DOCTORAL DISSERTATION

APPLICATIONS AND ECONOMIC IMPACT OF MACHINE LEARNING AND BLOCKCHAIN TECHNOLOGIES

by
Nikhil Malik

Submitted to the
David A. Tepper School of Business
in partial fulfillment for the requirements for the degree of
DOCTOR OF PHILOSOPHY
in the field of Industrial Administration

at Carnegie Mellon University

DISSERTATION COMMITTEE:
Kannan Srinivasan (co-chair)
Param Vir Singh (co-chair)
Nitin Mehta

Bryan Routledge

Carnegie Mellon University, September 2020



© Nikhil Malik, 2020

All Rights Reserved



Abstract

Machine Learning (ML) and Blockchains have been two major technology disruptions in the last
decade. On the one extreme, Blockchain decentralizes decision making power to a crowd of
anonymous participants. On the other extreme, ML centralizes decision making into
uninterpretable algorithms. The first chapter uses ML as a tool to study behavioral biases in the
labor markets. The second and third chapter deal with strategic interaction of market
participant with Blockchain and ML platforms respectively.

The first chapter, co-authored with Prof Param Vir Singh and Prof Kannan Srinivasan, examines
biases arising from attractive appearance. We show that Preference Bias contributes to an
attractiveness gap of 0.52% per year, adding to a 2.4% gap over a 15-year career. Belief Bias
does not have a statistically significant contribution in our sample of 43,533 MBA graduates.
This finding is important because Belief Bias, arising from evaluators group-level priors on
subjects job fit, can be overcome by providing rich performance information. But, Preference
Bias, arising from evaluators taste for social, romantic or marital relationship with attractive
subjects, can be harder to eliminate. We make use of ML based image morhping of subject
appearance and page ranking of subject career milestones to construct a pseudo random
experiment on observational data.

The second chapter, co-authored with Prof Manmohan Aseri, Prof Param Vir Singh and Prof
Kannan Srinivasan, examines peer to peer payments on Blockchains. We show that upgrade to
Bitcoin payment throughput is rolled back by tacit collusion among Bitcoin miners. We identify
an intervention of banning miners beyond a maximum compute power to eliminate collusion.
But, such an intervention makes payments less secure from double spend attacks. Thus owing
to the dual threat, of collusion and double spend attacks, its untenable to offer a high
througput payment ledger to users with widely different willingness to pay fees, bear delay and
risk attacks. We advocate miner collusion as a useful mechanism where a chunk of excess
collusion revenue endogenously spill over into an investment into platform’s security.

The second chapter examines Machine Learning (ML) pricing in housing market. These ML
models are revised regularly using recent sample of sales. The recent sales are themselves
confounded by previous version of the ML model. We theoretically show how this Feedback
Loop creates a self fulfilling prophecy where ML over estimates its own prediction accuracy and
market participants over rely on ML predictions. We formulate size of resulting pricing bias. We
identify conditions on ML and market characteristics such that participants are worse off after
introduction of ML. We use data from Zillow’s Zestimate to provide empirical evidence for
necessary primitives of our theoretical model.
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Chapter 1:
When does beauty pay?
An ML based measurement of Beauty Bias

Abstract

A rich literature has demonstrated facial attractiveness related discrimination (beauty
bias!) in a wide range of contexts, such as personal marketing, election voting and
employment. Under a controlled lab setting, most of these studies have found that
attractiveness is rewarded. However, these studies cannot imitate long-term, real world
interactions and thus lack external validity. In this paper, we show the long-term dynamics
of bias to discern among sources of attractiveness bias.

We investigate two sources of attractiveness bias, namely, belief based and preference
based. Belief based bias against subjects exists because evaluators have group-level priors
based on the subjects’ attractiveness. These priors are overcome as the evaluator obtains
objective signals of performance. Preference based bias exists because evaluators have
an inherent taste for a social, romantic or marital relationship with attractive subjects.
We use one of the largest archival longitudinal data sets (43,533 MBA graduates) in this
area of research to identify these two sources. We find that attractiveness is associated
with a 2.4% gap over a 15-year career period. This gap is largely explained by preference
bias, which is associated with an attractiveness gap of 0.52% per year. On the other hand,
belief bias has no significant role in post-MBA professional careers. This is a significant
finding because belief bias toward an individual can be minimized by the individuals’
performance information. However, preference based biases are much harder to remove.

In our setting, there are two key challenges in working with unstructured data. First, for
an individual, we observe only one current picture, which is taken up to 25 years after the
start of the individual’s professional career. We build a generative deep learning model
to create life-like versions of a face, thus allowing us to emulate the employers’
perceptions of how the individual looked at a younger age. Second, individuals move
across job profiles, companies and locations, thereby making it difficult to directly
compare their career milestones. We construct a preference order for jobs (job rank)
based on observed job switching and text-based job title similarities.

1 |n this paper, we refer to individuals whose faces receive an above average attractiveness rating by evaluators as “attractive”
and others who do not receive this rating as “plain-looking.” Beliefs or preferences based differences are referred to as the
following: an “Attractiveness Bias,” an “Attractiveness Gap” and an “Attractiveness Premium.” Note that some of the prior
literature uses phrases such as a “beauty bias” and a “beauty premium” for the same concept.



1. Introduction

Marketing literature has studied the impact of the visual appeal of product aesthetics as well as
the impact of product endorsers on product demand (Petty 1983, Richins 1991, Reingen 1993,
Henderson-King 1997, Martin and Gentry 1997, Cryder et al. 2017, Claudia and Shu 2010). The
literature has repeatedly shown the effective use of attractive solicitors, models and advertising
endorsers on potential customers. Abercrombie & Fitch made headlines for hiring “young,
attractive, mainstream athletic types and cheerleaders who might be their girlfriends” to work

in their stores (Edwards 2003, Bryant 2003).

One would expect looks to have a particularly strong impact when the product and the endorser
are merged, such as in personal marketing. Willis and Todorov (2006) show that it takes just
seconds of seeing a face to infer personality traits such as competence, trustworthiness and
aggressiveness. These perceptions impact election results, crime convictions and mate choices
(Olivola & Todorov 2014). Moreover, positively perceived face traits correlate to the
attractiveness of the faces (Langlois et al. 2000, Olivola & Todorov 2010). It is not surprising that
an attractiveness premium has been found for professionals, such as doctors (Watkins and Jones
2015), lawyers (Biddle and Hamermesh 1998), retail managers (Watkins and Jones 2015), litigants
(Kulka and Kessler 1978), and politicians (Olivola and Todorov 2010).

However, this body of research has mostly studied attractiveness bias in static, experimental
situations (Mobius and Rosenblat 2005).2 Individuals are asked to play hypothetical roles, such
as a jury member (Kulka and Kessler 1978), a manager (Watkins and Jones 2015), a likely convict
or an able worker. In these settings, individuals choose between attractive and plain-looking
subjects, based on short interactions. They are given no performance history or significant time
to learn about the subjects. Additionally, the evaluator does not expect to spend time with the
subject after their evaluation. Experiments thus control for entangled mechanisms in order to

perform causal inference of attractiveness bias effect size. These characteristics of experiments

2 Without revealing the dynamics or sources of bias, other studies (Hamermesh and Biddle 1994, Zebrowitz and Donald 1991)
that look at long term archival data show an attractiveness premium over a significant career length.



are in contrast with real world settings where a manager not only has more information but may
also expect to have an ongoing social (or even romantic or marital) relationship with an

employee. Experiments are thus limited in their external validity.

Further, short, static settings make it difficult to identify the underlying source of bias because
different sources may lead to the same patterns of a single-shot outcome (Bohren et al. 2018,
Fang and Moro 2011). Progression in professional roles depends on the continuous manager
evaluation of the employees’ performance. When employees are starting out, there is limited
performance history. An MBA graduate with a 3.7 GPA has similar grades and the same classes
as dozens of his or her peers. Similarly, the investment banking interns’ first year is spent rotating
across company divisions in training, producing little of value to differentiate themselves.
Discrimination may be in play if attractive individuals are systematically more or less likely to be
evaluated higher and to obtain better jobs or early promotions, even in the absence of any
objective performance signals. However, suppose that the individuals start producing outputs of
similar quality. Would the attractiveness bias persist or disappear? The answer to this question

depends critically upon the source of the bias.

We focus on two major sources of discrimination that are proposed in the literature, namely
preference based (Becker and Geer 1957) and belief based (Fang and Moro 2011, Phelps 1972).
The two sources would lead to different dynamics of the attractiveness bias. In the preference-
based bias, the evaluators have inherent taste (or distaste) for employees who are attractive.
This could simply be a result of the evaluators being able to spend time around the attractive
individuals. Although performance on the job provides informative signals of an employee’s
ability, it will have no impact on changing the preference of the evaluator. In contrast, in belief-
based bias, the evaluator at the outset perceives attractive individuals to be on average more or
less able than their plain-looking counterparts. Dion et al. (1972) suggest a positive perception of
social skills, mental health and personality from attractive looks. Observing performance on the
job will overcome such perceptions and reduce discrimination. This particular source of

discrimination is also known as statistical discrimination (Altonji and Pierret 2001). An evaluator



has group-level priors that diminish once the evaluator obtains objective signals of ability from
the individual. Thus, if the source of bias is preference based, the bias will persist; otherwise, the

bias will diminish.

To discern the dynamics of attractiveness bias, we require longitudinal data on the career
progress of individuals. Hence, we collected a detailed panel data set on the career milestones
and the educational background of 43,533 individuals selected from a professional social
network. Consider an attractive and a plain-looking individual starting at the same job. The
attractive individual has a 50.52% probability of exceeding their plain-looking counterpart by the
end of year, i.e., the attractive individual accumulates a 0.52% attractiveness gap per year. This
bias exists between MBA graduates who had a similar undergraduate education, pre-MBA
experience and MBA program. We discuss why this premium is explained by preference bias
alone. We cannot say that there is no belief bias at all; we can only say that it has no significant

role in the post-MBA professional (white collar) job market.

Overall, the small size of preference bias (0.52% gap per year) and the insignificant degree of
belief bias seem to suggest a marginal attractiveness premium. However, these yearly premiums
add up to a 2.4% attractiveness gap in a 15-year career. In comparison, the gender-pay gap in the
US stands at over 1% per year (Stanley and Jarrell 1998) and adds up to an 18%-22% gap when
averaged across all jobs. The gender gap is estimated to be smaller at 1%-6% (Hay Group 2016)
when the same set of jobs is considered between men and women. Note that these numbers are
not directly comparable. We measure success as the quick attainment of a desired job; however,

most gender gap studies look at average wages.

Our longitudinal sample presents major challenges in dealing with unstructured data in the shape
of images and text. We need to rate the attractiveness of a large number of subjects. Additionally,
we only observe a single instance of the subject’s self-posted profile picture. This creates three
major challenges: (1) the derivation of a measure of attractiveness from a high-dimensional

(unstructured) image pixel-level data, (2) the obfuscation of the underlying facial appearance by



the subject’s choice of temporary accessories, such as clothing, hair style and expressions, (3) a
single current snapshot that must be used to extrapolate the appearance of an individual at the
time of the individual’s MBA program graduation up to 25 years prior. The first is a relatively
common obstacle that has been tackled in recent times by using deep learning models supervised
by labels from human raters. To ensure that our deep learning model’s performance is not
affected by extraneous features, we use a model capable of disregarding temporary features and
focusing only on permanent ones. Finally, obtaining a rating of attractiveness for an individual
over a number of years from only one profile image poses a serious challenge. It has been
established in the literature that attractiveness evolves with age (Zhang et al. 2017). As a result,
comparing a 25-year-old individual with a 45-year-old individual in terms of attractiveness could
be misleading. More importantly, different individuals age differently. For example, consider a
case of two individuals A and B. Let us say that at 25, A is more attractive than B. Now, at 45, A
will not necessarily continue to be more attractive than B. Even if A continues to be more
attractive than B, the gap between the two could change significantly. Hence, to do a fair
comparison over time, we need to model the evolution of attractiveness for people who look like
A and who look like B. We use a generative deep learning model (Conditional Adversarial Auto

Encoder, Zhang et al. 2017) to calculate the attractiveness of an individual over time.

In addition to building a quantitative measure out of the image data, we need to establish a
measure of success comparable between individuals. We observe all career milestones (job title,
company, location and timelines) that need to be ranked for each individual. We need to be able
to order jobs such that a higher-ranked job is more desired by the job market participants. We
rely upon traditional labor economics methods (Baker et al. 1994 and Gayle et al. 2012) that
establish a preference order between jobs by utilizing observed pairwise job switches. A large
number of job switches from job A to job B implies that job B is more desirable. This approach
works well when the number of jobs to be ranked are small, e.g., C-suite executive positions. Our
unstructured data is sparse and includes over 10,000 unique employers and 10,000 unique titles.
Therefore, we improve upon the basic idea by building a dense representation of jobs and

running a variant of a Page Rank algorithm to calculate a measure of a job’s rank. The resulting



job ranks are intuitive and can be used by other studies that investigate career transitions by

using large scale unstructured data.

