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Abstract

This dissertation contains two chapters on the application of dynamics games

in delegation and in school admission. The first chapter extends the standard

delegation model to a two-period setting where the bias of the agent is unknown.

We formalize the intuition that discretion encourages learning in the sense that

the principal is more likely to learn the bias of the agent if she delegates more

actions. Moreover we analyze environments in which it is optimal for the prin-

cipal to induce full separation and learn the bias with probability one. In this

case, the optimal delegation set, as a function of belief, is larger in the first

period than that in the second period. This implies that a dynamic interaction

facilitates more discretion than an one-shot relation.

The second chapter studies dynamic school admission when exploding o↵ers

are available. In the two-period game, schools can choose when to send out

o↵ers and o↵ers are exploding in the sense that students have to respond within

the period. When the quality of the students is not perfectly known by the

schools, we show that there exists an equilibrium in which schools send out

o↵ers at di↵erent times. Specifically, the less competitive school tends to send

out o↵ers earlier than their more competitive counterpart. This is because the

high quality students are more likely to reject early o↵ers from the less desirable

school and remain in the market hence the more competitive school can benefit



by waiting. Our model provides a novel framework for the dynamic school

admission problem and a new angel for understanding the usage of exploding

o↵ers on markets.
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Chapter 1

Dynamic Delegation to An

Agent with Unknown Bias

1.1 Introduction

The separation of authority and information between parties with conflicts of

interests is a prevailing challenge in various economic and political situations.

Optimal price control depends on the production cost and e�ciency of firms,

most likely unknown to regulators. State governments bear cost of patients

while doctors prescribe treatments. Monetary policy makers who possess more

private information regarding economies and markets might be tempted to pur-

sue overly expansionary monetary policies to boost output and employment in

the short term. Venture capitalists rely on the expertise of the entrepreneurs

whose interests are not perfectly aligned with theirs. Traditional incentives are

either incomplete or lacking in these contexts as monetary transfers are prohib-

ited by either regulations or public morals or are limited by the incompleteness

of the financial contracts. Instead, delegation is usually suggested as a solution
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to these problems in theory and widely adopted in practice. Theoretical works

assume that the informed party’s bias is transparent and interaction one-shot.

However, in practice, most relations are repeated: regulators dealing with more

or less the same firms; state governments funding hospitals every year; the needs

of monetary decisions coming up multiple times during the tenure of a mone-

tary authority; venture capitalists typically participating in multiple financing

rounds. In addition, it is not always the case that the bias of the informed party

is known. For instance it is well-documented that monetary authorities have

time-inconsistency problems, but it is naive to assume that all do and to the

same degree. For doctors as well, they may care about the well-being of patients

to di↵erent extents.

To incorporate these two features - dynamics and unknown bias - that are

common to practical situations but understudied by the literature, we build on

the standard principal-agent delegation model pioneered by Holmstrom (1978);

Holmström (1984) and extend it to two periods where the bias is constant over

time but unknown to the principal at the start. One action is implemented each

period; the principal prefers the actions to match the states of the world whereas

the agent might prefer the actions higher than the states. As in the standard

delegation model, the state is privately observed by the agent each period. That

is, the agent has two pieces of private information, his bias and the state.1 The

bias is constant whereas the state is independently and identically distributed

over time. In the case of doctors and patients, the degree of bias remains the

same with the same doctor but the conditions or ideal treatments of patients

change.

The commitment power of the principal is limited as she can only commit

for current periods. Specifically the principal chooses a set of actions to delegate

each period and cannot commit to ignore what she has learnt from the previous

1Throughout we refer to the bias but not the state as the type of the agent.
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interaction. Potentially repeated interaction provides incentives and possibilities

for learning. Should the principal learn that the agent is unbiased, full discretion

is optimal for future. Anticipating this, di↵erent types of agent play a signaling

game with incentives to mimic the unbiased type.

In this paper, we study a two-period model where the potential bias of the

agent is binary. The last period resembles a static delegation game wherein the

principal delegates optimally given her posterior belief and the agent implements

his most preferred action from the delegation set. Naturally, more discretion is

desirable should the principal believe that the agent is less likely to be biased.

As a result, the agent chooses an action in the first period, taking into account

that it will a↵ect his second-period payo↵. For the first period, we start with

the study of the continuation equilibria for a given interval delegation set. We

construct a continuation equilibrium similar to Cho and Sobel (1990) and show

that it exists and uniquely survives D1. In this D1 equilibrium, strategies are

monotone in both dimensions of private information - types and states. In

addition, the sets of states in which pooling or separation occurs are convex,

specifically types pooling in low states and separating in high ones. To see

why this is the case, the D1 refinement dictates that the only pooling action

is the lowest action available. Hence, pooling becomes more costly in higher

states as the bliss point of the biased type gets further away from the pooling

action. For comparative statics of continuation equilibria, we show that given

more discretion, i.e. a bigger delegation set, the set of pooling states shrinks and

the set of separating states grows. That is to say, in expectation the principal

is more likely to learn the type of the agent by delegating more actions. This

formalizes the idea that discretion is an e↵ective instrument of the principal to

acquire information about the type of the agent.

However it is not known a priori that to learn the bias is optimal for the
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principal, especially when learning comes at a cost. Under separation, the biased

type would just go ahead with his most preferred available action whereas the

unbiased type might have to go out of his way - choosing an action strictly below

his and the principal’s most preferred action - to deter imitation. As a result,

pooling might generate a higher first-period payo↵ for the principal especially

at low states by forcing the biased type to stay low. Thus it is not ex-ante clear

that how much separation is optimal. Essentially it boils down to the relative

costs and benefits of learning and our model provides an interesting setup in

which they intertwine.

By studying the optimal delegation problem, we identify several environ-

ments in which full separation is optimal. In the case of threshold delegation

in which the principal is limited to fixing the lower bound of the delegation set

weakly below the lower bound of the state space, we show that under the uniform

distribution of the state and a su�ciently small bias, it is optimal to induce a

fully separating continuation equilibrium in which the principal learns the type

of the agent with probability one. In addition, we show that the possibility of

learning in a dynamic environment motivates more discretion compared to an

one-shot interaction as in Tanner (2018). Holding the same belief, the principal

delegates more actions in the first period than in the second period (identical

to what she would do in a static setting). These results are robust to the distri-

bution and bias assumptions, provided that the agent is su�ciently impatient

or the principal su�ciently patient.

The results provide new understanding to the additional e↵ect of delegation

and how it drives power dynamics in organizations. Intuitively, the learning ef-

fect in a dynamic setting motivates the principal to endow the agent with more

freedom at beginning of their relationship, testing his loyalty. This result speaks

to the dynamics of control rights allocation in venture capital contracts. It is
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well documented that startup founders are prone to pursue activities that are in

their personal benefits as opposed to the company’s interests or to protect their

own private privileges at the expense of financial returns (Hellmann (1998)).

The misalignment of interests in addition to unpredictable or unverifiable con-

tingencies makes the allocation of control rights a focal point in VC contracts.

Hannan, Burton, and Baron (1996) document the increasing likelihood of the

founder losing the CEO position over time. Kaplan and Strömberg (2003) point

out that VC control increases as the relationship progresses although the un-

certainty about the venture should decrease over time. Our model provides an

explanation to why control rights are taken away in spite of less uncertainty:

in the early stage of the relationship, allocation of control rights is partially

motivated by the possibility of learning. As venture capitalists gain more in-

formation about the venture and founders, the learning e↵ect of discretion goes

away thus less discretion is given to the startups.

As one of the few papers that study learning persistent private information

without transfer, our model provides novel understandings of delegation: how

discretion can be utilized to acquire information and when acquiring informa-

tion is optimal. These results are robust to the threshold and distributional

assumptions provided that the discount factor of the agent is su�ciently small

or that of the principal su�ciently large. Moreover, we demonstrate that since

discretion is used to motivate separation, i.e. learning, it might shrink over time

as the principal learns more about the agent, consistent with the observations

from venture capital contracts. This result also sheds new light in power dy-

namics in relationships with restrictions in replacing agents such as bureaucratic

relations.
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1.2 Literature Review

Our framework extends the standard delegation model, a rich line of litera-

ture started by Holmstrom (1978); Holmström (1984). Notably, Melumad and

Shibano (1991) and Alonso and Matouschek (2008) characterize the optimal

delegation set in the static environment with no uncertainty on agent’s bias.

Adding uncertainty to agent’s preference, Frankel (2014) looks at the max-

min optimal mechanism with multiple decisions and constant bias in decisions

(but not in states). His paper provides su�cient conditions for aligned dele-

gation to be max-min optimal; under aligned delegation, every type of agent

behaves as if he maximizes the principal’s payo↵. In terms of set-up, Tan-

ner (2018) is probably the closest to ours. Albeit static, his model features an

agent with unknown bias that is discrete and one-directional. The main re-

sult, derived under rather general conditions of preferences and distribution of

states, states that a pooling contract dominates screening. That is, even if the

principal learns about agent’s bias, this information will turn out worthless in

an one-shot environment. He suggests that learning might be more useful in

a repeated interaction, which is the focus of this paper. Tanner (2018) gener-

alizes the above-mentioned paper by extending the environment under which

pooling is optimal. It also gives characterization of when screening is optimal.

Our paper complements his in the exploration of delegation with unknown bias,

however we do not assume that the principal has the commitment power needed

for contract menus.

Our paper also relates to the literature of power dynamics in organizations.

Two recent papers, J. Li, Matouschek, and Powell (2017) and Lipnowski and

Ramos (2020), consider project adoptions in infinitely repeated games. In J.

Li, Matouschek, and Powell (2017), the agent has private information about

project availability, similarly to Aghion and Tirole (1997). In Lipnowski and
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Ramos (2020), the private information concerns returns of projects. The agents

have empire-building motives and always prefer adoption. Both papers find

that optimal relational contracts have a flavor of dynamic capital budget. J.

Li, Matouschek, and Powell (2017)’s equilibria eventually enter one of the ab-

sorbing states where the principal either rubberstamps the agent’s recommen-

dations or completely ignores them. On the other hand, equilibria of Lipnowski

and Ramos (2020) only see the loss of power of the agent. In a similar vein,

Frankel (2016) presents an environment in which (discounted) quota is opti-

mal and allows for a finite horizon. In his model, agent’s preference is un-

known but only depends on actions not states. Unlike the previous two papers,

Frankel (2016) adopts the mechanism design approach and endows the princi-

pal unlimited commitment power with transfers. Guo and Hörner (2017) also

analyze the dynamic mechanism problem with no transfers. Their mechanism

is di↵erent from the discounted quota. Instead of giving a total amount, the

mechanism o↵ers a number of units the agent can produce without question

asked.

In this regard, our model departs from his by limiting the commitment power

of the principal. Non-commitment, as shown by La↵ont and Tirole (1987);

La↵ont and Tirole (1988), gives rise to novel features such as ratchet e↵ect.

Arguedas and Rousseau (2012) apply this idea to studying compliance with

environmental rules. In their setting, firms might over-comply in the first period

to mimic the most e�cient type, hoping to reduce the probability of being

monitored in later periods. This paper also looks at comparative statics of

continuation equilibria and finds that a lower monitoring probability in the first

period induces more separation. Di↵erent from Arguedas and Rousseau (2012),

our model incorporates two dimensions of private information, one constant over

time while the other not.
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There are few empirical studies on discretion. Ho↵man, Kahn, and D.

Li (2015) is one of the firsts that o↵er a direct assessment of discretion in

the hiring process. In their framework, managers have accesses to two pieces

of information: resumes/test scores (hard information) and interviews (soft in-

formation). The company only observes the hard information. However the

goals of the managers and the company are not perfectly aligned. For instance

Rivera (2012) documents the important role of ‘shared leisure activities’ in hiring

processes. It is hard to justify how such a factor a↵ects working performances.

Furthermore Ho↵man, Kahn, and D. Li (2015) observe heterogeneity in exert-

ing discretion which they interpret as the result of various levels of biases. This

observation provides justification for our set-up in which the principal does not

know the bias of the agent at the beginning of their relationship and can only

acquire the information through interactions.

1.3 The Model: Preliminaries

1.3.1 Set Up

There are one principal (P, she) and one agent (A, he) and they interact for

T = 2 periods. At the beginning of the game, the bias of the agent b 2 {0, B}

is realized and privately observed by the agent. The bias of the agent b stays

constant over the time; b = B 2 (0, 1] will be referred to as the biased type and

b = 0 the unbiased type. The principal does not know the realization of the bias

but only that the agent will be biased with probability p and unbiased with

probability 1� p where p 2 (0, 1).

Each period, the principal chooses a convex set of actions to delegate [d
t
, d̄t] ⌘

Dt ✓ D ✓ R.2 The agent is privately informed of the state of the world

2D is a compact subset of the real line. Without loss of generality, we restrict our attention
to non-redundant optimal delegation set (Tanner (2018)). A delegation set D is non-redundant
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✓t 2 ⇥ = [0, 1] which follows an atomless distribution f(✓) and is identical and

independent over time. He then implements an action from the delegation set,

i.e. dt 2 Dt. At the end of each period the action implemented as well as the

state are observed by the principal.

A learns b

P delegates D1

A learns ✓1
and implements a1

P observes (✓1, a1)

and forms µ

P delegates D2

A learns ✓2
and implements a2

P observes (✓2, a2)

Figure 1.1: Timeline of the Dynamic Delegation Game Without Commitment

The periodic payo↵ of the principal is given by

v(at, ✓t) = �(at � ✓t)
2 (1.1)

The payo↵ of the agent of type b is given by

u(b, at, ✓t) = �(at � ✓t � b)2 (1.2)

Discount factors are 1 for both parties thus the total payo↵ of the game is just

the summation of periodic payo↵s.

Trivially, v(a, ✓) and u(b, a, ✓) are respectively maximized at ✓ and ✓ + b.

We call these the most preferred actions at ✓, denoted by y
P (✓) and y

b(✓).

Sometimes, these actions might not be available fromD. We call the constrained

maximizers, uniquely defined by argmax
a2D

v(a, ✓) and argmax
a2D

u(b, a, ✓),

the most preferred available actions at ✓ under D, denoted by y
P

D
(✓) and y

b

D
(✓).

The game is solved backwards with the solution concept PBE. First we

characterize the optimal delegation set in the last period D
⇤
2 given any posterior

if every action in the set will be optimally chosen by either type in some state.
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µ 2 [0, 1] obtained endogenously from the first period. To analyze the first

period, we start by describing agent’s strategies in any continuation equilibrium

La↵ont and Tirole (1987). A continuation equilibrium is a PBE with a fixed

first-period delegation set D1. Given D1, the two types play a signaling game

in which the biased type has incentives to mimic the unbiased type. Lastly we

study the full PBE under the restriction d1  0. One natural interpretation

for this case is threshold delegation, a widely adopted practice. For instance,

managers are usually endowed with budget limits but rarely with minimum

investment amounts; producers are regulated by emission caps but not floors.

1.3.2 Last Period

The last-period game is played in the same way as the one-shot game. Having

observed ✓2, the agent chooses his most preferred available action y
b

D2
(✓2). The

maximization problem of the principal given a posterior µ is

max
D2✓D

�µ

Z 1

0
(yB

D2
(✓2)� ✓2)

2
f(✓)d✓2 � (1� µ)

Z 1

0
(y0

D2
(✓2)� ✓2)

2
f(✓)d✓2 (1.3)

Lemma 1. The optimal delegation set in the last period is given by d
⇤
2 = 0 and

d̄
⇤
2 2 (0, 1] and is decreasing in µ, i.e. 8µ0 � µ, d̄

⇤
2(µ

0)  d̄
⇤
2(µ).

In words, Lemma 1 says that the last period problem is e↵ectively a threshold

delegation problem and that a better posterior, in the sense that the principal

believes that it’s more likely the agent is unbiased, leads to more discretion in

the second period.

Since the potential bias is upward, raising the lower bound above 0 would

not do the principal any good in the last period. Whenever the agent moves the

action downwards in the last period, he is moving it closer to the bliss point of

the principal thus giving the agent more downward discretion in the last period
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is always beneficial for the principal. Then we show in the appendix proof that

the last-period value function of the principal is submodular in belief and the

upper bound. Therefore, the optimal upper bound is decreasing in belief. In

addition, the last-period value function of the principal is decreasing and convex

in posterior

Lemma 2. V
P

2 (µ) is decreasing and convex in µ.

