samples, we define the elimination set to be 𝐸�̄�(𝑇𝑎,𝑘) ∶= {ℎ ∶ |𝜇(ℎ, 𝑎) − �̄�| ≥ 𝐶𝑘−1/2},
where C is set to be 1/2 in our uniform prior experiment and set to be 1/3 in our non-uniform
prior experiment. To define greedy, we need to formalize the notion of bang-per-buck. Suppose
𝐻𝑎𝑙𝑖𝑣𝑒 is the current set of alive hypotheses. We define the score of a test as the number of alive
hypotheses ruled out in the worst-case over all possible mean outcomes �̄�. Formally, the score of
𝑇𝑎,𝑘 w.r.t mean outcome �̄� is

Score�̄�(𝑇𝑎,𝑘) = Score�̄�(𝑇𝑎,𝑘 ;𝐻𝑎𝑙𝑖𝑣𝑒) =
|𝐸(𝑇𝑎,𝑘 ; �̄�) ∩ 𝐻𝑎𝑙𝑖𝑣𝑒 |

𝑐(𝑇𝑎,𝑘)
,

and define its worst-case score to be Score(𝑇𝑎,𝑘) = min{Score�̄�(𝑇𝑎,𝑘) ∶ �̄� ∈ {0, 1/𝑘, ..., 1}}.
Our greedy policy simply selects the test 𝑇 with the highest score, formally, select 𝑇𝑎,𝑘 =

argmax{Score(𝑇 ) ∶ 𝑘 ≤ 𝑘max, 𝑎 ∈ 𝐴}.
In the synthetic experiments, we set 𝑘max = 5. In the real-world experiments, we consider the

cases where 𝑘 ∈ {15, 20, 25, 30} (with 𝑘max = 30) when the prior is uniform and 𝑘 ∈ {5, 10, 15, 20}
(with 𝑘max = 20) when the prior is non-uniform. If several actions have the same greedy score,
then we choose the action 𝑎∗ whose sum of the KL divergence of pairs of 𝜇(ℎ, 𝑎∗) is the largest, and
breaking ties arbitrarily. If no action can further distinguish any hypotheses in the alive set, then
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we set the boosting factor to be 1 and use the above heuristic to choose the action to perform. The
algorithm is formally stated in Algorithm 11.

Algorithm 11 Adaptive experiments: FA(𝑘max, 𝛿)
1: Parameters: maximum boosting factor 𝑘max > 0 and convergence threshold 𝛿 > 0
2: Input: ASHT instance (𝐻,𝐴, 𝜋, 𝜇), current posterior of the true hypothesis vector 𝜌
3: Output: the test 𝑇𝑎,𝑘 to perform in the next iteration
4: Let 𝐻alive be the set of hypotheses 𝑖 whose posterior probability 𝜌𝑖 is above 𝛿/|𝐻 |.
5: for 𝑘 = 1, 2, ..., 𝑘max do
6: For each 𝑎 ∈ 𝐴 define:

Score�̄�(𝑇𝑎,𝑘) = Score�̄�(𝑇𝑎,𝑘 ;𝐻alive) =
|𝐸(𝑇𝑎,𝑘 ; �̄�) ∩ 𝐻alive|

𝑐(𝑇𝑎,𝑘)
,

7: where 𝐸�̄�(𝑇𝑎,𝑘) ∶= {ℎ ∶ |𝜇(ℎ, 𝑎) − �̄�| ≥ 𝐶𝑘−1/2}, and 𝑐(𝑇𝑎,𝑘) = 𝑘𝑐𝑎. We define the worst-case
score of a test to be:

Score(𝑇𝑎,𝑘) = min{Score�̄�(𝑇𝑎,𝑘) ∶ �̄� ∈ {0, 1/𝑘, ..., 1}}.

8: end for
9: Compute greediest action

𝐺 = argmax{Score(𝑇 ) ∶ 𝑘 ≤ 𝑘𝑚𝑎𝑥 , 𝑎 ∈ 𝐴}.

10: if the Score of each test in 𝐺 equals to 0, i.e, no test can further distinguish between the alive
hypotheses under 𝑘max then

11: we choose the action 𝑎∗ such that 𝑎∗ = argmax∑ℎ,𝑔∈𝐻alive
KL(𝜇(ℎ, 𝑎), 𝜇(𝑔, 𝑎)), breaking ties

randomly, and return 𝑘 = 1.
12: else
13: if 𝐺 is a singleton, then we return 𝐺. Else, we choose the action 𝑎∗ such that 𝑎∗ =

argmax𝐺 ∑ℎ,𝑔∈𝐻alive
KL(𝜇(ℎ, 𝑎), 𝜇(𝑔, 𝑎)), and breaking ties randomly.

14: end if

4.6.2 Synthetic Experiments

Parameter Generation and Setup Fig. 4.2 summarizes the results of our partially and fully
adaptive experiments on synthetic data. Both figures were generated with 100 instances: each
with 25 hypotheses and 40 actions. The outcome of each action under each hypothesis is binary,
i.e., the 𝐷𝜇(ℎ,𝑎)’s are the Bernoulli distributions, where 𝜇(𝑎, ℎ) were uniformly sampled from the
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Figure 4.2: Comparison of our fully and partially adaptive algorithms with NJ Adaptive, NJ
Partially Adaptive and Random Baseline on synthetic data. The average number of samples is
normalized with respect to the largest number of sample required in Random Baseline. Left: each
dot corresponds to the average performance of 100 randomly generated instances each averaged
over 2,000 replications. Middle and Right: contains the same 100 instances in the left figure. Each
dot corresponds to one instance and each averaged over 2,000 replications. Middle and Right: the
average accuracies of those 100 instances in all algorithms equal to 0.97.

[0,1] interval. Each instance was then averaged over 2,000 replications, where a “ground truth”
hypothesis was randomly drawn. The prior distribution, 𝜋 , was initialized to be uniform for all
runs. On the horizontal axis, the accuracies of both algorithms were averaged over these 100
instances, where the accuracy is calculated as the percentage of correctly identified hypotheses
among the 2,000 replications. On the vertical axis, the number of samples used by the algorithm is
first averaged over the 2,000 replications and then averaged over the 100 instances.

Results In Fig. 4.2 (left), we observe that 1) the performance of our fully adaptive algorithm
dominates those of all other algorithms, 2) our partially adaptive algorithm outperforms all other
partially adaptive algorithms, and 3) the performance of adaptive algorithms outperform those
of partially adaptive algorithms. The threshold for entering Phase 2 policy in NJ Adaptive was
set to be 0.1. Indeed, we observe that NJ Adaptive outperforms NJ Partially Adaptive. In Fig. 4.2
(middle), 𝛿 equals to 0.05 for both NJ Partially Adaptive and Partially Adaptive. We observe that
our partially and fully adaptive algorithms outperform NJ Partially Adaptive and NJ Adaptive

instance-wise by large margins respectively in Fig. 4.2 middle and left.

4.6.3 Real-World Experiments

Problem Setup Our real-world experiment is motivated by the design of DNA-based blood
tests to detect cancer. In such a test, genetic mutations serve as potential signals for various cancer
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types, but DNA sequencing is, even today, expensive enough that the ‘amount’ of DNA that can
be sequenced in a single test is limited if the test is to remain cost-effective. For example, one of
the most-recent versions of these tests Cohen et al. (2018) involved sequencing just 4,500 addresses
(from among 3 billion total addresses in the human genome), and other tests have had similar
scale (e.g., Razavi et al. 2017, Chan et al. 2017, Phallen et al. 2017). Thus, one promising approach
to the ultimate goal of a cost-effective test is adaptivity.

Our experiments are a close reproduction of the setup used by Cohen et al. (2018) to identify
their 4,500 addresses. We use genetic mutation data from real cancer patients—the publicly-
available COSMIC (Tate et al. 2019, Cosmic 2019) dataset, which includes the de-identified gene-
screening panels for 1,350,015 patients. We treated 8 different types of cancer (as indicated in Cohen
et al. 2018) as the 8 hypotheses, and identified 1,875,408 potentially mutated genetic addresses. To
extract the tests, we grouped the the genetic addresses within an interval of 45 (see Cohen et al.
2018 for the biochemical reasons behind this choice), resulting in 581,754 potential tests. We then
removed duplicated tests (i.e., the tests that share the same outcome distribution for all 8 cancer
types), resulting in 23,135 final tests that we consider in our experiments. From the data, we
extracted a “ground-truth” table of mutation probabilities containing the likelihood of a mutation
in any of the 23,135 genetic address intervals being found in patients with any of the 8 cancer
types. This served as the instance for our experiment. The majority of the mutation probabilities
in our instances was either zero or some small positive number. To calculate the KL divergence
between these probabilities, we replace zero with the number 10−10 in our instance.

Uniform Prior Results Although in reality, all patients have different priors for having
different cancers, in our first set of experiments, to demonstrate the advantage of our algorithms,
we assume that the truth hypothesis (cancer type) was drawn uniformly, and we initialize uniform
priors for all algorithms. Fig. 3.6, summarizes the performance of our algorithms under the
assumption of uniform prior. Similar to Fig. 4.2, in Fig. 3.6 (top row left) we observe first that
the performance of our algorithm dominates those to the rest algorithms. We also observe that
our partially adaptive algorithm outperforms NJ Partially Adaptive. However, unlike Fig. 4.2, we
observe that NJ Adaptive underperforms Partially Adaptive when the accuracies are low on this
instance. The threshold for entering Phase 2 policy, 𝑟 , in NJ Adaptive was set to be 0.3. Since
Phase 1 policy is less efficient than Phase 2 policy, we observe that the performance of NJ Adaptive
is convex with respect to 𝑟—when 𝑟 is small, the algorithm is more likely to alternate between
Phases 1 and 2 policies and when 𝑟 is large we spend more time in Phase 1 policy. As a result,
we observe that variance of NJ Adaptive is relatively high when compared with those of our
algorithms. On the other hand, we observe that our fully adaptive algorithm enjoys a narrower
confidence interval as well as a better performance. Note that due to the nature of the sparsity of
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our instance, the performance of the random baseline was very poor when compared with these
of NJ Adaptive and Fully Adaptive and thus was excluded. Fig. 3.6 (top middle) is the confusion
matrix corresponding to our fully adaptive algorithm where the algorithm accuracy equals to
0.97, and Fig. 3.6 (top right) corresponds to the sensitivity and specificity of our algorithm for
each cancer type (in the same ordering as) in the top middle figure. We observe that our adaptive
algorithm performs reasonably well across different underlying true hypotheses (i.e., different
cancer types). The middle and bottom rows of Fig. 3.6 contain the sensitivity figures for each
cancer type that are analogous to Fig. 4.1. Due to the number of samples for each cancer type
is limited, these plots are more volatile than Fig. 3.6 top left. We observe that our fully adaptive
algorithm outperforms the rest algorithms for the majority of cancer types. In addition, for those
cancer types that our fully algorithm underperforms (e.g., breast cancer), we show below that
when the prior of having a particular cancer increases, our algorithm becomes better at identifying
this cancer.

Non-Uniform Prior Results To mimic the distribution of different cancer types in the real-
world population, we exacted the number of newly diagnosed cancer cases from cancer.org (2021)
to form the priors in our algorithms (the prior information is included in Fig. 4.4 bottom right). Note
that neither NJ Partially Adaptive nor NJ Adaptive takes the prior into account when constructing
the action sequences (or policies when randomization is allowed). Thus, the Phases 1 and 2 policies
remain the same. (The prior was taken into account in the exiting criterion of both algorithms, and
in addition, was taken into account in NJ Adaptive when entering Phase 2 policies.) On the other
hand, both our partially adaptive and fully adaptive algorithms take the prior into the account
when constructing the action sequences, i.e., the action sequences produced by our algorithms
change as the prior changes. Thus, we expect our algorithms to outperform their partially or
fully adaptive counterparts under the non-uniform prior as well. Indeed, Fig. 4.4 summarizes the
results, and we observe that our partially adaptive and fully adaptive algorithms dominate NJ’s
partially and fully adaptive algorithms by a large margin, respectively. The threshold for entering
Phase 2 policy, 𝑟 , in NJ Adaptive was increased to 0.45 under this prior, and similar to Fig. 3.6, we
observe that the variance of NJ Adaptive is high when compared with our algorithms, indicating
the trade off between variance and performance. Similar to Fig. 3.6, Fig. 4.4 (top middle) is the
confusion matrix corresponding to our fully adaptive algorithm where the realized algorithm
accuracy equals to 0.97. Fig. 4.4 (top right) contains the sensitivity, specificity, and the prior of
our algorithm for each cancer type in the top middle figure. Similarly, we include the sensitivity
figures for each cancer type in Fig. 4.4 middle and bottom rows. When compared with Fig. 3.6,
we observe that when the weight of a cancer type increases, with tuning, our algorithm becomes
better at identifying those cancers (e.g., breast cancer and lung cancer) while maintaining the
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accuracies in identifying the rest cancer types.

