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Abstract

This dissertation focuses on examining three problems at the intersection of smart city operations

and innovative transportation technologies. In particular, the first two chapters study the potential

effects of autonomous vehicles (AVs) on highway congestion and downtown parking, respectively.

The third chapter of this dissertation studies the effect of ride-hailing passenger drop-offs on down-

town rush-hour congestion and parking.

In the first chapter, I investigate the effects of AVs on highway congestion. AVs have the

potential to significantly reduce highway congestion because they can maintain smaller intervehicle

gaps and travel together in larger platoons than human-driven vehicles (HVs). Various policies

have been proposed to regulate AV travel on highways, yet no in-depth comparison of these policies

exists. To address this shortcoming, I develop a queueing model for a multilane highway and

analyze two policies: the designated-lane policy (“D policy”), under which one lane is designated

to AVs, and the integrated policy (“I policy”), under which AVs travel together with HVs in all

lanes. I connect the service rate to intervehicle gaps (governed by a Markovian arrival process) and

congestion, and measure the performance using mean travel time and throughput. My analysis

shows that although the I policy performs at least as well as a benchmark case with no AVs, the D

policy outperforms the benchmark only when the highway is heavily congested and AVs constitute

the majority of vehicles; in such a case, this policy may outperform the I policy only in terms of

throughput. These findings caution against recent industry and government proposals that the D

policy should be employed at the beginning of the mass appearance of AVs. Finally, I calibrate the

model to data and show that for highly congested highways, a moderate number of AVs can make

a substantial improvement (e.g., 22% AVs can improve throughput by 30%), and when all vehicles

are AVs, throughput can be increased by over 400%.
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In the second chapter, I study how AVs may change the morning commute travel pattern and

improve downtown parking. I develop a continuous-time traffic model that takes into account key

economic deterrents to driving, such as parking fees and traffic congestion, and characterize the

departure time and parking location (downtown or outside downtown parking area) patterns of

commuters in equilibrium. To illustrate the results, the model is calibrated to data from Pitts-

burgh. For the calibrated model, my analysis shows that all AV commuters choose to park outside

downtown, increasing both vehicle hours and vehicle miles traveled as compared to the case with all

human-driven vehicles. This change increases the total system cost and suggests a potential down-

town land-use change (e.g., repurposing downtown parking spots to commercial and residential

areas) in Pittsburgh after mass adoption of AVs. To reduce the total system cost, a social planner

may be interested in regulating commuters’ decisions by adjusting parking fees and/or imposing

congestion tolls as a short-term measure, or adjusting infrastructure, e.g., converting downtown

parking spaces to curbside drop-off spots for AVs. My results indicate that these measures can

reduce the total system cost substantially (e.g., up to 70% in my calibrated model).

In the third chapter, I investigate how ride-hailing may change the morning commute travel

pattern and improve downtown parking. Similar to the second chapter, I develop a continuous-time

traffic model that takes into account key economic deterrents to driving, such as parking fees and

traffic congestion, and characterize the departure time patterns and transportation modes (driving

or ride-hailing) of commuters in equilibrium. To illustrate the results, the model is once again

calibrated to data from Pittsburgh. For the calibrated model, my analysis shows that as drop-

off congestion increases, the number of commuters who switch from driving to using ride-hailing

increases, which leads to an increase in vehicle hours traveled as compared to the case when all

commuters drive. This change increases the total system cost and presents a potential opportunity

for repurposing downtown parking spots to commercial and residential areas in Pittsburgh. To

reduce the total system cost, a social planner may be interested in regulating commuters’ and

the ride-hailing company’s decisions by adjusting parking fees and/or imposing drop-off tolls as

a short-term measure, or adjusting infrastructure, i.e., increasing the number of curbside drop-off

spots for ride-hailing vehicles. My results indicate that these measures can reduce the total system

cost substantially (e.g., up to 77% in the calibrated model).
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Chapter 0

Introduction

The emergence of innovative transportation technologies can fundamentally change the shape of our

cities and improve the efficiency of our transportation networks. However, these new technologies

introduce new risks and challenges. This dissertation studies the effect of two innovative technolo-

gies – autonomous vehicles (AVs) and ride-hailing services – on different aspects of transportation,

and offers practical recommendations for city planners.

The first and second chapters of this dissertation focus on AVs – they are expected to play a

determinant role in shaping the future of mobility. AVs are already operating on the roadways

of several major cities in the U.S. and other countries. Industry experts predict that, by 2035, a

quarter of all vehicles on the road will be autonomous (Bierstedt et al. 2014). As such, many large

cities are preparing for AVs in their long-range transportation plans (National League of Cities

2018): This is the window of opportunity for city planners to put in place policies that pave the

way for the inevitable mass arrival of AVs.

Chapter 1 investigates how the large-scale adoption of AVs will affect highway congestion. AVs

potentially have several advantages over human drivers with respect to highway driving: Since they

are able to communicate with each other, AVs move (and brake) more smoothly, and in general

have shorter reaction times than human-driven vehicles (HVs). This allows AVs to reduce their

inter-vehicle gap on highways, and travel together in larger platoons (or batches) than HVs. Despite

the fact that these advantages are known, it is unknown how highway congestion will change if AVs

are allowed on highways, or how they will affect HV traffic. Consequently, various policies have

been proposed to regulate AVs on the roads, yet no in-depth comparison of these policies exists.
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We address these shortcomings.

As a benchmark, we first model a segment of a highway as a queueing model in the absence

of AVs. We then propose two policies for a highway with both HVs and AVs: the designated-lane

policy (“D policy”) and the integrated policy (“I policy”). Under the designated-lane policy, one

lane is designated to AVs, to separate them from HVs. Under the integrated policy, AVs travel

together with HVs. In our queueing models, the arrival rate to a highway can differ depending

on the highway location, but the speed of vehicles primarily depends on the number of vehicles

currently driving on the highway, so we focus on estimating the state-dependent speed of vehicles.

We estimate this value for HVs based on data from highways in Arizona (Arizona DOT 2017). We

then estimate the speed of AVs by modeling the platoon formation process, and calibrating this

model to the parameter values derived from field experiments of AVs.

We evaluate our policies both analytically and numerically. Our analysis shows that, in terms of

mean travel time of an individual commuter, whereas the I policy always improves the performance

of the highway over the benchmark case, the D policy out-performs the benchmark case only when

the highway is congested and AVs constitute a significant proportion of the vehicles. In terms of

throughput, we show that the performance of the D and I policies depend on the proportion of AVs.

In particular, for a highly loaded highway, both policies are capable of increasing the throughput

over the benchmark case, and a moderate number of AVs can make a substantial improvement.

Chapter 2 focuses on the effect of AVs on one of the primary issues facing city planners: man-

aging parking and traffic congestion during morning rush hour. To accommodate high parking

demands, a city has to surrender large amounts of space to build parking structures; for example,

an astounding 14 percent of Los Angeles county land is dedicated to parking. AVs might be able

to alleviate this problem, as they have the ability to drop commuters off at their workplaces in a

city center and park in suburban areas with less dense businesses and cheaper parking. This ability

of AVs not only allows commuters to avoid high parking fees in a city center, but also reduces the

need to build or maintain large parking structures there.

This chapter provides guidance to municipal governments on how to adapt infrastructures,

including roads and parking facilities, to the special needs and characteristics of AVs. In particular,

we investigate the potential of AVs to solve the parking problem that commuters face when traveling

to a central business district. We develop a continuous-time traffic model in which commuters decide
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when to leave their residences and where to park their cars in one of two available parking areas:

central (located in downtown), and external (located outside of downtown). The goal of commuters

is to minimize their total transportation and parking costs during their morning commutes.

We show that the commuters’ decisions under equilibrium may differ from a social optimum that

minimizes the aggregate costs of all commuters. As a way to reduce the gap between individual

and social optima, we determine a social planner’s decisions on parking fees as well as parking

or curbside drop-off capacities. To offer concrete insights into the effect of these two innovative

technologies on downtown parking, we use traffic and parking data from the city of Pittsburgh.

Results from this research can aid major cities, including the city of Pittsburgh, in the development

of short- and long-term transportation and infrastructure plans.

Chapter 3 studies the effect of ride-hailing drop-offs on the morning commute problem. Ride-

sharing vehicles might be able to alleviate the parking problem, as they have the ability to drop

commuters off at their workplaces in a city center without parking. This allows commuters to avoid

high parking fees in a city center, and reduces the need to build or maintain large parking structures

there. However, ride-hailing services contribute to traffic congestion as ride-hailing drop-offs may

disturb or block the traffic flow of conventional vehicles. This negative externality of ride-hailing

could push some commuters to change their mode of transportation from personal vehicles to

ride-hailing, creating even more curbside congestion.

Similar to chapter 2, we develop a continuous-time traffic model in which commuters decide

when to leave their residences and what transportation mode they choose from one of two available

options: personal vehicles and ride-hailing services. The goal of commuters is to minimize their

total transportation costs (including parking fees, ride-hailing fares, and imputed costs of early

arrivals) during their morning commutes. In addition, the transportation network company (TNC)

decides on the ride-hailing fares. The goal of the TNC is to maximize its profit while minimizing

the total duration of the ride-hailing trips.

We show that the equilibrium commuters’ decisions, which are directly influenced by the TNC’s

decision on the ride-hailing fares, differ from the decisions made by a social planner. In fact, in an

unregulated market, the TNC can control the market to maximize its profit, creating a significant

amount of congestion and increasing the total system cost. We provide practical solutions for

the social planner to reduce the total system cost. In particular, the social planner is able to
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reduce the total system cost as well as the individual commuter cost by imposing dynamic parking

fees and drop-off tolls. In addition, to further decrease the cost a social planner can increase the

number of dedicated curbside drop-off spots to reduce the drop-off congestion as well as the negative

externality this causes for commuters who drive.

Chapter 4 concludes this dissertation, with a summary of our contributions and ideas for future

research directions.
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Chapter 1

A Queueing Model and Analysis for

Autonomous Vehicles on Highways

1.1 Introduction

The autonomous vehicle (AV) industry is growing enormously fast. Today all major automobile

manufacturers, as well as many research centers, are running experiments with AVs, and several

manufacturers have announced long-term plans to mass-produce AVs (Muoio 2017). In fact, we

already see AVs operating on the roads of several major cities in the U.S. and several other countries.

As such, more than half of the largest U.S. cities are preparing for autonomous vehicles in their

long-range transportation plans (National League of Cities 2018). Industry experts predict that by

2025, fully autonomous vehicles will arrive on highways (The automated driving community 2018),

and by 2035, one out of every four vehicles on the road will be an AV (Bierstedt et al. 2014). KPMG

predicts that AVs are capable of increasing the capacity of highways by 500%, without building new

roads (Albright et al. 2015). But, despite all these claims, very little is actually known regarding

the post-AV era.

In this paper, we investigate the effects of AVs on highway congestion. Highways are the

arteries of nations; for example, highways account for 24% of total travel in the United States

(Federal Highway Administration 2011). Congestion has always been a critical issue for urban

planners; in the United States, on average 5.5% of commuter time is spent in congestion (INRIX
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2017). Owing to their efficient driving performance, AVs have great potential to reduce time

spent in congestion, should they be utilized properly. To capitalize on this, the Departments of

Transportation in Colorado, Wisconsin and Washington are considering designated lanes for AVs

(Aguilar 2018). Bierstedt et al. (2014) prescribe a different evolution. They claim that before 2025

there will be very few AVs on highways and their effect on highway traffic flow will be negligible,

obviating the need for a dedicated lane. But they predict that by 2025 there will be enough AVs on

highways that designating one separate lane to them will become reasonable. By 2030, after having

AVs on designated highway lanes for 5 years, they postulate that HVs and AVs can be integrated

on all lanes of highways.

To examine how AVs will affect the congestion of highways and how they should be incorporated

onto highways, we develop a queueing model for a multi-lane highway. We analyze two policies for

a mixed fleet of human-driven vehicles (HVs) and AVs: the designated-lane policy (“D policy”)

under which one lane is designated to AVs1, and the integrated policy (“I policy”) under which

AVs travel together with HVs in all lanes. Using this model, we compare the mean travel time of

a single vehicle as well as the throughput of the highway under each of the two policies, and also

against a benchmark case in which all the vehicles are HVs. Specifically, we answer the following

questions: (1) When is it optimal to use the D policy over the I policy?; and (2) How much will

AVs improve highway traffic flow under each of these two policies?

We model traffic flow on a highway segment as an M/Gn/c/c queueing system. Vehicles arrive

individually to the highway segment, and the service time of a vehicle is defined as the amount

of time it takes to traverse the segment. This travel time depends on congestion – the number

of vehicles (n) that are simultaneously using the highway segment (i.e., the state of the queueing

system) – so it is state-dependent. The queue capacity c of the highway is defined as the number

of vehicles that it can accommodate at saturation, i.e., when the traffic forms a jam.

Our queueing model captures the potential benefits of AVs by explicitly modeling platoons

and headway. Observing traffic on a highway, one notices that HVs usually move in platoons

(batches). Within each platoon vehicles follow one another while maintaining a small intraplatoon

headway - the time gap (in seconds) between two vehicles. The headway between two consecutive

1Should large enough numbers of AVs enter the highway, one could assign multiple AV lanes. We consider this
case in Appendix A.5.5, while focusing our analysis in this chapter on designating one lane to AVs.
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platoons, interplatoon headway, is typically significantly greater than the intraplatoon headway.

Thus, the overall headway between vehicles depends on the size of platoons and the intraplatoon

and interplatoon headways. Platooning is different for AVs and HVs: According to several field

experiments (e.g., Bergenhem et al. (2012), Amoozadeh et al. (2015), and Zhao & Sun (2013)),

AVs are capable of safely forming larger platoons than HVs, and the intraplatoon headway tends

to be smaller for AVs than HVs. These two benefits arise because AVs can communicate with each

other, and also move and brake more smoothly than HVs. To capture the platooning process, we

use a Markovian Arrival Process (MAP); within a semi-renewal framework, the MAP enables us

to model the intraplatoon and interplatoon headways as well as the size of platoons. A platoon

consists of only HVs, exclusively AVs or HVs, or a mix of AVs and HVs in the benchmark case,

under the D policy, and under the I policy, respectively. The difference in the mix of vehicle fleets

leads to different vehicle speeds (hence, different service rates) under different policies.

We calibrate our models to data, and evaluate our policies both analytically and numerically.

Our analysis shows that, in terms of mean travel time, while the I policy always improves the

performance of the highway over the benchmark case, the D policy outperforms the benchmark

case only when the highway is congested and AVs constitute a significant proportion of the vehicles.

This calls into question the industry proposals in Bierstedt et al. (2014), as well as the policies

being considered in Colorado, Wisconsin and Washington.2 In terms of throughput, we show that

the performance of the D and I policies depends on the proportion of AVs. In particular, for a

highly loaded highway, both policies are capable of increasing the throughput over the benchmark

case: Under the D policy and the I policy, a 30% increase in throughput is achievable when the

AV proportion is 0.24 and 0.22, respectively. This implies that for highly congested highways, a

moderate number of AVs can make substantial improvement.

We provide suggestions to policy makers about when and under what conditions each of the

D and I policies should be utilized. Based on our analysis, if the mean travel time of vehicles

is of primary importance, the I policy is advisable. If a policy maker bases a decision primarily

2This paper focuses on the potential effects of employing the D and I policies on travel time and throughput.
We do not consider other possible benefits (e.g., fuel consumption, and the environment), or behavioral issues (e.g.,
confusion of human drivers) of AVs. In particular, we do not explicitly consider safety in our model, which might
favor the D policy because HVs and AVs potentially may not mix well together under the I policy (Eliot 2019).
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on throughput in a congested highway, then for moderate AV proportions, the D policy is recom-

mended; otherwise, the I policy performs better. Specially, in our calibrated model, only when the

AV proportion is between 0.25 and 0.55 does the D policy result in a higher throughput than the

I policy on a congested highway.

The rest of this chapter is organized as follows. In §1.2, we review the related literature. Our

two policies with AVs as well as a benchmark case for highway traffic flow are presented in §1.3.

In §1.4 we calibrate the model to data, and in §1.5, we compare the policies with the benchmark

case. In §1.6, we present a simulation study that validates our queueing model and analysis. We

conclude in §1.7.

1.2 Related Literature

Our work is related to three streams of research: smart city operations, highway traffic flow modeling

and platooning of vehicles, and autonomous vehicles.

In the smart city operations literature, ride-sharing (e.g., Benjaafar et al. 2018 and Qi et al.

2018), electric vehicles (e.g., Lim et al. 2014 and Mak et al. 2013), and the intersection of these two

(e.g., He et al. 2017) have been studied. For a comprehensive review of ride-sharing and electric

vehicles, we refer readers to He et al. (2018) and Pelletier et al. (2016), respectively. Recently, we

begin to see some studies on AVs by operations researchers. For example, Baron et al. (2018) study

the effect of AVs on social welfare, and Daw et al. (2019) investigate staffing of a remote support

center for AVs. Our paper contributes to the expanding literature on smart city operations by

examining the effect of AVs on highway congestion.

To model highway traffic flow, a variety of queueing models have been used. Kuwahara & Newell

(1987) use a non-stationary queueing network to model traffic flow into a core city. Heidemann

(1996) models an uninterrupted traffic flow as the stationary queueing models M/M/1 and M/G/1.

Jain & Smith (1997) use an M/Gn/c/c model in which state n is defined as the number of vehicles

simultaneously driving on the highway. In their model, state-dependent service rates account for

the effect of congestion on the speed of vehicles, but vehicles never form platoons. Vandaele et al.

(2000) study the transient behavior of M/M/1, M/G/1 and GI/G/1 queues with or without state-

dependent service times in traffic modeling. The validity of an M/Gn/c/c queueing model is shown

8



empirically by Van Woensel & Vandaele (2006). Van Woensel & Vandaele (2007) provide a review

of different queueing models for traffic on highways. In this paper, we follow Jain & Smith (1997)

by using an M/Gn/c/c queueing model, augmented with an incorporation of platooning.

Platoon formation in the case of interrupted traffic flow (e.g., when vehicular motion is inter-

rupted by stoppages such as traffic lights) is studied in Dunne (1967), Lehoczky (1972) and Daganzo

(1994). Neuts & Chakravarthy (1981) examine a continuous-time MAP for platoon formation on

highways. A MAP is first introduced by Neuts (1979) as a versatile Markovian point process; he

describes it as an extension of a Poisson process. Later Lucantoni (1991) provides a more conve-

nient notation for the MAP. Alfa & Neuts (1995) show that the MAP is a valid model for platoon

arrivals to a highway, but they do not provide a queueing model to examine traffic flow. Breuer

& Alfa (2005) present a procedure for estimating the parameters of the MAP. In this paper, we

use the MAP to model the formation of platoons as vehicles drive on highways. We then use the

headway between vehicles derived from the MAP to calculate the state-dependent service rates of

the M/Gn/c/c queueing system, coupling the two models.

Research on autonomous vehicles is nascent, but growing fast. Prior studies that investigate

the effects of AVs on traffic flow are particularly relevant to our paper. Qom et al. (2016) and

Talebpour et al. (2017) conduct simulation studies investigating the effect of designating a lane to

AVs on throughput. Chen et al. (2017) develop an analytical model to show that segregating AVs

and HVs, rather than mixing them, leads to a smaller improvement in the capacity of the highway.

Different from our paper, they assume that the number of AVs entering the highway is fixed, and

that the headway between vehicles is deterministic, ignoring the effect of congestion on traffic flow.

For a mixed fleet of AVs and HVs, several papers have studied the effects of adding some

preliminary autonomous features to vehicles on throughput. For example, adaptive cruise control

(ACC) and cooperative ACC (CACC) have been studied in multiple papers. For example, Shladover

et al. (2012) use experimental data to study the effects of ACC and CACC on traffic, and find that

ACC does not have a remarkable impact on highway capacity; however, if a moderate to high

percentage of vehicles adopt CACC, a significant increase in capacity is expected. In contrast,

Stern et al. (2018) show through a field experiment that congestion can be eradicated by only a few

AVs (1 out of 21 vehicles, or about 5%). Mohajerpoor & Ramezani (2019) characterize the mean

headway between AVs by modeling platoon size as a binomial distribution. They calculate delay
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for a segmented and mixed fleet of AVs and HVs on a 2-lane highway. In their model the effect of

headway on throughput is not investigated, and the traffic flow is not explicitly modeled. There

exist several other experimental and simulation analyses of mixed traffic; see Liu et al. (2018) and

references therein. In our paper, as in Shladover et al. (2012), AVs are equipped with CACC. We

find that although a small proportion of AVs can have a substantial effect on highway performance,

the result obtained by Stern et al. (2018) is overly optimistic: to fully eradicate congestion, a

substantial number of AVs are typically needed.

Ghiasi et al. (2017) is the closest work to our paper. They model the platoon structure of a

mixed fleet of AVs and HVs driving on a one-lane highway segment, using a Markov chain. In their

model, the arrival process to the highway is a vehicle stream of a fixed length, where any number

of consecutive AVs in this stream can form a platoon, but no HV can be a part of a platoon. They

show that, when the mean headway between an HV and an AV is lower than that between two

HVs and higher than that between two AVs, the throughput of the highway increases with the AV

proportion. Our model is more general than Ghiasi et al. (2017) in several respects. First, the

arrival of vehicles to the highway follows a stochastic process, so the number of vehicles on the

highway is not necessarily fixed. Second, the headway between two vehicles in our model not only

depends on their vehicle types (i.e., HV-HV, HV-AV, AV-HV, or AV-AV), but also on the number

of vehicles simultaneously present on the highway (i.e., state of our queueing system). As a result,

the speed of a vehicle on the highway is impacted by all other vehicles. Third, we consider a multi-

lane highway, which takes into account the effect of number of lanes on the state-dependent speed

of vehicles. In addition, our multi-lane traffic model enables us to compare the performance of the

D and I policies. Finally, our richer model yields different results than Ghiasi et al. (2017): For

example, our result indicates that an integrated fleet of AVs and HVs can improve the throughput

of the highway under more general conditions than those indicated by Ghiasi et al. (2017).

In summary, this chapter presents the first queueing model for a multi-lane highway with AVs.

Our model captures several realistic features of highways, such as stochastic headway between

vehicles, state-dependent speed of vehicles, stochastic arrival of vehicles to the highway, and mixed

platoons of AVs and HVs. Whereas most prior papers focus on either the D policy or on the I

policy, we compare these two policies to provide a guideline for policy makers. Although prior

studies measure the impact of AVs by throughput, our results suggest that a policy which results
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in a higher throughput does not necessarily have a lower mean travel time.

1.3 Model

In §1.3.1 we present a general model for highway traffic flow. In §1.3.2, we tailor this model to

represent a benchmark as well as two policies with AVs. Table A1 in the Appendix summarizes

our notation.

1.3.1 The Highway Traffic Flow Model

To model traffic flow on a highway, we consider an M/G/c/c queueing system with state-dependent

service times (e.g., Jain & Smith 1997), and adapt it to a mixed flow of HVs and AVs forming

platoons. This queueing system is also known as an M/Gn/c/c queue, where n is the state of the

system, defined as the number of vehicles simultaneously driving on a segment of a long highway.

In our model, as in Jain and Smith, vehicles arrive individually to the highway according to a

Poisson process with rate λ. But unlike Jain & Smith (1997), our vehicles form platoons while

traveling on the highway – the formation of these platoons enables us to capture the different travel

dynamics of AVs and HVs. In order to analytically model this platooning behavior, we extend the

discrete MAP of Alfa & Neuts (1995) to continuous distributions, which enable us to effectively

model different service rates within the M/Gn/c/c framework under different policies. For example,

under the I policy, in order to capture the effect of vehicle type (AV or HV) on service rate, we

use hyperexponential distributions to model interplatoon and intraplatoon headways. Under the

D policy, we divide the highway into an AV lane and HV lane(s), modeling headways in these

homogeneous lanes as exponential distributions. This enables us to vary the proportion of AVs,

and observe the impact on the aggregate performance of the highway. Thus, a key modeling

contribution of our paper is bringing the work of Alfa & Neuts (1995) to the work of Jain &

Smith (1997), creating a more powerful and flexible hybrid model capable of capturing the flow

of heterogeneous vehicles within a highway setting. Although different vehicle types (e.g., trucks,

sedans, SUVs, etc.) travel on a highway, we assume for simplicity that all vehicle types are identical.

In §1.3.1.1, we first describe the queueing system, and in §1.3.1.2 we explain how we use our MAP to

model the formation of platoons. In §1.3.1.3, the impact of platooning on service time is illustrated.
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1.3.1.1 The Queueing System

We focus our attention on a segment of length L in a highway with N lanes. The capacity per mile

of each lane is called the jam density J , defined as the maximum number of vehicles per mile per

lane of the highway; once J is reached flow comes to a jam, at which point vehicles travel at minimal

speed. The capacity of the entire highway is c = J ×L×N . We assume a vehicle that finds c other

vehicles on the segment upon its arrival turns away, possibly taking an alternative route. In prior

literature (e.g., Jain & Smith (1997), Cheah & Smith (1994), Van Woensel & Vandaele (2007)),

this assumption is justified by approximating the M/Gn/c/c queueing model using the expansion

method. In this method, the blocked vehicles are rerouted to an M/M/∞ queue, where they wait

until the M/Gn/c/c has an available server. Jain & Smith (1997) and Cheah & Smith (1994)

show that this approximation method yields very close results to those of the M/Gn/c/c model.

This assumption also reflects today’s reality that drivers may take alternative routes suggested by

navigation systems or apps when highways are extremely congested; this is particularly true for

congested highways in urban areas.3

Service is defined as the travel time of a single vehicle from the beginning of the highway segment

to the end of the highway segment. The speed of a vehicle, and hence its travel time, depends on

the number of vehicles present on the highway (i.e., the state of the queueing system): a vehicle

travels freely on the highway in the absence of other vehicles, but as the highway becomes more

crowded, a vehicle tends to drive at a lower speed. We use the state-dependent speed to define the

service rate. Let Vn be the mean speed when there are n vehicles on the highway. We assume Vn

is decreasing in n, and Vn = 0 for n ≥ c+ 1. When only a single vehicle drives on the highway, the

mean speed V1 is called the free-flow speed.4

As a vehicle enters the highway, it immediately occupies a server and starts receiving service

(i.e., there is no waiting time). As a result, the number of servers is equal to the maximum possible

number of vehicles that are traveling on the highway, i.e., the capacity c of the highway.

3Our model is well-suited to most areas, except rural areas, where alternative routes may not exist. However,
there is typically little need for an alternative route in such areas, because rural highways are usually not congested
(except when road work or accidents occur).

4Ideally, the free-flow speed should be equal to the speed limit. Yet, our data indicate that the free-flow speed is
close to, but not equal to the speed limit. This is also observed in prior literature.
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1.3.1.2 The Platooning Process

To capture the platooning effect, we use a MAP. Since we analyze a steady state queueing system,

platooning is modeled also in steady state. A MAP, which is a Markovian process with an absorbing

state, is defined by two m×m matrices C0
n and C1

n. The matrix C0
n (resp., C1

n) is associated with

the rate of transitions to non-absorbing states (resp., the absorbing state) when there are n vehicles

on the highway. The matrix Cn = C1
n + C0

n is the irreducible generator matrix of the MAP. The

steady state distribution of the MAP, π̃n, satisfies π̃nCn = 0 and π̃n1 = 1, where 1 is a vector of

ones. The mean of a MAP is calculated as

hn =
1

π̃nC1
n1

(in units of time), (1.1)

which also represents the mean headway (i.e., the mean time gap between the front bumpers of

any two consecutive vehicles on the highway) when there are n vehicles on the highway.

To model platooning using a MAP, one needs to specify the distributions of the following three

elements: (1) the size of each platoon, (2) the time gap between two consecutive vehicles traveling

in the same platoon (“intraplatoon headway”), and (3) the time gap between the last vehicle of

one platoon and the first vehicle of the following platoon (“interplatoon headway”). In Appendix

A.2, we specify each of these three elements to characterize the matrices C1
n and C0

n of the MAP.

1.3.1.3 The Effect of Platooning on a Service Rate

Platooning of vehicles affects the service rate of the queueing system through mean headway. We

now derive the relationship between platooning, headway and service rate (vehicle speed).

A highway traffic stream is characterized by three factors: speed, density and flow. Speed or

velocity Vn is in miles per unit time, traffic density k = n
NL is defined as the number of vehicles per

unit distance, and traffic flow q is defined as the rate (in vehicles per unit time) at which vehicles

travel through some designated roadway point. These three measures are related according to

q = Vnk = nVn
NL , and the mean headway hn is equal to the inverse of flow q. Thus,

1

hn
=
nVn
NL

. (1.2)
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For each n, once we compute hn from (1.1) (which depends on platoon characteristics such as

platoon size, and interplatoon and intraplatoon headways), we can derive the speed Vn from (1.2).

1.3.2 Models with a Specific Fleet Composition

We adapt the model described in §1.3.1 to a benchmark case and two policies with AVs. In §1.3.2.1

we specify the benchmark case which depicts the current situation where all vehicles on highways

are HVs. In §1.3.2.2 we present a model that assigns a specific lane to AVs, the designated-lane

(D) policy. In §1.3.2.3 we develop a model in which AVs and HVs are allowed to use any lanes,

the integrated (I) policy. We let p denote the proportion of AVs in the latter two models. In the

rest of this paper, we use superscripts B, I, D, DA and DH to represent the benchmark case, the I

policy, the D policy, and the AV queue and the HV queue of the D policy, respectively.

1.3.2.1 The Benchmark Case

To characterize the platooning process for the benchmark case, we specify the platoon size, the

intraplatoon headway, and the interplatoon headway: The platoon size follows a geometric distri-

bution with mean 1/δB, the intraplatoon headway follows an exponential distribution with mean

1/ξBn , and the interplatoon headway follows an exponential distribution with mean 1/ψBn .

By forming the matrices C0
n and C1

n, as described in Appendix A.2, the mean headway of

vehicles in the benchmark case is determined by (1.1) as hBn = δB/ψBn + (1 − δB)/ξBn . Thus,

according to (1.2), V B
n can be represented as a function of the platoon characteristics as follows:

V B
n =

NL

n

ξBn ψ
B
n

δBξBn + (1 − δB)ψBn
. (1.3)

1.3.2.2 The D Policy

In this model, a vehicle entering a highway segment is an AV with probability p, and must use the

designated lane. HVs use all other lanes. As a result, we can consider two independent queueing

systems: an AV queueing system and an HV queueing system.

The HV queue is similar to that of the benchmark case, except it has one fewer lane. The

capacity of this queue is equal to JL(N − 1), and the arrival rate is (1− p)λ. As in the benchmark
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case, the platoon size follows a geometric distribution with mean 1/δDH , the intraplatoon headway

follows an exponential distribution with mean 1/ξDHn , and the interplatoon headway follows an

exponential distribution with mean 1/ψDHn . These parameters may be different from those in the

benchmark case, since the mean speed in an N-lane highway is usually higher than the mean speed

in an (N-1)-lane highway for the same number of vehicles in one mile of the highway.

The AV queue is also modeled as an M/Gn/c/c queueing system described in §1.3.1. In this

system, the number of lanes is one, and the capacity is equal to JL, and the arrival rate is pλ.

The platoon size follows a geometric distribution with mean 1/δDA, and the intraplatoon and

interplatoon headways follow exponential distributions with mean 1/ξDAn and 1/ψDAn , respectively.

1.3.2.3 The I Policy

We consider an M/Gn/c/c queueing system with arrival rate λ, where a proportion p of the vehicles

are AVs. Under the I policy, a mixed fleet of AVs and HVs form platoons. We characterize the

platooning process as follows. First, the platoon size follows a geometric distribution with mean

δI . Second, the intraplatoon headway follows a hyperexponential distribution with mean 1/ξIn; the

intraplatoon headway depends on the types of vehicles following each other. For example, if an

AV follows another AV, since they can communicate with each other and also move/brake more

smoothly than HVs, the intraplatoon headway between them is lower than the intraplatoon headway

between two HVs. There exist four possible pairs of vehicles: AV-AV (denoted by i = IAA), AV-HV

(i = IAH), HV-AV (i = IHA), and HV-HV (i = IHH); where X-Y means vehicle X is followed by

vehicle Y. Since AVs constitute a proportion p of vehicles, the probability of observing each of those

four pairs is p2, p(1 − p), (1 − p)p, and (1 − p)2, respectively. Assuming the intraplatoon headway

follows an exponential distribution with rate ξin for the pair i ∈ {IAA, IAH, IHA, IHH}, the overall

intraplatoon headway follows a hyperexponential distribution. By linearity of expectation, the

mean intraplatoon headway is calculated as

1/ξIn = p2/ξIAAn + p(1 − p)/ξIAHn + (1 − p)p/ξIHAn + (1 − p)2/ξIHHn for n = 1, 2, · · · , c. (1.4)

Lastly, similar to the intraplatoon headway, the interplatoon headway also follows a hyperexpo-

nential distribution with parameters ψin, where i ∈ {IAA, IAH, IHA, IHH}. The mean interplatoon
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headway is as follows

1/ψIn = p2/ψIAAn + p(1 − p)/ψIAHn + (1 − p)p/ψIHAn + (1 − p)2/ψIHHn for n = 1, 2, · · · , c. (1.5)

Having the platoon characteristics specified, similar to the benchmark case, we are able to

calculate the mean headway hIn, and then represent V I
n as a function of hIn.

1.4 Model Calibration

In this section we calibrate our queueing model to data. The arrival rate to a highway can differ

depending on the highway location, but the speed of vehicles primarily depends on the number of

vehicles currently driving on the highway and the headway between them, so we focus on estimating

the steady state speed of vehicles in our models. Without loss of generality, we assume L is equal

to one mile. Then, we estimate Vn for n = 1, 2, · · · , c, where c = NJL = NJ is the capacity of the

highway segment with N lanes and a jam density of J . The value of J is typically between 185

and 250 (Holtzman & Goodman (2012) and Wang et al. (2010)), in our numerical analysis, we use

J = 185. (Our results are robust to different values of J .) Thus, the capacities of the benchmark

case and I policy with N = 3 are equal to 555, the capacity of the HV queue under the D policy

with N = 2 is 370, and the capacity of the AV queue under the D policy with N = 1 is 185.

In the rest of this section, we first use the data collected from a highway in Arizona to estimate

Vn in the benchmark case. Then we discuss the speed estimation for each of the HV queue and the

AV queue under the D policy. For the estimation of Vn in the HV queue, we also use the data from

Arizona. For the AV queue we propose a procedure to estimate Vn using several parameters that

reflect an AV’s driving performance; since a designated lane for AVs has yet to be implemented in

reality, Vn cannot be directly estimated from data. Lastly, Vn is estimated under the I policy using

a procedure similar to the AV queue under the D policy.

1.4.1 The Benchmark Case

We estimate the state-dependent speed V B
n based on the data from the Arizona Department of

Transportation. Our data include about 10, 000 instances of 5-minute average volume and vehicle
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(a) (b)

Figure 1.1: State-dependent speed data and fitted curves: (a) a highway with three lanes (R2 =
85%), and (b) a highway with two lanes (R2 = 76%).

speeds collected from segments of Interstate 10 (I-10) with three lanes (N = 3) in January 2017.

Figure 1.1(a) shows a scatter plot of this data as well as its fitted curve:

V B
n = 70e

− n2

21,049 + 4.7 (miles/hour) for n = 1, 2, · · · , 555. (1.6)

Appendix A.4.1 provides more information about how we estimate this curve.

1.4.2 The D Policy

As mentioned in §1.3.2.3, under this policy the highway is divided into two queues: (1) the HV

queue with two lanes, and (2) the AV queue with one lane.

1.4.2.1 The HV Queue

This queue is similar to the benchmark case, except it has one fewer lane. Using about 16, 000 data

points collected from state route 101 in Arizona with two lanes5 in January 2017, we estimate the

state-dependent speed of the HV queue V DH
n (see Figure 1.1(b)), as follows:

V DH
n = 66e

− n3.4

5,215,902 + 2 (miles/hour) for n = 1, 2, · · · , 370. (1.7)

5All the segments of I-10 that we use in our benchmark case have three lanes. Thus, we use data from the 2-lane
segments of state route 101 which has the same speed limit as the 3-lane segments of I-10.
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By comparing Figures 1.1(a) and 1.1(b), we observe that V DH
n < V B

n for any given n. Intuitively,

when the same number of vehicles travel on two segments, with different number of lanes, the

vehicles are able to drive faster on the segment with more lanes.

1.4.2.2 The AV Queue

We use a MAP to estimate the state-dependent speed of the AV queue, V DA
n . Equation (1.2) relates

V DA
n to the mean headway hDAn of vehicles derived from the MAP. In this queue N is equal to

one and L is one mile, so V DA
n = 1

nhDAn
, where hDAn is derived from equation (1.1); it is a function

of mean platoon size, mean intraplatoon headway, and mean interplatoon headway. Therefore, to

estimate V DA
n , we need to estimate these three parameters.

First, we specify the mean platoon size. All the previous papers that consider platooning of AVs

assume a fixed platoon size: for example, Amoozadeh et al. (2015) and Liu et al. (2018) consider

platoons of size 10, and Zhao & Sun (2013) consider platoons of size 6. We take into account

randomness in platoon sizes by using a geometric distribution with the same mean value as in

Amoozadeh et al. (2015) and Liu et al. (2018), i.e., 1/δDA = 10 vehicles. Appendix A.4.2 contains

more details about the estimation of a platoon size distribution.

Second, following Amoozadeh et al. (2015), Vander Werf et al. (2002), and Zhao & Sun (2013),

we set the mean intraplatoon headway of AVs equal to 0.55 seconds, i.e., 1/ξDAn = 0.55 seconds for

all n = 1, 2, · · · , 185, because the intraplatoon headway of AVs does not depend on congestion or

speed6 (Siciliano & Khatib 2016).

Lastly, we estimate the mean interplatoon headway of AVs. According to Guzzella & Kiencke

(1995) and Bergenhem et al. (2012), the interplatoon headway of AVs is set equal to the safe

stopping time to avoid chain-reaction crashes. In other words, the interplatoon headway is set such

that if one platoon of AVs crashes, the following platoon has enough time to stop before hitting

the crashed platoon. We estimate this value by using data from National Highway Traffic Safety

6This property also holds for the intraplatoon headway of HVs. According to Virginia DMV (2016) and Tientrakool
et al. (2011), the intraplatoon headway for HVs reflects the reaction time of human drivers. This reaction time depends
neither on speed nor on the congestion caused by a high number of vehicles in a highway segment. The interplatoon
headway of both AVs and HVs, however, depends on n. This headway is what vehicles maintain to avoid cascade
crashes between platoons, so it depends on how fast they are moving and how congested the highway is.
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Figure 1.2: Comparison of the state-dependent speeds: the benchmark case vs. the D policy.
Note. The capacities of the AV queue, the HV queue, and the benchmark case are different (185, 370, and 555,

respectively), and the speed in each of these queues is shown as a function of the number of vehicles per lane.

Administration (NHTSA 2015) as follows (see Appendix A.4.3 for more details):

1/ψDAn = 3, 600(0.001 − 0.006

V DA
n

) (seconds) for n = 1, 2, · · · , 185, (1.8)

which is less than the mean intraplatoon headway of AVs (i.e. 1/ξDAn = 0.55 seconds).

Having characterized the platooning process, we are able to calculate the mean headway be-

tween vehicles. For a MAP with geometric(δDA) platoon size, exp(ξDAn ) intraplatoon headway, and

exp(ψDAn ) interplatoon headway, by equation (1.1) we get hDAn = δDA

ψDAn
+ (1−δDA)

ξDAn
(see Appendix

A.2 for details); substituting the values of δDA, ξDAn , and ψDAn into V DA
n = 1

nhDAn
, we obtain, after

simplifications, V DA
n = min(74.7, 3,600+2.16n

0.855n ), where 74.7 miles per hour is the free flow speed under

the D policy.7 Figure 1.2 illustrates V DA
n and compares it with V B

n and V DH
n . We observe that

the speed of AVs is always higher than that of HVs. For example, when n/N = 185, HVs move

slowly at about 4 miles per hour in the benchmark case, but AVs have a smooth flow moving at 25

miles per hour. Based on our analysis, we assume that the jam speed in an N -lane highway, V B
Nc,

is higher than that in an (N − 1)-lane highway, V DH
(N−1)c in the rest of this paper.8

7The maximum speed of AVs must be capped, because otherwise the speed keeps increasing as n decreases. For
ease of comparison, we set the free flow speed of the highway under the D and I policies equal to that of the benchmark
case (which is obtained by setting n = 1 in (1.6)).

8Figure 1.2 also compares V B
n and V DH

n . The speed pattern of a 3-lane highway (V B
n ) differs slightly from that of

a 2-lane highway (V DH
n ). When the number of vehicles per lane is very low (i.e., n/N ≤ 15), vehicles drive at the free-

flow speed, which is higher for a highway with more lanes. At moderately low values of n/N (i.e., 15 < n/N < 55),
the highways are not congested and vehicles are able to still drive fast, so there is not much difference between 3-lane
and 2-lane highways. As the highways become more congested (i.e., n/N ≥ 55), speed decreases on both highways,
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1.4.3 The I Policy

Similar to the AV queue under the D policy, we estimate the state-dependent speed V I
n by employing

the mean headway of vehicles derived from a MAP. For any value of p ∈ [0, 1], we characterize the

MAP by first specifying the mean platoon size, and then jointly describing the mean intraplatoon

headway and the mean interplatoon headway under this policy.

We first estimate the mean platoon size as a function of p. As before, we assume that the

platoon size follows a geometric distribution with mean 1/δI . When all vehicles are AVs (i.e.,

p = 1), as in the AV queue under the D policy, we use 1/δI = 10 vehicles. On the other hand,

when all vehicles are HVs (i.e., p = 0), we use 1/δI = 1.5 vehicles, which is obtained from the data

used for the benchmark case. For any p ∈ (0, 1), we assume 1/δI = 3/(2 − 1.7p), so that the mean

size of platoons increases with p.9

Next we proceed to describe the mean intraplatoon and interplatoon headways. A pair of

consecutive vehicles can be of four different types: AV-AV, HV-AV, HV-HV, and AV-HV. For

each of these types, we estimate the mean intraplatoon headway and the state-dependent mean

interplatoon headway.

• AV-AV: As in the AV queue in the D policy, we set the mean intraplatoon headway 1/ξIAAn =

0.55 seconds, and estimate the mean interplatoon headway 1/ψIAAn from equations (1.1),

(1.2) and (1.8) as follows: 1/ψIAAn = 3,600N−6n(1−δIAA)/ξIAAn

1,000N+6nδIAA
seconds. Substituting N = 3

lanes, 1/δIAA = 10 vehicles, and 1/ξIAAn = 0.55 seconds, 1/ψIAAn = 10,800−2.97n
3,000+0.6n seconds for

n = 1, 2, · · · , 555.

• HV-AV: Following Zhao & Sun (2013), we set the mean intraplatoon headway 1/ξIHAn = 1.4

seconds: Due to lack of communication between AVs and HVs, an AV maintains a longer

intraplatoon headway from an HV than another AV. Similar to the AV-AV pair, we can

then estimate the interplatoon headway of this pair as ψIHAn = 10,800−7.56n
3,000+0.6n seconds for n =

1, 2, · · · , 555.

but more so on the 2-lane highway. According to Transportation Research Board (2000), enhanced maneuverability
in a 3-lane highway compared to a 2-lane highway tends to increase the average speed of vehicles. Thus, vehicles
drive faster on average at a congested highway with more lanes. For further discussion, see Appendix A.5.2.

9Note that δ is the probability that a vehicle forms a new platoon instead of joining the very last one. This
probability is equal to 1/1.5 = 2/3 for an HV, and 1/10 for an AV. Thus, under the I policy, when the proportion of
AVs is p, the probability of forming a new platoon is δI = 2

3
(1− p) + 1

10
p = 2−1.7p

3
, and 1/δI = 3

2−1.7p
.
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• HV-HV: Tientrakool et al. (2011) state that on average two HVs maintain 1.1 seconds of

intraplatoon headway in practice, so we set 1/ξIHHn = 1.1 seconds for n = 1, 2, · · · , 555. Note

that this value is lower than that of an HV-AV pair. The mean interplatoon headway of

HVs is derived by rearranging equation (1.3) as 1/ψIHHn = ξIHHn NL−(1−δIHH)nV Bn
nV Bn δIHHξIHHn

seconds.10

Substituting N = 3 lanes, L = 1 mile, 1/δIHH = 1.5 vehicles, 1/ξIHHn = 1.1 seconds, and

V B
n = 70e

− n2

21,049 + 4.7 (miles/hour), we obtain

1/ψIHHn =
10, 800 − 0.55n(46.67e

− n2

21,049 + 3.13)

n(46.67e
− n2

21,049 + 3.13)
(seconds) .

• AV-HV: Following the literature (e.g., Zhao & Sun (2013)), we assume that an HV maintains

its intraplatoon and interplatoon headways independently of the type of vehicle it is following,

so that 1/ξIAHn = 1/ξIHHn = 1.1 seconds, and 1/ψIAHn = 1/ψIHHn .

As mentioned in §1.3.2.3, the intraplatoon headway of vehicles in the I policy follows a hyper-

exponential distribution. Substituting the values of the mean intraplatoon headways for each of

the vehicle pairs into equation (1.4), we obtain the mean intraplatoon headway as follows:

1/ξIn = 0.55p2 + 1.4p(1 − p) + 1.1(1 − p) (seconds) for n = 1, 2, · · · , 555, and p ∈ [0, 1]. (1.9)

Similarly, by substituting the values of mean interplatoon headways for each of the vehicle pairs into

equation (1.5), after some simplification, we have the following for n = 1, 2, · · · , 555, and p ∈ [0, 1]:

1/ψIn = p
(10, 800 − 7.56n) + 4.59np

3, 000 + 0.6n
+ (1 − p)

10, 800 − 0.55n(46.67e
− n2

21,049 + 3.13)

n(46.67e
− n2

21,049 + 3.13)
(seconds) .

(1.10)

Finally, substituting δI , ξIn, and ψIn into V I
n (p) = N/nhIn = NξInψ

I
n

n(δIξIn+(1−δI)ψIn)
(miles/hour), we have

10Note that this depends on how human drivers determine their speed based on the characteristics of the highway
such as the number of lanes (N) and the length of the highway segment (L), whereas that of AVs is determined by
the safe stopping time.
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(a) (b)

Figure 1.3: State-dependent speed under the I policy as a function of: (a) the number of vehicles
in system (n), and (b) the proportion of AVs (p).

the following for n = 1, 2, · · · , 555, and p ∈ [0, 1]:

V In (p) = min{74.7,
10, 800N/[n(1 + 1.7p)]

2−1.7p
1+1.7p

[
(10,800−7.56n)p+4.59np2

3,000+0.6n
+

10,800(1−p)

n(46.67e
− n2

21,049 +3.13)

− 0.55(1− p)] + [0.55p2 + 1.4p(1− p) + 1.1(1− p)]
}.

(1.11)

Figure 1.3(a) illustrates V B
n and V I

n (p) at p = 20%, 40%, and 60%, and shows that, for a fixed

p, V I
n (p) has a similar shape as V DA

n . As illustrated in Figure 1.3(b), as the proportion of AVs

(p) increases, V I
n (p) tends to increase. We can explain this result by examining how the weighted

mean intraplatoon and interplatoon headways change with p; see Appendix A.5.3 for details.

1.5 Analysis

In §1.5.1 and §1.5.2 we analyze our queueing model under the D policy and the I policy, respectively.

In §1.5.3 we compare the performances of these policies. In §1.5.4 we discuss the robustness of our

results. All proofs are presented in Appendix A.3.

For the comparison between the two policies, we use two quality of service (QoS) measures:

throughput (θ) and mean travel time (W ). To compute these measures, we use the steady state
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distribution of an M/Gn/c/c queueing model, πn, which is derived by Cheah & Smith (1994):

πn =
( (λL)n

n!Vn · · ·V1
)
π0, where π0 = (1 +

c∑
n=1

(λL)n

n!Vn · · ·V1
)−1. (1.12)

For a queueing model with finite capacity, throughput is the rate at which vehicles exit the queue,

also equal to the effective arrival rate. In our model, a proportion πc of vehicles find c other vehicles

on the highway upon their arrival, and turn away. Thus, by PASTA (Poisson Arrivals See Time

Averages), the effective arrival rate is θ = λ(1−πc). Highway throughput is an important measure

for urban designers. Mean travel time of a single vehicle (also known as mean response time) is

obtained by Little’s law as follows:

W = (

c∑
n=1

nπn)/θ. (1.13)

This measure mostly concerns individual users. As in the previous sections, the superscript i ∈

{B,DH,DA,D, I} in πin, θi, or W i represents different policies or queues. For example, WB

represents the mean travel time of the benchmark case.

In our analysis, a highway is considered to be highly (heavily) loaded, if λ ≥ λijam, i ∈

{B,DA,DH, I}; see Appendix A.5.4 for more details about λjam. In this case, the arrival rate

to the highway is so high that the highway tends to be full. We call V B
Nc, V

DH
(N−1)c, V

DA
c , and V I

Nc(p)

jam speeds, which are the speed of vehicles when a highway with N lanes each having c capacity is

full, in the benchmark case, the HV queue under the D policy, the AV queue under the D policy,

and the I policy with AVs constituting a proportion p of arrivals, respectively. In addition, we call

the throughput of a jammed highway jam throughput, which is equal to the product of the capacity

of the system and the jam speeds. For example, in the benchmark case, the rate at which a single

vehicle leaves the highway is µBNc = V B
Nc, hence the total rate at which vehicles exit the highway,

the jam throughput, is NcV B
Nc vehicles per hour.

Our analysis focuses primarily on high values of λ, because, in general, a policy-maker is focused

on improving the performance of a highway when it is heavily loaded. We complement our analytical

results with a numerical study that also examines lighter loads.
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1.5.1 The D Policy

Under the D policy the highway segment is split into two separate queueing systems, as opposed

to the benchmark case in which all lanes of the highway are pooled in one queueing system. In

general, a pooled server is more efficient than multiple servers of the same total capacity. However,

in our setting, although the service capacity is divided into two queues, the service rate in the AV

queue is higher than that in the HV queue (see §1.4.2). Thus, there is a trade-off between pooling

the servers and increasing the service rate by designating one lane to AVs. As a result, the pooled

server in the benchmark case can be inferior to the split servers under the D policy. The next

proposition, which holds for any values of the model parameters described in §1.3, presents the

condition under which each of these factors outweighs the other in terms of W and θ.11

Proposition 1.1. a) There exist λ(D,W ) and λ̄(D,W ) such that for λ ≤ λ(D,W ), WD(p) ≥ WB for

p ∈ [0, 1]; for λ ≥ λ̄(D,W ), WD(p) ≤WB if and only if p ≥ p(D,W ) =
V DA
c V B

Nc − V DA
c V DH

(N−1)c

V DA
c V B

Nc − V B
NcV

DH
(N−1)c

.

b) θD(p) ≥ θB if and only if pπDAc + (1 − p)πDH(N−1)c ≤ πBNc. This can be further simplified for

λ ≥ λ(D,θ) ≡ minp max{λDAjam/p, λDHjam/(1 − p)}, when θDH and θDA are increasing in λ: θD(p) ≥

θB if and only if p(D,θ) ≤ p ≤ p̄(D,θ), where p(D,θ) = {
NcV BNc−(N−1)cV DH

(N−1)c

Lλ[1−πDAc (p(D,θ))] }+ and 1 − p̄(D,θ) =

{ NcV BNc−cV
DA
c

Lλ[1−πDH
(N−1)c

(1−p̄(D,θ))]}
+.12

Proposition 1.1(a) indicates that the D policy decreases W compared to the benchmark case

only when both the arrival rate λ and the AV proportion p are high. When the highway is lightly

loaded with λ ≤ λ(D,W ), designating a lane to AVs slows down vehicles in (N − 1) lanes of the

highway segment, while increasing the speed of vehicles in the AV lane only moderately. Even for

a heavily loaded highway with λ ≥ λ̄(D,W ), dedicating a lane to AVs does not necessarily reduce

the mean travel time unless AVs constitute at least a proportion p(D,W ) of vehicles; the threshold

p(D,W ) depends on the jam speed of vehicles in each queue as well as the characteristics of the

highway such as the number of lanes and the capacity of each lane. This result cautions against

11Throughout this chapter, for thresholds of λ and p, we use superscripts (i, j) for i ∈ {D, I,DI} and j ∈
{W, θ,Wθ}, where D, I, and DI represent the D policy, the I policy, and comparison between D and I policies,
respectively; and W , θ, and Wθ indicate thresholds for W , θ, and comparison between W and θ, respectively. We
also use underscore and overscore to indicate smaller and larger thresholds, respectively. Table A2 summarizes the
notation used in this section.

12For the AV queue, θDA is increasing in λ if nV DA
n is increasing in n (see Lemma A.2 in Appendix A.3). This

assumption guarantees that V DA
n decreases in n no faster than linearly. Figure 16(a) in Appendix A.5.4 shows

that this property holds for our calibrated model. Similarly, in Lemma A.2, we derive the condition for θDH to be
increasing in λ. This condition also holds for our calibrated model.
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Figure 1.4: QoS measures for the D policy when λ = 11, 342 vehicles per hour: (a) mean travel
time, and (b) throughput.
Note. “overall” indicates the overall performance of AVs and HVs under the D policy.

adopting this policy too early, despite recent industry proposals (e.g., Bierstedt et al. 2014 and

Aguilar 2018).

We illustrate Proposition 1.1(a) by considering two different values of λ in the calibrated model

in §1.4.2: the mean arrival rate of 2, 217 vehicles per hour and the maximum arrival rate of 11, 342

vehicles per hour to I-10 with three lanes in 2016.13 The former is considered to be a light load, and

the latter is a heavy load, because λ(D,W ) = λ̄(D,W ) = 2, 510 vehicles per hour.14 When the highway

is lightly loaded with λ = 2, 217, we observe that the D policy can increase W (see Appendix A.5.1

for a discussion of this case).

For λ = 11, 342 vehicles per hour, if AVs constitute at least p(D,W ) = 0.63 of vehicles, dedicating

one out of three lanes to AVs leads to a lower overall mean travel time, WD, than that of the

benchmark case, WB = 13 minutes (see Figure 1.4(a)). The overall mean travel time under the D

policy, WD = pWDA + (1 − p)WDH , is a weighted average of mean travel time of the AV queue,

WDA, and that of the HV queue, WDH . To understand the effect of p on WD, we discuss its effect

on WDH and WDA. First, when p ≤ 0.93, WDH is substantially higher than WB, because the

HV queue has one fewer lane than the benchmark case. When p ≥ 0.93, WDH drops significantly,

13According to Varaiya (2005), a highway has an ideal throughput of 2, 000 vehicles per hour per lane, so a highway
with an arrival rate higher than 2, 000×N vehicles per hour is considered to be highly loaded.

14Although in all our numerical expriments λ(D,W ) = λ̄(D,W ), it is theoretically possible that λ(D,W ) < λ̄(D,W ), as
shown in the proof of Proposition 1.1(a). When λ(D,W ) < λ < λ̄(D,W ), unlike the highly loaded case, WD(p) depends
on V DH

n and V DA
n for all values of n, and WD(p) can be lower or higher than WB .
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because the arrival rate to the HV queue becomes very low. (Appendix A.5.4 discusses the phase-

change-type behavior of WDH at p = 0.93.) Second, as p increases, WDA increases from 0.8 minutes

to 2.3 minutes; both the magnitude and change of WDA are negligible compared to WDH . Finally,

increasing p raises the weight of WDA, and reduces the weight of WDH . Therefore, as p increases,

WD decreases. Moreover, since WDH is significantly higher than WB, more than 63% AVs are

needed to bring WD below WB. To have a tangible reduction in WD, even more AVs are needed;

for example, to get 50% reduction in WB, 80% of vehicles need to be autonomous.