Our paper makes three main contributions. First, we discern two sources of attractiveness bias,
namely preference based and belief based, by using the dynamics of bias measured over 15 years
of post-MBA careers. This is significant because belief bias may be minimized by initially providing
rich performance-related information. However, preference-based biases are much harder to
remove. The media has highlighted sexual harassment across industries. Such pure taste-based,
perverse preference cannot simply be eliminated by small policy changes. It rather requires a
social and cultural change. Second, our findings are based on one of the largest longitudinal,
archival data sample which provides external validity to the findings of prior experimental, small-
sample studies. The study spans 25 years of MBA graduates between 1990 and 2015, thus
providing credence to a perpetual phenomenon rather than a quirk in a short-lived setting. Third,
our attractiveness ratings and job ranking procedures have wide applicability in any labor
economics study on appearances. To our knowledge, this is the first attempt in business research
at visual image morphing driven by deep learning. Unlike Computer Science literature, we use
these unstructured data sources in modeling a real outcome variable (career success) rather than

a pure prediction problem.

2. Literature Review and Theory Development
Our study connects the following streams of literature: (i) sources of (gender and race) bias, (ii)

existence of similar sources of attractiveness bias and (iii) dynamics in attractiveness bias.

2.1 Sources of Bias

Literature posits two potential sources of discrimination based on extraneous factors, such as
race and gender, namely preference-based (Becker 1957) and belief-based (Fang and Moro 2011,
Phelps 1972). Preference-based discrimination is also known as taste-based discrimination. In
preference-based bias, the evaluators have an inherent taste (or distaste) for the subjects’

characteristics. In the context of attractiveness, this could be a preference for spending time



socially around attractive individuals. Though performance on the job provides informative
signals of an employee’s ability, it will have no impact on changing the preference of the
evaluator. These tastes persist because the evaluators continue to have a preference for social,

marital or romantic relationships with attractive individuals.

Belief-based discrimination is also known as statistical discrimination. Belief-based bias occurs in
an environment of imperfect information where evaluators rely on group-level beliefs to judge
individuals. The evaluator starts with a prior based on group-level beliefs on the ability of
individuals. Attractive looks are often associated with health, social skills and positive personality
traits (Dion et al. 1972). Observing an individual’s performance provides a signal of his or her
quality to the evaluator who then relies less on the group-level priors. However, if the evaluators
do not have a long duration to judge the subject, the priors play a dominant role. Belief bias may
be minimized by the initial provision of rich performance-related information or by allowing

longer interaction times. However, preference-based biases are much harder to remove.

2.2 Attractiveness Bias

While a majority of Marketing and Economics attractiveness bias research? (Table 1) constructs
controlled settings to isolate and measure bias size, they do provide suggestions on potential
sources that are likely factors in their specific settings. A majority of the studies in the literature
point to beliefs as the underlying source of bias. Dion et al. (1972) suggest a positive perception
of social skills, mental health and personality from attractive looks. Olivola & Todorov (2010)
show the perception of competence to be correlated with attractiveness. These qualities align
well with the requirements of the labor market. Not surprisingly, a majority of this research finds
positive premiums from attractiveness. Mobius and Rosenblat (2005) show that in an
experimental labor market, employers consider attractive workers as more able, even with equal
performance measures. Similar outcomes are shown in a public goods experimental setup
(Andreoni and Petrie 2006, Rezlescu et al. 2012). Settings where belief bias is shown as a penalty

do exist as well (Heilman and Saruwatari 1979). First, young, attractive individuals (especially

3 refer to Olivola and Todorov 2017 for a literature review on this topic



young women) may sometimes be wrongly perceived to have advanced by relying on their looks.

Second, a perception of a competent personality trait may result in less empathy and in the

offering of less help to attractive individuals (Cryder et al. 2017, Fisher and Ma 2014).

Table 1: Prior literature on attractiveness bias

Method Effect Context
Experimental Positive Desirability, Competence Dion et al. 1972
Experimental Positive Plaintiff, Defendant Kulka & Kessler 1978

Experimental

Negative for women in managerial.

Insurance Company Jobs

Heilman & Sauwatari 1979

Experimental

Positive

Salesperson

Reingen & Kernan 1993

Archival Positive Labor Market Hamermesh & Biddle 1993
Archival Positive Lawyers Biddle & Hamermesh 1998
Experimental Positive Ultimatum Game Solnick & Schweitzer 1999
Meta-Analysis | Positive Langlois et al. 2000
Experimental Positive Maze Solving Mobius & Rosenblat 2006

Field Exp. Negative for same sex Hiring Luxen & Van De Vijver 2006
Experimental Positive (negative with information) | Public Goods Game Andreoni & Petrie 2003
Experimental Positive Elections Olivola & Todorov 2008
Field Exp. Negative for same sex Hiring Agthe et al. 2008

Archival Positive Elections Berggren et al. 2010
Experimental Positive Economic Exchange Game | Rezlescu et al. 2012
Experimental Negative Charity Fisher & Ma 2014
Experimental Negative for women Hiring Ruffle & Shtudiner 2014
Experimental Positive Retail Managers Fruhen et al. 2015
Experimental Negative with deliberation Charity Cryder et al. 2017

Some of the attractiveness bias literature also highlights preference-based sources. Luxen and

Vijver (2006) show a preference for attractive individuals, especially when there is high
expectation of continued contact post-experiment. In addition to the academic literature,
instances of widespread sexual harassment in the workplace have recently emerged in the media.
These examples provide more than sufficient evidence for the existence of purely taste-based
decision-making by employers. Once again, a small handful of literature shows a penalty from
taste preferences as well. Agthe et al. (2010) show a penalty for attractive scholarship candidates
when judged by same sex evaluators. Ruffle and Shtudiner (2014) suggest envy and jealousy can

engender a penalty for attractive young women when evaluated by other young women.



Most of these prior studies involved experimental setups that differ from an actual professional
work environment in the following three key ways: (1) the evaluator has little knowledge of past
performance, (2) the evaluator has limited time to learn about the subject on the job, and (3) (in
most cases) the evaluator does not expect to spend time with the employee after the end of the
experiment. The first two naturally mean that experimental setups focus on belief-based bias.
The evaluator must decide based on priors or group level beliefs for attractive individuals. The
third contrast means that pure taste or preference-based bias is minimized in experiments. The
hypothetical manager in an experiment has no expectation of spending time with the subject by
hiring them or promoting them. These experiments successfully control for numerous interfering
factorsin order to isolate a single causal factor. They are able to inform us of impact and direction
of bias in specific settings. Over the duration of one year of employment, an individual may go
through numerous such interactions where an evaluator’s beliefs and preference aid or penalize
them. Thus, all these factors are thrown in simultaneously, making an overall effect direction and

size hard to anticipate.

There are only a few observational data studies on attractiveness bias. Most establish a positive
career impact. This suggests that belief and preference biases combine to create a positive
premium. Unfortunately, the existing studies do not clarify the actual positive or negative role of
both sources independently. The observational literature is unable to answer this because it does
not study the dynamics in attractiveness bias. Biddle and Hamermesh (1998) do show a premium
in 5-year and 15-year careers, but they do not model dynamics in career progress or bias.
Therefore, they do not compare the size of early versus late bias or discern different sources. Our
observational data and unstructured data processing allows us to exploit fine-grained career

dynamics and provides external validity through the use of a large sample.

2.3 Attractiveness Bias Dynamics
There are sporadic examples of short-run dynamics simulated in experiments. Rezlescu et al.
(2012) show a premium in an economic exchange game, where attractive individuals are

perceived to be trustworthy. This attractiveness premium diminishes from 42% to 6% after



objective signals are revealed. Andreoni & Petrie (2003) show an attractiveness premium in a
public goods experiment, where attractive individuals are perceived to be cooperative. This
perception and the resulting attractiveness premium vanish in their experiment when objective
information on the contribution to the public good is revealed. These are both examples where
belief bias is overcome across multiple runs of the experiment. Preference does not have a strong
role to play because subjects don’t expect a long-term association with other attractive subjects.

Nevertheless, we can draw insights from such settings.

We suggest that the dynamics of attractiveness bias can be used to distinguish the sources and
direction of the bias. The preference- or taste-based bias is unaffected by any information
regarding the individual’s underlying quality. In contrast, the belief-based bias disappears as
evaluators receive information regarding the individual’s underlying quality. Early career
decisions resemble a scenario where the employer has limited information and therefore may
unwittingly absorb perceptions from appearance cues. In professional careers, performance
signals are of course not objective indicators. Nevertheless, we expect a period of 4-8 years to be
a more than sufficient time duration for prior beliefs to be overcome by actual performance
signals. Belief-based attractiveness rewards should vanish after this point. We use this critical

difference between preference and belief bias to discern their roles.

First, we measure attractiveness bias in the later part of one’s career. If a positive bias (does
not) exists (exist), it would imply the presence (absence) of a positive preference bias. Next, we
measure the attractiveness bias in the early part of one’s career. If the preference bias was
absent, any early career bias points to the existence of a belief bias. If a positive preference bias
was present, determining the belief bias is non-trivial. One of the following three possibilities
exist: (1) positive belief bias, if the early career bias is greater than the late career bias, (2) zero
belief bias, if the early career bias is equal to the late career bias, (3) small negative belief bias, if
the early career bias is less than the late career bias. Thus, we can use the relative size of the
early and late career bias to answer the following three open questions: (i) Is preference bias

absent, positive or negative? (ii) Is belief bias absent, positive or negative? (iii) What is the



combined effect when preference and belief bias coexist early in professional careers? We ignore
possibilities where one or both of the biases are significantly negative, resulting in an
attractiveness penalty over the entire career. This would go against all prior observational data

research.

2.4 Image and Text Analysis

Gan et al. (2014) proposes self-taught deep architecture for attractiveness ratings. Xu et al. (2017)
develop psychologically inspired convolutional neural network (PI-CNN). Liang et al. (2017) build
a three-stage architecture that explicitly accounts for face region extraction and face rotation
invariance. Gao et al (2018) use a simple CNN but jointly train on attractiveness prediction as well
as face landmark labels. These papers have been developed on top of Gan et al. (2014)’s broad
approach; we do the same. We use OpenFace Convolution Neural Network (CNN), developed by
Amos et al. (2016), to extract features. Then we use Conditional Adversarial Auto Encoder (CAAE),
developed by Zhang et al. (2017), to generate heterogeneous attractiveness evolution paths from
a single image. With regards to unstructured profile data, we build on Page Rank (Page et al.
1999) to order unstructured, self-reported, free-text job titles by their desirability. Our work adds
to this burgeoning marketing and management literature using unstructured text and image (Lu
et al. 2016, Zhang and Luo 2018, Netzer et al. 2012, Dzyabura et al. 2018, Liu et al. 2017, Zhang
et al. 2018).

3. Data

We use one of the largest professional social networks as our primary data source. This online
platform is used by professionals and job seekers to exhibit their curriculum vitae and by
employers to post jobs. A typical user curriculum vitae describes work experience and education
alongside a personal photo. Members on this platform typically make connections with each
other that may represent real world associations. While members self-report their professional
information, the social nature of the platform ensures the veracity of the data. This social network
provides a profile search functionality that allows searches based on free text as well as on filters
by location, industry and the university attended by professionals. We specifically focus on MBA

graduates in the United States. This criterion ensures that the individuals in the sample are



comparable because of the similarity in their educational background and their professional
goals. While these graduates may all desire swift career progression, we do account for
peculiarities of job domains. We use the search functionality offered by this professional social
network platform to collect profiles. We use “MBA” as a search string along with filters by location
("United States”) and school name. The list of university names is derived from the US News

business school rankings.* Figure 1 shows the number of profiles collected by MBA school rank.

Table 2: Number of MBA profiles with profile picture and key career history

Reasons Profiles
Total Profiles Collected 98,868
Profile picture available 82,477
MBA graduation between [1990,2015] and other key covariates available 43,533
8000 4
3
%S 6000 4
a
5
g 4000 1
E
35
=
2000 4
0l
0 20 40 60 80 100
MBA Rank

Figure 1: Number of profiles collected across the top 100 ranked MBA programs. Profiles for top-
ranked MBA graduates are easier to collect, as individual are more likely to prominently highlight
their school name on their profiles.

Unfortunately, the online platform places a high cost on collection and places severe limits on
the number of profiles that can be viewed per day. The platform search mechanism is relatively
opaque. The search for profiles for a school often returns individuals who were never MBA
graduates at the target school. These individuals may have served in teaching, administrative or
other capacities in the specific MBA program or in a similar-sounding MBA program. Due to these

limitations, we are able to collect a total of 43,533 MBA graduate profiles with profile pictures.