4.7 Conclusion

In this work, we studied problem of active sequential hypothesis testing, motivated particularly
by the design of adaptive liquid biopsies. We provided the first approximation guarantees for the
ASHT problem in both the partially adaptive and fully adaptive setting, which grows linearly in
the separability parameter 𝑠−1 and logarithmically in the number of candidate hypotheses and
the (inverse) error rate 𝛿−1. Moreover for the partially adaptive version, by combining the SFR
framework with a novel LP-based analysis, we improved the dependence on 𝛿 from log 1

𝛿 in the
naive analysis to log log 1

𝛿 , which is much more favorable since in practice 𝛿 is usually very small.
We further extend the fully adaptive algorithm to the total-error version by introducing a novel
chance-constrained ODT problem (§ 4.11).

To illustrate the applicability of our proposed method to the liquid biopsy problem, we con-
ducted numerical studies on the COSMIC dataset. We found that our algorithms outperform the
existing state-of-art benchmarks by large margins. Furthermore, our algorithms consider the
priors for having different cancer types explicitly when constructing the action sequences, yielding
superior performances under non-uniform priors. Finally, although the theoretical guarantees of
our algorithms depend on the separability parameter 𝑠, we showed numerically that our modified
algorithms work well in practice on both synthetic and real-world data.
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4.8 Assumption: Log Likelihood Ratio Between Two Hy-

potheses

To show the correctness of our algorithm, we need to consider the log-likelihood ratio (LLR),
formally defined as follows:

Definition 7. For any 𝑎 ∈ 𝐴 and ℎ, 𝑔 ∈ 𝐻 , define 𝑍 (ℎ, 𝑔; 𝑎) = log ℙℎ,𝑎(𝜉 )
ℙ𝑔,𝑎(𝜉 )

where 𝜉 ∼ 𝐷𝜇(ℎ,𝑎).

We will assume that the subgaussian norm of the LLR between two hypotheses is not too large
when compared to the difference of their parameters, as formalized below.

Definition 8. Let 𝜌 > 0 be the minimal number s.t. for any distinct pair of hypotheses ℎ, 𝑔 ∈ 𝐻 and

action 𝑎 ∈ 𝐴, it holds that ‖𝑍 (ℎ, 𝑔; 𝑎)‖𝜓2 ≤ 𝜌 ⋅ |𝜇(𝑔, 𝑎) − 𝜇(ℎ, 𝑎)|.

We will present an error analysis for general 𝜌. Prior to that, we first point out that many
common distributions satisfy 𝜌 = 𝑂(1).

Examples It is straightforward to verify that 𝜌 = 𝑂(1) for the following common distributions:

• Bernoulli distributions: 𝐷𝜃 = 𝐵𝑒𝑟(𝜃) where 𝜃 ∈ [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥] for constants 𝜃𝑚𝑖𝑛, 𝜃max ∈ (0, 1),
and

• Gaussian distributions: 𝐷𝜃 = 𝑁 (𝜃, 1) where 𝜃 ∈ [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥] for constants 𝜃𝑚𝑖𝑛 < 𝜃max.

Take Bernoulli distribution as an example. Fix any hypotheses ℎ, 𝑔 ∈ 𝐻 and action 𝑎 ∈ 𝐴, write
Δ = 𝜇(ℎ, 𝑎) − 𝜇(𝑔, 𝑎). Then, 𝑍 = 𝑍 (ℎ, 𝑔; 𝑎) can be rewritten as

𝑍 =
⎧⎪⎪
⎨⎪⎪⎩

log(1 + Δ
𝜇(𝑔,𝑎) ), w.p. 𝜇(ℎ, 𝑎),

log(1 − Δ
1−𝜇(𝑔,𝑎) ), w.p. 1 − 𝜇(ℎ, 𝑎).

Since 0 < 𝜃𝑚𝑖𝑛 ≤ 𝜇(𝑔, 𝑎) ≤ 𝜃max < 1, we have |𝑍 | ≤ 𝐶 |Δ| almost surely where 𝐶 = 2max{(1 −
𝜃𝑚𝑎𝑥 )−1, 𝜃−1𝑚𝑖𝑛}. Moreover, it is known that (see Vershynin 2018) any subgaussian random variable
𝑍 satisfies ‖𝑍 ‖𝜓2 ≤ 1

ln 2 ‖𝑍 ‖∞, so it follows that

‖𝑍 ‖𝜓2 ≤
1
ln 2

‖𝑍 ‖∞ ≤
𝐶Δ
ln 2

= 𝑂(Δ).

Thus 𝜌 = 𝑂(1).
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4.9 Proof of Proposition 9

4.9.1 Error Analysis

We first prove that at each timestamp 𝜏 (ℎ), with high probability our algorithm terminates and
returns ℎ.

Lemma 9. Let 𝐵 > 0. If ℎ ∈ 𝐻 is the true hypothesis, then w.p. 1−𝑒−Ω(𝜌−2𝛼𝐵), it holds log Λ(ℎ, 𝑔; 𝜏 (ℎ)) ≥
1
2𝛼𝐵 for all 𝑔 ≠ ℎ.

Proof. Proof of Lemma 9 Let �̃� = (𝑎1, 𝑎2, ...) be the sequence after the boosting step, so 𝑎1 =
... = 𝑎𝛼 , 𝑎𝛼+1 = ... = 𝑎2𝛼 , so on so forth. Write 𝑍𝑖 = 𝑍 (ℎ, 𝑔; 𝑎𝑖), then for any 𝑡 ≥ 1, it holds
log Λ(ℎ, 𝑔; 𝑡) = ∑𝑡

𝑖=1 𝑍𝑖 . By the definition of cover time,∑𝜏 (ℎ)
𝑖=1 𝑑(ℎ, 𝑔; 𝑎𝑖) = ∑𝜏 (ℎ)

𝑖=1 𝔼[𝑍𝑖] ≥ 𝛼𝐵. Thus,

ℙℎ [log Λ(ℎ, 𝑔; 𝜏 (ℎ)) <
1
2
𝛼𝐵] = ℙℎ [

𝜏 (ℎ)

∑
𝑖=1

𝑍𝑖 <
1
2
𝛼𝐵

]

≤ ℙℎ [

|||||

𝜏 (ℎ)

∑
𝑖=1

𝑍𝑖 −
𝜏 (ℎ)

∑
𝑖=1

𝔼𝑍𝑖
|||||
>
1
2

𝜏 (ℎ)

∑
𝑖=1

𝔼𝑍𝑖]
. (4.2)

By Theorem 1,

Eq.(4.2) ≤ exp
(
−Ω

(
(𝛼𝐵)2

∑𝜏 (ℎ)
𝑖=1 ‖𝑍𝑖‖2𝜓2))

. (4.3)

We next show that ∑𝜏 (ℎ)
𝑖=1 ‖𝑍𝑖‖2𝜓2 ≤ 𝑂(𝜌2𝛼𝐵). Write Δ𝑖 = 𝜇(ℎ, 𝑎𝑖) − 𝜇(𝑔, 𝑎𝑖), then by Assumption 3,

Δ2
𝑖 ≤ 𝐶2 ⋅ 𝑑(ℎ, 𝑔; 𝑎𝑖). Note that ‖𝑍𝑖‖𝜓2 ≤ 𝜌Δ𝑖 , so it follows that

𝜏 (ℎ)

∑
𝑖=1

‖𝑍𝑖‖2𝜓2 ≤ 𝜌
2
𝜏 (ℎ)

∑
𝑖=1

Δ2
𝑖 ≤ 𝐶2𝜌2

𝜏 (ℎ)

∑
𝑖=1

𝑑(ℎ, 𝑔; 𝑎𝑖). (4.4)

Recall that 𝜎 is the sequence before boosting. Write 𝑡 = 𝐶𝑇 (𝑓 𝐵ℎ , 𝜎 ) for simplicity. By the definition
of cover time,

𝛼𝑡

∑
𝑖=1

𝑑(ℎ, 𝑔; 𝑎𝑖) ≥ 𝛼𝐵 ≥
𝛼(𝑡−1)

∑
𝑖=1

𝑑(ℎ, 𝑔; 𝑎𝑖).

Note that 𝜏 (ℎ) = 𝛼𝑡 , so
𝛼𝑡

∑
𝑖=1

𝑑(ℎ, 𝑔; 𝑎𝑖) ≤ 2
𝛼(𝑡−1)

∑
𝑖=1

𝑑(ℎ, 𝑔; 𝑎𝑖) ≤ 2𝛼𝐵.

Combining the above with Eq. (4.4), we have

∑
𝑖
‖𝑍𝑖‖2𝜓2 ≤ 2𝐶2𝜌2𝛼𝐵.
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Substituting into Eq. (4.3), we obtain

ℙℎ [log Λ(ℎ, 𝑔; 𝜏 (ℎ)) <
1
2
𝛼𝐵] ≤ 𝑒

−Ω(𝜌−2𝛼𝐵).

The proof completes by applying the union bound over all 𝑔 ∈ 𝐻 ⧵{ℎ}. ■

By a similar approach we may also show that it is unlikely that the algorithm terminates at a
wrong time stamp before scanning the correct one.

Lemma 10. Let 𝐵 > 0. If ℎ ∈ 𝐻 is the true hypothesis, then for any 𝑔 ≠ ℎ, it holds that
log Λ(𝑔, ℎ; 𝜏 (𝑔)) < 1

2𝛼𝐵 with probability 1 − 𝑒−Ω(𝜌−2𝛼𝐵).

We are able to bound the error of the RnB algorithm by combining Lemma 9 and Lemma 10.

Proposition 11. For any true hypothesis ℎ ∈ 𝐻 , algorithm 𝑅𝑛𝐵(𝐵, 𝛼) returns ℎ with probability at

least 1 − |𝐻 |𝑒−Ω(𝜌−2𝛼𝐵). In particular, if the outcome distribution 𝐷𝜇 is 𝐵𝑒𝑟(𝜇), then 𝜌 = 𝑂(1) and the
above probability becomes 1 − |𝐻 |𝑒−Ω(𝛼𝐵).

4.9.2 Cost Analysis

Recall that in § 4.4, only Step (C) remains to be shown, which we formally state below.

Proposition 12. Let (𝜎, 𝑇 ) be a 𝛿-PAC-error partially adaptive algorithm. For any 𝐵 ≤ log 𝛿−1 and
ℎ ∈ 𝐻 , it holds that 𝔼ℎ[𝑇 ] ≥ Ω(𝑠 ⋅ CT(𝑓 𝐵ℎ , 𝜎 )).

We fix an arbitrary ℎ ∈ 𝐻 and write CTℎ ∶= CT(𝑓 𝐵ℎ , 𝜎 ), where we recall that 𝜎 is the sequence
of actions before boosting (do not confuse with �̃� ). To relate the stopping time 𝑇 (under ℎ) to the
cover time of the submodular function for ℎ in 𝜎 , we introduce a linear program. We will show
that for suitable choice of 𝑑 , we have

• 𝐿𝑃 ∗(𝑑,CTℎ − 1) ≤ 𝔼ℎ[𝑇 ], and

• 𝐿𝑃 ∗(𝑑,CTℎ − 1) ≥ Ω(𝑠 ⋅ CTℎ).