The value function of the biased type is given by

V
B

2 (µ) = �
Z 1

max{0,d̄⇤
2(µ)�B}

(d̄⇤2(µ)� ✓ �B)2f(✓)d✓, (1.4)

and of the unbiased type by

V
0
2 (µ) = �

Z 1

d̄
⇤
2(µ)

(d̄⇤2(µ)� ✓)2f(✓)d✓. (1.5)

Apparently, both types’ value functions are increasing in d̄
⇤
2 thus decreasing

in µ. In addition, the incremental benefit from a better posterior is always

higher for the biased type than the unbiased as shown in the Lemma below.

Lemma 3. For any µ
0
< µ,

V
B

2 (µ0)� V
B

2 (µ) > V
0
2 (µ

0)� V
0
2 (µ) (1.6)

This is crucial for the monotonicity in actions in the continuation equilib-

rium. It is essentially equivalent to the common assumption in the signaling

game literature which guarantees that a higher typer would strict prefer a higher

action if the lower type weakly prefers it.
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1.4 First Period: Continuation Equilibria

We start the analysis of the first period from the agent’s perspective. In this

section, we characterize best responses of both types in any continuation equi-

librium (La↵ont and Tirole (1987)) induced by any delegation set D1. Given

a realization of ✓1, the two types play a signaling game in which both want to

convince the principal that they are unbiased. Following Cho and Sobel (1990),

we identify the unique continuation equilibrium that survives D1; its existence

is guaranteed by construction.3 In this equilibrium, at most three cases can

arise depending on the realization of the state. In low states, types pool with

probability 1 and they only pool over the lower bound of the delegation set.

In intermediate states, types pool and separate with positive probabilities. In

high states, they separate with probability 1 and D1 selects the Riley outcome

(Riley (1979)). In this case, the biased type takes his most preferred available

action and the unbiased type the least costly action that achieves separation.

For the rest of this section, we omit subscription 1 and D1 when no confusion

arises.

1.4.1 Analogy to Signaling Game

To use the construction of Cho and Sobel (1990), we adapt our model into a one-

shot canonical signaling game with one-dimensional private information. First

we give a brief description of the game a la Cho and Sobel (1990). There are

one sender and one receiver. The sender has a piece of private information, as

his type, t 2 T where T is finite. Having observed his type t, the sender sends a

message m 2 M ✓ [0, C] to the receiver who then takes an action a 2 A from a

3D1 is one of the most used refinements for signaling games. Similar to intuitive criterion
(Cho and Kreps (1987)), it examines the plausibility of equilibria by looking at o↵-equilibrium-
path beliefs. According to D1, o↵-equilibrium-path beliefs can only put positive mass to types
that are most likely to deviate from their equilibrium strategies. D1 is stronger than intuitive
criterion and establishes uniqueness in our model, which is not guaranteed under intuitive
criterion.
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compact interval of R. The payo↵ of the sender is given by u(t,m, a) and that

of the receiver by v(t,m, a).

As for our model, the agent is the sender and the principal the receiver. The

type of the sender t is equivalent to the bias of the agent in our model: b 2 B

where B is binary thus finite. The agent takes a decision a 2 A, analogous to the

message of the sender. The principal, having observed the decision, responds

with µ 2 [0, 1]. Given ✓, the payo↵ of the agent is represented by

u(b, a, µ|✓) = �(a� ✓ � b)2 + V
b

2 (µ) (1.7)

and the principal

v(b, a, µ|✓) = �(a� ✓)2 + V
P

2 (µ) (1.8)

In our model, the state though also unknown to the principal is not a type of

the agent in the sense of a signaling game. In any continuation equilibrium the

agent takes an action a given the realization of ✓1 and the principal observes ✓1

before responding with µ. Consequently, the strategies are not correlated across

states, which allows that we further decompose the continuation equilibrium into

signaling equilibria at ✓.

Formally, we define the strategies of the agent and the equilibrium at ✓. A

mixed strategy of the agent is represented by m(·|b, ✓) which is a probability

distribution over D. By an abuse of notation, we write m(b, ✓) = a if type

b plays a with probability 1 at state ✓. The equilibrium at ✓ is a PBE given

✓ and D consisting of a triple {m(a|b, ✓)b2B , µ(a, ✓)} that satisfies sequential

rationality and consistency.

Sequential Rationality For both b, if m(a0|b, ✓) > 0, then

a
0 2 argmax

a2D

u(b, a, µ(a, ✓)|✓)

18



.4

Consistency If pm(a|B, ✓) + (1� p)m(a|0, ✓) > 0, then

µ(a, ✓) =
pm(a|B, ✓)

pm(a|B, ✓) + (1� p)m(a|0, ✓)

Let u⇤(b|✓) denote the equilibrium utility of type b at ✓

u
⇤(b|✓) =

Z

a2D

u(b, a, µ(a, ✓))m(a|B, ✓) (1.9)

Abusing of terminology, we say that the equilibrium at ✓ is separating if the

two types separate with probability 1 given ✓; the equilibrium at ✓ is pooling

if the two types pool with probability 1 given ✓; the equilibrium at ✓ is semi

separating if the two types pool and separate with positive probabilities given ✓.

For simplicity, we will drop ‘at ✓’ and ✓ in payo↵s, strategies, and beliefs when

no confusion arises.

To refer to continuation equilibria, we will be more explicit and spell out

the whole name. Given d, a continuation equilibrium is fully separating if the

two types separate with probability 1 at all ✓ 2 ⇥. Similarly, a continuation

equilibrium is fully pooling if the two types pool with probability 1 at all ✓ 2 ⇥.

1.4.2 Equilibrium Construction

Now we construct ū
⇤(b) and m̄

⇤(·|b) for both types. It is shown in A.1 that

these consist the unique D1 equilibrium and its existence is guaranteed by con-

struction. To achieve this, we first show that any D1 equilibria, should they

exist, generate equilibrium payo↵s ū
⇤(b) for both types. Then we construct

o↵-equilibrium beliefs consistent with D1 and prove that no deviation could be

profitable for either type with m̄
⇤. Finally we demonstrate uniqueness.

4Throughout the paper, we restrict our attention to strategies with finite support.
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The construction is done inductively from the biased type. Essentially he

compares his payo↵s under separation and pooling. If pooling yields higher

payo↵, he pools whereas he separates when pooling is so costly such that even

the most desirable posterior belief cannot compensate. Define

ū(B) = max
a2D

u(B, a, 1) (1.10)

clearly ū(B) = u(B, y
B

D
(✓), 1) = �(yB

D
(✓) � ✓ � B)2 + V

B

2 (1). ū(B) represents

the maximum payo↵ of B should he separate with probability 1.

(i) If ū(B) � u(B, d, 0), then ū
⇤(B) = ū(B).

(ii) If ū(B) < u(B, d, p), then ū
⇤(B) = u(B, d, p).

(iii) If u(B, d, p)  ū(B) < u(B, d, 0), then 9� 2 (0, p] such that ū
⇤(B) =

ū(B) = u(B, d,�).

Case (ii) is when the biased type prefers pooling to separation; set ū⇤(0) =

u(0, d, p). In case (iii), the biased type pools with positive probability such that

the posterior belief conditional on observing d is �; set ū⇤(0) = u(0, d,�).

In case (i), the biased type prefers separation to pooling and ū
⇤(0) is defined

below. First consider a relaxed problem

max
a2D

u(0, a, 0)

s.t. ū
⇤(B) � u(B, a, 0)

(RP)

It is a relaxed problem in the sense that the unbiased type maximizes his payo↵

conditional on separation with probability 1. Since d satisfies the constraint,

the feasible set is non-empty and the maximization well-defined. Let ū(0) be the

maximum value of RP. By setting ū
⇤(0) = ū(0), we complete the construction

of ū⇤.
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We now construct strategies m̄
⇤. In case (ii), m̄

⇤(B) = m̄
⇤(0) = d. In

case (iii), m̄⇤(0) = d; m̄⇤(d|B) = � and m̄
⇤(yB

D
(✓)|B) = 1 � � where � satisfies

� = p�

p�+1�p
.

For case (i), m̄⇤(B) = y
B

D
(✓) and to define m̄

⇤ for the unbiased type, we

write the constraint of RP explicitly

�(yB
D
(✓)� ✓ �B)2 + V

B

2 (1) � �(d� ✓ �B)2 + V
B

2 (0) (1.11)

and denote s̃(✓) as the lower decision that binds the constraint

s̃(✓) = B + ✓ �
q
�V

B

2 (0, 1) + (yB
D
(✓)� ✓ �B)2 (1.12)

It is straightforward to check that the maximizer to RP is s(✓) ⌘ min{y0
D
(✓), s̃(✓)}.

By setting m̄
⇤(0) = s(✓), we finish the whole construction. It is clearly that m̄⇤

is monotone in b; the biased type always takes a higher action than the unbiased

type. The continuity of m̄⇤ comes from the continuity of ū(B).

Proposition 1. Given any D ✓ R, there is a unique D1 equilibrium at each

✓ 2 [0, 1] in which agent of type b employs m̄
⇤(·|b) and receives equilibrium payo↵

ū
⇤(b).

1.4.3 Continuation Equilibrium

As we have shown, there are three possibilities for the equilibrium at ✓. For any

fixed D, the state space can be partitioned into at most three sets depending

on what kind of equilibrium arises at ✓. Below, we show that all elements of

the partition are convex thus are intervals. In particular, pooling occurs at the

lowest interval, then semi-separation, and separation in the highest interval.

Most importantly, we demonstrate that the set of states in which separation

occurs expands and that of pooling shrinks as D grows larger. That is, more
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discretion increases the probability that the principal learns the bias of the agent

after the first period. This result formalizes the idea that learning and discretion

come hand in hand.

Lemma 4.

(a) If the equilibrium at ✓ is separating, so is the equilibrium at ✓
0
for all

✓
0
> ✓.

(b) If the equilibrium at ✓ is pooling, so is the equilibrium at ✓
0
for all ✓

0
< ✓.

Since pooling is only possible at the lower bound d, which is further away

from the most preferred available action of the biased type, i.e. yB
D
(✓) at higher

✓, the cost of pooling increases in ✓. Consequently, pooling only occurs at

su�ciently low states.

Now denote respectively ⇥s ⌘ {✓ 2 ⇥ : equilibrium at ✓ is separating} and

⇥p ⌘ {✓ 2 ⇥ : equilibrium at ✓ is pooling}. Lemma 4 suggests that ⇥s and ⇥p

are convex. Moreover, if ⇥s 6= ;, then 1 2 ⇥s; similarly if ⇥p 6= ;, then 0 2 ⇥p.

Similarly denote ⇥m ⌘ {✓ 2 ⇥ : equilibrium at ✓ is semi-separating}. It follows

trivially that ⇥m is also convex since ⇥m = ⇥\(⇥s [⇥p).

Proposition 2. Given any D = [d, d̄] and D
0 = [d0, d̄0] such that D ✓ D

0
, we

have

(a) ⇥s

D
✓ ⇥s

D0 ;

(b) ⇥p

D0 ✓ ⇥p

D
;

(c) For any ✓ 2 ⇥m

D
[⇥m

D0 , m(d|B, ✓) > m(d0|B, ✓).

The first two parts are straightforward; the last part says that the probability

of pooling decreases at any state as D gets larger. Intuitively, a larger delegation
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set o↵ers a (weakly) better y
B

D
(✓) thus a (weakly) higher payo↵ under separa-

tion. Correspondingly, the cost of pooling increases. This proposition formalizes

the idea that learning and discretion come hand in hand. A larger delegation

set induces learning by encouraging separation and discouraging pooling. On

expectation, the principal is more likely to learn the type of the agent if she

endows more discretion in the first period.

d̄1

✓

d1

Figure 1.2: The lined area denotes the set of states with pooling and the dotted
areas the set with separating. Given a d1, the separating (pooling) set expands
(shrinks) as d̄1 rises.

1.5 Optimal Discretion

Having established that learning is feasible for the principal, in this section

we investigate the optimality of learning, i.e. the delegation problem of the

principal in the first period. By delegating di↵erent sets of actions, the principal
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could induce di↵erent continuation equilibria and probabilities of learning. More

separation unambiguously leads to a higher continuation value for the second

period, however learning does not come at zero cost. The first period payo↵

could su↵er as the biased type might choose an excessively high action under

separation. Essentially, how much separation is optimal depends on the relative

cost and benefits of learning. To better understand the tradeo↵s, we take a

closer look into the principal’s problem in the first period.

The principal’s expected payo↵ at a pooling state ✓ 2 ⇥p

D
is given by

�(d� ✓)2 + V
P

2 (p) (1.13)

at a separating state ✓ 2 ⇥s

D
by

�p(yB
D
(✓)� ✓)2 � (1� p)(s(✓)� ✓)2 + pV

P

2 (1) + (1� p)V P

2 (0) (1.14)

and at a mixing state ✓ 2 ⇥m

D
by

�p(1��)(yB
D
(✓)�✓)2�(1�p+p�)(d�✓)2+p(1��)V P

2 (1)+(1�p+p�)V P

2

✓
p�

p� + 1� p

◆

(1.15)

Putting these pieces, we can write the objective function of the principal as

the following

max
D

Z

✓2⇥p
D

⇥
�(d� ✓)2 + V

P

2 (p)
⇤
+

Z

✓2⇥s
D

p[�(yB
D
(✓)� ✓)2 + V

P

2 (1)] + (1� p)[�(s(✓)� ✓)2 + V
P

2 (0)]

+

Z

✓2⇥m
D

p(1� �)[�(yB
D
(✓)� ✓)2 + V

p

2 (1)] + (1� p+ p�)


�(d� ✓)2 + V

P

2

✓
p�

p� + 1� p

◆�
dF (✓)

(1.16)

By Lemma 4, we can rewrite the limits of the integrals ⇥p

D
= [0, ✓̄p

D
] and
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⇥s

D
= [✓s

D
, 1] with

✓
s

D
=

8
>>>><

>>>>:

1 if �V
B

2 (0, 1) > (d� 1�B)2 � (yB
D
(1)� 1�B)2

0 if �V
B

2 (0, 1)  (d�B)2 � (yB
D
(0)�B)2

1
2

⇣
y
B

D
(✓s

D
) + d+ V

B
2 (0,1)

y
B
D(✓s

D)�d

⌘
�B else

and

✓̄
p

D
=

8
>>>><

>>>>:

1 if �V
B

2 (p, 1) > (d� 1�B)2 � (yB
D
(1)� 1�B)2

0 if �V
B

2 (p, 1)  (d�B)2 � (yB
D
(0)�B)2

1
2

⇣
y
B

D
(✓̄p

D
) + d+ V

B
2 (p,1)

y
B
D(✓̄p

D)�d

⌘
�B else

In words, ✓̄p
D

denotes the highest state in which the two types pool and ✓
s

D
the

lowest state in which the two types separate.

As one can see, the problem for the principal is cumbersome. By varying her

choices, she not only changes the states in which the agent pools and separates

but also the actions taken in each state. In addition, it is not known a priori

that the principal prefers separation to pooling at any state. Separation unam-

biguously provides a larger expected second-period payo↵ due to the convexity

of the value function as well as a higher expected first-period payo↵ from the

unbiased type; yet it might come at a cost of a lower first-period payo↵ from

the biased type. In the section below, we impose several assumptions in order

to make the optimization problem more tractable. First, we limit our attention

to threshold delegation, widely seen in practice. That is, the principal only has

the upper bound of the delegation set at her disposal with the lower bound

exogenously fixed at the lower bound of the state space. While this assumption

might be innocuous in various delegation environments, it might not be the case

here. Intuitively, the principal can increase payo↵s from the pooling states by

lifting the lower bound. Then we discuss the case where the state follows a
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uniform distribution. We first show that full pooling is never optimal in this

setting. That is, in expectation the principal always wants to know more about

the agent. Moreover, given a su�ciently small bias, it is optimal to induce a

full separation equilibrium so that the principal learns the type of the agent

with probability one. Under the same parameter range, we demonstrate that

the optimal delegation set is bigger in the first period than that in the second

period, holding the same belief. In other words, discretion decreases over time

as the relationship progresses.