4A typical MBA program graduates anywhere between 200 to 1000 students per year, or 5000 to 25000 graduates in the last 25
years. However, the search functionality returns only 100 pages with 10 profiles per page of search results. To cover more profiles,
we make use of a platform quirk. We perform up to 10 searches per school by using a different filter for industry each time. This
theoretically allows us to capture up to 10,000 profiles per school search. Appendix A.1 provides a breakdown of the collected
profiles by school.



Some profiles will always be omitted from our collected sample for the following reasons: (a)
some graduates may have exited the job market prior to 2017 and thus never created or deleted
their profiles, (b) some may be in the job market but do not use this professional social network,
(c) some use this social network but keep their profiles private, and (d) others may have an active
public profile but do not mention their MBA degree at all. All such individuals are systematically
left out of our sample. To be robust, we collect a secondary data set> where some of this
systematic selections are observed. We realize that the access to complete data is unrealistic in
this domain (on or outside this platform), as a large number of professionals choose to keep their
profiles completely or partially private. Beyond a certain limit, as researchers, we are cognizant

of not using increasingly intrusive technical methods to gather sensitive data.

Table 3: Sample values for each of the collected profile variables.

Variables Sample Values

Title Software Developer, Consultant, Intern, CEO.

Employer Name McKinsey & Company, JPMorgan Chase

Current Industry | Financial Services, Management Consulting, Computer Software

University Name | Harvard University, Stanford University.

Degree Name B.S., B.A., MBA, MFE
Year From 2009 or January 18, 2007
Year To 2015 or December 29, 2016

Table 3 shows sample values for key profile fields fetched by us. We typically find 2 to 8 career
steps, with each step comprising the job title, employer name and industry. We also find 2 to 4
degrees (e.g., high school, undergraduate, Masters, MBA, PhD), each comprising a degree and
university name. All of these have a corresponding start year and end year. We identify the
attendance at an MBA program using the degree field. Figure 2 shows the number of profiles

collected corresponding to each MBA graduation year.

5 We access the school directory of a top 10 MBA program in the US. This gives us access to names and the graduating year for
all 15,640 students between 1990 and 2016. Of course, we do not find professional profiles for all these 15,640 graduates, but
now we have visibility into the characteristics of the graduates that have been selected out. In Appendix A.11.3, we describe this
secondary data and the robustness tests that were conducted by using this smaller dataset.
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Figure 2: Number of male (light shaded) and female (dark shaded) profiles collected for each
graduating class.

4. Calculated Features

Because the profile details are self-reported in free-text fields, we perform significant data
cleanup to standardize the names of universities, employers, degrees and job titles. This cleanup
ranges from correcting misspellings to matching synonymous names. In addition to the features
directly available on the profiles, we also need to calculate new features that will be used in our
primary analysis to compare the professional success of attractive and plain-looking individuals
while controlling for other characteristics. Table 4 provides a list of all features, their source (or
calculation) and sample values. Microsoft Azure Cognitive Face APl and Face++ API largely cover
face image related features. While these API’s do not disclose exact methodology, we believe
that they use supervised Deep Convolutional Neural Networks to tag these face features. Website
usnews.com is used for education related features such as university names, rankings and fees.
Note that some features are sourced from unverified or noisy sources (e.g., ethnicity, age), in
which case we perform a sense check by extracting from multiple sources. In Appendix A.6, we

discuss calculations for all the features in detail.

Our research goal is to compare career outcome for individuals that differ in attractiveness. In
Section 4.1, 4.2 and 4.3 we describe our methodology to assign every individual i with a job rank
rank; . and attractiveness beauty; , at t years after their MBA graduation. The job rank measures

desirability of job attained by the individual e.g., CEO is more desirable than Analyst.



Table 4: Calculated Features, their sources and sample values.

Category Feature Source or Calculation Range or Sample Values
Outcome 7, Job Rank (rank; ;) Section 4.3 [-9.23,-5.58]
Std. Job Rank (ry,;) Standardized among peers at t u(ri) =0,0(r,) =1
Treatment b; Attractiveness Rating Sec4.1,4.2 [1,7]
(beauty; ;)
Attractiveness Class Binary classification among peers at t {0,1}
(bis)
Demographics D; Gender Microsoft Azure Cognitive Face API Male, Female
Ethnicity Face++ API (on picture) White, Asian, Black, Others
Text map API (on name) European, Asian, Others
Age 2017 — (UG Graduation) + 22 23-60
Microsoft Azure Cognitive Face API 18-65
Education and UG University Self reported
Training E; UG Ranking US News 1-200
UG Degree Area Mapping Table in Appendix A.6.2 Business, Arts, Science, Others
Pre MBA Training (MBA Start) — (UG Graduation) [0,16]
MBA School Self reported
MBA Ranking US News 1-100
MBA Graduation Year Self reported 1990-2015
Wealth W; Undergraduate Fees US News [$14,937, $55,506]
MBA Fees US News [$32,328, $65,988]

Job domain JD; ; Industry Category Mapping Table in Appendix A.6.3 Finance, Consulting, IT, Others
Job Type Mapping Table in Appendix A.6.3 Management, Technical, Others
Large Employer Binary Classification on frequency of employer | {0,1}
Large Location Binary Classification on frequency of location {0,1}
Photograph Blur Microsoft Azure Cognitive Face API [0,1]
Quality PQ; Exposure Microsoft Azure Cognitive Face API [0,1]
Noise Microsoft Azure Cognitive Face API [0,1]
Resolution Face++ API [0,1]
Face Quality Face++ API [0,1]
Roll Microsoft Azure Cognitive Face API [0,1]
Pitch Microsoft Azure Cognitive Face API [0,1]
Yaw Microsoft Azure Cognitive Face API [0,1]
Visible Lip Makeup Microsoft Azure Cognitive Face API [0,1]
Characteristics Eye Makeup Microsoft Azure Cognitive Face API [0,1]
Ve Beard Microsoft Azure Cognitive Face API [0,1]
Moustache Microsoft Azure Cognitive Face API [0,1]
Sideburns Microsoft Azure Cognitive Face API [0,1]
Invisible Hair color Microsoft Azure Cognitive Face API [0,1]
Characteristics IC; | garrings Microsoft Azure Cognitive Face API [0,1]
Necklace Microsoft Azure Cognitive Face API [0,1]
Other accessories Microsoft Azure Cognitive Face API [0,1]

Background Microsoft Azure Cognitive Face API Formal, Informal, None

Clothing Microsoft Azure Cognitive Face API Formal, Informal, None
Health H; Skin Health Face++ API [0,1]

Skin stain Face++ API [0,1]

Dark Circles Face++ API [0,1]

Eye Glasses Microsoft Azure Cognitive Face API [0,1]
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4.1 Attractiveness

We focus only on attractiveness of facial appearance. Given the professional nature of the
profiles, people often post clear head shots. We detect and remove profiles where pictures either
do not capture a face or capture more than one face. Most studies in the literature measure
attractiveness as an average of ratings by a group of human raters (Biddle and Hamermesh 1998).
Assuming at least 5 human raters per image, it would require approximately 200,000 ratings
(43,533 profiles * 5 ratings) for our dataset. In order to scale our analysis, we want to build an

attractiveness prediction model.

Golden ratios and neoclassical canons (Schmid et al. 2008) were used in past for machine
calculated attractiveness ratings. This was superseded by Machine Learning methods, e.g., Eigen
faces (Turk and Pentland 1991), that disassociate feature extraction using PCA and attractiveness
label prediction using supervised learning on PCA features. This has been superseded by Deep
Learning methods. Gan et al. (2014) proposed self-taught deep architecture to extract features
and SVM to map these features to attractiveness ratings. We broadly follow this approach.
Contemporaneously, numerous improvements on this broad approach have come up (Xu et al.
2017, Liang et al. 2017, Gao et al. 2018). We follow the evaluation metric used in this literature

and contrast our performance with these contemporary papers.

Labeled dataset: We get human raters to judge the attractiveness of a random set of 659 profile
pictures. This experiment was executed on the AMT (Amazon Mechanical Turk) platform. The
raters were selected to participate based on the following three criteria: 1) geographical location
in United States, 2) completion of at least 500 human intelligence tasks (HITs) in the past on the
AMT platform and 3) the receipt of approvals on 95% or higher of all their completed HITs. These
conditions were applied to ensure that the raters understood our requirements in English, that
they were experienced in using the AMT platform and that they have showcased good quality of
work in the past. Additionally, limiting the raters to the United States is likely to help in mimicking
how a subject’s appearance would be judged in a typical US professional work environment. Our

training data consists of images labeled as attractive based on a 1 to 7 scale, where 1 represents



the lowest value of attractiveness and 7 represents the highest value of attractiveness.Table 5
provides the mean and standard deviation of the attractiveness ratings, with women being rated
on average higher than men. Each image is labeled by 5 coders, and we use the average of the
five ratings for an image as its true rating. Attractiveness is a subjective measurement, and
multiple raters are unlikely to exactly agree in their ratings. We calculate a standardized Cronbach
alpha (Santos 1999) value of 0.73, which is a typical psychometric standard used for consensus
between the raters. The relatively high value (0.7 typically being an acceptable standard) gives
us confidence that using an average would capture at least a coarse variance in the attractiveness
of the profile pictures. These ratings would next act as training labels for our machine learning
model.

Table 5: Mean and standard deviation of attractive ratings

Gender Rating Mean Rating Std. Dev.
Male 4.02 0.88
Female 4.46 1.06

Image Features: We need to ensure that the machine learning model picks up unalterable
appearance differences instead of alterable differences such as hairstyle, clothing and
photograph quality. To ensure this, we first use the dlib library (dlib.net/python) to obtain a
bounding box for the face on the profile picture. This removes picture background, clothing and
hairstyle, from the images. Next, we normalize color histogram, overall pixel intensity values and
resolution across images. We standardize the head pose by using a 2-D affine transformation
(Zhang and Gao 2009) to align the head rotation in three dimensions, i.e., roll, tilt and yaw. Once
front-facing comparable face images are obtained, we compress a typical 400x400x3 (RGB) image
into a handful of key features that capture a majority of differences between appearances. We
use a deep neural network implementation by the Open Face project (Amos et al. 2016). This
architecture, while trained for face recognition task, provides a 128-dimensional intermediate
layer. This layer represents a low-dimensional embedding of any face image. Figure 3 lays out a
summary of various transformations performed on profile pictures to arrive at a set of 128
features for every face. Using features otherwise used for face recognition has a side benefit of
ignoring superficial temporary characteristics, e.g., room lighting, facial hair, expressions, etc.

This is because face recognition deep architectures are fine tuned to recognize the same face



across different settings. The 128-Dim features learn to ignore superficial temporary

characteristics.
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Bounding Box and 128 Dimensional
Original Picture Pose Correction Vector Representation

Figure 3: For two samples, the figure shows (left to right) the original picture, the bounded picture, the
pose corrected versions and the 128-dimensional feature representation.

Predictive Model: We train a support vector regression model that learns the relationship
between 128 image features and the attractiveness label. We validate model performance by
holding back some of the labeled images from the training step and evaluating the model
performance on this held-out set. Our predicted ratings are off from the actual average human
rating by a rmse (root mean squared error) of 0.81 on a 1 to 7 scale. Attractiveness prediction
literature (Gan et al. 2014, Xu et al. 2017, Liang et al. 2017, Gao et al. 2018) evaluates model
prediction performance using a variety of metrics such as mean squared error, Pearson
correlation, adjusted R-squared, accuracy and ROC-AUC. We provide more details on all relevant
evaluation metrics in Appendix A.2 to compare the selected model against alternative hyper
parameters and alternative models (Support Vector Classification, Random Forest, Logistic
Regression, K-NN, Adaboost, Gaussian Naive Bayes and Quadratic Discriminant Analysis). There
is also a practical concern that the model has learnt to pick up on some unrelated correlated
features e.g., attractive individuals always post higher quality photographs. So, the training and
validation performance have not picked up on causal factors of attractive looks, but rather

alterable features chosen by individuals on their self-posted profile pictures. In Appendix A.2, we
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provide details on model evaluation on test dataset, which is drawn from experimental settings

where individuals have no control on their face images.