Hence proving Step (C) in the high-level proof sketched in § 4.4.
We now specify our choice of 𝑑 . For any 𝑑1, ..., 𝑑𝑁 ∈ ℝ+, write 𝑑 𝑡 ∶= ∑𝑡

𝑖=1 𝑑𝑖 for any 𝑡 and
consider

𝐿𝑃 (𝑑, 𝑡) ∶ min
𝑧

𝑁

∑
𝑖=1

𝑖 ⋅ 𝑧𝑖

𝑠.𝑡.
𝑁

∑
𝑖=1

𝑑 𝑖𝑧𝑖 ≥ 𝑑 𝑡 ,

𝑁

∑
𝑖=1

𝑧𝑖 = 1,

𝑧 ≥ 0.
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Wewill consider the following choice of 𝑑𝑖’s. Suppose (𝜎, 𝑇 ) has 𝛿-PAC-error where 𝛿 ∈ (0, 1/4].
For any pair of hypotheses ℎ, 𝑔 and any set of actions 𝑆, define

𝐾𝐵
ℎ,𝑔(𝑆) = min

{

1, 𝐵−1∑
𝑎∈𝑆

𝑑(ℎ, 𝑔; 𝑎)

}

.

Hence,
𝑓 𝐵ℎ (𝑆) =

1
|𝐻 | − 1

∑
𝑔∈𝐻 ⧵{ℎ}

𝐾𝐵
ℎ,𝑔(𝑆).

Fix any 𝐵 ≤ log 𝛿−1 and let 𝑔 be the last hypothesis separated from ℎ, i.e.,

𝑔 ∶= arg max
ℎ′∈𝐻 ⧵{ℎ}

{
CT(𝐾𝐵

ℎ,ℎ′ , 𝜎 )
}
.

Then by the definition of cover time, we have CTℎ = CT(𝑓 𝐵ℎ , 𝜎 ) = CT(𝐾𝐵
ℎ𝑔 , 𝜎 ). Without loss of

generality11, we assume all actions 𝑎 satisfy 𝜇(ℎ, 𝑎) = 𝜇(𝑔, 𝑎) in �̃� = (𝑎1, .., 𝑎𝑁 ). We choose the LP
parameters to be 𝑑𝑖 = 𝑑(ℎ, 𝑔, 𝑎𝑖) for 𝑖 ∈ [𝑁 ].

Outline We will first show that the LP optimum is upper bounded by the expected termination
time 𝑇 (Proposition 13). We then lower bound it in terms of CTℎ (Proposition 14).

Proposition 13. Suppose (𝜎, 𝑇 ) has 𝛿-PAC-error for some 0 < 𝛿 ≤ 1
4 . Let 𝑧𝑖 = ℙℎ[𝑇 = 𝑖] for 𝑖 ∈ [𝑁 ],

then 𝑧 = (𝑧1, ..., 𝑧𝑁 ) is feasible to 𝐿𝑃 (𝑑,CTℎ − 1).

Note that 𝔼ℎ[𝑇 ] is simply the objective value of 𝑧, thus Proposition 13 immediately implies:

Corollary 2. 𝔼ℎ[𝑇 ] ≥ 𝐿𝑃 ∗(𝑑,CTℎ − 1).

We next lower bound the expected log-likelihood when the algorithm stops.

Lemma 11 (Nowak 2009). Let𝔸 be any algorithm (not necessarily partially adaptive) for the ASHT

problem. Let ℎ, 𝑔 ∈ 𝐻 be any pair of distinct hypotheses and 𝑂 be the random output of 𝔸. Define

the error probabilities 𝑃ℎℎ = ℙℎ(𝑂 = ℎ) and 𝑃ℎ𝑔 = ℙℎ(𝑂 = 𝑔). Let Λ be the likelihood ratio between ℎ
and 𝑔 when 𝔸 terminates. Then,

𝔼ℎ[log Λ] ≥ 𝑃ℎℎ log
𝑃ℎℎ
𝑃ℎ𝑔

+ (1 − 𝑃ℎℎ) log
1 − 𝑃ℎℎ
1 − 𝑃ℎ𝑔

.

Proof. Proof of Lemma 11 Let  be the event that the output is ℎ. Then by Jensen’s inequality,

𝔼ℎ[log Λ𝑇 |] ≥ − log𝔼ℎ[Λ−1|] = − log
𝔼ℎ[1() ⋅ Λ−1]

ℙℎ()
. (4.5)

Recall that an algorithm can be viewed as a decision tree in the following way. Each internal
node is labeled with an action, and each edge below it corresponds to a possible outcome; each

11If there is some action 𝑎 with 𝑑(ℎ, 𝑔; 𝑎) = 0, then we simply remove it. This will not change the argument.
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leaf corresponds to termination, and is labeled with a hypothesis corresponding to the output.
Write∑𝑥 as the summation over all leaves and let 𝑝ℎ(𝑥) (resp. 𝑝𝑔(𝑥)) be the probability that the
algorithm terminates in leaf 𝑥 under ℎ (resp. 𝑔), then,

𝔼ℎ[1() ⋅ Λ−1] = ∑
𝑥
1(𝑥 ∈ ) ⋅ Λ−1(𝑥) ⋅ 𝑝ℎ(𝑥)

= ∑
𝑥
1(𝑥 ∈ ) ⋅

𝑝𝑔(𝑥)
𝑝ℎ(𝑥)

𝑝ℎ(𝑥)

= ∑
𝑥
1(𝑥 ∈ ) ⋅ 𝑝ℎ(𝑥)

= 𝔼ℎ[1(𝑥 ∈ )] = 𝑃ℎ𝑔 .

Combining the above with Equation (4.5), we obtain

𝔼ℎ[log Λ|] ≥ log
𝑃ℎℎ
𝑃ℎ𝑔

.

Similarly, we have 𝔼ℎ(log Λ|̄) ≥ log 1−𝑃ℎℎ
1−𝑃ℎ𝑔

, where ̄ is the event that the output is not ℎ. The proof
follows immediately by combining these two inequalities. ■

To show Proposition 13 we need a standard concept—stopping time.

Definition 9 (Stopping time Mitzenmacher and Upfal 2017). Let {𝑋𝑖} be a sequence of random
variables and 𝑇 be an integer-valued random variable. If for any integer 𝑡 , the event {𝑇 = 𝑡} is

independent with 𝑋𝑡+1, 𝑋𝑡+2, ..., then 𝑇 is called a stopping time for 𝑋𝑖’s.

Lemma 12 (Wald’s Identity). Let {𝑋𝑖}𝑖∈ℕ be independent random variables with means {𝜇𝑖}𝑖∈ℕ,
and let 𝑇 be a stopping time w.r.t. 𝑋𝑖’s. Then, 𝔼[∑𝑇

𝑖=1 𝑋𝑖] = 𝔼[∑𝑇
𝑖=1 𝜇𝑖].

Proof of Proposition 13. One may verify that the lower bound in Lemma 11 is increasing
w.r.t 𝑃ℎℎ and decreasing w.r.t 𝑃ℎ𝑔 . Therefore, since 𝔸 has 𝛿-PAC-error, by Lemma 11 it holds that

𝔼ℎ[log Λ(ℎ, 𝑔; 𝑇 )] ≥ (1 − 𝛿) log
1 − 𝛿
𝛿

+ 𝛿 log
𝛿

1 − 𝛿
≥
1
2
log

1
𝛿
≥ 𝐵 ≥ 𝑑CTℎ−1.

By Lemma 12,
𝑁

∑
𝑖=1

𝑑 𝑖𝑧𝑖 =
𝑁

∑
𝑖=1

𝑑 𝑖 ⋅ ℙℎ(𝑇 = 𝑖) = 𝔼ℎ[log Λ(ℎ, 𝑔; 𝑇 )].

The proof follows by combining the above. ■
So far we have upper bounded 𝐿𝑃 ∗(𝑑,CTℎ − 1) using 𝔼ℎ[𝑇 ]. To complete the proof, we next

lower bound 𝐿𝑃 ∗(𝑑,CTℎ − 1) by Ω(𝑠 ⋅ CTℎ).

Lemma 13. 𝐿𝑃 ∗ = min𝑖≤𝑡<𝑗 𝐿𝑃 ∗
𝑖𝑗 where 𝐿𝑃 ∗

𝑖𝑗 = 𝑖 + (𝑗 − 𝑖) 𝑑 𝑡−𝑑 𝑖𝑑 𝑗−𝑑 𝑖 .
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Proof. Proof of Lemma 13 Observe that for any optimal solution, the inequality constraint must
be tight. By linear algebra, we deduce that any basic feasible solution has support size two.

Consider the solutions whose only nonzero entries are 𝑖, 𝑗. Then, 𝐿𝑃 (𝑑, 𝑡) becomes

𝐿𝑃𝑖𝑗(𝑑, 𝑡) ∶ min
𝑧𝑖 ,𝑧𝑗

𝑖𝑧𝑖 + 𝑗𝑧𝑗

𝑠.𝑡. 𝑑 𝑖𝑧𝑖 + 𝑑 𝑗𝑧𝑗 = 𝑑 𝑡 ,

𝑧𝑖 + 𝑧𝑗 = 1,

𝑧 ≥ 0.

Note that since 𝑑 𝑖 < 𝑑 𝑗 , 𝐿𝑃𝑖,𝑗(𝑑, 𝑡) admits exactly one feasible solution, whose objective value can
be easily verified to be 𝐿𝑃 ∗

𝑖𝑗 ∶= 𝑖 + (𝑗 − 𝑖) 𝑑 𝑡−𝑑 𝑖𝑑 𝑗−𝑑 𝑖 . ■

Now we are ready to lower bound the LP optimum.

Proposition 14. For any 𝑑 = (𝑑1, ..., 𝑑𝑁 ) ∈ ℝ𝑁 and 𝑡 ∈ ℕ, it holds that 𝐿𝑃 ∗(𝑑, 𝑡) ≥ 𝑡 ⋅min{𝑑𝑖}𝑖∈[𝑁 ].

Proof. Proof of Lemma 14 By Lemma 13, it suffices to show that 𝐿𝑃 ∗
𝑖𝑗 ≥ 𝑑 𝑡 for any 𝑖 ≤ 𝑡 < 𝑗. Since

𝑑𝑘 < 𝑘 for any integer 𝑘,
(𝑗 − 𝑑 𝑡)(𝑑 𝑡 − 𝑑 𝑖) ≥ (𝑑 𝑗 − 𝑑 𝑡)(𝑑 𝑡 − 𝑖).

Rearranging, the above becomes

𝑖(𝑑 𝑗 − 𝑑 𝑖) + (𝑗 − 𝑖)(𝑑 𝑡 − 𝑑 𝑖) ≥ 𝑑 𝑡(𝑑 𝑗 − 𝑑 𝑖),

i.e.,
𝑖 + (𝑗 − 𝑖)

𝑑 𝑡 − 𝑑 𝑖

𝑑𝑗 − 𝑑 𝑖
≥ 𝑑 𝑡 .

Note that the LHS is exactly 𝐿𝑃 ∗
𝑖𝑗 , thus 𝐿𝑃 ∗(𝑑, 𝑡) ≥ 𝑑 𝑡 ≥ 𝑡 ⋅min{𝑑𝑖}𝑖∈[𝑁 ] for any 𝑡 ∈ ℕ. ■

It immediately follows that 𝐿𝑃 ∗(𝑑, 𝑡) ≥ 𝑠𝑡 , completing the proof of Proposition 9.

4.10 Proof of Proposition 10

We first formally define a decision tree, not only for mathematical rigor but more importantly, for
the sake of introducing a novel variant of ODT. Recall that Ω is the space of the test outcomes,
which we assume to be discrete for simplicity.

Definition 10 (Decision Trees). A decision tree is a rooted tree, each of whose interior (i.e., non-leaf)

node 𝑣 is associated with a state (𝐴𝑣 , 𝑇𝑣), where 𝑇𝑣 is a test and 𝐴𝑣 ⊆ 𝐻 . Each interior node has |Ω|
children, each of whose edge to 𝑣 is labeled with some outcome. Moreover, for any interior node 𝑣, the
set of alive hypotheses 𝐴𝑣 is the set of hypotheses consistent with the outcomes on the edges of the
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path from the root to 𝑣. A node 𝓁 is a leaf if |𝐴𝓁 | = 1. The decision tree terminates and outputs the

only alive hypothesis when it reaches a leaf.

To relate 𝑂𝑃𝑇 𝐹𝐴
𝛿 to the optimum of a suitable ODT instance, we introduce a novel variant of

ODT. As opposed to the ordinary ODT where the output needs to be correct with probability 1, in
the following variant, we consider decision trees which may err sometimes:

Definition 11 (Incomplete Decision Trees). An incomplete decision tree is a decision tree whose

leaves 𝓁 ’s are associated with states (𝐴𝓁 , 𝑝𝓁 )’s, where 𝐴𝓁 represents the subset of hypotheses consistent

with all outcomes so far, and 𝑝𝓁 is a distribution over 𝐴𝓁 . A hypothesis is randomly drawn from 𝑝𝓁
and is returned as the identified hypothesis (possibly wrong).