1.5.1 Threshold Delegation

In many economically important situations, the principal only has the upper

bound of the delegation set at disposal. For instance, a manager is usually

allowed to invest/borrow up to a certain limit but rarely forced to spend/borrow

more than a certain amount; monopolists are regulated with price ceilings but

much less often price floors; environmental laws set the maximum emission

amount but not the minimum. Alonso and Matouschek (2008) also provide

justifications for the prevalence of threshold delegation in a static environment.

In this subsection, we fix the lower bound at zero and only allow the principal

to choose the upper bound in the first period.5

To understand how change in discretion, i.e. the upper bound d a↵ects prin-

cipal’s payo↵s, we inspect the first order derivative. For any pooling state under

d that will remain pooling under d
0, there will be no change to the principal’s

payo↵ which is also reflected by the derivative of integrated part being 0. For

the state changing from pooling to mixing, the payo↵ di↵erence is represented

5Our argument and result also apply to any d1  0.
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by the following part

@✓̄
p

d

@d
[� (d� ✓̄

p

d
)2 + V

P

2 (p)

+ p(1� �)(yB
d
(✓̄p

d
)� ✓̄

p

d
)2 + (1� p+ p�)(d� ✓̄

p

d
)2 � p(1� �)V P

2 (1)� (1� p� p�)V P

2 (�)]f(✓̄p
d
)

(1.17)

Rearrange to have

@✓̄
p

d

@d
{p(1� �)[(yB

d
(✓̄p

d
)� ✓̄

p

d
)2 � (d� ✓̄

p

d
)2]

V
P

2 (p)� p(1� �)V P

2 (1)� (1� p� p�)V P

2 (�)}f(✓̄p
d
)

(1.17’)

Recall that � = p�

1�p+p�
and the convexity of the value function implies that

p(1 � �)V P

2 (1) + (1 � p � p�)V P

2 (�) � V
P

2 (p). However the sign of the first

part is unclear. When the upper bound d is su�ciently small such that d  ✓̄
p

d
,

apparently y
B

d
(✓̄p

d
) = d and (yB

d
(✓̄p

d
)� ✓̄

p

d
)2�(d� ✓̄

p

d
)2  0. In this case, Equation

1.17 is non-negative.

Now for the state going from mixing to separation, the payo↵ change is given

by the following

@✓
s

d

@d
[� p(1� �)(yB

d
(✓s

d
)� ✓

s

d
)2 � (1� p+ p�)(d� ✓

s

d
)2 + p(1� �)V P

2 (1) + (1� p+ p�)V p

2 (�)

+ p(yB
d
(✓s

d
)� ✓

s

d
)2 + (1� p)(s(✓s

d
)� ✓

s

d
)2 � pV

P

2 (1)� (1� p)V P

2 (0)]

(1.18)

Rearrange to have

@✓
s

d

@d
{p�[(yB

d
(✓s

d
)� ✓

s

d
)2 � (d� ✓

s

d
)2] + (1� p)[(s(✓s

d
)� ✓

s

d
)2 � (d� ✓

s

d
)2]

+ (1� p+ p�)V P

2 (�)� p�V
P

2 (1)� (1� p)V P

2 (0)}

(1.18’)
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We have the second part being non-positive as

(1� p+ p�)V P

2 (�)� p�V
P

2 (1)� (1� p)V P

2 (0)

(1� p+ p�)[�V P

2 (1) + (1� �)V P

2 (0)]� p�V
P

2 (1)� (1� p)V P

2 (0)

=p��V
P

2 (1) + (1� p)V P

2 (0)� p�V
P

2 (1)� (1� p)V P

2 (0) = 0

The sign of the first part is again ambiguous. However when the uppder bound

d is not too large such that d  ✓
s

d
, y

B

d
(✓s

d
) = d and s(✓s

d
) < d, the first part

is negative since both y
B

d
(✓s

d
) and s(✓s

d
) are closer to ✓

s

d
than d. In this case,

Equation 1.18 is non-negative.

Now for the states that will remain separating, we have

Z 1

✓
s
d

�2p(yB
d
(✓)� ✓)

@y
B

d
(✓)

@d
� 2(1� p)(s(✓)� ✓)

@s(✓)

@d
dF (✓) (1.19)

In particular, s(✓) 2 {s̃(✓), y0
d
(✓)} where s̃(✓) = B+✓�

q
�V

B

2 (0, 1) + (yB
d
(✓)� ✓ �B)2.

If �V
B

2 (0, 1) � B
2, then 8✓ 2 ⇥s

, s(✓) = s̃(✓). If �V
B

2 (0, 1) < B
2, then 9✓̃

such that 8✓ 2 ⇥s \ [✓̃,1), s(✓) = s̃(✓) and

✓̃ = d�B +
q
B2 ��V

B

2 (0, 1) 2 (d�B, d)

For su�ciently small d such that d  ✓
s

d
, we have yB

d
(✓) < ✓ for all ✓ 2 [✓s

d
, 1].

This also implies that d  s(✓s
d
)  ✓

s

d
and s(✓)  ✓ for all ✓ > ✓

s

d
. Thus Equation

1.19 is non-negative in this case. In general, the first part, the payo↵ from the

biased type, would increase then decrease whereas the second part, the payo↵

from the unbiased type, would alway increase as d goes up.
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Lastly, we have the state that will remain mixing

Z
✓
s
d

✓̄
p
d

� 2p(1� �)(yB
d
(✓)� ✓)

@y
B

d
(✓)

@d
+ p(yB

d
(✓)� ✓)2

@�

@d
� p(d� ✓)2

@�

@d

� p
@�

@d
V

P

2 (1) + p
@�

@d
V

P

2 (�) + (1� p+ p�)
@V

P

2 (�)

@�

@�

@d
dF (✓)

(1.20)

Rearrange to have

Z
✓
s
d

✓̄
p
d

� 2p(1� �)(yB
d
(✓)� ✓)

@y
B

d
(✓)

@d
+ p

@�

@d
[(yB

d
(✓)� ✓)2 � (d� ✓)2]

p
@�

@d


V

P

2 (�)� V
P

2 (1) +
1� p

1� p+ p�

@V
P

2 (�)

@�

�
dF (✓)

(1.20’)

Using the convexity of the value function and MVT for integral we have

@V
P

2 (�)

@�
 V

P

2 (1)� V
P

2 (�)

1� �
=

V
P

2 (1)� V
P

2 (�)
1�p

1�p+p�

thus the second part of Equation 1.20’ is non-negative. The sign of the first part

is ambiguous. However for su�ciently small d  ✓̄
p

d
, we have y

B

d
(✓) < ✓ for all

✓ 2 [✓̄p
d
, ✓

s

d
] as well as (yB

d
(✓) � ✓)2 � (d� ✓)2  0. Thus in this case, Equation

1.20 is non-negative.

Taking all pieces together, we arrive at the necessary condition for optimal-

ity: the upper bound d has to be su�ciently large such that d > ✓̄
p

d
. And this

leads to the following proposition.

Proposition 3. Full pooling equilibrium is never optimal.

Proof. Building on the above analysis, we are to show that any d to induce a

full pooling equilibrium is such that d  1 hence it cannot be optimal since the

necessary condition requires d > ✓̄
p

d
= 1.
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Pooling at ✓ = 1 implies that

(yB
d
(1)� 1�B)2 � (1 +B)2 ��V

B

2 (p, 1)

rearranging

y
B

d
(1)  1 +B �

q
(1 +B)2 ��V

B

2 (p, 1)

If we can show that 1 + B �
p
(1 +B)2 ��V

B

2 (p, 1) < 1 then it implies that

y
B

d
(1) = d < 1 = ✓̄

p

d
contradicting the necessary condition for optimality. To

show that is equivalent to show that for any p 2 (0, 1), we have

1 +B �
q

(1 +B)2 ��V
B

2 (p, 1)  1

�V
B

2 (p, 1)  1 + 2B

The last inequality is true since�V
B

2 (p, 1) is bounded from above by�V
B

2 (0, 1)

and we know that

�V
B

2 (0, 1) =V
B

2 (0)� V
B

2 (1)


Z 1

1�B

�(1� ✓ �B)2dF (✓)�
Z 1

0
�(✓ +B)2dF (✓)

=

Z 1

1�B

(2✓ + 2B � 1)dF (✓) +

Z 1�B

0
(✓ +B)2dF (✓)

(1 + 2B)B + (1�B) = 1 + 2B2

the first inequality comes from the fact 0  d̄
⇤
2  1 and the second inequal-

ity comes from the monotonicity of integral. Since B  1, we know that

�V
B

2 (p, 1)  1 + 2B2  1 + 2B which completes the proof.

Intuitively this is a very straightforward result. Once we fix the lower bound
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at 0, full pooling means 0 being chosen with probability 1. Consider a marginal

change in d that is just enough to move ✓ = 1 away from pooling. Since d

remains to be smaller than 1 as shown above, this marginal change unambigu-

ously improves the payo↵ of the principal since 0 < d  1. Thus it is always

optimal for the principal to induce at least some separation in the first period

and acquire some information about the bias of the agent.

1.5.2 Uniform Distribution

Now we impose the assumption of the state being uniformly distributed to study

exactly how much information the principal should acquire. We show that given

a su�ciently small bias B, full separation is optimal for the principal. Moreover,

holding the same belief, more discretion is given in the first period than in the

second period, consistent with the observation that startups are losing control

rights over time to venture capitalists.

Proposition 4. For a su�ciently small B such that B  1
2 and B

2 � �V
B

2 (0, 1),

the optimal delegation threshold induces a fully separating equilibrium. In addi-

tion, d̄
⇤
1(p) � d̄

⇤
2(p) for any p 2 (0, 1).

Under the given parameter range, one can check readily that 8d � B �
p
B2 ��V

B

2 (0, 1) ⌘ d̃ induces a fully separating equilibrium. To prove the

proposition, we first show that the objective function of principal can have at

most two critical points in d 2 [d̃, 1+ d̃] and the smaller one gives the maximum

under full separation. Since going above 1 + d̃ is never optimal, this finds the

conditional maximum given full separation. Next, we show any d that does not

induce full separation gives a lower payo↵ to the principal than d = 1�B which

induces full separation. This completes the first part of the proof by showing

that the conditional maximum is also the unconditional maximum. The second

part is straightforward by showing the first order derivative is positive at d̄⇤2.
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Proof. Under full separation, the F.O.C. of the principal’s objective function is

given by

Z 1

0
�2p(yB

d
(✓)� ✓)

@y
B

d
(✓)

@d
� 2(1� p)(s(✓)� ✓)

@s(✓)

@d
dF (✓)

=

Z 1

max{0,d�B}
�2p(d� ✓)�

Z 1

✓̃

2(1� p)(s̃(✓)� ✓)
@s̃(✓)

@d
d✓

where ✓̃ 2 (d�B, d) such that 8✓ � ✓̃, y
0
d
(✓) = s̃(✓).6

The first part - payo↵ from the biased type, is concave for d  1. For d > 1

however, the S.O.C. is 2p(d�1) thus is convex. The second part - payo↵ from the

unbiased type is more cumbersome as s̃(✓) = B+✓�
p
�V

B

2 (0, 1) + (d� ✓ �B)2.

Now consider d 2 [d̃, 1 + d̃] in which case ✓̃ 2 [0, 1]; the derivative of its F.O.C.

is given by

2(1� p)(s̃(✓̃)� ✓̃)
@s̃(✓)

@d

����
✓=✓̃

�
Z 1

✓̃

2(1� p)

"✓
@s̃(✓)

@d

◆2

+ (s̃(✓)� ✓)
@
2
s̃(✓)

@d2

#
d✓

=�
Z 1

✓̃

2(1� p)

"✓
@s̃(✓)
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and the second order derivative of its F.O.C.
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(1.22)

6To see why it is never optimal to go beyond 1+ d̃: in this case ✓̃ = 1 and changing d would
not change payo↵ from unbiased type in any state but will only allow the biased type more
discretion on high states thus lower the payo↵ from the biased type. Hence setting d > 1 + d̃
is never optimal.
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Algebra shows that

@
2
s̃(✓)

@d2
= � �V

B

2 (0, 1)
p
(B � d+ ✓)2 +�V

B

2 (0, 1)
3 < 0

for any ✓ and

@
3
s̃(✓)

@d3
=

3�V
B

2 (0, 1)(B � d+ ✓)
p
(B � d+ ✓)2 +�V

B

2 (0, 1)
5 � 0

for any ✓ � ✓̃ = d�d̃ ) B+✓�d �
p
B2 ��V

B

2 (0, 1) � 0. Therefore, Equation

1.21 0 and Equation 1.22� 0. Thus the shapes of the F.O.C.s dictate that

there are at most two critical points and the smaller critical point gives the

maximum conditional on full separation; see Figure 1.3.

d

f.o.c.

1�B 1 +B1

1 + d̃

Figure 1.3: F.O.C. of payo↵s from the biased type (Black) and minus of that
from the unbiased type (Blue)

Next we show that any d 2 [0, d̃) generates a lower payo↵ than d = 1�B > d̃.

To see that, we only need to compare the payo↵ from the biased type since a

higher threshold unambiguously increases the payo↵ from the unbiased type.

For any d 2 [0, d̃), the maximum payo↵ the principal can obtain from the biased
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type is

�
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2 }
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since the biased type will either choose y
B

d
(✓) = d or the pooling action d = 0

when not separating and the principal prefers 0 to d if and only if ✓  d

2 . We

know that
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2 (0, 1). Moreover, Equation 1.23 is increasing in d

in both cases. We can check that
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343B6
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+

7B2

6
� 1

3

evaluated at d = 7B2

6 and

�
Z

✓
s
d

0
(0� ✓)2d✓ �

Z 1

✓
s
d

(d� ✓)2d✓

evaluated at d = d̃ are both smaller than the payo↵ from the biased type under

full separation evaluated at d = 1�B which is given by B
2(4B�3)

3 for any B in

the relevant range.

Lastly, we show that the principal optimally gives more discretion in the

first period than in the second, i.e. d̄
⇤
1(p) � d̄

⇤
2(p) for any belief p 2 (0, 1). To

do that, we are to show that the F.O.C. is positive at d̄
⇤
2(p). Since d̄

⇤
2(p)  1

for any p, it is on the concave part of the objective function thus d̄⇤1(p) � d̄
⇤
2(p).

Conditional on full separation at the first period, the payo↵ from the biased

type are the same for both periods. Hence we can focus on the payo↵ from

unbiased type. Denote the derivatives of the payo↵s from the unbiased type as

34



�2 and �1 respectively,
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(1.24b)

The second last equality follows from s̃(✓̃) = ✓̃ and last from s̃(✓) = B + ✓ �
p
�V2(0, 1) + (d� ✓ �B)2. Clearly ✓̃ < d and s̃(✓)  ✓, the first term is non-

negative. Since the second term is bigger than �2, we have �1 > �2 at any

d 2 [1�B, 1]. This implies d̄⇤1(p) � d̄
⇤
2(p) and completes the proof.

As mentioned, learning leads to a higher continuation payo↵ and a higher

current-period payo↵ from the unbiased type but it might decrease the current-

period payo↵ from the biased type. Under uniform distribution and su�ciently

small biased, we show that the benefits of learning outweigh the potential cost

thus it is optimal for the principal to induce a fully separating continuation

equilibrium.

35



1.6 Discussion

1.6.1 Non-Interval Delegation

Throughout we assume the convexity of the delegation set. Practical examples

of non-interval action space are rare but present, for instance, the medicare part

D donut hole. In theory, interval delegation has been shown to be optimal under

rather general conditions Amador and Bagwell (2013). However Tanner (2018)

shows that given the possibility of screening and a su�ciently concave loss func-

tion of the principal, non-interval delegation set is optimal. Below, we briefly

discuss the implication of non-interval delegation in our equilibrium construc-

tion.