Proposition 1.1(b) provides conditions under which adding AVs to the highway under the D

policy improves the throughput over the benchmark case. For any value of λ, the proposition first

presents the general condition (i.e., pπDAc + (1 − p)πDH(N−1)c ≤ πBNc) that indicates having AVs on

the highway under the D policy improves the throughput, if and only if the highway blocks fewer

vehicles under this policy than in the benchmark case. For a highly loaded highway with λ ≥ λ(D,θ),

we can further simplify the condition in terms of the proportion of AVs (p). First, when p < p(D,θ),

the throughput under the D policy, θD(p), is less than that of the benchmark, θB, because both

the benchmark case and the HV queue under the D policy are heavily loaded, but the AV lane may

still flow relatively freely. In this case, the difference between the jam throughput of the benchmark

case and that of the HV queue under the D policy (i.e., NcV B
Nc − (N − 1)cV DH

(N−1)c) is larger than

the throughput of the AV queue (i.e., pλ(1 − πDAc )), so the AV queue’s throughput cannot offset

this difference. Second, when p is moderate, i.e., p(D,θ) ≤ p ≤ p̄(D,θ), θD(p) > θB, because under

the D policy the highway load is balanced between the HV queue and the AV queue. Finally, when

p > p̄(D,θ), the HV queue is not highly loaded, and the throughput of this queue is lower than the

difference between the jam throughput of the benchmark case and that of the AV queue.

To illustrate, we consider the same two values of λ, one below and one above λ(D,θ) = 2, 510

vehicles per hour. At λ = 2, 217 vehicles per hour, the benchmark case has enough capacity for

all the vehicles that enter the highway, and no vehicle is blocked. Thus, assigning a lane to AVs

may even reduce θ when p is low (see Appendix A.5.1). However, when the highway is heavily

loaded, the D policy is able to improve θ. As Figure 1.4(b) shows, at λ = 11, 342 vehicles per

hour, the benchmark case has reached its maximum jam throughput (555V B
555/3 = 2590/3 = 863

vehicles per hour per lane), but the AV queue has not; the maximum throughput of the AV lane

is about five times the throughput of a lane in the benchmark case (i.e., 185V DA
185 = 4, 675 vs. 863
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vehicles per hour per lane). When p ≥ p(D,θ) = 0.17, the increase in the throughput of the lane

dedicated to AVs compensates for the decrease in the throughput of the HV lanes. In addition,

when 0.43 ≤ p ≤ 0.93 the overall throughput of the highway segment becomes about twice that

of the benchmark case (i.e., 5, 396 vs. 2, 590 vehicles per hour). This is same as the ratio of the

jam throughput under the D policy to that of the benchmark case (i.e.,
V DAc +(N−1)V DH

(N−1)c

NV BNc
= 2.09).

When p ≥ 0.93, the HV queue is no longer highly-loaded, and throughput of this queue decreases

as its arrival rate, (1 − p)λ, decreases. Eventually, as p approaches 1, θD converges to the jam

throughput of the AV lane (i.e., cV DA
c ). Since the jam throughput of the designated lane alone is

higher than that of the benchmark case (see Figure 1.4(b)), when p ≥ p(D,θ), θD(p) does not go

below θB, hence p̄(D,θ) = 1.

Parts (a) and (b) of Proposition 1.1 together show that the effect of employing the D policy

on throughput is not always the same as that on mean travel time. Corollary 1.1 presents the

condition that determines which metric improves first, by comparing the thresholds p(D,W ), p(D,θ),

and p̄(D,θ).

Corollary 1.1. (a) p(D,W ) ≥ p(D,θ), if λ ≥ max{λ̄(D,Wθ), λ̄(D,W ), λ(D,θ)}, where

λ̄(D,Wθ) =
V B
Nc(V

DA
c − V DH

(N−1)c)[NcV
B
Nc − (N − 1)cV DH

(N−1)c]

LV DA
c (V B

Nc − V DH
(N−1)c)[1 − πDAc (p(D,θ))]

.

(b) p(D,W ) ≤ p̄(D,θ), if λ ≥ max{λ(D,Wθ), λ̄(D,W ), λ(D,θ)}, where

λ(D,Wθ) =
V B
Nc(V

DA
c − V DH

(N−1)c)[NcV
B
Nc − cV DA

c ]

L{πDH(N−1)c(1 − p̄(D,θ))V B
Nc[V

DA
c − V DH

(N−1)c] + V DH
(N−1)c[V

DA
c − V B

Nc]}
.

Corollary 1.1(a) indicates that if the arrival rate to the highway is high, then the D policy

improves θ over the benchmark case before improving W ; i.e., 0.63 = p(D,W ) ≥ p(D,θ) = 0.17 in

Figure 1.4. The intuition behind this result is that WD is the weighted average of WDH and WDA,

while θD is the sum of θDH and θDA. Consequently, when (1 − p) (i.e., the weight of WDH in

W ) is high, the low performance of the HV queue has a more significant impact on W than θ. In

addition, Corollary 1.1(b) shows that there exists an interval for p (e.g., 0.63 ≤ p ≤ 1 in Figure

1.4), in which the D policy simultaneously improves θ and W over the benchmark case.
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In a nutshell, the performance of the D policy depends significantly on arrival rate and pro-

portion of AVs. Although this policy has the potential to reduce mean travel time as well as

throughput, this requires a substantial proportion of vehicles to be AVs, even for a congested high-

way. This finding contributes to the AV literature which has neglected the role of arrival rate. For

example, in the simulation study performed by Liu et al. (2018), at a fixed value of λ, one lane

is dedicated to AVs when p = 0.4, resulting in about 24% improvement in θ. However, Liu et al.

(2018) is silent on whether the benchmark case without AVs has reached its maximum throughput

at this value of λ, and how throughput θ would change with different values of λ.

1.5.2 The I Policy

This section analyzes the effect of AVs on highway congestion under the I policy, and compares its

performance with that of the benchmark case. We first present Proposition 1.2, which compares

this policy with the benchmark case for highly loaded highways.

Proposition 1.2. a) For any given p ∈ [0, 1], there exists λ(I,W ) ≥ 0 such that for λ ≥ λ(I,W ), the

I policy has a lower mean travel time W than the benchmark case, if and only if V I
Nc(p) ≥ V B

Nc, or

equivalently

δ
I( 2 − p

ψIHH
Nc

−
1 − p

ψIHA
Nc

−
1 − p

ψIAH
Nc

−
p

ψIAA
Nc

)
+ (1 − δ

I
)
( 2 − p

ξIHH
Nc

−
1 − p

ξIHA
Nc

−
1 − p

ξIAH
Nc

−
p

ξIAA
Nc

)
≥

( δIAA

ψIHH
Nc

+
1 − δIAA

ξIHH
Nc

)
−

( δIHH

ψIHH
Nc

+
1 − δIHH

ξIHH
Nc

)
.

(1.14)

b) For any given p ∈ [0, 1], there exists λ(I,θ) ≥ 0 such that for λ ≥ λ(I,θ), the I policy has a higher

throughput θ than the benchmark case, if and only if (1.14) holds.

Proposition 1.2 states that when the highway is highly loaded, for any given p the I policy

outperforms the benchmark case in terms of both W and θ, if and only if the jam speed of vehicles

is higher than that of the benchmark case (i.e., V I
Nc(p) ≥ V B

Nc).

We illustrate this result using the calibrated model for λ = 2, 217 and 11, 342 vehicles per hour

as in §1.5.1. We compute λ(I,W ) = λ(I,θ) = 2, 594 vehicles per hour, so 2, 217 and 11, 342 vehicles

per hour are considered as light load and high load, respectively. For light traffic, our numerical

analysis in Appendix A.5.1 shows that AVs do improve the performance of the highway under the

I policy, but the amount of improvement is not substantial because the benchmark model already
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Figure 1.5: QoS measures for the I policy when λ = 11, 342 vehicles per hour: (a) mean travel
time, and (b) throughput.

performs quite well. At λ = 11, 342 vehicles per hour, Figure 1.5(a) illustrates that W I(p) is lower

than WB for all values of p. This happens because, as shown in Figure 1.3(a), the jam speed of

vehicles under the I policy, V I
Nc(p), is increasing in p for p ∈ [0, 1], where p = 0 corresponds to the

benchmark case. When p < 0.95, λ = 11, 342 vehicles per hour is a high load (i.e., for these values

of p, the jam service rate, NcV I
Nc(p), is lower than λ), so vehicles drive at the jam speed, V I

Nc(p).

In this case, since V I
Nc(p) is increasing in p, W = 1/V I

Nc(p) decreases in p. When p ≥ 0.95, AVs

are so prevalent that vehicles drive at the free-flow speed of the highway, and W I(p) is minimal.

In Appendix A.5.4, we offer further discussion about the sharp decrease in W at p = 0.95. Figure

1.5(b) shows that θ under the I policy is strictly increasing for p ≤ 0.95. For p ≥ 0.95, θ is equal

to λ = 11, 342 vehicles per hour, and it cannot grow any further, because vehicles are traveling at

the free-flow speed.

Since our model captures various characteristics of a mixed traffic flow, our results offer deeper

insights than previous studies. Liu et al. (2018) and Bierstedt et al. (2014) state that in order for

the I policy to improve the performance of the benchmark case (in terms of θ) by about 30%, the

AV proportion should be substantial – 60% and 75%, respectively. However, we observe that the

performance of this policy crucially depends on λ: Whereas the I policy does not have a significant

impact (about 5%) on W or θ at λ = 2, 217 vehicles per hour for any p, 50% AVs halve the mean

travel time and double the throughput at λ = 11, 342 vehicles per hour (see Figure 1.5). This
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discrepancy may stem from the fact that these two studies focus on the role of AVs in reducing the

mean intraplatoon headway. However, as described in Appendix A.5.3, the capability of AVs to

reduce the weighted mean interplatoon headway is the primary driver for the speed increase under

the I policy.

Ghiasi et al. (2017) consider the I policy for a one-lane highway. They show that θ increases in

p, if and only if 1/ξIAA ≤ 1/ψIAHn̄ +1/ψIHAn̄
2 ≤ 1/ψIHHn̄ , where n̄ is a fixed number. In contrast, for

our calibrated model in §1.4.3, although there exist values of n such that the condition in Ghiasi

et al. (2017) does not hold (e.g., at n̄ = 100, 3.28+2.81
2 ≰ 2.81 seconds), θ is still increasing in p. This

happens because the number of vehicles on a highway is not a fixed value, and speed of vehicles

(as well as the mean headway) changes with n even if p is fixed. Thus, by considering only one

instance of n, Ghiasi et al. (2017) do not fully capture the effect of congestion on speed.

1.5.3 Comparison of the D Policy and the I Policy

Building on the analyses in §1.5.1 and §1.5.2, we compare the performance of the D policy to that

of the I policy. Under the premise of Proposition 1.1, Proposition 1.3 presents conditions under

which the I policy outperforms the D policy in terms of W and θ, and vice versa.

Proposition 1.3. Suppose λ ≥ λIjam(1), and V I
Nc(p) is concave everywhere or convex everywhere,

and it is increasing in p.15 Then,

p→ 0 p→ 1 p ̸→ 0 or 1

W I(p) → WB ≤
WD(p)

W I(p) →WD(p) ≤WB W I(p) ≤WB ≤WD(p), if p ≤ p(D,W )

W I(p) ≤WD(p) ≤WB , if p(D,W ) ≤ p ≤ p(DI,W )

WD(p) ≤W I(p) ≤WB , if p ≥ p(DI,W )

θI(p) → θB ≥ θD(p) θI(p) ≥ θB ≥ θD(p), if N ≥
VDA
c

V B
Nc

θI(p) ≥ θD(p) ≥ θB , if N ≤
VDA
c

V B
Nc

For λ ≥ max(λIjam(1), λ(D,θ)):

θD(p) ≤ θB ≤ θI(p), if p ≤ p(D,θ) or p ≥ p̄(D,θ)

θB ≤ θD(p) ≤ θI(p), if p(D,θ) ≤ p ≤ p(DI,θ) or p̄(DI,θ) ≤ p ≤
p̄(D,θ)

θB ≤ θI(p) ≤ θD(p), if p(DI,θ) ≤ p ≤ p̄(DI,θ)

where p(DI,W ) is the smallest p such that −
V DAc V DH

(N−1)c

V DAc −V DH
(N−1)c

≤ V I
Nc(p)

(
p − V DAc

V DAc −V DH
(N−1)c

)
, p(DI,θ) is

the smallest p such that NcV I
Nc(p) − pλ(1 − πDAc ) = (N − 1)cV DH

(N−1)c, and p̄
(DI,θ) either satisfies

15These conditions on V can be expressed in terms of parameters (see the proof of Proposition 1.3). These
assumptions are not restrictive; they are required to hold only at n = Nc. As Figure 1.3(b) shows, these conditions
are satisfied in our calibrated model for all the heavily loaded queues we consider. Note that when V I

Nc(p) is increasing
in p and λ ≥ λIjam(1) (as assumed in the statement of Proposition 1.3), all queues are highly loaded. This happens
because V I

Nc(1) = V DA
c is the maximum jam speed among all queues (i.e., the benchmark case, the D policy, and the

I policy) for all values of p. Therefore, λIjam(1) is at least as high as both λ(I,W ) and λ(I,θ).
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NcV I
Nc(p̄

(DI,θ)) − (1 − p̄(DI,θ))λ(1 − πDH(N−1)c) = cV DA
c , or it is the largest p such that NcV I

Nc(p) −

pλ(1 − πDAc ) = (N − 1)cV DH
(N−1)c.

Proposition 1.3 characterizes ranges of p where the D policy performs better than the I policy,

and vice versa. When p converges to 0 or 1, almost all vehicles are HVs or AVs, respectively. In

this case, the I policy outperforms the D policy as well as the benchmark case. When p = 0, the

I policy, which is equivalent to the benchmark case, is superior to the D policy. This happens

because under the D policy, the arrival rate to the AV queue approaches zero, so the highway does

not utilize its full capacity. When p approaches 1, the I policy performs better than the benchmark

case and the D policy, since it replaces all the HVs with fast AVs. In this case, the throughput

of the benchmark case is higher than that under the D policy, only if the highway has a sufficient

number of lanes (i.e., N ≥ V DAc

V BNc
), such that they collectively produce a higher throughput than one

fast lane of AVs.

When 0 < p < 1, Proposition 1.3 specifies intervals for p where the D policy performs better

than the I policy in terms of W and θ. We first discuss W , and then θ. As discussed in §1.5.1 and

§1.5.2, unlike the D policy that decreases W over the benchmark case only when p ≥ p(D,W ), the I

policy has a lower mean travel time, W I , than that of the benchmark case, WB, for any value of

p, under the premise in Proposition 1.3. As a result, when p ≤ p(D,W ), the I policy performs better

than the D policy. When p(D,W ) ≤ p ≤ p(DI,W ), although the D policy has a lower mean travel

time, WD, than the benchmark case, the I policy still results in the lowest W , because the I policy

enables HVs to travel faster by mixing them with fast moving AVs on all lanes. When p ≥ p(DI,W ),

WD is lower than W I . In this case, the arrival rate to the HV queue is so low that this queue flows

freely. Thus, WD is determined primarily by the jam speed of vehicles on the heavily loaded AV

lane. Under the I policy, the highway is also heavily loaded, but the jam speed of the mixture of

vehicles is lower than the jam speed of the AV queue under the D policy.

Proposition 1.3 also compares θ between the two policies. For highly loaded highways, through-

put is increasing in p under the I policy, and this policy outperforms the benchmark case for any

p (see §1.5.2). When p ≤ p(D,θ), the I policy should also be chosen over the D policy, because the

D policy leads to a lower throughput, θD, than that of the benchmark case, θB. In addition, when

p(D,θ) ≤ p ≤ p(DI,θ) or p̄(DI,θ) ≤ p ≤ p̄(D,θ), even though θD is higher than θB, throughput under
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the I policy, θI , is still the highest. Only when p(DI,θ) ≤ p ≤ p̄(DI,θ) does the D policy outperform

the I policy in terms of throughput. In this case, the arrival rate to the AV queue of the D policy

is so high that this queue works at its jam throughput. The high throughput of this fast AV lane

makes up for the low throughput of the HV lanes, and increases the overall throughput under the D

policy. In contrast, under the I policy, the state-dependent speed is balanced between fast AVs and

slow HVs, so θI is not as high as θD. When p ≥ p̄(D,θ), θI is higher than θD: AVs, that constitute

the majority of vehicles, can run on all lanes under the I policy, whereas they can run only on one

designated lane under the D policy.

We illustrate Proposition 1.3 using the calibrated model in §1.4 for highly loaded highways with

λ = 11, 342 vehicles per hour. As Figure 1.6(a) shows, W I is lower than WD for all values of p,

except when p is between p(DI,W ) = 0.93 and 0.94.16 Figure 1.6(b) compares throughput under the

I policy with that under the D policy. As stated in Proposition 1.3, when p ∈ [0.25, 0.55] (where

p(DI,θ) = 0.25 and p̄(DI,θ) = 0.55), θD is higher than θI . When the highway is lightly loaded with

λ = 2, 217 vehicles per hour, in terms of both W and θ, the I policy performs at least as well as the

benchmark case, while the D policy can be inferior to the benchmark case. In this case, integrating

AVs and HVs improves the performance of the highway more than assigning one lane to AVs for

any value of p ∈ [0, 1] (see Appendix A.5.1).

Proposition 1.3 shows, interestingly, that on some interval for p, either policy outperforms the

other in terms of W or θ. Corollary 1.2 specifies this interval.

Corollary 1.2. p(DI,θ) ≤ min{p(DI,W ), p̄(DI,θ)}.

Corollary 1.2 implies that there exists an interval for p, [p(DI,θ),min{p(DI,W ), p̄(DI,θ)}] (e.g.,

[0.25, 0.55] in Figure 1.6(b)), such that, in terms of throughput, the D policy performs better than

the I policy, but in terms of mean travel time, it is worse. The driver of this trade-off is the fact

that, under the D policy, the highway is divided into a fast queueing system for AVs and a slow

one for HVs. On the other hand, the I policy balances the quality of service received by HVs and

AVs, by mixing fast AVs with slow HVs. When p ∈ [p(DI,θ),min{p(DI,W ), p̄(DI,θ)}], the throughput

derived from the balanced speed of vehicles (V I
Nc(p)) under the I policy is lower than the high

16Note that when p > 0.94, since V I
Nc(p) is increasing in p, λ = 11, 342 vehicles per hour becomes lower than the

jam load for this highway, i.e., the condition λ ≥ λIjam(1) in Proposition 1.3 is violated. In addition, the mean travel
time of the I policy in this case is lower than that when the highway is jammed. Therefore, W I(p) is not necessarily
higher than WD(p) anymore.
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Figure 1.6: A comparison between the D policy and the I policy when λ = 11, 342 vehicles per
hour: (a) mean travel time, and (b) throughput.

throughput the D policy achieves by utilizing the fast AV lane.

Under the D policy, it seems intuitive to designate more than one lane to AVs when the AV

proportion p is high. Numerically analyzing the D policy with two lanes designated to AVs, we

observe that although this policy increases throughput, it still performs poorly in terms of mean

travel time. See Appendix A.5.5 for further discussion.

1.5.4 Robustness of the Results

We demonstrate the robustness of our results as follows. In Appendix A.6.1, we show analyti-

cally that our main results hold for any platoon size distribution, as well as for a broad class of

distributions for intraplatoon and interplatoon headways. In Appendix A.6.2, we report the re-

sults of sensitivity analyses on several model parameters. We observe that, although the intervals

[p(DI,W ), 1] and [p(DI,θ), p̄(DI,θ)] change as parameters vary, the main qualitative insights continue

to hold: If the performance metric considered by policy makers is W , we recommend the I policy;

otherwise, we recommend the D policy in a moderate region of p, and the I policy in other regions.
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1.6 Simulation Study

We create a discrete-event agent-based simulation for a multi-lane highway. The goal of this

simulation is to verify the validity of our queueing model and analysis. We present a summary

of our simulation model and results in this section, while providing more details in Appendix A.7.

We develop a discrete-event cellular automata simulation (DECAS). This approach combines

two methods, Discrete-event simulation (DES) and cellular automata (CA), used in prior literature.

DES is commonly used to simulate queueing models (e.g., Law et al. (2000) and Ross (2006)).

CA models are capable of explicitly representing individual vehicle interactions and relating these

interactions to macroscopic traffic flow metrics, such as mean travel time and throughput (e.g.,

Benjaafar et al. 1997). Thus, DECAS is appropriate for simulating traffic flow in our setting.

In our DECAS model, a highway is modeled as a grid. Each cell of the grid can be occupied

by at most one vehicle. In a typical CA model, the state of the system (i.e., speed and location of

vehicles that are present on the grid) evolves according to a predefined set of rules at every time

step (usually one second). Instead of such a discrete-time simulation, we employ a discrete-event

simulation by updating the state of the system when one of the following “events” happens: (i)

arrival of a new vehicle to the highway segment (“arrival” for short) and (ii) departure of an existing

vehicle from the highway segment (“departure” for short). This approach significantly improves

the speed of large-scale simulation in our setting.

As compared to the calibrated analytical model presented in §4, our simulation model incorpo-

rates the following general features:

• Length of the highway segment L > 1 (whereas we use the normalized length L = 1 in the

numerical analysis presented in §1.5).

• Lane changing: If the speed of a vehicle is higher than the vehicle immediately in front, the vehicle

is allowed to leave its current platoon (of which the size can be one or larger) and to create a new

platoon in an adjacent lane or merge into the existing platoon in an adjacent lane, if the following

conditions hold. First, there is enough space (e.g., at least one empty cell) between this vehicle and

the vehicle immediately in front in the adjacent lane. Second, the gap between this vehicle and the

vehicle immediately behind in the adjacent lane is so high that, if the vehicle behind travels at the

maximum speed of the highway, the advancement of this vehicle is smaller than the gap.
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• Platoon formation process: As a vehicle arrives to the highway, it decides whether or not to join

the existing platoon immediately in front. A vehicle can also leave its current platoon and create

a new platoon (or merge into another platoon), as it changes its lane.

• A transient behavior of vehicles: The simulation model allows speed-up, which is defined as the

ability of a vehicle to increase its speed if there is a large gap between this vehicle and the vehicle

immediately in front.

Our simulation implicitly includes two more features of traffic flows: the negative effect of lane-

changing on speed, and mergers of platoons. First, right after a vehicle changes its lane, if its speed

is lower than that of the vehicle immediately behind, the vehicle immediately behind either reduces

its speed to match the speed of the vehicle in front or changes its lane. Second, when the speed

of a vehicle is higher than that of the vehicle immediately in front, and the vehicle is not able to

change its lane, this vehicle is forced to reduce its speed to match the speed of vehicle immediately

in front; then the follower vehicle merges into the platoon immediately in front.

As in our calibrated model in §4, we run the simulation for a highway segment with three lanes,

and a jam density of 185 vehicles per mile per lane. We consider a segment of four miles: we use

the first mile as warm-up state to place vehicles on the segment and form platoons, and use the

results from the remaining three miles. The arrival rate to the segment is 11, 342 vehicles per hour.

To investigate the performance of the D and I policies, for each value of p ∈ {10, 20, · · · , 100} we

run the simulation 30 times for a time horizon of four hours, and report the average of these 30 values

in Figure 1.7. For a highly loaded highway, the running time of each instance of our simulation

is, on average, about half an hour; for a lightly loaded highway, it is about one minute. The

confidence intervals of these values are very small: The largest length of a 95% confidence interval,

which belongs to the benchmark case, is equal to 0.2 minutes. As Figure 1.7(a) shows, similar to

our numerical results in §5, for any given value of p, the I policy outperforms the benchmark model

in terms of W . When p is at least 64%, the D policy is also capable of reducing W over that of

the benchmark model. Similarly, Figure 1.7(b) depicts that, whereas the I policy has a higher θ

than the benchmark model for all values of p, the D policy increases θ over the benchmark model

when p ≥ 0.16, and it outperforms the I policy when p ∈ [0.24, 0.46]. Although WD and W I are

very similar to what we observe in §5, θ is a bit lower in the simulation than that in the queueing

model, especially when p is small. This is most likely due to the use of a more stringent blocking
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Figure 1.7: A comparison between the D policy and the I policy when λ = 11, 342 vehicles per
hour: (a) mean travel time of the simulation, (b) throughput of the simulation.

rule in the simulation: Whereas in the queueing model a vehicle is blocked when the entire highway

segment is full, in the simulation a vehicle is blocked when the first mile of the highway is full. See

Appendix A.7 for a more in-depth discussion of the results.

1.7 Policy Recommendation and Conclusion

In this paper we investigate the effects of autonomous vehicles on highway traffic flow under two

policies: the D and the I policies. We model traffic flow as a queueing system, and calibrate this

model to data. Then, we analyze each of these policies, as well as the benchmark case, and provide

recommendations about when each of these policies should be considered. We further validate our

findings with a simulation study that takes into account several general features.

We use two metrics to measure the performance of a highway: the mean travel time of a single

vehicle, and the throughput of the highway. The former concerns users of the highway, while the

latter is important for urban designers. Interestingly, these two metrics are not always aligned: A

high utilization of the highway does not guarantee a short travel time, and vice versa. Thus, it is

crucial for policy makers to take both of these metrics into account.

The performance of different policies depends crucially on arrival rate to the highway, which has

been overlooked in the AV literature to date, as well as the proportion of AVs on the road. Since

AVs are primarily intended to alleviate congested highways, we focus on high arrival rates. For

36



each metric, we recommend policies in three different regions of the AV proportion: low, moderate,

and high. Our analysis indicates:

1) When the AV proportion is low, the I policy is recommended. This is intuitive because the

number of AVs on the highway is so low that it is not worth designating a lane to them. Thus, the

Departments of Transportations in several states, including Colorado, Wisconsin and Washington,

should recognize that their plan to designate a lane to AVs (Aguilar 2018) could lead to significantly

more congestion than the I policy (although it may have other benefits, such as helping human

drivers become acquainted with the new era of AVs, and incentivizing adoption).

2) When the AV proportion is moderate, a policy maker could consider adopting either policy,

depending on which metric he or she cares about more. If a lower travel time for vehicles is of

more importance, the I policy is the solution; but if improving the overall utilization (throughput)

of the highway is of high priority, the D policy should be considered. Under the D policy, the fast

AV lane increases throughput rapidly beyond that of the I policy, but the slow HV lanes lead to a

longer mean travel time than that under the I policy.

3) When the AV proportion is high, the I policy is again recommended based on both metrics. This

is because AVs, which constitute the majority of vehicles, are allowed to use only one lane of the

highway under the D policy, but they can drive on any lane under the I policy. Whereas Bierstedt

et al. (2014) predict that, under the I policy, even high values of the AV proportion will not have

a significant impact on throughput, (e.g., 60% AVs increase throughput by only 30%), we observe

that 60% AVs increase throughput by about 130%. Moreover, in line with KPMG’s prediction that

AVs could increase the capacity of highways by 500%, our calibrated model shows that, when all

vehicles are autonomous, the I policy increases the throughput of a congested highway by 437%.

Our paper is the first to model and analyze a multi-lane highway using a queueing system

coupled with a MAP. There are several interesting avenues to expand this research. First, since

AVs are not commercially available yet, we conduct our numerical analysis based on experimental

data used in prior literature. Although we perform sensitivity analyses, more accurate data that

will become available may yield more precise results. Second, incorporation of detailed highway

characteristics such as entry or exit ramps, a large-scale network structure of highways and roads,

and microscopic-level behaviors of vehicles will further enrich our model. In particular, the validity

of modeling a highway as a loss queue is worth further investigation in such a general setting.
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Third, one may explore endogenizing the adoption rate of AVs based on quality of traffic flow on

highways and regular roads: If having AVs helps reduce congestion, more people may be interested

in trading their conventional vehicle for an autonomous one. As a result, the adoption rate of

AVs may be determined depending on various factors that include the amount of improvement

in congestion on regular roads and highways, the price of AVs (which is unknown yet), possibly

additional trips due to the autonomous feature (which gives free time to drivers), and so on. Finally,

it would be interesting to study the effect of AVs on highway crash rates. On the one hand, AVs

are more capable of preventing crashes than HVs, due to their low reaction time. On the other

hand, platoons of AVs are longer and denser than platoons of HVs, so an accident between two

AVs could propagate through the entire platoon and affect a longer string of vehicles. Thus, it is

not immediately clear if AVs will improve highway safety.17

17Our queueing model captures some safety features implicitly; for example, we consider a larger headway for an
HV-AV pair (i.e., when an AV follows an HV) than for an AV-AV pair (i.e., when an AV follows an AV). We also
conduct a sensitivity analysis on the value of the mean intraplatoon headway of an AV-HV pair in Appendix A.6.2.
We leave explicit modeling of other safety features for future research.
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Chapter 2

Can Autonomous Vehicles Solve the

Commuter Parking Problem?

2.1 Introduction

Autonomous Vehicles (AVs) are expected to play a determinant role in shaping the future of

mobility. AVs are already operating on the roadways of several major cities in the United States

(U.S.) and other countries (Bayern 2020). As such, now is a rare window of opportunity for social

planners to put in place policies that pave the way for the inevitable mass arrival of AVs. Among

several urban transportation issues that need to be addressed, this paper concerns parking and

traffic congestion during morning rush hour. Currently, to accommodate high parking demands,

cities typically surrender large spaces to build parking structures; for example, an astounding 14

percent of Los Angeles county land is dedicated to parking (Jaffe 2015).1 Nevertheless, morning

commuters usually struggle to find an affordable parking spot in a convenient location. Another

significant problem of morning commute is traffic congestion. According to Ingraham (2019), a

report from the U.S. Census Bureau (2019) indicates that, while the average daily commute time

to work in the U.S. is 26.1 minutes, a notable 6% of morning commuters (about 9 million Americans)

travel at least an hour to work, committing over 10 full days per year to the time just getting to

work. AVs have potential to address these issues, as they can drop commuters off at their workplaces

1We gratefully acknowledge that this statistic was borrowed from the keynote talk (“OR and the Transportation
Tech Revolution”) of Garrett van Ryzin during the 2018 INFORMS Annual Meeting.
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downtown and park in a suburban area with cheaper parking.2 Such self-parking ability of AVs not

only allows commuters to avoid high parking fees downtown, but also reduces a city’s need to build

or maintain large parking structures in its downtown area. AVs may also help reduce congestion.

This is because these vehicles can be made aware of the location of available parking spots using

vehicle connectivity technologies, so they do not need to search for parking downtown. However,

the additional traffic from downtown to suburban parking areas can add extra congestion, so the

effect of AVs on the morning commute is unclear.

In this paper, we study the effect of AVs on the morning commute and provide guidance to social

planners (e.g., mobility and infrastructure departments of mayoralties, city councils, town councils

and town boards) on how to adapt parking fees, congestion tolls, and infrastructure to the special

needs and characteristics of AVs. Specifically, we address the following research questions: (1) In

comparison to human-driven vehicles (HVs), can AVs reduce or even eliminate commuters’ need

for parking downtown? (2) How should a social planner determine the optimal parking fees and

congestion tolls, and design infrastructure (e.g., drop-off capacity and downtown parking capacity)

to minimize the total system cost of the morning commute (which includes the travel cost of all

commuters and the commuters’ penalties for not arriving on time at work)?

To answer these questions, we examine the problem faced by morning commuters who use AVs

to travel from home to work in a downtown area. The goal of each commuter is to minimize her

total transportation and parking costs during the morning commute. (For convenience, we use

the pronouns “she/her/hers” to refer to a commuter.) Three major elements affect an individual

commuter’s costs: travel time, arrival time at work, and parking fee. The individual commuters’

decisions on their departure times from home collectively affect the level of congestion on roadways;

hence, these decisions affect both travel time and arrival time of an individual commuter. To avoid

a late arrival, a commuter may decide to depart home early, but the commuter may not want to

depart too early because there exists an inconvenience cost for arriving too early at work (Hendricks

2015). As such, commuters encounter a trade-off between experiencing congestion and arriving too

early to work. Each commuter also decides on her parking location between a central parking

area (located downtown) and an external parking area (located outside downtown). The external

2Large-scale commercial fully autonomous cars (which have the ability to drop off commuters) are expected to
be available by 2025 (Faggella 2020). As such, many cities, including Los Angeles and Cincinnati, have planned for
converting downtown parking spaces to curbside drop-off zones (Shaver 2019).
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parking area is cheaper than the central parking area, but farther away from work, so AVs need to

exit the congested downtown to travel to the external parking area. This presents commuters with

a second trade-off.

These trade-offs faced by commuters are captured in a continuous-time game-theoretic traffic

model. Our model is motivated by infrastructure and traffic patterns in the City of Pittsburgh.

In this model, commuters decide on their departure times from home and their parking locations

between the central and external areas. These commuters take an inbound highway (e.g., I-376

in Pittsburgh) to travel to work downtown. Upon arrival at work, the commuters are dropped

off as soon as there is an available curbside drop-off spot, and their AVs drive off to the parking

areas chosen by the commuters. Our model takes into account the congestion that the commuters

experience on the inbound highway to downtown, as well as the extra congestion that their AVs

create as they leave downtown to go to the external parking area. We calibrate our model to traffic

and parking data from Pittsburgh.

By analyzing this model, we characterize the departure time and parking location patterns

of commuters under user equilibrium (UE). Under UE, no commuter can unilaterally change her

departure time and/or parking location to reduce her cost. We show that there exist two different

user equilibria, depending on the distance of the external parking area from downtown and the

parking fee of the central area (relative to that of the external area). For cities, such as Pittsburgh,

where the parking fee of the central area outweighs the cost of traveling to the external parking

area, commuters choose the external area until the congestion downtown, caused by AVs traveling

to the external parking area, becomes so high that the remaining commuters prefer to park in the

expensive central parking area. In this case, commuters tend to leave early to avoid the snowballing

downtown congestion. The results of this case are starkly different from the status quo where all

commuters drive HVs and the option of parking in the external area does not exist. This results

suggest that, after the mass adoption of AVs, large areas may not be devoted to parking spaces

in Downtown Pittsburgh (unless extra parking fees and congestion tolls are imposed as we discuss

below). However, for cities with relatively low downtown parking fees, our analysis shows that

commuters still prefer to park in the central parking area.

We next analyze the problem of a social planner who aims to minimize the total system cost of

the morning commute by dictating the departure time and parking location of all commuters. The

41



analysis of a social optimum (SO) allows us to identify a gap between the total system cost under UE

and that of SO. Our analysis shows that there exist two different SOs. For cities such as Pittsburgh,

where the travel time from work to the central parking area is lower than that to the external parking

area, the social planner routes AVs to the central area to minimize the total system cost. In other

cities, the social planner routes AVs to the external area until the downtown congestion becomes so

high that the travel time to this area (which includes the downtown congestion time and free-flow

travel time from downtown to the external area) grows beyond the travel time to the central area,

so the travel cost to the central area becomes lower than that to the external area; at this point,

the social planner routes AVs to the central area until the downtown congestion becomes so low

that the external area becomes the better option again. This cycle of alternately routing AVs to

the external and central areas continues until all AVs have assigned parking spots or the central

area is full (in which case the remaining AVs must go to the external area). Under either SO, the

decisions made by the social planner are different from those made by commuters under UE, and

thus the total system cost under UE is higher than the SO cost.

To close the performance gap between the SO and the UE, we examine both short-term and

long-term measures a social planner can implement. As for short-term measures, a social planner

may adjust parking fees and impose congestion tolls. These measures can reduce the total system

cost by inducing commuters to choose the departure times and parking locations desired by the

social planner. Our numerical analysis of the Pittsburgh data indicates that these measures can

reduce the total system cost of the morning commute by 51%. In the long run, a social planner

can lower the total system cost further by adapting the infrastructure to the special needs and

characteristics of AVs. For example, since AVs have the ability to drop off their commuter at work

and park outside downtown, it may be beneficial to increase the number of curbside drop-off spaces

while reducing the number of parking spots downtown. For Pittsburgh, we find that converting

all downtown parking spots to curbside drop-off spots in the long run can lead to an additional

70% reduction in the total system cost of the morning commute. Even by converting only 10% of

the parking spots to curbside drop-off spots (which increases the drop-off capacity to the inbound

highway capacity) in Downtown Pittsburgh, we can achieve an almost 21% reduction. These results

suggest that major cities can benefit significantly from the mass adoption of AVs by adjusting their

short-term and long-term transportation and infrastructure policies.
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The rest of this paper is organized as follows. In §2.2, we review the related literature. Our

morning commute travel model is presented in §2.3. In §2.4 and §2.5, we analyze the UE and

the SO, respectively. In §2.6, we propose both short-term and long-term plans to reduce the total

system cost of the morning commute. We conclude in §2.7.

2.2 Related Literature

This work is related to two streams of research: smart city operations and transportation science.

Under the umbrella of the smart city operations literature, there are various studies on ride-sharing

(e.g., Benjaafar et al. (2018), He et al. (2018), Qi et al. (2018), and Bai et al. (2019)) and electric

vehicles (e.g., Mak et al. (2013), Lim et al. (2014), and Pelletier et al. (2016)). The role of AVs in

the future of transportation is a nascent part of the emerging literature on smart city operations. Qi

et al. (2020) study the potential of shared autonomous electric vehicles (SAEVs) for improving the

self-sufficiency and resilience of solar-powered urban microgrids. They show that even a moderate-

sized SAEV fleet can improve microgrid self-sufficiency, and microgrid resilience can be significantly

enhanced by SAEVs. As discussed by Mak (2020) and Hasija et al. (2020), AV technology is a

promising research direction in the smart city operations domain. We expand this evolving stream

of research by examining the effect of AVs on congestion and parking during the morning commute.

The early research in transportation science literature that studies the morning commute prob-

lem focuses on HVs. Morning commuters choose their departure times from home based on multiple

factors such as congestion, schedule delays, parking fees and availabilities. Vickrey (1969) considers

a finite group of commuters who decide on their departure time from home to their work places

downtown. He shows that there exists an equilibrium departure time pattern when all commuters

attempt to minimize their own travel costs. Arnott et al. (1991) extend Vickrey (1969) by examin-

ing commuters’ decisions on both departure times from home and parking locations. They consider

a combination of congestion tolls and parking fees to minimize the total system cost, and show that

the optimal departure rate from home must be equal to the capacity of the inbound highway. Xu

et al. (2019) study different flat congestion toll schemes that are easier to implement to reduce the

total system cost. The model of Arnott et al. (1991) is further extended by accounting for other

features such as joint morning and evening commute (e.g., Zhang et al. (2008)), multiple parking
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clusters downtown (e.g., Qian et al. (2011)), multiple residential areas (e.g., He et al. (2015)), and

positive search time to find an empty parking spot (e.g., Qian & Rajagopal (2014) and Qian &

Rajagopal (2015)). Our model also builds on the fundamental structure of Arnott et al. (1991)

while enriching it by capturing the specific characteristics of AVs, such as their ability to drop off

their commuters and park outside downtown without carrying passengers.

Recently, there are a few studies that incorporate AVs in the morning commute problem.

Nourinejad & Amirgholy (2018) consider the morning commute problem in which AVs can drive

to remote, but cheap, parking spots downtown. They show that AV owners depart home later and

park farther away from work than HV owners. Zhang et al. (2019) extend the model of Nourinejad

& Amirgholy (2018) to the joint morning and evening commute. Similar to our paper, Liu (2018)

considers the morning commute problem for commuters who use AVs. In his model, commuter

drop-offs happen without any delay, and all parking spots are distributed evenly along a line from

work outwards in the downtown area. Liu (2018) shows that under equilibrium commuters choose

the closest available parking spot to work. In addition, he shows that the number of commuters

who leave home per hour must be equal to the capacity of the inbound highway in a social optimum,

confirming the result of Arnott et al. (1991).

We contribute to this literature by examining the ability of AVs that can drop off commuters at

work and then self-park. To properly model this ability of AVs, different from the prior literature

reviewed above, we consider an external parking area (located outside downtown) for AVs, the

downtown congestion caused by AVs, and the capacity constraint at the drop-off location. Modeling

the external parking option is essential because this is one of the most important benefits of AVs

that helps reduce downtown parking demands. We show that the external parking area can be

the primary parking option chosen by commuters under equilibrium. This implies that ignoring

this additional parking option may result in an overestimation of commuter travel cost. However,

the extra trip of AVs to the external parking area can create more congestion downtown, so the

aggregate effect of the external parking option is not clear without a careful analysis. In addition,

our model captures the fact that the curbside space dedicated to commuter drop-offs is limited,

potentially causing delays during commuter drop-offs. Such delays are illustrated in a simulation

study by Overtoom et al. (2020). Different from the prior literature, in our social optimum solution,

the number of commuters who leave home per hour does not exceed the number of curbside drop-off
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spots (which is lower than the capacity of the inbound highway) to eliminate congestion at drop-off.

Finally, we offer insight into both short-term and long-term measures a social planner can implement

in anticipation of mass adoption of AVs. In short, our paper offers a unique perspective into the

future of smart cities by investigating the impact of AVs on parking and congestion downtown.

2.3 Model

We study the problem of N morning commuters who use AVs. All commuters go from home (H)

to work (W ) that is located downtown (D). Appendix A provides a table for the summary of our

notation.

Figure 2.1(a) depicts the travel route of AVs from H to W while they carry passengers. As

shown in this figure, the route from H to D is assumed to be a highway which has an inbound

bottleneck (I) with the capacity of RI vehicles per hour (where 0 < RI < ∞). This means that if

more than RI commuters arrive at this bottleneck per hour, these commuters experience a delay

on their way to W . As AVs arrive at D, they drop their commuters off at W . Due to limited

curbside space at W , at most RW (> 0) drop-offs per hour are possible. If more than RW AVs per

hour arrive at W to drop off their commuters, these commuters experience a drop-off delay.

After AVs drop off their commuters, they move from W to parking areas, as illustrated in

Figure 2.1(b). There are two parking areas available: central (Area 1) and external (Area 2). Area

1 consists of all downtown parking spots surrounding W , and Area 2 is a parking area located

outside D. The price of parking at Area j (∈ {1, 2}) is pj , and the capacity of Area j, Kj , is

defined as the number of parking spaces in this area. On the way out from W to Area 2, AVs move

in different directions, affecting the travel rate RD,2 of AVs in D and potentially causing delays.

We assume that AVs do not experience any congestion on the outbound highway from D to Area

2. This assumption is justified because the capacity of the outbound highway is comparable to that

of the inbound highway; but, due to congestion in I and D, the rate of AVs coming out of D to go

to Area 2 is lower than the rate of AVs entering D (which is at most equal to the capacity of I,

RI).

Every morning a commuter makes two decisions: departure time x (∈ [0, xmax]) from H (where

the latest departure time xmax is determined endogenously), and parking location j (∈ {1, 2}). The
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Figure 2.1: An illustration of the morning commute: (a) the passengered part of the trip, and (b)
the passengerless part of the trip.

departure rate of commuters from H at x is denoted by λH(x). Following the prior literature (e.g.,

Arnott et al. (1991), Qian et al. (2011), Qian & Rajagopal (2015), and Liu (2018)), the official start

time at work is denoted by T for all commuters. According to the U.S. Bureau of Labor Statistics

(2015), most workers in the U.S. are on the job between 8 a.m. and 5 p.m, so it is justified to

assume that the majority of companies start their workday at a specific time (e.g., 8 am).

As illustrated in Figure 2.1, travel time of AVs that leave H at time x is divided into: (1)

free-flow travel time, (2) delay in the inbound bottleneck, (3) delay caused by drop-off congestion

at W , and (4) delay caused by congestion within D. We elaborate on each of these travel times.

(1) Free-flow travel time: This is the travel time of vehicles when they are able to move freely

on segments of highways and roads without a capacity constraint. Specifically, the free-flow travel

time occurs on the following four segments: (i) between home H and inbound bottleneck I, (ii)

between inbound bottleneck I and the boundary of downtown D, (iii) between work W and Area

1, and (iv) between the boundary of D and Area 2. Free-flow travel time in each of these segments,

which has a fixed duration, is denoted respectively by tH,I , tI,D, tW,1, and tD,2. Since all commuters

experience tH,I and tI,D, without loss of generality, we normalize them to zero.

(2) Inbound queueing delay: If the rate of AVs that arrive to the inbound bottleneck exceeds

the capacity of this bottleneck, RI , these AVs experience a delay, which is called the inbound

queueing delay, τI(x).

(3) Drop-off congestion time at W : Before dropping off their commuters at W in D, AVs may
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experience delays due to the limited curbside space at W . We call this delay the drop-off congestion

time and denote it by τW (x).

(4) Congestion time in D: Immediately after dropping off commuters, AVs that head to Area

2 may experience delays in D. The downtown area D is a network of roads, where AVs move in

different directions as they exit D on their way to Area 2. These multi-directional traffic flows may

create congestion, and add to the travel time of AVs that go to Area 2. This is in accord with

the macroscopic fundamental diagrams of traffic flows in a region, which indicate that, as traffic

density in a region increases, the traffic flow in this region decreases and congestion forms (see

Geroliminis et al. (2007) for further details). The added travel time due to this congestion is called

the congestion time in D, denoted by τD,2(x).

Taken together, the total travel time of AVs that go to Area 1 is τI(x) + τW (x) + tW,1, and that

of AVs that go to Area 2 is τI(x) + τW (x) + τD,2(x) + tD,2. Let y denote the drop-off time at W

for a commuter who leaves H at time x; then,

y = x+ τI(x) + τW (x), (2.1)

where 0 ≤ y ≤ ymax = xmax + τI(xmax) + τW (xmax). For j ∈ {1, 2}, we let λj(y) represent the rate

of commuters in D who are dropped off at W at time y and choose Area j. Then the departure

rate of AVs from W to the parking areas is at most equal to either the departure rate λH(x) from

H when there is no congestion (τI(x) = τW (x) = 0 and y = x) or the drop-off rate RW ; i.e.,

λ1(y) + λ2(y) = min{λH(x), RW }. AVs that head to the parking areas from W form two separate

streams: one for the AVs headed to area 1 and the other one for the AVs headed to Area 2. We

denote the travel rate of AVs in D that head to Area j (∈ {1, 2}) as RD,j(y), and its sum as

RD(y) = RD,1(y) + RD,2(y) for y ∈ [0, ymax]. Due to congestion in D, RD(y) may be lower than

λ1(y) + λ2(y).

We make the following assumptions throughout the paper:

A1. Since Area 1 is located in D, it has a higher parking fee and a lower capacity than Area 2,

i.e., p1 > p2 and K2 > K1. Since there is an abundance of parking spaces in Area 2 (i.e.,

K2 ≫ N), the parking fee p2 of this area is normalized to zero. In addition, we assume

that the parking fee at Area 1, p1(x), is an increasing function of x (∈ [0, xmax]), because
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the commuters choose the cheapest parking spots available, so the parking fee goes up as a

commuter’s departure time from H increases, as cheaper spaces are taken.

A2. Once a commuter decides on her parking location, a parking spot is assigned to her AV. This

means that AVs that go to Area 1 are directly routed to their assigned parking spots without

any delay. In other words, the travel rate in D for AVs that are headed to Area 1, RD,1(y),

is equal to the departure rate of AVs from W to Area 1, i.e., λ1(y).

A3. The travel rate in D for AVs that drop off their commuters at W at time y, RD(y), is a

linear decreasing function of the number of AVs present in this area at time x, i.e., RD(y) =

M − θ
∫ y
0 [min{λH(z), RI , RW } − RD(z)]dz, where M and θ are positive constants. This

assumption is in line with the empirical evidence, presented in Daganzo (2007) and Geroliminis

et al. (2007), which shows that as the traffic density in an area increases, the flow decreases.

A4. The capacities of different segments on the way from H to parking areas decrease, i.e., RI >

RW > RD(y) for y ∈ [0, ymax]. If any of these inequalities does not hold, the congestion time

associated with that inequality disappears: when the inbound bottleneck capacity RI is lower

than the drop-off rate RW at W , there is no drop-off congestion. Similarly, if the drop-off

rate RW is lower than the exit rate RD(y), there is no congestion in D. Our analysis can be

easily extended to those simpler cases with no congestion.

A5. We model each segment on the way from H to the parking areas (inbound bottleneck, drop-

off area, and downtown) as a queue with deterministic time-varying arrival and service rates.

For example, the inbound bottleneck is a queue with arrival rate λH(x) for x ∈ [0, xmax] and

service rate RI vehicles per hour. As discussed in Kim & Whitt (2013), calculating the exact

wait time (i.e., congestion time in a segment) for each individual AV that arrives to that

segment is complex. Thus, we estimate the individual wait time of an AV that leaves H at

time x as the number of AVs that are present in the queue divided by the average throughput

of the queue. We divide by the average throughput because AVs that are present in the queue,

but have left H before time x, might leave the queue at different rates depending on their

arrival time to the queue. Specifically, the congestion time τI(x) that a commuter traversing

the I bottleneck at time x experiences is equal to
∫ x
0 [λH(u)−RI ]+du

(
∫ x
0 min{λH(u),RI}du)/x

. The numerator of
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this expression is the total number of AVs present in the bottleneck at time x, and the

denominator is the average departure rate from I between time zero and time x. Similarly,

we calculate the drop-off congestion time as τW (x) =
∫ x+τI (x)
0 [min{RI ,λH(u)}−RW ]+du∫ x+τI (x)

0 min{λH(u),RW }du/[x+τI(x)]
, and

congestion in D as τD,2(x) =
∫ x+τI (x)+τW (x)
0 [λ2(u)−RD,2(u)]+du∫ x+τI (x)+τW (x)

0 min{λ2(u),RD,2(u)}du/[x+τI(x)+τW (x)]
.3

Now that we have modeled the travel time of commuters, we next consider the costs associated

with their commutes. The cost that a commuter incurs consists of three elements: travel time

cost, work schedule penalty, and parking cost. First, the travel time cost is the sum of the cost

associated with the ‘passengered’ travel time and the cost associated with the ‘passengerless’ travel

time. The part of the morning commute during which AVs carry passengers includes inbound

queueing delay τI and drop-off congestion time τW , and the part of this trip during which AVs do

not carry passengers includes free-flow travel time tW,1 for AVs that choose Area 1, and free-flow

travel time tD,2 and congestion time in D, τD,2, for AVs that choose Area 2. Let α and α′ (where

α > α′ > 0) represent the monetary values of one unit of passengered travel time and one unit of

passengerless travel time, respectively. Both of these travel costs include the vehicle usage costs

(e.g., gas/electricity, depreciation, mileage, etc.), and the passengered travel cost also accounts for

the value of commuters’ time. The travel time cost is then equal to α[τI(x) + τW (x)] + α′tW,1 and

α[τI(x) + τW (x)] + α′[τD,2(x) + tD,2] for commuters who choose Area 1 and Area 2, respectively.

The second cost item is a work schedule penalty, which is a penalty that a commuter incurs

when she arrives before or after time T . Following the prior literature (e.g., Arnott et al. (1991),

Qian et al. (2011), and Liu (2018)), we define a work schedule penalty as the difference between

the actual arrival time, y = x+ τI(x) + τW (x), and the official start time at work, T . Let β and γ

represent the monetary cost of early and late start of work, respectively. Then, the work schedule

penalty for commuters who arrive at W early is equal to β(T − y), and that for commuters who

arrive late is equal to γ(y − T ). Finally, a commuter who leaves H at time x and chooses Area

1 pays parking fee p1(x), while a commuter who leaves H at time x and chooses Area 2 does not

incur a parking cost (see Assumption A1).

3For the drop-off congestion time τW (x), the numerator is the total number of AVs that are present at the drop-off
zone at time x+ τI(x) (which is the time when commuters who leave H at time x arrive at the drop-off zone in W ),
and the denominator of τW (x) is the average drop-off rate at time x + τI(x). For the congestion time τD,2(x) in
D, the numerator is the total number of AVs that are present in D and head to Area 2 at time x + τI(x) + τW (x)
(which is the time when AVs that leave H at time x and head to Area 2 drop off their commuters at W ), and the
denominator of τD,2(x) is the average travel rate in D at time x+ τI(x) + τW (x).
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Before defining the total cost of commuters, we state our final assumptions:

A6. The penalty of starting work early is lower than the monetary value of passengered travel

time, i.e., 0 < β < α. This is the standard assumption in the literature, and it is empirically

supported (e.g., Small (1982)). In addition, similar to Liu (2018), the marginal increase in the

parking fee is lower than the marginal decrease in the work schedule penalty, i.e., p′1(x) ≤ β (< α)

for x ∈ [0, xmax]. This means that a commuter prefers to arrive to work closer to time T , because

if she delays her arrival time at W by one unit of time, her marginal saving in the work schedule

penalty (β) is higher than her marginal increase in the cost of parking downtown (p′1(x)).

A7. No commuter intentionally decides to arrive late at work. In other words, the monetary

value of arriving late at work, γ, is so high that all commuters are dropped off at W before the

work start time T . In Appendix B.5, we show that our main results hold when this assumption is

relaxed.

Putting the three cost elements together, we can express the total cost of a commuter who

departs H at time x and chooses Area 1 or Area 2, respectively, as follows:

C1(x) = α[τI(x) + τW (x)] + β(T − y) + α′tW,1 + p1(x), (2.2)

C2(x) = α[τI(x) + τW (x)] + β(T − y) + α′[τD,2(x) + tD,2]. (2.3)

Lastly, we define the total system cost (also known as the social cost) as follows.

∫ xmax

0

λH(x){α[τI(x) + τW (x)] + β(T − y)}dx+

∫ ymax

0

λ1(y)α′t1,W + λ2(y)α′[t2,D + τ2,D(x)]dy. (2.4)

The cost in (2.4) consists of two terms: The first term is the sum of the passengered congestion

cost and the work schedule penalty for all commuters. The second term is the sum of the passen-

gerless congestion cost for all AVs that choose Area 1 (
∫ ymax
0 λ1(y)α′t1,Wdy) and the passengerless

congestion cost for all AVs that choose Area 2 (
∫ ymax
0 λ2(y)α′[t2,D + τ2,D(x)]dy). The total system

cost does not include the parking fee p1(x), because the parking fees paid by the commuters who go

to Area 1 cancel out the parking fees collected by the social planner. In other words, the parking

revenues collected by the social planner is considered as a part of social welfare, so it is not counted

towards the total system cost.

In our subsequent analyses, we illustrate our analytical results using the parameter values
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estimated from the Pittsburgh Metropolitan Area. We summarize our calibrated parameter values

in Table 1 while presenting details in Appendix B.2.

Table 2.1: Summary of the calibrated model parameters

Parameter Value Parameter Value Parameter Value
RI 4,600 vehicles per hour tW,1 2 minutes K1 10, 000 AVs
N 20, 000 commuters tD,2 15 minutes RW 3, 600 drop-offs per hour

p1(0) $1.80 α $4.50 per hour θ 1
p1(xmax) $16 α′ $2.25 per hour a 0.2
p1(x) 14.20x/xmax + 1.80 dollars β $3.90 per hour M 59.8

2.4 User Equilibrium Analysis

In this section, we present a user equilibrium (UE) in which individual commuters decide on their

departure times and parking locations to minimize their costs. We define a UE as an equilibrium

that satisfies the following two conditions:

Condition 1: C1(x) = C2(x) for any x ∈ [0, xmax] such that λ1(y) ̸= 0 and λ2(y) ̸= 0.

Condition 2: For each j ∈ {1, 2},
∂Cj(x)
∂x = 0 for any x ∈ [0, xmax] such that λj(y) ̸= 0.

Conditions 1 and 2 guarantee that all commuters incur the same total cost, regardless of their

choices of parking location and departure time, respectively. This means that, under a UE, no

commuter can unilaterally change her departure time and/or parking location to reduce her cost.

We next characterize the UE solutions. Proposition 2.1 indicates that there are two possible

forms of a UE: UE1 and UE2. We use the following additional notation to describe these equilibria:

xj and xj,max for j ∈ {1, 2} respectively denote the earliest and latest departure times of the

commuters who choose Area j, and yj is equal to xj + τI(xj) + τW (xj). Proofs are provided in

Appendix B.3.