4.2 Attractiveness Evolution

Model

Our research question requires us to measure an individual’s attractiveness over their career.
However, our primary profile picture dataset has a single picture per person. Thus, we need a
model to project attractiveness evolution over age. We have access to two secondary datasets
to guide our attractiveness evolution approach. The Cross Age Celebrity Dataset (CACD) contains
104,595 images for 1282 celebrities between age of 25 and 60. The FGNET dataset contains 217
images for 42 subjects between age of 21 and 34. Unlike our profile pictures, these datasets
contain multiple pictures for a subject. Figure 4 shows that the celebrity photographs in CACD
dataset tend to be more attractive on average. However, all three datasets exhibit a similar
declining evolution of attractiveness over age. Figure 4 also explores the heterogeneity in
attractiveness evolution among four celebrities within the CACD dataset. As an example, Claire
Danes has a higher attractiveness rating but declines more rapidly with age compared to Anthony
Mackie. More generally, if person A is 1 rating point higher than person B at our data collection
in 2017, it does not necessarily mean that this gap was preserved at their MBA graduation date.
This heterogeneity is also supported by past studies on the evolution of looks over age. Zhang et
al. (2017) suggest that looks evolve over a complex manifold, thus taking unique paths for every
individual. Following these examples, the equation 1 models the attractiveness of individual i at
age a. At the population level, attractiveness evolves linearly over age (A;). Individuals are

heterogeneous in attractiveness evolution (pl-l).

beauty; gz = Ao + (44 + pi) xage + p{ + e (1)

Estimation
If attractiveness evolution were homogenous (p? = 0), then estimating (1o, 4,, p?) would be

relatively trivial using one profile picture per individual in our dataset. The heterogeneous
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Figure 4: (Left) Average attractiveness of subjects at different age for three datasets - CACD, FGNET
and our primary professional social network profile pictures. (Right) Attractiveness evolution of four
celebrities compared against the average attractiveness evolution of CACD dataset (+ 1 std. dev.).

attractive evolution p; ; can only be estimated if we have multiple observations per individual.
Zhang et al. (2017) develop a CAAE model that uses a single picture to generate multiple photo-
realistic morphs at sequence of age milestones. These morphs are expected to match the
individual’s looks at those age milestones. We use a pre-trained CAAE model, using multiple
pictures corresponding to different ages of the same individual. This data is completely
independent of our profile pictures dataset. The training data for the CAAE model is limited; it
cannot learn a unique evolution path for every single face. It must generalize. Therefore, it tries
to learn evolution paths for a large number of representative faces seen during training. For a
new test face not seen during training, where only a single profile picture is available, the model
predicts an evolution path. This is based on evolution seen for training faces that were similar to
the new test face. It does so by creating a low-dimensional representation for an input face
picture such that similar faces are close together in this low-dimensional space. We provide more

detailed intuition for the CAAE architecture in Appendix A.3.

Figure 5 depicts an example we are able to generate from this model. It is particularly interesting
to note that the model learns to ignore alterable face features (e.g., hairstyle, eye glasses). This
happens because, at different ages, easily alterable features vary across images. For example,

during training, the model uses pictures that may show a clean-shaven individual at the age of
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25 or a bearded individual at the age of 30. In the beginning, model may try to extrapolate, i.e.,
it may try to show all evolutions from 25 to 30 as an individual with a beard. Over training
iterations, it learns that such an extrapolation is inaccurate for the vast majority of faces.
Therefore, it drops information pertaining to beards from its low-dimensional representation of
an input image. Thus, a reconstruction of an input image with a beard, even when the
reconstruction is one representing the individual at the same age, ignores the beard. This

provides a side benefit in line with our research objective.

-10 years

+10 years

Figure 5: (from left to right) The original face image, the aligned version, and the generated
(reconstructed) images at the current age, 10 years prior to the current age and 10 years past the
current age. Note how facial hair is minimized even on the current age picture.

beautyzage = beautyi,age + Niage (2)

Applying the attractiveness prediction model on the CAAE morphed pictures gives us a sequence
of attractiveness predictions beauty;,q.. Owing to unknown properties of error 7; 44, in
beauty; ,, we choose not to use these predictions directly. Instead, we use a regularized ridge
regression for estimation of equation 1°. The regularization is meant to penalize (pil), i.e., large
gap between individual specific evolution and the population level evolution. Without this
regularization we would have some individuals following outlandish attractiveness evolution due
to one or two bad morphs. Once we have estimates (14, 15, Z)?, ELT), we can predict bea@‘age
at any time age for individual i. Note that we have combined image morphing (CAAE),
attractiveness prediction (OpenFace + SVM) and regularized heterogeneous evolution (RHE)

model (Figure 6). We do so to benefit from the capacity of deep learning models to learn accurate

6 This implicitly assumes that 7Niage i uncorrelated with beauty; 44¢
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high-dimensional pixel-level distributions while still relying on linear model for interpretable,

unbiased and low variance heterogeneity estimates.

Table 6: Ridge Regression Results separately for men and women. We discard the quadratic model
since A, turns out to be statistically insignificant.

(1) (2) (3) (4)

Male Male Female Female
Constant 4.593%* 4,756%* 5.576%* 6.076**

(0.148) (0.024) (0.281) (0.045)
Age -0.0036 -0.0117** -0.0055 -0.031**

(0.007) (0.001) (0.014) (0.001)
Age> -0.0001 -0.0003

(0.0001) (0.000)
Obs. 16,216 16,216 6,022 6,022
R-squared 0.024 0.024 0.108 0.107
F-statistic 197.6 393.9 362.9 722.4

Standard errors are in parenthesis
** p<0.01, * p<0.05
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Figure 6: We first create morphed picture M; 4 4. at all age milestones where actual picture is not
available for individual i. Then RHE model is estimated using predicted attractiveness of morhped
pictures.

Testing

Before we use these predictions bea@,age in our econometric model, its important to
guantify the accuracy of this attractiveness evolution approach. Zhang et al. (2017) perform a
survey to validate CAAE face morphs with greater than 20-year age gap between available
ground-truth pictures and target morph age. A total of 48.4% of the respondents indicate that

the generated face image depicts the same person as the ground truth image, 29.6% of the
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respondents indicate that it does not, and the rest of the respondents are not sure. The CAAE
morphs are just one component in our attractiveness evolution approach. We formally test our
attractiveness evolution approach on the CACD dataset. We randomly sample a single image for
every celebrity. This acts as the training sample, which is akin to our professional social network
setting with one picture per individual. We compare the predicted attractiveness be/a\utyi‘age
with the actual attractiveness beauty; q 4. We attain a root mean square error of 0.245 on an
attractivness scale of 1 to 7. In Appendix A.4, we elaborate further and show performance
comparison against alternative models. In Appendix A.10.2, we also report robustness of
primary econometric model with various alternative attractiveness evolution models. Readers
should note that our primary econometric model is robust even if we simply assume that
attractiveness does not evolve at all. This strongly suggests that the main findings are not
driven by measurement errors in this admittedly cumbersome attractiveness evolution

approach, nor by over simplification of attractiveness evolution.

4.3 Job Rank

Any study on career progression in professional roles needs a preference order of jobs. We will
build a measure that allows us to compare an individual’s job, say 5 years after MBA graduation,
with that of his or her peers, i.e., the jobs of everyone at 5 years after their MBA graduation. We
utilize the approach suggested by Baker et al. (1994) and Gayle et al. (2012) that relies on
observed job switches to establish a preference order. This formulation presumes that a large
number of transitions from job A to job B compared to the number of backward transitions imply
that job B is more desirable than job A and is therefore ranked higher. This approach works well
with a handful of jobs, which is the case for the executive roles (CEO, CFO, principal consultant,
board member) studied by Baker et al. (1994) and Gayle et al. (2012). However, the majority of
milestones in our data corresponds to early and mid-career jobs in significantly dissimilar firms
and industries; therefore, fewer pairwise transitions are observed. We observe more than 10,000
distinct jobs in our data because of the unstructured nature of the profiles. A majority of these
jobs appear in 5 or fewer profiles and therefore do not afford enough information on pairwise

transitions for us to accurately infer their preference order. Therefore, we extend the approach



of Baker et al. (1994) by (i) building a preference ranking for the 1000 most frequent jobs and
then (ii) approximating the ranking for the remaining jobs, based on text similarity with the 1000

ranked frequent jobs.

We define a job as a combination of title, employer size and employer industry. This ensures that
positions, such as “CEO at very small internet” company and “CEQ at large finance” company, are
not ranked together simply because the title “CEO” remains the same in otherwise dissimilar
jobs. The former is likely a position at a 5-person startup company, while the latter may be a
position leading thousands of employees in a multi-billion dollar company. Once we have a set
of jobs that occur relatively frequently in our dataset, we count all the directed transitions
between any two pairs of jobs. The matrix M represents these transitions. We initialize all jobs to
have equal rank (ro) and then run the PageRank algorithm (Page et al. 1999) to arrive at a

differentiated rank score for each job (r).

The Page Rank algorithm was originally used to determine the web page’s importance based on
its in-links and out-links. In our case, jobs are equivalent to web pages, and links are equivalent
to job transitions. A top position is unlikely to have the largest number of incoming transitions;
instead, it receives incoming transitions from relatively senior jobs (e.g., CFO to CEO, Principal to
CEOQ). This algorithm iteratively propagates rank along the directed edges, therefore eventually
transferring weight from a junior position (intern, analyst) to top positions (CEO, board member).
The rank (r) corresponds to the likelihood of ending up in a given job if an individual spends an
infinite time in the job market switching between the jobs, with the probability of each step

drawn from the transitions matrix (M).

Next, we deal with the less frequent jobs. As an example, “principal consultant at a large
consulting firm” and “software developer at a large IT firm” are two common jobs that can be
used to infer the ranking for positions, such as the “principal consultant for the energy-oil
industry at a large consulting firm” and the “Agile software developer at a large IT firm,”

respectively. We convert job strings into a tf-idf (Mihalcia 2006) representation. We chose 2000
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Figure 7: (Left) Job switches observed between a set of four jobs (a, b, ¢, d). The number next to every
edge represents the number of job switches. (Right) The resulting matrix M, the initial ranks r, and the
final ranks r are shown.

as the size of the vocabulary, therefore describing every job as a 2000-dimensional vector. The
it entry for a job vector represents whether the it vocabulary word occurs (1) or not (0) in this

n u

job. This choice of vocabulary size keeps words informative of rank, such as “vice,” “associate,”

” «u

and “chief,” while eliminating rare words, such as “agile,” “rockstar-coder,” and “energy-oil.” As
rare vocabulary words such as “agile” are ignored in the vector notation, the two jobs “software
developer at large IT” and “Agile software developer at large IT” are exactly superimposed in this
tf-idf vector space. More generally, the tf-idf representation allows us to calculate the distance
between any two jobs. We use the weighted k-Nearest Neighbor (Cover et al. 1967, k = 10) to

approximate the ranking for the less frequent jobs, based on the 10 nearest-ranked jobs.

Table 7 reports a random sample of jobs and their respective rankings. For every individual, we
find the job performed at t years after MBA graduation and the corresponding job rank rank; ;.
Figure 8 plots rank;, trend over time averaged across profiles. This shows that our job ranks
grow almost linearly and overall appear to be sensible. While this provides some sense check, we
need a more rigorous validation for the entire job rank calculation module. We perform
validation on a held out sample of job switches. We assign job ranks to the two jobs in every
switch. Our job rank model is good if a high proportion of job switches go from a lower-ranked
job to a higher-ranked job. If the job ranks are uninformative (or random), this proportion will be

0.5. We are able to achieve a ratio of 0.69.



We perform testing on externally collected job hierarchy samples from heirarchystructure.com
and salary data from salarylist.com. Note that job hierarchies from heirarchystructure.com are
manually crafted and limited to a single career path within an industry. Thus it is not very apt for
cross industry switches observed in our dataset. Similarly, order by salary captures only one facet
of a job’s desirability. In-fact empirically observed switches over 100,000 MBA graduate profiles
is perhaps a better approximation of average desirability then an industry specific hierarchy or
salary data. We expect our desirability measure to be loosely correlated with industry hierarchies
or salary data but we do not expect a high degree of match. Therefore we report the correlation
purely as a sense check. We are not aware of any large scale (more than 100 jobs) ground truth
job desirability dataset. The job hierarchy samples dataset provides 13 ordered job lists. On
average, one list orders 61 distinct jobs. The salary dataset provides a single ordered list with 817
jobs. For all 14 lists, we also create an alternative order as predicted by our job rank model. We
evaluate our job rank ordering against the original ordering using rank correlations metric
(Spearman, Kendall and Pearson). We are able to achieve a spearman correlation of 0.44 and

Kendall correlation of 0.36 averaged over all these lists.

Table 7: A small sample of jobs and the respective log of page ranks.

Title Company Size | Industry Category | Log Rank

Investment Banking Summer Analyst | Large IT -8.581
Systems Analyst Very Small IT -8.371
Marketing Coordinator Small IT -8.265
Senior Research Analyst Medium Finance -8.172
Product Director Small IT -7.979
Regional Director Small Others -7.847
VP Finance Medium Consulting -7.611
Chief Revenue Officer Very Small Finance -7.322

We use these validation and testing metrics to select from alternative choices for job definition,
ranking procedure, extrapolation procedure and hyper parameters (N = 1000 frequent jobs for
ranking, k = 10 neighbors for extrapolation, v = 2000 tf-idf dimensions). In Appendix A.5, we

provide more details on these alternative model specifications and resulting evaluation metrics.