We show that the unique continuation equilibrium we constructed might fail

to exist or lose its uniqueness. This is because the existence and uniqueness of

the equilibrium replies on the fact that under interval delegation, an arbitrarily

small change in the posterior of the principal can be induced by an arbitrarily

small move in action. Whereas given a non-interval delegation set, the cost of

moving the posterior by a little might be too great.

Example: Non-Interval Delegation Consider this numerical example with

B = 1 and D = {0, 1}. Clearly in any equilibrium for 8✓ 2 [0, 1], the biased

type would choose the higher action with probability 1 since

�(1� ✓ � 1)2 + V
B

2 (1) > �(0� ✓ � 1)2 + V
B

2 (0)

, ✓ � �V
B

2 (0, 1)� 1

2

where the RHS is smaller than zero. And there are two D1 equilibria depending

on when the unbiased type separates. In one equilibrium, the unbiased type

chooses the lower action 0 if ✓  �V
0
2 (0,1)+1

2 and pools at the higher action 1
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otherwise. Under pooling, D1 dictates that µ(0) = 0. In another equilibrium,

everything else being the same, the unbiased type chooses the lower action 0

if ✓  �V
0
2 (p,1)+1

2 . In this example, two types are pooling at the higher action

instead of the lower one. This is because the ”next-low” action is too costly for

the unbiased to separate.7

1.6.2 Discounting

We have been using the assumption that there is no discounting over time for

either party, i.e. �P = �
A = 1. Straightforwardly, the existence and uniqueness

of the continuation equilibrium will continue to hold with any � 2 (0,+1).

However our results on optimal delegation are susceptible to discount factors.

This is because by giving di↵erent weights to the current and future payo↵s,

the cost of learning will change accordingly for the principal. For instance, by

increasing the discount factor of the agent, i.e. �A, separation will become more

costly, which will in turn change the optimal delegation set.

Proposition 5.

1. As �
A ! +1, the optimal delegation set induces full pooling and d̄

⇤
1 =

d
⇤
1 = E(✓).

2. As �
A ! 0, the optimal delegation set induces full separation. In addition

d
⇤
1 = 0 and d̄

⇤
1(p) � d̄

⇤
2(p) for any p 2 (0, 1).

The first part is straightforward as �
A gets su�ciently large, separation

become excessively costly for the principal. The cost comes from two sources.

First, a large amount of discretion is needed to induce separation from the biased

7However it is incorrect to conclude that pooling only happens at high states. One can
construct a more delicate example in which pooling occurs in extreme states, either low or
high.
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type as the following necessary condition shows

�
A�V

B

2 (p, 1)  (d� 1�B)2 � (yB
D
(1)� 1�B)2

As �
A ! +1, eventually [0, 1] ⇢ D and the principal incurs a large amount

of cost for allowing the biased type to choose upward-biased actions. Second,

the unbiased type will have to skew his action downwards by a large extent for

separation as shown below

�
A�V

B

2 (0, 1)  (s(✓)� 1�B)2 � (yB
D
(1)� 1�B)2

This again incurs a cost on the principal. Since the benefit of learning is well

bounded, as �
A ! +1 it is optimal to have a full pooling equilibrium. In a

full pooling equilibrium, only 1 action will ever be chosen by either type, thus

d̄
⇤
1 = d

⇤
1 = E(✓).

Similarly, as �A ! 0, pooling gets excessively costly thus very little discretion

is enough to induce full separation. Once we show that d⇤1 = 0, the rest follows

the same logic as the proof of Proposition 4.

Lemma 5. If D
⇤
1 is optimal and induces full separation, then d

⇤
1  0. Moreover,

as �
A ! 0, d⇤1 = 0

Proof. We prove the first part by contradiction. Suppose that there exists D

that is optimal and induces full separation yet d > 0. One straightforward

observation is that d < B else D cannot induce a full separation. In a fully

separating equilibrium, the two types separate at ✓ = 0 and the following has

to hold

�(yB
D
(0)� 0�B)2 + �

A
V

B

2 (1) � �(d� 0�B)2 + �
A
V

B

2 (0)

d  B �
q

�A�V
B

2 (0, 1) + (yB
D
(0)�B)2
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If B �
q
�A�V

B

2 (0, 1) + (yB
D
(0)�B)2  0, then our job is done. Suppose not

then we have

s̃(0) = B + 0�
q
�A�V

B

2 (0, 1) + (yB
D
(0)�B)2 > 0

since s̃(0) � d > 0. Thus s(0) = min{s̃(0), y0
D
(0)} = y

0
D
(0) = d.

Now consider D
0 such that d̄

0 = d̄ but d
0 = 0. Apparently D ⇢ D

0; by

Proposition 2, D0 also induces full separation. Under D
0, the payo↵ from the

biased type would not change as d
0
< d < B thus y

B

D
(✓) = y

B

D0(✓) for 8✓ 2 ⇥.

As for the payo↵ from the unbiased type, it would increase strictly becasue s(✓)

is weakly closer to ✓ under D0 than under D for any ✓  d and strictly for ✓ = 0.

For any ✓ > d, s(✓) remains the same under D
0 and D and this completes the

proof for the first part of the lemma.

For the second part, it is straightforward with the observation that yB
D
(0) > 0

for optimality. Given that, s(0) = 0 thus actions smaller than 0 are redundant

and will never be chosen.

Similarly, �P ! +1 suggests that the principal overweights future payo↵s

thus optimally induces full separation. Hence, the first part of Proposition 4

holds under the same condition. The second part can be generalized following

the same rationale, as stated below

Corollary 1. As �
P ! +1, the optimal delegation induces full separation. In

addition, d
⇤
1 = 0 and d̄

⇤
1(p) � d̄

⇤
2(p) for any p 2 (0, 1).

These two results show that Proposition 4 is robust to a more general envi-

ronment provided the discount factor of the agent is su�ciently small or that of

the principal su�ciently large. Intuitively, when the discount factor of the agent
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is small, the incentives of imitation falls accordingly thus the cost of learning

decreases. When the discount factor of the principal is large, the benefits of

learning grow. In either case, we show that it is optimal for the principal to

learn with probability 1, and the best way to induce full learning is to set the

lower bound at zero and to give extra upward discretion, i.e. d⇤1(p) � d
⇤
2(p).

1.7 Conclusion

In this paper we have shown that there exists a unique perfect Bayesian equi-

librium under D1 in which the agent pools in low states and separate in high

states. We formalize the idea that more discretion encourages learning in the

sense that by giving the agent a bigger delegation set, the principal increases

her probability of learning agent’s type. Intuitively, a bigger delegation set

makes it more costly for the biased type to mimic the unbiased type. Given

the strategic interplay, we investigate the optimal delegation by the principal

under the assumption of threshold delegation. We show that full pooling is

never optimal and the principal in expectation always learns informtion about

the agent’s type. Moreover, given a su�ciently small bias or the agent being

su�ciently impatient, it is optimal for the principal to induce full separation

in the sense that she learns the bias of the agent with probability one. These

results suggest that in a dynamic delegation environment, learning is not only

feasible but also optimal. Last but not least, in terms of power dynamics, we

show that discretion decreases over time as the motive for learning fades.

There are several directions worth exploring for future works. First, the

full characterization of optimal delegation set remains to be studied. In par-

ticular, how a flexible lower bound would a↵ect discretion and power dynamics

remains an interesting question. Second, one may investigate how the com-

mitment power of the principal a↵ects optimal delegation. In this paper, the
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principal has minimal commitment power, i.e. she can not commit to o↵ering

a menu nor a contract for the entire horizon. In principle, more commitment

allows better payo↵s for the principal as she could always achieve at least as

much as in the case with less commitment. Lastly, it would also be interesting

to study the optimal amount of transparency between periods. In our set up,

we assume that principal can perfectly observe the past state and action. But

one can think of scenarios where this is not the case. Whether it is a strategic

choice and if so what factors drive higher or lower degree of transparency in

organizations? The degree of transparency could serve as a commitment device

between-period for the principal as well. By muddling her observation between

periods, the principal could e↵ectively mitigate pooling incentives. All in all, our

model can be easily adapted to study both information and mechanism design

without transfers. Doval and Skreta (2020), a recent exploration in this realm,

point out that limited commitment can be formulated as an information design

problem atop the mechanism design, which should be a very exciting adventure

for the future.
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Chapter 2

Dynamic School Admission

with Exploding O↵ers

2.1 Introduction

Information asymmetry causing market failures has long been studied in the

economic literature. In the context of matching, incomplete information might

result in miscoordination, ine�cient matching outcomes, or even market fail-

ures. On the whole, a large proportion of the matching literature is devoted to

understanding the static environment and to improving assignments in a one-

period setup. We introduce dynamics with endogenous timing, an instrument

widely used in practice, and discuss new strategies that open up when agents

are provided with more time to make their decisions.

In this paper, we consider a two-period decentralized matching environment

in the language of school admission1 where schools and students that remain

unmatched in the first period will go into the second period. In particular, the

1One can easily adopt our environment to other setups such as the labor market.
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schools hold the liberty to set their paces in the sense that they can purposely

remain unmatched in the first period “to observe the market for longer”. The

private information in our model is the quality of the student which is known by

the student but not perfectly known by schools. Because of the incompleteness

of information, schools might have incentives to “take their time” to gather

more information by “observing the market for longer”. We derive conditions

of parameters under which this is indeed the case in the equilibrium. Schools

endogenously choose di↵erent timings to send out o↵ers. In particular the more

competitive school waits longer than the less competitive school and utilizes the

fact that high quality students who are in turn more confident in their ability

are more likely to wait thus remain in the market for longer. With a formal

game theoretical model, we answer the question of when schools are expected

to send out o↵ers sequentially and when to send out o↵ers simultaneously.

Our model speaks directly to the graduate student admission process in

practice. It is widely observed that di↵erent schools send out o↵ers at di↵erent

times. On one hand, less competitive schools are more prone to giving o↵ers with

a smaller window to respond, i.e. exploding o↵ers. More competitive institutes

on the other hand utilize wait-lists a lot more often. We propose that this

phenomenon arises from the dynamic nature of the market and the information

asymmetry about students’ true qualities. Intuitively, less competitive schools

need to “hurry up” to grab students that would otherwise be admitted by more

competitive schools and more competitive schools are better o↵ waiting to allow

the less qualified students be filtered out first. This is consistent with our model

in which the more competitive school sends o↵ers later than its less competitive

counterpart and lower quality students are more likely to accept exploding o↵ers.
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2.2 Literature Review

This paper contributes mainly to two lines of literature: decentralized school

admission and games with endogenous timing.

Avery and Levin (2010) study college school admission under incomplete

information. In their model, students’ application strategy is not trivial. The

reasons are two folds. First in their model there are two dimensions of pri-

vate information - ability and preference. Students only know their preferences

whereas their abilities are known by the schools. Second students can only ap-

ply to one school in the early admission process hence to some students there is

the trade-o↵ between applying to the safer school and to the better school. For

early admission, schools can adopt either early action or early admission. Early

action is non-binding hence students who are admitted early can still apply and

go to another school should they receive a more desirable o↵er from the regu-

lar admission process. Early decision on the other hand is binding. Students

accepted have to decide on their o↵ers before the regular admission period and

those admitted cannot apply to other schools later. In markets we are inter-

ested in such as the one for graduate students admission, there is no explicitly

separated admission stages. Nonetheless, early decision which involves binding

commitments works similarly to exploding o↵ers.2 Avery and Levin (2010) show

that students could use the early admission program to signal their preferences

and consequently schools would indeed favor early applicants with a lower ad-

mission threshold. Moreover, they conclude that very top-ranked schools are

less enthusiastic about early admission programs which is consistent with the

fact that high-ranked schools such as Harvard, Princeton, Yale, MIT, and Stan-

ford first switched away from the binding early decision and later eliminated

2One major di↵erence however is that under early decision, a student can still apply to and
be accepted by the same school in the regular stage even if the student received and rejected
the school’s early o↵er. With exploding o↵ers, this cannot happen. If a student rejected an
early exploding o↵er, there is not another chance to receive an o↵er from the same school.
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early admissions entirely. In their arguments, with early decision lower-ranked

schools could potentially capture some highly desired students who are uncertain

about their perspectives at higher-ranked schools whereas top-ranked schools

are less concerned about losing top students. While our results are reminiscent

to theirs, the mechanism and intuition under are vastly di↵erent. Our model

allows schools to endogenously choose their timing of o↵ers whereas in their

model early admission is predetermined. Moreover, we focus on understanding

how schools utilize the information not only from students but also from each

other. In our framework, the more competitive school is better o↵ purposely

letting the less competitive school make o↵ers first for a sorting rationale.

Che and Koh (2016) develop a model that captures strategic plays from col-

leges to avoid miscoordination in the presence of students’ unknown preferences.

The main model of Che and Koh (2016) is simultaneous and focuses on under-

standing how colleges use school-specific measures such as essays to evaluate

applicants in order to avoid head-on competition with other schools. In the ex-

tension, they briefly discuss the use of wait-list and sequential play. They show

that there exists no symmetric equilibrium in which both schools use thresh-

old strategies in the first round. The intuition behind the result is that while

o↵ers are turned down by some students, the next best students might not be

available any more. Therefore sending o↵ers to very top students is very risky

and might not pay o↵ for the schools. As a result, the allocation is ine�cient

and unfair as top students might end up receiving fewer o↵ers or have a higher

chance of not being admitted at all than lower ranked students. Our model fur-

ther complements their results by showing that in a dynamic equilibrium, the

less competitive school prioritizes sending o↵ers to the seemingly low-quality

student who is most likely to accept the o↵er. Moreover it could occur in the

equilibrium that a high-quality student receives fewer o↵ers than a low-quality
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student and ends up not being admitted. Both papers conclude that ine�ciency

cannot simply be resolved with sequential play.

In a di↵erent context, Pan (2018) investigates how the use of exploding o↵ers

a↵ects unravelling in a two-period decentralized labor market and shows that the

use of exploding o↵ers is necessary but not su�cient for unravelling to occur.

Interestingly Pan (2018) concludes that a policy on banning exploding o↵ers

tends to be supported by high quality employers but protested against by low

quality ones. While our model setup is largely di↵erent from theirs, our results

bear similar spirits in the sense that in both models exploding o↵ers are preferred

by less competitive o↵er senders. However our model speaks di↵erently about

more competitive o↵er senders. In their model, the information is revealed over

time and exogenously, as a result high quality firms have nothing to gain by

allowing low quality firms to move early. Whereas in our model, by letting the

less competitive school to send out exploding o↵ers first, the more competitive

school would enjoy a filtered pool of applicants with increased expected quality.

Methodology-wise, our model is closely related to games with endogenous

timing. Games with endogenous timing are most popular in the literature of in-

dustrial organization, particularly with oligopoly and duopoly models pioneered

by Hamilton and Slutsky (1990) among others. The early literature has recog-

nized that the timing of moves is an important factor to determine profit levels

and studied extensively conditions under which first-mover advantage would

arise. While these are important questions on their own rights, Hamilton and

Slutsky (1990) argue that they did not answer the question of how the tim-

ing is decided among di↵erent firms. To answer this question, Hamilton and

Slutsky (1990) extend the standard duopoly model in two ways to incorporate

endogenous timing. In essence, it can be considered that the players choose

the timing of their decisions in the pre-stage of the game. If the two players
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choose di↵erent times then a sequential subgame occurs whereas if their timing

choices coincide, a simultaneous subgame arises. In one extension, firms choose

the timing of their actions but need not specify the action itself. Firms are com-

mitted to the timing they choose but choose their actions only after the timing

choices of both are announced. This variation is thus called observable delay.

In the other extension, if a firm wishes to choose to move early then the firm

also has to specify the action itself. Consequently this variation is called action

commitment. In this variation, a firm that decides to move early does not know

if the other firm is also going to move early or late. Our model is more closely

related to the action commitment framework but with more restricted observ-

ability between periods. Hamilton and Slutsky (1990) assume that all earlier

decisions are observable which we do not. Instead, we make the assumption

that schools cannot directly observe each other’s action. The only thing that

is directly observable is whether a student exits the market. We believe this

assumption bears the closest resemblance to reality. In practice, schools rarely

communicate with one another over admission and usually they only directly

obtain information from applicants in the case that they withdraw from the pro-

cess.3 Besides our model di↵ers in two other major aspects. First, essentially

our game features 3 players (2 schools and 1 student) that are asymmetric. As

a result, conventional duopoly analysis has no bite in our model. Second, the

information asymmetry is completely novel to Hamilton and Slutsky (1990) and

cannot be incorporated in a straightforward manner.