Proposition 2.1. (a) [UE1] Suppose α′tD,2 ≤ α′tW,1+p1(0). There exists a UE which is presented

in Table 2.2, where A =
α(

∫ y
0 RW−aθeθzdz)2

(α−β)(
∫ y
0 RW−aθeθzdz)2−α′(

∫ y
0 aθe

θzdz)2+α′aθeyRW y2
RW , B = α−p′(x)

α−β RW , y1 =

x1 +α′[tD,2 + τD,2(x1)], C = aeθy +
yaeθy+

∫ y
0 aθe

θzdz

tW,1−tD,2+p1(x)/α′ −
[yp′1(x)/α

′]
∫ y
0 aθe

θzdz

[tW,1−tD,2+p1(x)/α′]2 , and x1 satisfies α′tW,1 +

p1(x1) = α′[tD,2 + τD,2(x1)].
(b) [UE2] Suppose α′tD,2 ≥ α′tW,1 + p1(0). There exists a UE which is presented in Table 2.3,

where D = aeθ(y−y2) +
(y−y2)aeθ(y−y2)+

∫ y−y2
0 aθeθzdz

tW,1−tD,2+p1(x)/α′ − p′1(x)[(y−y2)/α′]
∫ y−y2
0 aθeθzdz

[tW,1−tD,2+p1(x)/α′]2 .
Proposition 2.1 shows that there exist two different user equilibria: UE1 and UE2. In addition,

as presented in Table 2.2 and Table 2.3, depending on the capacity of Area 1, K1, UE1 can take
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Table 2.2: A characterization of UE1.

Condition λH(x) λ1(y) λ2(y)

(i) K1 ≥ N −RW y1 − a(eθ(N/RW−y1)

−1)[1 +
N/RW

tW,1−tD,2+p1(xmax)/α′ ]

A for 0 ≤ x ≤ x1
B for x1 ≤ x ≤ xmax

0 for 0 ≤ y ≤ y1
RW − C for y1 ≤ y ≤ ymax

RW for 0 ≤ y ≤ y1
C for y1 ≤ y ≤ ymax

(ii) K1 < N −RW y1 − a(eθ(N/RW−y1)

−1)[1 +
N/RW

tW,1−tD,2+p1(xmax)/α′ ]

A for 0 ≤ x < x1 or
x2 ≤ x ≤ xmax
B for x1 ≤ x < x2

0 for 0 ≤ y ≤ y1 or
y1,max ≤ y ≤ ymax
RW−C for y1 ≤ y ≤ y1,max

RW for 0 ≤ y ≤ y1 or
y1,max ≤ y ≤ ymax
C for y1 ≤ y ≤ y1,max

Table 2.3: A characterization of UE2.

Condition λH (x) λ1(y) λ2(y)

(i) K1 ≥ N − [
N/RW

tW,1−tD,2+p1(xmax)/α′

+1]a(e
θ( N

RW
−y2)

− 1)

B for 0 ≤ x ≤ xmax RW for 0 ≤ y ≤ y2
RW −D for y2 ≤ y ≤ ymax

0 for 0 ≤ y ≤ y2
D for y2 ≤ y ≤ ymax

(ii) K1 ≤ RW
α−β

[αp−1
1 (α′(tD,2 − tW,1))

−α′(tD,2 − tW,1) + p1(0)]

B for 0 ≤ x < x1,max
0 for x1,max ≤ x < x2
A for x2 ≤ x ≤ xmax

RW for 0 ≤ y ≤ y1,max
0 for y1,max < y ≤ ymax

0 for 0 ≤ y < y2
RW for y2 ≤ y ≤ ymax

(iii) [αp−1
1 (α′(tD,2 − tW,1)) − α′(tD,2 − tW,1)

+p1(0)](
RW
α−β

) < K1 < N − a(e
θ( N

RW
−y2)

−1)[
N/RW

tW,1−tD,2+p1(xmax)/α′ + 1]

B for 0 ≤ x < x2
A for x2 ≤ x ≤ xmax

RW for 0 ≤ y ≤ y2
RW −D for y2 ≤ y ≤ y1,max
0 for y1,max < y ≤ ymax

0 for 0 ≤ y ≤ y2
D for y2 ≤ y ≤ y1,max
RW for y1,max < y ≤ ymax

two different forms (i) and (ii), and UE2 can take three different forms (i) to (iii). In §2.4.1 and

§2.4.2 we provide an in-depth discussion of UE1 and UE2, respectively.

2.4.1 UE1

UE1 is observed under the condition that α′tD,2 ≤ α′tW,1 + p1(0). This condition compares the

cost associated with parking in Area 1 against that in Area 2. In determining which parking area

is cheaper, commuters face a trade-off between the proximity of the parking location to W and the

parking price. On the one hand, by parking in Area 1 that is closer to W , a commuter’s AV does

not go through the outbound highway to Area 2, nor does it experience any outbound congestion

in D, saving the outbound free-flow travel time, tD,2, and the congestion time in D, τD,2(x). On

the other hand, the commuter incurs the cost of traveling to Area 1 and a high parking fee p1(x).

Note that the cost associated with parking in one area entails not only its parking fee, but also the

cost of traveling to that area. Specifically, p1(x)+α′tW,1 is the cost associated with parking in Area

1 and α′[tD,2 + τD,2(x)] is that in Area 2. UE1 is attained when it is cheaper for commuters to park

in Area 2 at time zero (i.e., α′[tD,2 + τD,2(0)] = α′tD,2 ≤ α′tW,1 + p1(0)). As more commuters leave

H over time, congestion time τD,2(x) increases, and when τD,2(x) becomes significantly high (i.e.,

D becomes very congested), some commuters start to park in Area 1; i.e., λ1(y) = 0 for y ≤ y1

and λ1(y) > 0 for y > y1. In this respect, under UE1, Area 2 is the primary parking area chosen

by commuters and Area 1 is the auxiliary parking area.
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UE1 can take different forms depending on the capacity of Area 1, K1. Under UE1, all com-

muters who leave H early (i.e., x < x1) choose Area 2, but commuters who leave H late (i.e.,

x ≥ x1) may split between Area 2 and Area 1. In fact, if Area 1 has sufficient capacity (i.e., case

(i) in Table 2.2 where K1 ≥ N − a(eθN/RW − 1)[1 + N/RW
tW,1−tD,2+p1(xmax)/α′ ]), some late commuters

may choose this area. However, if Area 1 does not have enough capacity to accommodate all the

commuters who choose this area (i.e., case (ii) in Table 2.2), this area becomes full at time y1,max,

and the remaining commuters have no choice but going to Area 2. When we use the calibrated

model parameters presented in Table 2.1, we observe case (i) of UE1. In this case, the cost of

traveling to Area 1 is higher than that to Area 2, so even late commuters do not choose Area 1.

One may find this result rather surprising, but the observation of UE1 in our calibrated model is

robust to a wide range of parameter values (see Appendix B.4.1).

We next discuss the commuters’ decisions and offer insight into the departure pattern of com-

muters. Figures 2.2 and 2.3 depict commuters’ departure rates and costs under UE1 for our

calibrated model, respectively. Figure 2.2(a) illustrates that all commuters choose Area 2 over

Area 1, i.e., λ1(y) = 0 and λ2(y) = RW for 0 ≤ y ≤ ymax = 333 minutes. This is because, as de-

picted in Figure 2.2(b), at any time x ∈ [0, xmax = 75], the cost associated with parking in Area 1,

p1(x) +α′tW,1, is higher than that in Area 2, α′[τD,2(x) + tD,2]. This indicates that there is no need

to have a designated parking area in Downtown Pittsburgh. This could occur in many other cities

with a similar structure to Pittsburgh, where the downtown passengerless congestion cost is not as

high as the cost of downtown parking. In these cities, unless a new policy is developed to regulate

commuters’ decisions (e.g., the policies we analyze in §2.6), we may observe a significant downtown

land-use change (e.g., repurposing downtown parking spots to commercial and residential areas).

Figure 2.2(a) also illustrates that commuters prefer to leave H early (i.e., λH(x) decreases over

time). As depicted in Figure 2.3(a), all N = 20, 000 commuters leave H relatively early, i.e.,

x ∈ [0, 75]. However, due to the limited inbound highway and drop-off capacities, the cumulative

flow of commuters who arrive at W is much lower than the cumulative flow of commuters who leave

H. In addition, since the travel rate in D decreases, the cumulative flow of AVs that arrive at Area

2 becomes even lower, creating congestion downtown. This figure also depicts the congestion time

(inbound, drop-off, and downtown) that commuters who leave at any time x ∈ [0, 75] experience.

In particular, the inbound congestion time τI(x) is the horizontal distance from any point on
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Figure 2.2: An illustration of case (i) of UE1 in the calibrated model: (a) departure rates, and (b)
costs associated with parking in Areas 1 and 2.

Notes. In (a), λH(x) denotes the departure rate from H at time x, and λ1(y) and λ2(y) denote the departure rates
from W at time y to Areas 1 and 2, respectively. In (b), p1(x) + α′tW,1 represents the cost associated with parking
in Area 1, and α′[tD,2 + τD,2(x)] is that in Area 2.

the curve that represents the cumulative departure rate from H to the curve that represents the

cumulative departure rate from the inbound highway. The drop-off congestion time τW (x) and

the downtown congestion time τD,2(x) are illustrated similarly. The total congestion time together

with the work schedule penalty determines the commuters’ departure time decisions. The departure

time decision is not trivial for commuters. In fact, as depicted in Figure 2.3(b), when a commuter

decides on her departure time from H, she faces a trade-off between the work schedule penalty

and the congestion costs. If the commuter wants to arrive close to the official work start time T

(i.e., high values of x in this figure) to reduce her work schedule penalty, she might experience a

higher passengered congestion cost (which includes the inbound and drop-off congestion costs) and

passengerless congestion cost (which includes the cost of congestion in D). In fact, the choice of

commuters to park in a cheaper parking area, i.e., Area 2, not only causes extra congestion in D,

but also leads to an even higher congestion on the inbound bottleneck. To avoid these congestions,

most commuters leave early (i.e., low values of x in Figure 2.3(b)) at the risk of paying some work

schedule penalty.

The departure pattern from H in our model is different from the commuters’ departure pattern
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Figure 2.3: An illustration of case (i) of UE1 in the calibrated model: (a) cumulative flows, and
(b) different cost components commuters incur.

Notes. In (a),
∫ x
0
λH(u)du,

∫ x
0
RIdu,

∫ x+τI (x)
0

RW du, and
∫ y
0
RD,2(u)du represent cumulative departure rate from

H, cumulative departure rate from I, cumulative departure rate from W , and cumulative departure rate from D to
Area 2, respectively. In (b), the total cost C2(x) has three components: the work schedule penalty, which is equal to
β[T − x− τI(x)− τW (x)], the passengered congestion cost, which is equal to α[τI(x) + τW (x)], and the passengerless
congestion cost, which is equal to α′[tD,2 + τD,2(x)].

observed in previous studies. This is primarily because those studies overlooked congestion in D

caused by commuters who are traveling to parking areas. For example, Arnott et al. (1991) consider

the setting where commuters drive HVs, park their vehicles in Area 1, and walk to W . In their

model, the only trade-off that a commuter faces is between the amount of time the commuter

spends in congestion in I and her work schedule delay (which is affected by congestion time in

I). Hence, commuters randomly choose their departure time from H, creating a constant flow

out of the residential area H, i.e., λH(x) is constant. Similarly, Liu (2018) considers the setting

where an AV instantly drops off its commuter upon arrival to W and drives away to park in one

of the parking spots, which are evenly distributed along a line from W within D. Liu (2018)

shows that commuters fill up the parking spots close to W in the same order that they leave H.

The AV commuters in that model face a similar trade-off to the HV commuters in Arnott et al.

(1991) (because the cost of driving to an empty parking spot increases at a constant rate and can

be consolidated with the work schedule penalty), so the departure rate from H, λH(x), remains

constant. However, as discussed before, our model offers deeper insights into the parking decision

55



behavior of AVs, as we consider the effect of the rapidly growing congestion in D caused by AVs

that travel outside downtown to park.

Finally, we examine the effect of AVs on the morning commute by comparing our results with a

morning commute model for HVs. In this model, commuters drive HVs, park in Area 1, and walk

to W . These commuters do not experience any drop-off congestion at W (because HVs do not have

the ability to drop off their commuters and self-drive to Area 1 or 2), nor do they have the option

to park outside downtown (because the walking time to W is prohibitively high). However, they

might cause and experience some congestion as they drive around downtown to find empty parking

spots; also known as the parking cruising congestion time. To have a fair comparison between the

HV case and the AV case, we also allow AV commuters in our model to drive to Area 1, park

their AVs and walk to W . We next summarize our main findings for the calibrated model while

providing details in Appendix B.4.5. First, AVs reduce the travel cost of a commuter from $22.61

in the HV case to $22.23, but their resultant total system cost increases from $283, 243 in the HV

case to $444, 600. This is because the AV commuters experience drop-off congestion and downtown

congestion, so they incur high congestion costs, which increase the total system cost substantially;

in contrast, HV commuters park downtown and incur higher parking fees that are not included in

the total system cost. Second, due to limited drop-off curbside space, AVs extend the duration of

the morning commute (i.e., the time period between when the first group of commuters leave H

until the time that last group of commuters arrive at W ) from 298 minutes in the HV case to 333

(= ymax) minutes. In addition, AVs change the travel pattern from H to W . Whereas in the HV

case commuters leave H over a span of 254 minutes, in our model commuters’ departure window

is 75 (=xmax) minutes (see Figure 2.2(a)). This means that AV commuters cause a sudden jam

in the inbound bottleneck early on, but HV commuters gradually increase the inbound congestion.

As a result, the total vehicle hours traveled (VHT) of AVs (54, 875 hours) is much longer than that

of HVs (5, 571 hours). AVs also cause a higher vehicle miles traveled (VMT) than HVs, because all

AVs travel to Area 2 which is farther than Area 1 from W . Therefore, for cities where the parking

fee of the central area outweighs the cost of travel to the external parking area, the adoption of

AVs is beneficial for individual commuters, but it does not necessarily lower the total system cost.

Therefore, it is essential for city planners to make policies on parking demand and infrastructure

that influence commuters’ decisions and reduce the total system cost, as we discuss later in §2.6.
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Figure 2.4: An illustration of case (i) of UE2: (a) departure rates, and (b) costs associated with
parking in Areas 1 and 2.

Notes. In (a), λH(x) denotes the departure rate from H at time x, and λ1(y) and λ2(y) denote the departure rates
from W at time y to Areas 1 and 2, respectively. In (b), p1(x) + α′tW,1 represents the cost associated with parking
in Area 1, and α′[tD,2 + τD,2(x)] is that in Area 2. In this numerical example, we use the same parameter values as
in Table 2.1, except for the Area 1 parking fee p1(x), travel time to Area 2, tD,2, and the capacity of Area 1, K1 (see
Appendix B.4.2 for more details).

2.4.2 UE2

UE2 is observed under the condition that α′tD,2 > α′tW,1 + p1(0). This condition indicates that

commuters choose to park in Area 1 at time zero, since at time zero the cost of parking in Area 2

(i.e., α′[tD,2+τD,2(0)] = α′tD,2) is higher than that in Area 1 (i.e., α′tW,1+p1(0)). As the departure

time x from H approaches the ideal start time at work, T , the parking fee p1(x) increases, and when

p1(x) becomes significantly high, some commuters park in Area 2; i.e., λ1(y) = RW and λ2(y) = 0

for y ≤ y2, and λ1(y), λ2(y) > 0 for y > y2. Thus, Area 1 is the primary parking area chosen by

commuters and Area 2 is the auxiliary parking area. Cities with small downtown areas that have

relatively cheap parking fees and high passengerless travel costs may observe UE2.

Under UE2, Area 1 and Area 2 are chosen by commuters in the reverse order of that under UE1.

In other words, all commuters who leave H early (i.e., x < x2) choose Area 1, but commuters who

leave H late (i.e., x ≥ x2) split between Area 1 and Area 2. UE2 can take different forms depending

on the capacity of Area 1, K1. In particular, if Area 1 has enough capacity to accommodate
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all commuters who choose this area (i.e., case (i) in Table 2.3), this area is chosen during the

entire duration of the morning commute, while Area 2 may also be chosen simultaneously by some

commuters. Figure 2.4(a) illustrates the auxiliary role of Area 2 under case (i) of UE2 using a

numerical example. In this example, as Figure 2.4(b) shows, for a short period of time x ∈ [0, 2],

Area 1’s low parking fee p1(x) leads to a slightly lower cost of choosing Area 1, i.e., α′tW,1 + p1(x),

than that of Area 2, i.e., α′tD,2, so all commuters who leave H before x2 = 2 minutes choose Area

1. Note that as long as Area 2 is not chosen by any commuters, there is no downtown congestion,

i.e., τD,2(x) = 0 for x ≤ 2. At x2 = 2 minutes, due to the increased parking fee for Area 1, the

cost of going to Area 2 becomes equal to the cost of going to Area 1, and some commuters start to

go to Area 2. This results in λ2(y) becoming positive at y2 = 5 minutes, which is the time when

commuters who leave H at x2 = 2 minutes are dropped off at W , i.e., y2 = x2 + τI(x2) + τW (x2).

When x > x2 = 2 minutes, the cost of going to Area 2 remains equal to the cost of going to Area

1, so both Area 1 and Area 2 continue to be chosen by commuters. Figure 2.4(a) also illustrates

that λH(x) = 132.4 commuters per minute is constant, which is different from what we observed

in Figure 2.2. Unlike UE1, in this case having Area 1 as the primary parking area chosen by

commuters prevents the congestion level in D from growing exponentially, so commuters can leave

H evenly during a longer period of time than what we observed in Figure 2.2. This departure

behavior of commuters prevents the creation of a substantial level of congestion on the inbound

highway early in the morning.

We also compare this numerical example of UE2 with an analogous numerical example for the

case when all commuters use HVs. As in §2.4.1, in the HV case, commuters park in Area 1 and

walk from this area to W . In this case the departure window from H is equal to 316 minutes, which

is longer than the departure window of 152 minutes in the AV case. In fact, unlike UE1 in our

calibrated model, AVs not only reduce the duration of the morning commute, but also reduce the

total system cost from $518, 351 in the HV numerical example to $171, 054. This happens because

AVs primarily choose Area 1, so having the option to park in Area 2, which is an additional option

available only to AVs, lowers the total system cost. Therefore, for cities where downtown parking

fees are low and/or Area 2 is located relatively far from downtown, the adoption of AVs is beneficial

and reduces the cost of the morning commute.

There exist two other cases of UE2 based on Area 1’s parking capacity K1. Similar to case (i),
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in these two cases, early commuters choose Area 1, but due to the limited capacity of Area 1, when

this area becomes full, all remaining commuters have to go to Area 2. In particular, in case (ii)

shown in Table 2.3, Area 1’s capacity is so low that commuters who wish to find a spot in Area 1

must leave H earlier than they would have if Area 1’s capacity was as high as that in case (i). Once

Area 1 reaches its full capacity at x1,max, no commuter leaves H until time x2. This is because the

remaining commuters have to go to Area 2, which has abundant capacity, so there is no need to

rush. In case (iii) shown in Table 2.3, Area 1 has a moderate capacity. In this case, commuters do

not need to leave as early as they do in case (ii), but when Area 1 becomes full, all the remaining

commuters must go to Area 2. Further discussion of these cases is provided in Appendix B.4.2.

2.5 Social Optimum

We analyze the case in which a social planner dictates the departure rates from H, i.e., λH(x) for

x ∈ [0, xmax], and the departure rates of AVs from W to Areas 1 and 2, i.e., λj(y) for y ∈ [0, ymax]

and j ∈ {1, 2}, that minimize the total system cost in (2.4). This is different from the UE, under

which the goal of a commuter is to minimize her own travel cost regardless of how her decision affects

other commuters. As mentioned in §2.4, commuters’ decisions under UE may cause congestion,

hence increasing the total system cost. This is not a desirable social outcome, so we find the socially

optimum (SO) that minimizes the total system cost. We can state this problem as follows:

min
λH(x),λ1(y),λ2(y)

∫ xmax

0

λH(x){α[τI(x) + τW (x)] + β(T − y)}dx+

∫ ymax

0

λ1(y)α′t1,W + λ2(y)α′[t2,D + τ2,D(x)]dy

subject to: y = x+ τI(x) + τW (x) (2.5)

λ1(y) + λ2(y) = min{λH(x), RW }

0 ≤ λH(x) ≤ N

0 ≤ λ1(y), λ2(y).

In the following proposition, we describe the values of λH(x), λ1(y) and λ2(y) that minimize

the total system cost in (2.5) and satisfy the four constraints.4 Proposition 2.2 demonstrates that

4The first constraint describes the relationship between the departure time x from H and the departure time y
from W , as presented earlier in (2.1). The second constraint states that the number of AVs that travel from W to
the parking areas at time y, i.e., λ1(y) + λ2(y), is equal to the number of AVs that drop off their commuters at time
y, min{λH(x), RW }. The third constraint guarantees that the departure rate λH(x) from H is positive and it does
not exceed the total number N of commuters. The last constraint guarantees non-negative λ1(y) and λ2(y).
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there are two forms of SOs: SO1 and SO2. Let xD denote the earliest departure time from H for

commuters who go to Area 2 and experience downtown congestion.

Proposition 2.2. (a) [SO1] Suppose tD,2 ≥ tW,1. There exists an SO which is presented in Table

2.4, where y2 = x2 = K1/RW , xD satisfies βaxD(RW −a)/RW +βa2K1/R
2
W −α′(RW −a)τD,2(T −

xD) = 0, ymax = xmax = T = N
RW

for cases (i), and ymax = xmax = T = N+a(xD−x2)
RW

for case (ii).

Table 2.4: A characterization of SO1.

Condition λH(x) λ1(y) λ2(y)
(i) K1 ≥ N RW for 0 ≤ x ≤ xmax RW for 0 ≤ y ≤ ymax 0 for 0 ≤ y ≤ ymax
(ii) K1 < N RW for 0 ≤ x < x2 and xD ≤ x ≤ xmax

RW − a for x2 ≤ x ≤ xD

RW for 0 ≤ y < y2
0 for y2 ≤ y ≤ ymax

0 for 0 ≤ y < y2
RW − a for y2 ≤ y < yD
RW for yD ≤ y ≤ ymax

(b) [SO2] Suppose tD,2 < tW,1. There exists an SO which is presented in Table 2.5, where

xD = yD = α′RW
aβ τD,2(min{y1, T − xD − y2⌊T−xDy2

⌋}), y1 = τ−1
D (tW,1 − tD,2), y2 = y1 + tW,1 − tD,2,

y1,max satisfies K1/RW = y1,max − y1(
N−(RW−a)xD

RW y2
+ 1), ymax = xmax = T = N+axD

RW
, and

n = 0, 1, · · · , ⌊N−(RW−a)xD
RW y2

⌋.5

Table 2.5: A characterization of SO2.

Condition λH(x) λ1(y) λ2(y)

(i) K1 ≥ (
N−(RW−a)xD

RW y2
+1)y1RW

RW − a for 0 ≤ x < xD
RW for xD ≤ x ≤ xmax

0 for ny2 ≤ y ≤
min{yD + ny2 + y1, ymax}
RW otherwise

RW for ny2 ≤ y ≤ min{yD +
ny2 + y1, ymax}
0 otherwise

(ii) K1 < (
N−(RW−a)xD

RW y2
+1)y1RW

RW − a for 0 ≤ x < xD
RW for xD ≤ x ≤ xmax

0 for ny2 ≤ y < yD + ny2 + y1
and yD + y1,max ≤ y ≤ ymax
RW otherwise

RW for ny2 ≤ y < yD+ny2+y1
and yD + y1,max ≤ y ≤ ymax
0 otherwise

Proposition 2.2 states that, depending on the locations of Areas 1 and 2, the social planner’s

decision on commuters’ departure times and parking locations follows either SO1 or SO2. In

addition, depending on the capacity of Area 1, K1, there exist two forms (i) and (ii) that each of

SO1 and SO2 takes. In §2.5.1 and §2.5.2 we discuss when SO1 and SO2 are attained, respectively.

2.5.1 SO1

SO1 is observed when the travel time from D to Area 2 is longer than that from W to Area 1, i.e,

tD,2 ≥ tW,1. In this case, regardless of the congestion cost in D, the cost of routing a commuter

to Area 1 (α′tW,1) is lower than that to Area 2 (α′[tD,2 + τD,2(x)]), so the social planner routes

AVs to Area 1 as long as this area is not full, and to Area 2 afterwards. SO1 takes two different

5The parameter n counts the number of switches from routing AVs to Area 2 to routing them to Area 1.
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forms depending on the capacity K1 of Area 1. When Area 1 can accommodate all commuters (i.e.,

case (i) where K1 ≥ N), the social planner routes all commuters to this area, i.e., λ1(y) = RW

and λ2(y) = 0. In this case, the social planner sets the rate at which commuters leave H, λH(x),

equal to the drop-off rate at W , RW , to eliminate the passengered congestion (which consists of

the inbound and drop-off congestions). The drop-off rate at W determines the departure rate

from H because, when all commuters are routed to Area 1, the drop-off space becomes the most

downstream bottleneck that AVs go through. This means that the focus of the social planner

should shift from creating parking spaces downtown to creating drop-off curbside spaces. When

Area 1 does not have enough capacity (i.e., case (ii) where K1 < N), as this area becomes full at

time y2, the remaining commuters must go to Area 2. In our calibrated model with the parameter

values presented in Table 2.1, we observe case (ii) of SO1, as it satisfies the two conditions for this

case: tD,2 = 15 > 2 = tW,1 and K1 = 10, 000 < 20, 000 = N . In Appendix B.4.3, we show that the

observation of case (ii) of SO1 is robust over a wide range of model parameters.

Figure 2.5 illustrates the SO departure rates for our calibrated model. When 0 ≤ x < x2 =

y2 = 167 minutes, all commuters are routed to Area 1, and the departure rate from H is equal

to the drop-off capacity, i.e., λH(x) = λ1(y) = 60 AVs per minute for x = y ∈ [0, 167).6 At

y2 = 167 minutes, all 10, 000 parking spots in Area 1 are filled, and the social planner must route

the remaining 10, 000 commuters to Area 2. These AVs might create congestion in D, so the

social planner may set the departure rate from home, λH(x), to either the travel rate of AVs in

D, RD,2(y), or the drop-off capacity RW . The former option has a higher aggregate work schedule

penalty than the latter (because, by Assumption A4, RD,2(y) is less than or equal to RW ), but it

has no passengerless congestion cost (because the rate of AVs that depart H becomes equal to the

the number of AVs that can travel in D, RD,2(y) = RW − a = 60 − 0.2 = 59.8 AVs per minute).7

To balance the congestion cost in D and the work schedule penalty, the social planner first sets the

departure rate from H equal to the travel rate in D, i.e., λH(x) = λ2(y) = RD,2(y) = 59.8 AVs per

minute for x = y ∈ [x2 = 167, xD = 215) minutes, and then increases it to the drop-off capacity

as the ideal start time at work, T , approaches; i.e., λH(x) = λ2(y) = RW = 60 AVs per minute

6Given that the passengered congestion time, τI(x) + τW (x), is eliminated under SO, the drop-off time at W ,
y = x + τI(x) + τW (x), is the same as the departure time x from H. Note that this is due to our (innocuous)
assumption of normalizing the free-flow travel time on the inbound highway to zero.

7Note that when there is no congestion in D, the travel rate RD,2(y) does not decrease from its maximum value
of RW − a.
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Figure 2.5: An illustration of SO1 in the calibrated model: (a) departure rate from H, and (b)
departure rates from W to Area 1 and Area 2.

Notes. In (a), λH(x) denotes the departure rate from H. In (b), λ1(y) and λ2(y) denote the departure rates from W
to Area 1 and Area 2, respectively.

for x = y ≥ xD = 215 minutes. As such, only AVs that leave home late incur a passengerless

congestion cost.

The SO pattern observed in Figure 2.5 is different from the UE pattern depicted in Figure

2.2(a). In fact, the daily total system cost under SO ($218, 728) is less than half of that under

UE ($444, 600). This discrepancy stems from high passengered congestion time and passengerless

travel time under UE. Under SO, the departure rate from H is at most equal to the drop-off rate,

i.e., λH(x) ≤ RW = 60 commuters per minute, and commuters do not experience any passengered

congestion. In contrast, under UE, the departure rate λH(x) from H is always higher than the drop-

off rate RW = 60 commuters per minute, so all commuters incur a positive passengered congestion

cost (see Figure 2.3(b)). In addition, the passengerless travel time is longer under UE than under

SO, because under UE the high parking fee at Area 1 deters the commuters from choosing this

area even though it is closer than Area 2. The total system cost can be reduced even more, if

Area 2 becomes closer to D. In Appendix B.4.4 we discuss an alternative location for Area 2 in

Pittsburgh.

Finally, we compare SO1 with SO in the model discussed in §2.4.1 where all commuters drive

HVs. We observe that AVs have three major impacts on the morning commute: (1) reducing the
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total system cost, (2) changing the order at which parking areas are occupied, and (3) extending the

morning commute time window. First, AVs reduce the total system cost from $252, 905 in the HV

case to $218, 728 in SO1 (see Appendix B.4.5 for detail), because they do not experience downtown

parking cruising congestion. Second, AVs change the order at which parking areas fill up from

inwards to outwards: HVs fill parking spots from the farthest (which are also the cheapest) parking

area towards W , but AVs fill Area 1 (which is the closest parking area to W ) before Area 2. This

discrepancy directly stems from the ability of AVs to drop off commuters at W before self-parking.

In the HV case, the social planner prefers commuters to walk a longer distance from where they

park to W to reduce the work schedule penalty. But AVs can drop off their commuters before they

park, so their parking location has no impact on the work schedule penalty. Therefore, it is better

for AVs to choose the closest parking area to reduce the commute cost. Lastly, the duration of

the morning commute is longer in SO1 than that in the HV case. As mentioned before, the social

planner aims to remove congestion by setting the departure rate from H equal to the capacity of

the most downstream bottleneck, which is the inbound bottleneck for HVs. This departure rate

is higher than the drop-off capacity in our model (since RW ≤ RI by Assumption A4), resulting

in an expansion of the morning commute duration. This shows that the ability of AVs to drop

off commuters at W does not necessarily lead to earlier arrival of commuters at W , as long as the

curbside space in D is limited.

2.5.2 SO2

SO2 is observed in cities with large downtown areas where the travel time fromD to Area 2 is shorter

than that from W to Area 1, i.e, tD,2 < tW,1. SO2 takes two forms depending on the capacity of Area

1, K1. When Area 1 has enough capacity for all AVs that are routed to this area (i.e., case (i) where

K1 ≥ (N−(RW−a)xD
RW y2

+1)y1RW ), the social planner alternately routes AVs to Area 2 and Area 1. We

illustrate this case using the same numerical example used in §2.4.2, except that tW,1 = 15 minutes.

In this example, tD,2 = 5 < 15 = tW,1 and K1 = 10, 000 > N − (⌊ N
y2RW

⌋+ 1)y1RW = 1, 280. Figure

2.6(a) and Figure 2.6(b) depict the departure rates from W to Area 1 and Area 2, respectively.

The social planner wants to reduce the downtown congestion cost without increasing the duration

of the morning commute substantially. As such, when x ≤ xD = 54 minutes, the social planner

eliminates the downtown congestion by setting the departure rate from H equal to the travel rate
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in D, i.e., λH(x) = RD,2(y) = RW − a = 60 − 2 = 58 AVs per minute for x ∈ [0, 54], and routes all

AVs to Area 2 (because the travel time from W to Area 2, i.e., tD,2 + τD,2(x) = tD,2, is lower than

that from W to area 1, i.e., tW,1). During this period of time, there is no downtown congestion,

but the work schedule penalty is high due to the low departure rate of AVs from H. Hence,

at time xD = 54 minutes, to reduce the commuters’ work schedule penalty, the social planner

increases the departure rate from H to the drop-off capacity RW = 60 commuters per minute

(which creates downtown congestion because RW ≥ RD,2(y) by Assumption A4), and routes AVs

to Area 2 until the downtown congestion becomes so high that the cost of routing commuters to

Area 1 becomes lower than that to Area 2, i.e., α′tW,1 ≤ α′[tD,2 + τD,2(x)]; at that point, the social

planner routes AVs to Area 1. When the downtown congestion is reduced, the social planner routes

AVs to Area 2 again. This cycle of alternately routing AVs to Area 2 and Area 1 continues until

all 20, 000 AVs are assigned to the parking locations. This is shown in Figure 2.6, where λ1(y) = 0

and λ2(y) = RW = 60 AVs per minute for y ∈ [54, 158], y ∈ [168, 272] and y ∈ [282, 336], and

λ1(y) = RW = 60 AVs per minute and λ2(y) = 0 for y ∈ [158, 168] and y ∈ [272, 282]. So the

social planner uses Area 1 as a mitigator for the downtown congestion by routinely taking a break

from routing AVs to Area 2 and allowing the downtown congestion to dissolve completely. This is

a different approach than what commuters do under UE: when the downtown congestion becomes

high, although some commuters choose Area 1, there can still be commuters who choose Area 2.

These commuters, who prefer experiencing downtown congestion to paying a high parking fee in

Area 1, cause the downtown congestion to continue to grow (although at a slower rate, because

some commuters go to Area 1).

As in SO1, if all commuter use HVs, then the departure rate from H increases from at most

RW = 60 to RI = 76.77 commuters per minute. This high departure rate form H shortens the

window of the morning commute for HVs. However, in our case, since the downtown congestion

level stays low and there is no parking cruising congestion, AVs decrease the total system cost from

$311, 749 in the HV case to $224, 608 in our model.

When Area 1 does not have enough capacity (i.e., case (ii) in Table 2.5), the social planner

routes the remaining AVs to Area 2 as Area 1 becomes full at time y1,max, i.e., λ1(y) = 0 and

λ2(y) = RW for y ≥ y1,max. In this case, the earliest time when congestion forms downtown, xD,

is higher than that in case (i), because downtown congestion grows inevitably after y1,max, so the
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Figure 2.6: An illustration of SO2: (a) departure rate from W to Area 1, and (b) departure rate
from W to Area 2.

social planner sends more AVs to Area 2 (i.e., increases xD) when there is no downtown congestion.

2.6 Reducing the Total System Cost of the Morning Commute

As discussed in §2.5, commuters’ decisions under UE are different from SO. In this section, we

examine solutions that the social planner may adopt in order to close the gap between the total

system cost under UE and that under SO: a short-term solution of regulating parking fees and con-

gestion tolls in §2.6.1 and a long-term solution of adjusting parking and curbside drop-off capacities

in §2.6.2.

2.6.1 Pricing and Tolling Schemes

To reduce the total system cost, the social planner can use two levers that are commonly used in

practice (Federal Highway Administration 2020): parking fees and congestion tolls. We consider

a dynamic parking pricing scheme that enables the social planner to regulate Area 1’s parking fee

p1(x) based on departure time x.8 A tolling scheme π2(x), which can be interpreted as a road usage

8Recall that commuters decide on their parking location when they leave their homes. However, by (2.1), the
departure time from H uniquely determines drop-off time, so Area 1’s parking fee also depends on the drop-off time
y.

65



charge, is imposed on commuters who choose Area 2 based on their departure time x to balance

congestion in D. Proposition 2.3 describes these pricing and tolling schemes.

Proposition 2.3. (a) Suppose t2,D ≥ t1,W . Under equilibrium, λH(x), λ1(y) and λ2(y) follow

those in Table 2.4, when p1(x) and π2(x) for 0 ≤ x ≤ xmax are as presented in Table 2.6, where

ϵ1(x) · ϵ2(x) = 0, ϵ1(x) = α′(tD,2 − tW,1) for x2 ≤ x, and ϵ2(x) = α′(tD,2 − tW,1) for x ≤ x2.

Table 2.6: A characterization of parking pricing and congestion tolling schemes for SO1

Case p1(x) π2(x)
(i) βx for 0 ≤ x ≤ xmax βx− α′(tD,2 − tW,1) + ϵ2(x) for 0 ≤ x ≤ xmax
(ii) βx+max{α′[tD,2−tW,1+τD,2(xmax)]

−βT, α′(tD,2 − tW,1)− βx2, 0}+ ϵ1(x)
for 0 ≤ x ≤ xmax

βx+max{−βx2, α′τD,2(xmax)− βT, α′(tW,1 − tD,2)}+ ϵ2(x) for x < xD
βx−α′τD,2(x)+max{−βx2, α′τD,2(xmax)−βT, α′(tW,1− tD,2)} for x ≥ xD

(b) Suppose t2,D < t1,W . Under equilibrium, λH(x), λ1(y) and λ2(y) follow those in Table 2.5,

when p1(x) and π2(x) for 0 ≤ x ≤ xmax are as presented in Table 2.7, where ϵ1(x) = α′(tW,1− tD,2)

and ϵ2(x) = 0 for nx2 ≤ x < min{xD+nx2+x1, xmax} in case (i) and for nx2 ≤ x < xD+nx2+x1

and xD + x1,max ≤ x ≤ xmax in case (ii), and ϵ1(x) = 0 and ϵ2(x) = α′(tW,1 − tD,2) otherwise.

Table 2.7: A characterization of parking pricing and congestion tolling schemes for SO2

Case p1(x) π2(x)
(i) and (ii) βx+max{−α′(tW,1−tD,2),−β(xD+x1)}+ϵ1(x)

for 0 ≤ x ≤ xmax

βx+max{α′(tW,1−tD,2)−β(xD+x1), 0}+ϵ2(x) for x < xD
βx−α′τD,2(x)+max{α′(tW,1−tD,2)−β(xD+x1), 0}+ϵ2(x)
for x ≥ xD

Proposition 2.3 indicates that there exist a parking fee scheme p1(x) and a congestion toll

scheme π2(x) such that the SO presented in Proposition 2.2 results in the same travel cost for

all commuters regardless of their departure time or their parking location. In other words, when

these parking fees and congestion tolls are imposed, UE matches SO. This short-term solution is

particularly important to the social planner, as it enables them to influence commuters’ decisions

and reduce the aggregate congestion and travel costs of the morning commute. Table 2.6 provides

the two forms (i) and (ii) of the pricing and tolling schemes associated with the two forms (i) and

(ii) of SO1, respectively. Similarly, Table 2.7 corresponds to SO2. We first discuss Table 2.6, which

pertains to our calibrated model, and then Table 2.7 using the numerical example of SO2 discussed

in §2.5.2.

For our calibrated model, Figure 2.7(a) illustrates the optimal parking fees and congestion

tolls, presented in case (ii) of Table 2.6. Under these schemes, the total system cost of the morning

commute in Pittsburgh is reduced by 51% (which amounts to $56.5 million in annual savings) as
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compared to that under UE. When these parking fees and congestion tolls are imposed during

the morning commute window, commuters’ decisions on both departure time and parking location

under UE follow those of SO1 depicted in Figure 2.5 rather than those in Figure 2.2(a). Specifically;

• To guarantee that the commuters’ departure rate from H follows the SO pattern, for x ≤ x2 = 167

minutes, all commuters incur the same passengered and passengerless travel costs, but not the same

work schedule penalty (which is equal to β(T − x) for a group of commuters who leave at time x).

Hence, the social planner sets Area 1’s parking fee p1(x) equal to βx to ensure equal travel costs

for all, i.e., β(T −x) +βx = βT . As the work schedule penalty linearly decreases in departure time

x, the parking fee linearly increases, so all commuters who follow SO incur the same total travel

cost. For x > x2 = 167 minutes, the social planner needs to set the congestion toll π2(x) such that

it not only leads to the same work schedule penalty for all commuters, but also assures the same

passengerless travel cost for the commuters who go to Area 2 (i.e., α′(tW,1 − tD,2)). In addition,

for x > xD = 215 minutes, the social planner reduces the congestion toll π2(x) by α′τD,2(x), so it

accounts for the extra congestion costs these commuters incur in D. This congestion toll scheme

again leads to the same travel cost for all commuters. Thus, no commuter has an incentive to

unilaterally deviate from this equilibrium, and the departure rate from H is the same as that in

Figure 2.5.

• To guarantee that commuters abide by the social planner’s parking location decisions, for com-

muters who leave H before x2 = 167 minutes, the social planner sets the congestion toll π2(x) equal

to the parking fee p1(x). Given that Area 1 is closer than Area 2, i.e., tD,2 ≥ tW,1, this congestion

toll induces commuters to choose Area 1. For commuters who leave after x2, the social planner

increases Area 1’s parking fee by a positive factor equal to α′(tD,2− tW,1) to discourage commuters

from choosing this area.9

Proposition 3 states that the social planner needs to adopt both dynamic parking fee and

congestion toll schemes simultaneously in order to induce commuters to follow SO. One natural

question is what happens if the social planner can impose one but not both. To address this

question, we consider two benchmarks. We present the summary of our findings while presenting

detail in Appendix B.4.6. First, we consider a benchmark when the social planner adjusts the

9The pricing and tolling schemes for case (i) of SO1 follow a similar logic. In particular, since Area 1 has enough
capacity for all AVs in case (i) (i.e., K1 > N), the parking pricing and congestion tolling schemes for case (i) is similar
to those for case (ii) when Area 1 is chosen (i.e., x ≤ x2).
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Figure 2.7: An illustration of parking fee scheme and congestion toll scheme for: (a) SO1, and (b)
SO2.

downtown parking fee, but does not impose a congestion toll. In this case, since Area 1 is closer

than Area 2, the social planner sets the parking fee such that commuters choose Area 1 as their

preferred choice. This new parking pricing scheme leads to the same parking location decisions as

those under SO, but the commuters’ departure times do not match those under SO. In this case,

the total system cost is reduced by 3% from $444, 600 under UE to $432, 654. Second, we consider

a benchmark when the social planner does not adjust the parking fee, but imposes a congestion

toll to persuade the commuters to choose Area 1. In particular, this congestion toll (which is a

flat toll of $3.50 for our calibrated model) is set in a way that the cost associated with choosing

Area 1 is lower than the cost of choosing Area 2 as long as Area 1 is not full. Similar to the

first benchmark, commuters’ departure times from H do not follow those under SO, but the total

system cost is reduced by 6% from $444, 600 under UE to $416, 076. These two benchmarks reveal

the importance of adopting both dynamic parking fee and congestion toll schemes, which lead to

substantially higher savings with a 51% reduction in the total system cost.

Lastly, we discuss the pricing and congestion tolling schemes, illustrated in Figure 2.7(b), that

induce commuters to follow case (i) of SO2 for the numerical example discussed in §2.5.2. Similar

to Figure 2.7(a), the parking fees and congestion tolls are set such that all commuters incur the

same work schedule penalty. During the cycles in which Area 2 is chosen, the congestion toll π2(x)

is reduced by α′τD,2(x) to account for the extra congestion cost in D. In addition, during the cycles
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in which Area 1 (resp., Area 2) is chosen, the amount of α′(tW,1 − tD,2) is added to the congestion

toll π2(x) (resp., parking fee p1(x)) to deter commuters from choosing Area 2 (resp., Area 1). Using

these parking pricing and congestion tolling schemes, the social planner can reduce the total system

cost by 49% from $437, 150 under UE to $224, 608.10

2.6.2 Improving the Infrastructure

Although parking pricing and congestion tolling are practical tools for reducing the cost of the

morning commute, the social planner should also explore a long-term sustainable plan to adapt

infrastructure to the special characteristics of the AV technology. In particular, a unique charac-

teristic of AVs is their ability to drop off commuters at work and park outside downtown. This

may translate into a need for more drop-off spots and a lower demand for parking downtown. Since

increasing the drop-off capacity is possible through converting regular parking spaces in D to drop-

off stations, there is a trade-off between the curbside drop-off capacity, RW , and the number of

parking spots downtown, K1. On one hand, increasing RW reduces the total work schedule penalty.

This is because curbside space is the most downstream bottleneck that determines the departure

pattern of commuters from H, so more curbside space allows some commuters to leave their homes

later than before. On the other hand, reducing K1 increases the number of trips to Area 2 as well

as the amount of passengerless travel time.

The following corollary derives the optimal drop-off capacity, denoted by R∗
W , and the optimal

capacity of Area 1, denoted by K∗
1 , that minimize the total system cost of the morning commute

under SO.11

Corollary 2.1. There exist R∗
W ∈ [0,min{K1 + RW , RI}] and K∗

1 = K1 + RW − R∗
W , where RW

and K1 represent the current values of drop-off capacity and Area 1’s capacity, respectively.

Corollary 2.1 shows that the optimal value of curbside space, R∗
W , can range from zero to

either the inbound bottleneck capacity RI or the total available space downtown, which is the sum

10For case (ii) of SO2, the pricing and tolling schemes are similar to those of case (i), except that after Area
1 becomes full at y1,max, the congestion toll π2(x) is reduced by α′τD,2(x) to account for the growing downtown
congestion cost.

11We assume there is no cost associated with converting a parking space to a drop-off space. However, such a cost
can easily be incorporated in our model, as it is linear to the number of converted parking spots.
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of current curbside drop-off space RW and parking space, K1. The inbound bottleneck capacity

limits the improvement in the drop-off capacity because increasing the drop-off capacity beyond

the inbound bottleneck capacity does not reduce cost, as commuters will experience congestion in

the inbound bottleneck. To effectively improve the total system cost, the social planner should

increase (or decrease) the inbound bottleneck capacity simultaneously with the drop-off capacity,

because otherwise, one of them becomes the bottleneck and the other one has some underutilized

capacity. The optimal capacity of Area 1, K∗
1 , is then equal to the remaining space after allocating

the curbside drop-off, i.e., RW +K1 − R∗
W . This implies that, depending on the current values of

RW and K1, adding more parking spots downtown can lead to a higher or a lower total system

cost. Hence, AVs do not necessarily reduce the number of downtown parking spots. In fact, when

downtown parking leads to a lower passengerless travel time than parking in the external area,

especially when downtown congestion is high, the social planner prefers AVs to park downtown,

although it extends the duration of the morning commute and increases the total work schedule

penalty for all commuters.

Figure 2.8 illustrates the total system cost as a function of the drop-off capacity for our calibrated

model under SO1. In this case, since the unit work schedule penalty is higher than the unit

passengerless travel cost (β = $3.9 > $2.25 = α′ per hour), even though Area 1 is closer than

Area 2 (tW,1 < tD,2), the positive effect of increasing RW on the work schedule penalty dominates

the negative effect of decreasing K1 on the passengerless travel time. Hence, as this figure shows,

the social planner should increase the drop-off capacity as much as possible, because the higher

drop-off capacity the lower the total system cost. In other words, the drop-off capacity should

increase from the current value of RW = 60 commuters per minute to R∗
W = 226.7 commuters

per minute (or 13, 600 = 3, 600 + 10, 000 = RW + K1 commuters per hour), and AVs eliminate

the downtown parking demand. This can be achieved by converting all downtown parking spots

to drop-off stations (i.e., reducing K1 = 10, 000 parking spots to K∗
1 = 0). However, the drop-off

capacity is bounded by the inbound bottleneck capacity, so if we want to increase the drop-off

capacity beyond the current value of RI (76.7 commuters per minute), we need to simultaneously

increase the inbound bottleneck capacity RI to the same level, i.e., 226.7 commuters per minute.

This reduces the total system cost under SO by 69.3%. Even increasing the drop-off capacity RW

from its current value of 60 commuters per minute to the inbound bottleneck capacity RI of 76.7
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Figure 2.8: An illustration of total system cost as a function of drop-off capacity RW for SO1.

commuters per minute results in a 20.9% reduction in the total system cost.12

2.7 Conclusion

In this paper we investigate the effect of AVs on the morning commute and infrastructure (drop-off

and parking spaces) usage. We characterize the departure time and parking location patterns of

commuters under UE based on the downtown parking fee, the location of the external parking

area, and the availability of downtown parking. Our model also takes into account the capacity of

roadways and parking spaces and the monetary value of passengerless travel time. As AV technology

advances and becomes more reliable, the operational costs of AVs decrease and the monetary value

of passengerless travel time decreases, which can lead to an even more pronounced impact on traffic

patterns and parking usages. In the case when commuters prefer parking downtown due to the high

travel cost from downtown to Area 2 (i.e., UE1), the AV technological advancement can reduce the

cost of passengerless travel and induce commuters to mainly park in the external area (i.e., UE2).

Yet, a setback in the AV technology can change commuters’ decisions from choosing the external

parking area to the downtown parking area, as the distrust in the AV technology may increase the

cost of passengerless travel time for commuters due to the potential extra supervision required.

We compare these patterns under UE against those determined by a social planner who aims to

12The numerical example of SO2 discussed in §2.5.2 shows a similar pattern of the total system cost to Figure 2.8,
and R∗

W is equal to the minimum of RW +K1 and RI .
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minimize the total system cost. For cities with small downtown areas, regardless of the downtown

parking fee, since the social planner aims to minimize the total travel time, she wants the downtown

parking area to be filled before any commuter goes to the external area. For cities with bigger

downtown areas, the social planner wants to alternately route commuters to the external and

downtown parking areas to avoid creating a significant amount of congestion downtown. Since the

commuters take the downtown parking fee into account when deciding on their parking location,

the socially optimum (SO) differs from what commuters decide under UE, unless new policies are

developed to regulate commuters’ decisions. For example, for our calibrated model, under UE all

commuters choose to park outside downtown, but SO is to choose the downtown parking area (as

long as it is not full) to reduce the total system cost. In addition, in comparison to HV commuters,

AV commuters tend to leave early to avoid congestion downtown under UE. This exacerbates

congestion on the inbound highway, as well as the drop-off and downtown congestions, causing a

significantly higher total system cost.

To reduce the high congestion cost created by AVs during the morning commute, we recommend

two complementary approaches to social planners. First, we characterize optimal parking fees and

congestion tolls that reduce the total system cost as a short-term solution. For cities with small

downtown areas, where the downtown parking area is closer to work than the external one, the

socially optimal decision is to route AVs to the downtown parking area. But, depending on the

downtown parking fee, either this area or the external area can be the primary parking area chosen

by commuters. We recommend optimal parking fees and congestion tolls that provide sufficient

incentives for commuters to choose the downtown parking area as long as it has capacity under

equilibrium. For cities with larger downtown areas, where the downtown parking area is farther

away, the social planner as well as commuters want the external area to be the primary parking

area. However, since AVs that go to the external area may create substantial downtown congestion,

the cost associated with traveling to the external area can surpass that of the downtown area. So we

recommend that the social planner simultaneously uses parking fees and congestion tolls as levers

to either direct AVs to the downtown parking area when downtown congestion is high or extend

the duration of morning commute to eliminate downtown congestion.

We also derive the optimal curbside drop-off capacity and the downtown parking capacity that

minimize the total system cost as a long-term solution. The social planner prefers to keep the
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departure rate from home under the drop-off capacity to eliminate the passengered congestion

time. This shows that the social planner may shift the focus from expanding parking spaces

downtown to creating more designated curbside drop-off spaces. In line with this observation, we

recommend infrastructure improvements to the social planner. Increasing the drop-off capacity is

possible through reducing the number of downtown parking spots. For cities with small downtown

areas, this reduces the capacity of the closer parking area, which can lead to increasing the SO

cost. However, increasing the drop-off capacity also means that more commuters can depart home

per hour, so the morning commute duration shrinks and the aggregate work schedule penalty

decreases. We recommend optimal values of drop-off capacity and downtown parking spots that

result in the lowest total system cost in the long run. Depending on the city characteristics, the

optimal decision can be anything from converting all downtown parking spots to drop-off spots or

reducing the drop-off capacity from its current value. So, surprisingly, there is a chance that the

social planner needs to expand the number of downtown parking spots. Even in the case when

increasing the number of downtown parking spots is recommended, the social planner should take

the inbound highway capacity into account. Increasing the drop-off capacity beyond the inbound

highway capacity does not further reduce the total system cost, as the inbound highway becomes

the new bottleneck for commuters. Thus, we recommend that the social planner increases (or

reduces) the inbound bottleneck capacity simultaneously with the drop-off capacity. For our model

calibrated to Pittsburgh, we show that converting all downtown parking spots to curbside drop-off

spots is the optimal choice, as it facilitates the drop-off process.

Our paper is the first to characterize the impact of AVs on the morning commute problem by

modeling an external parking area as well as downtown congestion caused by AVs. There are many

plausible future scenarios where AVs may be used during the morning commute, such as the use

of shared autonomous transportation services or the option of cruising around instead of parking.

We hope that our model and analysis provide a foundation for other investigations on this topic.
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Chapter 3

Modeling and Managing Curbside

Ride-Hailing Drop-offs

3.1 Introduction

With the proliferation of mobile devices and advancements in accurate positioning technologies,

ride-hailing services, provided by transportation network companies (TNCs), are an indispensable

component in mobility systems. These convenient and low-cost ride-hailing services provide morn-

ing commuters with an attractive travel alternative. During morning commute hours, managing

parking and traffic congestion is one of the main issues that a city planner deals with. To accom-

modate high parking demands, a city has to surrender large spaces to build parking structures; for

example, an astounding 14 percent of Los Angeles county land is dedicated to parking. Ride-sharing

vehicles might be able to alleviate this problem, as they have the ability to drop commuters off at

their workplaces in a city center without parking. This allows commuters to avoid high parking fees

in a city center, and reduces a need to build or maintain large parking structures in a city center.

However, ride-hailing services contribute to traffic congestion by exploiting more curbside space

than driving and public transit require (Castiglione et al. 2016, Li et al. 2016, Castiglione et al.

2018, Agarwal et al. 2019): Ride-hailing pickups and drop-offs may disturb or block the traffic flow

of conventional vehicles (Goodchild et al. 2019). This negative externality of ride-hailing services

could push some commuters to change their mode of transportation from driving their personal
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vehicles to ride-hailing, creating even more curbside congestion.

In this chapter, we study the effect of ride-hailing drop-offs on the morning commute and

provide guidance to city planners on how to adjust infrastructure. In particular, we investigate

the potential effect of ride-hailing on the morning commute patterns that commuters face when

traveling to a central business district for work by tackling the following fundamental questions:

(1) How do ride-hailing services affect congestion and downtown parking demand? (2) How should

municipal governments design infrastructure (curbside drop-off zones) to minimize aggregate travel

costs of commuters?

To answer these questions, we develop a continuous-time traffic model in which commuters

decide when to leave their residences and what transportation mode they choose from one of the

two available options: driving and ride-hailing. The goal of a commuter is to minimize his total

transportation costs (including parking fees, ride-hailing fares, and imputed costs of early arrivals)

during the morning commute. (For convenience, we use the pronouns “he/him/his” to refer to a

commuter.) Three major elements affect an individual commuter’s costs: travel time, arrival time

at work, and parking fee/ride-hailing fare. The individual commuters’ decisions on their departure

times from home collectively affect the level of congestion on roadways; hence, these decisions affect

both travel time and arrival time of an individual commuter. To avoid congestion, a commuter may

decide to depart home early, but the commuter may not want to depart too early because there

exists an inconvenience cost for arriving too early at work (Hendricks 2015). As such, commuters

encounter a trade-off between experiencing congestion and arriving too early to work. In addition,

there is a trade-off in choosing between the two transportation modes (i.e., driving and ride-hailing):

the ride-haling passengers experience more congestion at drop-off than personal vehicle passengers

do, but ride-haling passengers do not need to walk from parking area to work. These trade-offs

faced by commuters are captured in a continuous-time game-theoretic traffic model. Our model is

motivated by infrastructure and traffic patterns in the City of Pittsburgh. In this model, commuters

decide on their departure times from home and their modes of transportation between driving and

ride-hailing. These commuters take an inbound highway (e.g., I-376 in Pittsburgh) to travel to work

downtown. Upon arrival downtown, the ride-hailing commuters are dropped off as soon as there

is an available curbside drop-off spot, and the rest of the commuters drive to downtown parking

areas to park their vehicles. The latter group of commuters walks to work from the parking areas.
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Our model takes into account the congestion that commuters experience on the inbound highway

to downtown, the extra congestion that ride-hailing commuters experience before drop-off, and

the extra congestion that commuters who drive experience on their way to the parking areas. We

calibrate our model to traffic and parking data from Pittsburgh.