5. Empirical Strategy

We first present some model-free evidence and then describe our primary model.

5.1 Model-Free Evidence

We divide individuals in our dataset into attractive and plain-looking groups by using their
attractiveness at the time of MBA graduation (¢t = 0). For every individual, we find the job
performed at t years after MBA graduation and their corresponding job rank rank; .. Figure 8
presents the average rank; . for both groups over time. Figure 8 shows that from the beginning,
there appears to be a small gap between the attractive and plain-looking groups. The gap grows
over time. It is likely that attractiveness bias plays a role, even before the start of the post-MBA
career. It may help individuals to gain better education and skills. This cumulative effect of bias
in the years prior to MBA graduation will appear on the rank;, i.e., the first job after MBA
graduation. We perform propensity score matching (Appendix A.7) on pre-MBA factors to
mitigate this effect. The gap immediately at the start of the post-MBA career vanishes for
matched samples. This is reasonable since any significant gap within a single year would likely

signal an extraordinary degree of discrimination.

The gap appears to widen gradually for both unmatched and matched cases, developing into a
large gap by the end of the career. This second observation can be reasoned in two ways: (i) a
positive attractiveness bias exists throughout the career or (ii) the small gap in the early career
places attractive individuals in slightly better roles. However, these small early differences have
far reaching effects, as they are propelled up faster throughout their career. This may happen
because of high-quality on-the-job training, e.g., a McKinsey Consulting junior associate who gets
first hand industry-wide experience. To test (ii), we perform propensity score matching on job
rank attained at the end of 5 years in addition to pre-MBA factors. In the matched samples, the
two groups have the same education, skills, MBA degree and career outcome at 5 years. Figure
9 shows a large gap (albeit smaller than before) still develops between the two groups. This
strongly suggests the presence of a preference bias since it’s the only bias source late in the

career.
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Figure 8: The dark and gray lines are attractive and plain-looking groups respectively. The groups
start their career with a gap in the first year after MBA Graduation. The dashed lines are matched on
all pre-MBA graduation characteristics. The left figure represents raw job ranks (from page rank),
while the right figure represents the proportion of individuals in each group that are successful
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Figure 9: The dark and gray lines are attractive and plain- looking groups, respectively. The groups
start their career with a gap in the first year after MBA graduation. The dashed lines are matched on
all pre-MBA graduation characteristics as well as job rank attained after 5 years after MBA
graduation.

The role of early career belief bias cannot directly be inferred here. A small difference that
develops early in a career can be explained by positive preference bias combined with (i) positive
belief bias, (ii) zero belief bias, or (iii) small, negative belief bias. The distinction among the three

depends of relative size. Next, we develop a full model to precisely measure the effect size.

5.2 Model

Our primary research goal is to measure belief and preference biases. In order to do so, we need

to be able to measure career progression between any two milestones (e.g., t = 2 yearsto t +
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At = 3 years after MBA graduation) for attractive and plain-looking individuals. Then we can
compare this attractiveness premium over the same duration in different career phases, e.g.,
year 2 — 3 vs year 8 — 9. The relative size of the effect sizes would allow us to infer role of
beliefs and preferences. If premium in year 8 = 9 is much smaller then 2 — 3, it would indicate
belief bias that has been resolved over time. An ideal hypothetical experiment to determine bias
or premiums B5E+At would be to assign attractive or plain looks randomly to a representative
sample of professionals at t years and then measure the difference between their average career

outcome at the end of t 4+ At years.

pUtr4t = E[rank at t + At/attractive] — E[rank at t + At/plain looking] (3)

In this example, attractiveness assignment is a randomized treatment. Naturally, such an
experiment is unrealistic. Instead we must rely on a quasi-experiment using observational data.
Any quasi-experiment is confounded by the presence of systematic confounders between the
two groups. Therefore, we build propensity to be treated model to predict attractiveness
assignment from these observed confounders. Controlling for propensity score would be
equivalent to quasi-randomized assignment of attractiveness. First, we formally discuss the
outcome variable, treatment and the confounders. Then the estimation of belief and preference

biases.

Outcome (r;,): We standardize the job ranks for all individuals i whose job transition is observed
between t — t + At. Standardization is useful because the same job may be considered to be
successful in the early career but unsuccessful later. For example, at year 1, a senior associate
may be a successful job outcome, while an intern is likely to be an unsuccessful state. By year 15,
a senior associate may be an unsuccessful state while a managing partner is likely to be
successful. Standardization allows us to compare treatment effect across job periods, e.g., year
2 = 3 vs year 8 = 9. In Appendix A.10.3, we show that our results are robust to alternative

measures of job rank beside this standardized measure.



_rank;; — pe(rank; ;) (4)

r. =
Lt o (rank; ;)

Treatment (b;,): We divide all individuals i whose job transition is observed between t — t +

At, into attractive (b;; = 1) and plain-looking (b; ; = 0) groups.

b;; = beauty;, — Median,(beauty;) (5)

Demographics (D;): Individuals’ demographics may have two simultaneous effects — (i)
attractiveness ratings by human raters and therefore our attractiveness prediction model may
systematically rate individuals in certain demographics higher or lower, (ii) individual may face
bias in their career because of their demographics. As a result, it would be unclear if career
success is the outcome of demographic (gender or ethnicity or ageism) bias or attractiveness
bias. Therefore, it is important that attractive and plain looking groups are randomized with
respect to these demographics in order to cleanly separate the effect of attractiveness bias. We
derive ethnicity’ both from face image and name. Similarly, we derive age both from face
image and undergraduate graduation year. These are inherently noisy guesses. This is not a
problem since human attractiveness raters or employers also make their judgments based on
noisy guess of individuals’ ethnicity and age based on their looks or name. Once matched on D;,
the treated and control groups will have similar gender, similarly ethnic sounding names,
similarly ethnic looks, similarly young looks and similar undergraduate graduation year.

D; = (gender, faceEthnicity, nameEthnicity, faceAge,ugAge)

ethnicity; age;

Education (E;): While we want to study attractiveness bias in post-MBA careers, the individuals
may not have started on an equal footing. They may have faced bias at admissions to high
quality undergraduate or MBA programs. They may also have chosen certain types of

educational degrees based on knowledge of their looks, e.g., more attractive individuals may

”u

7 We do not make any attempt to discern nuanced definitions of “race,” “ethnicities” and skin colors. We use the term “ethnicity”
throughout the paper to refer to all factors that may cause systematic job market differences.



choose performing arts degrees. Even though these individuals eventually complete the same
MBA degree, the average career progression is likely to be significantly different based on
guality and type of education. The effects of this pre-MBA stratification is not the focus of our
research. Therefore, we randomize attractive and plain-looking groups over education and
training. We do so using undergraduate university, undergraduate university rank,
undergraduate degree (Science, Arts, Business, Others), length of experience between
undergraduate and MBA8, MBA School and MBA school rank.

E; = (ugSchool;,ugRank;,ugDegree;, mbaSchool;, mbaRank;, mbaYear;,

preMbaExperience;, ugFees;, mbaFees;)

We also randomize the year of MBA graduation. For estimation, we pool together MBA
graduates between 1990 and 2015. This potentially leads to the following two concerns: (i)
Typical career progression in the 2000s may have changed significantly due to structural shifts
in job markets. Employers may have become less hierarchical and more accepting of young,
highly talented individuals taking on critical roles early in their career. As a result, the 1990s
graduates may have moved more slowly through their early careers. (ii) Even if the structure of
the job market is assumed to have remained static, the 1990s graduates are less likely to
accurately record their early career progression on this professional social network. Thus, there
is a greater likelihood of early graduate profiles having missing career steps. Both (i) and (ii)
result in a perception of slower (or at least different) career growth for early graduates (i.e., the
1990s) relative to more recent graduates (i.e., the 2000s). Randomizing years of MBA

graduation eliminates these concerns.

It does not play a direct role in productivity, but it could be argued that wealth can be utilized
for better education. Education quality is already randomized by features discussed above. It

may also be argued that wealth plays an indirect role in career progression by opening up

8 Thus, we consciously choose length of experience between undergraduate and MBA instead of pre-MBA job rank, because the
former is more predictive of post-MBA career success. In our dataset, average job rank over the entire sample grow uniformly
from t = 0 to 15 years after MBA graduation. However, the average job rank has no upward growth prior to MBA. We interpret
this as individuals engaged in career exploration, diversified training and internships, unlike MBA graduates who are focused on
growth in their chosen career.



networking opportunities or providing easy access to capital for young individuals to run their
own companies. While we do not have evidence for this, let us assume that individuals with
wealthier childhoods are permanently more attractive in their adulthoods. Thus, wealth may be
driving both career success and attractiveness. We do not have any direct access to individuals’
family wealth. We use tuition fees at various undergraduate and MBA universities as an indirect
measure. The underlying assumption is that individuals have an array of university choices with
similar rankings and there is some natural sorting of wealthier individuals into universities with

higher tuition fees.

Job Domain (JD;): The job attained and thus the individual’s state in year t + At depends on the
individual’s state in the previous year r; ;, which in turn depends on 7; ,_; and so on. Thus, career
state at year t + At is not simply an outcome of performance or bias in year t 4+ At. Early success
(say outcome in year 1, 1; 1) due to early career performance or bias may have a far-reaching
effect. Therefore when studying bias in career phase t = t + At we must randomize attractive
and plain looking groups over their job rank r; ; at the start of this period. Further, individuals at
the same stage of their career and with similar abilities may progress differently because of the
typical progression in their domain. /D; ; also captures the individuals’ current industry, job type,
location size and employer size. As a hypothetical example, a Google software developer may
start at $150,000, but growth may be slower. In contrast, a Goldman Sachs investment banker
starts with a long training program, producing little, and earning $60,000. However, he or she
may have much faster executive growth opportunities.

ID;r = (11, industry;, jobType;,, employerSize;, locationSize;, locationChange;, )

Picture Characteristics: The attractiveness measure (b; ;) comes from a predictive machine
learning model applied on subjects’ self-posted pictures. Ideally, the subject should not be
altering their own attractiveness (treatment). There is a plausible risk that some alterable
characteristics seep into the attractiveness measure. We divide such characteristics into four
categories — (i) Photograph quality PQ;, (ii) Visible Characteristics VC; e.g,. makeup within the

face area that is cropped in and visible to human raters and our attractiveness prediction



module. (iii) Invisible Characteristics IC; e.g., clothing outside the face area that is cropped out
and invisible to our attractiveness prediction module. (iv) Health H; e.g., dark circles which may
be altered cheaply on a photograph using Photoshop or altered in reality over long term costly
investment in healthy lifestyle and cosmetic products.
PQ; = (blur;, exposure;, noise;, faceQuality;, resolution;)®
VC; = (lipMakeUp;, eyeMakeUp;, beard;, moustache;, sideburns;, eyeGlasses;, smile;)
IC; = (bald;, background;, clothing;, Necklace;, Hat;, Earrings;, otherAccessories;,)

H; = (stain;, health;, darkCircles;)

Forward-looking individuals may be more strategic, posting outdated pictures of their younger
selves. Note that we already randomize age derived from face images faceAge; as part of
demographics D;. Thus, we are already dealing with this concern by only comparing individuals
who look to be of similar age from their pictures. A more tricky argument to deal with would be
that forward-looking (or ambitious, prosperous or professional) individuals are habitually or
strategically more likely to pay attention and invest in picture characteristics. Thus, a forward-
looking attitude may be driving both career success and attractiveness ratings. In Appendix
A.6.4 we show that picture characteristics (PQ;, V C;, IC;, H;) are in fact positively correlated
among each other. For example, individuals who wear lipstick are also more likely to dress

professionally and to post high resolution pictures.

Fortunately, invisible characteristics (IC;) do not have any way of seeping into our econometric
model because we crop out hair, clothing and background from the photograph. We minimize
concerns with remaining picture characteristics (PQ;, VC;, H;) by - (i) Re-orienting (roll, tilt, yaw)
the face and standardizing picture quality (pixel value distribution, resolution). (ii) Extracting
128-Dim face features using a face recognition module trained to devalue temporal
characteristics. (iii) Image morphing that evolves faces based on average population level

evolution paths thus devalue unique temporal features, e.g., unique sideburns or sunglasses.

9 noise; refers to random variation of pixel color or brightness caused to image capturing instrument. faceQuality; refers to

how well the profile picture captures the face without occlusion, rotation etc.



All of these are meant to ensure that a subject’s choice of profile picture does not change the
attractiveness measure. Even with these design elements in place, we further randomize
attractive and plain-looking groups on (PQ;, VC;, H;). We would effectively be comparing
counterparts who post pictures with similar picture characteristics, so that any systematic

picture choices by subjects do not confound our attractiveness bias results.