Now we already to introduce chance-constrained ODT problem (CC-ODT). Given an error
budget 𝛿 > 0, we aim to find the minimal cost decision tree whose error is within 𝛿 . There are
two natural ways to interpret “error”, which will both be considered in § 4.10 and § 4.11. In the
first one, we require the error probability under any hypothesis to be lower than the given error
budget. In the other one, we only require the expected error probability over all hypotheses to be
within the budget. Intuitively, the second version allows for more flexibility since the errors under
different hypotheses may differ significantly, rendering the analysis more challenging since we do
not know how the error budget is allocated to each hypothesis. We formalize these two versions
below. Let 𝑂 be the random outcome returned by the tree.

CC-ODT with PAC-Error. An incomplete decision tree is 𝛿-PAC-Valid if, for any true
hypothesis ℎ, it returns ℎ with probability at least 1 − 𝛿 , formally,

ℙℎ(𝑂 ≠ ℎ) ≤ 𝛿, ∀ℎ ∈ 𝐻.

CC-ODT with Total-Error. An incomplete decision tree is 𝛿-Total-Valid if, for the total error
probability is at most 𝛿 , formally,

∑
ℎ∈𝐻

𝜋 (ℎ) ⋅ ℙℎ[𝑂 ≠ ℎ] ≤ 𝛿,

where 𝜋 is the prior distribution. The goal in both versions is to find an incomplete decision tree
with minimal expected cost, subject to the corresponding error constraint.

For the proof of Proposition 10, consider the PAC-error version of CC-ODT. It turns out that
this version of CC-ODT is indeed quite trivial (unlike the total-error version): below we show
that under PAC-error, CC-ODT is almost equivalent to the ordinary ODT problem.

Lemma 14. Suppose 𝛿 ∈ (0, 12 ), and 𝕋 is a 𝛿-PAC-valid decision tree. Then, 𝕋 must also be 0-valid.

Proof. Proof of Lemma 14 It suffices to show that there is no incomplete node in 𝕋. For the
sake of contradiction, assume 𝕋 has an incomplete node 𝓁 with state (𝐴𝓁 , 𝑝𝓁 ). By the definition
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of incomplete node, |𝐴𝓁 | ≥ 2, so there is an ℎ ∈ 𝐴𝓁 with 𝑝𝓁 (ℎ) ≤ 1
2 . Now suppose ℎ is the true

hypothesis. Since each hypothesis traces a unique path in any decision tree, regardless of whether
or not it is incomplete, ℎwill reach node 𝓁 with probability 1. Then at 𝓁 , the decision tree returns ℎ
with probability 𝑝𝓁 (ℎ) = 1−∑𝑔∈𝐴𝓁∶𝑔≠ℎ 𝑝𝓁 (𝑔) ≤

1
2 , and hence ℙℎ[𝑂 ≠ ℎ] ≥ 1

2 , reaching a contradiction.
■

For the reader’s convenience, we recall that an ASHT instance  is associated with an ODT
instance 𝑂𝐷𝑇 , defined as follows. Each action corresponds to a test 𝑇𝑎 ∶ 𝐻 → Ω𝑎 with 𝑇𝑎(ℎ) =
𝜇(ℎ, 𝑎), where Ω𝑎 = {𝜇(ℎ, 𝑎) ∶ ℎ ∈ 𝐻}, and the cost 𝑇𝑎 is 𝑐(𝑎) = ⌈𝑠(𝑎)−1 log(|𝐻 |/𝛿)⌉. Denote 𝑂𝐷𝑇 ∗

𝛿

the minimal cost of any 𝛿-PAC-valid decision tree for 𝑂𝐷𝑇 . Then we immediately obtain the
following from the Lemma 14.

Corollary 3. If 𝛿 ∈ (0, 12 ), then 𝑂𝐷𝑇
∗
0 = 𝑂𝐷𝑇 ∗

𝛿 .

Now we are able to complete the proof of the main proposition.
Proof of Proposition 10. Given a 𝛿-PAC-error algorithm 𝔸, we show how to construct

a 𝛿-PAC-valid decision tree 𝕋 as follows. View 𝔸 as a decision tree (discretize the outcome
space if it is continuous). Replace each action 𝑎 in 𝔸 with the test 𝑇𝑎. Note that the cost of 𝑇𝑎 is
𝑠(𝑎)−1 log(|𝐻 |/𝛿) ≤ 𝑠−1 log(|𝐻 |/𝛿). Therefore by Lemma 14,

𝑂𝐷𝑇 ∗
0 = 𝑂𝐷𝑇

∗
𝛿 ≤ 𝑐(𝕋) ≤ 𝑠

−1 log
|𝐻 |
𝛿

⋅ 𝑂𝑃𝑇 𝐹𝐴
𝛿 . ■

4.11 Total Error Version

In the last section we defined the total-error version of the CC-ODT problem. The total error
version of the ASHT problem can be defined analogously, so we do not repeat it here. We say an
algorithm is said to be 𝛿-total-error if the total probability (averaged with respect to the prior 𝜋 )
of erroneously identified a wrong hypothesis is at most 𝛿 . The following is our main result for the
total-error version.

Theorem 13. Given an 𝑠-separated instance with uniform prior 𝜋 and any 𝛿 ∈ (0, 14 ), for both
the partially and fully adaptive versions, there exist polynomial-time 𝛿-total-error algorithms with

expected cost 𝑂 (𝑠−1 (1 + |𝐻 |𝛿2) log (|𝐻 |𝛿−1) log |𝐻 |) times the optimum.

In particular, if 𝛿 ≤ 𝑂(|𝐻 |−1/2), then the above is polylog-approximation for fixed 𝑠.
We will first prove Theorem 13 for the fully adaptive version, and then show how the same

proof works for the partially adaptive version. Unlike the PAC-error version where CC-ODT is
almost equivalent to ODT, in the total-error version their optima can differ by a Ω(|𝐻 |) factor.
We construct a sequence of ODT instances 𝑛, where 𝑛 ∈ +, with 𝑂𝐷𝑇 ∗

𝛿 (𝑛)/𝑂𝐷𝑇 ∗
0(𝑛) = 𝑂( 1𝑛 ).
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Suppose there are 𝑛 + 2 hypotheses ℎ1, ..., ℎ𝑛 and 𝑔, ℎ, with 𝜋 (𝑔) = 𝜋 (ℎ) = 0.49 and 𝜋 (ℎ𝑖) = 1
50𝑛 for

𝑖 = 1, ..., 50. Each (binary) test partitions [𝑛 + 2] into a singleton and its complement. Consider
error budget 𝛿 = 1

4 , then for each 𝑛 we have 𝑂𝐷𝑇 ∗
𝛿 (𝑛) = 1. In fact, we may simply perform a test

to separate 𝑔 and ℎ, and then return the one (out of 𝑔 and ℎ) that is consistent with the outcome.
The total error of this algorithm is 1/50 < 𝛿 . On the other hand, 𝑂𝐷𝑇 ∗

0(𝑛) = 𝑛 + 1.
However, for uniform prior, this gap is bounded:

Proposition 15. Suppose the prior 𝜋 is uniform. Then, for any 𝛿 ∈ (0, 14 ), it holds

𝑂𝐷𝑇 ∗
0 ≤ (1 + 𝑂(|𝐻 |𝛿2)) ⋅ 𝑂𝐷𝑇 ∗

𝛿 .

To show the above, we need the following building block.

Lemma 15. Suppose the prior 𝜋 is uniform. Then, for any 𝛿 ∈ [0, 14 ), the total prior probability
density on the incomplete nodes is bounded by∑𝓁 inc. 𝜋 (𝐴𝓁 ) ≤ 2𝛿 .

Proof. Proof of Lemma 15 Let 𝓁 be an incomplete node with state (𝐴𝓁 , 𝑝𝓁 ) and write 𝑝 = 𝑝𝓁 for
simplicity. Then, the error probability contributed by 𝓁 is

∑
ℎ∈𝐴𝓁

𝜋 (ℎ) ⋅ (1 − 𝑝(ℎ)) = ∑
ℎ∈𝐴𝓁

𝜋 (ℎ) − ∑
ℎ∈𝐴𝓁

𝜋 (ℎ) ⋅ 𝑝(ℎ)

= 𝜋 (𝐴𝓁 ) −
1
𝑛
∑
ℎ∈𝐴𝓁

𝑝(ℎ)

=
|𝐴𝓁 |
𝑛

−
1
𝑛
≥
1
2
𝜋 (𝐴𝓁 ),

where the last inequality follows since |𝐴𝓁 | ≥ 2. By the definition of 𝛿-PAC-error, it follows that

𝛿 ≥ ∑
𝓁 inc.

∑
ℎ∈𝐴𝓁

𝜋 (ℎ) ⋅ (1 − 𝑝(ℎ)) ≥
1
2
∑
𝓁 inc.

𝜋 (𝐴𝓁 ),

i.e.,∑𝓁 inc. 𝜋 (𝐴𝓁 ) ≤ 2𝛿 . ■

Proof of Proposition 15. It suffices to show how to convert a decision tree 𝕋 with 𝛿-total-
error to one with 0-total-error, without increasing the cost by too much. Consider each incomplete
node 𝐴𝓁 in 𝕋. We will replace 𝐴𝓁 with a (small) decision tree that uniquely identifies a hypothesis
in 𝐴𝓁 . Consider any distinct hypotheses 𝑔, ℎ ∈ 𝐴𝓁 . Then by Assumption 3, there is an action
𝑎 ∈ 𝐴 with 𝑑(𝑔, ℎ; 𝑎) ≥ 𝑠. So if we select 𝑇𝑎, then by Hoeffding bound (Theorem 1), we have
that with high probability at least one of 𝑔 and ℎ will be eliminated, and the number of alive
hypotheses in 𝐴𝓁 reduces by at least 1. Thus, by repeating this procedure iteratively for at most
|𝐴𝓁 | − 1 times, we can identify a unique hypothesis. Since each test 𝑇𝑎 corresponds to selecting 𝑎
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for 𝑐(𝑎) = 𝑠(𝑎)−1 log(|𝐻 |/𝛿) ≤ 𝑠−1 log(|𝐻 |/𝛿) times in a row, this procedure increases the total cost
by ∑𝓁 inc. 𝜋 (𝐴𝓁 ) ⋅ (|𝐴𝓁 | ⋅ 𝑠−1 log(|𝐻 |/𝛿). Therefore,

𝑂𝐷𝑇 ∗
0 ≤ 𝑂𝐷𝑇

∗
𝛿 + ∑

𝓁 inc.
𝜋 (𝐴𝓁 )|𝐴𝓁 |𝑠−1 log

|𝐻 |
𝛿

= 𝑂𝐷𝑇 ∗
𝛿 + ∑

𝓁 inc.
𝜋 (𝐴𝓁 )|𝐻 |𝜋 (𝐴𝓁 ) ⋅ 𝑠−1 log

|𝐻 |
𝛿

= 𝑂𝐷𝑇 ∗
𝛿 + 𝑂(𝑠

−1|𝐻 | log
|𝐻 |
𝛿

⋅ ∑
𝓁 inc.

𝜋 (𝐴𝓁 )2). (4.6)

Since∑𝓁 inc. 𝜋 (𝐴𝓁 ) ≤ 2𝛿 and each 𝜋 (𝐴𝓁 )’s is non-negative, we have∑𝓁 inc. 𝜋 (𝐴𝓁 )2 ≤ (∑𝓁 inc. 𝜋 (𝐴𝓁 ))
2 ≤

4𝛿2. Further, by Pinsker’s inequality, we have 𝑂𝐷𝑇 ∗
𝛿 = Ω(𝑠−1 log |𝐻 |

𝛿 ). Combining these two facts
with Eq. (4.6), we obtain 𝑂𝐷𝑇 ∗

0 ≤ (1 + 𝑂(|𝐻 |𝛿2)) ⋅ 𝑂𝐷𝑇 ∗
𝛿 . ■

The following lemma can be proved using the same idea of the proof of Proposition 10.

Lemma 16. 𝑂𝐷𝑇 ∗
𝛿 ≤ 𝑂(𝑠−1 log(|𝐻 |/𝛿))𝑂𝑃𝑇 𝐹𝐴

𝛿 .