By analyzing this model, we characterize the departure time and transportation mode decisions

of commuters as well as ride-hailing fare pricing decisions of the TNC under equilibrium. Under

equilibrium, no commuter can unilaterally change his departure time and/or parking location to

reduce his cost nor can the TNC change its fares to increase its profit. We show that there exist

two different cases of equilibrium, depending on when the TNC starts serving commuters during

the morning commute. In determining when to offer rides, the TNC faces a trade-off between the

total number of commuters it serves and the fare it charges. On the one hand, if the TNC offers

rides early during the morning commute period, the fares should be low to be competitive with

the low downtown parking fees. On the other hand, due to the low fares, more commuters choose

ride-hailing. For cities where the downtown parking fees are relatively low, e.g., there is an early

bird discount, it is not profitable for the TNC to offer rides, so it sets its fares so high that no

commuter chooses ride-hailing. For cities with relatively high early morning downtown parking fees,

the TNC sets its fare just below the cost of driving such that it deters commuters from driving.

These two cases coincide when the downtown parking fees are moderate, such as in Pittsburgh,

so both driving and ride-hailing are chosen by some commuters throughout the entire duration of

the morning commute. Under all equilibrium cases, the departure rate of ride-hailing commuters

from home is higher than the capacity of the drop-off zone, causing drop-off congestion for these

commuters as well as disturbing the flow of commuters who drive through the drop-off zone to go

to the parking areas. This makes driving a less desirable option than when there is no ride-hailing

services, and may push more commuters who currently drive to switch to ride-hailing, leading to

even more congestion than in the case with no ride-hailing vehicles.

We next analyze the problem of a social planner who aims to minimize the total system cost of

the morning commute by dictating the departure time and transportation modes of all commuters

as well as the ride-hailing fares of the TNC. Our analysis shows that there exist two different social

optima (SOs). For cities such as Pittsburgh, where the walking time from the parking areas to work

is relatively short, the social planner directs some commuters to drive and some to use ride-hailing.
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Otherwise, she wants all commuters to use ride-hailing. (For convenience, we use the pronouns

“she/her/hers” to refer to the social planner.) The SO analysis allows us to identify that the social

optimum that minimizes the aggregate costs of all commuters may differ from the decisions of the

commuters and the TNC under equilibrium. Thus the total system cost under equilibrium is higher

than the SO cost.

As a way to reduce the gap between the individual and social optima, we examine both short-

term and long-term measures a social planner can implement. As for short-term measures, we

analyze a social planner’s decisions on parking fees as well as curbside drop-off tolls. These mea-

sures can reduce the total system cost by inducing commuters to choose the departure times and

transportation modes desired by the social planner. Our numerical analysis of the Pittsburgh data

indicates that these measures can reduce the total system cost of the morning commute to the SO

cost (a 77% reduction). In the long run, a social planner can further lower the total system cost by

adapting the infrastructure so it better suits ride-hailing operations. For example, it may be ben-

eficial to increase the number of curbside drop-off spaces downtown. For Pittsburgh, we find that

by increasing the drop-off capacity in Downtown Pittsburgh to the inbound highway capacity, we

can achieve an 8% reduction in the total system cost. These results suggest that cities can benefit

significantly from ride-haling services by adjusting their short-term and long-term transportation

and infrastructure policies.

The rest of this chapter is organized as follows. In §3.2, we review the related literature. Our

morning commute travel model is presented in §3.3. In §3.4 and §3.5, we analyze the equilibrium

and the SO, respectively. In §3.6, we propose both short-term and long-term plans to reduce the

total system cost of the morning commute. We conclude in §3.7.

3.2 Related Literature

This work is closely related to the literature on smart city operations and the literature on trans-

portation science. Under the umbrella of the smart city operations literature, there are various

studies that focus on different aspects of ride-hailing, including: surge pricing (e.g., Besbes et al.

(2021), Garg & Nazerzadeh (2021), Guda & Subramanian (2019), and Hu et al. (2022)), matching
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and dispatching (e.g., He et al. (2020), and Özkan & Ward (2020)), supply and demand manage-

ment (e.g., Lian & Van Ryzin (2021), and Yu et al. (2020)), and transit planning (e.g., Wei et al.

(2021)). For a comprehensive review of ride-hailing studies, we refer readers to Benjaafar & Hu

(2020) and Chen et al. (2018). We expand this evolving stream of research by examining the effect

of ride-hailing on congestion and parking during the morning commute.

The early research in the transportation science literature that studies the morning commute

problem focuses on driving as the sole mode of transportation. Morning commuters choose their

departure times from home based on multiple factors such as congestion, schedule delays, parking

fees and availability. Vickrey (1969) considers a finite group of commuters who decide on their

departure time from home to their work places downtown. He shows that there exists an equilibrium

departure time pattern when all commuters attempt to minimize their own travel costs. Arnott

et al. (1991) extend Vickrey (1969) by examining commuters’ decisions on both departure times

from home and parking locations. They consider a combination of congestion tolls and parking

fees to minimize the total system cost, and show that the optimal departure rate from home must

be equal to the capacity of the inbound highway. Xu et al. (2019) study different flat congestion

toll schemes that are easier to implement to reduce the total system cost. The model of Arnott

et al. (1991) is further extended by accounting for other features such as joint morning and evening

commute (e.g., Zhang et al. (2008)), multiple parking clusters downtown (e.g., Qian et al. (2011)),

multiple residential areas (e.g., He et al. (2015)), and positive search time to find an empty parking

spot (e.g., Qian & Rajagopal (2014) and Qian & Rajagopal (2015)). Our model also builds on

the fundamental structure of Arnott et al. (1991) while enriching it by capturing the specific

characteristics of ride-hailing (including commuter drop-off at work and extra congestion) as a

mode of transportation.

Ride-hailing is incorporated in the morning commute problem by Su & Wang (2019). Similar to

our paper, they consider the problem of morning commute when commuters have two options for

commuting from home to work: driving and ride-hailing. In their model, commuters who drive pay

a fixed parking fee to park their vehicles at their work place (i.e., the walking time from the parking

areas to work is assumed to be negligible), and commuters who use ride-hailing pay a fixed fare

and are dropped off at work without experiencing or causing congestion. Su & Wang (2019) show

that under equilibrium ride-hailing might be used at the late stage of the morning peak only, which
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leads to an extended morning rush hour duration and a high total system cost. They recommend

that, to achieve the minimum total system cost, a social planner should restrict the number of

downtown parking spots as well as ride-hailing trips, and derive these optimal values, however, no

policies to enforce such restrictions is discussed.

We contribute to this literature by examining the effect of ride-hailing on congestion and parking

during the morning commute. Modeling ride-hailing is essential because it helps reduce downtown

parking demands. We show that having ride-hailing as a transportation mode option results in a

lower total system cost. This implies that ignoring this option may result in an overestimation of

the cost. However, ride-hailing has some potential negative impacts, so the aggregate effect of ride-

hailing as a commuting option is not clear without a careful analysis. To properly model this mode

of transportation, different from the prior literature reviewed above, we consider the congestion

experienced by ride-hailing commuters during drop-offs, as well as the negative externality of ride-

hailing drop-offs on commuters who drive. Our model captures the fact that the curbside space

dedicated to commuter drop-offs is limited, potentially causing delays during drop-offs for ride-

hailing commuters. Such delays are illustrated in a simulation study by Overtoom et al. (2020).

The ride-hailing drop-offs also affect commuters who drive, as ride-hailing vehicles leave and rejoin

the traffic stream frequently. This can disturb the traffic flow and induce extra delays for commuters

who pass through the drop-off zone to go to the parking areas. Although the impact of ride-hailing

drop-offs depends on road properties and traffic conditions, empirical evidence suggests that it is

generally negative and significant (Goodchild et al. 2019). In addition, our model considers dynamic

parking fees and ride-hailing fares, as both of these charges might change dynamically based on

the time of the day and the level of congestion. Finally, we offer insight into both short-term and

long-term measures to reduce the total system cost a social planner can implement in anticipation

of mass usage of ride-hailing by commuters. In short, our paper offers a unique perspective into

the future of smart cities by investigating the impact of ride-hailing on parking and congestion

downtown.

79



3.3 Model

We study the problem of N morning commuters who travel from home (H) to work (W ) that

is located downtown (D). There are two modes of transportation available to these commuters:

driving and ride-hailing. In §3.3.1 we describe the commuters’ model, and in §3.3.2 we discuss

the model for the transportation network company (TNC). Appendix A provides a table for the

summary of our notation.

3.3.1 The Commuters

We describe the model for individual commuters who travel from home to work during morning

rush hour. We call the commuters who drive their personal vehicles conventional (C) commuters

and those who use ride-hailing services ride-hailing (R) commuters. Figure 3.1(a) depicts the travel

route of conventional and ride-hailing commuters. As shown in this figure, to go from H to D,

all commuters travel on a highway which has an inbound bottleneck (I) with the capacity of RI

vehicles per hour (where 0 < RI <∞). This means that if more than RI commuters arrive at this

bottleneck per hour, these commuters experience a delay on their way to D. Upon arriving at D,

the two types of commuters, i.e., C and R, follow different paths. The ride-hailing commuters are

dropped off in the drop-off zone surrounding W , and walk a short distance from the drop-off zone

to W . Due to limited curbside space, at most RR (> 0) drop-offs per hour are possible. If more

than RR ride-hailing vehicles per hour arrive at W to drop off their commuters, these commuters

experience a drop-off delay. The conventional commuters travel through the drop-off zone to go to

the downtown parking areas, which consists of all downtown parking spots surrounding W . The

capacity of downtown roads and streets is limited, hence the number of conventional commuters

that can travel from the drop-off zone to the parking area per hour, denoted as RC , is limited,

potentially causing delay for these commuters. In addition, the ride-hailing commuters awaiting

drop-off might add to the congestion that the conventional commuters who are traveling to the

downtown parking areas experience. The price of downtown parking is denoted as p.

Every morning a commuter makes two decisions: departure time x (∈ [0, xmax]) from H (where

the latest departure time xmax is determined endogenously), and mode of transportation j (∈

{C,R}). The departure rate of commuters from H at x is denoted as λH(x). For j ∈ {C,R}, we
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Figure 3.1: An illustration of the morning commute route for conventional and ride-hailing com-
muters.

let λj(x) represent the rate of commuters who choose transportation mode j and leave their homes

at x. As such, the total departure rate from H, λH(x), is equal to λC(x) + λR(x) for x ∈ [0, xmax].

Following prior literature (e.g., Arnott et al. (1991), Qian et al. (2011), Qian & Rajagopal (2015),

and Liu (2018)), the official start time at work is denoted by T for all commuters. According to the

U.S. Bureau of Labor Statistics (2015), most workers in the U.S. are on the job between 8 a.m. and

5 p.m, so it is justified to assume that the majority of companies start their workday at a specific

time (e.g., 8 am).

As illustrated in Figure 3.1, travel time of commuters who leave H at x is divided into: (1) free-

flow travel time, (2) delay in the inbound bottleneck, (3) delay caused by drop-off congestion at W

for ride-hailing commuters, (4) delay caused by congestion within D for conventional commuters,

and (5) walking time. We elaborate on each of these travel times.

(1) Free-flow travel time: This is the travel time of vehicles when they are able to move freely

on segments of highways and roads without a capacity constraint. Specifically, the free-flow travel

time occurs on the following two segments: between home H and inbound bottleneck I, and

between inbound bottleneck I and the boundary of downtown D. Free-flow travel time in each

of these segments, which has a fixed duration, is denoted respectively by tH,I , and tI,D. Since all

commuters experience tH,I and tI,D, without loss of generality, we normalize them to zero.

(2) Inbound queueing delay: If the rate of commuters who arrive to the inbound bottleneck

exceeds the capacity of this bottleneck, RI , these commuters experience a delay, which is called the

inbound queueing delay, τI(x).

(3) Drop-off congestion time for ride-hailing commuters: Before being dropped off at W ,
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the ride-hailing commuters may experience delays due to the limited curbside space at W . We call

this delay the drop-off congestion time for ride-hailing commuters and denote it by τR(x).

(4) Downtown congestion time for conventional commuters: Before finding an empty

parking spot downtown, the conventional commuters may experience delays due to the limited

downtown streets capacity and the externality of the ride-hailing drop-offs. We call this delay the

downtown congestion time for conventional commuters and denote it by τC(x).

(5) Walking time: Both types of commuters walk to W : The conventional commuters walk from

the parking area to W after parking their vehicles. We denote this walking time, which is a fixed

value, by tC . The ride-hailing vehicles also walk from the drop-off zone to W after being dropped

off. This walking time is assumed to have a fixed value and is denoted as tR (< tC).

Taken together, the total travel time of conventional commuters is τI(x) + τC(x) + tC , and that

of ride-hailing commuters is τI(x) + τR(x) + tR.

We make the following assumptions throughout the paper:

A1. The downtown parking fee, p(x), is an increasing function of x (∈ [0, xmax]), because the

commuters choose the cheapest parking spots available, so the parking fee goes up as a

commuter’s departure time from H increases.

A2. The capacity of the inbound highway is higher than the capacity of downtown roads and the

curbside drop-off capacity, i.e., RI > RC and RI > RR. If any of these inequalities does

not hold, the congestion time associated with that inequality disappears: when the inbound

bottleneck capacity RI is lower than the downtown roads capacity RC (resp., the drop-off rate

RR), there is no downtown congestion for conventional commuters (resp., drop-off congestion

for ride-hailing commuters). Our analysis can be easily extended to those simpler cases with

no congestion.

A3. We model each segment on the way from H to the parking areas (inbound bottleneck, drop-

off area, and downtown) as a queue with deterministic time-varying arrival and service rates.

For example, the inbound bottleneck is a queue with arrival rate λH(x) for x ∈ [0, xmax] and

service rate RI vehicles per hour. As discussed in Kim & Whitt (2013), calculating the exact

wait time (i.e., congestion time in a segment) for each individual commuter that arrives to

that segment is complex. Thus, we estimate the individual wait time of a commuter that

82



leaves H at x as the number of commuters that are present in the queue divided by the

average throughput of the queue. We divide by the average throughput because commuters

that are present in the queue, but have left H before x, might leave the queue at different

rates depending on their arrival time to the queue. Specifically, the congestion time τI(x)

that a commuter traversing the I bottleneck at x experiences is equal to
∫ x
0 [λH(u)−RI ]+du

(
∫ x
0 min{λH(u),RI}du)/x

.

The numerator of this expression is the total number of commuters present in the bottleneck

at x, and the denominator is the average departure rate from I between time zero and x.

Similarly, we calculate the drop-off congestion time for ride-hailing commuters as τR(x) =∫ x+τI (x)
0 [λR(u)RI/λH(u)−RR]+du∫ x+τI (x)

0 min{λR(u)RI/λH(u),RR}du/[x+τI(x)]
.1

A4. The drop-off process interrupts the flow of conventional vehicles when the number of ride-

hailing vehicles waiting to drop-off their commuters, i.e.,
∫ x+τI(x)
0 [λR(u) − RR]+du, exceeds

Γ(≥ 0). By A3, when
∫ x+τI(x)
0 [λR(u) − RR]+du ≥ Γ, we state the downtown congestion for

conventional commuters as τC(x) =
∫ x+τI (x)
0 [λC(u)RI/λH(u)−RC ]+du+

∫ x+τI (x)
0 δ[λR(u)RI/λH(u)−RR]+du∫ x+τI (x)

0 min{λC(u)RI/λH(u),RC}du/[x+τI(x)]
,

and as τC(x) =
∫ x+τI (x)
0 [λC(u)RI/λH(u)−RC ]+du∫ x+τI (x)

0 min{λC(u)RI/λH(u),RC}du/[x+τI(x)]
, otherwise. The case of Γ = 0 leads

to a simplified model, as in this case any drop-off spillover into travel lanes causes negative

externality for conventional vehicles.2

Now that we have modeled the travel time of commuters, we next consider the costs associated

with their commutes. The cost that a commuter incurs consists of three elements: travel time

cost, work schedule penalty, and parking cost or ride-hailing fare. First, to define the travel time

cost, let α and α′ (where 0 < α < α′) represent the monetary value of one unit of travel time in

a vehicle, which includes the vehicle usage costs (e.g., gas/electricity, depreciation, mileage, etc.)

and the value of commuters’ time, and the monetary value of one unit of walking time, respectively.

The travel time cost is then equal to α[τI(x) + τC(x)] + α′tC and α[τI(x) + τR(x)] + α′tR(x) for

conventional and ride-hailing commuters, respectively.

1For the drop-off congestion time τR(x), the numerator is the total number of ride-hailing commuters that are
present at the drop-off zone at x+ τI(x) (which is the time when commuters who leave H at x arrive at the drop-off
zone in W ), and the denominator of τR(x) is the average drop-off rate at x+ τI(x).

2For the downtown congestion time τC(x), the numerator can have two components. The first component, i.e.,∫ x+τI (x)
0

[λC(u)RI/λH(u)−RC ]
+du, is the total number of conventional commuters that are present in the downtown

area and head to the parking area at x + τI(x) (which is the time when these commuters that leave H at x arrive

at W ). The second component, i.e.,
∫ x+τI (x)
0

δ[λR(u)RI/λH(u) − RR]
+du, where 0 ≤ δ ≤ 1, captures the negative

externality of the ride-hailing commuters that are present in the drop-off area on the travel time of the conventional
vehicles. Lastly, the denominator of τC(x) is the average travel rate of conventional commuters in D at x+ τI(x).
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The second cost item is a work schedule penalty, which is a penalty that a commuter incurs

when he arrives before time T . Following the prior literature (e.g., Arnott et al. (1991), Qian et al.

(2011), and Liu (2018)), we define a work schedule penalty for the type j ∈ {C,R} commuter as

the difference between the actual arrival time, x + τI(x) + τj(x) + tj , and the official start time

at work, T . Let β represent the monetary cost of early start of work. Then, the work schedule

penalty for commuters who arrive at W early is equal to β{T − [x+ τI(x) + τj(x) + tj ]}. Finally,

a conventional commuter who leaves H at x pays parking fee p(x), while a ride-hailing commuter

who leaves H at x pays a ride-hailing fare u(x).

Before defining the total cost of commuters, we state our final assumptions:

A5. The penalty of starting work early is lower than the monetary value of passengered travel

time, i.e., 0 < β < α. This is the standard assumption in the literature, and it is empirically

supported (e.g., Small (1982)). In addition, similar to Liu (2018), the marginal increase in the

parking fee is lower than the marginal decrease in the work schedule penalty, i.e., p′(x) ≤ β (< α)

for x ∈ [0, xmax]. This means that a commuter prefers to arrive to work closer to time T , because

if he delays his arrival time at W by one unit of time, his marginal saving in the work schedule

penalty (β) is higher than his marginal increase in the cost of parking downtown (p′(x)).

A6. No commuter intentionally decides to arrive late at work. In other words, the monetary

value of arriving late at work is so high that all commuters arrive at W before the work start time

T .

Putting the three cost elements together, we can express the total cost of a conventional com-

muter and a ride-hailing commuter who depart H at x, respectively, as follows:

CC(x) = α[τI(x) + τC(x)] + α′tC + β{T − [τI(x) + τC(x) + tC ]} + p(x), (3.1)

CR(x) = α[τI(x) + τR(x)] + α′tR + β{T − [τI(x) + τR(x) + tR]} + u(x). (3.2)

Lastly, we define the total system cost (also known as the social cost) as follows.

∫ xmax

0

λC(x)[CC(x) − p(x)] + λR(x)CR(x)dx = (3.3)∫ xmax

0

λH(x)[(α− β)τI(x) + β(T − x)] + λC(x)[(α− β)τC(x) + (α′ − β)tC ] + λR(x)[(α− β)τR(x)

+ [(α′ − β)tR + u(x)]dx.
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The cost in (3.3) consists of three terms: The first term (λH(x)[(α−β)τI(x)+βT ]) is the travel cost

that all commuters incur, regardless of their mode of transportation. The second term (λC(x)[(α−

β)τC(x) + (α′ − β)tC ]) is the sum of downtown congestion cost and walking time for conventional

commuters. The last term (λR(x)[(α−β)τR(x)+[(α′−β)tR+u(x)]) is the sum of ride-hailing fare,

drop-off congestion cost, and walking time for ride-hailing commuters. The total system cost does

not include parking fees p(x), because parking fees paid by the commuters who park downtown

cancel out parking fees collected by the social planner. In other words, parking revenues collected

by the social planner are considered as a part of social welfare, so they are not counted towards

the total system cost.

In our subsequent analyses, we illustrate our analytical results using the parameter values

estimated from the Pittsburgh Metropolitan Area. We summarize our calibrated parameter values

in Table 1 while referring the readers to Pi et al. (2019) and Mirzaeian et al. (2021).

Table 3.1: Summary of the calibrated model parameters

Parameter Value Parameter Value Parameter Value
N 20, 000 commuters tC 15 minutes p(0) $13
RI 4,600 vehicles per hour tR 2 minutes p(xmax) $20
RC 4, 600 vehicles per hour α $9 per hour p(x) 7x/xmax + 13 dollars
RR 3, 600 drop-offs per hour α′ $12 per hour δ 0.8
K 10, 000 vehicles β $3.90 per hour Γ (RR +RC)/60

Notes. By A1, we calculate p(x) as 7x/xmax + 13, because, according to Pittsburgh Parking Authority (2019), the
minimum parking rate in downtown Pittsburgh is $13 and the maximum rate is $20.

3.3.2 The TNC

There is a TNC that offers ride-hailing services to the morning commuters. The goal of the TNC

is two-fold. On the one hand, the TNC wants to maximize its profit by determining the fares u(x)

for x ∈ [0, xmax]. In fact, u(x) represents the profit margin of the TNC, as we assume that the

TNC directly charges the commuters for the travel cost associated with each trip (i.e., the inbound

congestion and drop-off congestion costs). Since the ride-hailing demand is elastic, i.e., λR(x)

depends on u(x), the TNC faces a trade-off between charging a higher fare and attracting more

commuters. On the other hand, the TNC wants to minimize the total travel time of ride-hailing

trips, as ride-hailing drivers also experience congestion, which might deter them from joining the
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ride-hailing platform. We state the objective of the TNC service as follows:

max
0≤u(x)

∫ xmax

0
λR(x)u(x) − α[τI(x) + τR(x)]dx. (3.4)

3.4 Equilibrium Analysis

In this section, we present a joint equilibrium for the commuters and the TNC. In this equilibrium,

individual commuters decide on their departure times and transportation modes to minimize their

costs, and the TNC decides on the ride-hailing fares to maximize its profit. We define an equilibrium

as when the following three conditions are satisfied:

Condition 1: CC(x) = CR(x) for any x ∈ [0, xmax] such that λC(x) ̸= 0 and λR(x) ̸= 0.

Condition 2: For each j ∈ {C,R},
∂Cj(x)
∂x = 0 for any x ∈ [0, xmax] such that λj(x) ̸= 0.

Condition 3: u(x) = u∗(x) for any x ∈ [0, xmax] such that u∗(x) satisfies (3.4).

Conditions 1 and 2 guarantee that all commuters incur the same total cost, regardless of their choices

of transportation mode and departure time, respectively. This means that, under equilibrium, no

commuter can unilaterally change his departure time and/or transportation mode to reduce his

cost. Condition 3 guarantees that the TNC’s profit is maximized. This means that, given the

ride-hailing demand under equilibrium, the TNC cannot change its fares to achieve a higher profit.

We next characterize the equilibrium solutions. Proposition 3.1 indicates that there are two

possible forms of equilibrium. We use the following additional notation to describe these equilibria:

xj for j ∈ {C,R} denotes the earliest departure time of commuters who choose transportation

mode j. Proofs are provided in Appendix C.2.

Proposition 3.1. There exists a unique equilibrium which is presented in Table 3.2, where xC =[
δRR{(αRC−βδRR)[RR(α−β)+RCβ/δ]u0−[RC [p(xmax)−p(0)]+N(α−β)](RC−δRR)αβ/δ}/{β(RC−

δRR)[(α − β)RR + RCβ/δ][αRC − (α + δβ)RR]}
]+

, xR =
[
{RC [p(xmax) − p(0)] + N(α − β) −

δ(α− β)Γ}{α(α− β)RR − β[αRC + (α− δβ)RR]− (α− β)αRC [(α′ − β)(tC − tR) + p(0)]/β}/[(α−

2β)(αRC)2]
]+

, x̄R = Γ(α−β)
αRR

+ xR for case (i) and x̄R = Γ(α−β)−β(RC/δ−RR)xC
αRR

for case (ii), A =

α−p′(x)
α−β RC , B = α−p′(x)

α−β RC− δβ
α−βRR, C = RR+ β/δ

α−βRC , D = α
α−βRR, u0 = (α′−β)(tC−tR)+p(0),

u0 = ⌈100u0 − 1⌉/100, and M = αxR + u0.

86



Table 3.2: A characterization of the equilibrium.

Condition λC(x) λR(y) u(x) xmax
(i) xC = 0 A for 0 ≤ x < x̄R

B for xR ≤ x ≤
xmax

0 for 0 ≤ x < xR
D for xR ≤ x ≤
xmax

M for 0 ≤ x < xR
u0 + βxR for xR ≤ x ≤ xmax

{N(α − β) + RC [p(xmax) −
p(0)] + αRRxR −
βδRRx̄R}/{αRC+(α−βδ)RR}

(ii) xR = 0 0 for 0 ≤ x < xC
A for xC ≤ x < x̄R
B for x̄R ≤ x ≤
xmax

C for 0 ≤ x < xC
D for xC ≤ x ≤
xmax

β(1− RC
δRR

)x+u0 for 0 ≤ x ≤ xC

u(xC) for xC ≤ x ≤ xmax

xC+{N(α−β)+RC [p(xmax)−
p(0)] − (β/δ)RCxC}/{αRC +
(α− βδ)RR}

Proposition 3.1 shows that there exist two different cases of equilibrium, depending on when

the TNC decides to offer rides during the morning commute: case (i) and case (ii). In determining

when to offer rides, the TNC faces a trade-off between the total number of commuters it serves and

the fare it charges. On the one hand, if the TNC offers rides early during the morning commute

period, it has to reduce its fares to be competitive with the low downtown parking fees. On the

other hand, due to the low fares, more commuters choose ride-hailing. In determining their mode of

transportation, commuters also face a trade-off between the amount of congestion they experience

and the ride-hailing fare. By choosing ride-hailing, a commuter does not need to pay p(x) for

parking downtown or experience any downtown congestion τC(x). However, the commuter incurs

a fare u(x) for using the ride-hailing service, and might experience some congestion at the drop-off

zone, τR(x).

In case (i), described in Table 3.2, xC = 0 and xR ≥ 0, which means that the TNC may not

offer rides to early commuters. In this case, all commuters who leave early (i.e., x < xR) choose to

drive, i.e., λC = α−p′(x)
α−β RC > 0 and λR(x) = 0. This happens because the downtown parking fees

are low and it is not profitable for the TNC to offer rides, so it sets fares so high that no commuter

chooses ride-hailing, i.e., u(x) is equal to M = αxR + u0 which is the maximum cost associated

with choosing to drive during this time interval. At xR, the parking fee and cost of downtown

congestion become so high that the TNC adjusts its fare so some commuters choose ride-hailing,

i.e, λR(x) = α
α−βRR > 0. The TNC’s profit margin remains constant for x ≥ xR, this guarantees

a steady demand for the TNC, i.e., λR(x) remains constant. The reason is that, if it increases its

margins, then more commuters choose to drive, and if it decreases its margins, more commuters

choose ride-hailing at a lower profit margin for the TNC. The fact that the TNC’s profit margin

remains unchanged does not mean that the price commuters pay for ride-hailing remains constant

too. As mentioned in §3.3.2, u(x) represents the profit margin of the TNC for a commuter who
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leaves at x, but the total ride-hailing cost for this commuter, ατI(x) + ατR(x) + u(x), includes the

costs of inbound congestion τI(x) and drop-off congestion τR(x), which increase as more commuters

leave H. At x̄R, the number of ride-hailing vehicles waiting to drop off their commuters becomes so

high (i.e.,
∫ x̄R
xR

λR(x)−RRdx ≥ Γ) that these vehicles interrupt the flow of conventional vehicles and

increase the amount of congestion they experience. Due to this extra congestion, for x ≥ x̄R, the

departure rate of conventional commuters from H decreases to λC = α−p′(x)
α−β RC − βδ

α−βRR (which

is less than λC(x) for early commuters).

In case (ii), xC ≥ 0 and xR = 0, which means that the TNC offers rides that are less expensive

than driving for early commuters. In this case, all commuters who leave early (i.e., x < xC) choose

ride-hailing, i.e., λC = 0 and λR(x) = RR + β/δ
α−βRC . The TNC sets its profit margin just below

the cost of driving, i.e., u(x) = u0, so while it deters commuters from driving, it maximizes the

TNC’s profit. As the drop-off congestion cost increases, the TNC decreases its profit margin to

guarantee that no commuter chooses to drive. At xC , it is no longer profitable for the TNC to

lower its profit margin, hence, the TNC sets its fare such that some commuters choose to drive,

i.e, λC = α−p′(x)
α−β RC and λR(x) = α

α−βRR > 0 (which is less than λR(x) for early commuters).

Similar to case (i) when both modes of transportation are used, the TNC’s profit margin remains

constant for x ≥ xC . Similar to case (i), at x̄R, due to the extra negativity caused by the drop-off

process, the departure rate of conventional commuters decreases, i.e., λC = α−p′(x)
α−β RC − βδ

α−βRR

for x ∈ [x̄R, xmax].

Case (i) and Case (ii) coincide when xC = xR = 0. In this scenario, both modes of transportation

are chosen by commuters during the entire morning commute window [0, xmax]. We observe this

case in our calibrated model presented in Table 3.1. Since the profit margin of the TNC is constant

(u(x) = u0 = $14.755), the departure rate of commuters who choose ride-hailing remains constant

over time, i.e., λR(x) = 105.88 commuters per minute for x ∈ [0, xmax = 127.85]. Similarly, by

condition A1 the downtown parking fee is assumed to be linearly increasing in departure time x

(i.e., p(x) = 13 + 0.054x and p′(x) is constant), the departure rate of commuters who choose to

drive remains constant, i.e., λC(x) = 85.91 commuters per minute for x ∈ [0, x̄R = 4.68]. At x̄R,

the negative externality of the drop-off process increases downtown congestion for conventional

commuters, resulting in a decrease in the departure rate of conventional commuters to λC(x) =

49.21 commuters per minute for x ∈ [x̄R, xmax]. The daily individual commuter cost, total system
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cost, and the optimal TNC profit are equal to $29.82, $490, 352.40, and $100, 477.84, respectively.

Another important insight derived from the equilibrium is that as the negative externality caused

by ride-hailing drop-offs increases (i.e., δ increase), more commuters switch from driving to ride-

hailing, i.e., λC(x) is decreasing in δ. In addition, as more commuters choose ride-hailing, the total

congestion time for all commuters can increase. This sheds light on the importance of managing the

ride-hailing vehicles’ operations by either providing designated drop-off zones that do not interfere

with the flow of the non-ride-hailing vehicles or imposing drop-off fees on ride-hailing commuters

such that they internalize some of this externality.

3.5 Social Optimum

We analyze the case in which a social planner dictates departure times from H and transportation

mode, i.e., λj(x) for x ∈ [0, xmax] and j ∈ {C,R}, and the ride-hailing fare, u(x) for x ∈ [0, xmax],

that minimize the total system cost in (3.3).3 This is different from the equilibrium case, under

which the goal of the TNC is to maximize its profit, and the goal of a commuter is to minimize

his own travel cost regardless of how his decision affects other commuters. Under equilibrium, the

commuters’ and the TNC’s decisions may lead to congestion, and hence increase the total system

cost. This is not a desirable social outcome, so we find the social optimum (SO) that minimizes

the total system cost. We can state this problem as follows:

min
λC(x),λR(x),u(x)

∫ xmax

0

λH(x)[(α− β)τI(x) + β(T − x)] + λC(x)[(α− β)τC(x) + (α′ − β)tC ] (3.5)

+ λR(x)[(α− β)τR(x) + [(α′ − β)tR + u(x)]dx.

subject to: λH(x) = λC(x) + λR(x)

0 ≤ λC(x), λR(x) ≤ N

0 ≤ u(x).

In the following proposition, we describe the values of λC(x), λR(x) and u(x) that minimize the

total system cost in (3.5) and satisfy the constraints.4 Proposition 3.2 demonstrates that there are

3The social planner dictates the lowest fares that keep the TNC in the market. Otherwise, the social planner, who
minimizes the total system cost, sets the ride-hailing fare to zero, and the TNC stops offering rides.

4As presented earlier in §3.3.1, the first constraint describes the overall departure rate from H, λH(x), is equal
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two forms of SOs: SO1 and SO2.

Proposition 3.2. (a) [SO1] Suppose βNRC
2(α′RC+βRR)RR

− (tC − tR) ≥ 0. There exists an SO such

that λC(x) = RC , λR(x) = RR, u(x) = (α′ − β)(tC − tR) for x ∈ [0, xmax], xmax = N
RR+RC

, and

T = xmax + tC .

(b) [SO2] Suppose βNRC
2(α′RC+βRR)RR

− (tC − tR) < 0. There exists an SO such that λC(x) = 0,

λR(x) = RR, u(x) = RR
RR+RC

(α′ − β)(tC − tR) for x ∈ [0, xmax], xmax = N
RR

, and T = xmax + tR.

Proposition 3.2 states that the social planner’s decisions on commuters’ departure times and

transportation mode, and the ride-hailing fares follow either SO1 or SO2. The social planner decides

between these two SOs based on the total system costs associated with them. In particular, when

the total system cost of SO1 is lower than that of SO2, which can be stated as when βNRC
2(α′RC+βRR)RR

−

(tC − tR) ≥ 0, the social planner wants commuters and the TNC to follow SO1. Otherwise, SO2 is

the optimal solution. We first discuss SO1, which pertains to our calibrated model, and then SO2.

In our calibrated model, βNRC
2(α′RC+βRR)RR

−(tC−tR) = 30.18 > 0, so we observe SO1. Under SO1,

from the social planner’s perspective, the cost of driving, i.e., (α′ − β)tC = $2.03, is equal to the

cost of using rid-hailing, i.e., u(x)+(α′−β)tR = (α′−β)(tC−tR)+(α′−β)tR = (α′−β)tC = $2.03,

so she assigns the maximum number of commuters per minute that does not create any congestion

to use each of the transportation modes, i.e., λC(x) = RC = 76.67 commuters per minute and

λR(x) = RR = 60 commuters per minute which result in τC(x) = τR(x) = 0 for x ∈ [0, xmax].

For the calibrated model, the SO pattern observed is different from the equilibrium pattern

described in §3.4. In fact, the daily total system cost under SO ($111, 439.98) is less than a quarter

of that under equilibrium ($490, 352.40). This discrepancy stems from high drop-off and downtown

congestion times under equilibrium. Under SO, the departure rates from H for for conventional and

ride-hailing commuters are equal to the capacities of most downstream bottlenecks they go through,

i.e., λC(x) = RC and λR(x) = RR, so commuters do not experience any congestion. In contrast,

under equilibrium, the departure rate λR(x) = 105.88 commuters per minute is always higher than

the drop-off rate RR = 60 commuters per minute, so all ride-hailing commuters incur a positive

drop-off congestion cost. In addition, under equilibrium the conventional commuters experience a

to the sum of the departure rates of conventional and ride-hailing commuters, i.e., λC(x) + λR(x). The second
constraint guarantees that the departure rates are positive and do not exceed the total number of commuters, N .
The last constraint guarantees the non-negativity of the ride-hailing fare u(x).
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positive downtown congestion cost, because of the negative externality of the ride-hailing drop-offs

even though the departure rate of conventional commuters is lower than the capacity of roads

downtown, i.e., λC(x) = 49.53 < 76.67 = RC . The low total system cost under SO also means a

lower profit for the TNC. In fact, the TNC’s profit reduces substantially from $100, 477.84 under

equilibrium to $15, 409.76 under SO. This shows that the TNC’s high profit under equilibrium

comes at the expense of creating a significant amount of congestion that can be eliminated if the

social planner can persuade commuters to follow the SO solution.

We compare SO1 with SO in the model where all commuters drive. We observe that having

ride-hailing as an alternative to driving during the morning commute can improve social welfare.

In fact, there does not exist an SO solution such that all commuters are assigned to drive, i.e.,

λC(x) > 0 and λR(x) = 0 for x ∈ [0, xmax], because the total system cost of this scenario is always

higher than that of SO1. Under this scenario, the cost associated with driving, (α′ − β)tC , is equal

to that under SO1, but the total duration of the morning commute, i.e., xmax minutes, is longer

because the total number of commuters who leave H per minute, λH(x) = λC(x) = RC , is lower

than that under SO1, i.e., λH(x) = λC(x) + λR(x) = RC +RR. Thus, ride-hailing leads to a lower

total system cost by shortening the duration of the morning rush hour.

Finally, under SO2, from the social planner’s perspective, the cost of driving per commuter, i.e.,

(α′ − β)tC = $2.03, is higher than that of using ride-hailing, i.e., u(x) + (α′ − β)tR = RR
RR+RC

(α′ −

β)(tC − tR) + (α′ − β)tR = (α′ − β)tC − RC
RR+RC

(α′ − β)(tC − tR) = $1.04, so she assigns the

maximum number of commuters per minute that does not create any congestion to use ride-hailing,

i.e., λC(x) = 0 and λR(x) = RR = 60 commuters per minute for x ∈ [0, xmax].5 This result is

particularly interesting as it represents the possibility of moving toward a world where no one uses

(or even owns) personal vehicles.

3.6 Reducing the Total System Cost of the Morning Commute

As discussed in §3.5, commuters’ decisions under equilibrium are different from the SO decisions.

In this section, we examine solutions that the social planner may adopt in order to close the

5The reason why SO2 results in a higher total system cost is that it extends the duration of the morning commute
from xmax = N

RC+RR
= 20, 000/[(4600+3600)/60] = 146.34 minutes under SO1 to xmax = N

RR
= 20, 000/(3600/60) =

333.33 minutes under SO2.
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gap between the total system cost under equilibrium and that under SO: a short-term solution of

regulating parking fees and curbside drop-off tolls in §3.6.1 and a long-term solution of adjusting

parking and curbside drop-off capacities in §3.6.2.

3.6.1 Pricing and Tolling Schemes

To reduce the total system cost, the social planner can use two levers that are commonly used in

practice (Federal Highway Administration (2020) and Meiszner (2019)): parking fees and curbside

drop-off tolls. We consider a dynamic parking pricing scheme that enables the social planner to

regulate downtown parking fee p(x) based on departure time x. A drop-off tolling scheme, denoted

as π(x), is also imposed on commuters who choose ride-hailing based on their departure time x to

balance downtown congestion τC(x) and drop-off congestion τR(x). Proposition 3.3 describes these

pricing and tolling schemes.

Proposition 3.3. (a) Suppose βNRC
2(α′RC+βRR)RR

− (tC − tR) ≥ 0. Under equilibrium, λC(x), λR(x)

and u(x) follow those in SO1, when p(x) = π(x) = βx for 0 ≤ x ≤ xmax.

(b) Suppose βNRC
2(α′RC+βRR)RR

−(tC− tR) < 0. Under equilibrium, λC(x), λR(x) and u(x) follow those

in SO2, when p(x) > βx− (α′ − β)(tC − tR) RC
RR+RC

and π(x) = βx for 0 ≤ x ≤ xmax.

Proposition 3.3 indicates that there exist a parking fee scheme p(x) and a drop-off toll scheme

π(x) such that the SO presented in Proposition 3.2 results in the same travel cost for all commuters

regardless of their departure time or transportation mode. In other words, when these parking fees

and congestion tolls are imposed, decisions of commuters under equilibrium match those of SO. This

short-term solution is particularly important to the social planner, as it enables her to influence

commuters’ decisions and reduce aggregate congestion and travel costs of the morning commute.

We first discuss the pricing and tolling scheme for SO1, which pertains to our calibrated model,

and then those for SO2. Finally, we discuss demand elasticity under SO.

As mentioned in §3.5, under SO1 the social planner wants commuters who leave at x ∈ [0, xmax]

to use both modes of transportation. Since there is no congestion under SO, i.e., τI(x) = τC(x) =

τR(x) = 0, and the ride-hailing fare u(x) is a constant value, the only time-varying element of the

travel cost of a commuter who leaves H at x, presented in (3.1) and (3.2), is the work schedule

penalty, i.e., β(T − x). Hence, to guarantee an equal travel cost for all commuters, the parking fee
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or drop-off toll that a commuter who leaves H at x pays must offset the time-varying portion of the

work schedule penalty, i.e., p(x) = π(x) = βx. In the calibrated model, under SO1 the duration of

the morning commute window is xmax = 146.34 minutes, so the parking fee and drop-off toll range

from zero (for commuters who leave at time zero) to βxmax = 3.9
60 × 146.34 = $9.51 (for commuters

who leave at xmax). This indicates that under SO the downtown parking fee for conventional

commuters decreases (from at least $13 under equilibrium to at most $9.51 under SO), while a

curbside drop-off fee is imposed on ride-hailing commuters to account for the negative externality

they create. The decrease in parking fee does not mean that the city’s total revenue decreases. In

fact, the city’s daily revenue does not change significantly: it increases by 0.06% from $106, 055.65

in parking revenue under equilibrium to $106, 722.19 in parking and toll revenue under SO. So

instead of collecting high parking fees from only 32% of commuters under equilibrium, the city can

increase its revenue by collecting lower parking fees or drop-off tolls from all commuters under SO.

These pricing schemes are also beneficial for commuters, as their daily travel cost decreases from

$29.82 under equilibrium to $12.51 under SO. This shows that, without regulating parking fees

and drop-off tolls, commuters overpay due to congestion and expensive parking fees. In fact, the

TNC takes advantage of this unregulated market and makes a profit of $100, 477.84, while after

imposing the pricing schemes, its profit significantly decreases to $15, 409.76. However, there is

a risk associated with regulating parking fees and imposing drop-off tolls: the TNC might stop

offering rides due to its low profit. One recommendation for solving this issue is for the city to

(partially) subsidize the drop-off tolls to incentivize the TNC to continue its operations.

Under SO2, similar to SO1, the drop-off toll is set such that all commuters incur the same travel

cost, i.e., π(x) = βx for commuters who leave at x. However, since the social planner does not

want any commuters to drive, she sets the parking fee p(x) higher than the minimum amount that

leads to the same travel cost for driving, i.e., βx− (α′ − β)(tC − tR) RC
RR+RC

.

As mentioned, the daily individual travel cost of a commuter decreases significantly under SO.

This might incentivize some commuters who currently use alternative modes of transportation, such

as public transportation, walking, and biking, to switch to driving or using ride-hailing. Corollary

3.1 describes the relationship between the total number of commuters, N , and the daily travel cost

under SO, denoted by C.
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Corollary 3.1. N = RR+RC
β (C − α′tC).

Corollary 3.1 shows that the number of daily commuters, N , increases until the maximum travel

cost that commuters are willing to pay is reached. For example, if the commuters are willing to

have a daily travel cost of up to $15, then the number of daily commuters increases from its current

value of 20, 000 to N = RR+RC
β (C − α′tC) = 3600+4600

3.9 (15 − 12 × (15/60)) = 27, 333. The increase

in the number of daily commuters prolongs the duration of the morning commute (from 146.34

minutes in the calibrated model to xmax = N/(RR +RC) = 200 minutes in this example) as there

are more commuters who need to park or be dropped off.

3.6.2 Improving the Infrastructure

Although parking pricing and drop-off tolling are practical tools for reducing the cost of the morn-

ing commute, the social planner should also explore a long-term sustainable plan. In particular,

since in both SOs the social planner wants commuters to use ride-hailing, there is a need for more

drop-off spots. However, the social planner faces a trade-off. On the one hand, increasing the

drop-off capacity reduces the drop-off congestion time experienced by ride-hailing commuters, and

the externality of ride-hailing drop-offs on downtown congestion experienced by conventional com-

muters. On the other hand, since drop-off congestion decreases, ride-hailing demand increases,

which can lead to higher ride-hailing fares.

The following corollary derives the optimal drop-off capacity, denoted by R∗
R, that minimizes

the total system cost of the morning commute under SO.6

Corollary 3.2. (a) If βN
2RC

> (α′ − β)(tC − tR), then R∗
R = RI .

(b) Otherwise, R∗
R = min{RI ,max{ RC(βN+

√
2βNRC(α′−β)(tC−tR)

2RC(α′−β)(tC−tR)−βN ,
α′RC+

√
(α′RC)2+2β2NRC/(tC−tR)

2β }}.

Corollary 3.2 shows that the optimal value of curbside drop-off capacity, R∗
R, can at most

be equal to the inbound bottleneck capacity RI . This happens because increasing the drop-off

capacity beyond the inbound bottleneck capacity does not reduce the cost, as commuters will

experience congestion in the inbound bottleneck. To effectively improve the total system cost,

the social planner should increase the inbound bottleneck capacity simultaneously with the drop-

off capacity, because otherwise, one of them becomes the bottleneck and the other one has some

6We assume there is no cost associated with converting a parking space to a drop-off space. However, such a cost
can easily be incorporated in our model, as it is linear in the number of converted parking spots.
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underutilized capacity. In addition, when the ride-hailing fare under SO is low, i.e., part (a) where

βN
2RC

> (α′ − β)(tC − tR), we recommend the social planner to increase drop-off capacity to its

maximum value of RI .
7 In this case the positive effect of reducing congestion dominates the negative

effect of increased ride-hailing fares, as the ride-hailing fare is low and there is room for a surge. We

observe this scenario in our calibrated model, where βN
2RC

= 1300 > 269.1 = (α′−β)(tC−tR). Hence,

the value of the drop-off capacity should increase from its current value of 3, 600 drop-offs per hour

to the value of the inbound bottleneck capacity, which is 4, 600 drop-offs per hour. In this scenario,

we still observe SO1, and the total system cost decreases by 8% from $111, 439.98 to $102, 634.17.

When the ride-hailing fare under SO is high, i.e., part (b) where βN
2RC

≤ (α′ − β)(tC − tR), then

it might not be optimal to increase drop-off capacity all the way to its maximum value of RI . In

particular, the optimal value of RR becomes equal to either the maximum value that guarantees

that SO1 is observed and driving is a viable option, i.e.,
α′RC+

√
(α′RC)2+2β2NRC/(tC−tR)

2β , or the

value that balances the ride-hailing fare and congestion under SO2 when no commuter chooses to

drive, i.e.,
RC(βN+

√
2βNRC(α′−β)(tC−tR)

2RC(α′−β)(tC−tR)−βN .

3.7 Conclusion

In this paper we investigate the effect of ride-hailing on morning rush hour congestion and traffic

patterns. We characterize the departure time and mode of transportation for commuters and ride-

hailing fares for the TNC under equilibrium. Our model also takes into account the capacity of

roadways and the monetary value of travel time (both while in a car and walking).

We show that in an unregulated market the TNC, that maximizes its profit, can create a

significant amount of drop-off and downtown congestion. As more commuters use ride-hailing, the

negative externality of ride-hailing drop-offs increases, hence, some commuters switch from driving

(and parking) their individual vehicles to using ride-hailing. However, if regulated properly, ride-

hailing services can not only reduce the daily travel costs for commuters, but also mitigate downtown

congestion.

To understand the type of regulatory actions needed, we compare the equilibrium patterns

against those determined by a social planner who minimizes the total system cost. In fact, the

7The ride-hailing fare under both types of SO is a function of (α′ − β)(tC − tR), which is the right hand side of
the condition for part (a) of Corollary 3.2.
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socially optimal decisions are significantly different from those of commuters and the TNC under

equilibrium. Under equilibrium commuters’ departure rate can exceed highway and road capacities,

creating a substantial amount of congestion, whereas under SO the departure rates of each type

of commuter is equal to the most downstream bottleneck they go through such that there is no

congestion. The TNC profit margin per commuter is lower under SO than that under equilibrium,

because the social planner directs commuters to drive (by adjusting downtown parking fees) if

ride-hailing fares are high, so the TNC is forced to reduce its fares. This shows that the TNC’s

high profit under equilibrium comes at the expense of creating downtown and drop-off congestion.

To regulate the market, we propose two levers that are commonly used in practice: dynamic

parking fees for commuters who drive and dynamic curbside drop-off tolls for commuters who use

ride-hailing. These two levers influence commuters to choose the transportation mode option that

the social planner intends. By imposing optimal parking fees and drop-off tolls, not only does

the social planner’s revenue increase, the commuters’ daily travel cost also decreases. In fact, the

drop-off toll plays an important role in reducing total system cost, as it results in internalizing

some of the drop-off process’s negative externalities by ride-hailing commuters. In addition, since

ride-hailing commuters pay the drop-off toll, they are no longer willing to pay high ride-hailing

fares, resulting in a lower total profit for the TNC. There is, however, a risk associated with this

strategy: the TNC might cease its operations due to the decline in profits. Since having ride-hailing

as an option for commuting to work leads to a lower total system cost (there is no SO solution

where all commuters are assigned to drive), the social planner can allocate some of its revenue as

subsidy to the TNC to encourage the TNC to continue offering rides.

To further reduce total system cost, we propose creating dedicated drop-off zones downtown.

We derive the optimal increase in curbside drop-off capacity under SO. This increase in capacity

accelerates the morning commute and shortens the duration of the morning rush hour. This happens

because the departure rate of ride-hailing commuters is equal to the drop-off capacity (to avoid

causing drop-off congestion), so more commuters can leave their residences per hour.

To the best of our knowledge, this is the first attempt to characterize the impact of ride-

hailing on downtown congestion patterns with endogenous departure time and transportation mode

decisions. Our paper sheds light on the importance of jointly regulating parking and drop-off fees

as well as improving infrastructure to reap the full benefit of ride-hailing as an alternative to
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driving for morning commuters. There are various ways to explore other extensions to our model.

For example, one could consider stochastic capacities for the inbound highway, drop-off zone and

downtown roads. In addition, our model can be extended to include public transportation as a

mode of transportation. Our model and analysis provide a foundation for understanding how ride-

hailing affects traffic and congestion patterns during the morning commute. We hope that our work

helps pave the road for future research on this matter.
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Chapter 4

Conclusions

In this dissertation, we study three effects of innovative transportation technologies on city oper-

ations. For each of these topics, we provide mathematical models and analysis, and calibrate our

models to data to offer practical guidance for city planners. Our results indicate that, despite the

discernible benefits of these technologies, they might result in unintended negative consequences

(e.g., more congestion). As such, we recommend policies that can mitigate these consequences and

accentuate the benefits of these innovative technologies.

In chapter 1, we investigate the effects of AVs on highway congestion by modeling a segment

of a highway as a queueing system. We analyze two policies for a mixed fleet of HVs and AVs:

the D policy, and the I policy. Using the queueing model, we compare the mean travel time of a

single vehicle as well as the throughput of the highway under each of the two policies, and also

against a benchmark case in which all vehicles are HVs. The queueing model captures the potential

benefits of AVs by taking into account platoons and headway, which are explicitly modeled using

a Markovian arrival process (MAP). The difference in the mix of vehicle fleets leads to different

vehicle headways and speeds (hence, different service rates) under different policies.

Our analysis shows that, contrary to industry experts predictions, the D policy should not be

employed when the AV penetration rate is low. As such, it would be beneficial for U.S. states that

are considering designating a lane to AVs in the near future to reevaluate this policy. In fact, when

the AV penetration rate is low, the D policy is not only outperformed by the I policy both in terms

of mean travel time and throughput, but also it is inferior to the benchmark case which represents

the status quo. The I policy, however, performs surprisingly well, especially for highly congested
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highways: under this policy, a moderate number of AVs can make a substantial improvement.

In chapter 2, we study the effects of AVs on morning rush hour congestion and parking patterns.

For this problem, a continuous-time game theoretic model is used to analytically characterize

commuters’ daily decisions on departure time and parking location. This model is calibrated to

data from Pittsburgh to provide practical recommendations for city planners on parking and tolls

pricing, as well as adjusting infrastructure to the needs and characteristics of AVs.

The results of chapter 2 shed light on the potential negative consequences of AVs on the morning

commute, should appropriate policies not be put in place. Industry experts believe that the ability

of AVs to drop-off commuters at work and park outside downtown will mitigate downtown parking

demand and congestion. However, under equilibrium, the outward flow of AVs from downtown

to the outside downtown parking area and the drop-off process may create a significant amount

of congestion, resulting in a higher total system cost than in the case with no AVs. By imposing

optimal parking and toll prices, that are analytically derived in this chapter, a social planner can

reduce the total system cost to its minimum value. This is, however, a short-term solution, as the

social planner might choose to direct AVs to park downtown in order to reduce congestion. To

reduce both congestion and downtown parking demand, we propose converting some downtown

parking spots to drop-off spots. This not only encourages AVs to park outside downtown, but also

reduces drop-off congestion.

Lastly, in chapter 3, we investigate the effect of ride-hailing drop-offs on morning rush hour

congestion and commuters’ choice with respect to mode of transportation. Similar to chapter 2,

a continuous time game theoretic model is used to derive commuters’ departure time and trans-

portation mode decisions. By calibrating the model to traffic and parking data from Pittsburgh,

we provide pragmatic short- and long-term recommendations for city planners.

Our results show that ride-hailing can be beneficial if proper policies are put in place. Ride-

hailing services reduce downtown parking demand and might also mitigate downtown congestion,

as ride-hailing commuters are dropped off at work without the need to search for finding an empty

parking spot. However, as ride-hailing vehicles accumulate to drop off their commuters, they can

interrupt the flow of conventional commuters who head to downtown parking areas. In fact, as

the negative externality from ride-hailing drop-offs increases, more conventional commuters may

decide to switch to ride-hailing, creating even more congestion. In addition, under equilibrium, by
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strategically deciding on its ride-hailing fare and when to offer rides, the TNC benefits from the

lack of regulations. This results in a higher total system cost than in the case with no ride-hailing.

We find that a social planner is able to reduce the total system cost as well as the individual

commuter cost by imposing dynamic parking fees and drop-off tolls. Since it is not socially optimal

to completely remove ride-hailing as a transportation mode available to morning commuters, the

social planner should ensure that the infrastructure is ready for these type of services by creating

more curbside drop-off spots.

There exist a number of interesting questions for future research that can be derived from

this dissertation. In chapter 1, the potential behavioral effects of either of the AV policies is not

discussed. Future research could examine how implementing the D policy might affect commuters

adoption of AVs, and how these effects differ from those of implementing the I policy. In addition,

as AVs become more prevalent, more data can be gathered to yield more precise results.

Chapter 2 provides a good starting point for understanding the potential impacts of AVs on

morning rush hour traffic and parking patterns, but future research could continue to explore this

topic. For example, AVs might have the option to circle around downtown instead of parking. It

would be important to investigate the effect of this option on downtown congestion and parking.

In addition, future research is needed to determine the sustainability implications of this option.

Another avenue to explore is to consider a mixed fleet of AVs and HVs.