Along a similar path to Hamilton and Slutsky (1990), Mailath (1993) consid-

ers a duopoly model with endogenous timing and incomplete information. The

model follows the action commitment variation of Hamilton and Slutsky (1990).

Mailath (1993) shows that only sequential equilibria survive D1 refinement (Cho

3While one can argue that it is a common practice for schools to make an inquiry to
students about whether they hold o↵ers from other schools - information of such is not actually
verifiable.
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and Kreps (1987)). Using the observable delay variation, Normann (2002) shows

that simultaneous play i.e. a Cournot equilibrium can be sustained under a wide

range of parameters. Putting endogenous timing games to application, Kempf

and Graziosi (2010) introduce the framework to public economics to study the

emergence of leadership in the realm of public good provision. They show that

with the presence of cross-jurisdiction spillovers, neither countries would emerge

as a leader if for both countries public goods are substitutes. Whereas either

country might be the leader when public goods are complements. Lee and

Xu (2018) investigate how environmental externality and emission tax a↵ect

timing decisions in a duopoly market.

2.3 The Model

In this section, we present the model in the case of two schools and one student4.

Consider the two schools c 2 {g, b} in the market as a good school and a bad

school, and the student with quality high or low ✓ 2 {H,L}. The matching

process lasts for at most two periods and the schools can send their o↵ers at

either period. In every period, each school can choose to send an o↵er to the

student with the following restrictions:

• All o↵ers are exploding in the sense the student has to respond within the

period;

• A school cannot send an o↵er to the student again if a previous o↵er from

the same school has been turned down.

Given an o↵er, the student can either accept or reject it. Note that the student

cannot accept more than one o↵ers and once the student accepts an o↵er the

matching procedure comes to an end. If the student accepts no o↵er by the

4Alternatively, one can think of it as a continuum of students.
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end of the second period, the procedure would end with the student remain

unmatched.

The preference of the student is deterministic and common knowledge. The

student always prefers the good school to the bad school. We normalize the

payo↵ of the student being admitted into the good school to 1 and denote the

payo↵ of being admitted into the bad school as w 2 [0, 1).

The preferences of the schools depend on the quality of the student ✓ 2

{H,L}. While both schools prefer a high-quality student to a low-quality stu-

dent, only the bad school receives a positive payo↵ from a low quality student.

The good school on the other hand receives a negative payo↵ from a low quality

student thus would prefer no admission which gives a payo↵ of 0. This as-

sumption can be interpreted in two ways. For one, di↵erent payo↵s could be

a result of di↵erent capacity constraints. It is not uncommon to see the more

competitive schools have smaller cohorts, which is especially prominent for the

top private institutes vs middle-range public universities. For another, it could

be due to the good school having a larger pool of applicants. Even though our

model does not explicitly model the application choice of the student, it can

be justified that more competitive institutes more often than not receive more

applications. Either way, given the scarcity of educational resources, the op-

portunity cost of admitting a low-quality student would be bigger for the good

school in turn a lower net payo↵. We exogenize di↵erent opportunity costs as

di↵erent payo↵s in our model as the followings

H L
Good School V u

Bad School V v

Table 2.1: Admission Payo↵s for Schools

where V > v > 0 > u. In other words, only a high quality student is acceptable
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to the good school whereas both qualities are acceptable to the bad school. No

admission gives a payo↵ of 0.

While the student knows his quality perfectly, each school only receives a

noisy signal over the quality (✓̂g, ✓̂b) 2 {h, l}2. We assume that signals are

conditionally independent between the two schools and follow the information

structure

h l

H x 1� x

L 1� y y

Table 2.2: Conditional Probabilities of Signals Pr(✓̂|✓)

where x, y 2 [0.5, 1). Straightforwardly the information structure satisfies MLRP

and we can think of x and y as information accuracy. A larger x or y means a

more accurate signal that could be from a more revealing portfolio requirement

and so on. We allow information to di↵er across schools because for graduate

student admission, most schools tailor their admission processes by asking for

di↵erent materials and students usually write school-specific essays.5 As a re-

sult, di↵erent schools would receive di↵erent information and perhaps conduct

evaluation on di↵erent ways. Therefore, it is natural to assume that di↵erent

schools receive di↵erent signals.6

To summarize, the timing of the game goes as the following:

(0a.) Nature realizes ✓ 2 {H,L} with Pr(✓ = H) = ⇡ and Pr(✓ =

L) = 1� ⇡.

(0b.) The student learns his quality ✓ and each school receives a

signal (✓̂g, ✓̂b) which are conditionally independent on the true

5In some subjects such as physics graduate students are funded directly by their advi-
sors which means students are even more likely to prepare tailored application materials for
di↵erent schools.

6For simplicity, we assume the information accuracy is shared between schools. We can
easily extend our model to incorporate di↵erent information accuracy such that (xg , yg) 6=
(xb, yb) which our main results unchanged qualitatively.
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quality.

(1a.) At period 1, each school simultaneous decides whether to send

an o↵er to the student.

(1b.) The student rejects any or accepts at most one o↵er received.

(1c.) The game ends if the student accepts an o↵er else the game

proceeds to period 2.

(2a). At period 2, any school that did not send an o↵er simultane-

ously decides whether to send an o↵er the student.

(2b.) The student rejects any or accepts at most one o↵er received.

(2c.) The game ends.

In this model, we make the assumption that either school can directly observe

the action of the other between periods. Put di↵erently, should the game proceed

to the second period, the schools cannot distinguish between the following two

events:

• The student rejected the o↵er from the other school.

• The student did not receive any o↵er.

While the observability assumption does not change our analysis qualitatively,

too much observability would give the student incentives to mimic the high-

quality thus deter the filtering and in turn the dynamics. With this assump-

tion, we can also simplify the description of the school’s action space: ac(✓̂c) 2

{E,L,N} where c 2 {g, b}. In words, each school has only one o↵er at disposal

and the school can send the o↵er “early (E)”, “late (L)”, or “never (N)” given
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the signal received.7

In the rest of the section, we first discuss the static benchmark of the game

in which there is only one period. Then we provide a full characterization of the

game with two periods and give conditions under which a dynamic equilibrium

can be sustained. Lastly, we compare the welfare properties of the static and

dynamic equilibrium outcomes.

2.3.1 Static Benchmark

With only one period, the game is straightforward. The student would accept

the best available o↵er and reject the other one if any. The bad school would

send an o↵er regardless of the signal received since its payo↵ is positive for either

type. The good school send an o↵er to the student if and only if the expected

payo↵ is positive given the signal, i.e.

V Pr(✓ = H|✓̂g) + uPr(✓ = L|✓̂g) � 0

Under MLRP, the strategy is monotone in the sense that if the good school

sends an o↵er to the low signal then it would also send an o↵er to the high

signal. Henceforward, we restrict our attention to the case where the following

conditions hold

V
⇡x

⇡x+ (1� ⇡)(1� y)
+ u

(1� ⇡)(1� y)

⇡x+ (1� ⇡)(1� y)
� 0

V
⇡(1� x)

⇡(1� x) + (1� ⇡)y
+ u

(1� ⇡)y

⇡(1� x) + (1� ⇡)y
< 0

(2.1)

7This formulation is reminiscent to the endogenous timing duopoly game with action com-
mitment except that in our case the school does not need to decide on the action again should
it choose to wait. This is because the action L is conditional on the student not leaving the
market by the end of period 1 which is all the information the school would gather between
periods.
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In words, the good school would only send an o↵er upon receiving a high sig-

nal. This assumption ensures that at least one party would be acting on their

information which is what we are interested in.

In the equilibrium of the static game, the expected payo↵s are given as

follows

Good School V ⇡x+ u(1� ⇡)(1� y)
Bad School V ⇡(1� x) + v(1� ⇡)y
High Quality x+ w(1� x)
Low Quality (1� y) + wy

Table 2.3: Static Equilibrium Expected Payo↵s

and the allocation of the student given the quality-signal triple (✓, ✓̂g, ✓̂b)

Hhh Hhl Hlh Hll Lhh Lhl Llh Lll
g g b b g g b b

Table 2.4: Ex-Post Static Outcome

From the table we can see the ex-post static outcome is not assortative which

is expected under information asymmetry. And it happens with probability

⇡x+ (1� ⇡)y which increases as information accuracy improves.8

2.3.2 The Dynamic Equilibrium

Now we start to analyse perfect Bayesian equilibria of the game with two pe-

riods. Henceforth we use equilibrium and perfect Bayesian equilibrium inter-

changeably. To begin, we define the strategy spaces and beliefs for the schools

and for the student.

For the schools, as defined above we have ac(✓̂c) 2 {E,L,N} where c 2 {g, b}

and ✓̂c 2 {h, l}. That is, based on the signal, the school choose to send the o↵er

8Here we use the word “assortative” loosely referring to the assignment in which a high
quality student goes to the good school and a low quality student to the bad school. If we
assume that u+ 1  v + w then the assortative outcome is also e�cient.
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early (i.e. at the first period), late (i.e. at the second period), or never. Should

a school choose to postpone their o↵er, the choice between {L,N} has to be

optimal given belief �c(✓̂c) 2 [0, 1] which denotes the Bayesian posterior of a

student who remains in the market to the second period being a high quality.9

For the student, we go backwards. The student’s strategy at period two is

straightforward: The student regardless of quality accepts the best o↵er avail-

able if any. For simplicity of exposition, we do not model that choice explicitly.

Instead we denote s✓(c) 2 {A,R} as the action of the student with quality ✓

whose best o↵er at the first period comes from school c 2 {g, b}.10 Since both

types prefer the good school to the bad school, we have s✓(g) = A for ✓ 2 {H,L}

in any equilibrium. However how the student responds to the bad school’s o↵er

is more convoluted because there is a trade-o↵ between waiting with the risk of

being unmatched and immediately accepting the o↵er from the less preferred

school. We define ↵(✓) 2 [0, 1] as the belief, from the student with quality

✓, of receiving an o↵er from the good school at period two conditional on not

receiving one at the first period.

To provide a full characterization of all pure strategy equilibria, we must

investigate di↵erent cases of s✓(b) which denotes the ✓-quality student’s response

to the bad school’s o↵er at the first period should he not receive an o↵er from

the good school at the same period. Straightforwardly, the student rejects the

o↵er to wait if the expected payo↵ of waiting is higher than the certain payo↵ of

w.11 We will invoke an assumption on o↵-path beliefs called isolated deviation.

Simply put, the assumption dictates that it is common knowledge that any

deviation from the equilibrium play is not expected to trigger more deviation

9Strictly speaking the action space of the schools should be defined respectively for period
1 and period 2 such as a1c(✓̂c) 2 {E, {L,N}} and a2c(✓̂c,�c(✓̂c)) 2 {L,N}. However we omit
the time index and the condition of a remaining student for the simplicity of exposition.

10Should the student received no o↵er at the first period then his turn of action is skipped.
11For simplicity of exposition, we assume the student is risk neutral. Introducing standard

risk preference that is type independent does not change our analysis qualitatively.
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by the same or other players. With this assumption, we can limit our attention

to only monotone strategies from the student: By MLRP we have ↵H � ↵L,

thus sL(b) = R ) sH(b) = R. That is, if a low quality student waits for the

good school then must a high quality student.12

Below we discuss three di↵erent cases of (sH(b), sL(b)). In the two more

extreme cases, we have both types taking the same action, i.e. sH(b) = sL(b).

With type-independent actions, there is no real dynamics because no informa-

tion is revealed between periods. In the most interesting case where sH(b) = R

and sL(b) = A, a low quality student might be filtered out after the first period.

To utilize this filtering e↵ect, the good school might benefit from waiting which

results in a dynamic equilibrium that we show below.

Accepting the Best Early O↵er

In this subsection, we discuss the case where the student regardless of type

would accept the best available o↵er, i.e. sH(b) = sL(b) = A. For it to be

optimal against belief (↵(H),↵(L)), it has to be the case that ↵(H)  w and

↵(L)  w.

For the good school, it is never optimal to send an early o↵er to a low

signal given the prior. Thus the good school has two choices - to defer the o↵er

regardless of the signal or to send an early o↵er to a high signal.

First we consider the case in which the good school sends no early o↵er

regardless of signal. Straightforwardly ag(h) = ag(l) = L cannot be sustained

as part of an equilibrium as it would imply ↵H = ↵L = 1 contradicting the case

premise. Hence we are left with (ag(h), ag(l)) = (L,N) to consider. The best

12Without the assumption, one can show that under some parameter range there exist
equilibria in which ↵H < ↵L and sL(b) = R, sH(b) = A. For example, if the bad school
only sends a late o↵er regardless of signal and the good school sends a late o↵er to a high
signal only. ↵H and ↵L are o↵-path thus free to play around. One can show that in this case
sL(b) = R, sH(b) = A can be sustained as part of an equilibrium under some parameter range.
We consider this kind of equilibria highly unintuitive thus adopt a widely-used assumption
from repeated games to rule it out.
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response of the bad school would naturally be sending an early o↵er regardless

of signal to admit the student with probability 1. However this would in turn

mean that it is optimal for the good school to deviate to sending an early o↵er

to a high signal as a positive payo↵ is better than a payo↵ of 0. As a result,

there exists no equilibrium in which the good school sends no early o↵er.

Now consider the case where the good school send an early o↵er to a high sig-

nal and a late o↵er to a low signal, i.e. (ag(h), ag(l)) = (E,L). Straightforwardly

this cannot be sustained as an equilibrium because this implies ↵(H) = ↵(L) =

1 > w. Second, consider the case where the good school sends an early o↵er

to a high signal but never an o↵er to a low signal, i.e. (ag(h), ag(l)) = (E,N).

This would imply that ↵(H) = ↵(L) = 0 < w which is consistent with the

case premise. For the bad school, its timing would be outcome-irrelevant as

(ab(h), ab(l)) 2 {(E,E), (E,L), (L,E), (L,L)} would all give an expected payo↵

of V ⇡(1�x)+v(1�⇡)y which is identical to its static game equilibrium payo↵.

In turn (ag(h), ag(l)) = (E,N) is a best response to any of the bad school’s

strategy. Now let us construct beliefs �c(✓̂c) for the potential equilibria:

• (ag(h), ag(l), ab(h), ab(l)) = (E,N,E,E): In this case, �g(l) is o↵ path

hence not restricted by the Bayes’ rule. However we need to make sure

that for the good school (E,N) is better than (E,L) which requires that

�g(l)  ⇡(1�x)
⇡(1�x)+(1�⇡)y .

• (ag(h), ag(l), ab(h), ab(l)) = (E,N,E, L): In this case, we just apply the

Bayes’ rule for �g(l) and �b(l):

�g(l) = �b(l) = Pr(✓ = H|✓̂g = ✓̂b = l) =
⇡(1� x)2

⇡(1� x)2 + (1� ⇡)y2

Both schools act upon their private information hence their posteriors

would converge. We can readily check that �g(l)  ⇡(1�x)
⇡(1�x)+(1�⇡)y as
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1� x  1
2  y.