Note that attractiveness is made up of both un-alterable and alterable face characteristics.'° Our
randomization over alterable characteristics (faceAge;, PQ;,V C;, H;) must not be interpreted to
mean that these factors do not have any impact on common perception of attractiveness or bias
in the workplace. Instead we are saying that we cannot identify the relationship between career
success and attractiveness from alterable face characteristics using observational data. While we
expect that posting professional photographs, makeup, fashionable facial hair, etc. has an impact
on career advancement, these effects are easy to manipulate for subjects and thus not the focus
of our observation data study. In fact, these effects are actually much easier to ascertain in
experimental studies, where researchers could perform randomized assignments of makeup or
hairstyle. Such a randomized experiment is not possible for unalterable face structure (except

through plastic surgery).

Note that all the features described above attempt to randomize the attractive and plain-looking
groups among the available sample of collected profiles. Naturally our sample covers only a
fraction of all MBA graduates between 1990-2015. It excludes individuals (i) who left the job
market entirely and therefore do not keep an active professional social profile, (ii) who are active
in the job market but choose to not keep an active searchable profile or (iii) who keep an active

profile but do not post a picture. We discuss resulting selection biases from this in Section 7.

10 After randomizing over (D;, PQ;, VC;, H;) does the remaining unalterable features even have any significant role left to play in
our attractiveness measure? In Appendix A.6.4 we show that (D;, PQ;, V C;, H;) have a combined attractiveness explanatory power
of 13.2% (r-squared), a big chunk of remaining attractiveness explanatory power likely comes from these unalterable features.



5.3 Estimation

We want to create propensity score matched (PSM) sample of attractive and plain looking groups
to identify effect of attractiveness in a At year period from t — t + At after MBA graduation.
pScore; .(¢) parameterized by ¢ denotes individual i’s propensity to be assigned in attractive
group instead of the plain looking group at t years i.e. start of the t — t + At period. We find a
plain-looking (b;, = 0) counterpart for every attractive individual (b;; = 1) with closest
propensity score pScore; (¢) = pScore;.(¢). We repeat this procedure 15 times to create
propensity score matched samplesfor0 - At,1 - 1+ At,2 - 2 + At, ... ,14 - 14 4+ At. Note
that the propensity score models are different every time because JD;; is time variant. All these
15 samples stacked together make up our PSM estimation sample.

1 (6)
1+ exp(—=[D;, E;, ] Dy, PQ;, VC;, Hi] * )

pScore; (¢) =

We can now estimate size of attractiveness bias (£5,) as,

Tierar = Bo + B1D; + B2biy + P3/Dir + BaE; +u (7)
Ticrae = Bo + PiD; + 1(t S TUS)BEb; . + BEby, + BaDir + BuEy + wie (8)
D; = (gender;, nameEthnicity;)
JD;; = (industry;, jobType;,, employerSize;, locationSize;;)

E; = (ugRank;,ugDegree;, mbaRank;)

The equation 7 above assumes that attractiveness bias is constant throughout the career, i.e.,

B, = zt’HAtVt. We originally hypothesize dynamics in attractiveness bias, i.e., belief and

preference bias in early career (BZt'HM = B5 + pL v t < T°fT) and only preference bias in
late career (/)’zt’HAt = BP Vv t > TWIT), Thus, the equation 8 estimates the size of belief bias

(BE) and preference bias (52) through a 15 year post-MBA career. The remaining covariate



explain demographic bias (D;), idiosyncracies of job domain (/D; ;), and impact of education (E;)

on career success.!!

A similar model specification has been used in income and earning equations. The literature
(Zhang and Zhou 2017, Altonji et al. 2013, Browning and Ejrnaes 2013) on individual earning
dynamics captures the dynamics by using a time series ARMA process and time-invariant
heterogeneity, such as schooling, ethnicity, experience, employment duration and job tenure.
We have made numerous choices in the overall PSM based estimation above:
(i) A logistic (instead of SVM or decision tree classifier) propensity score model with
linear (instead of interaction or higher degree) covariate effects.
(ii) Nearest neighbor (instead of exact) matching of treated units with untreated ones
without replacement (instead of with replacement).
(iii) Single parameter estimates across the matched sample instead of parameter
estimates for different propensity score stratas (Imbens 2015, Eckles and Bakshy
2017).
These choices closely follow recent Marketing Science literature, such as Gordon et al (2019),
Yoon (2019) and Cao and Sorescu (2013), for estimation on propensity score matched samples.

We compare these PSM design choices with alternatives in Appendix A.9 (i and ii) and A.10.1 (iii).

6. Results

6.1 Bias Dynamics

We estimate our model using 472,934 career snapshots (i, t combinations) for 43,533
individuals. That is an average 10.86 yearly snapshots per individual.*? After propensity score

matching we are left with 275,858 career snapshots. The average percentage standardized bias

11 Note that controls (DL-,]DL-J, Ei) were already used in propensity score matching. Their role in the regression is purely to add
explanatory power and facilitate supplementary analysis. These are also not the full set of available features that were used for
propensity score matching. Some of the features have significant correlation among each other with little additional explanatory
power. In Appendix A.10.7, we report Variance Inflation Factor (VIF) and robustness of our main findings if the full set of controls
were included.

12 while we study 15 years of an individual’s career, this average of 10.86 is naturally smaller because: (i) individuals who
graduate after 2002 do not have 15 years of experience history by 2017, and (ii) some individuals may leave gaps in their career
history, e.g., job 1 from 2002-2006 and in job 2 from 2010-2013.



across all confounders reduced from 9.04% to 0.36% after PSM (Table 8). This measures how

well PSM solves imbalance in confounders. Appendix A.9 reports the percentage standardized

bias before and after PSM for all confounders (D;, E;, ] D¢, PQ;, VC;, H;). All the covariates have

an imbalance of less than 2% after matching. This is typically considered a successful match.

Fi

gure 10 also shows histogram of propensity scores of treatment and control groups before

and after matching.

Number of Profiles

|EDx/by = 1] = Elx/by = 0] (9)
(0.5« Var(x/b,, = 1) + 0.5 * Var(x/b;, = 0))*°
|E[pScore/b;, = 1] — E[pScore/b;, = 0]|
(0.5 * Var(pScore/b;; =1) + 0.5« Var(pScore/b;; = 0))0'5
Var(pScore/b;y = 1)
Var(pScore/b;; = 0)

Std. Bias for covariate x =

Rubin's B =

Rubin's R =

Table 8: Treatment and Control statistics before and after PSM. A Rubin’s R between 0.5-2.0 and a
Rubin’s B less than 25 indicate a good match.

Statistic Before Matching After Matching
Mean % Std. Bias 9.04% 0.36%

Rubin’s R 0.73 1.01

Rubin’s B 98.07% 0.74%
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Figure 10: (Left) Histogram of propensity score for treatment and control groups before (Top Left)
and after (Bottom Left) PSM. (Right) Percentage Standardized Bias for approximately 50 matching
covariates before (dark) and after (light) PSM.
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Table 9: Descriptive Statistics for numerical variables after PSM. UG Ranks between 1 to 200 are
scaled from 0 to 1. MBA Ranks between 1 to 100 are scaled from 0 to 1.

Variable Min Max Mean | Std. Dev.
Attractiveness (b;¢) |0 1 .50 .50
Rank (7 ) -2.44 349 | .01 1.0
UG Rank 0 1 0.67 0.43
MBA Rank 0 1 0.38 0.40
Large Location 0 1 .50 .5
Large Employer 0 1 .50 .5

We estimate Table 10 Model 1 and 2 using a static persistent attractiveness premium £,
throughout the 15 year career period. The estimates for 8, = 0.011 are positive and significant
at the 1% level. Since ranks (r; ;) are standard normal, this means that attractive individuals gain

a 0.011 standard deviation in a single year.

Tit+ar = Bo + P1Di + Babie + B3JDiy + PuE; + w; (10)

Attractiveness Gap: Here, we define the attractiveness gap that will be used going forward. A
gain of a 0.011 standard deviation in a single year means that the job ranks for the two groups
are normally distributed as N(0,1) and N(0.011,1) at the end of the year. We can use these
distributions to calculate the probability that an attractive individual’s rank r, exceeds the rank
T4 Of their plain-looking counterpart. This probability comes out to 50.44%. We call this a
single-year attractiveness gap of 0.44%. Going forward, we will use this definition of the
attractiveness gap. Later in this section, we will look at the lifetime premium through the yearly
accumulation of this premium.

\%f lexp(—(r — 0.011)) — exp(—r?)| dr 1)

beauty Gap = P(ry > 1yu) =

First, we modify the model to discern B and B2, denoting the preference and belief biases
respectively. The preference bias is modeled to play a persistent role throughout the career.
The belief bias is modeled to vanish after the first half of the career, i.e., after 6 years. As
discussed in section 2.3, we expect T%°ff = 6 years to be more than sufficient duration for

prior beliefs to be overcome by actual performance signals (Andreoni & Petrie 2003, Rezlescu et



al. 2012). We expect that after 6 years, employers, managers or any other evaluators will have
sufficiently long and informative performance history for the subject. In Appendix A.10.4, we
report the robustness of our results with respect to three different cut off points for the end of
early career, i.e., 4 years, 6 years and 8 years after MBA graduation.

Tierar = Bo + PiD; + 1(¢ S TUOSN)BEh;, + BEbiy + BaJDiy + PuEi + uiy (12)

Table 10: [Covariates are skipped here, full Table at end of appendix] (Model 1 and 2) The
impact of attractiveness on career rank with and without gender interaction. (Model 3 and
4) The impact of attractiveness preference and attractiveness belief on career rank with and
without gender interaction.

M @) ©) 4)
rank (17 () rank (7; ;) rank (7; ;) rank (7; ;)
Attractiveness 0.011%** 0.012%*
(0.003) (0.004)
Attractiveness * Female -0.003
(0.008)
Belief Bias -0.005 -0.008
(0.007) (0.008)
Preference Bias 0.013%* 0.015%*
(0.005) (0.005)
Belief Bias * Female 0.013
(0.015)
Preference Bias * Female -0.009
(0.010)
Gender(Male) 0.164** 0.162%* 0.163** 0.178%*
(0.004) (0.006) (0.004) (0.007)
Constant 0.495%* 0.496** 0.500%** 0.490**
(0.014) (0.014) (0.014) (0.015)
Obs. 275858 275858 275858 275858
R-squared 0.169 0.169 0.169 0.169
Adj R-squatred 0.169 0.169 0.169 0.169
F 3111.048 2947.309 2801.290 2437.457
RMSE 0.914 0.914 0.914 0.914

Standard errors are in parenthesis

# p<0.01, * p<0.05 .

We had set out to answer the following three research questions: (i) Is preference bias absent,
positive or negative? (ii) Is belief bias absent, positive or negative? (iii) What is the combined
effect when preference and belief bias coexist early in professional careers? In response to the

first question, the preference bias is positive and significant (Table 10 Model 3 and 4). The
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preference bias is associated with a single-year attractiveness gap of 0.52% (coefficient of
0.013). This is equivalent to a 50.52% probability that an attractive individual exceeds a plain-
looking counterpart, both individuals having started the year in a similar position. Regarding the
second question, we find that belief bias is insignificant at a 5% significance level in professional
careers after MBA graduation. This does not necessarily mean that belief biases do not exist at
all. Prior experimental literature provides abundant evidence for the existence of belief bias in
specific employer employee interaction. Our findings suggest that any belief bias in such
interactions may not add up to a significant premium to attractive MBA graduates in the post-
MBA professional jobs (white-collar jobs). Because the belief bias estimate is insignificant, we
refrain making any strong claims about the belief bias being zero or negative. There is some
weak indication that penalty for plain looks persist unabated and may even grow slightly even
after the individual has spent years showing their skills in the job market. Finally in response to
the third question, we find that there is a positive combined belief and preference bias when

they coexist early in a career, and this is largely driven by preference.

6.2 Lifetime Bias

Prior empirical research (Hamermesh and Biddle 1994, Zebrowitz and Donald 1991) shows an
attractiveness wage gap of 2-8% (Hamermesh and Biddle 1994, Biddle and Hamermesh 1998,
Doorley and Siesminska 2015). Our primary model shows a 0.44%-0.52% advantage for
attractive individuals in a single year. Similar to previous attractiveness gap studies!?, we also
want to develop a model to measure lifetime premium for an attractive individual over the

entire 15 year period.