For chapter 3, which investigates the effect of ride-hailing on the travel time of commuters

who drive to work, further attempts could prove quite beneficial to the literature. For example,

one could asses how the interaction between commuters (e.g., example carpooling) might play a

role in commuters’ decisions and morning rush hour traffic patterns. Adding public transportation

as a third transportation option could be another interesting topic to pursue. Finally, after the

COVID-19 pandemic, the possibility of work-from-home warrants further investigation.
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Appendix A

Additional Material for Chapter 1

A.1 Summary of Notation

Notation Definition Notation Definition
λ Arrival rate to the highway N Number of lanes
L Length of the highway segment J Jam density of the highway
c Highway capacity C Irreducible generator matrix of the MAP

C0 Transition rate matrix to the non-absorbing states of
the MAP

C1 Transition rate matrix to the absorbing state of the
MAP

δ0 Initial distribution of the non-absorbing states of the
platoon size distribution

δ Initial distribution of the absorbing state of the platoon
size distribution

G0 Probability transition matrix associated with the non-
absorbing states of the platoon size distribution

G Probability transition matrix associated with the ab-
sorbing state of the platoon size distribution

δi Parameter of the platoon size distribution (or equiva-
lently the reciprocal of the mean platoon size) in the
model i ∈ {B,DA,DH, I}

M Transition probability matrix of the platoon size distri-
bution

α0
n(1) Initial distribution of the non-absorbing states of the

state-dependent intraplatoon headway distribution
αn(1) Initial distribution of the absorbing state of the state-

dependent intraplatoon headway distribution

Q0
n(1) Transition rate matrix associated with the non-

absorbing states of the state-dependent intraplatoon
headway distribution

Qn(1) Transition rate matrix associated with the absorbing
state of the state-dependent intraplatoon headway dis-
tribution

α0
n(2) Initial distribution of the non-absorbing states of the

state-dependent interplatoon headway distribution
αn(2) Initial distribution of the absorbing state of the state-

dependent interplatoon headway distribution

Q0
n(2) Transition rate matrix associated with the non-

absorbing states of the state-dependent interplatoon
headway distribution

Qn(2) Transition rate matrix associated with the absorbing
state of the state-dependent interplatoon headway dis-
tribution

1/ξin Mean intraplatoon headway when there are n
vehicles on the highway in the model i ∈
{B,DA,DH, IA, IR, IHA, IAH, I}

1/ψi
n Mean interplatoon headway when there are n

vehicles on the highway in the model i ∈
{B,DA,DH, IA, IR, IHA, IAH, I}

µi
n Service rate of a single vehicle when there are n vehicles

on the highway in the model i ∈ {B,DA,DH, I}
V I
n (p) Speed of a single vehicle when there are n vehicles on

the highway in the model i ∈ {B,DA,DH, I}, and the
AV proportion is p

k Highway density q Highway flow
hn Mean headway when there are n vehicles on the high-

way
dn Stopping distance when there are n vehicles on the

highway
π̃ Steady state distribution of the MAP π Steady state distribution of an M/Gn/c/c queueing

model
p Proportion of AVs πc Blocking probability
W Mean travel time of vehicles θ Throughput of the highway

Table A1: Table of Notation

Throughout this paper, for model parameters, we use a superscript i ∈ {B,D,DH,DA, I} and

a subscript n ∈ {1, 2, · · · , Nc}, where B, D, DH, DA, and I represent the benchmark case, the D

policy, the HV queue of the D policy, the AV queue of the D policy, and the I policy, respectively,

and n is the number of vehicles on highway. Moreover, for thresholds of λ and p, we use superscripts
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(i, j) for i ∈ {D, I,DI} and j ∈ {W, θ,Wθ}, where D, I, and DI represent the D policy, the I policy,

and comparison between D and I policies, respectively; and W , θ, and Wθ indicate thresholds for

W , θ, and comparison between W and θ, respectively. We also use underscore and overscore to

indicate smaller and larger thresholds, respectively.

Notation Definition Reference

λ(D,W ) The arrival rate threshold before which the D policy has a higher W
than the benchmark case.

Proposition 1.1

λ̄(D,W ) The arrival rate threshold after which the D policy may have a lower
W than the benchmark case.

Proposition 1.1

λ(D,θ) The arrival rate threshold after which the D policy may have a higher
θ than the benchmark case.

Proposition 1.1

λ̄(D,Wθ) The arrival rate threshold after which there exists an interval of p
such that the D policy tends to increase θ, but it does not decrease
W over those of the benchmark case.

Corollary 1.1

λ(D,Wθ) The arrival rate threshold after which there exists an interval of p
such that the D policy tends to increase θ and decrease W over those
of the benchmark case.

Corollary 1.1

λ(I,W ) The arrival rate threshold after which the I policy may have a lower
W than the benchmark case.

Proposition 1.2

λ(I,θ) The arrival rate threshold after which the I policy may have a higher
θ than the benchmark case.

Proposition 1.2

p(D,W ) The AV proportion threshold after which the D policy has a lower W
than the benchmark case for a highly loaded highway.

Proposition 1.1

p(D,θ) ≤ p ≤ p̄(D,θ) The AV proportion interval in which the D policy has a higher θ than
the benchmark case for a highly loaded highway.

Proposition 1.1

p(DI,W ) The AV proportion threshold after which the D policy has a lower W
than the I policy for a highly loaded highway.

Proposition 1.3

p(DI,θ) ≤ p ≤ p̄(DI,θ) The AV proportion interval in which the D policy has a higher θ than
the I policy for a highly loaded highway.

Proposition 1.3

Table A2: Table of Thresholds

A.2 MAP Characterization

As mentioned in §1.3.1.2, to model platooning on a highway using a MAP, one needs to specify

the distributions of the following three elements: (1) the size of each platoon, (2) the time gap

between two consecutive vehicles traveling in the same platoon (“intraplatoon headway”), and (3)

the time gap between the last vehicle of one platoon and the first vehicle of the following platoon

(“interplatoon headway”). We model the size of a platoon using a discrete phase type (PH-type)

distribution of order l. A distribution on 1, 2, · · · , l is a discrete phase-type distribution if it is

the distribution of the first passage time to the absorbing state of a Markov chain with l states,
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such that state l is absorbing and the rest of the states are transient. Any discrete distribution

can be written as a PH-type distribution. This distribution is represented by (δ0,G0). The vector

δ0 corresponds to the probability of starting at the non-absorbing states 1, 2, · · · , l − 1. Similarly,

δ is the probability of starting at the absorbing state l. The vector (δ, δ0) represents the initial

distribution of states, where δ+ δ01 = 1. The (l− 1)× (l− 1) matrix G0 is the probability matrix

associated with non-absorbing transitions (transitions among non-absorbing states). Analogously,

G corresponds to transitions to the absorbing state, satisfying G01 + G = 1, where 1 is a vector

of ones. The transition probability matrix of this discrete-time Markov chain (DTMC) is then

M =
[
G0 G
0 1

]
. We present the example of a uniform distribution on 1, 2, · · · , l in Example 1, while

presenting another example of a geometric distribution in Example 2 at the end of this appendix.

We model the intraplatoon headway, when there are n vehicles in the system, using a continuous

PH-type distribution of order m1 represented by (α0
n(1),Q0

n(1)), having mean 1/ξn. The vector

α0
n(1) (resp., αn(1)) demonstrates the initial distribution of the non-absorbing states (resp., the

absorbing state). The matrices Q0
n and Qn represent a non-absorbing transition rate matrix and

an absorbing transition rate matrix, respectively.

Lastly, we also model the interplatoon headway, when there are n vehicles in the system, using a

continuous PH-type distribution of order m2 represented by (α0
n(2),Q0

n(2)), and with mean 1/ψn.

Having these three elements specified, the platooning process of a single lane can be character-

ized as a MAP with the following matrices:

C0
n =

Q0
n(2) 0

0 I ⊗Q0
n(1)

 , and C1
n =

 δQn(2)α0
n(2) δ0 ⊗Qn(2)α0

n(1)

G⊗Qn(1)α0
n(2) G0 ⊗Qn(1)α0

n(1)

 . (A.1)

The size of these matrices is m×m, where m = m2 +m1(l− 1). See Example 2 in Appendix A.2.

To model platooning on a highway with N > 1 lanes, we consider a MAP with matrices

(C0
n,C

1
n), and assume that a vehicle joins one of the lanes with probability 1/N . The platoon

formation process on a specific lane itself is a MAP with matrices (C0
n + (1 − 1

N )C1
n,

1
NC1

n). This

is called the random thinning of a MAP (see Proposition 2.2.3 in He (2014) for more details).

Example 1. (Discrete PH-type distribution) A uniform distribution on 1, 2, · · · , l can be
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[-¿, ¿=stealth’, auto, semithick, node distance=2.5cm] every
state=[fill=white,draw=black,thick,text=black,scale=1,inner sep=2pt] [state] (1) 1; [state] (2)[
right of=1] 2; [state] (3)[right of=2] 3; (6)[right of= 3] . . .; [state] (4)[right of= 6] l − 1; [state]

(5)[right of= 4] l;
(1) edge[bend left] node l−2

l−1 (2) edge[bend right, pos=0.1, below ] node 1
l−1 (5) (2) edge[bend left]

node l−3
l−2 (3) edge[bend right, pos=0.1, below ] node 1

l−2 (5) (3) edge[bend left] node l−4
l−3 (6)

edge[bend right,pos=0.1, below ] node 1
l−3 (5) (6) edge[bend left] node 1

2 (4) (4) edge[bend left]
node 1 (5) ;

Figure A.1: The Markov chain associated with a uniform distribution on 1, 2, · · · , l.

represented as: G0 =



0 l−2
l−1 0 · · · 0

0 0 l−3
l−2 · · · 0

. . .

0 0 0 · · · 1
2

0 0 0 · · · 0


, and δ0 = [ l−1

l , 0, · · · , 0]. Note that for this Markov

chain the first passage time to the absorbing state l happens with probability 1
l in i steps, where

i = 1, 2, · · · , l. The Markov chain associated with this uniform distribution is illustrated in Figure

A.1. In this Markov chain, transition to l happens in one step, only if we start at l, and this

happens with probability 1
l . If we start at state one and then go to l, it happens in two steps

with the probability l−1
l × 1

l−1 = 1
l . Repeating this process, one can observe that transition to the

absorbing state happens in any i (∈ {1, 2, · · · , l}) steps with the same probability 1
l , representing

a uniform distribution on 1, 2, · · · , l. Note that uniform distribution is only a special case of the

PH-type distributions, and other distributions have different δ0 and G0.

Example 2. (MAP) Suppose the platoon size follows a geometric distribution with parameters

δ = G and δ0 = G0 = 1 − δ. Assuming the interplatoon and intraplatoon headways follow exp(ψ)

and exp(ξ), respectively, we have

C0 =

−ψ 0

0 −ξ

 and C1 =

−(1 − δ)ψ (1 − δ)ψ

δξ −δξ

 .
The generator matrix of the MAP is then

C = C0 + C1 =

−(1 − δ)ψ (1 − δ)ψ

δξ −δξ

 .
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The stationary probability vector of this MAP, π̃, is given by

π̃C = 0, and π̃ = [
δξ

δξ + (1 − δ)ψ
,

(1 − δ)ψ

δξ + (1 − δ)ψ
].

Finally, 1/h = π̃C11 = ξψ
δξ+(1−δ)ψ is the arrival rate of the MAP.

A.3 Proofs

Lemma A.1. For an M/Gn/c/c queueing model, the mean travel time W is increasing in arrival

rate λ ≥ 0.

Proof. By (1.12) and (1.13), we can state the mean travel time as follows:

W =

∑c
n=0 nπn

λ(1 − πc)
=

∑c
n=1{[n(Lλ)n/(n!Vn · · ·V1)]/[1 +

∑c
i=1(Lλ)i/(i!Vi · · ·V1)]}

λ{1 − [(Lλ)c/(c!Vc · · ·V1)]/[1 +
∑c

i=1(Lλ)i/(i!Vi · · ·V1)]}

=
L
∑c−1

n=0(Lλ)n/(n!Vn+1Vn · · ·V1)
1 +

∑c−1
n=1(Lλ)n/(n!Vn · · ·V1)

. (A.2)

Taking the derivative with respect to λ, we get the following:

W ′ =
∂W

∂λ

= L2

{
c−2∑
n=0

(Lλ)n/[n!Vn+2Vn+1 · · ·V1]}{1 +
c−1∑
n=1

(Lλ)n/[n!Vn · · ·V1]} − {
c−2∑
n=0

(Lλ)n/[n!Vn+1Vn · · ·V1]}{
c−1∑
n=0

(Lλ)n/[n!Vn+1Vn · · ·V1]}

{1 +
c−1∑
n=1

(Lλ)n/[n!Vn · · ·V1]}2
.

Let α0 = 1 and αn = (Lλ)n/[n!Vn · · ·V1] for n = 1, 2, · · · , c, then we have:

W ′ = L2

[
c−2∑
n=0

αn/
(
Vn+2Vn+1

)
]
(
1 +

c−1∑
n=1

αn
)
−
( c−2∑
n=0

αn/Vn+1

)( c−1∑
n=0

αn/Vn+1

)
(
1 +

c−1∑
n=1

αn
)2 .

Using induction, we show W is increasing in λ for c = 1, 2, 3, · · · . For c = 1, W = 1/V1 is weakly

increasing in λ (it is independent of λ). As the induction hypothesis, we assume W ′ ≥ 0 when the
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capacity of the system is c. Since the denominator of W ′ is positive, we have:

[
c−2∑
n=0

αn/
(
Vn+2Vn+1

)
]
(
1 +

c−1∑
n=1

αn
)
−
( c−2∑
n=0

αn/Vn+1

)( c−1∑
n=0

αn/Vn+1

)
≥ 0.

Assume the capacity of the system is c+ 1, then W ′ is as follows:

W ′ =

[
c−1∑
n=0

αn/
(
Vn+2Vn+1

)
]
(
1 +

c∑
n=1

αn
)
−

( c−1∑
n=0

αn/Vn+1

)( c∑
n=0

αn/Vn+1

)
(
1 +

c∑
n=1

αn
)2

=

[
c−2∑
n=0

αn/
(
Vn+2Vn+1

)
]
(
1 +

c−1∑
n=1

αn
)
−

( c−2∑
n=0

αn/Vn+1

)( c−1∑
n=0

αn/Vn+1

)
+
αc−1

Vc
( 1
Vc+1

− 1
V1

) +
c−2∑
n=0

λαc−1αn

VcVn+1
[ 1
n+1

− 1
c
]

(
1 +

c∑
n=1

αn
)2 .

Since 1
n+1 −

1
c ≥ 0, 1

Vc+1
− 1
V1
> 0, and by the induction hypothesis, the numerator of W ′ is positive.

The denominator is also positive. Thus, W ′ ≥ 0, when the capacity of the system is c+ 1.

By the principle of mathematical induction W is increasing in λ ≥ 0.

Lemma A.2. For an M/Gn/c/c queueing model, the throughput θ is an increasing function of the

arrival rate λ, if at least one of the following conditions holds:

λ ≥ V1(c+ 1 − 1/πc) − cπc(V1 − Vc)

L(1 − πc)
(A.3)

or

nVn is increasing in n. (A.4)

Proof. proof We first prove the sufficiency of condition (A.3) as follows.

By 1.12, θ for an M/Gn/c/c queueing model can be expressed as:

θ = λ(1 − πc) = λ

[
1 − (Lλ)c/(c!Vc · · ·V1)

1 +
c∑

n=1
(Lλ)n/(n!Vn · · ·V1)

]
= λ

[1 +
c−1∑
n=1

(Lλ)n/(n!Vn · · ·V1)

1 +
c∑

n=1
(Lλ)n/(n!Vn · · ·V1)

]
.
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Letting α0 = 1 and αn = (Lλ)n/[n!Vn · · ·V1] for n = 1, 2, · · · , c, we get θ =

λ+ λ
c−1∑
n=1

αn

1 +
c∑

n=1
αn

, and

πc = αc/(1 +
c∑

n=1
αn). The derivative of θ with respect to λ is as follows:

θ′ =

[1 +
c−1∑
n=1

(n+ 1)αn]
(
1 +

c∑
n=1

αn
)
−
(
1 +

c−1∑
n=1

αn
)( c∑

n=1
nαn

)
(
1 +

c∑
n=1

αn
)2 =

αc[c− (c+ 1)/πc + 1/π2c ] +
c−1∑
n=1

nαn

αc/π2c
.

(A.5)

In the numerator of the above expression, c − (c + 1)/πc + 1/π2c is non-negative, if 0 ≤ πc ≤ 1
c or

πc = 1. For 1
c < πc < 1, we restate the numerator as follows:

αc[c− (c+ 1)/πc + 1/π2c ] +

c−1∑
n=1

nαn ≥ αc[c− (c+ 1)/πc + 1/π2c ] +

c−2∑
n=0

Lλ

V1
αn

= αc

[
c− (c+ 1)/πc + 1/π2c +

Lλ

V1
(

1

πc
− 1) − cVc

V1

]
.

The above expression is positive if λ ≥ V1(c+ 1 − 1/πc) − cπc(V1 − Vc)

L(1 − πc)
. Thus, θ′ ≥ 0, when

λ ≥ V1(c+ 1 − 1/πc) − cπc(V1 − Vc)

L(1 − πc)
.

Next, we use induction to prove the sufficiency of condition (A.4) for c = 1, 2, 3, · · · . For c = 1,

π0 = 1 − π1 = V1
Lλ+V1

, so θ = λV1
Lλ+V1

and θ′ =
V 2
1

(Lλ+V1)2
≥ 0. Thus θ is increasing in λ. Suppose

θ′ ≥ 0 when the capacity of the system is c and cVc ≥ (c− 1)Vc−1. Since in (A.5) the denominator

of θ′ is positive, we have:

[1 +

c−1∑
n=1

(n+ 1)αn]
(
1 +

c∑
n=1

αn
)
−
(
1 +

c−1∑
n=1

αn
)( c∑

n=1

nαn
)
≥ 0.

Assume the capacity of the system is c+ 1, then θ′ is as follows:

θ′ =

[1 +
c−1∑
n=1

(n+ 1)αn]
(
1 +

c∑
n=1

αn
)
−

(
1 +

c−1∑
n=1

αn
)( c∑
n=1

nαn
)

(
1 +

c+1∑
n=1

αn
)2 +

(c− n)
c−1∑
n=1

[
αcαn+1 − αc+1αn

]
+ c(αcα1 − αc+1) + (c+ 1)αc

(
1 +

c+1∑
n=1

αn
)2
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Due to the induction hypothesis, the first fraction is positive. To show that the second fraction is

positive, it suffices to show that each αcαn+1 − αc+1αn for n = 0, 1, · · · , c− 1 is positive. since the

procedure is similar, we show this only for n = c− 1.

αcαc − αc+1αc−1 =
λ2c

(c!Vc · · ·V1)
[
(c− 1)!Vc−1 · · ·V1

]( 1

cVc
− 1

(c+ 1)Vc+1

)
.

This expression is positive, if cVc ≤ (c+ 1)Vc+1.

By the principle of mathematical induction θ is increasing in λ, if nVn is increasing in n.

Proof of Proposition 1.1. a) By (A.2), for an M/Gn/c/c queueing system, the mean travel time

is calculated as follows:

W =

∑c
n=0 nπn

λ(1 − πc)
=
L
∑c−1

n=0(Lλ)n/[n!Vn+1Vn · · ·V1]
1 +

∑c−1
n=1(Lλ)n/[n!Vn · · ·V1]

.

Taking the limit of W as the arrival rate λ approaches 0, we get the following:

W0 = lim
λ→0

W = lim
λ→0

L
∑c−1

n=0(Lλ)n/[n!Vn+1Vn · · ·V1]
1 +

∑c−1
n=1(Lλ)n/[n!Vn · · ·V1]

= L/V1.

In terms of our queueing models, we have WB
0 = L/V B

1 , and WD
0 (p) = pWDA

0 + (1 − p)WDH
0 =

(pL)/V DA
1 + [(1 − p)L]/V DH

1 . Since, V DA
1 = V B

1 and V DH
1 ≤ V B

1 , WD
0 (p) ≥ WB

0 . Moreover,

according to Lemma A.1, WB and WD(p) are both increasing in λ. Thus, for every p there exists

a λ(D,W )(p) such that for λ ≤ λ(D,W )(p), WD
∞(p) ≥ WB

∞. Let λ(D,W ) = minp λ
(D,W )(p), then when

λ ≤ λ(D,W ), WD(p) ≥WB for p ∈ [0, 1].

Taking the limit of W as the arrival rate λ approaches ∞, we get the following expression:

W∞ = lim
λ→∞

W = lim
λ→∞

L
∑c−1

n=0(Lλ)n/[n!Vn+1Vn · · ·V1]
1 +

∑c−1
n=1(Lλ)n/[n!Vn · · ·V1]

= L/Vc. (A.6)

In terms of our queueing models, we have WB
∞ = L/V B

Nc, and WD
∞(p) = pWDA

∞ + (1 − p)WDH
∞ =

(pL)/V DA
c +[(1−p)L]/V DH

(N−1)c. As a result, WD
∞(p) ≤WB

∞ if and only if p ≥ p(D,W ) =
V DAc V BNc−V

DA
c V DH

(N−1)c

V BNcV
DA
c −V BNcV

DH
(N−1)c

(since V DH
(N−1)c−V

DA
c ≤ 0 the direction of inequality changes). Moreover, according to Lemma A.1,

WB and WD(p) are both increasing in λ. Thus, for a given p ≥ p(D,W ), there exists a λ̄(D,W )(p) such

that when λ ≥ λ̄(D,W )(p), WD
∞(p) ≤ WB

∞. Let λ̄(D,W ) = maxp λ̄
(D,W )(p), then when λ ≥ λ̄(D,W ),
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WD
∞(p) ≥WB

∞ for p ≥ p(D,W ). It is immediately clear that, λ(D,W ) ≤ λ̄(D,W ).

b) For an M/Gn/c/c queueing system, the throughput θ is equal to λ(1 − πc); in terms of our

queueing models we have: θB = λ(1 − πBNc) and θD = θDA + θDH = pλ(1 − πDAc ) + (1 − p)λ(1 −

πDH(N−1)c). Thus, θD(p) ≥ θB if and only if pπDAc + (1 − p)πDH(N−1)c ≤ πBNc. Taking the limit of θ for

any M/Gn/c/c queue as the arrival rate λ approaches ∞, we get the following:

θ∞ = lim
λ→∞

θ = lim
λ→∞

λ(1 − πc) = lim
λ→∞

λ

[
1 − (Lλ)c/(c!Vc · · ·V1)

1 +
∑c

n=1(Lλ)n/(n!Vn · · ·V1)

]
= lim

λ→∞

{
Lc−1λc/[(c− 1)!Vc−1 · · ·V1]

(Lλ)c/(c!Vc · · ·V1)

}
= (cVc)/L = NJVc. (A.7)

Suppose λ ≥ λ(D,θ) = minp max{λDAjam/p, λDHjam/(1−p)} . According to Lemma A.2 and our assump-

tion in the statement of the proposition that θDA and θDH are increasing in λ, θDA and θDH are

increasing and decreasing in p, respectively. Let p∗ be the smallest value of the AV proportion such

that p∗λ ≥ λDAjam and (1 − p∗)λ ≥ λDHjam. For p ≥ p∗ (resp., p ≤ p∗), θDA (resp., θDH) is equal to its

jam value, i.e., θDA∞ = cV DA
c /L (resp., θDH∞ = (N −1)cV DH

(N−1)c/L). Since V DA
c + (N −1)cV DH

(N−1)c ≥

NcV B
Nc, there exists p(D,θ) ≤ p∗, such that (1− πDAc )p(D,θ)λ+ (N − 1)cV DH

(N−1)c/L = NcV B
Nc/L, and

there exists p̄(D,θ) ≥ p∗, such that (1 − πDH(N−1)c)(1 − p̄(D,θ))λ+ cV DA
c /L = NcV B

Nc/L.

Proof of Corollary 1.1. a) We want p(D,θ) ≤ p(D,W ). Substituting p(D,θ) =
NcV BNc−(N−1)cV DH

(N−1)c

Lλ(1−πDAc )
,

and p(D,W ) =
V DA
c V B

Nc − V DA
c V DH

(N−1)c

V DA
c V B

Nc − V B
NcV

DH
(N−1)c

, we get λ ≥ λ̄(D,Wθ) =
V BNc(V

DA
c −V DH

(N−1)c
)[NcV BNc−(N−1)cV DH

(N−1)c
]

LV DAc (V BNc−V
DH
(N−1)c

)(1−πDAc )
.

According to Proposition 1.1, p(D,W ) and p(D,θ) exist when λ ≥ λ̄(D,W ) and λ ≥ λ(D,θ), respectively,

p(D,θ) ≤ p(D,W ) if λ ≥ max{λ̄(D,Wθ), λ̄(D,W ), λ(D,θ)}.

b) p̄(D,θ) ≥ (1−πDH(N−1)c)p̄
(D,θ) = (1−πDH(N−1)c)−(

NcV BNc−cV
DA
c

Lλ ), and p(D,W ) =
V DA
c V B

Nc − V DA
c V DH

(N−1)c

V DA
c V B

Nc − V B
NcV

DH
(N−1)c

,

so p̄(D,θ) ≥ p(D,W ) if λ ≥ λ(D,Wθ) =
V BNc(V

DA
c −V DH

(N−1)c
)[NcV BNc−cV

DA
c ]

L{πDH
(N−1)c

V BNc(V
DA
c −V DH

(N−1)c
)+V DH

(N−1)c
(V DAc −V BNc)}

. According to

Proposition 1.1, p(D,W ) and p̄(D,θ) exist when λ ≥ λ̄(D,W ) and λ ≥ λ(D,θ), respectively, p̄(D,θ) ≥

p(D,W ) if λ ≥ max{λ(D,Wθ), λ̄(D,W ), λ(D,θ)}.

Proof of Proposition 1.2. a) As mentioned in Proof of Proposition 1.1, W∞ = L/Vc, soW I
∞(p) =

L/V I
Nc(p) ≤ WB

∞ = L/V B
Nc, if and only if V I

Nc(p) ≥ V B
Nc. Moreover, according to Lemma A.1,

WB and W I(p) are both increasing in λ. Thus, there exists a λ(I,W ) such that for λ ≥ λ(I,W ),

W I
∞(p) ≤WB

∞ if and only if V I
Nc(p) ≥ V B

Nc.
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Proof of (1.14): By (1.2), V I
Nc(p) ≥ V B

Nc if and only if hINc(p) ≤ hBNc. Substituting hBNc with

δB

ψIHHNc

+ 1−δB
ξIHHNc

and hINc(p) with δI
( (1−p)2
ψIHHNc

+ p(1−p)
ψIHANc

+ p(1−p)
ψIAHNc

+ p2

ψIAANc

)
+(1−δI)

( (1−p)2
ξIHHNc

+ p(1−p)
ξIHANc

+ p(1−p)
ξIAHNc

+

p2

ξIAANc

)
, we get the following:

δB

ψIHHNc

+
1− δB

ξIHHNc

≥ δI
( (1− p)2

ψIHHNc

+
p(1− p)

ψIHANc

+
p(1− p)

ψIAHNc

+
p2

ψIAANc

)
+ (1− δI)

( (1− p)2

ξIHHNc

+
p(1− p)

ξIHANc

+
p(1− p)

ξIAHNc

+
p2

ξIAANc

)
= pδI

( p− 2

ψIHHNc

+
(1− p)

ψIHANc

+
(1− p)

ψIAHNc

+
p

ψIAANc

)
+

δI

ψIHHNc

+ p(1− δI)
( p− 2

ξIHHNc

+
(1− p)

ξIHANc

+
(1− p)

ξIAHNc

+
p

ξIAANc

)
+

1− δI

ξIHHNc

Rearranging the inequality, we have the following:

pδI
( 2− p

ψIHHNc

−
(1− p)

ψIHANc

−
(1− p)

ψIAHNc

−
p

ψIAANc

)
+ p(1− δI)

( 2− p

ξIHHNc

−
(1− p)

ξIHANc

−
(1− p)

ξIAHNc

−
p

ξIAANc

)
≥
δI − δB

ψIHHNc

+
1− δI − 1 + δB

ξIHHNc

=
p(δIAA − δIHH)

ψIHHNc

+
p(−δIAA + δIHH)

ξIHHNc

Canceling p’s out, and rearranging the right hand side, we get the following expression:

δI
( 2− p

ψIHHNc

−
1− p

ψIHANc

−
1− p

ψIAHNc

−
p

ψIAANc

)
+ (1− δI)

( 2− p

ξIHHNc

−
1− p

ξIHANc

−
1− p

ξIAHNc

−
p

ξIAANc

)
≥

( δIAA
ψIHHNc

+
1− δIAA

ξIHHNc

)
−

( δIHH
ψIHHNc

+
1− δIHH

ξIHHNc

)
.

b) As mentioned in Proof of Proposition 1.1, θ∞ = cVc/L, so θI∞(p) = NcV I
Nc(p)/L ≥ θB∞ =

NcV B
Nc/L, if and only if V I

Nc(p) ≥ V B
Nc. Moreover, according to Lemma A.2, θB and θI(p) are both

increasing in λ. Thus, there exists a λ(I,θ) such that for λ ≥ λ(I,θ), θI∞(p) ≥ θB∞ if and only if

V I
Nc(p) ≥ V B

Nc.

Proof of Proposition 1.3. In this proof we assume that the conditions stated in Propositions

1.1 and 1.2 for the existence of thresholds of p hold. Next, we discuss each column of the table as

follows.

Column 1: As p approaches zero, V I
n (p) → V B

n , so W I(p) → WB and θI(p) → θB. More-

over, limp→0W
D(p) = limp→0 pW

DA + (1 − p)WDH = WDH = L/V DH
(N−1)c ≥ L/V B

Nc = WB, and

limp→0 θ
D(p) = limp→0 pθ

DA + (1 − p)θDH = θDH = (N − 1)cV DH
(N−1)c/L ≤ NcV B

Nc/L = θB.

Column 2: As p approaches one, V I
Nc(p) → V DA

c , so W I(p) → WD. Also, since V I
Nc(p)
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is increasing in p, WD(p) = L/V I
Nc(1) ≤ WB = L/V B

Nc. Similarly, θI(p) = NcV I
Nc(1)/L ≥

θB = NcV B
Nc/L. However, θI(p) → NcV I

Nc(p)/L ≥ cV I
Nc(p)/L = cV DA

c /L = θDA = limp→1 θ
D.

Moreover, limp→1 θ
D = θDA = cV DA

c /L ≥ NcV B
Nc/L = θB if and only if V DAc

cV BNc
≥ N .

Column 3: We first analyze W . Because we assume that V I
Nc(p) is increasing in p, W I(p) =

L/V I
Nc(p) ≤ L/V I

Nc(0) = L/V B
Nc = WB. For a given p ∈ [0, 1], WD(p) =

pL

V DA
c

+
(1 − p)L

V DH
(N−1c)

≤

L/V I
Nc(p) = W I(p), if and only if −

V DA
c V DH

(N−1)c

V DA
c − V DH

(N−1)c

≤ V I
Nc(p)

(
p − V DA

c

V DA
c − V DH

(N−1)c

)
; derived by

rearranging the first inequality. Note that in this inequality V DA
c − V DH

(N−1)c ≥ 0, because V DA
c =

V I
Nc(1) ≥ V B

Nc ≥ V DH
(N−1)c. The right hand side of this inequality, i.e., V I

Nc(p)

(
p− V DA

c

V DA
c − V DH

(N−1)c

)
,

is increasing in p. Thus, WD(p) ≤W I(p), if and only if p ≥ p(DI,W ), where p(DI,W ) is the smallest

p such that −
V DA
c V DH

(N−1)c

V DA
c − V DH

(N−1)c

≤ V I
Nc(p)

(
p− V DA

c

V DA
c − V DH

(N−1)c

)
.

We need to show that p(DI,W ) ≥ p(D,W ). If p ≤ p(D,W ), WD(p) ≥WB, i.e.,
pL

V DA
c

+
(1 − p)L

V DH
(N−1c)

≥

L/V B
Nc ≥ L/V I

Nc(p) = W I(p). The last inequality holds because we assume that V I
Nc(p) is increasing

in p, and V I
n (0) = V B

n . Thus, for p ≤ p(D,W ), W I(p) ≤WD(p), and p(DI,W ) ≥ p(D,W ).

Next, we analyze θ similar to the proof of Proposition 1.1. Three possible scenarios can occur.

First, if there is no p ∈ [0, 1] that satisfies pλ(1−πDAc ) + (1−p)λ(1−πDH(N−1)c) = NcV I
Nc(p)/L, then

θI(p) > θD(p), and p(DI,θ) and p̄(DI,θ) do not exist. Second, if pλ(1− πDAc ) + (N − 1)cV DH
(N−1)c/L =

NcV I
Nc(p)/L has two roots, then p(DI,θ) (resp., p̄(DI,θ)) is the smallest (resp., largest) p that satisfies

this equality. Lastly, if pλ(1 − πDAc ) + (N − 1)cV DH
(N−1)c/L = NcV I

Nc(p)/L has a unique root (i.e.,

p(DI,θ)), then cV DA
c /L + (1 − p)λ(1 − πDH(N−1)c) ≥ NcV I

Nc(p)/L = θI(p) has a unique root (p̄(DI,θ))

as well. In this case, p(DI,θ) ≤ p̄(DI,θ) holds, because at p̄(DI,θ) the AV queue is jammed, so this

value of p is higher than the value of p at which the AV queue is not jammed, i.e., p(DI,θ).

Since we assume that V I
Nc(p) is increasing in p and it is concave (or convex) everywhere, θI(p)

is also increasing in p, and θD(p) ≥ θI(p), if and only if p(DI,θ) ≤ p ≤ p̄(DI,θ). Lastly, p(D,θ) ≤

p(DI,θ) ≤ p̄(DI,θ) ≤ p̄(D,θ), because V I
Nc(p) ≥ V B

Nc.

Remark. The conditions on V can be expressed in terms of parameters as follows: V I
Nc(p) is in-

creasing in p if
∂[δI(1/ξINc + 1/ψINc) + 1/ξINc]

∂p
≥ 0, and V I

Nc(p) is concave everywhere or convex ev-

erywhere if [δI(1/ξINc+1/ψINc)+1/ξINc]
∂2[δI(1/ξINc + 1/ψINc) + 1/ξINc]

∂p2
−2

∂[δI(1/ξINc + 1/ψINc) + 1/ξINc]

∂p
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≤ 0 or [δI(1/ξINc+1/ψINc)+1/ξINc]
∂2[δI(1/ξINc + 1/ψINc) + 1/ξINc]

∂p2
−2

∂[δI(1/ξINc + 1/ψINc) + 1/ξINc]

∂p
≥

0 for all p ∈ [0, 1].

Proof of Corollary 1.2. As we discussed in the Proof of Proposition 1.3, p(DI,θ) ≤ p̄(DI,θ). To

show that p(DI,θ) ≤ p(DI,W ), we consider two case: p(DI,W ) ≤ V DA
c

V DA
c + (N − 1)V DH

(N−1)c

and p(DI,W ) ≥

V DA
c

V DA
c + (N − 1)V DH

(N−1)c

.

Case 1 (p(DI,W ) ≤ V DA
c

V DA
c + (N − 1)V DH

(N−1)c

): Suppose p ≤ p(DI,W ), i.e., L/V I
Nc(p) ≤ pL/V DA

c +

(1−p)L/V DH
(N−1)c. Let λp(1−πDAc ) = cṼ DA

c /L. By definition p ≤ p(DI,θ), if
cṼ DA

c /L+ (N − 1)cV DH
(N−1)c/L

Nc
≤

V I
NC(p)/L, or equivalently

LNc

cṼ DA
c + (N − 1)cV DH

(N−1)c

≥ L/V I
NC(p). Thus, if

LNc

cṼ DA
c + (N − 1)cV DH

(N−1)c

≥

pL/V DA
c + (1 − p)L/V DH

(N−1)c, then p ≤ p(DI,θ). Rearranging this inequality we get: if p ≥
(V DH

(N−1)c − Ṽ DA
c )V DA

c

(V DH
(N−1)c − V DA

c )[Ṽ DA
c + (N − 1)V DH

(N−1)c]
, then p ≤ p(DI,θ). Note that the numerator of the right

hand side of this inequality is positive, because if V DH
(N−1)c ≤ Ṽ DA

c , p ≥ V DA
c

Ṽ DA
c + (N − 1)V DH

(N−1)c

≥

V DA
c

V DA
c + (N − 1)V DH

(N−1)c

, and this is a contradiction. If V DH
(N−1)c ≥ Ṽ DA

c , p ≥ 0 ≥ [(V DH
(N−1)c −

Ṽ DA
c )V DA

c ]{(V DH
(N−1)c − V DA

c )[Ṽ DA
c + (N − 1)V DH

(N−1)c]}, so in this case p ≤ p(DI,θ). Thus, p(DI,θ) ≤

p(DI,W ).

Case 2 (p(DI,W ) ≥ V DA
c

V DA
c + (N − 1)V DH

(N−1)c

): Suppose p ≤ p(DI,W ), i.e., L/V I
Nc(p) ≤ pL/V DA

c +

(1−p)L/V DH
(N−1)c. In this case, L/V I

Nc(p) ≤ pL/V DA
c + (1−p)L/V DH

(N−1)c ≤
LN

V DA
c + (N − 1)V DH

(N−1)c

,

if and only if p ≥ V DA
c

V DA
c + (N − 1)V DH

(N−1)c

. In other words, if p ≥ V DA
c

V DA
c + (N − 1)V DH

(N−1)c

, θI(p)

is higher than the jam throughput of the D policy, i.e., cV DA
c /L + (N − 1)cV DH

(N−1)c/L. Thus

θI(p) ≥ θD(p) when p ≥ V DA
c

V DA
c + (N − 1)V DH

(N−1)c

. Therefore, p(DI,θ), the smallest value of p at

which θD(p) becomes higher than θI(p), cannot be higher than
V DA
c

V DA
c + (N − 1)V DH

(N−1)c

. Moreover,

p(DI,W ) ≥ V DA
c

V DA
c + (N − 1)V DH

(N−1)c

, thus p(DI,θ) ≤ p(DI,W ).
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A.4 Parameter Estimation

A.4.1 State-dependent Speed Curve

We follow the transportation literature to fit a function to our speed-volume data from Arizona. As

explained in Del Castillo & Benitez (1995) and Jain & Smith (1997), there exist various functions to

represent the relationship between speed and volume. Tiwari & Marsani (2014) provide a summary

of these functions. We fit all different functions mentioned in Tiwari & Marsani (2014) to our data.

Specifically, several linear, logarithmic, polynomial, and exponential functions were tested, and the

functional form y = ae−x
2/b + c gave us the highest coefficient of determination which is 85%.

A.4.2 HV Mean Platoon Size

To estimate the mean platoon size for HVs we use data. The data from Arizona Department of

Transportation do not include the headway between vehicles, so we use another data set from the

Institute for Transportation of Iowa State University. This data set consists of more than 314, 000

instances of headways between vehicles, ranging from milliseconds to hundred of seconds, and is

collected in 2015 from several highways in Iowa, including I-74 and I-80. In order to distinguish

between interplatoon and intraplatoon headways in this data set, we use the mixtools library in

R to divide the headways into two clusters: one for the smaller headway values corresponding

to the intraplatoon headways and the other for the larger headway values corresponding to the

interplatoon headways. Based on the posterior distribution of the clusters, if a headway value is

larger than 2.355 seconds, the probability that it belongs to the intraplatoon headway cluster is less

than 10−7. Thus, when the headway between two consecutive vehicles is less than 2.355 seconds,

we assume they belong to the same platoon; otherwise they are in two separate ones.1 Counting the

number of consecutive vehicles in the same platoon, we get a sample of platoon size values. Among

different discrete distributions, a geometric distribution with parameter 0.667 fits this sample well

(see Figure (A.2)). Thus, we set the mean platoon size of HVs equal to 1/0.667 = 1.5 vehicles.

1We are not able to use this data in estimating the mean interplatoon and intraplatoon headways, since these
parameters depend on the number of vehicles present on the highway, n, and the data from Iowa State University do
not include n.
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Figure A.2: Platoon size data and the fitted curve with R2 = 99.5%.

Figure A.3: Safe stopping distance data and the fitted curve with R2 = 97.6%.

A.4.3 Safe Stopping Time

To estimate the mean interplatoon headway of AVs, we use data from National Highway Traffic

Safety Administration (NHTSA 2015). This dataset provides a set of (dn, Vn) pairs, where dn is

the safe distance (in miles) from the vehicle in front to stop a vehicle when driving at speed Vn

(in miles per hour); this applies to both human-driven and autonomous vehicles. Figure A.3 shows

the pairs of (dn, Vn) provided by NHTSA, and the fitted line to this data. The value of coefficient

of determination, R2, for this curve is 97.6%. The linear regression model fitted to these data

points is dn = 0.001Vn − 0.006 (miles). Noting that safe stopping time is dn
Vn

, we obtain the mean

interplatoon headway in the AV queue, 1/ψDAn , in (9).
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Figure A.4: QoS measures for the D policy when λ = 2, 217 vehicles per hour: (a) mean travel
time, and (b) throughput

A.5 Additional Results

A.5.1 Performance of Lightly Loaded Highways with AVs

For a lightly loaded highway, there is no congestion in the benchmark case, and vehicles are able

to drive freely on the highway. However, since the D policy divides the highway into two queueing

systems, when p is low, the HV queue becomes congested. In this case, the large W of this queue

increases the overall W of the D policy beyond W of the benchmark case. As shown in Figure

A.4(a), for a lightly loaded highway with λ = 2, 217 vehicles per hour, when p ≤ 0.64, the mean

travel time W under the D policy is higher than in the benchmark case. When p > 0.64, this policy

works as well, but not better than the benchmark case, because at this value of λ the average speed

of vehicles on the highway in the benchmark case is already high, so that adding AVs does not

improve the system further. The same argument holds for the throughput θ; see Figure A.4(b).

Figure A.5(a) compares the mean travel time W between the benchmark and those policies with

AVs when λ = 2, 217 vehicles per hour. Under the I policy, one can observe from Figure A.5(a) that

the maximum improvement in W is only two seconds (0.036 minutes). Also, as shown in Figure

A.5(b), at this value of λ the throughput of the benchmark case is equal to the arrival rate which

is the maximum achievable throughput, and thus adding AVs does not improve the throughput.

Comparing the D policy with the I policy, Figure A.5 also shows that the latter performs
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Figure A.5: A comparison between the benchmark case, the D policy and the I policy when
λ = 2, 217 vehicles per hour: (a) mean travel time, and (b) throughput.

better than the former. However, under the I policy, AVs improve traffic flow only marginally,

and therefore a choice between these two policies does not have a significant impact on congestion.

Table A3 shows the maximum percentage of improvement in W and θ over the benchmark case, for

several values of λ ≤ λ(D,W ) = λ(D,θ) = 2, 510. As this table shows, under the I policy, the increase

in θ is almost zero, and W decreases by at most 7%. Since, at all these values of λ, WB < 1 minute,

a 7% improvement in W is insignificant.

λ (vehicles per hour) WB (min.) θB (vehicles per hour) Max increase in W (%) Max increase in θ (%)
500 0.810 500 0.29 0
1000 0.811 1000 0.99 0
1500 0.821 1500 2.13 0
2000 0.835 2000 3.76 0
2500 0.863 2499.97 6.93 0.001

Table A3: Effect of the I policy on the performance measures for lightly loaded highways

In general, when λ is low, unlike the I policy that performs at least as well as the benchmark

case, the D policy may not have as good performance. In this case, HVs are capable of driving at

the free-flow speed in the benchmark case, and assigning one lane to AVs slows HVs down, while

AVs do not improve the speed significantly over the benchmark case.
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(a) (b)

Figure A.6: Comparison between the benchmark case and the AV queue of the D policy: (a) the
mean interplatoon headway, and (b) the weighted mean interplatoon headway.

A.5.2 State-Dependent Speed under the D Policy

Under the D policy, the speed of AVs is higher than that of HVs for any given number of vehicles

in one lane. To understand this result, recall from equation (3) that speed is a function of mean

headway h = 1−δ
ξ + δ

ψ which is a weighted average of the mean intraplatoon headway 1/ξ, and the

mean interplatoon headway 1/ψ, with weights determined by the mean platoon size 1/δ. In the

following, we first compare 1−δ
ξ between HVs and AVs, and then δ

ψ .

First, we compare the weighted mean intraplatoon headways, 1−δ
ξ . For the benchmark case,

the mean platoon size is 1/δB = 1.5 vehicles (see Appendix A.4.2 for details of this estimation),

and the mean intraplatoon headway is 1/ξBn = 1.1 seconds (Tientrakool et al. 2011). Although the

mean intraplatoon headway of vehicles in the AV queue (0.55 seconds) is shorter than that of HVs

in the benchmark case (1.1 seconds), due to the large mean platoon size of AVs (10), the weighted

mean intraplatoon headway of vehicles in the AV queue, 1−δDA
ξDAn

= 0.495 seconds, is longer than

that in the benchmark case, 1−δB
ξBn

= 0.367 seconds. These values are independent of n, and their

difference is in the order of milliseconds.

Next, we compare the weighted mean interplatoon headways, δ
ψ . We can derive the mean

interplatoon headway of HVs by rearranging equation (4) as 1/ψBn = ξBn ND−(1−δB)nV Bn
nV Bn δBξBn

. We plot

1/ψBn and 1/ψDAn in equation (9) in Figure A.6(a), which shows that the mean interplatoon headway

of vehicles in the AV queue is not always lower than that in the benchmark model. However, Figure
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(a) (b)

Figure A.7: Headways under the I policy as a function of the proportion of AVs (p): (a) weighted
mean intraplatoon headway, and (b) weighted mean interplatoon headway.

A.6(b) illustrates that, since the mean size of AV platoons is much higher than that of HV platoons,

the weighted mean interplatoon headway of vehicles in the AV queue (δDA/ψDAn ) is always smaller

than that in the benchmark case (δB/ψBn ), and their minimum difference is 1.15 seconds.

Finally, we combine 1−δ
ξ and δ

ψ . Note that the difference in the weighted mean intraplatoon

headway (= 0.495 − 0.367 seconds) is always smaller than the difference in the weighted mean

interplatoon headway (≥ 1.15 seconds). Therefore, AVs maintain a lower mean headway than HVs,

and the speed of vehicles in the AV queue is higher than the speed of vehicles in the benchmark

case as well as in the HV queue for any n/N .

A.5.3 State-Dependent Speed under the I Policy

We observe that, for very small values of p (i.e., p < 0.08), the speed in the benchmark case can

be higher than that under the I policy. In other words, for such p, there exist values of n such

that V I
n (p) ≤ V B

n . This occurs because for small p and n the mean intraplatoon headway and

the mean interplatoon headway can be both increasing in p. As p increases further, V I
n (p) > V B

n

for all n = 1, 2, · · · , 555. As depicted in Figure 3(b), when n is high (n = 250, 350, and 450),

V I
n (p) increases with p, but for lower values of n (n = 150), V I

n (p) first decreases with p and then

increases. As mentioned in §4.2, the mean headway h is the determining factor of speed at each

value of n, and h is the weighted average of the mean intraplatoon headway ((1 − δ)/ξIn) and the

mean interplatoon headway (δ/ψIn). Thus, to understand this result, we first discuss each of these
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Figure A.8: The HV queue of the D policy when p = 0.93: (a) the state-dependent service rate,
and (b) the steady state distribution.

headways and then combine them.

First, Figure A.7(a) depicts that the weighted mean intraplatoon headway, which is independent

of n, is first increasing and then decreasing in p. The intraplatoon headway of the HV-HV pair

(1.1 seconds) is higher than that of the AV-AV pair (0.55 seconds), and lower than that of the

HV-AV pair (1.4 seconds). When the proportion of AVs (p) is small (high), HV-AV pairs are more

(less) prevalent than AV-AV pairs; hence, as p increases, the weighted mean intraplatoon headway

increases (decreases).

Next, Figure A.7(b) illustrates the weighted mean interplatoon headway, which is the product

of δI and 1/ψIn. While δI is decreasing in p, 1/ψIn is not always decreasing in p. According to (11),

1/ψIn is the weighted average of the mean interplatoon headway of AVs and that of HVs. There

exist values of n such that the mean interplatoon headway of AVs is higher than that of HVs (n/N

is between 20 and 60), so 1/ψIn increases with p at these values of n, and decreases otherwise.

When n is high (e.g., n = 250, 350, or 450), as p increases, the number of platoons decreases (δI

decreasing in p), and the probability of having an AV as the leader of a platoon increases. Because

the interplatoon headway maintained by an AV is set to the safe stopping time, which is lower

than what a HV maintains for these values of n, the mean interplatoon headway (1/ψIn) decreases

with p. Thus, for large values of n, δI/ψIn, is a decreasing function of p. When n is low (e.g.,

n = 150), δI is decreasing in p, but 1/ψIn can be increasing in p. For small values of p, the effect

of 1/ψIn outweighs the effect of δI , and for higher values the opposite is true. As a result, δI/ψIn is
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Figure A.9: The HV queue of the D policy when p = 0.94: (a) the state-dependent service rate,
and (b) the steady state distribution.

increasing in p when p is small enough (e.g., at p = 0.01 and n = 150), and it is decreasing in p for

higher values of p.

Finally, when at least one of n or p is high, since the rate of reduction in the weighted mean

interplatoon headway is higher than the rate of increase in the weighted mean intraplatoon headway,

the mean headway of vehicles is decreasing in p, and AVs increase the speed of vehicles by reducing

the weighted mean interplatoon headway. In contrast, when p and n are both low, AVs decrease

the speed of vehicles by forming larger platoons and increasing the mean platoon headway.

A.5.4 Intuition behind the Sharp Decrease in WDH

The behavior of mean travel time as a function of the arrival rate depends on the steady state

speed of vehicles. Since speed depends on the number n of vehicles on the highway, to calculate

the steady state speed, one needs to know the steady state probability distribution of n, πn, which

depends on the arrival rate λ and the service rate nVn. Intuitively, when there are n vehicles on

the highway such that nVn ≥ λ (resp., nVn ≤ λ), vehicles exit the highway faster (resp., slower)

than they enter, and therefore the number of vehicles decreases (resp., increases) over time. As a

result, for any given n, if nVn ̸= λ, the probability of having n vehicles on the highway is very low.

This implies that with a high probability there are [η] vehicles on the highway in steady state such

that ηVη = λ (where η may not be unique).

In the HV queue of the D policy, as shown in Figure 4(a), the mean travel time, WDH , decreases
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sharply at p = 0.93. This sharp decrease in WDH happens due to the significant difference in the

steady state speed of vehicles, 1/
∑c

n=1 πn(L/Vn), when p = 0.93 and that when p = 0.94. Let

us first consider p = 0.93. For this p, Figure A.8(a) shows that, for n < 11 and 126 < n < 370,

(1 − p)λ > nVn, and therefore the number of vehicles tends to increase over time to the next point

such that (1 − p)λ = nVn, i.e., 11 and 370, respectively. For 11 < n < 126, (1 − p)λ < nVn, and

the number of vehicles tends to decrease over time to the last point where (1 − p)λ = nVn, i.e.,

11. As a result, [η] ∈ {11, 370}, and with a high probability there are either 11 or 370 vehicles on

the highway in steady state. Figure A.8(b) illustrates that the probability of having 370 vehicles

is about 9 times the probability of having 11 vehicles. As a result, in steady state, there is a high

chance that there are 370 vehicles on the highway driving at V DH
370 = 2 miles per hour, and the mean

travel time WDH is primarily determined by this low speed of 2 miles per hour. Next, consider

p = 0.94. For this p, Figure A.9(a) displays that [η] is equal to either 10 or 341, but the probability

of having 10 vehicles is much higher than that of 341; see Figure A.9(b). As a result, with a high

chance vehicles drive at V DH
10 = 68 miles per hour, and WDH is primarily determined by this high

speed of 68 miles per hour.

It is interesting to observe the value of [η] at which the maximum πn is attained changes

dramatically from [η] = 370 at p = 0.93 to [η] = 10 at p = 0.94. We can understand this better by

inspecting (13) closely as follows. As p increases from 0.93 to 0.94, λ is the only parameter that

is changed in πn given in (13). πn consists of two components: π0 = (1 +
∑c

n=1
(λL)n

n!Vn···V1 )−1, and

(λL)n

n!Vn···V1 . Due to the decrease in λ from (1−0.93)11, 342 = 794 at p = 0.93 to (1−0.94)11, 342 = 681

at p = 0.94, π0 is 80 times greater at p = 0.94 than that at p = 0.93. Furthermore, when n = 10

(resp., 370), the (λL)n

n!Vn···V1 term of πn is 80 (resp., 1024) times lower at p = 0.94 than that at p = 0.93.

As a result, π10 = 0.007 at p = 0.93 is significantly lower than π10 = 0.125 at p = 0.94, whereas

π370 = 0.1 at p = 0.93 is significantly higher than π370 = 1.39 × 10−24 at p = 0.94.

Formation of a spontaneous jam (having an abrupt decrease in W ) for HVs has been observed

in prior literature: Bando et al. (1995) and Treiber et al. (2000) show that there exists a critical

traffic density at which the highway becomes jammed. However, analyzing AVs, we observe that

this is not a universal behavior. Figure 4(a) illustrates that WDA increases fairly smoothly from

less than one minute to 2.5 minutes. As depicted in Figure A.10(a), in this case, nVn is strictly

increasing in n, so for each value of the arrival rate pλ, η is unique; for example, at λ = 681 vehicles
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Figure A.10: The AV queue of the D policy: (a) the state dependent service rate, and (b) the
steady state mean speed of vehicles.

per hour, η = 10, and at λ = 794 vehicles per hour, η = 11. Therefore, unlike the HV queueing

system, a small increase in p does not result in a substantial increase in η, and hence πη.

A.5.5 D Policy with Two AV Lanes

We numerically analyze a designated-lane policy with two AV lanes (“D2 policy”). As mentioned

in §5.3, when p is high, i.e., p ≥ p̄(DI,θ), since the D policy dedicates only one lane to the majority

of vehicles, θD(p) becomes lower than θI(p). For high values of p, it seems intuitive to increase the

number of designated lanes to AVs under the D policy.

Figure A.11(a) illustrates mean travel time under different policies for λ = 11, 342 vehicles per

hour.2 We observe that the D2 policy reduces W slightly over the D policy, but the I policy is still

superior to both of these policies. First, comparing WD2(p) with WB, we observe that, similar to

the D policy, WD2(p) ≤ WB only p is higher than a threshold, i.e., p ≥ 0.58. Second, although

WD2(p) shows a similar pattern to WD(p), the sharp decrease in WD2(p) happens at a higher p

(i.e., p = 0.96) than it does in WD(p) (i.e., p = 0.93). As discussed in §5.1, this sharp decrease

happens when the HV queue is not highly loaded anymore. Since the number of HVs lanes under

the D2 policy is one fewer than that under the D policy, the HV queue under the D2 policy becomes

lightly loaded at a higher p than it does under the D policy. Lastly, WD2(p) is never lower than

2When p is low, we expect WD(p) to be lower than WD2(p), but in our numerical analysis, they are equal. Due to
a lack of data for a one-lane highway, we set V DH2

n equal to V DH
2n , which is higher than the actual speed of vehicles

on a one-lane highway.
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Figure A.11: A comparison among D2 policy, the D policy and the I policy when λ = 11, 342
vehicles per hour: (a) mean travel time, and (b) throughput.

W I(p). This happens because the HV queue under the D2 policy stays heavily loaded unless p is

very high, i.e., p ≥ 0.96, and the high W of this queue negatively affects WD2(p).

Figure A.11(b) compares throughput under different policies. In summary, for highly loaded

highways, adding more lanes helps improve throughput when a proportion of AVs is moderately

high, but it has a minimal impact on mean travel time. When p is very low or very high (i.e., p ≤ 0.25

or p ≥ 0.87), the I policy performs the best; when p is moderately low (i.e., 0.25 ≤ p ≤ 0.44), the

D policy performs the best; and when p is moderately high (i.e., 0.44 ≤ p ≤ 0.87), the D2 policy

performs the best. This is intuitive, because the I policy always improve θ over the benchmark

case, but in order for the D and D2 policies to increase θ, p should be moderate, so that both AV

and HV queues are well utilized.

A.6 Robustness Checks

A.6.1 Generalization of Analytical Results

We show analytically that our main results hold for any choice of platoon size distribution, any

hyperexponential or hypoexponential (also called generalized Erlang) distribution for intraplatoon

headway, and any hyperexponential or hypoexponential distribution for interplatoon headway. Note

that the majority of continuous distributions can be approximated with either a hyperexponential
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distribution or a hypoexponential distribution (Harchol-Balter 2013): a hyperexponential distribu-

tion can be used to approximate almost all distributions with a coefficient of variation (CV) greater

than one, and a hypoexponential distribution is useful for approximating distributions with a CV

less than one (including the deterministic case).

[1] Platoon Size Distribution: We first show that, for any discrete platoon size distribution

with mean 1/δ, when intraplatoon and interplatoon headways follow exponential distributions, the

mean headway is equal to h = δ/ψ+ (1− δ)/ξ. According to Alfa and Neuts (1995), every discrete

size distribution with finite support can be represented by

(δ0,G0), where δ0 = [1, 0, · · · , 0], and G0 =



0 ϕ1 0 · · · 0

0 0 ϕ2 · · · 0

...
...