• (ag(h), ag(l), ab(h), ab(l)) = (E,N,L,E): Again in this case we can just

apply Bayes’ rule for �g(l) and �b(h):

�g(l) = �b(h) = Pr(✓ = H|✓̂g = l, ✓̂b = h) =
⇡x(1� x)

⇡x(1� x) + (1� ⇡)y(1� y)

Similarly schools’ posterior coincident as their private information is ag-

gregated. However we can readily check that �g(l) � ⇡(1�x)
⇡(1�x)+(1�⇡)y thus

it is not straightforward to see if (E,N) is better than (E,L) for the good

school. For this to be the case the following condition has to be satisfied

V Pr(✓ = H|✓̂g = l, ✓̂b = h) + uPr(✓ = L|✓̂g = l, ✓̂b = h)  0

V ⇡x(1� x) + u(1� ⇡)y(1� y)  0

V

�u

⇡

1� ⇡
 1� y

1� x

y

x

(2.2)

• (ag(h), ag(l), ab(h), ab(l)) = (E,N,L, L): In this case there is not update

for �g(l) as there is no information revealed from the bad school. For the

bad school, Bayes’ rule dictates that

�b(h) = Pr(✓ = H|✓̂g = l, ✓̂b = h) =
⇡x(1� x)

⇡x(1� x) + (1� ⇡)y(1� y)

and

�b(l) = Pr(✓ = H|✓̂g = l, ✓̂b = l) =
⇡(1� x)2

⇡(1� x)2 + (1� ⇡)y2

To summarize for the case where the student always accepts the best avail-

able early o↵er, we have found the following equilibria, all of which are outcome

equivalent to the static game equilibrium
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• (ag(h), ag(l),�g(l), ab(h), ab(l), sH(g), sH(b),↵H , sL(g), sL(b),↵L)

=

✓
E,N,


0,

⇡(1� x)

⇡(1� x) + (1� ⇡)y

�
, E,E,A,A, 0, A,A, 0

◆

• (ag(h), ag(l),�g(l), ab(h), ab(l),�b(l), sH(g), sH(b),↵H , sL(g), sL(b),↵L)

=

✓
E,N,

⇡(1� x)2

⇡(1� x)2 + (1� ⇡)y2
, E, L,

⇡(1� x)2

⇡(1� x)2 + (1� ⇡)y2
, A,A, 0, A,A, 0

◆

• (ag(h), ag(l),�g(l), ab(h), ab(l),�b(h), sH(g), sH(b),↵H , sL(g), sL(b),↵L)

=

✓
E,N,

⇡x(1� x)

⇡x(1� x) + (1� ⇡)y(1� y)
, L,E,

⇡x(1� x)

⇡x(1� x) + (1� ⇡)y(1� y)
, A,A, 0, A,A, 0

◆

under the condition V

�u

⇡

1�⇡
 1�y

1�x

y

x

• (ag(h), ag(l),�g(l), ab(h), ab(l),�b(h),�b(l), sH(g), sH(b),↵H , sL(g), sL(b),↵L)

= (E,N,�b(h), L, L,�b(h),�b(l), A,A, 0, A,A, 0)

where

�b(h) =
⇡(1� x)

⇡(1� x) + (1� ⇡)y

and

�b(h) =
⇡x(1� x)

⇡x(1� x) + (1� ⇡)y(1� y)

�b(l) =
⇡(1� x)2

⇡(1� x)2 + (1� ⇡)y2

While some equilibria demonstrate some dynamics in the sense that there are

o↵ers sent in both periods, they are all payo↵ equivalent to the static game equi-

librium. Intuitively, this is because the student’s action is not type-dependent

rendering the filtering e↵ect inactive.
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Always Waiting for the Best O↵er

In this subsection, we consider the case in which the student regardless of type

always wait for the good school’s o↵er, i.e sH(b) = sL(b) = R. For it to be

optimal for beliefs (↵H ,↵L), it has to be the case that ↵H ,↵L � w.

Straightforwardly it would be optimal for the bad school to defer its o↵er to

the second period because by doing so, the bad school would have a non-zero

chance of getting some student which is strictly better than a zero chance. In

turn, this means that the good school would be indi↵erent between sending an

o↵er to a high signal now or later and would not send an o↵er to a low signal

with no information update. Suppose (ag(h), ag(l)) = (E,N). The bad school’s

best response is to only send o↵ers later, i.e. (ab(h), ab(l)) = (L,L) which gives

a positive expected payo↵. This is because given the student’s strategy, it is

clear that any o↵er sent in period one from the bad school would be rejected

thus yielding a payo↵ of 0. The table below gives the bad school’s expected

payo↵s from di↵erent strategies.

h l

(L,L) V ⇡x(1�x)+v(1�⇡)y(1�y)
⇡x+(1�⇡)(1�y)

V ⇡(1�x)2+v(1�⇡)y2

⇡(1�x)+(1�⇡)y

(E,L) 0 V ⇡(1�x)2+v(1�⇡)y2

⇡(1�x)+(1�⇡)y

(L,E) V ⇡x(1�x)+v(1�⇡)y(1�y)
⇡x+(1�⇡)(1�y) 0

(E,E) 0 0

Table 2.5: Expected Payo↵s of Bad School Conditional on Signal Received

As for the student’s strategy to reject bad school’s o↵er at period one, it is

o↵ the equilibrium path but sustainable as part of the equilibrium strategy with

↵H ,↵L � w. Therefore, we can conclude that the following profile consists of
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an equilibrium

(ag(h), ag(l),�g(l), ab(h), ab(l),�b(h),�b(l), sH(g), sH(b),↵H , sL(g), sL(b),↵L)

= (E,N,�b(h), L, L,�b(h),�b(l), A,R, [w, 1], A,R, [w, 1])

where

�b(h) =
⇡(1� x)

⇡(1� x) + (1� ⇡)y

and

�b(h) =
⇡x(1� x)

⇡x(1� x) + (1� ⇡)y(1� y)

�b(l) =
⇡(1� x)2

⇡(1� x)2 + (1� ⇡)y2

all pinned down by the Bayes’ rule. With a similar argument, we can also show

that the following profile consists of another equilibrium

(ag(h), ag(l),�g(h),�g(l), ab(h), ab(l),�b(h),�b(l), sH(g), sH(b),↵H , sL(g), sL(b),↵L)

= (L,N,�g(h),�b(h), L, L,�b(h),�b(l), A,R, [w, 1], A,R, [w, 1])

where all posteriors of the schools pinned by the Bayes’ rule are identical to

their priors. In this case, no early o↵er is sent from either school and naturally

it is outcome equivalent to the static game equilibrium.

While the first equilibrium found in this subsection has some dynamics in

the sense that there are o↵ers sent in both periods, it is outcome equivalent to

the static equilibrium. As a result we do not consider the dynamic “necessary”

as it does not give rise to a di↵erent outcome. The second equilibrium of this

case is static in action and in outcome.
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Type-Dependent Responses

Now we discuss the case where the student’s action is type-dependent. By

MLRP and the isolated deviation assumption we can limit our attention to

the case in which only the low quality student would accept the bad school’s

o↵er at first period whereas the high quality student would reject and wait, i.e.

sH(b) = R, sL(b) = A with ↵L  w  ↵H .

Given the strategy of the student, waiting is to the best interest of the good

school. The reason is twofold. For one, a high quality student, the only type

acceptable to the good school, would for sure stay to the second period. For

another, there is a non-negative chance that a low quality student would leave

the market early reducing the probability of the good school getting a negative

payo↵. Therefore, we must have ag(h) = L. To further pinpoint ag(l) 2 {L,N},

consider a case where ag(l) = L. This would mean that the good school would

send an o↵er to whomever remains to the second period which creates extra

incentives to reject the bad school’s early o↵er. In fact, given this strategy of

the good school, the student, regardless of type, would get an o↵er from the

good school by rejecting the bad school’s o↵er. Anticipating that the student

regardless of type would reject the bad school’s early o↵er. This contradicts

the premise that only a high quality student rejects the bad school’s early o↵er

hence cannot be part of the equilibrium. As a result, only ag(l) = N can be

sustained as part of the equilibrium. This would impose a new condition on

the parameters which we will come back to after discussing the bad school’s

strategy.

For the bad school, it is never optimal to not send an o↵er, i.e. ab(✓̂b) = N

regardless of the signal received as both types yield positive payo↵s for the bad

school. Therefore, there are four strategies that the bad school might take as

considered below.
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Hhh Hhl Hlh Hll Lhh Lhl Llh Lll
(E,E) 0 0 0 0 1 1 1 1
(E,L) 0 0 0 1 1 0 1 1
(L,E) 0 0 1 0 0 1 1 1
(L,L) 0 0 1 1 0 0 1 1

Table 2.6: Student Admitted by Bad School in Case III

ab(h) = ab(l) = E: Firstly consider the strategy in which the bad school sends

an early o↵er regardless of the signal received. This cannot be sustained as an

equilibrium because if the bad school filters both types and given the strategy

of the student (that only the high-quality student would reject the early bad

o↵er), the good school would have incentives to deviate to sending a late o↵er

to whomever remains for the second period. By the argument above, this would

break our premise that only a high quality student rejects the bad school’s early

o↵er.

ab(h) = E, ab(l) = L: Secondly, suppose that the bad school sends an early

o↵er if the signal received is high and a late o↵er otherwise. We need to check

whether there are incentives for the bad school to deviate. Under the prescribed

strategy, the bad school would get (✓✓̂g ✓̂b) = (Hll), (Lhh), (Llh), (Lll), which

is strictly dominated by sending an early o↵er to a low signal and a late o↵er to

a high signal. To see that, suppose the bad school switch strategy to ab(h) = L

and ab(l) = E. From the table above we can see that it would get (Hlh), (Lhl),

(Llh), (Lll) that is strict improvement for the bad school as (Hlh) has a bigger

measure than (Hll) and (Lhl) than (Lhh). Hence this strategy can not be part

of an equilibrium.

ab(h) = L, ab(l) = E: Thirdly, assume that the bad school sends an early o↵er

to a low signal and a late o↵er to a high signal. Now, we check if the bad school

has incentives to deviate from the current strategy, which yields the following
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expected payo↵

⇡V x(1� x) + 2(1� ⇡)vy(1� y) + (1� ⇡)vy2 (2.3)

Before we already checked that this strategy strictly dominates (ab(h), ab(l)) =

(E,L) so we are left with two other strategies. Sending an early o↵er regardless

of the signal gives

(1� ⇡)v(1� y)2 + 2(1� ⇡)vy(1� y) + (1� ⇡)vy2 (2.4)

and sending a late o↵er regardless of the signal gives

⇡V x(1� x) + ⇡V (1� x)2 + (1� ⇡)vy(1� y) + (1� ⇡)vy2 (2.5)

To ensure that the bad school has no incentives to deviate, the following condi-

tions have to hold

⇡V x(1� x)� (1� ⇡)v(1� y)2 � 0

⇡V

(1� ⇡)v
� (1� y)2

x(1� x)

(2.6)

and

(1� ⇡)vy(1� y)� ⇡V (1� x)2 � 0

⇡V

(1� ⇡)v
 y(1� y)

(1� x)2

(2.7)

Together we have

1� y

x

1� y

1� x
 ⇡V

(1� ⇡)v
 y

1� x

1� y

1� x
(2.8)

As shown in the figure below, it is clear that the range of parameters under
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which (ab(h), ab(l)) = (L,E) is optimal is not empty. Moreover, we can see that

as information accuracy, summarized in (x, y), increases, the feasible parameter

range widens. This is intuitive as a more accurate signal is more valuable thus

making a good use of the information becomes more important.

x = y

⇡V

(1�⇡)v

11
2

1

Now we need to check if the prescribed strategies of the student and of the

good school would be consistent. For the student, it is straightforward that the

following condition has to hold for the low quality

w � ↵L = 1� y (2.9)

and for the high quality

w  ↵H = x (2.10)

where the left-hand side is the certain payo↵ of accepting the bad school’s early

o↵er and the right-hand side is the expected payo↵ of rejecting.

As for the good school, it can be readily checked that a late o↵er strictly

dominates an early o↵er regardless of the signal as we discussed at the beginning

of this subsection. Now we can derive the condition under which the good school
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would never send an o↵er to the low signal, i.e. ag(l) = N :

⇡V x(1� x) + ⇡V (1� x)2 + (1� ⇡)uy(1� y)  0

, ⇡V (1� x) + (1� ⇡)uy(1� y)  0

, ⇡V

�(1� ⇡)u
 y(1� y)

1� x

(2.11)

To summarize, the profile consists of a dynamic equilibrium

(ag(h), ag(l),�g(h),�g(l), ab(h), ab(l),�b(h), sH(g), sH(b),↵H , sL(g), sL(b),↵H)

= (L,N,�g(h),�g(l), L,E,�g(h),�g(l), A,R, x,A,A, 1� y)

where

�g(h) =
⇡x

⇡x+ (1� ⇡)y2

�g(l) =
⇡(1� x)

⇡(1� x) + (1� ⇡)y(1� y)

and �b(h) identical to the prior, if the following conditions are satisfied

1� y  w  x

⇡V

�(1� ⇡)u
 y(1� y)

1� x

1� y

1� x

1� y

x
 ⇡V

(1� ⇡)v
 1� y

1� x

y

1� x

(2.12)

and in this dynamic equilibrium the good school only sends an o↵er to a high

signal at the second period and the bad school sends an o↵er to a low signal at

the first period and to a high signal at the second period. At the first period,

a high quality student would reject the bad school’s o↵er whereas a low quality

student would accept.
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ab(h) = ab(l) = L: Lastly consider the strategy in which the bad school sends

a late o↵er regardless of the signal received. This is optimal for the bad school

under the following conditions:

⇡V (1� x)� (1� ⇡)v(1� y) � 0

⇡V

(1� ⇡)v
� 1� y

1� x

(2.13)

when ab(h) = ab(l) = L generates weakly higher payo↵ than ab(h) = ab(l) = E

and

⇡V (1� x)2 � (1� ⇡)vy(1� y) � 0

⇡V

(1� ⇡)v
� 1� y

1� x

y

1� x

(2.14)

when ab(h) = ab(l) = L generates weakly higher payo↵ than (ab(h), ab(l)) =

(L,E).13 Clearly we can see that ⇡V

(1�⇡)v � 1�y

1�x

y

1�x
� 1�y

1�x
since y � 1

2 � 1� x.

With the bad school filtering neither type thus providing no information

update for the good school, the good school would be indi↵erent in sending an

early o↵er to a high signal or a late o↵er. With no additional condition needed,

we can assert that the good school would never send an o↵er to a low signal i.e.

ag(l) = L. Given the strategies of the schools, ↵H and ↵L are o↵ path. However

the isolated deviation assumption dictates that when (ag(h), ag(l)) = (E,N),

↵H = ↵L = 0 and when (ag(h), ag(l)) = (L,N), ↵H � ↵L. To be consistent

with the case premise that sH(b) = R and sL(b) = A, we construct o↵-path

beliefs such that ↵H � w � ↵L.

As a result, when V

v

⇡

1�⇡
� 1�y

1�x

y

1�x
is satisfied, the following profile consists

13Remember that (ab(h), ab(l)) = (L,E) strictly dominates (ab(h), ab(l)) = (E,L). Thus
generating higher payo↵ than (ab(h), ab(l)) = (L,E) implies generating higher payo↵ than
(ab(h), ab(l)) = (E,L).
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of an equilibrium

(ag(h), ag(l),�g(h),�g(l), ab(h), ab(l),�b(h),�b(l), sH(g), sH(b),↵H , sL(g), sL(b),↵L)

= (L,N,�g(h),�g(l), L, L,�b(h),�b(l), A,R, [w, 1], A,A, [0, w])

where �c(✓̂c) for c 2 {g, b} and ✓̂c) 2 {h, l} are identical the priors. Again this

equilibrium is payo↵ equivalent to that of a static game.

To conclude our characterization of equilibria for the two-period game, there

are multiple profiles that could be sustained as an equilibrium. However, most

of them give rise to an outcome that is equivalent to that of the static game. In

the unique dynamic equilibrium, we have both schools endogenously choose to

send out o↵ers at di↵erent periods: the bad school sends an early o↵er to a low

signal and a late o↵er to a high signal while the good school only sends a late

o↵er to a high signal. A low quality student accepts the best o↵er available and

leaves the market immediately whereas a high quality student waits.

Proposition 6. There exists a dynamic equilibrium under the following condi-

tions:

1� y  w  x

⇡V

�(1� ⇡)u
 y(1� y)

1� x

1� y

1� x

1� y

x
 ⇡V

(1� ⇡)v
 1� y

1� x

y

1� x

(2.15)

In this equilibrium, the bad school sends an early to a low signal and a late o↵er

to a high signal while the good school only sends a late o↵er to a high signal.

A low quality student would accept the best o↵er available at the first period

whereas a high quality student would wait for an o↵er from the good school.
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2.3.3 Welfare

In this section, we investigate the two possible outcomes from the two-period

game. We refer the outcome equivalent to that of the static game as the static

outcome and the other dynamic outcome.