Now we are ready to show Theorem 13.

𝐺𝑅𝐸 ≤ 𝑂(log |𝐻 |) ⋅ 𝑂𝐷𝑇 ∗
0 (Theorem 15)

≤ 𝑂((1 + 𝑂(|𝐻 |𝛿2)) log |𝐻 |) ⋅ 𝑂𝐷𝑇 ∗
𝛿 (Lemma 15)

≤ 𝑂((1 + 𝑂(|𝐻 |𝛿2))𝑠−1 log2
|𝐻 |
𝛿

log |𝐻 |) ⋅ 𝑂𝑃𝑇 𝐹𝐴
𝛿 . (Lemma 16)

The above proof can be adapted to the partially adaptive version straightforwardly as follows.
Observing that partially adaptive algorithms can be viewed as a special case of the fully adaptive, we
can define 𝑂𝐷𝑇 ∗

0,PA and 𝑂𝐷𝑇 ∗
𝛿,PA (analogous to 𝑂𝐷𝑇 ∗

0 and 𝑂𝐷𝑇 ∗
𝛿 ) for the partially adaptive version,

as the optimal cost of any partially adaptive decision tree with 0 or 𝛿 error. By replacing 𝑂𝐷𝑇 ∗
𝛿

and 𝑂𝐷𝑇 ∗
0 with 𝑂𝐷𝑇 ∗

0,PA and 𝑂𝐷𝑇 ∗
𝛿,PA, one may immediatly verify that inequalities in Lemmas 15

and 16 hold for the partially adaptive version. Furthermore, the first inequality above can be
established for the partially adaptive version by replacing Theorem 15 with Theorem 14, hence
completing the proof.
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Figure 4.3: Comparison of our partially and fully adaptive algorithms with those of NJ’s on
real-world data, COSMIC, under uniform prior. Top row (left): each point is averaged over 9,600
replications. The error bars are the 95 percentage confidence intervals for the estimated means.
Top row (middle): the confusion matrix of Fully Adaptive where the algorithm accuracy equals to
0.97, and each row sums up to 1,200. Top row (right): the sensitivity and specificity our algorithm
(top row middle) for each cancer type. Middle and Bottom rows: the sensitivity figures for each
cancer type. The order of the figures follows the order that they appear the confusion matrix (top
row right). Each point in these figures is averaged over 1,200 replications contained in the top left
figure.
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Figure 4.4: Comparison of our partially and fully adaptive algorithms with those of NJ’s on real-
world data, COSMIC, under non-uniform prior. Top row (left): each point is averaged over 9,600
replications. The error bars are the 95 percentage confidence intervals for the estimated means.
Top row (middle): the confusion matrix of Fully Adaptive where the algorithm accuracy equals
to 0.97. The sum of each row (the number of replications for each cancer type) equals to the
corresponding prior multiplied by 9,600 and rounded to the nearest integer. Top row (right): the
sensitivity and specificity our algorithm (top row middle) for each cancer type. Middle and Bottom
rows: the sensitivity figures for each cancer type. The order of the figures follows the order that
they appear the confusion matrix (top row right). The number of replications that we average
over for each point in each figure equals to the number of replications for each cancer type.
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Chapter 5

Machine Learning Algorithms for
Predicting Hospital Readmissions in
Sickle Cell Disease

5.1 Introduction

Sickle Cell Disease (SCD) is the most common inherited hemoglobinopathy worldwide and carries
high morbidity and mortality Maitra et al. (2017), Mehari et al. (2012). Complications related to SCD
have resulted in prolonged hospitalizations and high frequency of 30-day hospital readmissions
Benenson et al. (2017), AlJuburi and Majeed (2013), Brodsky et al. (2017), Brousseau et al. (2010),
Joynt et al. (2012), Machado et al. (2011), Nouraie and Gordeuk (2015). For example, in the largest
retrospective multi-state study of 21,112 adult patients with SCD in the United States, 33.4% of
patients had 30-day readmission with 22.1% readmitted within 14 days Brousseau et al. (2010).
Other studies found that 50% of adult patients with SCD were readmitted within 30 days, and
those who returned within one week had the poorest overall prognosis Frei-Jones et al. (2009),
Ballas and Lusardi (2005). As policymakers are mandating the implementation of evidence-based
quality improvement interventions, the frequency of 30-day hospital readmissions becomes an
important clinical metric to assess the quality of care amongst chronic diseases, including SCD
Wilson-Frederick et al. (2019). Hospital readmission risk has been traditionally calculated using
simple scoring systems (such as the LACE and HOSPITAL indices) with limited features van
Walraven et al. (2010), Donzé et al. (2013), and not specific to high-risk groups such as patients
with SCD, where socio-economic factors may play an important role in hospital readmissions
Kansagara et al. (2011), Cronin et al. (2019), Adzika et al. (2017), Brown et al. (2015), Chen et al.
(2019). For instance, the LACE index was validated on a Canadian middle-age population with
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ICD-9 282.41, 282.42, 282.6, 282.60, 282.61, 282.62, 282.63, 282.64, 282.68, 282.69

ICD-10 D57.0, D57.00, D57.01, D57.02, D57.1, D57.2, D57.20, D57.21, D57.211, D57.212,
D57.219, D57.3, D57.4, D57.40, D57.41, D57.411, D57.412, D57.419, D57.8,
D57.80, D57.81, D57.811, D57.812, D57.819

Table 5.1: Sickle cell ICD-9 ICD-10 diagnosis codes. ICD-10 D57.3 (sickle cell trait) was removed
from the inclusion criteria. After removing patients who were only diagnosed with sickle cell trait
(ICD-10 D57.3) during the study period, we had 1009 patients left in the dataset.

few comorbidities van Walraven et al. (2010), and therefore it does not capture the demographics
and disease-specific complexities that are inherent in the SCD population. In fact, the predictors
of hospital readmission in patients with SCD are currently not being evaluated in clinical practice.
One limitation of standard models to predict hospital readmissions is that they are hypothesis-
driven; they use a fixed set of predictive features and may ignore disease-specific features that
can impact clinical outcomes. Machine Learning (ML) algorithms–a class of algorithms that
can be used in detecting underlying patterns in high dimensional datasets–can potentially be
a useful tool in predicting hospital readmission risks in the SCD patient population. In many
healthcare applications, the performance of ML algorithms has dominated that of traditional
statistical methods Chen et al. (2017), Hsich et al. (2011), Gorodeski et al. (2011), Chen et al. (2011),
Amalakuhan et al. (2012), Chirikov et al. (2017), Thottakkara et al. (2016), and several studies have
employed ML algorithms to predict 30-day hospital readmissions Mortazavi et al. (2016), Xue et al.
(2018), Weinreich et al. (2016), Shameer et al. (2017), Eckert et al. (2019), Deschepper et al. (2019),
Futoma et al. (2015). However, none of them has been conducted on the high-risk SCD patient
population. The objective of this research is to explore the value of ML algorithms, combined with
domain knowledge, in predicting hospital readmission risk for a SCD patient population using a
real-world data source Sherman et al. (2016). Specifically, we used both clinical knowledge-driven
and hypothesis-free data features extracted from electronic health records (EHR) data to guide our
ML models. We hypothesized that ML algorithms would (a) outperform traditional risk scoring
systems, (b) find a richer set of predictors that can better guild clinical practice, and hence (C) be
a more suitable tool in predicting hospital readmission risk among the SCD patient population.

5.2 Materials and Methods

Design and Sample The University of Pittsburgh Medical Center (UPMC) Institutional Review
Board approved this study. The R3 services through the Department of Bioinformatics served
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Figure 5.1: Study inclusion criteria flow chart. Description of the patient and inpatient visit
inclusion criteria. 455 patients had at least one unplanned inpatient visit from January 1, 2013 to
November 1, 2018. All consecutive (n=15) unplanned inpatient admissions where the discharge
and readmission dates are the same were combined. We removed any inpatient encounters in
which the patient was under the age of 18 at the time of the visit given that we did not have access
to the Children’s Hospital EHR database. Since inpatient visits after October 1, 2018 were censored,
we removed those visits and resulted in 446 patients and 3299 unplanned inpatient visits.

as an honest data broker to ensure all patient health information was de-identified and Health
Insurance Portability and Accountability Act-compliant throughout the research cycle, including
but not limited to data extraction, data management, analytical and machine learning processes.
All analyses were conducted on de-identified patient data. Our SCD patient cohort was selected
from five hospitals across the UPMC hospital system, where patients with SCD are followed by
the adult UPMC Sickle Cell Program’s inpatient consult service. The UPMC Sickle Cell Program is
the only provider of specialized care for SCD in the region, and thus only a negligible number
of patients with SCD is admitted to hospitals where the UPMC Sickle Cell Program staff has no
clinical privileges. The raw data contains the EHR data of 2824 patients selected by the principal
diagnosis of SCD using the ICD-9 and ICD-10 codes listed in Table 5.1 Quan et al. (2005), Snyder
et al. (2017) between January 1, 2013, and November 1, 2018. The preprocessed dataset contains
446 patients and 3299 unplanned inpatient visits, and Figure 5.1 summarizes the patient inclusion
criteria of this study.

Outcome variables An admission was defined as an unplanned inpatient hospital admission,
identified by a non-elective hospital admission type as indicated by the EHR data. A readmission
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was defined as an admission within 30 days of the discharge date of the last admission. We
excluded any admission to a maternity unit, skilled nursing facility, and rehabilitation unit. In
our study, a case was defined as an admission that resulted in a readmission, while a control was
indicated by an admission that did not result in a readmission.

Predictor Candidates All analyses have been conducted on the de-identified patient dataset,
and patients who were admitted to other hospitals not defined above were not captured. The
preprocessed features (n = 481), including labs, demographics, the number of outpatient visits
prior to the current visit, and the number of emergency department (ED) visits prior to the current
visit Kansagara et al. (2011), Cronin et al. (2019), Brom et al. (2020), were extracted from the EHR
data using both data-driven methods and clinical knowledge (Table 5.5 in § 5.5). The dataset also
includes 21 variables extracted according to the LACE van Walraven et al. (2010) and HOSPITAL
Donzé et al. (2013) indices: the length of stay, the number of ED visits in the past 6 months,
the number of (unplanned) hospital admissions in the past year, whether any procedure was
performed during the hospitalization, and 17 ICD-9/ICD-10 code groups to calculate the Charlson
comorbidity index score in the LACE index. The remaining features included 340 ICD-9/ICD-10
diagnosis codes, 2 demographic features, 4 healthcare insurance provider types, 42 medication
groups, 13 lab categories, 25 procedures, 2 zip codes, 5 smoking status features, 7 vital signs, 34
hospital departments, the number of outpatient visits (prior to the current visit in the study period).
To further capture the trend in patient readmission patterns, we included additional variables: the
number of ED visits (prior to the current visit) in the study period, the number of days since the
last inpatient visit (of the current visit), and the number of inpatient visits (prior to the current
visit) in the study period. We included labs that were processed through a centralized lab and
eliminated point of care testing.

Data Preprocessing Each lab variable takes 6 categorical values (Tables 5.5 and 5.6 in § 5.5)
to indicate whether a lab result is missing, normal, low, high, low panic, or high panic. All
lab variables were defined based on central lab reference values and were not adjusted to the
normalized lab values for an individual patient. The vital sign variables were kept as continuous in
the RF model and were preprocessed into categorical variables in the LR and SVMmodels. Table 5.5
(in § 5.5) includes the cutoff values for preprocessing these variables into categorical variables.
The reason why the vital sign variables were coded as continuous instead of predefining the cutoff
values using domain knowledge as in the RF model is that the RF algorithm automatically selects
cutoff values that have high predictive value (indeed, this is one of the RF algorithm’s advantages).
Out of the 3299 encounters, 873 (26.5%) did not have any vital signs taken; 685 (20.%) did not have
smoking status; 656 (19.8%) did not have any medication prescriptions; 454 (13.8%) did not have

154



any procedures performed; 39 (1.2%) did not have any lab tests. The latter three could be classified
as missing values or not applicable depending on the individual patient circumstance. The rest of
the data does not contain any missing information. Table 5.5 (in § 5.5) describes the percentage
available information for each individual variable in detail. Instead of imputing the missing values,
we created a dummy variable for each variable that contains missing information to indicate
whether this variable is missing in a particular encounter. This is a popular method in the ML
community to handle missing data, and has shown superiority to other methods in healthcare
applications where data is not missing at random but rather a reflection of the decision made
by care providers Marlin et al. (2012), Lipton et al. (2016). Twenty-seven out of 195 readmission
patients died during the observation period, and these 27 patients had 200 unplanned inpatient
admissions in total. Sixty out of 446 total patients died during the observation period, and these
60 patients had 247 unplanned inpatient admissions. Since the number of admissions that resulted
in mortality was less than 2%, those admissions were kept in the training and testing dataset.