. . .

0 0 0 · · · ϕm

0 0 0 · · · 0


.

The mean of this distribution is equal to 1/δ = δ0(I −G0)−11 = 1 +ϕ1 +ϕ1ϕ2 + · · ·+ϕ1ϕ2 · · ·ϕm.

Assuming the intraplatoon and interplatoon headways follow exp(ξ) and exp(ψ), respectively, we

have

C0 =



−ψ 0 · · · 0

0 −ξ · · · 0

...
...

. . .

0 0 · · · −ξ


, and C1 =



0 ψ 0 · · · 0

(1 − ϕ1)ξ 0 ϕ1ξ · · · 0

...
...

. . .

(1 − ϕm)ξ 0 0 · · · ϕmξ

ξ 0 0 · · · 0


.

Note that these matrices are of size (m+ 2) × (m+ 2). The generator matrix of the MAP is then

equal to

C = C0 + C1 =



−ψ ψ 0 · · · 0

(1 − ϕ1)ξ −ξ ϕ1ξ · · · 0

...
...

. . .

(1 − ϕm)ξ 0 0 · · · ϕmξ

ξ 0 0 · · · −ξ


.
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The stationary probability vector of this MAP, π̃, is given by π̃C = 0, and π̃ = [ δξ
δξ+(1−δ)ψ ,

δψ
δξ+(1−δ)ψ ,

ϕ1δψ
δξ+(1−δ)ψ , · · · ,

ϕ1ϕ2···ϕmδψ
δξ+(1−δ)ψ ].

Finally, 1/h = π̃C11 = ξψ/[δξ+(1−δ)ψ] is the arrival rate of the MAP. Hence, h = δ/ψ+(1−δ)/ξ.

[2] Hyperexponential Distributions for Intraplatoon Headway and Interplatoon Head-

way: We show that, for any hyperexponential intraplatoon distribution and any hyperexponential

interplatoon distribution with means 1/ξ and 1/ψ, respectively, the mean headway is equal to

h = δ/ψ + (1 − δ)/ξ. Suppose the platoon size follows a geometric distribution with parameters

δ = G and δ0 = G0 = 1 − δ. Assuming the intraplatoon headway follows a hyperexponential

distribution with m1 phases and mean 1/ξ, we have

Q0(1) =


−ξ1

. . .

−ξm1

 ,Q(1) =


ξ1
...

ξm1

 , and α0(1) = (α11, · · · , α1m1).

The mean of this distribution is equal to 1/ξ = −Q0(1)−1α0(1) =
∑m1

i=1 α1i/ξi. Similarly, suppose

the interplatoon headway follows a hyperexponential distribution with m2 phases and mean 1/ψ.

In this case, we have

Q0(2) =


−ψ1

. . .

−ψm2

 ,Q(2) =


ψ1

...

ψm2

 , and α0(2) = (α21, · · · , α2m2).

The mean of this distribution is equal to 1/ψ = −Q0(2)−1α0(2) =
∑m2

i=1 α2i/ψi.

By substituting these matrices into (2), we can characterize the MAP with the following ma-

trices:

C0 =



−ψ1

. . .

−ψm2

−ξ1
. . .

−ξm2


, and
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C1 =



δα21ψ1 · · · δα2m2ψ1 (1 − δ)α11ψ1 · · · (1 − δ)α1m1ψ1

...
...

...
...

δα21ψm2 δα2m2ψm2 (1 − δ)α11ψm2 · · · (1 − δ)α1m1ψm2

δα21ξ1 δα2m2ξ1 (1 − δ)α11ξ1 · · · (1 − δ)α1m1ξ1
...

...
...

...

δα21ξm1 δα2m2ξm1 (1 − δ)α11ξm1 · · · (1 − δ)α1m1ξm1


.

The generator matrix of the MAP is then

C = C0+C1 =



(δα21 − 1)ψ1 · · · δα2m2ψ1 (1 − δ)α11ψ1 · · · (1 − δ)α1m1ψ1

. . .
...

...

δα21ψm2 (δα2m2 − 1)ψm2 (1 − δ)α11ψm2 · · · (1 − δ)α1m1ψm2

δα21ξ1 δα2m2ξ1 [(1 − δ)α11 − 1]ξ1 · · · (1 − δ)α1m1ξ1
. . .

δα21ξm1 δα2m2ξm1 (1 − δ)α11ξm1 · · · [(1 − δ)α1m1 − 1]ξm1


.

The stationary probability vector of this MAP, π̃, is given by π̃C = 0, and

π̃ = [
δα21ψ−1

∏m1
i=1 ξi

γ
, · · · ,

δα2m2ψ−m2

∏m1
i=1 ξi

γ
,

(1 − δ)α11ξ−1
∏m2
i=1 ψi

γ
, · · · ,

(1 − δ)α1m1ξ−m1

∏m2
i=1 ψi

γ
],

where γ = δ
∏m1
i=1 ξi(α21ψ−1 + · · · + α2m2ψ−m2) + (1 − δ)

∏m2
i=1 ψi(α11ξ−1 + · · · + α1m1ξ−m1), ξ−i =

ξ1 · · · ξi−1ξi+1 · · · ξm1 for i ∈ {1, · · · ,m1} and ψ−j = ψ1 · · ·ψj−1ψj+1 · · ·ψm1 for j ∈ {1, · · · ,m2}.

Finally, after some simplifications, the mean headway of vehicles is calculated as h = 1/(π̃C11) =

δ
ψ + 1−δ

ξ .

[3] Hypoexponential Distributions for Intraplatoon Headway and Interplatoon Head-

way: We show that, for any hypoexponential intraplatoon distribution and any hypoexponential

interplatoon distribution with means 1/ξ and 1/ψ, respectively, the mean headway is equal to

h = δ/ψ + (1 − δ)/ξ.3 Suppose the platoon size follows a geometric distribution with parame-

ters δ = G and δ0 = G0 = 1 − δ. Assuming the intraplatoon headway follows a hypoexponential

3A deterministic distribution (or constant) can be approximated as an Erlang distribution. This Erlang distribution
is a special case of a hypoexponential distribution for when the number of phases grows large while the time spent
in each state goes to zero.
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distribution with m1 phases and mean 1/ξ, we have

Q0(1) =



−ξ1 ξ1 0 · · · 0

0 −ξ2 ξ2 · · · 0

. . .

0 0 0 · · · −ξm1


,Q(1) =



0

...

0

ξm1


, and α0(1) = (1, 0, · · · , 0).

The mean of this distribution is equal to 1/ξ = −Q0(1)−1α0(1) =
∑m1

i=1 1/ξi. Similarly, suppose

the interplatoon headway follows a hyperexponential distribution with m2 phases and mean 1/ψ.

In this case, we have

Q0(2) =



−ψ1 ψ1 0 · · · 0

0 −ψ2 ψ2 · · · 0

. . .

0 0 0 · · · −ψm2


,Q(2) =



0

...

0

ψm2


, and α0(2) = (1, 0, · · · , 0).

The mean of this distribution is equal to 1/ψ = −Q0(2)−1α0(2) =
∑m2

i=1 1/ψi.

By substituting these matrices into (2), we can characterize the MAP with the following ma-

trices:

C0 =



−ψ1 ψ1 0 · · · 0

0 −ψ2 ψ2 · · · 0

. . .

0 0 0 · · · −ψm2

−ξ1 ξ1 0 · · · 0

0 −ξ2 ξ2 · · · 0

. . .

0 0 0 · · · −ξm1



, and

127



C1 =



0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0

δψm2 0 · · · 0 (1 − δ)ψm2 0 · · · 0

0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0

δξm1 0 · · · 0 (1 − δ)ξm1 0 · · · 0



.

The generator matrix of the MAP is then

C = C0 + C1 =



−ψ1 ψ1 0 · · · 0 0 0 0 · · · 0

0 −ψ2 ψ2 · · · 0 0 0 0 · · · 0

. . . 0 0 0 · · · 0

δψm2 0 0 · · · −ψm2 (1 − δ)ψm2 0 0 · · · 0

0 0 0 · · · 0 −ξ1 ξ1 0 · · · 0

0 0 0 · · · 0 0 −ξ2 ξ2 · · · 0

. . .

δξm1 0 0 · · · 0 (1 − δ)ξm1 0 0 · · · −ξm1



.

The stationary probability vector of this MAP, π̃, is given by π̃C = 0, and

π̃ = [
δξψ

ψ1[δξ + (1 − δ)ψ]
, · · · , δξψ

ψm2 [δξ + (1 − δ)ψ]
,

(1 − δ)ξψ

ξ1[δξ + (1 − δ)ψ]
, · · · , (1 − δ)ξψ

ξm1 [δξ + (1 − δ)ψ]
].

Finally, after some simplifications, the mean headway of vehicles is calculated as h = 1/(π̃C11) =

δ
ψ + 1−δ

ξ .

A.6.2 Sensitivity Analysis

We perform sensitivity analyses on several model parameters used in our numerical analysis in

§4. We observe that, although different model parameters may affect the performance of our

policies, the insights provided by our calibrated model as well as our recommended policies remain
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unchanged: if the performance metric considered by policy makers is mean travel time W , we

recommend the I policy; otherwise, we recommend the D policy in a moderate region of p, and the

I policy in all other regions. Next, we present details of 10 possible cases we consider for sensitivity

analyses.

Case 1. (AVs maintain a fixed headway of 0.55 seconds) As the AV technology improves,

these vehicles might become capable of maintaining a fixed headway, improving their efficiency

with respect to traffic flow. We perform a sensitivity analysis on this feature as follows. Suppose

platoon size, intraplatoon headway, and interplatoon headway of AVs are deterministic, and an AV

maintains an intraplatoon headway and an interplatoon headway of 0.55 seconds from the vehicle

immediately in front, whether this vehicle is an AV or an HV.4 Recall that, in our base model,

an AV maintains an intraplatoon headway of 1.4 seconds from an HV, and interplatoon headway

equal to safe stopping time. These changes affect the state-dependent speed in the AV queue of the

D policy, V DA
n , as well as the state-dependent speed under the I policy, V I

n (p). For the AV queue,

by substituting hDAn = 0.55 sec in V DA
n = 1/(nhDAn ), we get V DA

n = min{74.7, 6,545.46n }, where

74.7 is the free-flow speed of the highway. Under the I policy, by substituting 1/ξIAA = 1/ξIHA =

1/ψIAA = 1/ψIHA = 0.55 sec in (10) and (11), and after some simplifications, we obtain V I
n (p) for

n = 1, 2, · · · , 555 and p ∈ [0, 1] as follows:

V In (p) = min{74.7,
3, 600N/n

0.55p+ (1− p)
(1.1+1.87p)

3
+ 2.17p[10, 800− 0.55n(46.67e

− n2

21,049 + 3.13)]/[3n(46.67e
− n2

21,049 + 3.13)]

}.

Figure A.13 shows that our results are reasonably robust to this change, and the overall intuition

provided by the original calibrated model holds: if the performance metric considered by policy

makers is mean travel time W , we recommend the I policy; otherwise, we recommend the D policy

in a moderate region of p, and the I policy in other regions. We observe that this case improves

the performance of both D policy and I policies over the base case presented in §5, but the amount

of improvement in the performance of the I policy is more significant than that of the D policy,

because the I policy benefits from this change in all three lanes of the highway. In terms of W , this

change reduces W I by at most 3.11 minutes (79.19%) compared to the original W I , and reduces

4Since all consecutive AVs form one platoon, we consider this scenario only when there is a sufficient load of AVs
that can maintain a fixed headway of 0.55 seconds.
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Figure A.12: An illustration of homogeneous platoons. In this example, n = 20, p = 0.5, δA = 0.2,
and δH = 0.5.

WD by at most 0.79 minutes (28.72%) compared to the original WD. In terms of θ, the maximum

increase in θ is 3, 300 vehicles per hour (43.68%) under the I policy and 1, 870 vehicles per hour

(39.98%) under the D policy, both compared to their corresponding original values. As a result,

the interval of p in which the D policy outperforms the I policy, in terms of θ, slightly shrinks from

p ∈ [0.25, 0.55] in the base case to p ∈ [0.32, 0.55].

Case 2. (Homogeneous platoons) In order to investigate the robustness of our results with

respect to platoon mixture (i.e., the degree to which a vehicle, HV or AV, forms homogeneous

platoons), we perform a sensitivity analysis on this feature as follows. Whereas, platoons can

consist of both AVs and HVs under our original I policy, we consider an extreme case, in which

platoons are entirely homogeneous so that each platoon consists of only AVs or only HVs (see

Figure A.12). Note that this change affects only the I policy. We first explain our approach and

then discuss the numerical result from the calibrated model.

We update the mean intraplatoon headway in (10), as follows:

1/ξIn = [
npδA(1/δA − 1)

ξIAAn

+
n(1 − p)δH(1/δH − 1)

ξIHHn

]/n = 0.495p+ 0.367(1 − p).

In this expression, the term npδA(1/δA− 1) consists of npδA, which is the number of AV platoons,

and (1/δA − 1), which is the number of intraplatoon headways that exist within an AV platoon.

Hence, npδA(1/δA−1) represents the total number of intraplatoon headways within all AV platoons,

and npδA(1/δA−1)
nξIAAn

indicates the mean intraplatoon headway of AVs. Similarly, n(1−p)δH(1/δH−1)
nξIHHn

represents the mean intraplatoon headway of HVs. We also update the mean interplatoon headway

in (11), as follows:
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1/ψIn =
{ (npδA − 1)+

ψIAAn

+
[n(1− p)δH − 1]+

ψIHHn

+
1

2
(

1

ψIAHn

+
1

ψIHAn

)
}
/n

=
(0.1np− 1)+(10, 800− 2.97n) + n

2
(10, 800− 7.56n)

n(3, 000 + 0.6n)
+

{n
2
+ [0.667n(1− p)− 1]+}[10, 800− 0.55n(46.67e

− n2

21,049 + 3.13)]

n2(46.67e
− n2

21,049 + 3.13)

.

In this expression, the terms npδA − 1 and n(1 − p)δH − 1 represent the number of AV interpla-

toon headways and the number of HV interplatoon headways, respectively. In addition, the term

1
2( 1
ψIHAn

+ 1
ψIAHn

) represents the interplatoon headway between the stream of AV platoons and the

stream of HV platoons, considering the following two scenarios: there exists an AV platoon that

follows an HV platoon and maintains an interplatoon headway of 1
ψIHAn

seconds, or there exists an

HV platoon that follows an AV platoon and maintains an interplatoon headway of 1
ψIAHn

seconds.

We assume either of these scenarios happens with probability 1
2 .

As discussed in the paper, the mean headway of vehicles when there are n vehicles on the

segment is calculated as hIn = 1
ξIn

+ 1
ψIn

. Substituting hIn in V I
n (p) = N/nhIn, we obtain V I

n (p) for

n = 1, 2, · · · , 555, and p ∈ [0, 1] as follows:

V
I
n (p) = min{74.7,

3, 600N

0.495pn + 0.367n(1 − p) +
(0.1np−1)+(10,800−2.97n)+n

2
(10,800−7.56n)

n(3,000+0.6n)
+

{n
2

+[0.667n(1−p)−1]+}[10,800−0.55n(46.67e
− n2

21,049 +3.13)]

n2(46.67e
− n2

21,049 +3.13)

}.

For a given p, although the overall number of platoons is equal to that of the original I policy,

i.e., n[pδA + (1− p)δH ] = nδI , the chance of having an HV at the head of a platoon increases from

(1− p) in the original model to δH

δI
(1− p). Since δH < δI , this leads to a higher mean interplatoon

headway than that under the original I policy. As a result, the performance of the I policy is slightly

inferior to that of the original I policy.

As Figure A.14 illustrates, this change in the platoon mixture can increase W by at most

1.28 minutes (15.65%), and decrease θ by 793.27 vehicles per hour (13.49%). As Figure A.14(a)

depicts, the I policy leads to a lower W than the D policy for all values of p, except when p is

between p(DI,W ) = 0.93 and 0.95. Figure A.14(b) shows that, when 0.21 ≤ p ≤ 0.64, the D policy

outperforms the new I policy in terms of θ. This interval is wider than what we have for the

original I policy, i.e., p ∈ [0.25, 0.55], presented in Figure 6. This is still aligned with our policy

recommendations in §6.
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Case 3. (AV mean platoon size increases from 10 to 20 vehicles) As the AV technology

advances, these vehicles might be able to form larger platoons. Hence, we perform a sensitivity

analysis on mean platoon size of AVs. For this case, we assume the mean platoon size of AVs, 1
δDA

, is equal to 20 vehicles, and we update the mean platoon size under the I policy as 1
δI

= 6
4−3.7p .

Substituting these values in Vn = N
nhn

, we get V DA
n = min{74.7, 3,600+1.08n

0.7025n } for n = 1, 2, · · · , 185,

and we have V I
n (p) for n = 1, 2, · · · , 555 and p ∈ [0, 1] as follows:

V In (p) = min{74.7,
21, 600N/[n(2 + 3.7p)]

4−3.7p
2+3.7p

[
(10,800−7.56n)p+4.59np2

3,000+0.6n
+

10,800(1−p)

n

(
46.67e

− n2
21,049 +3.13

) − 0.55(1− p)

]
+ [0.55p2 + 1.4p(1− p) + 1.1(1− p)]

}.

Figure A.15 illustrates that this change improves the performance of both policies, because

having larger platoons leads to smaller mean headways. However, our recommended policies remain

mostly the same; in terms of W , the I policy outperforms the D policy for all values of p, and in

terms of θ, the I policy is superior to the D policy unless p ∈ [0.25, 0.60] (compared to p ∈ [0.25, 0.55]

depicted in Figure 6).

Case 4. (AV-AV and HV-AV mean intraplatoon headways decrease from 0.55 and 1.4

seconds, respectively, to 0.1 seconds) As the AV technology advances, these vehicles might be

able to maintain much smaller intraplatoon headways. Hence, we perform a sensitivity analysis on

mean intraplatoon headway of AVs. For this case, we reduce the mean intraplatoon headways of

AVs to 0.1 seconds, i.e., 1
ξDA

= 1
ξIAA

= 1
ξIHA

= 0.1 sec. By substituting these values in Vn = N
nhn

,

we get V DA
n = min{74.7, 3,600+2.16n

0.45n } for n = 1, 2, · · · , 185, and we have V I
n (p) for n = 1, 2, · · · , 555

and p ∈ [0, 1] as follows:

V I
n (p) = min{74.7,

10, 800N/[n(1 + 1.7p)]

2−1.7p
1+1.7p

[
(10,800−7.56n)p+4.59np2

3,000+0.6n + 10,800(1−p)

n

(
46.67e

− n2
21,049+3.13

) − 0.55(1 − p)

]
+ (1.1 − p)

}.

As Figure A.16 depicts, this change improves the performance of both policies. The effect of

this change on the performance of the I policy is more significant when p is high, because as p

increases, the mean headway decreases. However, since the D policy designates a lane to AVs, this

policy starts to benefit from this change at lower values of p. In addition, the jam throughput of
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the D policy increases by 78%, from 5, 419 vehicles per hour in the base case to 9, 627 vehicles per

hour. The improvement in the throughput of the I policy is not as substantial as that of the D

policy, because the mean headways of HVs remain unchanged. Taken together, this leads to the I

policy dominating with respect to W for all values of p, and a wider region of p, i.e., p ∈ [0.26, 0.72],

compared to p ∈ [0.25, 0.55] of the base case, in which the D policy outperforms the I policy in

terms of θ.

Case 5. (AV mean interplatoon headway decreases to half of the safe stopping time)

As the AV technology advances, these vehicles might be able to maintain smaller interplatoon

headways. Hence, we perform a sensitivity analysis on mean interplatoon headway of AVs. For

this case, we update the AV mean interplatoon equations as follows: 1
ψDAn

= 0.5(3.6 − 21.6
V Dn A

),

1
ψIAAn

= 10,800−2.97n
6,000+0.6n , and 1

ψIHAn
= 10,800−7.56n

6,000+0.6n . By substituting these values in Vn = N
nhn

, we get

V DA
n = min{74.7, 3,600+1.08n

0.675n } for n = 1, 2, · · · , 185, and we have V I
n (p) for n = 1, 2, · · · , 555 and

p ∈ [0, 1] as follows:

V In (p) = min{74.7,
10, 800N/[n(1 + 1.7p)]

2−1.7p
1+1.7p

[
(10,800−7.56n)p+4.59np2

6,000+0.6n
+

10,800(1−p)

n

(
46.67e

− n2
21,049 +3.13

) − 0.55(1− p)

]
+ [0.55p2, 1.4p(1− p) + 1.1(1− p)]

}.

As Figure A.17 illustrates, although this change improves the performance of both policies over

the base case, it does not affect our recommended policies in §6: The I policy is recommended

for all values of p when considering W , and for all values of p, except for p ∈ [0.27, 0.59], when

considering θ.

Case 6. (Simultaneous improvement of Cases 3, 4, and 5) Technological improvement

of AVs might affect the AV mean headway in one (or more) of the following ways: (1) by in-

creasing mean platoon size (Case 3), (2) by decreasing mean intraplatoon headway (Case 4), and

(3) by decreasing mean interplatoon headway (Case 5). In Case 6, we apply all three changes

simultaneously to ensure the robustness of our policy recommendations. In this case, we have

V DA
n = min{74.7, 3,600+0.54n

0.185n } for n = 1, 2, · · · , 185, and we have V I
n (p) for n = 1, 2, · · · , 555 and
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p ∈ [0, 1] as follows:

V I
n (p) = min{74.7,

21, 600N/[n(2 + 3.7p)]

4−3.7p
2+3.7p

[
(10,800−7.56n)p+4.59np2

6,000+0.6n + 10,800(1−p)

n

(
46.67e

− n2
21,049+3.13

) − 0.55(1 − p)

]
+ (1.1 − p)

}.

Figure A.18 shows that technological improvement of AVs significantly boosts the performance

of both policies. In terms of W , this change reduces W I by at most 3.55 minutes (81.51%) compared

to the original W I , and reduces WD by at most 1.55 minutes (65.80%) compared to the original

WD. In terms of θ, the maximum increase in θ is 4, 092 vehicles per hour (57.68%) under the I policy

and 6, 654 vehicles per hour (142.31%) under the D policy, both compared to their corresponding

original values. In this case, when p ≥ 0.93, the D policy is no longer highly loaded, and has the

maximum achievable throughput, i.e., θ = λ = 11, 342 vehicles per hour. The performance of the

I policy also improves substantially. Under this policy, when p ≥ 0.75, the highway is no longer

highly loaded. Despite these performance improvements, our recommended policies stay intact. In

other words, if the performance metric considered by the policy makers is W , we recommend the I

policy; otherwise, we recommend the D policy in a moderate region of p, i.e., p ∈ [0.32, 0.55], and

the I policy in the other regions.

Case 7. (Mean interplatoon headway of an AV-HV pair increases from 1.1 seconds to

2.2 seconds) Due to unfamiliarity of human drivers with AVs, an HV might maintain a larger gap

from an AV than it does from another HV. Hence, we examine the performance of the I policy

when the intraplatoon headway of an AV-HV pair is increased to 2.2 seconds, i.e., 1
ξIAH

= 2.2 sec.

This change affects only the I policy. By substituting this value in V I
n (p) = N/n

δI

ψIn
+ 1−δI

ξIn

, we obtain

V I
n (p) for n = 1, 2, · · · , 555 and p ∈ [0, 1] as follows:

V In (p) = min{74.7,
10, 800N/[n(1 + 1.7p)]

2−1.7p
1+1.7p

[
(10,800−7.56n)p+4.59np2

3,000+0.6n
+

10,800(1−p)

n

(
46.67e

− n2
21,049 +3.13

) − 0.55(1− p)

]
+ [0.55p2, 1.4p(1− p) + 1.1(1− p2)]

}.

Figure A.19 shows that, as expected, if HVs maintain larger headways from AVs than HVs,

the performance of the I policy is negatively affected ( especially in terms of θ). However, even by

doubling the AV-HV headway, our overall policy recommendations are not significantly impacted;
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only the moderate region of p in which the D policy is recommended based on θ becomes wider,

i.e., p ∈ [0.23, 0.61] (compared to p ∈ [0.25, 0.55] in the base case, depicted in Figure 6).

Case 8. (Highway length increases from one mile to two miles) To check the robustness of

our results with respect to the choice of highway length L, we consider a highway segment of two

miles. As our analysis shows (see (A.6) and (A.7) in Appendix A.3), for a highly loaded highway,

mean travel time W should be proportional to the length of the highway, and throughput θ, which

represents the number of vehicles that exit the highway per hour, should be independent of the

choice of L. To demonstrate this, we substitute L = 2 miles into Vn = NL
nhn

. As a result, V DA
n is

equal to min{74.7, (3,600L+2.16
0.855n } for n = 1, 2, · · · , 370, and we have V I

n (p) for n = 1, 2, · · · , 1110 and

p ∈ [0, 1] as follows:

V In (p) = min{74.7,
10, 800NL/[n(1 + 1.7p)]

2−1.7p
1+1.7p

[
(10,800∗L−7.56n)p+4.59np2

3,000∗L+0.6n
+

10,800∗L(1−p)

n

(
46.67e

− n2
21,049 +3.13

) − 0.55(1− p)

]
+ [0.55p2 + 1.4p(1− p) + 1.1(1− p)]

}.

Figure A.20(a) depicts a comparison between the D policy and the I policy in terms of W . We

observe that the results are identical to those of the base case illustrated in Figure 6(a), except that

the graph is vertically scaled up by a factor of two. Similarly, in terms of θ, Figure A.20(b) shows

that our results for a two-mile highway segment are identical to those depicted in Figure 6(b).

Case 9. (Mean intraplatoon headway of an HV-AV pair reduces from 1.4 seconds to

0.55 seconds) To assess the robustness of our analysis to the intraplatoon headway of an HV-

AV pair, 1
ξIHAn

, we reduce this parameter from 1.4 seconds in the base case to the value of the

intraplatoon headway of an AV-AV pair, i.e., 0.55 seconds. By substituting this value in (10), we

have 1/ξIn = 1.1− 0.55p, and after some simplifications, we have obtain V I
n (p) for n = 1, 2, · · · , 555

and p ∈ [0, 1] as follows:

V In (p) = min{74.7,
10, 800N/[n(1 + 1.7p)]

2−1.7p
1+1.7p

[
(10,800−7.56n)p+4.59np2

3,000+0.6n
+

10,800(1−p)

n

(
46.67e

− n2
21,049 +3.13

) − 0.55(1− p)

]
+ (1.1− 0.55p)

}.

Figure A.21 depicts that this change slightly improves the performance of the I policy, and has

no effect on the D policy. Hence, our recommended policies stay unchanged, and our main results
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are robust to the value of this parameter. Compared to the results of the base case, illustrated in

Figure 6, the interval of p in which the D policy outperforms the I policy in terms of θ slightly

shrinks from p ∈ [0.25, 0.55] to p ∈ [0.26, 0.52].

Case 10. (AV mean intraplatoon headway increases from 0.55 seconds to 1.1 seconds)

One of the main advantages of AVs over HVs is their ability to maintain a low intraplatoon headway.

To examine the importance of this feature, we increase the mean intraplatoon headway of AVs

from 0.55 seconds to 1.1 seconds, which is the mean intraplatoon headway that HVs maintain;

i.e., we let 1
ξDA

= 1
ξIAA

= 1.1 sec. By substituting these values in Vn = N
nhn

, we get V DA
n =

min{74.7, 3,600+2.16n
1.35n } for n = 1, 2, · · · , 185, and we have V I

n (p) for n = 1, 2, · · · , 555 and p ∈ [0, 1]

as follows:

V In (p) = min{74.7,
10, 800N/[n(1 + 1.7p)]

2−1.7p
1+1.7p

[
(10,800−7.56n)p+4.59np2

6,000+0.6n + 10,800(1−p)

n

(
46.67e

− n2
21,049 +3.13

) − 0.55(1 − p)

]
+ [1.1 + 0.3p(1 − p)]

}.

As figure A.22 illustrates, although the I policy outperforms the benchmark model on both

metrics, the highway remains highly loaded even when p is high. The performance of the D policy

deteriorates even more compared to the base case. The jam throughput of this model reduces

from 5, 419 vehicles per hour in the original model to 3, 330 vehicles per hour. Now the D policy

outperforms the I policy only when p ∈ [0.92, 0.97] in terms of W , and when p ∈ [0.26, 0.29] in

terms of θ. Except for these values of p, we recommend the I policy over the D policy based on

both metrics.
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Figure A.13: A comparison between the D policy and the I policy for Case 1 when 1
ψDAn

= 1
ψIAAn

=
1

ψIHAn
= 1

ξIHAn
= 0.55 seconds and λ = 11, 342 vehicles per hour: (a) mean travel time, and (b)

throughput.

Figure A.14: A comparison between the D policy and the I policy for Case 2 of homogeneous
platoons, when λ = 11, 342 vehicles per hour: (a) mean travel time, and (b) throughput.

Figure A.22: A comparison between the D policy and the I policy for Case 10 when 1
ξDA

= 1.1

seconds and λ = 11, 342 vehicles per hour: (a) mean travel time, and (b) throughput.
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Figure A.15: A comparison between the D policy and the I policy for Case 3 when 1
δDA

= 20 and
λ = 11, 342 vehicles per hour: (a) mean travel time, and (b) throughput.

Figure A.16: A comparison between the D policy and the I policy for Case 4 when 1
ξDA

= 1
ξIAA

=
1

ξIHAn
= 0.1 seconds and λ = 11, 342 vehicles per hour: (a) mean travel time, and (b) throughput.

A.7 Simulation

We create a discrete-event agent-based simulation for a multi-lane highway. The goal of this

simulation is to verify the validity of our queueing model and analysis.

Description of Simulation Algorithm

We develop a discrete-event cellular automata simulation (DECAS). This approach combines two

methods, Discrete-event simulation (DES) and cellular automata (CA), used in prior literature.

DES is commonly used to simulate queueing models (e.g., Law et al. (2000) and Ross (2006)).

CA models are capable of explicitly representing individual vehicle interactions and relating these

interactions to macroscopic traffic flow metrics, such as mean travel time and throughput (e.g.,
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Figure A.17: A comparison between the D policy and the I policy for Case 5 when 1
ψDAn

and 1
ψIAAn

are equal to half of the safe stopping time and λ = 11, 342 vehicles per hour: (a) mean travel time,
and (b) throughput.

Figure A.18: A comparison between the D policy and the I policy for Case 6 when λ = 11, 342
vehicles per hour: (a) mean travel time, and (b) throughput.

Benjaafar et al. 1997). Thus, DECAS is appropriate for simulating a queueing model of traffic flow

in our setting.

In our DECAS model, a highway is modeled as a grid. Each cell of the grid can be occupied

by at most one vehicle. In a typical CA model, the state of the system (i.e., speed and location of

vehicles that are present on the grid) evolves according to a predefined set of rules at every time

step (usually one second). Instead of such a discrete-time simulation, we employ a discrete-event

simulation by updating the state of the system when one of the following “events” happens: (i)

arrival of a new vehicle to the highway segment (“arrival” in short) and (ii) departure of an existing

vehicle from the highway segment (“departure” in short). This approach significantly improves the
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Figure A.19: A comparison between the D policy and the I policy for Case 7 when 1
ξIAHn

= 2.2

seconds and λ = 11, 342 vehicles per hour: (a) mean travel time, and (b) throughput.

Figure A.20: A comparison between the D policy and the I policy for Case 8 when L = 2 miles
and λ = 11, 342 vehicles per hour: (a) mean travel time, and (b) throughput.

Figure A.21: A comparison between the D policy and the I policy for Case 9 when 1
ξIHAn

= 0.55

seconds and λ = 11, 342 vehicles per hour: (a) mean travel time, and (b) throughput.
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speed of large-scale simulation in our setting.

As compared to the calibrated analytical model presented in §4, our simulation model incorpo-

rates the following general features:

• Length of the highway segment L > 1 (whereas we use the normalized length L = 1 in the

numerical analysis of the main body).

• Lane changing: If the speed of a vehicle is higher than the vehicle immediately in front, the

vehicle is allowed to leave its current platoon (of which the size can be one or larger) and to

create a new platoon in an adjacent lane or merge into the existing platoon in an adjacent

lane, if the following conditions hold. First, there is enough space (e.g., at least one empty

cell) between this vehicle and the vehicle immediately in front in the adjacent lane. Second,

the gap between this vehicle and the vehicle immediately behind in the adjacent lane is so high

that, if the vehicle behind travels at the maximum speed of the highway, the advancement of

this vehicle is smaller than the gap.

• Platoon formation process: As a vehicle arrives to the highway, it decides whether or not to

join the existing platoon immediately in front. A vehicle can also leave its current platoon

and create a new platoon (or merge into another platoon), as it changes its lane.

• Transient behavior of vehicles: The simulation model allows speed-up (i.e., the ability of

a vehicle to increase its speed if there is a large gap between this vehicle and the vehicle

immediately in front) and speed-down (i.e., the ability of a vehicle to reduce its speed to

reduce chances of colliding with the vehicle in front).

Our simulation implicitly includes two more features of traffic flows: the negative effect of lane-

changing on speed, and mergers of platoons. First, right after a vehicle changes its lane, if its speed

is lower than that of the vehicle immediately behind, the vehicle immediately behind either reduces

its speed to match the speed of the vehicle in front or changes its lane. Second, when the speed

of a vehicle is higher than that of the vehicle immediately in front, and the vehicle is not able to

change its lane, this vehicle is forced to reduce its speed to match the speed of vehicle immediately

in front; then the follower vehicle merges into the platoon immediately in front.

Simulation Settings
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Figure A.23: Highway segment grid

As Figure A.23 depicts, we model an N -lane highway segment of length L with jam density J as a

grid of NLJ cells. A vehicle occupies one cell of the grid, and moves from one cell to another, as

it moves from left to right. Here we describe the simulation mechanism for the benchmark model.

Similar mechanisms are used for the D and I policies.

As we mentioned before, there are two events in our simulation: arrival and departure. In the

event when a new vehicle arrives to the highway, one of the following two scenarios occurs. If all

cells in column 1 through column NJ (i.e., cells on the first mile of the segment) are occupied, the

vehicle is blocked.5 Otherwise, it occupies the first empty cell in column 1 through column NJ .

With probability 1− δB (where 1/δB denotes the mean platoon size of HVs as in the base model),

this vehicle joins the last platoon ahead, and with probability δB, it starts a new platoon. If it joins

the last platoon, its speed is set equal to the speed of this platoon.6 Otherwise, this vehicle starts

a new platoon, and the speed of this vehicle is determined by generating a random number from

a truncated normal distribution with mean V B
n and standard deviation σ miles per hour.7 In the

event when a vehicle departs from the highway segment, we remove this vehicle from the highway

grid. A vehicle is eligible for departing from the highway when it is at the head of a lane, i.e., it

is the rightmost vehicle in a lane, and it can travel the remaining cells before other vehicles. If

there is a tie among the rightmost vehicles in the lanes, we allow all of them to depart the highway

5The first mile of the segment is used as warm-up state to place vehicles on the segment and form platoons.
Suppose the first unoccupied cell exists in lane l, column k. If k is higher than 1, we move all the vehicles in lane
l before column k forward by one cell, and place the new vehicle in lane l, column 1. Note that the blocking rule
used in the simulation is more stringent than that in the queueing model: whereas a vehicle is blocked in the queuing
model when there are NJL vehicles on the highway segment, a vehicle is blocked in the simulation when there are
NJ vehicles on the first mile of the highway segment, even though there may exist empty cells between the (J +1)th

and the LJth columns. Using the same blocking rule as the queueing model, requires assigning an arriving vehicle
to an empty cell that is possibly located at the end of the segment. Thus, we use a more stringent blocking rule to
ensure that all vehicle start service at the beginning of the segment.

6This assumption guarantees the same speed for all vehicles in one platoon.
7To determine σ, we calculate 95% confidence intervals of the estimated V B

n for n = 1, 2, · · · , NJL in §4. Next,
we set σ equal to half of the maximum width of these confidence intervals.
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Notation Definition Notation Definition
V (i, l) Speed of the ith vehicle in the lth lane Vmax Free-flow speed of the highway
x(i, l) Column number of the ith vehicle in the

lth lane
g(i, l) Gap between the ith and the (i + 1)th

vehicle (i.e., the vehicle immediately in
front) in the lth lane, which is defined as
x(i + 1, l) − x(i, l) − 1, g(i, l) = 0 if the
ith and the (i + 1)th vehicles are in two
consecutive cells.

dfront(i, l) Distance between the ith vehicle in the
lth lane and the closest vehicle in front of
this vehicle in the adjacent lane, which is
set to J − i if there is no vehicle in front.

dback(i, l) Distance between the ith vehicle in the
lth lane and the closest vehicle behind of
the ith vehicle in the adjacent lane, which
is set to i−1 if there is no vehicle behind.

dup Minimum gap between two vehicles that
allows the follower vehicle to increase its
speed.

a Acceleration in meters per second
squared

Vfront Speed of the front vehicle in the adjacent
lane

Vright(l) Speed of the rightmost vehicle in the lth

lane
xright(l) Location of the rightmost vehicle in the

lth lane
il,right Column number of the rightmost vehicle

in lane l
il,left Column number of the leftmost vehicle

in lane l
 Ldepart The set of lane(s) from which the

next departure(s) will take place, i.e.,

l{J−xright(l)
JVright(l)

}.
ndepart Number of simultaneous departures, i.e.,

len( Ldepart)
tA Time until next arrival

tD Time until next departure tE Time until next event (arrival or depar-
ture), which is equal to min{tA, tD}

Table A4: Table of additional notation used in the simulation algorithm.

simultaneously, i.e., there can be up to N simultaneous departures. When one of these two events

occurs, it triggers the movement of the existing vehicles on the highway segment. These vehicles

move according to one of the following scenarios:

• Suppose the gap between a vehicle ‘A’ and the vehicle ‘B’ immediately in front allows vehicle

A to maintain its speed without a collision with vehicle B. In this scenario, vehicle A advances

according to its speed and the time since the last event.

• Suppose the gap between a vehicle ‘A’ and the vehicle ‘B’ immediately in front is so large

that vehicle A is able to speed up. In this scenario, if vehicle A and vehicle B belong to the

same platoon (resp., two different platoons), vehicle A increases its speed – at a specified

acceleration – so that the headway between vehicle A and vehicle B is at least equal to the

mean intraplatoon headway (resp., mean interplatoon headway).

• Suppose the gap between a vehicle ‘A’ and the vehicle ‘B’ immediately in front is so small
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that, if the vehicle maintains its speed, a collision happens. In this case, if the speed of the

vehicle immediately in front in an adjacent lane is higher than the speed of vehicle A, vehicle

A changes its lane and moves to the adjacent lane, contingent on fulfillment of lane-changing

conditions, discussed previously.8 Otherwise, vehicle A moves to the cell behind vehicle B,

while reducing its speed to the speed of vehicle B.

Detailed Simulation Algorithm

We define the additional notation that we use in the simulation in Table A4, and then present the

algorithm used in our simulation of the benchmark model with no AVs. Similar algorithms are

used in simulating the HV and AV queues of the D policy as well as the I policy.9

Algorithm

Initialization

Initiate tA by generating a random number from an exponential distribution with rate λ.

Set tD equal to ∞.

Determining the event type

if tA ≤ tD (i.e., the event is an arrival) then

if Column 1 through column NJ of the segment are occupied then

Block the new vehicle.

8If there are two adjacent lanes on both sides of vehicle A, this vehicle tries moving to its right lane only when
moving to its left lane is not feasible.

9In the simulation, if there is a tie among lanes, we choose the lane with the lower number.
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else

Increase n by one, and assign this vehicle to the first empty cell in column 1 through NJ

of lane 1 through N .

Store the assigned location of this vehicle as x(1, l).

Generate a uniform random number r.

if r ≥ δ and there exists at least one platoon in lane l then

Add this vehicle to the last platoon in lane l by setting V (i, l) equal to V (i+ 1, l).

else

Determine V (i, l) by generating a random number from a truncated normal distribution

with mean V B
n and standard deviation σ.

else

Decrease n by ndepart = len( Ldepart), and remove the rightmost vehicle(s) from l ∈ Ldepart.

for lane l ∈ {1, 2, · · · , N} do

for vehicle i ∈ {il,right, · · · , il,left} do

Updating speed and location

if JV (i, l)tE ≤ g(i, l) (i.e., the advancement of vehicle i is less than the gap between this

vehicle and the vehicle in front) then

if g(i, l) − JV (i, l)tE ≥ dup then

if the ith and (i+ 1)th belong to the same platoon then

Set V (i, l) equal to min{[g(i, l)/J − V B
n ξ

B]/tE , atE + V (i, l), Vmax}, and x(i, l)

equal to x(i, l) + round(JV (i, l)tE). Update g(i, l) and g(i− 1, l) accordingly.

else

Set V (i, l) equal to min{[g(i, l)/J − V B
n ψ

B
n ]/tE , atE + V (i, l), Vmax}, and x(i, l)

equal to x(i, l) + round(JV (i, l)tE). Update g(i, l) and g(i− 1, l) accordingly.

else

Advance the vehicle by round(JV (i, l)tE) cells. Update g(i, l) and g(i−1, l) accord-

ingly.

else
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Lane changing

Look ahead:

if dfront ≥ 1 and Vfront > V (i, l) then

Look backward:

if dback ≥ JtEVmax then

Let l′ be the new lane that vehicle i moved to, and i′ be the number of this

vehicle in lane l′. Set V (i′, l′) and x(i′, l′) equal to Vfront and x(i, l) + 1,

respectively.

Remove V (i, l) and x(i, l).

else

Set V (i, l) equal to V (i+1, l), and set x(i, l) equal to x(i+1, l)−1. Let g(i, l) = 0,

and update g(i− 1, l) accordingly.

else

Set V (i, l) equal to V (i+ 1, l), and set x(i, l) equal to x(i+ 1, l)− 1. Let g(i, l) = 0,

and update g(i− 1, l) accordingly.

Parameter update

Update tD by minl{
J−xright(l)
JVright(l)

}, and set ldepart and ndepart equal to l{
J−xright(l)
JVright(l)

} and len(Ldepart),

respectively.

Update tA by generating a random number from an exponential distribution with rate λ.

Simulation Results

As in our calibrated model in §4, we run the simulation for a highway segment with three lanes,

and a jam density of 185 vehicles per mile per lane. We consider a segment of four miles: we use

the first mile as warm-up state to place vehicles on the segment and form platoons, and use the

results from the remaining three miles. The arrival rate to this highway segment is 11, 342 vehicles

per hour. We set the minimum gap between two vehicles required for a following vehicle to increase

its speed, dup, equal to 20 cells, which is equivalent to 0.1 miles. The acceleration a is set equal to

2 meters per second squared, which is the acceleration value used by Liu et al. (2018).10

To investigate the performance of the D and I policies, for each value of p ∈ {10, 20, · · · , 100}

we run the simulation 30 times for a time horizon of four hours. Since we assume the highway is

10Performing a sensitivity analysis on the values of dup and a, we observe that all of our main results are robust.
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empty at the beginning of the simulation horizon, we use the results of the last hour to ensure that

the simulation is in steady state. Figures A.24(a) and (b) represent a comparison between the mean

travel time W of the D policy and that of the I policy in the simulation and the queueing model,

respectively. As these figures illustrate, W in the simulation is close to, but slightly worse than,

that in the queueing model (e.g., WB = 13.8 minutes per mile in the simulation versus WB = 12.8

minutes per mile in the queueing model). This is likely because any fractional advancements of

vehicles are rounded down as we update the location of vehicles in the simulation; for example, if

a vehicle is able to move 2.5 cells according to its speed, it moves only two cells to ensure it will

not collide with a vehicle in front of it (that, for example, may only have been able to move two

cells). In addition, Figures A.24(a) and (b) show that, similar to our numerical results in §5, for

any given value of p, the I policy outperforms the benchmark model in terms of mean response time

W . When the AV proportion p is at least 64% (i.e., p(D,W ) = 0.64), the D policy is also capable

of reducing W over that of the benchmark model. This value of p(D,W ) is very close to that in the

base case, i.e., p(D,W ) = 0.63. As in the queueing model, the I policy leads to a lower W than the

D policy for all values of p.

Figures A.24(c) and (d) represent a comparison between throughput θ of the D policy and that

of the I policy in the simulation and the queueing model, respectively. As these figures depict, θ

in the simulation is lower than that in the queueing model, especially under the D and I policies

when the AV proportion p is not high. This discrepancy likely arises due to the more stringent

blocking rule in the simulation than that in the queueing model: whereas a vehicle is blocked in

the queueing model when the entire highway segment is full, a vehicle is blocked in the simulation

when the first mile of the segment is full. This results in a lower effective arrival rate (i.e., the

arrival rate of vehicles that are not blocked) in the simulation than that in the queueing model.

Under the D policy, θD(p) in the simulation shows a similar pattern to that of θD(p) in the queueing

model. Although θD(0) = 716 vehicles per hour in the simulation is close to θD(0) = 740 vehicles

per hour in the base model, θD(p) in the simulation plateus at a lower value of p than it does in

the queueing model; again, likely due to the more stringent blocking rule used in the simulation.

Similarly, under the I policy we observe that the simulated throughput θI(p) is increasing in p. In

this case, when all vehicles are AVs (i.e, p = 1), no vehicle is blocked and θI(1) becomes equal to

the arrival rate λ to the highway segment. Furthermore, Figures A.24(c) and (d) illustrate that the

147



Figure A.24: A comparison between the D policy and the I policy when λ = 11, 342 vehicles per
hour: (a) mean travel time of the simulation, (b) mean travel time of the queueing model, (c)
throughput of the simulation, and (d) throughput of the queueing model.

interval of p in which θD(p) is higher than θI(p) is [0.24, 0.46], which is similar to, but smaller than

that in the queueing model, [0.25, 0.55]. This shows that the stringent blocking rule used in the

simulation affects the D policy more than the I policy, because the I policy blocks fewer vehicles

that the D policy by using the capacity of all of the lanes, i.e., the “pooling effect.”
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Appendix B

Additional Material for Chapter 2

B.1 Notation Summary

Table B1: Summary of notation

Symbol Definition
j Index for parking area (j ∈ {1, 2})
x Departure time from H

xmax Latest departure time from H
xj Earliest departure time of commuters who choose Area j ∈ {1, 2}

xj,max Latest departure time of commuters who choose Area j ∈ {1, 2}
xD Earliest departure time from H for commuters who choose Area 2 and experience downtown congestion
y Drop-off time at W for commuters who leave H at time x

ymax Latest Drop-off time at W
yj Earliest Drop-off time at W for commuters who choose Area j ∈ {1, 2}

yj,max Latest Drop-off time at W for commuters who choose Area j ∈ {1, 2}
yD Earliest Drop-off time at W of commuters who choose Area 2 and experience downtown congestion
RI Inbound bottleneck capacity
RW Drop-off rate at W
R∗
W Optimal drop-off rate at W

RD(y) Travel rate in D for a commuter who leaves H at time x
RD,j(y) Travel rate in D for a commuter who leaves H at time x and chooses Area j ∈ {1, 2}
M Maximum travel rate in D, i.e., RD(0)
θ Weight of number of AVs present in D in the equation for RD(y)
a The difference between the drop-off capacity and the maximum travel rate in D
N Total number of commuters
T Official start time at work for all commuters

pj(x) Parking fee in Area j ∈ {1, 2} for commuters who leave H at time x
Kj Capacity of parking Area j ∈ {1, 2}
K∗
j Optimal capacity of parking Area j ∈ {1, 2}

λH(x) Departure rate from H at time x
λj(y) Departure rate from W to Area j ∈ {1, 2} for AVs that leave H at time x
τI(x) Inbound delay time for a commuter who leaves H at time x
τW (x) Drop-off congestion time for a commuter who leaves H at time x
τD,j(x) Congestion time in D for a commuter who leaves H at time x and chooses Area j ∈ {1, 2}
tH,I Free-flow travel time from H to I
tI,D Free-flow travel time from I to D
tW,1 Free-flow travel time from W to 1
tD,2 Free-flow travel time from D to 2
α Unit cost of driving time for commuters
α′ Unit cost of driving time for AVs
β Unit cost for early schedule delay
γ Unit cost for late schedule delay

Cj(x) Total cost of a commuter who leaves H at time x and chooses Area j ∈ {1, 2}
n The parameter that counts the number of times that the social planner switches from routing AVs to

Area 2 to routing them to Area 1.
ϵ1(x) Non-negative value added to the parking fee of Area 1
ϵ2(x) Non-negative value added to the downtown congestion toll

149



B.2 Model Calibration

We calibrate our model to data from the Pittsburgh Metropolitan Area. Table 2.1 summarizes our

calibrated parameter values, and Figure B.1 illustrates this area. Our parameter values are based

on the data from Pi et al. (2019) and our own estimation. The following parameter values are from

Pi et al. (2019):

• There are N = 20, 000 morning commuters from H1 who use their personal vehicles to travel

on highway I-376. This route is known as the southwest commuting corridor to Downtown

Pittsburgh (D).

• I-376 has two lanes entering D, each of them has a capacity of 2, 300 vehicles per hour. Thus,

the inbound bottleneck capacity RI is 4, 600 vehicles per hour.

• The free-flow travel time from W to Area 1, tW,1, is equal to 2 minutes. Both Area 1 and W

are located inside D.

• We consider two possible locations of Area 2. In our base case, Area 2 is located in H2 with

the free-flow travel time from D to Area 2, tD,2 = 15 minutes and zero parking fee, i.e.,

p2(x) = 0 for x ∈ [0, xmax]. We also consider another case where Area 2 is located in H3 with

tD,2 = 5 minutes and p2(x) = p1(x)/2 for x ∈ [0, xmax].

• The daily parking price in Downtown Pittsburgh varies from $1.80 to $16. So we let p1(0) =

$1.80 and p1(xmax) = $16.

• The capacity K1 of Area 1 is equal to 10, 000 vehicles.

• The early arrival cost β is estimated at $3.90 per hour.

We estimate the remaining model parameters as follows:

• We assume the passengered travel cost α is $4.50 per hour. This is lower than the value of α

(= $6.4 per hour) for HVs estimated by Pi et al. (2019), because AV owners do not need to

drive and are able to spend their commute time on other activities (e.g., sleeping, reading,

etc.) that give positive utility. In addition, we assume the passengerless travel cost α′ is half
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Figure B.1: (Color in PDF File) An Illustration of Downtown and Southern Region of Pittsburgh.

Notes. This figure is a modified version of Figure 8(b) in Pi et al. (2019).

of the passengered travel cost, i.e., α′ = α/2 = $2.25 per hour. These parameter values are

rough estimates, so we perform sensitivity analyses on the values of α and α′ in Appendix

B.4.1.

• We assume Area 1’s parking fee is equal to p1(x) = 14.20x/xmax + 1.80, so the minimum and

maximum parking fees match the corresponding values in Pi et al. (2019), i.e., p1(0) = $1.80

and p1(xmax) = $16. This assures that commuters who leave H early take cheaper parking

spots, and commuters who leave H late are left with more expensive parking spots.

• To determine the curbside drop-off capacity, we measure the total curbside length in Down-

town Pittsburgh, which is about 0.6 miles for the southwest corridor commuters. Assuming

there can be up to 50 drop-offs per mile and each drop-off takes 30 seconds, the drop-off

capacity RW is equal to 0.6× 50× 3, 600/30 = 3, 600 drop-offs per hour (see Barth (2019) for

more details).

• To characterize the travel rate in D, RD,2(y), we assume θ = 1 and M = 59.8. This results in

the following expression for RD,2(y): λ2(y) − aθeθy = λ2(y) − 0.2ey, where a = (RW −M)/θ

(See Lemma B.1 for further details). This is a decreasing function of y, which means that as

D gets more congested, the exit rate from D decreases.
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B.3 Proofs

Lemma B.1. If τW (x) ̸= 0 for all x ∈ [0, xmax], then τD,2(x) =
y
∫ y
0 aθe

θzdz∫ y
0 [λ2(z)−aθeθz ]dz

.

Proof. If τW (x) ̸= 0 for all x ∈ [0, xmax], then min{λH(x), RW } = RW . By substituting this in the

RD(y) equation from Assumption A3, we have:

RD(y) = M − θ

∫ y

0
[RW −RD(z)]dz

= M − θRW y + θ

∫ y

0
RD(z)dz. (B.1)

Equation (B.1) is a first order differential equation in the form of θf(y) − f ′(y) − θRW y +M = 0,

where f(y) =
∫ y
0 RD(z)dz, f ′(y) = RD(y), and f(0) = 0. By solving this first order differential

equation, we have the following:

RD(y) = RW − aθeθy,

where a = (RW −M)/θ(> 0). By Assumption A2, AVs that choose Area 1 do not experience any

delay, so the travel rate of AVs that head to Area 1 at time y is equal to the number of AVs that

head to Area 1 at time y, RD,1(y) = λ1(y). Therefore, the travel rate RD,2(y) of AVs that go to

Area 2 is equal to RD(y) −RD,1(y) = RW − aθeθy − λ1(y) = λ2(y) − aθeθy.

Finally, by Assumption A5, we attain the congestion time in D for AVs that leave H at time x

and choose Area 2, as follows:

τD,2(x) =

∫ y
0 [λ2(z) −RD,2(z)]+dz∫ y

0 RD,2(z)dz

y

=
y
∫ y
0 {λ2(z) − [λ2(z) − aθeθz]}+dz∫ y

0 [λ2(z) − aθeθz]dz
=

y
∫ y
0 aθe

θzdz∫ y
0 [λ2(z) − aθeθz]dz

.

Proof of Proposition 2.1. (a) Case (i): We first assume that both τI(x) and τW (x) are positive

for x ∈ (0, xmax], and then we show that our results hold even when τI(x) and τW (x) are not

positive. Since in this case α′tW,1 + p1(0) ≥ α′tD,2, by (2.2) and (2.3), C2(x) is lower than C1(x)

at time x = 0. In this case, by Condition 1, all commuters choose Area 2, i.e., λ2(x) = RW and

λ1(x) = 0. Since τD,2(x) is increasing in x, there may exist x1 ∈ [0, xmax] such that α′tW,1+p1(x1) =

α′[tD,2 + τD,2(x1)], which means C1(x1) = C2(x1). Thus, by Condition 1, commuters can choose to
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park in Area 1. This means that when x ≥ x1, the cost associated with parking in Area 1 must be

equal to that in Area 2, i.e., α′tW,1 +p1(x) = α′[tD,2 + τD,2(x)]. After rearranging this equation, we

have τD,2(x) =
y
∫ y
0 aθe

θzdz∫ y
0 λ2(z)−aθeθzdz

= tW,1 + p1(x)
α′ − tD,2, so λ2(y) is equal to aeθy +

yaeθy+
∫ y
0 aθe

θzdz

tW,1−tD,2+p1(x)/α′ −
[yp′1(x)/α

′]
∫ y
0 aθe

θzdz

[tW,1−tD,2+p1(x)/α′]2 .

To derive λH(x) for x < x1, we substitute, τI(x), τW (x), and τD,2(x) into (2.3). By Assumption

A5, since τI(x), τW (x) > 0, we have τI(x) =
∫ x
0 [λ(u)−RI ]du

RI
and τW (x) =

∫ x+τI (x)
0 [RI−RW ]du

RW
. In

addition, since λ2(y) = RW , by Lemma B.1 τD,2(x) =
y
∫ y
0 ae

θzdz∫ y
0 λ2(z)−aeθzdz

=
y
∫ y
0 ae

θzdz∫ y
0 RW−aeθzdz . Hence,

C2(x) = (α − β)
∫ y
0 λH(z)dz

RW
− αx + βT + α′{tD,2 +

y
∫ y
0 ae

θzdz∫ y
0 RW−aeθzdz}, where y = x + τI(x) + τW (x) =∫ x

0 λH(u)du

RW
. By Condition 2, regardless of departure time x, the total travel cost of all commuters

must be equal, i.e., ∂C2
∂x = (α− β)λH(x)/RW −α+α′ ∂τD,2(x)

∂x = 0. After rearranging this equation,

we have λH(x) =
α−α′ ∂τD,2(x)

∂x
α−β RW , where

∂τD,2(x)
∂x =

∂τD,2(x)
∂y × ∂y

∂x =
RW y2aθeθy−(

∫ y
0 aθe

θzdz)2

(
∫ y
0 RW−aθeθzdz)2 × λH(x)

RW
.