Under complete information, the market would achieve assortative outcome

in which a high quality student goes to the good school and a low quality student

to the bad school. However the assortative outcome cannot be achieved with

information asymmetry in our model as summarized in the table below.

Hhh Hhl Hlh Hll Lhh Lhl Llh Lll
Assortative g g g g b b b b
Dynamic g g b ; g b b b
Static g g b b g g b b

Table 2.7: Allocations of the Dynamic and the Static Equilibria

Now let us investigate whether the dynamic game helps or hurts the schools

and the student. For the good school, the expected payo↵ in the dynamic

equilibrium is given by

⇡V x+ (1� ⇡)u(1� y)2 (2.16)

which is higher than the expected payo↵ from the static outcome

⇡V x+ (1� ⇡)u(1� y) (2.17)

. For the bad school, the expected payo↵ from the dynamic outcome is

⇡V x(1� x) + (1� ⇡)v(1� y)(1 + y) (2.18)
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as opposed to the expected payo↵ from the static outcome

⇡V (1� x) + (1� ⇡)v(1� y) (2.19)

. The bad school is better o↵ in the dynamic equilibrium when

⇡V

(1� ⇡)v
 1� y

1� x

y

1� x
(2.20)

. Note that this is one of the necessary conditions for the existence of the

dynamic equilibrium. In other words, whenever the dynamic equilibrium is

possible, the bad school is better o↵ in the dynamic equilibrium. Intuitively,

if either school is made worse o↵ with a dynamic strategy profile, then they

could unilaterally deviate to achieve the static outcome. Therefore, the dynamic

equilibrium can only be sustained when both schools are weakly better o↵.

As for the student, the expected payo↵ for a high quality student in the

static outcome is x+w(1� x) and for a low quality student 1� y +wy. In the

dynamic outcome, the expected payo↵ for a high quality student is x+wx(1�x)

which is lower since there is a positive probability that a high quality student

would end up unmatched with signal combination (✓̂g, ✓̂b) = (h, l). Furthermore,

there is no signal combination that improves a high quality student’s payo↵ in

the dynamic outcome. For a low quality student, the expected payo↵ from the

dynamic outcome is (1� y)[(1� y) +wy] +wy which is also lower than that in

the static outcome. This is due to the filtering e↵ect that allows the good school

to decrease the chance of admitting a low quality student in turn reducing the

expected payo↵ of such a student. A low quality student with signal combination

(✓̂g, ✓̂b) = (h, l) could get into the good school in static equilibria but not so in

the dynamic equilibrium.

To summarize, both schools benefit from the dynamic outcome while both
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types of student su↵er.

Theorem 1. In expectation, both schools are made better o↵ in the dynamic

equilibrium whereas the student is made worse o↵.

2.4 Discussion and Conclusion

2.4.1 Observability

Throughout the paper, we have assumed that the schools cannot observe each

other’s action between periods. In addition, they cannot observe if a student

rejects an o↵er from the other school. Between periods, the schools can only

observe a rejection of their own o↵er or a student withdrawing (by leaving the

market). Admittedly, this is very restricted observability especially compared

to previous models. As discussed earlier, there are two variations of endogenous

timing games pioneered by Hamilton and Slutsky (1990), observable delay and

action commitment. While our model is closely related to the action commit-

ment framework, the degree of observability di↵ers in our model (among other

things). In Hamilton and Slutsky (1990), a late mover can observe the action

from an early mover. This assumption is justifiable in the context of oligopoly

where first mover firms, by releasing products into the market, reveal their ac-

tions. In addition, there are interests in understanding the role of leadership in

industrial organization hence this assumption is natural. Nonetheless, we have

argued that in the context of school admission which is what we focus in this

paper, the assumption is less intuitive as schools rarely directly communicate

with one another about their admission decisions let along making public an-

nouncements. While it is not unusual for interviewers to ask interviewees about

their received o↵ers, this information is almost not verifiable and hardly verified.

A complete relaxation of the observability assumption would upset the dy-
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namic equilibrium we discussed. To see why, suppose the schools can observe

actions taken in the first period before deciding what to do at the second period.

In the dynamic equilibrium, only a high quality student would reject the bad

school’s early o↵er. Therefore, the good school would always wait and send an

o↵er to the student who rejects the bad school’s early o↵er. However this in turn

gives a low quality student strong incentives to mimic a high quality student

which would guarantee the student a late o↵er from the good school. In other

words, a low quality student could imitate the high-quality student at no cost,

rendering the filter ine↵ective. That said, some level of observability can be

incorporated without changing our results qualitatively. For instance, consider

an environment where the schools could observe a rejection with probability

p 2 (0, 1) and with probability 1 � p nothing. As long as the p is su�ciently

small such that a high quality student is strictly more likely to reject the bad

school’s early o↵er, our analysis still go through with mixed strategies.

2.4.2 Less Informed Student

Another assumption that we have kept throughout the paper is that the student

knows the quality perfectly. This assumption can be relaxed with our results

unchanged qualitatively. For example, consider the following environment in

which the student receives a conditionally independent noisy signal over quality

z 2 {h, l}. As long as the information does not violate the monotone likelihood

ratio property such that the student uses a monotone strategy in the sense that

the student with a better signal is more like to wait for the best o↵er, our results

would still hold.
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2.4.3 Conclusion

To conclude, in this paper we investigate how incomplete information a↵ects

the timing of admission o↵ers with a game theoretic model. In a two-period

game, we show that under a non-empty set of parameters, there exists a dy-

namic equilibrium in which the less competitive school sends an early o↵er to a

low signal student whereas the more competitive school sends a late o↵er to a

high signal student. Only a high quality student would rather reject the early

o↵er from the less competitive school and wait for a better o↵er whereas a low

quality student would accept the best available early o↵er and exit the market.

In this equilibrium, the more competitive school utilizes the filtering e↵ect to

increase its probability of admitting a high quality student later. Our result is

consistent with the observation that di↵erent schools send out o↵ers at di↵erent

periods during the admission window and the widely use of exploding o↵ers.

We also provide a novel framework to examine the choice of o↵er timing as an

endogenous variable - as far as we know this is the first paper that introduces

the endogenous timing game to the school admission environment. Lastly we

compare the dynamic equilibrium to the benchmark static equilibrium. For

payo↵s, neither equilibrium Pareto-dominates the other and both are worse o↵

than an assortative equilibrium with compete information. We show that for

the schools, the dynamic equilibrium is superior as the more competitive school

decreases the probability of admitting a low quality student and the less com-

petitive increases its chance of admission. However, this is not without a cost.

For the student, the dynamic equilibrium makes him worse o↵ in expectation.

This is because he has a lower chance of being admitted to the more competitive

school. As a result, our model does not make a clear suggestion for policymakers

about the employment of exploding o↵ers in the school admission context.
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2.4.4 Future Avenues

While our model is relatively straightforward with two schools and two types,

we believe it is a solid first step towards understanding school admission with

endogenous timing and exploding o↵ers. For the same reason, there are various

interesting directions for future research. For example, instead of binary type

one can consider continuous type or non-binary discrete type. However this is

rather challenging technically because it might not be optimal for the schools

to use a threshold strategy without additional assumptions on the information

structure.
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Appendix A

Appendix to Chapter 1

A.1 Existence and Uniqueness

In this Appendix, we prove Proposition 1. We show that the constructed equilib-

rium exists and is unique under D1 a la Cho and Sobel (1990). First we show that

in any D1 equilibrium, payo↵s of both types have to be ū
⇤(b). Then we prove

that with the constructed strategies, no deviations, to on- or o↵-equilibrium

decisions, are profitable. The uniqueness comes for free since the principal only

employs pure strategies and the solution to RP is unique (Mailath (1987)).

For preliminaries, we need the following claims.

Claim 1 (Monotonicity). For any a, a
0 2 D such that a < a

0
, if

�(a0 � ✓)2 +�V
0
2 (µ(a

0), µ(a)) � �(a� ✓)2

then

�(a0 � ✓ �B)2 +�V
B

2 (µ(a0), µ(a)) > �(a� ✓ �B)2

i



Proof. The proof is by contradiction. Suppose

�(a0 � ✓ �B)2 +�V
B

2 (µ(a0), µ(a))  �(a� ✓ �B)2

Rearrange the two inequalities

�V
B

2 (µ(a0), µ(a))  (a0 � ✓ �B)2 � (a� ✓ �B)2

�V
0
2 (µ(a

0), µ(a)) � (a0 � ✓)2 � (a� ✓)2

and use Lemma 3, we have

(a0 � ✓)2 � (a� ✓)2  (a0 � ✓ �B)2 � (a� ✓ �B)2 ,

(a0 � ✓)2 � (a0 � ✓ �B)2  (a� ✓)2 � (a� ✓ �B)2 ,

�B
2 + 2B(a0 � ✓)  �B

2 + 2B(a� ✓) ,

a
0  a

a contradiction.

Claim 2. Fix an equilibrium in which the unbiased type takes a with positive

probability and receives equilibrium payo↵ u
⇤(0) = u(0, a, µ). If a

0
< a, then

(a) B takes decision a
0
with probability 0 in equilibrium;

(b) Any D1 equilibrium can be supported by beliefs such that µ(a0) = 0 for all

a
0
< a.

Proof.

(a) Using sequential rationality again, we have u⇤(0) = u(0, a, µ) � u(0, a0, µ0).

Lemma 1 implies that u(B, a, µ) > u(B, a
0
, µ

0) and sequential rationality

requires that a taken by B with probability 0.
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(b) If u
⇤(0) � u(0, a0, µ0) for any µ

0 2 [0, 1], we need to show u
⇤(B) �

u(B, a
0
, µ

0). Since u
⇤(0) = u(0, a, µ) and u

⇤(B) � u(B, a, µ) by sequential

rationality, Claim 1 indicates that

u
⇤(0) = u(0, a, µ) � u(0, a0, µ0) ) u

⇤(B) � u(B, a, µ) > u(B, a
0
, µ

0)

for any µ
0 2 [0, 1]. In this case, D1 puts no restriction on µ(a0). Consider

any D1 equilibria and change µ(a0) to 0; the equilibria will not be upset

as u⇤(0) � u(0, a0, 0) and u
⇤(B) � u(B, a

0
, 0).

Similarly we can show that if u⇤(B)  u(B, a
0
, µ

0) for some µ0 2 [0, 1] then

u
⇤(0) < u(0, a0, µ0). In this case, D1 dictates that µ(a0) = 0.

The last important piece we need before construction is that only pooling

over d survives D1.

Claim 3 (Pooling at Bottom). In any D1 equilibrium, the lowest delegated deci-

sion d is the only possible decision taken by both types with positive probabilities.

Proof. Fix any D1 equilibrium and denote the equilibrium payo↵ for type b

as u
⇤(b). Assume that there exists d < a 2 D over which the two types pool

with positive probability. Then u
⇤(0) < u(0, a, 0). Claim 2(b) suggests that

the equilibrium can be supported by µ(a0) = 0 for all a0 < a. By sequential

rationality, it must be u
⇤(0) � u(0, a0, 0) for any a

0
< a. Together we have for

any a
0
< a

u(0, a, 0) > u
⇤(0) � u(0, a0, 0)

contradicting that u is continuous in the second argument.
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To achieve the first step, fix any D1 equilibrium with equilibrium payo↵ to

type b denoted by u
⇤(b).

Claim 4.

(a) If the biased type pools at d with positive probability, then the unbiased

type takes d with probability 1.

(b) The biased type separates with probability 1 if and only if u
⇤(B) � u(B, d, 0).

(c) If there is no pooling then

u
⇤(0) = ũ(0) ⌘ max

a2D

{u(0, a, 0) : u⇤(B) � u(B, a, 0)}

u
⇤(B) = ū(B)

If there is pooling with positive probability then u
⇤(B) � ū(B) and if there

is separation with positive probability then u
⇤(B) = ū(B).

Proof.

(a) Suppose not and the unbiased type takes a > d with positive probability.

According to Claim 2(a), the biased type takes d < a with probability 0,

a contradiction.

(b) If the biased type pools with positive probability, then from (a), the

unbiased type takes d with probability 1. This implies that u
⇤(B) =

u(B, d,�) < u(B, d, 0) where � 2 (0, p). As for the other direction, note

that sequential rationality requires that u
⇤(B) � u(B, d, µ(d)). Also,

Claim 2(a) implies that the biased type takes d with probability 0 if he

separates with probability 1. Therefore, µ(d) = 0 when the unbiased type

takes d with positive probability. Otherwise Claim 2(b) suggests that any

D1 can be supported with µ(d) = 0. Together, we have u⇤(B) � u(B, d, 0)

and u
⇤(0) = u(0, a, 0).
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(c) It types separate with probability 1, then 9a 6= a
0 2 D such that u⇤(0) =

u(0, a, 0) and u
⇤(B) = u(B, a

0
, 1) � u(B, a, 0). By definition, u⇤(B) 

ū(B) and u
⇤(0)  ũ(0). The other direction comes from sequential ratio-

nality.

If types pool with positive probability and the inequality does not hold,

i.e. u
⇤(B) < ū(B). Then there exists some d 2 D such that u(B, a, 1) >

u
⇤(B). Suppose the unbiased type takes a with probability � 2 [0, 1],

then equilibrium belief on a is weakly smaller than 1: u(B, a, µ(a)) �

u(B, a, 1) > u
⇤(B), violating sequential rationality. The last part follows

immediately as types play mixed strategies only when they are indi↵erent.

Lemma A1. All D1 equilibria are payo↵-equivalent for both types of agent. In

particular, the expected equilibrium payo↵ for b is ū
⇤(b).

Proof.

(i) If types separate with probability 1, by Claim 4(b), ū(B) = u
⇤(B) �

u(B, d, 0). By definition ū
⇤(B) = ū(B) = u

⇤(B).

For the unbiased type, u⇤(0) = ũ(0) = ū(0). The first equality again comes

from Claim 4(c) and the second from u
⇤(B) = ū

⇤(B). Since the biased

type takes d with probability 0, any D1 can be supported by µ(d) = 0:

u
⇤(B) = ū(B) � u(B, d, 0) which gives ū⇤(0) = ū(0) = u

⇤(0).

(ii) If the biased type pools with positive probability that is strictly smaller

than 1, then u
⇤(B) = ū(B) = u(B, d, µ(d)) = ū(B) = ū

⇤(B). The

first equality comes from Claim 4(c), the second from mixing only if

indi↵erent, and the last from the definition. As for the unbiased type,

v



u
⇤(0) = u(0, d, µ(d)) = ū

⇤(0) by Claim 4(a) and the definition as well as

u
⇤(B) = ū

⇤(B).

(iii) If the biased type pools with probability 1, then u
⇤(B) = u(B, d, p) � ū(B)

by Claim 4(c). By definition ū
⇤(B) = u(B, d, p) = u

⇤(B) and u
⇤(0) =

u(0, d, p) = ū
⇤(0).

Claim 5. Any D1 equilibria can be supported by µ(B|a) = 1 for all a > m
⇤(0).

Proof. First we show that 8a > m
⇤(0), if 9µ 2 [0, 1] such that ū⇤(0)  u(0, a, µ)

then ū
⇤(B) < u(B, a, µ). By contradiction, suppose 9a > m

⇤(0), µ 2 [0, 1] such

that ū
⇤(0)  u(0, a, µ) but ū

⇤(B) � u(B, a, µ). The contrapositive of Claim 1

suggests that ū⇤(0) > u(0, a, µ), contradicting the assumption.

Then D1 dictates µ(a) = 1 if there exists a > m
⇤(0) and µ 2 [0, 1] such that

ū
⇤(B) < u(B, a, µ). Otherwise, D1 puts no restriction on µ(a). Take any D1

equilibria and change µ(a) to 1. It is straightforward to see that the original

equilibrium will not be upset by such a change.

Lemma A2. Given any D ✓ R, there is a unique D1 equilibrium at each

✓ 2 [0, 1] in which agent of type b employs m̄
⇤(·|b) and receives equilibrium

payo↵ ū
⇤(b).