We start with 19,405 individual profiles where we observe at least 15 years of career. As before,
we use PSM to narrow down to matched sample of 12,096 profiles. The Table 11 reports that
average imbalance across all confounders is reduced from 8.88% to 0.58% after PSM. Figure 11

also shows the propensity to be assigned to treatment and control groups before and after

13 Wage gap calculations typically combine the effects of different jobs attained by two groups and different wages for the same job. We do not
measure wages; instead, we focus only on the differential in the attainment of desirable jobs. The readers can reference the wage gap numbers
but should be careful that it’s not a like-for-like comparison.



matching. Table 12 provides the descriptive statistics key variables after propensity score
matching. In this model, we replace the time-variant characteristics of the job domain JD; . with
time-invariant characteristics JD;. For example, if an individual switches industries over his or her
career, we only use the single industry where the individual spends the maximum duration.

Similarly, we use a static measure of individuals’ attractiveness at 15 years after MBA graduation.

Ti1s = PBo + P1Di + B2b; + B3]D; + BLE; + (13)

We find that attractiveness is associated with a 15 year attractiveness gap of 2.4% (coefficient of
0.06). We had earlier found a yearly attractiveness gap of 0.44-0.52%. It is important to highlight
a key distinction using these results. If a successful senior job (say CEO) is dominated by attractive
individuals, it may not necessarily be explained by bias when the board picks the CEO. It may be
an outcome of gradual bias throughout the career, with early career gap (e.g., MBA school
assignment or 1%t post MBA-job) playing a significant role. A lifetime bias alone does not clarify
when the bias occurs.

Table 11: Treatment and Control statistics before and after PSM

Statistic Before Matching After Matching
Mean % Std. Bias 8.88% 1.12%

Rubin’s R 0.88 1.01

Rubin’s B 93.66% 0.57%
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Figure 11: (Left) Histogram of propensity score for treatment and control groups before (Top Left)
and after (Bottom Left) PSM. (Right) Percentage Standardized Bias for 50 matching covariates before
(dark) and after (light) PSM.
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Table 12: Descriptive Statistics after PSM. UG Ranks between 1 to 200 are scaled from 0 to 1. MBA
Ranks between 1 to 100 are scaled from 0 to 1.

Variable Min Max Mean | Std. Dev.
Attractiveness (b; o) |0 1 .50 0.5
Rank (7} ¢) -2.44 | 329 |.03 1.01
UG Rank 0 1 0.69 0.42
MBA Rank 0 1 0.41 0.41
Large Location 0 1 .40 0.49
Large Employer 0 1 46 0.5

Table 13: [Covariates are skipped here, full Table at end of appendix] (Model 1) The impact of
attractiveness on career rank at the end of 15 years. (Model 2) The impact of attractiveness with gender
interaction. (Model 3) The impact of attractiveness with ethnicity interaction. (Model 4) The impact of

attractiveness for individual of European ethnicity alone

M @ ©) )

rank (77 15) rank (77 15) rank (77 15) rank (77 15)
Attractiveness 0.060%** 0.055%* 0.048* 0.081**

(0.017) (0.019) (0.022) (0.018)
Attractiveness * Female 0.021

(0.040)
Attractiveness * Ethnicity (Others) -0.037
(0.168)
Attractiveness * Ethnicity (European) 0.033*
(0.015)

Gender (Male) 0.203** 0.213** 0.203** 0.209%*

(0.021) (0.029) (0.021) (0.022)
Ethnicity (European) 0.001 0.001 -0.016

(0.043) (0.043) (0.062)
Ethnicity (Others) 0.109* 0.109* 0.175*

(0.050) (0.050) (0.070)
Constant 0.376** 0.368** 0.385%* 0.424**

(0.069) (0.070) (0.081) (0.058)
Obs. 12100 12100 12100 10176
R-squated 0.151 0.151 0.152 0.153
Adj R-squared 0.150 0.150 0.150 0.151
F 119.372 113.097 108.010 114.503
RMSE 0.932 0.932 0.931 0.926

Standard errors are in parenthesis
** p<0.01, * p<0.05 .

We highlight some role of some familiar factors in career success. Among male and female

peers, the male individual exceeds his counterpart with probability 57.9% at the end of 15 year
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career, i.e., gender gap of 7.9%. This is in line with gender bias studies. An undergraduate
university ranked 40 places higher* adds a gap of 3.6%. An MBA program ranked 20 places
higher'®> adds a gap of 8.3%. A “technical” job type in the “IT” industry hurts long term career,
while “management” or “consultant” job type in the “management” industry assists career

success.

6.3 Bias Interactions

Gender and Ethnicity

While a majority of attractiveness bias literature does not highlight any differences between men
and women, a few experimental studies (Agthe et al. 2010, Ruffle and Shtudiner 2014) point to
penalty for attractive young women in interaction with same sex evaluators. It is suggested that
a penalty occurs when envy or perceived lack of career seriousness is heightened in an
interaction. An attractive women may go through a mix of interactions where an evaluator’s

beliefs and preferences aid or penalize them. The combined attractiveness bias is unclear.

Table 10 Model 1, 3 and Table 13 Model 2, all show statistically insignificant gender interaction
terms for the dynamic and lifetime models. Our results suggest that all factors considered
simultaneously, penalizing interactions faced by young attractive women may not have a
dominant role overall. Given our focus on top 100 ranked MBA programs, misperception of lack
of career seriousness for young attractive women is likely minimal. It is critical to note that while
the preference bias may similarly favor attractive male and female employees, it may be more
likely to take the form of sexual harassment for female employees. Premium from preference
bias is likely driven by inclination for social interactions with both attractive male and female
employees. This preference may go further toward pursuit of (often unwelcomed) romantic

interactions with attractive female employees by predominantly male superiors.

14 40 places in undergraduate ranks is approximately equivalent to 1 std. dev. above average in standardized N(0,1) university ranks.

15 3o places in MBA ranks is approximately equivalent to 1 std. dev. above average in standardized N(0,1) MBA ranks.



We also discern attractiveness bias for ethnicities (Caucasian/European vs others). Table 13
Model 1 found an advantage of 2.4% for attractive individuals over their plain-looking
counterparts. In comparison, Table 13 Model 3, 4 suggest that attractive Caucasian individuals
have an advantage of 3.2% (coefficient 0.048 + 0.033) over their plain-looking Caucasian
counterparts. We have limited data to differentiate among ethnicities with smaller
representation in our sample e.g., African American, Asian, etc. We can speculate that a larger
attractiveness bias for Caucasian individuals may stem from a large fraction of evaluators and
managers also being Caucasian. Any preferences for social or romantic relationships with
attractive individuals are likely heightened between employers and employees of the same

ethnicity.

Skills and Job Domains

We expect preference-based bias in favor of attractive individuals to exist across the board, but
it may be particularly large where an employee is expected to have significant social interaction
with an employer and its clients. Table 14 Model 1 reports an attractiveness premium coefficient
of 0.156 (0.065 + 0.091) for individuals with undergraduate degrees in Arts compared to
premium of 0.065 or lower for all other undergraduate degrees. However, this coefficient is
statistically insignificant (significant at 10% level). Model 2 reinforces a large premium for Arts
undergraduates using a breakdown of Arts vs all other undergraduate degrees. We speculate that
Arts undergraduate degree holders, more than their Business, Science or Engineering peers, are
likely considered for roles with social interaction instead of isolated desk jobs. We would expect
similar social interactions for consultants and management professionals. Model 3 reports a large
attractiveness premium of 0.118 for individuals in the Management industry category. This
industry category interaction effect is statistically significant at 5% level. Model 4 reinforces this
result with a breakdown of Management vs all other industry categories. Model 5 reports a large

attractiveness premium coefficient for Consultants, but this is statistically insignificant.

Thus far, we have discussed the role of attractiveness in career progression within a job domain.

We have not discussed the role of attractiveness in assignment to these job domain in the first



Table 14: [Covariates are skipped here, full Table at end of appendix] The impact of attractiveness on
career rank at the end of 15 years. (Model 1) Interaction with Undergraduate degree, (Model 2)
Interaction with undergraduate degree classified as Arts vs all others (Model 3) Interaction with Industry
Category, (Model 4) Interaction with Industry Category classified as Management vs all others. (Model 5)

Interaction with Job Type. (Model 6) Interaction with MBA Rank.

M &) ©) ) ©) ©)
rank rank rank rank rank rank
(Ti,15) (Ti,15) (Ti,15) (Ti,15) (Ti,15) (Ti,15)
Attractiveness 0.065% 0.045% 0.053* 0.042% 0.093 0.092%*
(0.027) (0.018) (0.028) (0.019) (0.089) (0.024)
Attractiveness * 0.091
UG (Arts) (0.053)
Attractiveness * 0.004
UG (Business) (0.082)
Attractiveness * -0.042
UG (Science) (0.038)
Attractiveness * 0.112*
UG (Atts) (0.049)
Attractiveness * -0.043
Ind. Cat. (Others) (0.083)
Attractiveness * -0.002
Ind. Cat. IT) (0.060)
Attractiveness * 0.075%
Ind. Cat. (Management) (0.031)
Unattractiveness * 0.086*
Ind. Cat. (Management) (0.042)
Attractiveness * 0.060
Job Type (Consultant) (0.360)
Attractiveness * -0.133
Job Type (Technical) (0.187)
Attractiveness * 0.019
Job Type (Others) (0.091)
Attractiveness * -0.076
MBA Rank (0.041)
Gender(Male) 0.203** 0.203%* 0.203** 0.203** 0.203** 0.202%*
(0.021) (0.021) (0.021) (0.021) (0.021) (0.021)
Constant 0.330%** 0.441%* 0.373%* 0.385** 0.351%* 0.359**
(0.072) (0.074) (0.071) (0.069) (0.076) (0.069)
Obs. 12100 12100 12100 12100 12100 12100
R-squared 0.151 0.151 0.151 0.151 0.151 0.151
Adj R-squared 0.150 0.150 0.150 0.150 0.150 0.150
F 102.656 113.396 102.602 113.340 102.422 113.296
RMSE 0.931 0.931 0.931 0.931 0.932 0.931

Standard errors are in parenthesis

*# p<0.01, * p<0.05 .
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place. In fact, Propensity Score Matching eliminates any imbalance in assignment across job
domains. The Table 15 reports proportion of attractive individuals in different undergraduate
degrees, industries, and job types prior to PSM. Science undergraduate, IT industry and Technical
jobs have the fewest attractive individuals. If individuals were strategic, we would expect
attractive individuals to steer away from domains where they expect to get the least premium
for their looks. In line with this argument, Science or Engineering degrees and Technical jobs in IT
industry typically require the least social interactions. We are not aware of any prior research
which has looked at attractiveness bias differences across job domains, and related strategic
education or career choices by individuals themselves. We have provided some model free
breakdown and conjectures backed by (weak) correlations; this merely constitutes a starting
point for future research.

Table 15: Number of attractive individuals as a percentage of all individuals in the domains — UG Degree,
Job Type and Industry Category.

UG Degree | %Attractive Industry Category %Attractive Job Type %Attractive
Science 45.9 IT 48.4 Technical 41.8
Arts 48.3 Others 49.3 Consultant 50.0
Business 51.2 Management 49.4 Others 50.5
Others 55.3 Finance 54.2 Management | 50.5

Table 14 Model 6 reports an attractiveness premium of 0.092 for attractive individuals and an
interaction coefficient of -0.072 with MBA Rank. The interaction term is statistically weak, i.e.,
significant only at 10% level. The weak evidence would suggest that attractive individuals from
top ranked MBA program has an advantage of 3.6% (coefficient of 0.092) over their plain-looking
counterparts. In comparison, attractive individuals from a 100 ranked MBA program would have
an advantage of merely 0.8% (coefficient of 0.022 = 0.092 — 1.0*0.072). In Appendix A.10.6 we
also report results using profiles from top 20 MBA programs alone. We find a preference bias
attractiveness gap of 1.1% per year (coefficient of 0.021) for top 20 MBA programs, instead of
attractiveness gap of 0.44% per year for all MBA programs. Once again, we are not aware of prior
literature which suggest more attractive premium in upper echelons of education and job

market. It is likely that top MBA graduates have a realistic shot at extremely rare desirable career



outcomes such as C-level executives. Role of all secondary factors (gender, ethnicity, appearance)

may be heightened in such settings.

7. Robustness Checks

Our analysis covers only a small fraction of all MBA graduates. A systematically biased selection
of profiles can interfere with our results. We discuss the following selection concerns: (i)
individuals’ choice to not post a profile picture, (ii) individuals’ choice to not create a profile or
to drop out of the job market entirely because of lack of success, better outside options and

phases of economy wide unemployment crisis.