Thus, λH(x) =
α(

∫ y
0 RW−aθeθzdz)2

(α−β)(
∫ y
0 RW−aθeθzdz)2+α′RW y2aθeθy−α′(

∫ y
0 aθe

θzdz)2
. For x ≥ x1, we derive λH(x)

using equation (2.2). By Condition 2, regardless of departure time x, the total travel cost of all

commuters must be equal, i.e., ∂C1
∂x = (α−β)λH(x)

RW
−α+p′(x) = 0. After rearranging this equation,

for x ∈ [x1, xmax], we have λH(x) =
α−p′1(x)
α−β RW .

Next, we show that our results hold even when τI(x) and τW (x) are not positive. First, if

τI(x) = 0 for some x ∈ (0, xmax] and τW (x) > 0 for all x ≥ 0, all of our results hold. This happens

because y = x+τW (x) is still equal to
∫ x
0 λH(u)du

RW
, and C2(x) is equal to C2(x) = (α−β)

∫ x
0 λH(u)du

RW
−

αx + βT + α′[tD,2 + τD,2(x)], and the rest of the proof remains unchanged. Next, let x̂ be the

smallest x ∈ [0, xmax] such that τW (x) = 0. Since RW ≤ RI , τI(x̂) is also equal to zero. In this

case, C2(x̂) = β(T − x̂) + α′[tD,2 + τD,2(x̂)]. By setting the derivative of C2(x̂) equal to zero,

i.e., ∂C2
∂x̂ = β + α′ ∂τD,2(x̂)

∂x̂ = 0, we find that
∂τD,2(x̂)

∂x̂ must be equal to β/α′. We show that this is

consistent with our result for λH(x) by contradiction. First, we assume that
∂τD,2(x̂)

∂x̂ < β/α′. In

this case,
α−α′ ∂τD,2(x̂)

∂x̂
α−β > 1, and hence, λH(x) > RW , which is a paradox; since τW (x) = 0, λH(x)

cannot exceed the drop-off capacity RW . Next, we assume that
∂τD,2(x̂)

∂x̂ > β/α′, which leads to

λH(x) < RW . In this case, compared to a commuter who leaves H at time x̂, a commuter who

leaves at time x̂ + 1 incurs $β more in work schedule penalty, but saves $α′ ∂τD,2(x̂)
∂x̂ in downtown

congestion cost. Since we assume
∂τD,2(x̂)

∂x̂ > β/α′, this commuter is better off departing H at

time x̂ instead of time x̂ + 1, so she can unilaterally change her decision without increasing any

other commuter’s cost. This means that there is no UE in this case, which is a paradox. Thus,

153



∂τD,2(x̂)
∂x̂ = β/α′ and our results still hold.

Lastly, for case (i) of UE1 to hold, we need to assume that Area 1 can accommodate all

commuters who choose this area, i.e., K1 ≥
∫ ymax
y1

λ1(u)du = N−
∫ ymax
0 λ2(u)du = N−

∫ y1
0 λ2(u)du−∫ ymax

y1
λ2(u)du = N−RW y1−

∫ ymax
y1

Cdu = N−RW y1−a(eθ(N/RW−y1)−1)[1+ N/RW
tW,1−tD,2+p1(xmax)/α′ ].

If this condition does not hold, i.e., case (ii) of UE1 when K1 < N −RW y1−a(eθ(N/RW−y1)−1)[1+

N/RW
tW,1−tD,2+p1(xmax)/α′ ], after Area 1 becomes full at time y1,max, commuters have to choose Area 2.

The proof of this part is very similar to that of case (i), and hence it is omitted.

(b) Case (i): We first assume that both τI(x) and τW (x) are positive for x ∈ (0, xmax], and then

we show that our results hold even when τI(x) and τW (x) are not positive. When α′tW,1 + p1(0) ≤

α′tD,2, then by (2.2) and (2.3) C2(x) is higher than C1(x) at time 0. In this case, by Condition

1, all commuters choose Area 1, i.e., λ1(x) = RW and λ2(x) = 0. To derive λH(x), we substitute

τI(x) =
∫ x
0 [λ(u)−RI ]du

RI
, and τW (x) =

∫ x+τI (x)
0 [RI−RW ]du

RW
from Assumption A5 into (2.2) as follows:

C1(x) = (α− β)

∫ x
0

[λH(u) −RI ]du

RI
+ (α− β)

(RI −RW )(x+ τI(x) − 0)

RW
+ β(T − x) + α′tW,1 + p1(x).

(B.2)

By substituting x + τI(x) and x + τI(x) + τW (x) with
∫ x
0 λH(u)du

RI
and

∫ x
0 λH(u)du

RW
, respectively,

we can simplify (B.2) as follows: C1(x) = (α − β)
∫ x
0 λH(u)du

RW
− αx + βT + α′tW,1 + p1(x). By

Condition 2, regardless of departure time x, the total travel cost of all commuters must be equal, i.e.,

∂C1
∂x = (α−β)λH(x)

RW
−α+p′1(x) = 0. After rearranging this equation, we have λH(x) =

α−p′1(x)
α−β RW .

Since p1(x) is increasing in x, there may exist x2 ∈ [0, xmax] such that α′tW,1 + p1(x2) = α′tD,2,

or x2 = p−1
1 (α′(tD,2 − tW,1)). Thus, C1(x2) = C2(x2), and by Condition 1 commuters can choose

to park in Area 2, i.e., λ2(y) > 0 for y ∈ [y2, ymax]. In this case, C1(x) = C2(x), and we have

α′tW,1 + p1(x) = α′{tD,2 + τD,2(x)}, where by Lemma B.1 τD,2(x) is equal to
(y−y2)

∫ y−y2
0 aθeθzdz∫ y−y2

0 λ2(z)−aθeθzdz
.

By simplifying this equation, we get
∫ y−y2
0 λ2(z)dz = (1 + y−y2

tW,1+p1(x)/α′−tD,2 )
∫ y−y2
0 aθeθzdz. We

take the derivative of this equation with respect to y to characterize λ2(y) as follows: aeθ(y−y2) +

(y−y2)aeθ(y−y2)+
∫ y−y2
0 aθeθzdz

tW,1−tD,2+p1(x)/α′ − p′1(x)[(y−y2)/α′]
∫ y−y2
0 aθeθzdz

[tW,1−tD,2+p1(x)/α′]2 . In addition, the number of AVs that head

to Area 1, λ1(y), is equal to the total number of AVs that leave W minus the number of AVs that

head to Area 2, i.e., RW − λ2(y).

Next, we derive T (= ymax). The last commuter does not experience any work schedule penalty,

so the official start time at work is when the last commuter is dropped off at W , i.e., T = ymax =
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xmax + τI(xmax) + τW (xmax) =
∫ xmax
0 λH(u)du

RW
. Since

∫ xmax
0 λH(u)du is the total number of all

commuters, N , we have T =
∫ xmax
0 λH(u)du

RW
= N

RW
.

Lastly, we show that our results hold even when τI(x) and τW (x) are not positive. First, if

τI(x) = 0 for some x ∈ (0, xmax] and τW (x) > 0, all of our results hold. This happens because

x + τW (x) is still equal to
∫ x
0 λH(u)du

RW
, and C1(x) is equal to C1(x) = (α − β)

∫ x
0 λH(u)du

RW
− αx +

βT + α′tW,1 + p1(x), and the rest of the proof remains unchanged. Next, let x̂ be the smallest

x ∈ [0, xmax] such that τW (x) = 0. Since RW ≤ RI , τI(x̂) is also equal to 0. In this case,

C1(x̂) = β(T − x̂) + α′tW,1 + p1(x̂). By setting the derivative of C1(x̂) equal to zero, we find that

p′1(x̂) must be equal to β. We show that this is consistent with our result for λH(x) by contradiction.

First, we assume that p′1(x̂) < β. In this case,
α−p′1(x̂)
α−β > 1, and hence, λH(x) > RW , which is

a paradox; since τW (x) = 0, λH(x) cannot exceed the drop-off capacity RW . Next, we assume

that p′1(x̂) > β, which leads to λH(x) < RW . In this case, compared to a commuter who leaves

H at time x̂, a commuter who leaves at time x̂ + 1 incurs $β more in work schedule penalty, but

saves $p′1(x̂) in downtown congestion cost. Since we assume p′1(x̂) > β, this commuter is better off

departing H at time x̂ instead of time x̂ + 1, so she can unilaterally change her decision without

increasing any other commuter’s cost. This means that there is no UE in this case, which is a

paradox. Thus, p′1(x̂) = β and our results still hold.

Case (ii): The proof of this case is similar to that of case (i), except that we need to characterize

x1,max and x2. The earliest time that Area 1 becomes full, x1,max, satisfies the following equation:∫ x1,max
0 λH(u)du =

∫ x1,max
0

α−p′1(x)
α−β RWdx = K1, so [αx1,max−p1(x1,max)+p1(0)] RWα−β = K1. If p1(x)

is linear in x, then x1,max = K1(α−β)
RW (α−p′1)

. In addition, the drop-off time at W for commuters who

leave H at time x1 is equal to y1 = K1/RW . To characterize the earliest departure time from H for

commuters who choose Area 2, we find the value of x2 that satisfies Conditions 1 and 2. Commuters

who leave at time x1,max incur the cost C1(x1,max) = (α − β)y1,max − αx1,max + βT + α′tW,1 +

p1(x1,max). If commuters who choose Area 2 leave right at time x1,max, their travel cost is equal

to C2(x1,max) = (α − β)y1,max − αx1,max + βT + α′tD,2. If C2(x1,max) is higher than C1(x1,max),

by Conditions 1 and 2, commuters who choose Area 1 must shift back their departure time from

H by ∆ = [C2(x1,max) − C1(x1,max)]/β minutes to increase their work schedule penalty. So for

∆ = [C2(x1,max)−C1(x1,max)]/β = [α′(tD,2− tW,1)−p1(x1,max)]/β minutes no commuter leaves H.
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Hence, we shift the timeline for ∆ minutes to guarantee that the departure time of first commuters

is time 0. In this case, x2 = x1,max + ∆ and T = N/RW + ∆. Lastly, the largest K1 that results

in case (ii) corresponds to the case when the earliest time that Area 2 is chosen, x2, is equal to the

time x1,max that Area 1 is full, i.e., α′tD,2 = α′tW,1+p1(x1,max). In this case, x1,max = p−1
1 (α′(tD,2−

tW,1)), and K1 = [αx1,max − p1(x1,max) + p1(0)] RWα−β = [αp−1
1 (α′(tD,2 − tW,1)) − α′(tD,2 − tW,1) +

p1(0)] RWα−β . Thus, case (ii) holds for all K1 ≤ [αp−1
1 (α′(tD,2 − tW,1)) − α′(tD,2 − tW,1) + p1(0)] RWα−β .

Case(iii): This case can be shown similar to case (i), except that, at time x1,max, Area 1 becomes

full, and the remaining AVs have to go to Area 2.

Proof of Proposition 2.2. (a) Case (i): We first show that, if t2,D ≥ tW,1, then λ1(y) = RW

and λ2(y) = 0. Next, we prove that λH(x) = RW . Since λ1(y) + λ2(y) = RW , we can restate the

optimization problem stated in (2.5) as follows:

min
λH(x),λ2(y)

∫ xmax

0

λH(x){α[τI(x) + τW (x)] + β(T − y)}dx+

∫ ymax

0

RWα
′tW,1 + λ2(y)α′[t2,D − tW,1 + τ2,D(x)]dy

subject to:

y = x+ τI(x) + τW (x)

0 ≤ λH(x) ≤ N

0 ≤ λ2(y) ≤ RW .

We use a two-stage approach to find the optimal solution of this control theory problem. In the first

stage we find the value of λ2(y) that minimizes the second component of the objective function,

i.e.,
∫ ymax
0 RWα

′tW,1 + λ2(y)α′[t2,D − tW,1 + τ2,D(x)]dy. We are allowed to do this because the first

component does not depend on λ2(y). In the second stage, we substitute λ2(y) with its optimal

value from stage one, and find the value of λH(x) that minimizes the entire objective function.

Stage one:

min
λ2(y)

∫ ymax

0
RWα

′tW,1 + λ2(y)α′[t2,D − tW,1 + τ2,D(x)]dy

subject to:

0 ≤ λ2(y) ≤ RW .

The objective function is a linear function of λ2(y) for y ∈ [0, ymax], so the optimal value of λ2(y)
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lies on one of the boundaries of its feasible region, [0, RW ]. Since tD,2 ≥ tW,1 and τD,2(x) ≥ 0,

tD,2 − tW,1 + τD,2(x) ≥ 0. Thus, the objective function is a linear increasing function of λ2(y) for

y ∈ [0, RW ], and λ2(y) = 0 minimizes this function.

Stage two:

min
λH(x)

∫ xmax

0
λH(x){α[τI(x) + τW (x)] + β(T − y)}dx+RWα

′tW,1ymax (B.3)

subject to:

y = x+ τI(x) + τW (x)

0 ≤ λH(x) ≤ N.

We can state y as a function of λH(x), by substituting the values of τI(x) and τW (x) as follows:

y = x+ τI(x) + τW (x) = x+ τI(x) +
∫ x+τI (x)
0 [RI−RW ]du

RW
= x+ τI(x) + RI−RW

RW
[x+ τI(x)] = RI

RW
[x+

τI(x)] = RI
RW

[x+
∫ x
0 λH(u)−RIdu

RI
] =

∫ x
0 λH(u)du

RW
. By substituting this in (B.3), the objective function

becomes minimizing
∫ xmax
0 λH(x)[(α−β)

∫ x
0 λH(u)du

RW
−αx+βT ]dx+RWα

′tW,1ymax. After removing

the constant term RWα
′tW,1ymax from the objective function, we have the following:

min
0≤λH(x)≤N

∫ xmax

0
λH(x)[(α− β)

∫ x
0 λH(u)du

RW
− αx+ βT ]dx.

This is a control theory problem, where λH(x) is the control variable (i.e., the variable that we can

change to control the value of the objective function) and
∫ x
0 λH(u)du is the state variable (i.e., the

variable that changes as we change the control variable). We use the maximum principle approach to

find the optimal value of the control variable λH(x).1 Let f(x) represent the derivative of the state

variable, i.e., f(x) =
∂[
∫ x
0 λH(u)du]

∂x = λH(x), and g(x) denote the negative of the objective function,

i.e., g(x) = −λH(x)[(α − β)
∫ x
0 λH(u)du

RW
− αx + βT ]. The Hamiltonian equation for this problem is

defined as follows: H = ρ(x)f(x) + g(x) = ρ(x) λH(x)−λH(x)[(α−β)
∫ x
0 λH(u)du

RW
−αx+βT ], where

ρ(x) is the marginal return vector. The variable ρ(x) also satisfies the following two equations:

∂ρ(x)
∂x = − ∂H

∂[
∫ x
0 λH(u)du]

= (α − β)λH(x)
RW

, and ρ(xmax) = ∂g
∂λH(x)(xmax) = (α − β) N

RW
− αxmax + βT .

From these two equations, we get ρ(x) = (α − β)
∫ x
0 λH(u)du

RW
− αxmax + βT for x ∈ [0, xmax]. We

find the optimal value of λH(x) that maximizes H. Since H is a linear function of λH(x), if

1For further information on the maximum principle approach see Sethi & Thompson (2000).
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ρ(x) − (α− β)
∫ x
0 λH(u)du

RW
+ αx− βT is positive, then λH(x) = N maximizes H, otherwise λH(x) =

RW is the optimal solution. Substituting ρ(x) with (α − β)
∫ x
0 λH(u)du

RW
− αxmax + βT , we have

ρ(x) − (α − β)
∫ x
0 λH(u)du

RW
+ αx − βT = −α(xmax − x). Since x ≤ xmax, −α(xmax − x) is negative,

and the optimal value of λH(x) for x ∈ [0, xmax] is RW .

Case (ii): The proof of this case is similar to the proof of case (i), except that at time y2 = x2

Area 1 becomes full, i.e., K1 = y2RW , and the remaining AVs must be routed to Area 2, i.e.,

λ2(y) = λH(x). In this case, λH(x) can take two values RW (which results in τD,2(x) ̸= 0) and

RW − a (which results in τD,2(x) = 0, since max{RD,2(x)} = RW − a). Let time xD (≥ x2) be the

time when the social planner sets λH(x) for commuters who are routed to Area 2 equal to RW ,

i.e., λH(x) = RW − a for x ∈ [x2, xD) and λH(x) = RW for x ∈ [xD, xmax]. The ideal start time at

work, T , in this case is equal to N−K1−(RW−a)(xD−x2)
RW

+ xD = N−K1−(RW−a)xD+(RW−a)x2+RW xD
RW

=

N−K1+axD+(RW−a)(K1/RW )
RW

= N+a(xD−x2)
RW

. Our goal is to characterize xD. In this case, the objective

function becomes
∫ x2
0 βRW (T −x)dx+

∫ xD
x2

β(RW −a)(T −x)dx+
∫ T
xD
βRW (T −x)dx+α′K1tW,1 +

α′(N−K1)tD,2+α′RW
∫ T−xD
0 τD,2(x)dx. This objective function is convex in xD, because its second

derivative, which is equal to βa(RW − a)/RW +α′ (RW−a)2
RW

τ ′D,2(T − xD), is positive. Therefore, the

value of xD that leads to the SO cost satisfies the first degree condition, i.e., βaxD(RW −a)/RW +

βa2K1/R
2
W−α′(RW−a)τD,2(T−xD) = 0. Note that if the value of xD that satisfies the first degree

condition is not in the interval [x2, T ], then the optimum is the boundary point x2 = K1/RW . The

boundary point T cannot be the optimum, as the first derivative is positive at T .

(b) The proof of this case is similar to that of part (a). In particular, λH(x) is equal to either

RW − a or RW . At time 0, since tD,2 < tW,1 and congestion time in D, τD,2(x), is zero, all AVs are

routed to Area 2. For x < xD, λH(x) = max{RD,2(x)} = RW − a, so τD,2(x) remains equal to zero

and λ2(x) = RW −a. At time xD, λH(x) increases to RW , and as long as τD,2(x) is low enough that

tD,2+τD,2(x) ≤ tW,1, all AVs are routed to Area 2, i.e., λ2(y) = RW and λ1(y) = 0. Let time yD+y1

be the earliest drop-off time at W such that tD,2 + τD,2(x) = tW,1. All AVs that leave W at time

yD + y1 are routed to Area 1, because τD,2(x) is an increasing function of y, but tW,1 is a constant

value. After yD + y1, all AVs are routed to Area 1, i.e., λ1(y) = RW and λ2(y) = 0, until τD,2(x)

becomes zero. Let yD + y2 be the earliest drop-off time at W such that τD,2(x) becomes equal to

zero again. At time yD + y2, AVs are again routed to Area 2, and this cycle continues until all N

158



AVs are routed to a parking area. Next, we characterize xD ∈ [0, T ], which is the time until when

the social planner sets λH(x) = RW −a and routes AVs to Area 2, i.e., λ2(y) = RW −a for y < yD.

After time xD = yD, the social planner alternately routes AVs to Area 2 and Area 1. Our goal is to

find the optimal value of xD that minimizes the total system cost, i.e.,
∫ xD
0 (RW − a)β(T − x)dx+∫ T

xD
RWβ(T − x)dx+

∫ T−xD
0 α′RW min{τD,2(x), tW,1 − tD,2}dx+Nα′tD,2. The ideal start time at

work, T , in this case is equal to N+axD
RW

. This objective function is convex in xD, because its second

derivative, which is equal to βa(RW − a)/RW +α′(RW − a)2τ ′D,2(min{y1, T − xD − y2⌊T−xDy2
⌋}), is

positive. Therefore, the value of xD that leads to the SO cost satisfies the first degree condition,

i.e., βaxD(RW − a)/RW − α′(RW − a)τD,2(min{y1, T − xD − y2⌊T−xDy2
⌋}) = 0. Note that if the

value of xD that satisfies the first degree condition is not in the interval [0, T ], then the optimum

is the boundary point x = 0. The boundary point T cannot be the optimum, as the first derivative

is positive at T .

Case (ii): The proof of this part is analogous to the proof of case (i), except that at time y1,max

Area 1 becomes full, i.e., K1 =
∫ y1,max
0 λ1(y)dy, and all AVs that leave W after time y1,max must

be routed to Area 2.

Lemma B.2. Under SO, if λ2(x) = RW for x ∈ [0, x̂], then τD,2(x) is a convex increasing function

of x(∈ [0, x̂]).

Proof. If λ2(x) = RW for x ∈ [0, x̂], by Lemma B.1 the congestion time in D is equal to τD,2(x) =

xa(eθx−1)
RW x−a(eθx−1)

. Taking the derivative of τD,2(x) with respect to x, we have τ ′D,2(x) = RW x2aθeθx−(aeθx−a)2
[RW x−a(eθx−1)]2

.

Since RD(x) = RW − aθeθx > 0, then
∫ x
0 RD(u)du =

∫ x
0 RW − aθeθudu = RWx − (aeθx − a) > 0.

In addition, it can be shown that xaθeθx ≥ aeθx − a, so RWx
2aθeθx − (aeθx − a)2 ≥ RWx(aeθx −

a) − (aeθx − a)2 = (aeθx − a)[RWx− (aeθx − a)]. Thus, both the numerator and the denominator

of τ ′D,2(x) are non-negative, and τD,2(x) is increasing in x.

Next, to prove the convexity of τD,2(x), we show that its second derivative is positive. The

second derivative of τD,2(x) is equal to τ ′′D,2(x) = aRW [2RW (x2eθx/2+eθx−xeθx−1)+aeθx(x+xeθx+2−2eθx)]
[RW x−a(eθx−1)]3

+

2RW aθ[eθx(x−1)+1]
[RW x−a(eθx−1)]2

. The second term and the denominator of the first term of τ ′′D,2(x) are positive.

The numerator of this term is also positive, because [2RW (x2eθx/2 + eθx − xeθx − 1) + aeθx(x +

xeθx + 2 − 2eθx)] is greater than [2aeθx(x2eθx/2 + eθx − xeθx − 1) + aeθx(x+ xeθx + 2 − 2eθx)] > 0.

Therefore, τD,2(x) is convex.
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Proof of Proposition 2.3. (a) The SO1 solution becomes a UE solution, if Conditions 1 and 2

are satisfied. In other words, for SO1 to be a UE, all commuters must incur the same travel cost,

regardless of their departure time from H or their parking location. Our approach is to equalize

all commuters’ costs, by charging commuters a parking fee, p1(x), or a congestion toll, π2(x). Here

we derive the functions p1(x) and π2(x) for case (ii). The functions p1(x) and π2(x) can be derived

similarly for case (i).

Under SO1, the total travel cost for commuters who go to Area 1 is C1(x) = β(T −x)+α′tW,1 +

p1(x) for 0 ≤ x ≤ x2 and that for commuters who go to Area 2 is C2(x) = β(T −x)+α′tD,2 +π2(x)

for x2 ≤ x ≤ xD and C2(x) = β(T − x) + α′[tD,2 + τD,2(x)] + π2(x) for xD ≤ x ≤ xmax. Note that

since there is no passengered congestion time, the congestion in I, τI(x), and drop-off congestion,

τW (x), are not included in the cost. The commuters who incur the maximum cost are the ones who

depart home at one of the boundary points x = 0, x2 or xmax. This is because C1(x) is decreasing

in x, and C2(x) is convex (because β(T −x) is linearly decreasing in x, and, by Lemma B.2, τD,2(x)

is convex and increasing in x.) This means that the maximum commuter cost is equal to the cost

at one of these three boundary points. In other words, the maximum commuter cost is equal to

max{βT +α′tW,1, β(T − x2) +α′tD,2, α
′tD,2 +α′τD,2(xmax)}. As such, the parking fee p1(x) (resp.,

the congestion toll π2(x)) is the difference between max{βT + α′tW,1, β(T − x2) + α′tD,2, α
′tD,2 +

α′τD,2(xmax)} and C1(x) (resp., C2(x)). So, we have the following:

p1(x) = max{βT + α′tW,1, β(T − x2) + α′tD,2, α
′tD,2 + α′τD,2(xmax)} − β(T − x) − α′tW,1

= βx+ max{0,−βx2 + α′(tD,2 − tW,1),−βT + α′(tD,2 − tW,1) + α′τD,2(xmax)} for 0 ≤ x ≤ x2, and

π2(x) = max{βT + α′tW,1, β(T − x2) + α′tD,2, α
′tD,2 + α′τD,2(xmax)} − β(T − x) − α′tD,2

= βx+ max{−α′(tD,2 − tW,1),−βx2,−βT + α′τD,2(xmax)} for x2 ≤ x ≤ xD, and

π2(x) = max{βT + α′tW,1, β(T − x2) + α′tD,2, α
′tD,2 + α′τD,2(xmax)} − β(T − x) − α′[tD,2 + τD,2(x)]

= βx− α′τD,2(x) + max{−α′(tD,2 − tW,1),−βx2,−βT + α′τD,2(xmax)} for x ≥ xD

Lastly, we add a positive constant ϵ1(x) to p1(x) when x ∈ [x2, xmax] to make sure that com-

muters who leave H after time x2 do not choose Area 1. Similarly, we add a positive constant ϵ2(x)

to π2(x) when x ∈ [0, x2] to make sure that commuters who leave H before time x2 do not choose
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Area 2.

(b) Similar to part (a), we derive p1(x) and π2(x) for case (i) of SO2. In this case, the total

travel cost for commuters who go to Area 1 is C1(x) = β(T − x) + α′tW,1 + p1(x) and that for

commuters who go to Area 2 is C2(x) = β(T − x) + α′tD,2 + π2(x) for x ≤ xD and C2(x) =

β(T − x) + α′[tD,2 + τD,2(x)] + π2(x) for xD ≤ x. The commuters who incur the maximum cost

are the ones who depart home at one of the boundary points x = 0 or xD + x1. This is because

C1(x) is decreasing in x, and C2(x) is convex (because β(T − x) is linearly decreasing in x, and,

by Lemma B.2, τD,2(x) is convex and increasing in x.) In other words, the maximum commuter

cost is equal to max{βT + α′tD,2, β(T − xD − x1) + α′tW,1}. As such, the parking fee p1(x) (resp.,

the congestion toll π2(x)) is the difference between max{βT +α′tD,2, β(T −xD−x1) +α′tW,1} and

C1(x) (resp., C2(x)). So, we have the following:

p1(x) = max{βT + α′tD,2, β(T − xD − x1) + α′tW,1} − β(T − x) − α′tW,1

= βx+ max{−β(xD + x1), α
′(tD,2 − tW,1)}, and

π2(x) = max{βT + α′tD,2, β(T − xD − x1) + α′tW,1} − β(T − x) − α′tD,2

= βx+ max{−β(xD + x1) − α′(tD,2 − tW,1), 0} for x2 ≤ x ≤ xD, and

π2(x) = max{βT + α′tD,2, β(T − xD − x1) + α′tW,1} − β(T − x) − α′[tD,2 + τD,2(x)]

= βx− α′τD,2(x) + max{−β(xD + x1) − α′(tD,2 − tW,1), 0} for x ≥ xD

Lastly, we add a positive constant ϵ1(x) to p1(x) when nx2 ≤ x ≤ min{xD + nx2 + x1, xmax}

for n = 0, 1, · · · , [N − (RW − a)xD]/(RW y2) to make sure that commuters do not choose Area 1.

Similarly, we add a positive constant ϵ2(x) to π2(x) when x /∈ [nx2,min{xD + nx2 + x1, xmax}]

for n = 0, 1, · · · , [N − (RW − a)xD]/(RW y2) to make sure that commuters who leave during these

time intervals do not choose Area 2. The functions p1(x) and π2(x) for case (ii) can be derived

similarly. Remarks In §2.6.1, for simplicity, we assume that, for the intervals of x when ϵ1(x)

and ϵ2(x) are non-zero, they are equal to |α′(tD,2 − tW,1)|. However, as discussed in the proof of

Proposition 2.3, any positive values of ϵ1(x) and ϵ2(x) for those intervals yield the same parking

location decisions.

Proof of Corollary 2.1. Under SO1, let CSO1 be the optimal value of the objective function
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in (2.5), where λH(x), λ1(y) and λ2(y) are substituted with those in Table 2.4, i.e., CSO1 =

βT 2

2 − aβ(xD − x2)(T − xD+x2
2 ) + α′K1(tW,1 − tD,2) + α′tD,2N + α′RW

∫ T
xD
τD,2(x)dx. The total

system cost CSO1 is continuous and differentiable with respect to RW ∈ (0,K1 + RW ]. Since the

number of downtown parking spots, K1, and the drop-off capacity, RW , are both limited, the total

available space downtown is limited, i.e., K1 + RW < ∞. In addition, since the drop-off capacity

does not exceed the inbound bottleneck capacity RI , there exist R∗
W that minimizes CSO1 on the

closed interval [0,min{K1 +RW , RI}]. In this case, the optimal downtown parking space capacity

is equal to K∗
1 = K1 +RW −R∗

W . Similarly, we can show that under SO2, there exist R∗
W and K∗

1

that minimize the total system cost.

B.4 Additional Analysis

B.4.1 Robustness of Case (i) of UE1

Our calibrated model parameters satisfy the condition for UE1: α′tD,2 = 2.25 × 15/60 ≤ 2.25 ×

2/60 + 1.80 = α′tW,1 + p1(0). In addition, since Area 1 is not chosen by any of the commuters (i.e.,

y1 > ymax = 333), the condition for case (i) of UE1 is satisfied: K1 = 10, 000 > N − RW ymax −

a(eθ(N/RW−N/RW ) − 1)[1 + N/RW
tW,1−tD,2+p1(xmax)/α′ ] = 20, 000 − 60 × 333 − 0 = 0 > N − RW y1 −

a(eθ(N/RW−y1) − 1)[1 + N/RW
tW,1−tD,2+p1(xmax)/α′ ].

We demonstrate that the observation of case (i) of UE1 is robust over a wide range of the

passengerless travel cost α′, number of commuters N , and drop-off rate RW . In addition, we show

that even when Area 2 is located in H3 (see Figure B.1), case (i) of UE1 is observed.

For our calibrated model, the observation of case (i) of UE1 is robust over a wide range of

model parameters. In particular, we show that the two conditions (α′tD,2 ≤ α′tW,1 + p1(0) and

K1 ≥ N − RW y1 − a(eθ(N/RW−y1) − 1)[1 + N/RW
tW,1−tD,2+p1(xmax)/α′ ]) required for case (i) of UE1 are

satisfied for reasonably estimated parameters values.2 First, the condition α′tD,2 ≤ α′tW,1 + p1(0)

depends on the distance of Area 2 from D (tD,2 = 15 minutes), the travel time from W to Area 1

(tW,1 = 2 minutes), the parking fee in Area 1 for the first group of commuters (p1(0) = $1.80), and

the passengerless travel cost (α′ = $2.25 per hour). Given that the travel time from W to Area 1,

2Since neither of the conditions for case (i) of UE1 depends on the value of α, our results hold for any positive
value of α ≥ α′.
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tW,1, also includes the time it takes to park, our estimate of 2 minutes for tW,1 is a conservative one.

Hence, any higher estimate of tW,1 still satisfies the condition for UE1. To show the robustness

of observing UE1 for the three remaining parameters, we consider two alternative locations for

Area 2: H1 and H3 (see Figure B.1). First, suppose Area 2 is located in H1, which is the farthest

feasible option from D. Then the free-flow travel time tD,2 from D to the Area 2 is 30 minutes.

As such, for all values of α′ less than p1(0)/(tD,2 − tW,1) = p1(0)
(30−2)/60 = 2.14p1(0), we observe UE1.

In fact, for our current estimate of $1.80 for Area 1’s parking fee for the first group of commuters,

p1(0), UE1 is observed when the passengerless travel cost α′ is less than $3.86 per hour. However,

p1(0) = $1.80 is itself a conservative estimate for the daily parking fee in Downtown Pittsburgh

because, as Parkopedia (2020) shows, the daily parking rate in Downtown Pittsburgh is usually at

least $4. This means that the necessary condition for observing UE1 is satisfied for all α′ ≤ $8.57

per hour, which is an even higher margin than the value of passengered travel cost α = $6.4 per

hour estimated in Pi et al. (2019).

Next, we analyze the case where Area 2 is located in H3 (see Figure B.1). As mentioned in

Appendix B.2, in this case the travel time from D to Area 2 , tD,2, is 5 minutes, and the parking

fee in Area 2 is half of that in Area 1, i.e., p2(x) = p1(x)/2. In this case, we still observe UE1,

because the cost associated with parking in Area 2 at time zero is lower than that in Area 1, i.e.,

α′tD,2 +p2(0) = 2.25×5/60+0.90 ≤ 2.25×2/60+1.80 = α′tW,1 +p1(0). In fact, for all values of α′

that are less than or equal to p1(0)−p2(0)
tD,2−tW,1 = 1.8−0.90

(5−2)/60 = $18 per hour, we observe UE1. In addition,

even if α′ is as high as the passengered travel cost α = $6.4 per hour estimated by Pi et al. (2019),

as long as the Area 2’s parking fee is at least $0.96 cheaper than Area 1’s parking fee at time zero,

i.e., p1(0) − p2(0) ≥ 0.96, we observe UE1. It is worth noting that, similar to the case when Area

2 is located in H2, when Area 2 is located in H3 all commuters choose Area 2. In addition, the

total travel cost that a commuter incurs increases from $22.23 in the former case to $22.75 in this

case. Given that H2 results in a marginally lower cost than H3, the latter location could be a valid

option for Area 2. We further discuss this option in Appendix B.4.4.

The second condition for observing case (i) of UE1 is K1 ≥ N −RW y1−a(eθ(N/RW−y1)− 1)[1 +

N/RW
tW,1−tD,2+p1(xmax)/α′ ]. In our calibrated model, all commuters choose Area 2 and Area 1 is never

used, i.e., y1 > ymax. This case of UE1 is observed when the cost associated with parking in Area 2

is always lower than that in Area 1, i.e., α′[tD,2+τD,2(x)] ≤ α′tW,1+p1(x) for x ∈ [0, xmax]. The cost
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Figure B.2: Robustness region of: (a) case (i) of UE1, and (b) case (ii) of SO1.

Notes. In (a), the (blue) shaded region, which includes the point (60, 20000), illustrates the parameter values for
which we observe case (i) of UE1. In (b), the (blue) shaded region, which includes the point (10000, 20000), illustrates
the parameter values for which we observe case (ii) of SO1.

associated with parking in Area 2 is a convex increasing function of x (see Lemma B.2 in Appendix

B.3), and that in Area 1 is linearly increasing in x, so to observe this case, it suffices to show that

Area 2 is cheaper than Area 1 at xmax, i.e., α′[tD,2 + τD,2(xmax)] ≤ α′tW,1 + p1(xmax). Considering

the most conservative estimates for our parameter values, i.e., tD,2 = 30 minutes, tW,1 = 2 minutes,

and p1(xmax) = $16, Area 2 is cheaper than Area 1 at time xmax when τD,2(xmax) ≤ 122 minutes.

Figure B.2(a) illustrates the range of number of commuters (N) and that of the drop-off congestion

rate (RW ) that satisfy the condition τD,2(xmax) ≤ 122 minutes. As shown in this figure, only when

RW is significantly lower and N is significantly higher than our estimated values, case (i) is not

observed. Therefore, our observation of case (i) of UE1 in Pittsburgh is robust.

B.4.2 A Numerical Analysis of UE2

As mentioned in §2.4.1, UE2 is observed in cities with low parking fees, so for the numerical example

depicted in Figure 2.4, we let p1(x) = 8x/xmax, which is lower than p1(x) = 1.8+14.2x/xmax in our

calibrated model for x ≥ 0. In addition, we choose H3 (see Figure B.1) with tD,2 = 5 minutes as the

location of Area 2, since the distance from downtown to suburban neighborhoods is shorter in small
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Figure B.3: An illustration of case (ii) of UE2: (a) departure rates, and (b) costs associated with
parking in Areas 1 and 2.

Note1. In (a), λH(x) denotes the departure rate from H at time x, and λ1(y) and λ2(y) denote the departure rates
from W at time y to Areas 1 and 2, respectively. In (b), p1(x) + α′tW,1 represents the cost associated with parking
in Area 1, and α′[tD,2 + τD,2(x)] is that in Area 2.

cities. In addition, we let the capacity K1 of Area 1 equal to 20, 000. Under these assumption,

the model parameters in this example satisfy the condition for UE2: α′tD,2 = 2.25 × 5/60 >

2.25× 2/60 + 0 = α′tW,1 + p1(0), and the condition for case (i) of UE2: K1 = 20, 000 ≥ 17, 594.8 =

N − [ N/RW
tW,1−tD,2+p1(xmax)/α′ + 1]a(eθ(N/RW−y2) − 1).

Under UE2, Area 1 is the primary parking area chosen by commuters, and Area 2 is an auxiliary

parking area. Depending on the magnitude of Area 1’s capacity K1, three different variations of

UE2 can occur: case (i) when K1 is high, case (ii) when K1 is low, and case (iii) when K1 is

moderate. An in-depth discussion and numerical analysis of case (i) is provided in §2.4.2. The

case of moderate K1, i.e., case (iii), is similar to the first case, except that after time y1,max Area 1

becomes full and all the remaining commuters go to Area 2. To avoid repetition, we do not present

a numerical example of this case. Figure B.3(a) portrays a numerical example of case (ii), where

we assume that the capacity of Area 1 , K1, is equal to 2, 638 parking spots, so the condition on K1

for case (ii) is satisfied, i.e., K1 = 2, 638 ≤ 4, 143.8 =
RW (α−p′1(x))p

−1
1 (α′(tD,2−tW,1))
α−β . The remaining

parameters are the same as those in the numerical example discussed in §2.4.2. As this figure

shows, all commuters who leave H early (i.e., before time x1,max = 9 minutes) park in Area 1, i.e.,
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λ1(y) = RW = 60 AVs per minute and λ2(y) = 0 for 0 ≤ y ≤ y1,max = 44 minutes. As Figure

B.3(b) shows, although Area 1 is the cheaper parking option, commuters who choose this Area

incur a higher work schedule penalty as they arrive at work earlier than commuters who choose

Area 2. This leads to a period of time from x1,max = 9 minutes to x2 = 12 minutes, during which no

commuter leaves H, as Area 1 is full and the cost of traveling to Area 2 is so high that commuters

rather leave later to decrease their total travel cost by reducing their work schedule penalty. After

x2 = 12 minutes, all commuters park in Area 2, i.e., λ2(y) = RW for y2 = 44 ≤ y ≤ ymax = 335

minutes.

B.4.3 Robustness of Case (ii) of SO1

For our calibrated model, we show that the observation of case (ii) of SO1 is robust over a wide

range of model parameters, including tD,2, tW,1, N and K1. In particular, we show that the two

conditions (tD,2 ≥ tW,1 and K1 < N) required for case (ii) of SO1 are satisfied for reasonably

estimated parameters values. The first condition, tD,2 ≥ tW,1, depends on the travel time from D

to Area 2, tD,2, and the travel time from W to Area 1, tW,1. For Pittsburgh, even if we assume

Area 2 is located in H3, which is the closest feasible option to D (see Figure B.1), the free-flow

travel time tD,2 from D to the Area 2 (which is 5 minutes) is still higher than the travel time tW,1

from W to Area 1 (which is 2 minutes). This means as long as tW,1 is not higher than 2.5 times

of our estimated value, we observe SO1. In addition, to observe case (ii) we need the condition

K1 < N . Figure B.2(b) illustrates the range of the number of commuters (N) and that of Area

1 capacity (K1) that satisfy this condition. We observe from this figure that for a wide range of

parameter values for N and K1 the condition for case (ii) of SO1 is satisfied.

B.4.4 The Location of Area 2

There are two potential locations for Area 2 outside Downtown Pittsburgh: H2 and H3 (see Figure

B.1). In the analysis of our calibrated model, we assume Area 2 is located in H2 rather than H3.

This is because there is already an abundance of parking spots in H2, while the City needs to invest

on building a new parking area in H3, should Area 2 be located there. Yet, one can argue that

building new parking spots in H3 is a beneficial investment in the long run, as it reduces the total

distance traveled by AVs. To this end, we calculate the annual savings in the total system cost under
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SO due to relocating Area 2 from H2 to H3. On the one hand, if Area 2 is moved to H3, the travel

time of each commuter decreases by 10 minutes (from tD,2 = 15 minutes for H2 to tD,2 = 5 minutes

for H3). This leads to (N −K1)×α′× 10/60 = (20, 000− 10, 000)× 2.25× 10/60 = $3, 750 in daily

savings (where N−K1 represent the number of commuters that go to Area 2 under SO), or $945, 000

in annual savings (considering 252 work days per year). On the other hand, according to Strong

Towns (2018), the cost of creating one parking spot can vary from $5, 000 to $50, 000. Assuming

building one parking spot outside Downtown Pittsburgh costs $5, 000, the social planners need to

invest 50 million dollars to build 10,000 (= N −K1) parking spots in H3. Even when doubling the

commute cost savings due to two-way trips to the parking area, this investment requires more than

25 years to break even. Thus, H3 does not seem to be a feasible option for Area 2.

B.4.5 The HV Case

To compare the effect of AVs on the morning commute case, we analyze a morning commute model

for HVs. In this model, after going through the inbound bottleneck, commuters who use HVs drive

to Area 1 to park their vehicles, and then walk to W . These commuters do not experience any

drop-off congestion at W (as HVs do not have the ability to drop off their commuters), neither

do they have the option to park outside downtown (as the walking time to W is prohibitively

high). However, they might experience some congestion as they drive around downtown to find

empty parking spots; we call this the parking cruising congestion time, τ1(x). Following Qian &

Rajagopal (2014) and Qian & Rajagopal (2015), we let τ1(x) be equal to
tW,1

K1(x)/K1
, where K1(x)

is the number of empty spots in Area 1 available to a commuter who leaves H at x. Then, the

travel cost for a commuter consists of the following elements: the inbound congestion cost (i.e.,

ατI(x)), parking cruising congestion cost (i.e., ατ1(x)), cost of walking from Area 1 to W (i.e.,

α′′t1,W , where α′′ and t1,W represent the monetary value of walk time and the walk time from

Area 1 to W , respectively), work schedule penalty (i.e., β[T −x− τI(x)− tW,1− t1,W ], and parking

fee of Area 1 (i.e., p1(x)). Taken together, the travel cost of a commuter under the HV case is

equal to C1(x) = ατI(x) + ατ1(x) + α′′t1,W + β[T − x− τI(x) − τ1(x) − t1,W ] + p1(x). To estimate

this travel cost, we use the model parameters discussed in Table 2.1, except that we use α = $9

for HVs, which is equal to twice the value of α for AVs in the calibrated model. This is because

the HV commute time is more valuable than the AV commute time, since an AV commuter can
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dedicate her commute time to an activity other than driving. In addition, in the prior literature

(e.g., Zhang et al. (2008), Qian et al. (2011), Qian et al. (2012), Qian & Rajagopal (2014), Qian &

Rajagopal (2015), and Zhang et al. (2019)), the estimates for α range from $9.91 to $36 per hour,

so our estimate of α = $9 per hour for HVs is a conservative one. In addition, we estimate two

model parameters specific to the HV case that are not available in Pi et al. (2019): α′′ and t1,W .

First, we assume α′′ is equal to α = $9 per hour in our model. This is a lower bound on α′, as

the cost of walking is higher than passengered travel cost. Second, based on the size of Downtown

Pittsburgh, we estimate that t1,W is approximately 15 minutes for a commuter.

Using these model parameters, we calculate the departure rate from H. To this end, similar

to the proof of Proposition 2.1, we set the derivative of the commuters’ travel cost C1(x) equal to

zero, i.e., (α−β)λH(x)−RI
RI

+ (α−β)
K1tW,1λH(x)

[K1−
∫ x
0 λH(u)du]2

−β+ p′1(x) = 0. This is an ODE in the form of

α−β
RI

f(x)f ′(x) +K1tW,1f
′(x) + 1

α−p′1(x)
α−β f(x)

√
f(x) = 0, where f(x) = [K1 −

∫ x
0 λH(u)du]2, f ′(x) =

−2λ(x)[K1−
∫ x
0 λH(u)du], and f(0) = K2

1 . The solution to this ODE is equal to f(x) = R2
I [

8K1tW,1
RI

−

4c
α−p′1(x)
α−β x + c2 + 4(

α−p′1(x)
α−β )2x2 − (2

α−p′1(x)
α−β x − c)

√
8K1tW,1
RI

− 4c
α−p′1(x)
α−β x+ c2 + 4(

α−p′1(x)
α−β )2x2]/8.

Using our model parameters and c = 569.9 (which is the constant factor that guarantees f(0) =

K2
1 ), λH(x) ranges from 84.42 vehicles per minute at time zero to 49.77 vehicles per minute at

xmax =
N(α−β)[1/RI+tW,1/(K1−N)]+max{p1(x)}−p(0)

α = 253. This results in $22.61 for the travel cost

of a commuter under UE, and $283, 243 for the total system cost (which does not include the

downtown parking fee).

To have a fair comparison between the HV case and the AV case, similar to the HV case, in

our model we allow commuters to drive to Area 1, park their AVs and walk to W . However, for

our calibrated model the cost associated with this option, i.e., (α − β)τI(x) + β(T − x) + p1(x) +

(α′′ − β)t1,W = (α− β)τI(x) + β(T − x) + p1(x) + (9 − 3.9) × 15/60 = (α− β)τI(x) + β(T − x) +

p1(x) + 1.275, is higher than the cost of dropping off a commuter at W and self-driving to Area 1,

i.e., (α− β)τI(x) + β(T − x) + p1(x) + (α− β)τW (x) + α′tW,1 ≤ (α− β)τI(x) + β(T − x) + p1(x) +

(α−β) max{τW (x)}+α′tW,1 = (α−β)τI(x) +β(T −x) + p1(x) + (4.5− 3.9)× 1.21 + 2.25× 2/60 =

(α− β)τI(x) + β(T − x) + p1(x) + 0.80, which, as discussed in §2.4.1, is itself higher than the cost

of choosing Area 2. Hence, even though the AV commuters have the option to park their AVs

in Area 1 and walk to W , they choose not to do it, and continue to park in Area 2. As such,

the travel cost of a commuter in the AV case is lower than that in the HV case. However, as

168



discussed in §2.4.1, the total system cost in the HV case is lower than that in the calibrated model.

AVs also increase the total VHT compared to HVs. For the HV case, the total VHT is equal to∫ 253
0 λH(x)[τI(x) + τ1(x)]dx = 334, 232.37 minutes. For the AV case, the total free-flow travel time

for all commuters is equal to N × tD,2 = 20, 000 × 15 = 300, 000 minutes and total congestion is

equal to
∫ 75
0 λH(x)[τI(x) + τW (x) + τD,2(x)]dx = 2, 992, 515.9 minutes, so the total VHT is equal

to 300, 000 + 2, 992, 515.9 = 3, 292, 515.90 minutes.

We also calculate SO for the HV case. Similar to the AV case, we can show that the departure

rate from H under SO is equal to the capacity of the most downstream bottleneck, which is the

inbound bottleneck in this case, i.e., λH(x) = RI = 4, 600/60 = 76.67 vehicles per minute. So the

SO cost is
∫ T
0 RI [(α−β)

K1tW,1
K1−

∫ x
0 RIdu

+β(T −x) +αtW,1]dx, where T = N/RI +
K1tW,1
K1−N + t1,W = 298

minutes, yielding $252, 905.16.

Next, we do a similar analysis for the HV case under UE2. Similar to the previous case, the

departure rate from H, λH(x), can be derived by solving an ODE. For the model parameters used

in the numerical example in §2.4.2, λH(x) ranges from 91.61 vehicles per minute at time zero to

15.13 vehicles per minute at xmax =
N(α−β)[1/RI+tW,1/(K1−N)]+max{p1(x)}−p(0)

α = 328 minutes. The

total system cost is equal to
∫ xmax
0 λH(x){(α− β)[τI(x) + τ1(x) + t1,W ] + β(T − x)}dx = $518, 351.

Under SO, since the optimal departure rate from H is equal to the inbound bottleneck capacity,

RI = 4, 600/60 = 76.67 commuters per minute, the SO cost becomes equal to
∫ xmax
0 RI [(α −

β)
K1tW,1

K1−
∫ x
0 RIdu

+ β(T − x) + (α− β)tW,1]dx = $311, 748.76.

B.4.6 Pricing and Tolling Schemes Benchmarks for the Calibrated Model

Benchmark 1 (Dynamic parking pricing for Area 1 without congestion tolling): In our calibrated

model, since Area 1 is closer than Area 2, i.e., tW,1 ≤ tD,2, the social planner wants to fill Area

1 before commuters go to Area 2. To this end, the social planner needs to determine Area 1’s

parking fee in such a way that the cost of choosing Area 1, α′tW,1 + p1(x), is lower than the cost

of choosing Area 2, α′tD,2, when Area 1 is not full, i.e., for x ∈ [0, x1,max]. This means that Area

1’s parking fee p1(x) can be at most equal to α′(tD,2 − tW,1) = (2.25/60) × (15 − 2) = $0.49 for

x ∈ [0, x1,max]. By Assumption A1, p1(x) is increasing in x, hence we assume that p1(x) = 0.0169x

for x ∈ [0, x1,max = 29], which is a linear increasing function of x with max{p1(x)} = 0.49. In
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this case, α′tD,2 > α′tW,1 + p1(0), so by Proposition 1, we observe UE2, where the travel cost of

commuters under UE is equal to $21.74. In addition, the total system cost, which excludes the

parking fees, is equal to
∫ x1,max
0 λH(x)[ατI(x)+ατW (x)+β(T−y)+α′tW,1]dx+

∫ xmax
x1,max

λH(x)[ατI(x)+

ατW (x) + β(T − y) + α′tD,2 + α′τD,2(x)]dx = $432, 654.

Benchmark 2 (A congestion tolling scheme): Similar to Benchmark 1, since Area 1 is closer

than Area 2, the social planner wants commuters to first fill Area 1 and follow UE2. To this end the

social planner imposes a flat toll π2 on commuters who want to go to Area 2 before Area 1 becomes

full at time x1,max. This toll ensures that the cost of choosing Area 1, α′tW,1 +p1(x), must be lower

than the cost of choosing Area 2, α′tD,2 + π2, when Area 1 is not full, i.e., for x ∈ [0, xmax]. Area

2’s flat toll π2 must be at least equal to α′(tW,1− tD,2) + max{p1(x)} = α′(tW,1− tD,2) +p1(x1,max),

where x1,max = 51 minutes and p1(x1,max) = 1.8 + 0.0426x1,max = 3.99, so the flat toll π2(x)

is equal to (2.25/60) × (2 − 15) + 3.99 = $3.50 for x ∈ [0, xmax = 74]. Using this flat toll,

α′tD,2 + π2 > α′tW,1 + p1(0), so by Proposition 1, we observe UE2, where the travel cost of

commuters under UE is equal to $23.54. In addition, the total system cost, which excludes both

Area 1’s parking fees and the flat tolls, is equal to
∫ x1,max
0 λH(x)[ατI(x) + ατW (x) + β(T − y) +

α′tW,1]dx +
∫ xmax
x1,max

λH(x)[ατI(x) + ατW (x) + β(T − y) + α′tD,2 + α′τD,2(x)]dx = $416, 076. Note

that the congestion toll π2 does not necessarily need to be a flat toll. In fact, our analysis holds for

any π2(x) function that leads to a higher travel cost to Area 2 than that to Area 1.

B.5 Late Arrivals

We discuss the case when commuters can choose to arrive at W after the official work start time

T , and show that our main results are robust. As stated in Assumption A7, so far we assume

that no commuter would intentionally plan to arrive after T , so the latest group of commuters who

leave H at xmax arrive at W exactly at T . However, when relaxing Assumption A7, the departure

time for commuters who arrive at W at T , which we denote it by x∗, is no longer equal to the

latest departure time xmax. In fact, in this case x∗ < xmax, and by definition of arrival time at

W , y∗ = T < ymax. Proposition B.1 presents various forms of UEs in this case when the penalty

of arriving late at W , γ, is not prohibitively high (although it is still higher than the penalty of

arriving early, i.e., β ≤ γ).
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Proposition B.1. (a) [UE1L] Suppose α′tD,2 ≤ α′tW,1 + p1(0). There exists a UE which is pre-

sented in Table B2, where E =
α(

∫ y
0 RW−aθeθzdz)2

(α+γ)(
∫ y
0 RW−aθeθzdz)2−α′(

∫ y
0 aθe

θzdz)2+α′aθeyRW y2
RW , F = α−p′(x)

α+γ RW ,

ymax = xmax = n/RW , y∗ = x∗ +τI(x
∗)+τW (x∗), x∗ satisfies (α−β)T −αx∗ +α′τD,2(x

∗) = 0, and

x1 satisfies α′tW,1 + p1(x1) = α′[tD,2 + τD,2(x1)]. In addition, λ1(y) and λ2(y) for cases (i-1)-(i-2)

and cases (ii-1)-(ii-2) follow those from case (i) and case (ii) in Table 2.2, respectively.

Table B2: A characterization of departure rate from H under UE1L.

Condition λH(x)
(i-1) K1 ≥ N −RW y1 and
α′[τ2(x∗) + tD,2] ≤ α′tW,1 + p1(x∗)

A for 0 ≤ x < x∗

E for x∗ ≤ x ≤ min{x1, xmax}
F for min{x1, xmax} ≤ x ≤
xmax

(i-2) K1 ≥ N −RW y1 and
α′[τ2(x∗) + tD,2] ≤ α′tW,1 + p1(x∗)

A for 0 ≤ x < x1
B for x1 ≤ x ≤ x∗

F for x∗ ≤ x ≤ xmax
(ii-1) K1 < N −RW y1 and
α′[τ2(x∗) + tD,2] ≤ α′tW,1 + p1(x∗)

A for 0 ≤ x < x∗

E for x∗ ≤ x < x1 or x2 ≤ x ≤
xmax
F for x1 ≤ x < x2

(ii-2) K1 < N −RW y1 and
α′[τ2(x∗) + tD,2] ≤ α′tW,1 + p1(x∗)

A for 0 ≤ x < x1
B for x1 ≤ x < x∗

F for x∗ < x < x2 + {x∗ − x2}+
E for max{x∗, x2} ≤ x ≤ xmax

(b) [UE2L] Suppose α′tD,2 ≥ α′tW,1+p1(0). There exists a UE which is presented in Table B3, where

x2 satisfies α′tW,1 + p1(x2) = α′tD,2, ymax = xmax = N/RW , y∗ = T = γN+RW (p1(xmax)−p1(0))
RW (β+γ) , and

x∗ satisfies
∫ x∗
0 λH(u)du = RW y

∗. In addition, λ1(y) and λ2(y) for case (i), cases (ii-1)-(ii-2), and

cases (iii-1)-(iii-2) follow those from case (i), case (ii), and case (iii) in Table 2.3, respectively.

Proof of Proposition B.1. (a) The proof of this part is similar to the proof of Proposition 2.1(a),

except that late arrivals change the value of λH(x). We discuss cases (i-1) and (i-2) in Table B2;

the proof of the remaining two cases follow a similar procedure.