Methods To predict whether an inpatient visit will result in a readmission, three standard
ML algorithms were applied using the scikit-learn package in Python: Logistic Regression (LR)
Kleinbaum et al. (2002), Support Vector Machine (SVM) Cortes and Vapnik (1995), and Random
Forest (RF) Breiman (2001). Traditional risk scoring systems, the LACE and HOSPITAL indices,
were also applied van Walraven et al. (2010), Donzé et al. (2013). Although LACE and HOSPITAL
have not been previously applied to the SCD patient population, they provide two benchmark
models for comparison. All variables needed to compute those two indices were contained in the
EHR data. In addition, to test the impact of patients with frequent admissions on our ML models,
we included a weighted RF model where each admission is weighted inversely by the total number
of admissions incurred by the patient during the study period. § 5.6 describes the details of each
algorithm and how they were used. The features mentioned above were treated as inputs to these
models. We randomly selected the admissions incurred by 30% of the 195 return patients and
251 non-return patients to be the testing set (n = 134); the training set contained the admissions
incurred by the remaining 211 patients. Thus, our training and testing sets contained the same
demographic information, predictors, and outcomes.

Model Evaluation We used the C-statistic, or equivalently the Area Under the Receiver Op-
erating Characteristic Curve (AUC), and precision-recall curves as two quantitative metrics for
identifying predictive performance within each of the classifiers. For intuition: a perfect classifier
achieves a C-statistic of 1, while random chance corresponds to a C-statistic of 0.5. In addition, we
reported the sensitivity and specificity of our best performing model. Since the number of samples
in our study was relatively small, our results might have been sensitive to different training and
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Total N = 446 Readmission
Group N = 195

General Unplanned inpatient encounters 3299 2823*
Number of ED visits 6780 4899
Number of outpatient visits 10731 5978
Average length of stay per admission 5.895 (5.974) 5.543 (5.586)
Average number of admissions per patient 7.40 (12.90) 14.47 (16.97)
Number with HbSS 255 139
Number with HbSC 55 30
Number with HbS/B0 or HbS/B+ 36 26

Age 18-29 157 80
30-49 136 56
50-69 108 44
70-89 42 14
≥ 90 3 1

Gender Male 175 70
Female 271 125

LACE Index 10.26 (2.79) 10.52 (2.73)
HOSPITAL Index 8.16 (2.40) 8.53 (2.32)

Table 5.2: Characteristics and Demographics of the Post-Processed Data Set. Description of the
3299 encounters of the 446 patients included in the post-processed data set. We also included
the distribution of LACE and HOSPITAL indices computed using the EHR data. The sickle cell
genotypes HbS/B0 and HbS/B+ are grouped into one genotype since ICD-9 diagnosis codes do not
distinguish between these two genotypes. *: 1369 (out of 2823) were readmissions.

testing splits. To address this problem, we performed 100 different splits and averaged the resulting
100 C-statistics.

5.3 Study Results

Our training and testing sets contained the same demographic information, predictors and out-
comes. Table 5.2 summarizes the characteristics and demographics of the post-processed data set,
as well as the distributions of LACE and HOSPITAL indices computed using the post-processed
data. Our cohort included 3299 admissions of 446 adult patients with SCD. Of these patients, 195
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Figure 5.2: Performance Metrics of Machine Learning Models for Predicting 30-Day Readmissions
in Sickle Cell Disease. Two performance metrics measured out-of-sample and averaged over 100
independent train/test draws. (A) Receiver operating characteristic curves, and corresponding
area under the curve; also known as the C-statistic. (B) Precision-recall curves.

(43.72% of readmission) patients were readmitted within 30 days for a total of 1369 times. The
average age of those 446 patients was 42.22 (SD = 19.03) years, and the average age of the 195
patients who had readmission during the study period was 39.47 (18.14) years. The average LACE
and HOSPITAL indices of those 3299 admission were 10.26 (2.79) and 8.16 (2.40), respectively.

To prevent overfitting, in the LRmodel we added LASSO regularization, and in the RF model we
restricted the maximum depth of the decision trees to 15. Fig. 5.2 summarizes the two performance
metrics of each model–the Receiver Operating Characteristic (ROC) and precision-recall curves.
LACE had a C-statistic of 0.6 (95%CI 0.57-0.64); HOSPITAL performed slightly better than LACE
(C-statistic 0.69, 95%CI 0.66-0.72); SVM with ‘rbf’ kernel outperformed HOSPITAL in terms of
C-statistic (C-statistic 0.72, 95%CI 0.69-0.75); LR outperformed SVM by a large margin (C-statistic
0.77, 95%CI 0.73-0.8); RF performed similar to logistic regression (C-statistic 0.77, 95%CI 0.73-0.79).
Furthermore, the weighted random forest (C-statistic 0.77, 95%CI 0.73-0.79) model performs similar
to the random forest model. Similarly, in terms of precision-recall, SVM (Area Under the Curve
(AUC) 0.68) outperformed HOSPITAL (AUC 0.56), and the RF model (AUC 0.74) and the LR model
(AUC 0.72) performed the best. In both the ROC and precision-recall curves, we observed that the
curves corresponding to RF and LR pointwise dominate these of LACE and HOSPITAL indices.

Having established that the RF and LR models had the best performance, we compare the
sensitivities and specificities of those two models against these of the LACE and HOSPITAL
indices in Tables 5.3 and 5.4 respectively. In Tables 5.3 and 5.4, the thresholds were chosen to

157



Model Predicted
Positive (%)

Predicted
Negative (%)

RF True Positive (%) 39.61 19.41 Sensitivity (%) 67.1 ± 3.8
True Negative (%) 11.62 29.37 Specificity (%) 71.1 ± 4.3

LR True Positive (%) 39.42 18.20 Sensitivity (%) 68.4 ± 3.8
True Negative (%) 12.02 30.36 Specificity (%) 71.1 ± 4.3

LACE True Positive (%) 27.19 30.89 Sensitivity (%) 46.8 ± 4.1
True Negative (%) 11.89 30.04 Specificity (%) 71.7 ± 4.3

Table 5.3: Out-of-sample Prediction Performance of the Random Forest and Logistic Regression
Models Compared to LACE Index. Confusion matrices and corresponding sensitivities and speci-
ficities for the random forest and logistic regression classifier. A true positive (negative) case was
determined as the admission did (not) result in a 30-day readmission and we correctly predicted
so. The threshold of the LACE index is chosen to be 10 (van Walraven et al. 2010). The thresholds
of RF and LR are chosen such that the specificities of these models match the specificity of the
LACE index. Results are averaged over 100 independent train/test draws, where an average test set
contains 134 patients and 1000 visits. Sensitivity and specificity are reported with 95% confidence
intervals.

match the specificities of RF and LR models to those of the LACE index and HOSPITAL index,
respectively. A true negative case was determined as a hospital admission that did not result in
a 30-day readmission, and we correctly predicted so, and a true positive case was determined
as a hospital admission that did result in a 30-day readmission, and we also correctly predicted
so. In Tables 5.3 and 5.4, we again observed that the performances of RF and LR were similar in
terms of sensitivity at their corresponding chosen thresholds, and the sensitivities of both models
outperformed those of the LACE index and HOSPITAL index, respectively.

To check the clinical integrity of our models, we reported the selected a subset of variables and
reported their importance factors in our RF model (Deschepper et al. 2019) (see Fig. 5.3) and in our
LR model (Fig. 5.4). While the variables below the selected important predictors from the LR model
have near 0 coefficients (i.e., they have minimal impact on the prediction outcome), the variables
outside the selected important predictions from the RF model could still have relatively large
impacts on the model. Thus, in Fig. 5.3 we provided the average information gain (the amount of
improvement in classification) of the selected variables appearing in the random forest model,
and in Fig. 5.4, we reported both the direction and the standardized magnitude of coefficients of
the selected variables in the LR model. Both Fig.s 5.3 and 5.4 contain similar features.
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Figure 5.3 (previous page): Important Predictors for 30-Day Readmissions in Sickle Cell Disease
Selected by Random Forest Model. Importance scores of a subset of the most important variables
selected by the random forest model, averaged over the 100-independent train/test draws. Im-
portance is a measure of each variable’s cumulative contribution toward reducing square error,
or heterogeneity within the subset, after the data set is sequentially split according to that vari-
able. Thus, importance reflects a variable’s significance in prediction. Absolute importance is
then scaled to give relative importance, with a maximum importance of 100. Since the decision
boundary of the random forest is extremely non-linear, the features above are not associated with
directions. Although the random forest model is less interpretable, it can model more complex
relations between variables. *The vital signs in the RF model are continuous as explained in the
Data Preprocessing Section. **Diag: Asthma corresponds to the ICD-9 codes that start with 493.
and the ICD-10 codes J44.0-J45; Diag: Chronic Pulmonary Disease corresponds to the following
ICD-9/ICD-10 codes: 416.8, 416.9, 490.-505., 506.4, 508.1, 508.8, I27.8, I27.9, J40.-J47., J60.-J67.,
J68.4, J70.1, J70.3; Diag: Sickle Cell Genotype HbSS corresponds to the following ICD-9/ICD-10
codes: 282.62, 282.61, D57.0, D57.00, D57.01, D57.02; Diag: Hypertension corresponds to the
following ICD-9/ICD-10 codes: 401-405, I16., I10.-I13., I15., N26.2. ***Zip code 15221 corresponds
to the borough of Wilkinsburg, PA, within the Pittsburgh metropolitan area. †Any procedures
performed during the hospitalization is one of variables included by the LACE and HOSPITAL
indices. ††ICD-10-PCS procedure code 30233N1 corresponds to “transfusion of nonautologous
red blood cells into peripheral vein, percutaneous approach.” ****Med: Supplement includes all
dietary supplements; Med: Infection indicated whether a patient was prescribed with any an-
tibiotics during the hospitalization (this variable is used to indicate whether the patient has any
bacteria infection in addition to the ICD-9/ICD-10 coding); similarly, Med: Neuro Psychiatric
includes all antipsychotic medications; Med: Cardiac Disease includes all cardiac medications;
Med: Allergy and Med: Skin include all medications that can be used to treat allergy and skin
problems, respectively.
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Figure 5.4 (previous page): Important Predictors for 30-Day Readmissions in Sickle Cell Disease
Selected by Logistic Regression Model. Normalized magnitude of a subset of the most important
variables selected by the logistic regression model, averaged over the 100-independent train/test
draws. The variables in blue are positively associated with the prediction outcome, and the
variables in yellow are negatively associated with the prediction outcome. *Diag: Sickle Cell
Genotype HbSS corresponds to the following ICD-9/ICD-10 codes: 282.62, 282.61, D57.0, D57.00,
D57.01, D57.02; Diag: Chronic Pulmonary Disease corresponds to the following ICD-9/ICD-10
codes: 416.8, 416.9, 490.-505., 506.4, 508.1, 508.8, I27.8, I27.9, J40.-J47., J60.-J67., J68.4, J70.1, J70.3;
Diag: Asthma corresponds to ICD-9 codes that start with 493. and the ICD-10 codes J44.0-J45.
**Med: Cardiac Disease indicates whether a patient was prescribed with any cardiac medications
during his or her stay, and this variable is used to indicate whether the patient has any cardiac
comorbidities in addition to the ICD-9/ICD-10 coding. Similarly, Med: Overdose Reversal includes
all medication that can be used to reverse a drug overdose; Med: Supplement includes all dietary
supplements; Med: Neuro Sedative includes all anesthetics; Med: Gastrointestinal includes all drugs
that can treat gastrointestinal diseases. ***ICD-10-PCS procedure code 30233N1 corresponds to
“transfusion of nonautologous red blood cells into peripheral vein, percutaneous approach.” ****Zip
code 15221 corresponds to the borough of Wilkinsburg, PA, within the Pittsburgh metropolitan
area. †Any procedures performed during the hospitalization is one of variables included by the
LACE and HOSPITAL indices.
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Model Predicted
Positive (%)

Predicted
Negative (%)

RF True Positive (%) 26.29 32.72 Sensitivity (%) 44.5 ± 4.0
True Negative (%) 6.05 34.94 Specificity (%) 85.2 ± 3.4

LR True Positive (%) 24.85 32.77 Sensitivity (%) 43.1 ± 4.0
True Negative (%) 6.26 36.12 Specificity (%) 85.2 ± 3.4

HOSPITAL True Positive (%) 21.95 36.13 Sensitivity (%) 37.8 ± 3.9
True Negative (%) 6.19 35.73 Specificity (%) 85.2 ± 3.4

Table 5.4: Out-of-sample Prediction Performance of the Random Forest and Logistic Regression
Models Compared to HOSPITAL. Confusion matrices and corresponding sensitivities and speci-
ficities for the random forest and logistic regression classifier. A true positive (negative) case was
determined as the admission did (not) result in a 30-day readmission and we correctly predicted
so. The threshold of the HOSPITAL index is chosen to be 7 (Donzé et al. 2013), and the thresholds
of RF and LR are chosen such that the specificities of these models match the specificity of the
HOSPITAL index. Results are averaged over 100 independent train/test draws, where an average
test set contains 134 patients and 1000 visits. Sensitivity and specificity are reported with 95%
confidence intervals.