Proof. We are to show that both types respond optimally with m̄
⇤ given µ̄

⇤

where µ̄⇤ is specified by Bayes’ rule whenever possible. Otherwise µ̄⇤(a) = 0 for

all a < m
⇤(0) and µ̄

⇤(a) = 1 for all a > m
⇤(0). By Claims 2(b) and 5, µ̄⇤ passes

D1. To best response, the following incentive compatibility constraints have to
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hold

ū
⇤(B) � u(B, a, µ̄

⇤(d)) 8a 2 D (IC-B)

ū
⇤(0) � u(0, a, µ̄⇤(d)) 8a 2 D (IC-0)

(i) First we show that no on-path deviation generates strictly higher payo↵s

for either types. If ū⇤(B) = ū(B) (separation with probability 1), then by

construction ū
⇤(B) � u(B,m

⇤(0), 0) and IC-B holds. Otherwise ū
⇤(B) =

u(B, d, µ̄
⇤(d)) and the unbiased type takes d with probability 1. As a

result, there is no on-path deviation and both IC-B and IC-0 trivially

hold.

What is left to show is IC-0 under separation, i.e. ū⇤(0) = u(0,m⇤(0), 0) �

u(0,m⇤(B), 1) = u(0, yB
D
(✓), 1). By continuity, there exists � 2 (0, 1] such

that if a0 = �d + (1 � �)yB
D
(✓) then ū

⇤(B) = u(B, a
0
, 0). Moreover a

0 is

feasible for RP which implies ū
⇤(0) � u(0, a0, 0). Suppose IC-0 does not

hold and u(0, yB
D
(✓), 1) > ū

⇤(0) � u(0, a0, 0). Since y
B

D
(✓) > a

0, Claim 1

dictates that u(B, y
B

D
(✓), 1) > u(B, a

0
, 0) contradicting the premise.

(ii) To complete the proof, we show that no o↵-path deviation is profitable

either. If ū⇤(0) = u(B, d, µ
⇤(d)) then ū

⇤(B) > ū(B) � u(B, a, 1) 8a > d.

The first inequality follows from construction of ū
⇤(B) and the second

definition of ū(B). The contrapositive of Claim 1 implies that u(0, a, 1) <

u(0, d, µ̄⇤(d) = ū
⇤(0). IC-B and IC-0 are met in this case.

If m⇤(0) < m
⇤(B), RP suggests that u(B,m

⇤(B), 1) = u(B,m
⇤(0), 0) =

ū
⇤(B). Claim 1 suggests u(B, a, 0) < ū

⇤(B) for any a < m
⇤(0). Thus

IC-B holds for any a < m
⇤(0). For a > m

⇤(0), ū⇤(B) = ū(B) � u(B, a, 1)

which assures IC-B.

For the unbiased type, ū
⇤(0) = ū(0) � u(0, a, 0) for any a < m

⇤(0);

hence IC-0 is satisfied for a < m
⇤(0). For any a > m

⇤(0), we have ar-
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gued that u(B,m
⇤(0), 0) � u(B, a, 1). By the contrapositive of Claim 1,

u(0,m⇤(0), 0) > u(0, a, 1).

Last but not least, the uniqueness comes for free since the principal only

employs pure strategies and the solution to RP is unique (Mailath (1987)).

A.2 Other Omitted Proofs

Proof of Lemma 1

Proof. Firstly, it is clear that d̄⇤2 2 [0, 1]. To see why, consider any d̄2 < 0, then

both types would always choose d̄2 regardless of ✓2. In this case, the principal

is better o↵ by raising d̄2 to 0. As for d̄ > 1, it is dominated by setting it to 1.

Now look at the lower bound d2. Notice that d̄2 � d2 > B is never optimal.

Decreasing d2 till B induces both types to take lower actions at lower states

(✓  max{0, d2 � B} for biased type), which benefits the principal. Thus d⇤2 

B. Further lowering it would not induce any changes from the biased type.

Nevertheless it facilitates the unbiased type to take lower actions at lower states,

which again makes the principal better o↵. Reducing d
⇤
2 below 0 does not make

any di↵erence as in the last period, no actions lower than 0 will be implemented

by either type. Thus d⇤2 = 0.1

1Figure A.1 is plotted with d̄2 > B but the same argument applies if d̄2  B; in that case
the biased type will always implement d̄2 regardless of the realized state.
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(a) Lowering d2 to B

✓

a

Y0
A

B

YB
A

d̄2

d2

d̃2

(b) Lowering d2 to 0

Figure A.1: Lower bound for the last period

As a result of the previous arguments, the only choice variable left for the

principal’s last period maximization 1.3 is d̄2. Rewrite it with d2 = 0 and d̄2  1

max
d̄22[0,1]

�µ

"Z max{0,d̄2�B}

0
B

2 +

Z 1

max{0,d̄2�B}
(d̄2 � ✓2)

2

#
f(✓)d✓2 � (1� µ)

Z 1

d̄2

(d̄2 � ✓2)
2
f(✓)d✓2

To complete the proof, we are to show that the above function is submodular

in (d, µ) which then implies that d̄⇤2 is decreasing in µ. In other words, if we can

show that 8µ and d
0 � d, U(d0, µ) � U(d, µ) is decreasing µ, then the proof is

complete. To see that, we have

U(d0, µ)� U(d, µ) = constant in µ

+ µ

"
�
Z max{0,d0�B}

max{0,d�B}
B

2 �
Z 1

max{0,d0�B}
(d0 � ✓)2 +

Z 1

d0
(d0 � ✓)2 +

Z 1

max{0,d�B}
(d� ✓)2 �

Z 1

d

(d� ✓)2
#
f(✓)d✓
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Now we want to show that the coe�cient of µ is negative for any d
0 � d

"
�
Z max{0,d0�B}

max{0,d�B}
B

2 �
Z 1

max{0,d0�B}
(d0 � ✓)2 +

Z 1

d0
(d0 � ✓)2 +

Z 1

max{0,d�B}
(d� ✓)2 �

Z 1

d

(d� ✓)2
#
f(✓)d✓


"
�
Z 1

max{0,d0�B}
(d0 � ✓)2 +

Z 1

d0
(d0 � ✓)2 +

Z 1

max{0,d0�B}
(d� ✓)2 �

Z 1

d0
(d� ✓)2

#
f(✓)d✓

=

"Z 1

d0
(d0 � d)(d0 + d� 2✓) +

Z 1

max{0,d0�B}
(d� d

0)(d+ d
0 � 2✓)

#
f(✓)d✓

=

"Z 1

d0
(d0 � d)(d0 + d� 2✓) +

Z 1

d0
(d� d

0)(d+ d
0 � 2✓) +

Z
d
0

max{0,d0�B}
(d� d

0)(d+ d
0 � 2✓)

#
f(✓)d✓

=

"Z
d
0

max{0,d0�B}
(d� d

0)(d+ d
0 � 2✓)

#
f(✓)d✓  0

Apparently, the inequality is strict if d0 > d and the proof is complete.

Proof of Lemma 2

Proof. For expositional simplicity, define V
P

2 (µ) ⌘ maxd2D V
P

2 (µ, d) where d

here denotes the upper bound of the delegation set.

1. To show that the value function for principal is decreasing in µ, consider

µ
0
> µ. Straightforwardly, we have

V
P

2 (µ) ⌘ V
P

2 (µ, d⇤(µ)) � V
P

2 (µ, d⇤(µ0)) � V
P

2 (µ0
, d

⇤(µ0)) = V
P

2 (µ0)

which completes the proof for this part.

2. To show that the value function is convex, consider 8t 2 [0, 1] and p, q 2

x



[0, 1]. We have

V (tp+ (1� t)q) =[tp+ (1� t)q]V (1, d⇤(tp+ (1� t)q)) + [1� (tp+ (1� t)q)]V (0, d⇤(tp+ (1� t)q))

=t[pV (1, d⇤(tp+ (1� t)q)) + (1� p)V (0, d⇤(tp+ (1� t)q))]

+ (1� t)[qV (1, d⇤(tp+ (1� t)q)) + (1� q)V (0, d⇤(tp+ (1� t)q))]

=tV (p, d⇤(tp+ (1� t)q)) + (1� t)V (q, d⇤(tp+ (1� t)q))

tV (p) + (1� t)V (q)

Thus the proof is complete.

Proof of Lemma 3

Proof. From Lemma 1, we know that the upper bound is decreasing in posterior.

Hence under µ
0
< µ, d0 � d. If d0 = d, the statement is trivially true. Now

consider d0 > d. We are to show that at every state ✓ 2 [0, 1],

u(B, y
B

d0 , ✓)� u(B, y
B

d
, ✓) � u(0, y0

d0 , ✓)� u(0, y0
d
, ✓)

and the inequality is strict for ✓ such that u(0, y0
d0 , ✓) � u(0, y0

d
, ✓) > 0. Then

the monotonicity of integral will conclude the proof.

First consider the case u(0, y0
d0 , ✓) = u(0, y0

d
, ✓). Either d

0
> d � ✓ + B in

which case u(B, y
B

d0 , ✓) = u(B, y
B

d
, ✓) or at least one of the two bounds is smaller

than ✓ +B in which case u(B, y
B

d0 , ✓)� u(B, y
B

d
, ✓) > 0.

Now suppose u(0, y0
d0 , ✓) > u(0, y0

d
, ✓). This implies that d < ✓. Then y

0
d0 �

y
0
d
= min{✓, d0} � d. Similarly y

B

d0 � y
B

d
= min{✓ + B, d

0} � d. Hence we have

y
B

d0 � y
B

d
� y

0
d0 � y

0
d
with the same starting point (i.e. d). Since the payo↵
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function u is convex with u(B, ·, ✓) being right of u(0, ·, ✓), we have

u(B, y
B

d0 , ✓)� u(B, y
B

d
, ✓) � u(0, y0

d0 , ✓)� u(0, y0
d
, ✓)

Proof of Lemma 4

Proof. As a preliminary step, we show that

(d� ✓ �B)2 � (yB
D
(✓)� ✓ �B)2 (A.2)

increases in ✓. Take derivative at di↵erentiable points

@[(d� ✓ �B)2 � (yB
D
(✓)� ✓ �B)2]

@✓
= 2


y
B

D
(✓)� d� @y

B

D
(✓)

@✓

�
y
B

D
(✓)� ✓ �B

��

If yB
D
(✓) 2 {d, d̄}, then the expression becomes 2(yB

D
(✓) � d) � 0. If yB

D
(✓) =

✓ + B, then the expression is 2(✓ + B � d) � 0 as ✓ + B 2 D. Since y
B

D
(✓) is

continuous and almost-everywhere smooth, Equation A.2 is increasing in ✓.

(a) The equilibrium at ✓ is separating if and only if

ū(B) � u(B, d, 0) , (d� ✓ �B)2 � (yB
D
(✓)� ✓ �B)2 � �V

B

2 (0, 1)

If the inequality holds for ✓, then it must also hold for all ✓0 > ✓ as the

LHS is increasing in ✓.

(b) The equilibrium at ✓ is pooling if and only if

ū(B)  u(B, d, p) , (d� ✓ �B)2 � (yB
D
(✓)� ✓ �B)2  �V

B

2 (p, 1)
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We have already shown that the LHS is increasing in ✓. Hence if for some

✓ the inequality holds, it also holds for all ✓0 < ✓.

Proof of Proposition 2

Proof. For this proposition, we need two observations. First, it is straightfor-

ward to check that for any D and D
0 such that D ✓ D

0,

�(yb
D0 � ✓ � b)2 � �(yb

D
� ✓ � b)2 (A.3)

for any ✓ 2 ⇥ and b 2 {0, B}.

Secondly, the following inequality holds for all ✓ 2 ⇥,

(d� ✓ �B)2 � (yB
D
(✓)� ✓ �B)2  (d0 � ✓ �B)2 � (yB

D0(✓)� ✓ �B)2 (A.4)

When ✓+B � d � d
0, (d� ✓�B)2  (d0� ✓�B)2. Together with Equation

A.3, we have Equation A.4. When ✓ + B < d, then the LHS of Equation A.4

equals 0. The RHS must be non-negative as yB
D0(✓) can always be set to d

0, thus

Equation A.4 holds.

(a) The equilibrium at ✓ is separating if and only if

(d� ✓ �B)2 � (yB
D
(✓)� ✓ �B)2 � �V

B

2 (0, 1)

It su�ces to show that whenever the inequality holds at ✓ under D, it also

holds at ✓ under D0. From Equation A.4, this is straightforward.
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(b) The equilibrium at ✓ is pooling if and only if

(d� ✓ �B)2 � (yB
D
(✓)� ✓ �B)2  �V

B

2 (p, 1)

It su�ces to show that whenever the inequality holds at ✓ under D
0, it

also holds at ✓ under D. Again Equation A.4 delivers what we need.

(c) By Equation A.4, we have

�V
B

2

✓
p�D(✓)

p�D(✓) + 1� p
, 1

◆
 �V

B

2

✓
p�D0(✓)

p�D0(✓) + 1� p
, 1

◆

, p�D(✓)

p�D(✓) + 1� p
� p�D0(✓)

p�D0(✓) + 1� p

for any ✓ 2 ⇥m

D
\ ⇥m

D0 . It can be readily checked that the last line is

equivalent to �D(✓) � �D0(✓). Thus m(d|B, ✓) � m(d0|B, ✓).

For ✓ 2 ⇥p

D
\ ⇥m

D0 , m(d|B, ✓) = 1 > m(d0|B, ✓). For ✓ 2 ⇥m

D
\ ⇥s

D0 ,

m(d|B, ✓) > 0 = m(d0|B, ✓).

xiv



Bibliography

Aghion, Philippe and Jean Tirole (1997). “Formal and real authority in organi-

zations”. In: Journal of political economy 105(1), pp. 1–29.

Alonso, Ricardo and Niko Matouschek (2008). “Optimal delegation”. In: The

Review of Economic Studies 75(1), pp. 259–293.

Amador, Manuel and Kyle Bagwell (2013). “The theory of optimal delegation

with an application to tari↵ caps”. In: Econometrica 81(4), pp. 1541–1599.

Arguedas, Carmen and Sandra Rousseau (2012). “Learning about compliance

under asymmetric information”. In: Resource and energy economics 34(1),

pp. 55–73.

Avery, Christopher and Jonathan Levin (2010). “Early admissions at selective

colleges”. In: American Economic Review 100(5), pp. 2125–56.

Che, Yeon-Koo and Youngwoo Koh (2016). “Decentralized college admissions”.

In: Journal of Political Economy 124(5), pp. 1295–1338.

Cho, In-Koo and David M Kreps (1987). “Signaling games and stable equilib-

ria”. In: The Quarterly Journal of Economics 102(2), pp. 179–221.

Cho, In-Koo and Joel Sobel (1990). “Strategic stability and uniqueness in sig-

naling games”. In: Journal of Economic Theory 50(2), pp. 381–413.

Doval, Laura and Vasiliki Skreta (2020). “Mechanism design with limited com-

mitment”. In: Available at SSRN 3281132.

xv



Frankel, Alexander (2014). “Aligned delegation”. In: American Economic Re-

view 104(1), pp. 66–83.

Frankel, Alexander (2016). “Discounted quotas”. In: Journal of Economic The-

ory 166, pp. 396–444.

Guo, Yingni and Johannes Hörner (2017). “Dynamic Mechanisms without Money”.

In.

Hamilton, Jonathan H and Steven M Slutsky (1990). “Endogenous timing in

duopoly games: Stackelberg or Cournot equilibria”. In: Games and Economic

Behavior 2(1), pp. 29–46.

Hannan, Michael T, M Diane Burton, and James N Baron (1996). “Inertia and

change in the early years: Employment relations in young, high technology

firms”. In: Industrial and Corporate Change 5(2), pp. 503–536.

Hellmann, Thomas (1998). “The allocation of control rights in venture capital

contracts”. In: The Rand Journal of Economics, pp. 57–76.

Ho↵man, Mitchell, Lisa B Kahn, and Danielle Li (2015). Discretion in hiring

(No. w21709).

Holmstrom, Bengt Robert (1978). On Incentives and Control in Organizations.

Stanford University.

Holmström, B (1984). “On the Theory of Delegation,” in: Bayesian Models in

Economic Theory. Ed. by M. Boyer, and R. Kihlstrom. North-Holland, New

York”. In.
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