The work schedule penalty for commuters who arrive at work late, i.e., y ≥ T , is equal to

γ(y−T ). So for the commuters who choose Area 1. the travel cost is modified as follows: C1(x) =

(α+γ)
∫ x
0 λH(u)du

RW
−αx−γT +α′tW,1 +p1(x). For the commuters who choose Area 2, the travel cost

is modified as follows: C2(x) = (α+ γ)
∫ x
0 λH(u)du

RW
−αx− γT +α′[τ2(x) + tD,2]. Thus, the departure

rate from H is equal to E =
α(

∫ y
0 RW−aθeθzdz)2

(α+γ)(
∫ y
0 RW−aθeθzdz)2−α′(

∫ y
0 aθe

θzdz)2+α′aθeyRW y2
RW when commuters

choose Area 2, and F = α−p′(x)
α+γ RW otherwise. Lastly, depending on the level of congestion for

commuters who leave at time x∗, there are two cases associated with case (i) of UE1. In particular,

if τ2(x
∗) ≤ tW,1 − tD,2 + p1(x

∗)/α′, then the departure time of commuters who arrive at W at T is
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Table B3: A characterization of departure rate from H under UE2L.

Condition λH(x)

(i) K1 ≥ N − [
N/RW

tW,1−tD,2+p1(xmax)/α′ + 1]a(e
N

RW
−y2 − 1) B for 0 ≤ x ≤ x∗

F for x∗ ≤ x ≤ xmax

(ii-1) K1 ≤ RW (α−p′1(x))p
−1
1 (α′(tD,2−tW,1))

α−β

and
γN+RW [p1(xmax)−p1(0)]

(α−β)RW
≤ K1

RW

B for 0 ≤ x < x∗

F for x∗ ≤ x < x1,max
0 for x1,max ≤ x < x2
E for x2 ≤ x ≤ xmax

(ii-2) K1 ≤ RW (α−p′1(x))p
−1
1 (α′(tD,2−tW,1))

α−β

and
γN+RW [p1(xmax)−p1(0)]

(α−β)RW
> K1

RW

B for 0 ≤ x < x1,max
0 for x1,max ≤ x < x2
A for x2 ≤ x ≤ x∗

E for x∗ ≤ x ≤ xmax

(iii-1)
RW (α−p′1(x))p

−1
1 (α′(tD,2−tW,1))

α−β

< K1 < N − [
N/RW

tW,1−tD,2+p1(xmax)/α′ + 1]a(e
N

RW
−y2 − 1)

and
γN+RW [p1(xmax)−p1(0)]

(α−β)RW
≤ K1

RW

B for 0 ≤ x < x∗

F for x∗ ≤ x < x2
E for x2 ≤ x ≤ xmax

(iii-2)
RW (α−p′1(x))p

−1
1 (α′(tD,2−tW,1))

α−β

< K1 < N − [
N/RW

tW,1−tD,2+p1(xmax)/α′ + 1]a(e
N

RW
−y2 − 1)

and
γN+RW [p1(xmax)−p1(0)]

(α−β)RW
> K1

RW

B for 0 ≤ x < x2
A for x2 ≤ x ≤ x∗

E for x∗ ≤ x ≤ xmax

sooner than the earliest time some commuters choose Area 1, i.e., x∗ ≤ x1, and we have case (i-1).

Otherwise, we have case (i-2).

(b) The proof of this part is similar to the proof of Proposition 2.1(b). For all cases of UE1L,

we derive y∗ = T by letting C1(0) = T + α′tW,1 + p1(0) equal to C1(xmax) = γN/RW − γT +

α′tW,1 + p1(xmax). Hence, y∗ = T = γN+RW [p1(xmax)−p1(0)]
(α−β)RW . In addition, by (2.1), x∗ satisfies

y∗ =
∫ x∗
0 λH(u)du

RW
. Similar to the proof of part (a), the departure rate from H, λH(x), changes for

late arrivals. For case (i), since all commuters choose Area 1, λH(x) follows B before time x∗,

and F after time x∗. However, for each case (ii) and (iii) under UE2, there exist two cases: when

K1/RW ≥ γN+RW [p1(xmax)−p1(0)]
(α−β)RW , x∗ ≤ x2 and we observe cases (ii-1) and (iii-1), and otherwise we

observe cases (ii-2) and (iii-2), respectively.

Similar to Proposition 2.1, Proposition B.1 indicates that there exist two forms of UE: UE1L

and UE2L. In fact, under UE1L and UE2L the departure rate to the parking areas, i.e., λ1(y) and

λ1(y), are the same as those under UE1 and UE2, respectively. However, under UE1L and UE2L,

the departure rate from H, λH(x), for the commuters who arrive at W after time T differs from

that in Proposition 2.1. Hence, depending on the model parameters, each case of UE1 or UE2,

except case (i) of UE2, is divided to two cases under UE1L or UE2L. Here we focus on UE1L

and its difference with UE1. The reason why each case of UE1 is divided into two cases under
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UE1L is as follows: In both of these cases, commuters choose Area 2 until time x1 when some

commuters go to Area 2, so depending on the level of downtown congestion and parking fees at

time x∗, the earliest departure time of commuters who choose Area 1, x1, can be before or after

time x∗, creating two separate cases. In particular, in case (i-1) of UE1L, the cost of traveling to

Area 2, α′[τD,2(x
∗) + tD,2], is still lower than that to Area 1, α′tW,1 + p1(x

∗), so x1 > x∗; otherwise,

x1 ≤ x∗ which is presented in case (i-2). Note that the condition K1 ≥ N − RW y1 is exactly the

condition we have for case (i) of UE1 in Proposition 2.1. Similarly, case (ii-1) and (ii-2) correspond

to when x1 > x∗ and x1 ≤ x∗, respectively.

We illustrate this proposition for our calibrated model in Figure B.4. Following Pi et al. (2019),

we assume that the penalty of arriving late at W , γ, is $15.2 per hour. Using this value of γ and the

model parameters discussed in Table 2.1, we observe case (i-1) of UE1L.3 As Figure B.4(a) shows,

the departure rate from H for the commuters who leave before x∗ = 46 minutes is identical to that in

Figure 2.2(a), but for the commuters who leave after x∗ = 46 minutes, there is a significant decrease

in λH(x). This is because commuters who depart H after x∗ and arrive at W late incur a higher

work schedule penalty per hour than those who arrive early (remember that β = $3.9 ≤ γ = $15.2

per hour). Hence, the rate of the commuters who leave after x∗ is significantly lower than that for

the commuters who leave before x∗. In fact λH(x) decreases from 199.02 commuters per minute

to 13.17 commuters per minute immediately after x∗ = 46 minutes. The low departure rate of

late commuters expands the departure window from H from 75 minutes in Figure 2.2(a) to 333

minutes in this case. However, since the departure rates to the parking areas stay the same as those

in Figure 2.2(a), the entire duration of the morning commute remains the same, i.e., ymax = 333

in both cases. Figure B.4(b) depicts the different cost components that commuters incur in our

calibrated model. In this case, the total travel cost incurred by each commuter decreases from

$22.23 in Figure 2.3(b) to $18.33 for two major reasons. First, the reduced departure rate from H

after x∗ decreases the congestion costs. Second, since some commuters arrive after time T , the work

schedule penalty that commuters experience is more balanced, and the maximum work schedule

delay is reduced. This is expected because commuters are now given an option to arrive late.

3The calibrated model parameters satisfy the condition for case (i-1) of UE1L: α′tD,2 = 2.25 × 15/60 ≤ 2.25 ×
2/60+1.80 = α′tW, 1+p1(0). In addition, since Area 1 is not chosen by any of the commuters (i.e., y1 > ymax = 333),
the conditions for case (i-1) of UE1 is satisfied: K1 = 10, 000 > N −RW ymax = 20, 000− 60× 333 > N −RW y1 and
α′[τD,2(x

∗) + tD,2] = 2.25× (20.07 + 15)/60 ≤ 2.25× 2/60 + 3.76 = α′tW,1 + p1(x
∗).
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Figure B.4: An illustration of UE1L in the calibrated model: (a) departure rate from H, and (b)
different cost components commuters incur.

Notes. In (b), the total cost C2(x) has three components: the work schedule penalty, which is equal to β[T − y]
for commuters who arrive at W before time T and γ[y − T ] for commuters who arrive at W after time T , the
passengered congestion cost, which is equal to α[τI(x)+ τW (x)], and the passengerless congestion cost, which is equal
to α′[tD,2 + τD,2(x)].

We observe from Figure B.4 that the main insights from §2.4.1 continue to hold in this extension.

In particular, most commuters prefer to leave early (81% of commuters leave before x∗), creating a

spike in the passengered congestion cost, and all commuters choose to park in Area 2. This verifies

the results shown in §2.4.1 that under UE, AVs eliminate the demand for downtown parking, expand

the duration of the morning commute, and create more congestion than HVs. Since the latter two

effects are not desirable social outcomes, in Proposition B.2, we investigate the effect of late arrivals

on the SO case.

Proposition B.2. (a) [SO1L] Suppose tD,2 ≥ tW,1. There exists an SO, presented in Table 2.4.

Table B4 presents the expression for x∗ = T . In this table, cases (ii-1)-(ii-3) correspond to case

(ii) in Table 2.4. In addition, y2 = x2 = K1/RW , xmax = ymax = N
RW

for case (i), and xmax =

ymax = N+a(xD−x2)
RW

for cases (ii-1)-(ii-3).
(b) [SO2L] Suppose tD,2 < tW,1. There exists an SO, presented in Table 2.5. Table B5 presents the

expressions for xmax = ymax = N+axD
RW

and x∗ = T . In this table, cases (i-1)-(i-2) correspond to

case (i) and (ii-1)-(ii-2) correspond to case (ii) of Table 2.4.
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Table B4: A characterization of departure time from H for commuters who arrive at W at T under
SO1L.

Condition x∗

(i) K1 ≥ N Nγ
RW (β+γ)

(ii-1) K1 < N ≤ K1(β + γ)/γ
RW γxmax−aγ(xD−x2)

RW (β+γ)

(ii-2)K1(β+γ)/γ < N ≤ [(RW−a)x2−axD](β+γ)/γ RW γxmax−aβx2−γxD
(RW−a)(β+γ)

(ii-3) N > [(RW − a)x2 − axD](β + γ)/γ
RW γxmax+aβ(xD−x2)

RW (β+γ)

Table B5: A characterization of departure time from H for commuters who arrive at W at T under
SO2L.

Condition x∗

(i-1) K1 ≥ [
N−(RW−a)xD

RW y2
+ 1]y1RW and N ≤ (RW − a)(β + γ)xD/γ or

(ii-1) K1 < [
N−(RW−a)xD

RW y2
+ 1]y1RW and N ≤ (RW − a)(β + γ)xD/γ

RW γxmax+aβxD
RW (β+γ)

(i-2) K1 ≥ [
N−(RW−a)xD

RW y2
+ 1]y1RW and N > (RW − a)(β + γ)xD/γ or

(ii-2) K1 < [
N−(RW−a)xD

RW y2
+ 1]y1RW and N > (RW − a)(β + γ)xD/γ

RW γxmax−aγxD
(RW−a)(β+γ)

Proof of Proposition B.2. (a) The proof of this part is identical to that of Proposition 2.2(a),

except that depending on the value of K1 and N , the value of x∗ changes. For case (i) of SO1, since

the total number of commuters, N , is so low that Area 1 can accommodate all commuters, there

exists only one corresponding case under SO1L, which is case (i) in Table B4. However, for case (ii)

of SO1, depending on the values of N and K1, we have three cases (ii-1), (ii-2), and (ii-3), which

correspond to x∗ ≤ x2, x2 < x∗ ≤ xD, and x∗ > xD, respectively. We next derive the expression of

x∗ for case (i) under SO1L; the expression of x∗ for the remaining cases can be derived similarly. For

case (i), we find the value of x∗ that minimizes the aggregate cost, i.e., minx∗
∫ x∗
0 RWβ(T −x)dx+∫ xmax

x∗ RWγ(x−T )dx+
∫ xmax
0 RWα

′tW,1dx = minx∗ [RWβ(x∗)2]/2+[RWγ(xmax−x∗)2]/2+Nα′tW,1.

Taking the first derivative, we have (β + γ)x∗ = γN/RW , yielding x∗ = γN
(β+γ)RW

.

(b) The proof of this part is similar to the proof of part (a). For each case of SO2, we have two

cases under SO2L. We derive the expression of x∗ for cases (i-1) and (ii-1); the expression of x∗ for

cases (i-2) and (ii-2) can be calculated similarly. Suppose N ≤ (RW − a)(β + γ)xD/γ. Then we

find x∗ that minimizes the aggregate cost, i.e., minx∗
∫ x∗
0 RWβ(T − x)dx+

∫ xmax
x∗ RWγ(x− T )dx−∫ xD

0 aβ(T − x)dx+
∫ xmax
0 λ1(y)α′tW,1 + λ2(y)α′[tD,2 + τD,2(x)]dx. We can simplify this equation as

minx∗ [RWβ(x∗)2]/2+[RWγ(xmax−x∗)2]/2−aβxD(x∗−xD/2). Taking the first derivative, we have

(β + γ)x∗ = γxmax + aβxD/RW , yielding x∗ = γxmaxRW+aβxD
(β+γ)RW

. Since N ≤ (RW − a)(β + γ)xD/γ,

x∗ ≥ xD.
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Proposition B.2 indicates that SO in this case is identical to those in Proposition 2.2, while

the departure time from H that results in arriving at W at time T , x∗, can vary depending on

the model parameters. In particular, under SO1L, there exist three different possible cases for x∗

(represented by cases (ii-1)-(ii-3)) that correspond to the case (ii) of SO1, and under SO2L there

are two different cases associated with each case of SO2. In our calibrated model, we observe case

(ii-3) of SO1L.4 All the departure time from H and parking locations decisions are exactly as those

depicted in Figure 2.5, but by allowing late arrivals the total system cost decreases from $218, 728 to

$180, 647. The main insights from §2.5.1 continue to hold, and the late arrivals of some commuters

do not have an effect on the social planner’s decisions. In addition, since SO remains unchanged,

the parking fees and congestion tolls follow the same pattern as presented in Proposition 2.3.

4In addition to the conditions of case (ii) of SO1, our calibrated model satisfies the condition for case (ii-3) of
SO1L: N = 20, 000 > [(60− 0.2)× 167− 0.2× 215](3.9 + 15.2)/15.2 = [(RW − a)x2 − axD](β + γ)/γ.
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Appendix C

Additional Material for Chapter 3

C.1 Notation Summary

Table C1: Summary of notation

Symbol Definition
j Index for mode of transportation (j ∈ {C,R})
x Departure time from H

xmax Latest departure time from H
xj Earliest departure time of commuters who choose Area j ∈ {1, 2}
RI Inbound bottleneck capacity
RC Downtown roads capacity
RR Drop-off rate at W
R∗
R Optimal drop-off rate at W
N Total number of commuters
T Official start time at work for all commuters
p(x) Downtown parking fee for commuters who leave H at x
u(x) TNC’s profit margin from a commuter who leaves H at x
u0 Minimum TNC profit margin under case (i) of equilibrium
u0 Minimum TNC profit margin under case (ii) of equilibrium
π(x) Drop-off congestion toll for ride-hailing commuters who leave H at x
λH(x) Departure rate from H at x
λj(x) Departure rate from H for commuters who choose transportation mode

j ∈ {C,R} and leave H at x
τI(x) Inbound delay time for a commuter who leaves H at x
τR(x) Drop-off congestion time for a ride-hailing commuter who leaves H at x
τC(x) Downtown congestion time for a conventional commuter who leaves H at x
tH,I Free-flow travel time from H to I
tI,D Free-flow travel time from I to D
tC Walking time from parking areas to W
tC Walking time from drop-off zone to W
α Unit cost of driving time for commuters
α′ Unit cost of walking time for commuters
β Unit cost for early schedule delay
δ Negative externality factor of ride-hailing drop-offs

Cj(x) Total cost of a commuter who leaves H at x and chooses transportation
mode j ∈ {C,R}

C The daily travel cost for an individual commuter under SO
Γ Minimum number of ride-hailing vehicles present in the drop-off zone that

creates negative externality for conventional commuters
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C.2 Proofs

Lemma C.1. If τI(x) ̸= 0 for all x ∈ [0, xmax], then τI(x)+τC(x) =
δ
∫ x
0 λR(u)−RRdu+

∫ x
0 λC(u)−RCdu

RC

and τI(x) + τR(x) =
∫ x
0 λR(u)−RRdu

RR
.

Proof. We prove τI(x)+τR(x) =
∫ x
0 λR(u)−RRdu

RR
. The proof of τI(x)+τC(x) = [δ

∫ x
0 λR(u)−RRdu+∫ x

0 λC(u) −RCdu]/RC is similar and is eliminated to avoid repetition.

By A3, τI(x) =
∫ x
0 λH(u)−RIdu

RI
and τR(x) =

∫ x+τI (x)
0 λR(u)RI/λH(u)−RRdu

RR
, hence τI(x) + τR(x) =∫ x

0 λH(u)−RIdu
RI

+
∫ x+τI (x)
0 λR(u)RI/λH(u)−RRdu

RR
. After some simplifications, we have τI(x) + τR(x) =∫ ∫ x

)
λH (u)/RIdu

0 λR(u)RI/λH(u)−RRdu
RR

. The numerator of this expression, i.e.,
∫ ∫ x

0 λH (u)/RIdu

0 λR(u)RI/λH(u)−RRdu
RR

,

is the total number of ride-hailing vehicles that leave H at x or earlier and are present at the drop-

off zone by x+ τI(x) =
∫ x
0 λH(u)du/RI . By definition of λR(x), i.e., departure rate of ride-hailing

commuters who leave H at x, the numerator is equal to
∫ x
0 λR(x) −RRdu.

Proof of Proposition 3.1. We prove this proposition in two main steps: In the first step, as-

suming that u(x) is given, we characterize an equilibrium such that Conditions 1 and 2, stated in

§3.4, are satisfied. In the second step, we derive u(x) that satisfies Condition 3.

Step 1: There exist two types of equilibrium that satisfies Conditions 1 and 2 depending on

the decisions made by commuters who leave H at time zero:

(i) Suppose CC(0) < CR(0), i.e., (α′ − β)tC + p(0) < (α′ − β)tR + u(0). In this case commuters

who leave H at x ∈ [0, xR), choose to drive. At xR, as downtown congestion τC(x) for conventional

commuters increases, CC(xR) becomes equal to CR(xR), and some commuters choose to use ride-

hailing. Next, we derive the values of λC(x) and λR(x). Particularly, for x ∈ [0, xR), since all

commuters choose to drive, λR(x) = 0. To derive λC(x), by Condition 2, we set ∂CC
∂x equal to

zero, and derive λC(x) = α−p′(x)
α−β RC . Similarly, for x ∈ [xR, xmax], by Condition 2, we derive

λR(x) = α−u′(x)
α−β RR. In addition, we derive λC(x) = α−p′(x)

α−β RC for x ∈ [xR, x̄R), and λC(x) =

α−p′(x)
α−β RC − δ[β−u′(x)]

α−β RR for x ∈ [x̄R, xmax].

(ii) Suppose CC(0) ≥ CR(0), i.e., (α′ − β)tC + p(0) ≥ (α′ − β)tR + u(0). In this case commuters

who leave H at x ∈ [0, xC), choose to use ride-hailing. At xC , as drop-off congestion τR(x) for ride-

hailing commuters increases, CR(xC) becomes equal to CC(xC), and some commuters choose to

drive. Next, we derive the values of λC(x) and λR(x). Particularly, to derive λR(x), by Condition 2,
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we set ∂CR
∂x equal to zero, and derive λR(x) = α−u′(x)

α−β RR. For x ∈ [0, xC), since all commuters choose

to use ride-hailing, λC(x) = 0. Similar to part (i), to derive λC(x), for x ∈ [xC ,max{xC , x̄R}),

by Condition 2, we derive λC(x) = α−p′(x)
α−β RC , and λC(x) = α−p′(x)

α−β RC − δ[β−u′(x)]
α−β RR for x ∈

[max{xC , x̄R}, xmax].

Step 2: We find u(x) such that the profit of the TNC is maximized (i.e., Condition 3 is

satisfied). We first derive u(x) for case (i) and then discuss case (ii).

In case (i), by substituting the value of λR(x), i.e., α−u′(x)
α−β RR for x ∈ [xR, xmax], and zero

otherwise, into (3.4) we have: max
∫ xmax
xR

α−u′(x)
α−β RR{u(x) − α[βx−u(x)+u(xR)]

α−β }dx. To find u(x) that

maximizes this profit, we set the derivative of this expression with respect to u(x) equal to zero.

In particular, after some simplifications, we have:

−u′′(x)[
(2α− β)u(x) − αβx− αu(xR)

α− β
] +

[α− u′(x)](2α− β)u′(x)

α− β
= 0. (C.1)

To solve this second degree differential equation, let q(x) = u′(x) = du
dx . We can state u′′(x) as a

function of q(x) as follows: u′′(x) = du′(x)
dx = dq(x)

dx = dq(x)
du × du(x)

dx = q dq(x)du . By substituting u′(x)

and u′′(x) into (C.1), we can simplify this equation as follows: −q(x)dq(x)du [ (2α−β)u(x)−αβx−αu(xR)α−β ] +

[α−q(x)](2α−β)q(x)
α−β = 0. This means that either q(x) = 0 or u(x) satisfies −dq(x)

du [(2α−β)u(x)−αβx−

αu(xR)] + [α − q(x)](2α − β) = 0. First, if q(x) (which is equal to u′(x)) is equal to zero, then

u(x) = u(xR) for x ∈ [xR, xmax]. Note that u(xR) is the value of u(x) that guarantees that CR(x)

becomes equal to CC(x) at xR, i.e., (α′ − β)tR + u(xR) = (α′ − β)tC + p(xR) + (α − β)τC(xR).

Simplifying this equation, we have u(xR) = (α′ − β)(tC − tR) + p(0) + βxR. Next, if q(x) ̸= 0,

then we find u(x) that satisfies −dq(x)
du [(2α − β)u(x) − αβx − αu(xR)] + [α − q(x)](2α − β) = 0.

By integrating this equation with respect to u, i.e.,
∫
−dq(x)

du [(2α− β)u(x) − αβx− αu(xR)] + [α−

q(x)](2α − β)du = 0, we have α(2α − β)u(x) − (2α − β)u(x)q(x) + [αβx + αu(xR)]q(x) + C = 0,

where C is a constant value. After substituting q(x) with u′(x), we have C = −α(2α − β)u(x) +

(2α − β)u(x)u′(x) − [αβx + αu(xR)]u′(x) ≤ 0. In addition, the objective function in (3.4) can be

stated as RR
α−β{−(α− β)C − α2[βx+u(xR)]

α−β }, which is negative. Thus, the first solution of the ODE,

i.e., u′(x) = 0, which results in a positive total profit for the TNC, is the optimal solution, and

u∗(x) = u(xR) = (α′ − β)(tC − tR) + p(0) + βxR for x ∈ [xR, xmax].

Lastly, we characterized xmax, x̄R and xR. To characterize xmax, we solve the following
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equation:
∫ xR
0 λC(x)dx +

∫ xmax
xR

λC(x) + λR(x)dx = N . In other words, the total number of

commuters who leave H during the morning commute must be equal to N . After substitut-

ing λC(x) and λR(x) with the values derived previously and simplifying the equation, we have

xmax =
N(α−β)+RC [p(xmax)−p(0)]+αRRxR−δβRRx̄R

αRC+(α−δβ)RR . To characterize x̄R, we find x̄R that satisfies∫ x̄R
xR R(x) − RRdx = Γ. After substituting λR(x) with αRR

α−β , we have x̄R = xR + α−β
βRR

Γ. To char-

acterize xR, we find xR that maximizes the total profit of the TNC is equal, stated in (3.4),

i.e., maxxR
∫ xmax
xR

λR(x)[u(x) − ατR(x)]dx = (xmax − xR)αRRα−β [(α′ − β)(tC − tR) + p(0) + β2

α−βxR +

αβ
2(α−β)(xmax+xR)]. To find the maximum, we set the derivative of this equation with respect to xR

equal to zero, i.e., (α−β)RR
αRC+(α−β)RR [(α′−β)(tC − tR) +p(0)−β2xR/(α−β) +αβxmax/(α−β)]− [(α′−

β)(tC−tR)+p(0)−β2xR/(α−β)+αβxR/(α−β)]− β2

α−β (xmax−xR) = 0. After some simplification,

we characterize x∗R ≥ 0 as follows:
[
{RC [p(xmax) − p(0)] +N(α− β) − δ(α− β)Γ}{α(α− β)RR −

β[αRC + (α− δβ)RR] − (α− β)αRC [(α′ − β)(tC − tR) + p(0)]/β}/[(α− 2β)(αRC)2]
]+

.

We follow a similar approach to find u∗(x) for case (ii). In case (ii), λC(x) = 0 for x ∈ [0, xC),

and λC(x) > 0 for x ∈ [xC , xmax], so we derive u∗(x) for each of these departure time intervals

separately. When x ∈ [xC , xmax], since λC(x) and λR(x) in this case follow the same function as

those in case (i) when x ∈ [xR, xmax], similar to the previous case we can show that u′(x) = 0

and u(x) = u(xC). To avoid repetition, we do not provide this proof. When x ∈ [0, xC), under

equilibrium, u(x) must be so low that CR(x) < CC(x), so commuters do not choose to drive.

However, since the TNC maximizes its profit, it sets u(x) as high as possible. In particular, at

x = 0, the maximum u(0) is the lowest dollar value less than u0 = $[(α′−β)(tC−tR)+p(0)]( the cost

difference between the two transportation modes), i.e., u(0) = ⌈100u0 − 1⌉/100. For x ∈ (0, xC),

the rate of increase in CR(x) (which is equal to (α− β)τR(x) + (α′ − β)tR + β(T − x) + u(x)) can

at most be equal to that in CC(x) (which is equal to (α− β)τC(x) + (α′ − β)tC + β(T − x) + p(0),

where τC(x) = δRR
RC

).1 After taking the derivatives and simplifying the equations, we have the

following for the derivative of ride-hailing fare: u′(x) = β(δRR−RC)
δRR

for x ∈ [0, xC). This means that

λR(x) = α−u′(x)
α−β RR = RR + β/δ

(α−β)RC and u(x) = u(0) + β(δRR−RC)
δRR

x for x ∈ [0, xC).

1In the expression for CC(x), since no commuter has yet chosen to drive, we use p(0), which is the parking fee for
the first group of commuters who choose to drive. In addition, due to the externality effect of the drop-off congestion,
even the first group of commuters who head to the parking area experience some downtown congestion.
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We next characterize xmax, x̄R and xC . To characterize xmax, we solve the following equa-

tion:
∫ xC
0 λR(x)dx +

∫ xmax
xC

λC(x) + λR(x)dx = N . In other words, the total number of com-

muters who leave H during the morning commute must be equal to N . After substituting λC(x)

and λR(x) with the values derived previously and simplifying the equation, we have xmax =

N(α−β)+RC [p(xmax)−p(0)]+[(α−β/δ)RC+(α−β)RR]xC−δβRRx̄R
αRC+(α−δβ)RR . To characterize x̄R, we find x̄R that sat-

isfies
∫ x̄R
0 λR(x) − RRdx = Γ. After substituting λR(x) with the values calculated above, we

have x̄R = (α−β)Γ
(α−β)RR+βRC/δ if x̄R < xC , and x̄R = (α−β)Γ

αRR
+ [β/α − βRC

αδRR
]xC , otherwise. To char-

acterize xC , we find xC that maximizes the total profit of the TNC is equal, stated in (3.4), i.e.,

maxxC
∫ xmax
0 λR(x)[u(x)−ατR(x)]dx =

∫ xC
0 (RR+ RCβ/δ

α−β )[u(0)− β(RC−δRR)
δRR

x]dx+
∫ xmax
xC

αRR
α−β [u(0)−

β(RC−δRR)
δRR

xC ]dx. To find the maximum, we set the derivative of this equation with respect to

xC equal to zero. After some simplification, we characterize x∗C ≥ 0 as follows:
[
δRR{(αRC −

βδRR)[RR(α − β) + RCβ/δ]u(0) − [RC [p(xmax) − p(0)] + N(α − β)](RC − δRR)αβ/δ}/{β(RC −

δRR)[(α− β)RR +RCβ/δ][αRC − (α+ δβ)RR]}
]+

.

Proof of Proposition 3.2. We first characterize λC(x) and λR(x) that minimize the total cost

presented in (3.3), and then derive u(x).

By Lemma C.1, τI(x) + τC(x+ τI(x)) = τC(x), so we can simplify (3.3) as follows:

∫ xmax

0

λC(x)[(α− β)τC(x) + (α′ − β)tC + β(T − x)] + λR(x)[(α− β)τR(x) + (α′ − β)tR + β(T − x) + u(x)]dx.

(C.2)

At any x ∈ [0, xmax], the social planner assigns all commuters who leave H at x to the trans-

portation mode that has a lower cost associated with it. In particular, three different scenarios can

happen. In the first scenario, (α′ − β)tC + (α− β)τC(x) = (α′ − β)tR + u(x) + (α− β)τR(x), so the

social planner assigns commuters to both modes of transportation, i.e., λC(x) > 0 and λR(x) > 0.

In the second scenario, (α′ − β)tC + (α− β)τC(x) > (α′ − β)tR + u(x) + (α− β)τR(x), so the social

planners wants all commuters to use ride-hailing, i.e., λC(x) = 0 and λR(x) > 0. In the third

scenario, (α′ − β)tC + (α − β)τC(x) < (α′ − β)tR + u(x) + (α − β)τR(x), so the social planners

wants all commuters to drive, i.e., λC(x) > 0 and λR(x) = 0. We find the optimal value of λC(x)

for the third scenario. Similarly, we can prove that the optimal value of λR(x) is equal to RR for

x ∈ [0, xmax] in the first and second scenarios, and the optimal value of λC(x) is equal to RC for
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x ∈ [0, xmax] in the first scenario. To avoid repetition, these proofs are not provided.

In the third scenario, since λR(x) = 0, the total cost function that the social planner minimizes

is as follows:

min
RC≤λC(x)≤N

∫ xmax

0
λC(x)[(α− β)τC(x) + (α′ − β)tC + β(T − x)]dx. (C.3)

By substituting τC(x) with
∫ x
0 [λC(u)−RC ]du

RC
in (C.3), the objective function becomes minimizing∫ xmax

0 λC(x)[(α − β)
∫ x
0 λC(u)du

RC
− αx + βT + (α′ − β)tC ]dx. This is a control theory problem,

where λC(x) is the control variable (i.e., the variable that we can change to control the value

of the objective function) and
∫ x
0 λC(u)du is the state variable (i.e., the variable that changes as

we change the control variable). We use the maximum principle approach to find the optimal

value of the control variable λC(x).2 Let f(x) represent the derivative of the state variable, i.e.,

f(x) =
∂[
∫ x
0 λC(u)du]

∂x = λC(x), and g(x) denotes the negative of the objective function, i.e., g(x) =

−λC(x)[(α−β)
∫ x
0 λC(u)du

RC
−αx+βT +(α′−β)tC ]. The Hamiltonian equation for this problem is de-

fined as follows: H = ρ(x)f(x)+g(x) = ρ(x)λH(x)−λC(x)[(α−β)
∫ x
0 λC(u)du

RC
−αx+βT+(α′−β)tC ],

where ρ(x) is the marginal return vector. The variable ρ(x) also satisfies the following two equa-

tions: ∂ρ(x)
∂x = − ∂H

∂[
∫ x
0 λC(u)du]

= (α− β)λC(x)RC
, and ρ(xmax) = ∂g

∂λC(x)
(xmax) = (α− β) N

RC
− αxmax +

βT+(α′−β)tC . From these two equations, we get ρ(x) = (α−β)
∫ x
0 λC(u)du

RC
−αxmax+βT+(α′−β)tC

for x ∈ [0, xmax]. We find the optimal value of λC(x) that maximizes H. Since H is a linear function

of λC(x), if ρ(x)− (α−β)
∫ x
0 λC(u)du

RC
+αx−βT + (α′−β)tC is positive, then λC(x) = N maximizes

H, otherwise λC(x) = RC is the optimal solution. Substituting ρ(x) with (α − β)
∫ x
0 λC(u)du

RC
−

αxmax+βT + (α′−β)tC , we have ρ(x)− (α−β)
∫ x
0 λC(u)du

RC
+αx−βT + (α′−β)tC = −α(xmax−x).

Since x ≤ xmax, −α(xmax − x) is negative, and the optimal value of λC(x) for x ∈ [0, xmax] is RC .

Since λC(x) = RC , we characterize xmax as N/RC , and T as xmax + tC . Similarly, xmax (resp.,

T ) is equal to N
RC+RR

(resp., xmax + tC) and N/RR (resp., xmax + tR) for the first scenario and the

second scenario, respectively.

Next, considering the game between the social planner and the TNC, we find the value of u(x)

for the first two scenarios. We then show that the third scenario does not happen as it results in a

higher total system cost and a lower profit for the TNC than the first scenario. In the first scenario,

2For further information on the maximum principle approach see Sethi & Thompson (2000).
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since τC(x) = τR(x) = 0, the condition (α′−β)tC +(α−β)τC(x) = (α′−β)tR+u(x)+(α−β)τR(x)

can be simplified as follows: (α′−β)tC = (α′−β)tR+u(x). After rearranging this equation, we have

u(x) = (α′−β)(tC − tR). In this scenario, the total system cost is equal to N [α′tC + βN
2(RC+RR)

] and

the TNC’s profit is equal to
∫ xmax
0 λR(x)u(x)dx = NRR

RR+RC
(α′−β)(tC − tR). In the second scenario,

since τC(x) = τR(x) = 0, the condition (α′−β)tC +(α−β)τC(x) > (α′−β)tR+u(x)+(α−β)τR(x)

can be simplified as follows: (α′ − β)(tC − tR) > u(x). Since for the social planner’s perspective

the cost associated with driving remains constant, the cost associated with ride-hailing must stay

constant too, i.e., u(x) = u, where u > 0 is a constant value. To find the value of u(x), we find

the total system cost and the TNC’s profit. In this scenario, the total system cost is equal to

N [α′tR + u + βN
2RR

] and the TNC’s profit is equal to
∫ xmax
0 λR(x)u(x)dx = Nu. On the one hand,

since the total system cost is a linearly increasing function of u, the social planner wants to set u as

low as possible. On the other hand, the TNC wants to maximize its profit, which is also a linearly

increasing function of u. Comparing the TNC’s profit in this scenario with the previous scenario, we

show that at u = RR(α
′−β)(tC−tR)
RR+RC

the TNC’s profit is equal under both scenarios. Thus, the value

of u(x) in scenario two is equal to RR(α
′−β)(tC−tR)
RR+RC

. Finally, under the third scenario λC(x) = RC

and λR(x) = 0. This means that the total system cost is equal to N [α′tC + βN
2RC

], which is more

than that under the first scenario, and the TNC’s profit is equal to zero, which is less than that

under the other two scenarios.

Lastly, depending on the total system cost, the social planner dictates either scenario two or

scenario three. In particular, if the total system cost in the first scenario lower than that in

the second scenario, i.e., N [α′tC + βN
2(RC+RR)

] < N [α′tR + u + βN
2RR

] which can be simplified as

βNRC
2(α′RC+βRR)RR

− (tC − tR) ≥ 0, we observe the first scenario (SO1 in Proposition 3.2). Otherwise,

we observe the second scenario (SO2 in Proposition 3.2).

Proof of Proposition 3.3. (a) The SO1 solution becomes an equilibrium solution, if Conditions

1 and 2 are satisfied.3 In other words, for SO1 to be an equilibrium, all commuters must incur the

same travel cost, regardless of their departure time from H or their mode of transportation. Our

approach is to equalize all commuters’ costs, by charging the conventional commuters a parking

fee, p(x), and the ride-hailing commuters a congestion toll, π(x). Next we derive these p(x) and

3Note that Condition 3 is already satisfied.
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π(x) functions.

Under SO1, the total travel cost for the conventional commuters is CC(x) = β(T − x) + (α′ −

β)tC + p(x) for 0 ≤ x ≤ xmax and that for the ride-hailing commuters is CR(x) = β(T − x) + (α′ −

β)tR+u(x)+π(x) = β(T −x)+(α′−β)tR+(α′−β)(tC− tR)+π(x) = β(T −x)+(α′−β)tC +π(x)

for 0 ≤ x ≤ xmax. Note that since there is no passengered congestion time, the congestion in I

τI(x), the downtown congestion τC(x), and the drop-off congestion τR(x) are not included in the

cost. The commuters who incur the maximum cost are the ones who depart home at x = 0. This

is because CC(x) and CR(x) are linearly decreasing functions of x. In other words, the maximum

commuter cost is equal to βT + (α′ − β)tC . As such, the parking fee p(x) (resp., the congestion

toll π(x)) is the difference between βT + (α′ − β)tC and CC(x) (resp., CR(x)). So, we have the

following: p(x) = π(x) = βT + (α′ − β)tC − β(T − x) − (α′ − β)tC = βx for x ∈ [0, xmax].

(b) The SO2 solution becomes an equilibrium solution, if all ride-hailing commuters incur the

same travel cost, regardless of their departure time from H. In addition, no commuter should be

able to reduce their cost by choosing to drive instead of using ride-hailing. We derive p(x) and π(x)

such that these conditions are satisfied.

Under SO2, the total travel cost for the conventional commuters is CC(x) = β(T − x) + (α′ −

β)tC + p(x) for 0 ≤ x ≤ xmax and that for the ride-hailing commuters is CR(x) = β(T − x) + (α′ −

β)tR+u(x)+π(x) = β(T −x)+(α′−β)tR+ RR
RR+RC

(α′−β)(tC − tR)+π(x) for 0 ≤ x ≤ xmax. The

commuters who incur the maximum cost are the ones who depart home at x = 0. In other words,

the maximum commuter cost is equal to +(α′ − β)tR + RR
RR+RC

(α′ − β)(tC − tR) + π(x). As such,

the congestion toll π(x) is the difference between this maximum cost and CR(x). So, we have the

following:π(x) = βT+(α′−β)tR+ RR
RR+RC

(α′−β)(tC−tR)+π(x)−[β(T−x)+(α′−β)tR+ RR
RR+RC

(α′−

β)(tC− tR)+π(x)] = βx for x ∈ [0, xmax]. Lastly, p(x) should be so high that no commuter chooses

to drive. In other words, p(x) should be so high that CC(x) > CR(x). By substituting the values

of CC(x) CR(x) in this inequality we have CC(x) = β(T − x) + (α′ − β)tC + p(x) > CR(x) =

β(T − x) + (α′ − β)tR + RR
RR+RC

(α′ − β)(tC − tR) + π(x). After rearranging this equation, we get

the following equation: p(x) > − RC
RR+RC

(α′ − β)(tC − tR) for x ∈ [0, xmax].

Proof of Corollary 3.2. We find the value of R∗
R for SO2 first and then discuss SO1. The total

system cost under SO2 is equal to CSO1 =
∫ xmax
0 RR[(α′ − β)tR + RR

RR+RC
(α′ − β)(tC − tR) + β(T −
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x)]dx = N (α′RC+βRR)tR+(α′−β)tCRR
RR+RC

+ βN2

2RR
. To find the value of RR that minimizes total system

cost, we set the derivative of CSO1 with respect to RR equal to zero, i.e.,
∫ xmax
0 RR[(α′ − β)tR +

RR
RR+RC

(α′−β)(tC−tR)+β(T−x)]dx = N(α′−β)(tC−tR)RC
(RR+RC)2

−βN2

2R2
R

= 0. If βN−2(α′−β)(tC−tR)RC > 0

(which is the condition for part (b) of Corollary 3.2), then the derivative is negative, and the total

system cost is decreasing in RR. In this scenario, the optimal value of RR is equal to its maximum

value, which is equal to the inbound highway capacity RI . Note that RR cannot exceed RI because

otherwise the drop-off process is no longer a bottleneck. If βN−2(α′−β)(tC− tR)RC ≤ 0 (which is

the condition for part (a) of Corollary 3.2), then we find the value of RR that satisfies ∂CSO1
∂RR

= 0. In

particular, we findRR that satisfiesR2
R[(α′−β)(tC−tR)RC−βN/2]−βNRCRR−βNR2

C/2 = 0. This

quadratic equation has only one positive solution which is equal to
RC(βN+

√
2βNRC(α′−β)(tC−tR)

2RC(α′−β)(tC−tR)−βN ,

denoted as R1
R. To guarantee that this value of RR is in fact a minimum for the total system cost,

we show that the second derivative of CSO1 is positive at this value of RR. In particular, ∂
2CSO1

∂R2
R

=

−N(α′−β)(tC−tR)RC
(RR+RC)3

+ βN2

2R3
R

= −N(α′−β)(tC−tR)RC
(RR+RC)3

+ βN2

2R3
R

= − βN
R2
R(RR+RC)

+ βN2

2R3
R

= βNRC
R3
R(RR+RC)

> 0.

Next, the total system cost under SO1, which is equal to
∫ xmax
0 (RR +RC)[(α′ − β)tC + β(T −

x)]dx = Nα′tC + βN2

2(RR+RC)
, is strictly decreasing in RR. Hence, as RR increases the total system

cost decreases. However, the condition for observing SO1, i.e, βNRC
2(α′RC+βRR)RR

− (tC − tR) ≥ 0, is

satisfied for RR ≤ α′RC+
√

(α′RC)2+2β2NRC/(tC−tR)
2β . So if we increase RR beyond this value, denoted

as R2
R, then we observe SO2, for which we showed the optimal value of RR. Thus, in general the

optimal value of RR is the maximum of R1
R and R2

R, as long as this maximum value is lower than

RI , i.e., R∗
R = min{max{RC(βN+

√
2βNRC(α′−β)(tC−tR)

2RC(α′−β)(tC−tR)−βN ,
α′RC+

√
(α′RC)2+2β2NRC/(tC−tR)

2β }, RI}.

185



Bibliography

Agarwal, S., Mani, D. & Telang, R. (2019), ‘The impact of ride-hailing services on congestion:

Evidence from indian cities’, Indian School of Business .

Aguilar, J. (2018), ‘A 10-lane highway and Colorado’s first autonomous vehicle lane

could be prescription for west-suburban Denver traffic jams’, Accessed September 25,

2018, https://www.denverpost.com/2018/01/21/colorado-10-lane-highway-autonomous-vehicle-

lane-traffic/.

Albright, J., Bell, A., Schneider, J. & Nyce, C. (2015), ‘Market place of change: auto-

mobile insurance in the era of autonomous vehicles’, Accessed September 25, 2018,

https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/id-market-place-of-change-

automobile-insurance-in-the-era-of-autonomous-vehicles.pdf.

Alfa, A. S. & Neuts, M. F. (1995), ‘Modelling vehicular traffic using the discrete time markovian

arrival process’, Transportation Science 29(2), 109–117.

Amoozadeh, M., Raghuramu, A., Chuah, C.-N., Ghosal, D., Zhang, H. M., Rowe, J. & Levitt, K.

(2015), ‘Security vulnerabilities of connected vehicle streams and their impact on cooperative

driving’, IEEE Communications Magazine 53(6), 126–132.

Arnott, R., De Palma, A. & Lindsey, R. (1991), ‘A temporal and spatial equilibrium analysis of

commuter parking’, Journal of public economics 45(3), 301–335.

Bai, J., So, K. C., Tang, C. S., Chen, X. & Wang, H. (2019), ‘Coordinating supply and demand on

an on-demand service platform with impatient customers’, Manufacturing & Service Operations

Management 21(3), 556–570.

186



Bando, M., Hasebe, K., Nakayama, A., Shibata, A. & Sugiyama, Y. (1995), ‘Dynamical model of

traffic congestion and numerical simulation’, Physical Review E 51(2), 1035.

Baron, O., Berman, O. & Nourinejad, M. (2018), ‘Introducing autonomous vehicles: Formulation

and analysis of public policies.’, Working paper.

Barth, B. (2019), ‘Curb Control’, Accessed March 31, 2021,

https://www.planning.org/planning/2019/jun/ curbcontrol/.

Bayern, M. (2020), ‘Autonomous vehicles: How 7 countries are handling the regulatory landscape’,

Accessed December 07, 2020, https://www.techrepublic.com/article/autonomous-vehicles-how-

7-countries-are-handling-the-regulatory-landscape/.

Benjaafar, S., Dooley, K. & Setyawan, W. (1997), Cellular automata for traffic flow modeling,

Center for Transportation Studies, University of Minnesota.

Benjaafar, S. & Hu, M. (2020), ‘Operations management in the age of the sharing economy: What

is old and what is new?’, Manufacturing & Service Operations Management 22(1), 93–101.

Benjaafar, S., Kong, G., Li, X. & Courcoubetis, C. (2018), ‘Peer-to-peer product sharing: Impli-

cations for ownership, usage, and social welfare in the sharing economy’, Management Science.

Forthcoming.

Bergenhem, C., Shladover, S., Coelingh, E., Englund, C. & Tsugawa, S. (2012), Overview of

platooning systems, in ‘Proceedings of the 19th ITS World Congress, Vienna, Austria’.

Besbes, O., Castro, F. & Lobel, I. (2021), ‘Surge pricing and its spatial supply response’, Manage-

ment Science 67(3), 1350–1367.

Bierstedt, J., Gooze, A., Gray, C., Peterman, J., Raykin, L. & Walters, J. (2014), ‘Effects of

next-generation vehicles on travel demand and highway capacity’, FP Think Working Group

pp. 10–11.

Breuer, L. & Alfa, A. S. (2005), ‘An em algorithm for platoon arrival processes in discrete time’,

Operations Research Letters 33(5), 535–543.

187



Castiglione, J., Chang, T., Cooper, D., Hobson, J., Logan, W., Young, E., Charlton, B., Wilson,

C., Mislove, A., Chen, L. et al. (2016), ‘Tncs today: a profile of san francisco transportation

network company activity’, San Francisco County Transportation Authority (June 2016) .

Castiglione, J., Cooper, D., Sana, B., Tischler, D., Chang, T., Erhardt, G. D., Roy, S., Chen, M.

& Mucci, A. (2018), ‘Tncs & congestion’.

Cheah, J. Y. & Smith, J. M. (1994), ‘Generalized m/g/c/c state dependent queueing models and

pedestrian traffic flows’, Queueing Systems 15(1), 365–386.

Chen, D., Ahn, S., Chitturi, M. & Noyce, D. A. (2017), ‘Towards vehicle automation: Road-

way capacity formulation for traffic mixed with regular and automated vehicles’, Transportation

Research Part B: methodological 100, 196–221.

Chen, Y., Korpeoglu, C., Korpeoglu, E., Sahin, O., Tang, C., Xiao, S. et al. (2018), ‘Innovative

online platforms: Research opportunities. working paper. johns hopkins carey business school,

baltimore, md, january’.

Daganzo, C. F. (1994), ‘The cell transmission model: A dynamic representation of highway traf-

fic consistent with the hydrodynamic theory’, Transportation Research Part B: Methodological

28(4), 269–287.

Daganzo, C. F. (2007), ‘Urban gridlock: Macroscopic modeling and mitigation approaches’, Trans-

portation Research Part B: Methodological 41(1), 49–62.

Daw, A., Hampshire, R. C. & Pender, J. (2019), ‘Beyond safety drivers: Staffing a teleoperations

system for autonomous vehicles.’, Working paper.

Del Castillo, J. & Benitez, F. (1995), ‘On the functional form of the speed-density relationship-I:

General theory’, Transportation Research Part B: Methodological 29(5), 373–389.

Dunne, M. C. (1967), ‘Traffic delay at a signalized intersection with binomial arrivals’, Transporta-

tion Science 1(1), 24–31.

Eliot, L. (2019), ‘An Inconvenient Truth: Human Drivers and Autonomous Cars Mix Like Oil

188



And Water’, Accessed June 07, 2019, https://www.forbes.com/sites/lanceeliot/2019/05/07/an-

inconvenient-truth-human-drivers-and-autonomous-cars-mix-like-oil-and-water/1bd295103b84.

Faggella, D. (2020), ‘The Self-Driving Car Timeline – Predictions from the Top 11 Global Automak-

ers’, Accessed May 25, 2021, https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-

themselves-top-11-automakers/.

Federal Highway Administration (2011), ‘Our Nation’s Highways’, Accessed September 25, 2018,

https://www.fhwa.dot.gov/policyinformation/pubs/hf/pl11028/chapter2.cfm.

Federal Highway Administration (2020), ‘21st century operations using 21st century technologies.’,

Accessed January 17, 2021, https://ops.fhwa.dot.gov/congestionpricing/cp what is.htm.

Garg, N. & Nazerzadeh, H. (2021), ‘Driver surge pricing’, Management Science .

Geroliminis, N., Daganzo, C. F. et al. (2007), Macroscopic modeling of traffic in cities, in ‘Trans-

portation Research Board 86th Annual Meeting’, number 07-0413, No. 07-0413.

Ghiasi, A., Hussain, O., Qian, Z. & Li, X. (2017), ‘A mixed traffic capacity analysis and lane

management model for connected automated vehicles: A markov chain method’, Transportation

Research Part B: Methodological 106, 266 – 292.

Goodchild, A., MacKenzie, D., Ranjbari, A., Machado, J. & Dalla Chiara,

G. (2019), ‘Curb Allocation Change Project’, Accessed March 21, 2022,

https://depts.washington.edu/sctlctr/sites/default/files/researchpubf iles/CurbAllocationChangeP roject−

UWUrbanFreightLab.pdf.

Guda, H. & Subramanian, U. (2019), ‘Your uber is arriving: Managing on-demand workers through

surge pricing, forecast communication, and worker incentives’, Management Science 65(5), 1995–

2014.

Guzzella, L. & Kiencke, U. (1995), Advances in Automotive Control, Elsevier, Ascona, Switzerland.

Harchol-Balter, M. (2013), Performance modeling and design of computer systems: queueing theory

in action, Cambridge University Press, New York, USA.

189



Hasija, S., Shen, Z.-J. M. & Teo, C.-P. (2020), ‘Smart city operations: Modeling challenges and

opportunities’, Manufacturing & Service Operations Management 22(1), 203–213.

He, F., Yin, Y., Chen, Z. & Zhou, J. (2015), ‘Pricing of parking games with atomic players’,

Transportation Research Part B: Methodological 73, 1–12.

He, L., Hu, Z. & Zhang, M. (2018), ‘Robust repositioning for vehicle sharing’, Manufacturing &

Service Operations Management. Forthcoming.

He, L., Hu, Z. & Zhang, M. (2020), ‘Robust repositioning for vehicle sharing’, Manufacturing &

Service Operations Management 22(2), 241–256.

He, L., Mak, H.-Y., Rong, Y. & Shen, Z.-J. M. (2017), ‘Service region design for urban electric

vehicle sharing systems’, Manufacturing & Service Operations Management 19(2), 309–327.

He, Q.-M. (2014), Fundamentals of matrix-analytic methods, Vol. 365, Springer, New York.

Heidemann, D. (1996), A queueing theory approach to speed-flow-density relationships, in ‘Inter-

naional Symposium on Transportation and Traffic Theory’, pp. 103–118.

Hendricks, D. (2015), ‘5 reasons you shouldn’t get to work early’, Accessed January 04, 2021,

https://www.businessinsider.com/reasons-you-shouldnt-get-to-work-early-2015-2.

Holtzman, J. M. & Goodman, D. J. (2012), Wireless Communications: Future Directions, Vol. 217,

Springer Science & Business Media, New York.

Hu, B., Hu, M. & Zhu, H. (2022), ‘Surge pricing and two-sided temporal responses in ride hailing’,

Manufacturing & Service Operations Management 24(1), 91–109.

Ingraham, C. (2019), ‘Nine days on the road. Average commute time

reached a new record last year.’, Accessed December 07, 2020,

https://www.washingtonpost.com/business/2019/10/07/nine-days-road-average-commute-

time-reached-new-record-last-year/.

INRIX (2017), ‘INRIX Global Traffic Scorecard: Interactive Ranking and City Dashboards’, Ac-

cessed September 25, 2018, http://inrix.com/scorecard/.

190



Jaffe, E. (2015), ‘How Parking Conquered L.A.’, Accessed December 07, 2020,

https://www.bloomberg.com/news/articles/2015-12-03/how-parking-conquered-los-angeles-

in-14-facts-maps-and-figures.

Jain, R. & Smith, J. M. (1997), ‘Modeling vehicular traffic flow using m/g/c/c state dependent

queueing models’, Transportation Science 31(4), 324–336.

Kim, S.-H. & Whitt, W. (2013), ‘Estimating waiting times with the time-varying little’s law’,

Probability in the Engineering and Informational Sciences 27(4), 471.

Kuwahara, M. & Newell, G. F. (1987), Queue evolution on freeways leading to a single core city

during the morning peak, in ‘Proceedings of the 10th International Symposium on Transportation

and Traffic Theory’, pp. 21–40.

Law, A. M., Kelton, W. D. & Kelton, W. D. (2000), Simulation Modeling and Analysis, McGraw-

Hill, New York.

Lehoczky, J. (1972), ‘Traffic intersection control and zero-switch queues under conditions of markov

chain dependence input’, Journal of Applied Probability 9(2), 382–395.

Li, Z., Hong, Y. & Zhang, Z. (2016), ‘Do ride-sharing services affect traffic congestion? an empirical

study of uber entry’, Social Science Research Network 2002, 1–29.

Lian, Z. & Van Ryzin, G. (2021), ‘Optimal growth in two-sided markets’, Management Science

67(11), 6862–6879.

Lim, M. K., Mak, H.-Y. & Rong, Y. (2014), ‘Toward mass adoption of electric vehicles: impact of

the range and resale anxieties’, Manufacturing & Service Operations Management 17(1), 101–119.

Liu, H., Xiao, L., Kan, X., Shladover, S., Lu, X., Men, M., Shakel, W. & vanArem, B. (2018),

‘Using cooperative adaptive cruise control (cacc) to form high-performance vehicle streams –

final report.’, Working paper, University of California, Berkeley.

Liu, W. (2018), ‘An equilibrium analysis of commuter parking in the era of autonomous vehicles’,

Transportation Research Part C: Emerging Technologies 92, 191–207.

191



Lucantoni, D. M. (1991), ‘New results on the single server queue with a batch markovian arrival

process’, Communications in Statistics. Stochastic Models 7(1), 1–46.

Mak, H.-Y. (2020), ‘Enabling smarter cities with operations management’, Manufacturing & Service

Operations Management. Forthcoming.

Mak, H.-Y., Rong, Y. & Shen, Z.-J. M. (2013), ‘Infrastructure planning for electric vehicles with

battery swapping’, Management Science 59(7), 1557–1575.

Meiszner, P. (2019), ‘Vancouver proposes drop-off, pick-up fee for Uber and Lyft.’, Accessed March

8, 2022, https://www.urbanyvr.com/vancouver-ridesharing-fee/.

Mirzaeian, N., Cho, S.-H. & Qian, S. (2021), ‘Can autonomous vehicles solve the commuter parking

problem?’, Available at SSRN 3872106 .

Mohajerpoor, R. & Ramezani, M. (2019), ‘Mixed flow of autonomous and human-driven vehicles:

Analytical headway modeling and optimal lane management’, Transportation Research Part C:

Emerging Technologies 109, 194–210.

Muoio, D. (2017), ‘The 18 companies most likely to get self-driving cars on the road first’, Ac-

cessed September 25, 2018, http://www.businessinsider.com/the-companies-most-likely-to-get-

driverless-cars-on-the-road-first-2017-4/.

National League of Cities (2018), ‘Autonomous vehicle pilots across america’, Accessed October

26, 2018, https://www.nlc.org/resource/autonomous-vehicle-pilots-across-america.

Neuts, M. F. (1979), ‘A versatile markovian point process’, Journal of Applied Probability

16(04), 764–779.

Neuts, M. F. & Chakravarthy, S. (1981), ‘A single server queue with platooned arrivals and phase

type services’, European Journal of Operational Research 8(4), 379–389.

NHTSA (2015), ‘Why your reaction time matters at speed’, Accessed September 25, 2018,

https://one.nhtsa.gov/nhtsa/Safety1nNum3ers/.

Nourinejad, M. & Amirgholy, M. (2018), ‘Parking pricing and design in the morning commute

problem with regular and autonomous vehicles’, York University, Working paper.

192



Overtoom, I., Correia, G., Huang, Y. & Verbraeck, A. (2020), ‘Assessing the impacts of shared

autonomous vehicles on congestion and curb use: A traffic simulation study in the hague, nether-

lands’, International journal of transportation science and technology 9(3), 195–206.
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