5.4 Discussion

This is the first study to apply ML algorithms to predict the hospital readmission rate in patients
with SCD. Our model can be used at the point of discharge in a clinical setting. We have shown
how the risk of 30-day readmission of a particular SCD patient can be estimated by preprocessing
the EHR data associated with an inpatient admission using our data preprocessing steps, and then
inputting the data into our pretrained model. Our models can be adapted to other regions and
hospital systems by retraining the models to incorporate different zip codes. All variables included
in our model are easily accessible through the EHR data.

The average age of SCD patients in our study cohort was 39.47 years. Since we excluded
patients under 18 years old (given that we did not have access to our local pediatric EHR database),
and the oldest patient in our cohort is above 90 years old compared to 56 years old in other
studies (Brodsky et al. 2017), the average age in our study is slightly higher than those found in
other studies (31.7 years old, Brodsky et al. 2017). We also found that the risk of rehospitalization
is highest for the age group 18-29 in both Table 5.2 and Fig. 5.4, which is consistent with the
results of a multi-state study of patients with SCD that revealed that acute care encounters and
readmissions were most frequent in the 18-30 age group (Brousseau et al. 2010).
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In our study, RF and LR appeared to be the best ML models in predicting hospital readmissions
as seen in similar ML studies (Deschepper et al. 2019). To account for the fact that some patients
might have a higher number of readmissions, we introduced a weighted RF model where each
admission is weighted inversely by the total number of admissions incurred by the patient during
the study period. The weighted RF model performs similar to the unweight RF model, indicating
that the impact of those patients with frequent hospital admissions is small in our LR and RF
models.

We discovered that ML methods were able to pick out additional variables specific to the SCD
cohort that are underrepresented or absent in the traditional generalized hospital readmission
scoring systems such as LACE (4 variables) and HOSPITAL (7 variables). All the variables from
LACE and HOSPITALwere represented in our model, however, our models suggested the following
variables were also predictive (Fig.s 5.3 and 5.4): labs (reticulocytes, platelets, bilirubin, white
blood cells), demographic information (gender, zip code 15221), and SCD-specific comorbidities
(chronic pulmonary disease, asthma).

For example, in our logistic regression model (Fig. 5.4), we observe that the majority of
variables are in alignment with clinical experience and past studies. For instance, the number
of inpatient visits over the past year, length of stay, and ED visits over the past 6 months are
known to be risk factors for hospital readmissions (Brennan et al. 2015). The model found these
variables positively correlated with higher risk of hospital readmissions. Conversely, having had a
recent blood transfusion correlated negatively with the risk of hospital readmission in the model.
These findings lend support to a previous study where the authors found that transfusion was
associated with a reduced estimated odds ratio of inpatient mortality of 0.75 (95% CI: 0.57–0.99)
and a decreased odds ratio of 30-day readmission of 0.78 (95% CI: 0.73–0.83) in the Truven Health
MarketScan® Medicaid Databases (Nouraie and Gordeuk 2015).

Our random forest model (Fig. 5.3) contains a larger set of important features when compared
with our logistic regression model (Fig. 5.4). In addition to the variables mentioned above, the
random forest model also includes variables such as whether the patient has asthma or chronic
obstructive pulmonary disease. However, in this model, the variables could contribute either
positively or negatively to the readmission risk in our model. For example, it is possible that the
age of the patient could contribute both positively and negatively towards the final readmission
risk depending on the number of inpatient readmissions that the patient had in the past year.
Thus, the features in Fig. 5.3 are not associated with any directions.

Our study underscores how ML may impact clinical care in SCD. However, since machine
learning models test for correlations and not causations, further domain knowledge is needed
to implement the model. Here we provide some examples of how such domain knowledge
can be applied to exact meaningful interventions. For example, we found that zip code 15221,
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cardiac comorbidities (variable Med: Cardiac Disease), and age are significantly associated with
hospital readmission risks among SCD patients. Since zip code 15221 is associated with a lower
income community, and community resources may affect health outcomes, SCD clinics and
comprehensive programs could mobilize resources to increase access to key healthcare resources
for individuals with SCD residing in disadvantaged communities. For instance, SCD providers
could establish strategic partnerships with community-based organizations and primary care
providers in Federally Qualified Health Centers—community-based health care providers that
receive funds from the Health Resources & Services Administration Health Center Program for
primary care services in underserved areas—to provide behavioral health services, social services,
and community outreach. In addition, health care plans and insurance providers may assist
the SCD providers by assigning case managers and bolstering social work support for those
patients with the highest readmission risk based on socioeconomic factors. Our ML model also
identified medical factors for which both inpatient and outpatient interventions may be critical.
We confirmed the emerging evidence that cardiac comorbidities significantly modulate the SCD
phenotype (Gladwin and Sachdev 2012) by demonstrating their impact on 30-day readmission.
Finally, age also emerged as an important factor in our model. This finding suggests that younger
patients with SCD who may struggle navigating the challenging transition from pediatric to adult
care could be engaged by partnering with the pediatric SCD providers to ensure continuity of
care, ideally in a medical home setting. In summary, our study underscores the importance of
identifying factors that affect 30-day readmission that can be targeted with a comprehensive,
holistic, and medical home approach in SCD. This strategy is already bearing fruit for other chronic
diseases that affect individuals throughout the lifespan (Jackson et al. 2013) and is likely to be
critical for the vulnerable SCD community.

There are several limitations to our ML models. First, ICD coding may not always be reliable
in EHR datasets (Futoma et al. 2015, Quan et al. 2005, Snyder et al. 2017). Since our dataset was
de-identified, we were not able to verify if coding was correct by checking individual patients’
EHR records. However, the majority of patients in our study cohort were diagnosed with SCD at
least twice during the study period, increasing the likelihood that they were correctly identified
as having SCD. To check the robustness of the SCD coding in our dataset, we re-performed two
experiments with the following modifications: 1) with a subset of patients (identified in Table 5.2)
with known sickle cell genotypes, and 2) with a subset of patients with at least two unplanned
hospital readmissions. In both scenarios, we observed similar results. Figures 5.5 and 5.6 in § 5.7
illustrate the performance of our models as well as that of LACE and HOSPITAL indices under the
above two scenarios. In addition, SCD genotypes were included as features in our models using
ICD coding. In particular, our logistic regression model revealed that the genotype Hemoglobin
SS (HbSS) was negatively associated with readmission risk (Fig. 5.4). There is evidence indicating
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that the coding of genotype HbSS is relatively accurate (with an error rate of 3%), but that the
coding of genotype HbSC and HbS/B+ could be highly inaccurate (with error rates of 61% and 52%
respectively), which is a limitation of coding in classifying genotype (Snyder et al. 2017). Thus,
further research is needed to verify the impact of the latter two SCD genotypes on readmission risk.
Second, socioeconomic factors and social determinants of health are inconsistently documented
or not always accessible through the EHR alone (AlJuburi and Majeed 2013, Donzé et al. 2013,
Kansagara et al. 2011, Cronin et al. 2019). Given this limitation, we relied on zip codes and
insurance status as proxies of socioeconomic status (Table 5.5). Third, the data in our study might
have contained missing admissions since patients might have been admitted into other hospitals
outside the UPMC system. This limitation is similarly present in other studies (Xue et al. 2018,
Shameer et al. 2017), and may be overcome by a more comprehensive data collection process (e.g.,
via survey), or by accessing multiple regional EHRs, to ensure the label of each visit is correct,
but since our data was de-identified, we are unable to do so in this study and leave it to future
studies. Finally, since SCD is a rare disease in the US according to NIH criteria, our sample size
was relatively small. This precluded the use of more sophisticated ML models such as deep neural
networks.

Our study demonstrates the feasibility of incorporating predictive analytical models with EHR
data mining on a real-world data set to shed light on readmission patterns within a healthcare
ecosystem; in particular, we showed the feasibility and potential of ML algorithms in predicting
30-day unplanned hospital readmissions for patients with SCD. Our best models, RF and LR, had
relatively high predictive powers and could be useful in predicting 30-day readmissions within
hospital systems. Thus, training ML models with disease specific variables can be valuable tools
in predicting hospital readmission risk for SCD patients and may identify clinical variables not
commonly included in readmission scores. If our model shows that a patient has a high readmission
risk, then hospital resources can be allocated at point of discharge to include triaging with follow
up visits and allocating specific resources to patient and family members to reduce readmission. In
summary, we have developed a model that is more sensitive than existing models, suggesting that
we can refine how we identify patients at high risk for readmission in SCD, but more investigation
is needed to translate our findings into clinical interventions.

5.5 Preprocessing Tables
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Table 5.5: Data Preprocessing. Description of the data preprocessing steps and the percentage of
missing data. After preprocessing, we narrowed down the number of variables in our model to
be 481. In the RF model, the vital sign variables are continuous, and we represent each vital sign
variable using a tuple of size two with the first entry indicating whether the value of the variable is
missing. This results in an overall vector representation of length 550. In the LR and SVM models,
the vital sign variables were preprocessed into categorical variables and this results in an overall
vector representation of length 565. In the third column, the number inside the parentheses is the
size of the vector that we used to represent the corresponding features. The reasons that we used
a larger vector to represent those features are due to 1) missing data 2) a categorical variable takes
multiple values. In the fourth column, we described the percentage data missing overall. In the
fifth column, we described the details on the variables included and the percentage of patients
with this variable measured (if applicable) in the square brackets.

Variables
(Categorical
/Real val-
ued)

Num.
Vars.
Pre

Num.
Vars.
Post
(Rep.)

Missing Data Variable Descriptions and Preprocessing Steps

Insurance
providers
(C)

50 4 (4) None Grouped insurance into 4 types: private, govern-
ment, auto/employment, Medicare/Medicaid.

ICD-9/ICD-
10 diagnosis
codes (C)

3849 340
(340)

None In addition to removing diagnosis codes that ap-
peared less than 20 times, we also hand-picked
37 groups of diagnosis codes, including 3 sickle
cell genotypes listed in Table 5.2 and 17 groups
from the LACE index to calculate the Charlson
comorbidity index score.

Procedures
(C, R)

2808 25 (25) 454 (13.8%)
visits had no
procedures
performed

Extracted whether any procedure was performed
during the hospitalization (C) and the number of
blood transfusions performed (R); removed the
procedure codes (C) that appeared less than 20
times.
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Lab tests (C) 2945 13 (78) 39 (1.2%) en-
counters had
none of the
13 labs per-
formed; see
right for de-
tails on % en-
counters (out
of 3299) have
each of the
13 labs per-
formed

Hand-picked 13 sickle cell related labs [% en-
counters have this test performed]: white
blood cell count [98.5%], platelets count [98.5%],
hemoglobin [15.5%], hematocrit [98.5%], reticulo-
cytes count [77.1%], bilirubin [62.2%], lactic dehy-
drogenase (LDH) [58.3%] (tissue damage (i.e. ane-
mia)), lactate blood [13.4%] (acid base imbalance
i.e., lactic acidosis secondary to shock), creatinine
[91.5%], bun/creatinine ratio [1.8%], creatinine
clearance [0%], Pro BNP [0%], sodium (from the
HOSPITAL index) [91.4%]. Each variable takes 6
categorical values and was represented by one-
hot encoding. Table 5.6 describes the details of
how those lab variables were extracted

Medication
NDC codes
(C)

4358 42 (43) 656 (19.8%)
visits had no
medication
prescription;
the rest had
at least one
prescription

Identified 553 unique drugs and grouped them
into 42 categories based on the drug effect. An
additional variable is added to represent whether
any medication was prescribed during the inpa-
tient admission.

Zip codes (C) 190 2 (2) None Removed the ones that appeared less than 20
times.

Smoking sta-
tus (C)

10 5 (6) 685 (20.8%)
encounters
had no
smoking
status

Regrouped into: never smoker, former smoker,
heavy tobacco smoker, light tobacco smoker, pas-
sive smoke exposure - never smoker

Hospital
departments
(C)

34 34 (34) None

Demographics
(C, R)

2 2 (2) None [% patients have this demographic reported]: Gen-
der (C) is binary [100%], age at encounter (R)
[100%]
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Vital signs
(R, C)

7 7 (RF:
15; LR/
SVM: 30
)

873 (26.5%)
encounters
had none of
the vitals;
see right for
details

[% encounters have this vital taken]: BMI (R or
C:<18.5, 18.5-24.9, 25-29.9, 30-34.9, 35-39.9, ≥40)
[71.5%], BP_systolic (R or C: <90, 90-120, >120)
[60.0%], BP_diastolic (R or C: <60, 60-80, >80)
[59.7%], pulse (R or C: <60, 60-100, >100) [59.7%],
temperature (R or C: ≤35C/95F, (35C, 38C)/(95F,
100.4F), ≥38C/100.4F) [59.3%], respiratory_rate (R
or C: <12, 12-18, >18) [59.6%], BP_position (C)
[1.3%]

Other
variables
included (R)

7 7 (7) NA Length of stay, number of outpatient visits, num-
ber of ED visits, number of ED visits in the past
6 months, the number of days since the last in-
patient visit, number of inpatient visits in study
period, number of inpatient visits in the past year.

Table 5.6: Lab variables included in the study. The percentages of Reticulocytes result that were
normal, low, and high in this study was 37.6%, 0.9%, and 61.5%, respectively.

Lab Category Included variable names Excluded variable names

White blood cell WBC, WHITE BLOOD
CELLS, WBC COUNT,
WBC & OTHER NUCLE-
ATED CELLS

WHITE BLOOD CELLS-URINE >5 WBC/HPF (POC),
WBC Esterase, Rare WBCs present no organisms
present, No WBCs or organisms present, No WBCs
present few gram positive cocci in pairs, WBC - fluid,
WBCMorphology, WBC clumps, Fecal WBC, IMMA-
TURE WBC FORMS

Platelets PLATELETS, PLATELET
COUNT

PLATELET MORPHOLOGY, HEPARIN PF4
PLATELET ANTIBODY, HEPARIN PLATELET
AB, GIANT PLATELETS, PLATELET ESTIMATE,
LARGE PLATELETS, PLATELET FUNCTION P2Y12,
PLATELET SUFFICIENCY, MEAN PLATELET
VOLUME, RAPID PRA(PLATELETS), PLATELET
FUNCTION INTERP.
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Hemoglobin HEMOGLOBIN F,
RAPID HEMOGLOBIN S,
HEMOGLOBIN C. CRYS-
TALS, HEMOGLOBIN
S, HEMOGLOBIN
C, HEMOGLOBIN
A2, HEMOGLOBIN-
PLASMA, TOTAL
HEMOGLOBIN, THB
(HEMOGLOBIN)

METHEMOGLOBIN &&, % OXYHEMOGLOBIN,
HEMOGLOBIN (POCT), HEMOGLOBIN - MIXED
VENOUS, METHEMOGLOBIN - MIXED VE-
NOUS, % REDUCED HEMOGLOBIN, ATYPICAL
HEMOGLOBIN, HEMOCUE HEMOGLOBIN
(POCT), METHEMOGLOBIN - VENOUS, GLYCOSY-
LATED HEMOGLOBIN, METHEMOGLOBIN,
CARBOXYHEMOGLOBIN, “Hemoglobin,
qual”, HEMOGLOBIN A, HEMOGLOBIN A1,
HEMOGLOBIN A1C, HEMOGLOBIN CAPIL-
LARY (POC), BEDSIDE HEMOGLOBIN POCT,
HEMOGLOBIN-ARTERIAL, HEMOGLOBIN-
VENOUS, CALC. HEMOGLOBIN ISTAT

Hematocrit HEMATOCRIT, HEMAT-
OCRIT(HCT)

HEMATOCRITDERIVED,HEMATOCRITDERIVED
- MIXED VEN, HEMATOCRIT(HCT) MANUAL PCV
&&, HEMATOCRIT (POCT), HEMATOCRIT-BODY
FLUID (HCT), HEMATOCRIT ISTAT

Reticulocytes ABSOLUTE RETIC-
ULOCYTES,
RETICULOCYTES,
RETICULOCYTES-
MANUAL

METHOD IMMATURE RETICULOCYTE FRAC-
TION

Bilirubin TOTAL BILIRUBIN,
DIRECT BILIRUBIN,
BILIRUBIN UNCONJU-
GATED

BILIRUBIN-URINE, BILIRUBIN - URINE (POC),
BILIRUBIN CONFIRMATION, BILIRUBIN UNCON-
JUGATED, OTHER TOTAL BILIRUBIN

Lactic dehydroge-
nase (LDH) (tis-
sue damage (i.e.,
anemia))

LACTIC DEHYDRO-
GENASE, LACTIC DE-
HYDROGENASE(LDH),
OTHER LACTIC DEHY-
DROGENASE(LD)

“LDH, ASCITES FLUID”
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Lactate blood
(acid base im-
balance i.e.,
lactic acidosis
secondary to
shock)

LACTATE, LACTATE
BLOOD, LACTATE
WHOLE BLOOD

LACTATE CSF, LACTATE ISTAT

Creatinine CREATININE, CREATI-
NINE, WHOLE BLOOD,
RANDOM URINE CREA-
TININE, "CREATININE,
RANDOM URINE"

"CREATININE, JP DRAINAGE", CREATININE VE-
NOUS ISTAT, FLUID CREATININE, CREATININE
POCT, URINE PROTEIN/CREATININE RATIO, PRO-
TEIN/CREATININE RATIO, URINE CREATININE,
TOTAL CREATININE 24 HR URINE, CREATININE
ISTAT

Bun/creatinine ra-
tio

BUN/CREATININE RA-
TIO

ALBUMIN/CREATININE RATIO

Creatinine clear-
ance

CREATININE
CLEARANCE, CRE-
ATININECLEAR-
ANCE(ADULT)

CREATININE CLEAR.(CHILDREN’S)

BNP "PRO BNP, N-
TERMINAL"

Sodium SODIUM(NA),
SODIUM(NA) WHOLE
BLOOD, SODIUM
NA WHOLE BLOOD,
SODIUM ARTERIAL
BLOOD GAS

STOOL SODIUM (AKA NASTOOL), SODIUM ISTAT,
URINE SODIUM(NA), TOTAL SODIUM(NA) 24HR
URINE, SODIUM (NA) (POCT)

5.6 Descriptions of the Four ML Algorithms, LACE Index,

and HOSPITAL Index

Logistic Regression and Support Vector Machine Classifications. The logistic regression
and support vector machine are two well-known machine learning algorithms for classification,
both with linear decision boundaries. Logistic regression learns a logic function that maps the
input features (our predictor candidates) to the target label (whether this admission results in a
readmission). For our own algorithm, to award logit function with sparse weights, we added L1
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penalty to our logistic regression algorithm, where the inverse of regularization strength was set
to 0.05. Support vector machine learns a hyperplane that “best” separates data (input features)
with the opposite labels. Since in practice the input data is not always linearly separable (as in our
case), we first transform our data using the Laplace RBF kernel, commonly used under no prior
knowledge on the data, and set the regularization parameter to 1. Both methods were implemented
using the scikit-learn package.

Random Forest Classification. The random forest model is a well-known machine learning
algorithm for classification. A random forest is made up of multiple decision trees that each
make simple classification decisions based on relatively few variables. These trees are created
(or “trained”) with different, randomly drawn subsets of variables so that it is likely that no two
trees are identical. Given a new sample, each tree is traversed top-down until a set of training
samples is reached at the bottom. Using the forest as a whole for classification amounts to having
the multiple decision trees “vote” on a label (in this case, case or control), where each tree’s vote
is made from the labels of the bottom set of training samples. Thus, in a binary classification
problem, given an input sample, the likelihood outputting 1 is calculated by taking the average of
the probability of outputting 1 among all decision trees. The probability of outputting 1 in a single
decision tree is calculated by dividing the number of samples of the class 1 by the total number
of samples in a leaf. We use this likelihood, along with the true label corresponding to the input
sample, to compute the C-statistics of our model.

For our own algorithm, each random forest consisted of 400 decision trees, each with a
maximum depth of 15. The model was trained using the scikit-learn package. Importance scores
were also calculated using the same package. On an individual “tree” of the random forest, the
importance score of any variable used in constructing the tree is defined as the proportion of
the training set that lies in the ‘leaves’ of nodes utilizing that variable (variables not used in
constructing the tree are assigned a score of zero); then the overall importance score for a variable
is the average of its importance scores on each tree.

The Weighted Random Forest Classification. Unlike the random forest model described
above, where each sample contributes equally to training the model, in the weighted random forest
model, each sample is assigned with a predefined weight. To make sure that each patient is given
even consideration in the model, let 𝑥𝑖 denote the total number of unplanned inpatient admissions
that patient i had during the study period. Then, the weight of each inpatient admission of patient
i is is calculated by 1/𝑥𝑖 . Similar to the random forest model above, each random forest in this
model consisted of 400 decision trees, each with a maximum depth of 15. The model was also
trained using the scikit-learn package.

172



The LACE and HOSPITAL Indices. The LACE index includes 4 variables, namely the length
of stay, acuity of the admission (a binary variable where 1 indicates the admission was through
the emergency room, 0 indicates an elective admission for planned intervention), Charlson
comorbidity index score, and the number of emergency department visits within the six months
before admission (van Walraven et al. 2010, Donzé et al. 2013), and returns a 30-day readmission
risk score. In particular, the Charlson comorbidity index score was calculated using the ICD code
at discharge (See Table 5.5). Since elective admissions were removed from our sample, every
admission in our study cohort has an acuity of 1. The HOSPITAL index includes 7 variables, namely
the length of stay, the number of hospital admissions in the twelve months before admission,
the admission type, whether any procedure is performed during the stay, patient blood sodium
level prior to discharge, whether the patient is discharged from an oncology service, and patient
blood hemoglobin level prior to discharge, and returns a 30-day readmission risk score.14 Similar
to LACE, the patient admission type is non-elective for all patients; furthermore, because of the
logistics pertaining to inpatient SCD care in the UPMC system, all patients were discharged from
an internal medicine service. The AUCs of these two indices were calculated the same way as
those of ML methods.

5.7 Additional Experimental Results with different patient

inclusion criteria
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Figure 5.5: Performance Metrics of Machine Learning Models for Predicting 30-Day Readmissions
in Patients with Known Sickle Cell Genotypes. Two performance metrics measured out-of-sample
and averaged over 100 independent train/test draws. (A) Receiver operating characteristic curves,
and corresponding area under the curve; also known as the C-statistic. (B) Precision-recall curves.
Patients with unknown sickle cell genotypes were removed from the study cohort described in
the main sections. This results in 314 patients, and 153 of these patients had 30-day readmissions.
The total number of inpatient admissions made by these 314 patients is 2914.
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Figure 5.6: Performance Metrics of Machine Learning Models for Predicting 30-Day Readmissions
in Sickle Patients with Two or More Admissions. Two performance metrics measured out-of-
sample and averaged over 100 independent train/test draws. (A) Receiver operating characteristic
curves, and corresponding area under the curve; also known as the C-statistic. (B) Precision-recall
curves. Patients with only one inpatient admission during the study period were removed from
the study cohort described in the main sections. This results in 286 patients, and 195 of these
patients had 30-day readmissions. The total number of inpatient admissions made by these 284
patients is 3167.
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