One could argue that plain-looking individuals believe that by not posting their picture, an
uncertain observer assigns a higher-than-actual face attractiveness guess. This means that
individuals with observed pictures are under-sampled from the plain-looking subgroup. This in
itself is not a problem as long as this strategy holds true across both successful and unsuccessful
plain-looking individuals. However, one could extend the argument that serious individuals are
strategic about the effect of their picture. Therefore, serious plain-looking individuals choose
not to post their pictures. Non-serious plain-looking individuals do not pay attention to this
strategic choice and post their true pictures. Thus, our dataset will suffer from under sampling
of serious (or professional, strategic or ambitious) plain-looking individuals who are more likely
to be successful. This is a problem if successful unattractive individuals are increasingly likely to
remove their pictures. The remaining profiles (with posted pictures) would appear to have
increasingly fewer successful unattractive individuals, thus giving a misperception of
attractiveness bias. If true, this would mean that profiles without pictures are systematically
more successful in job markets than profiles with pictures. In Appendix A.11.2, we test and

reject this hypothesis.

One could argue that unsuccessful individuals (small 7; ,_1) may be more likely to drop out of the
job market if they have an outside option. Consider profiles collected in 2017 for two graduating

classes from 1997 and 2012. We observe average career outcome 5 years after MBA for both



these graduating classes: in year 2002 for class of 1997, and in year 2017 for class of 2012. If
unsuccessful individuals systematically drop out, then unsuccessful individuals in the class of
1997 would have dropped out between 2002 and 2017, thus they are left out of our sample. As
a result, the 5 year performance for class of 1997 would appear to be higher compared to the 5
year performance for the class of 2012. In Appendix A.11.1, we test and reject this hypothesis

formally using all MBA classes.

A second argument could be that attractive individuals are more (or less) likely to drop out. There
may be better (or worse) outside options for attractive individuals (e.g., financially secure
marriage prospects). If attractive individuals drop out systematically, we would expect the
average attractiveness of the observed sample of class of 2005 to be smaller than that of class of
2007. We can match these two classes on the undergraduate graduation year as a proxy for
matching the current age. Any difference between the average attractiveness would now point
to systematic drop out by attractive individuals. In Appendix A.11.1, we test and reject this

hypothesis formally using all MBA classes.

In addition to success and attractiveness, dropouts may also systematically happen based on
gender and graduation era. This may be because of the following: (i) The outside option is better
(or worse) for one gender than the other (e.g., homemaker or blue collar work). (ii) Certain
periods may have unusually low employment, e.g., the 2008-2009 crisis, where unemployment
temporarily went from 4% to 10%. We have access to a secondary dataset that provides visibility
into the gender and graduating class of individuals whose profiles are selected out of our sample.
In Appendix A.11.3, we estimate a Heckman’s self-selection model on this dataset to match our
original findings. This secondary dataset uses a completely different profile search procedure.
However, it matches our original attractiveness bias results. This provides additional confidence

that using the black box platform search functionality to collect profiles is not biasing our results.



7.1 Other Limitations

We highlight two key limitations for our research methodology. First, the majority of profiles in
our analysis come from top 100 MBA schools. Therefore, our results are directly applicable to the
higher echelon of white-collar professional careers in the United States. Practitioners should be
cognizant before extrapolating our conclusion to wider professional work settings. Second, we
only observe a single photograph for every person. This invites potential criticism that we do not
know what the individual looked like when they were hired or promoted through their career. To
allay such concerns, we apply a best-in-class deep learning based image-morphing technique. We
also check the robustness of our findings with respect to different calculations for attractiveness.
Nevertheless, we acknowledge that deep learning based image morphing techniques are nascent

and must be taken with a grain of salt.

8. Conclusion

Our research finds an attractiveness gap of 2.4% over a 15 year career after MBA graduation. This
15 year gap is an accumulation of a yearly 0.44-0.52% gap driven by preference bias. This means
that the penalty for plain looks persist unabated, even after an individual has spent years showing
their skills in the job market. A gap of 2.4% may appear small in the context of the ongoing debate
on perverse taste-based harassment at workplace. It must be noted that we only focus on
permanent characteristics of face structure, and consciously eliminate numerous other
superficial characteristics such as hairstyle, fashion, clothing and makeup. While we do not find
any significant evidence of belief bias, it does not imply that there is no belief bias in the job
market. Consider work settings, such as hiring an undergraduate with no work experience and
thus no differentiating signal of skills, accepting a salespersons pitch in absence of objective signal
of his reliability, voting for a candidate without looking at her record, etc. These are all regular
instances where evaluators’ beliefs take over, particularly when they do not have any expectation
of spending time with the employee, salesperson or election candidate respectively. Our results
suggest that such settings do not have a dominant role overall in the post-MBA professional job
market. Further, while we capture average career differential over tens of thousands of

professionals, particular individuals may face more or fewer biases.



Following from our research, future experimental researchers could identify what level of future
interaction expectations creates preference bias during hiring and promotions. We also set the
stage for future research on attractiveness bias for different employee skills, job type and
industry. We also develop quantitative measures of evolving attractiveness ratings and job
rankings that should be more generally usable for future research in bias, personal marketing,

behavioral perception and labor market studies.

This direction of research has significant implications for practitioners. Gender and race biases
have received much attention in recent times. Google, like many other companies, provides their
employees with unconscious-bias training (Feloni 2016). Moreover, hiring procedures are
increasingly emphasizing the importance of performance-related information rather than
demographic information. Such training, awareness and emphasis on performance are targeted
at the elimination of stereotypes and belief biases. The role of beliefs in creating bias may be
avoided under the right settings, but preferences that engender bias are much harder to remove.
The media has highlighted sexual harassment across industries. Such pure taste-based, perverse
favoritism cannot simply be eliminated by small policy changes. It rather requires a social and

cultural change.
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Appendix

A.1 Data Description

Table 16: Self-reported MBA school names with MBA ranks and number of profiles. Some profiles self-
report either a less frequent pseudonym or a less frequent business school. We use numerous text

matching methods to accumulate various pseudonyms.

MBA Rank MBA School Name (as self reported) Profiles
0 Harvard Business School 1837
Harvard University 304
1 Stanford University 603
Stanford University Graduate School of Business 287
5 The University of Chicago - Booth School of Business 1012
The University of Chicago Booth School of Business 971
University of California, Berkeley - Walter A. Haas School of Business 619
3 University of California, Berkeley, Haas School of Business 409
University of California, Berkeley 278
Massachusetts Institute of Technology - Sloan School of Management 1052
4 MIT Sloan School of Management 260
Massachusetts Institute of Technology 187
Northwestern University - Kellogg School of Management 1710
5 Northwestern University 250
Kellogg School of Management 159
Carnegie Mellon University - Tepper School of Business 1565
8 Duke University - The Fuqua School of Business 748
Duke University 159
Cornell University - S.C. Johnson Graduate School of Management 832
9 Cornell University - Johnson Graduate School of Management 821
Cornell University 161
1 University of Michigan - Stephen M. Ross School of Business 1737
University of Michigan 263
UCLA Anderson School of Management 1428
14 University of California, Los Angeles - The Anderson School of Management 1045
University of California, Los Angeles 302
University of North Carolina at Chapel Hill - Kenan-Flagler Business School 1956
15 UNC Kenan-Flagler Business School 138
University of North Carolina at Chapel Hill 228
The University of Texas at Austin - The Red McCombs School of Business 903
16 The University of Texas at Austin 229
The University of Texas at Austin - Red McCombs School of Business 765
19 New York University - Leonard N. Stern School of Business 245
20 Georgetown University - The McDonough School of Business 427
)8 University of Washington, Michael G. Foster School of Business 354
University of Washington 102
60 The University of Connecticut School of Business 625
97 The University of New Mexico - Robert O. Anderson School of Management 547
University of Maryland - Robert H. Smith School of Business, Georgia State University - J. Mack
Robinson College of Business, University of Washington, Michael G. Foster School of Business,
University of Washington, Michael G. Foster School of Business, Indiana University - Kelley
School of Business, Purdue University - Krannert School of Management etc. 18015
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Our primary dataset is collected using “MBA” as a search string along with filters on location = “United
States” and school names. The MBA school names are derived from top 100 ranked MBA programs on US
News business school rankings (as per rankings in 2016). Even though we search for exact business school
names, the search functionality often returns individuals who may have attended a similarly sounding

MBA program. Table 16 shows a breakdown of number of profiles per school.

We also collect a secondary dataset to study sample selection issues in our primary dataset. We access
the school directory of a top 10 MBA program in U.S. This gives us access to names and graduating year
for 15,640 students between 1990 and 2016. We utilize Bing Search API to search for professional
profiles for these graduates. Specifically, we rely on search terms such as “Name” + “School” + “MBA” +
“professional platform web domain name” as well as numerous permutations of the same. We access all
relevant professional profiles returned by such searches. In situations where Bing searches result in
more than one closely relevant profiles (e.g. students with common names) we are able to reject profiles
where the self-reported graduation year does not match the information from the school name. This
secondary data does not rely on the platform’s search functionality. Further it provides visibility into
exact graduates that have been selected out during the data collection. The Figure 12 represents the size
of graduating class from the school directory and the respective number of public profiles we are able to
search via the procedure described above (3399 in total). Out of these 3,399 less than 1500 profiles have

complete profile fields necessary for analysis.
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Figure 12: Size of graduating classes (from school directory) between 1990-2015 and the number of
profiles collected (from professional social network) for each graduating class.
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A.2 Attractiveness Prediction Model
A.2.1 Validation on held-out sample

We evaluate a variety of models as well as a host of hyper parameter settings on each model. We follow
rudimentary practices in Machine Learning literature to iterate over some of standard available
algorithms. We present below only a small glimpse of all these evaluations. Table 17 shows tuning of
penalty hyper parameter on a support vector regression model. A penalty parameter of 0.5 allows the
model to attain a root mean squared error of 0.81 over a 1 to 7 scale on held out sample validation.
Similarly, we fine tune hyper parameters for a variety of regression and classification models. Once
optimal hyper parameters are identified for each model, we make a comparison among the models. Table
18 shows comparison between classification models — Support Vector Classification (C = 1.2), Random
Forest (depth 20, minimum features=3, minimum leaf size = 5), Logistic, K-Nearest Neighbor (K = 3),
Adaboost, Gaussian Naive Bayes and Quadratic Discriminant Analysis. We use the support vector
regression model, which turns out to be the best model based on cross-validation results. Nevertheless
we also identify support vector classification as the best binary classification model. The need for the
classification model will become clear when we explain the external testing sample in A.2.2.

Table 17: Presence evaluation on tuning penalty hyper parameter C on Support Vector Regression.
Results from five fold cross validation are presented as mean and s.d. over the five folds. As C increases
beyond 0.5 the training error reduces but validation error increases i.e. overfitting. Therefore C = 0.5 is

the optimal choice.

Hyper parameter Ad;j. Pearson Correlation | Training Cross-Validation
R-squared RMSE RMSE

C=0.1 0.32 0.61 0.91 1.04 +0.12

C=0.5 0.38 0.62 0.82 0.81 +0.07

Cc=1.0 0.39 0.62 0.81 0.90 £+ 0.04

C=10.0 0.39 0.63 0.81 0.91 £ 0.03

We follow CS literature on facial attractiveness to decide on our evaluation measures (correlation, mse,

roc-auc). Below are some of the key papers in the literature and their performances,

e Gan et al (Neurocomputing, 2014): Deep Self Taught Learning. Correlation 0.774. MSE 1.093.

e Xu et al (IEEE, 2017): PI-CNN. Pearson Correlation 0.85

e Liang et al (IEEE, 2017): Region-Aware CNN. Pearson Correlation 0.83

e Gao et al (ICPR, 2018): Multi Task CNN. Correlation 0.92.
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Table 18: Results from alternative classification ML models. A cross validation accuracy of 0.69 for
Support Vector Classification model means that 69% of labels are predicted correctly while 31% are

predicted incorrectly. We also show F1 and Area under the RO curve.

Model Training Cross Validation

Accuracy F1 ROC-AUC Accuracy F1 ROC-AUC
SVC 0.76 0.72 0.72 0.71+0.03 | 0.67+0.03 | 0.76 + 0.02
Random Forest 0.93 0.92 0.92 0.62 +£0.04 | 0.59 £ 0.05 | 0.68 £+ 0.02
Logistic 0.72 0.71 0.71 0.67 £0.02 | 0.65£0.02 | 0.71 £0.02
K-NN 0.77 0.76 0.76 0.59+0.02 | 0.59+0.02 | 0.63 +£0.04
Ada Boost 0.89 0.89 0.89 0.64 +0.03 | 0.63+0.03 | 0.71 +0.02
Gaussian NB 0.69 0.66 0.66 0.64 +0.02 | 0.62+£0.03 | 0.73 +£0.02
Quadratic 1.00 1.00 1.00 0.62 +0.04 | 0.55+0.05 | 0.69 £+ 0.04
Discriminant Analysis

Training ROC Cross Validation ROC

True Positive Rate

0.4 0.6
False Positive Rate

0.8

1.0 0.0

T T
0.2 0.4

0.6 0.8

False Positive Rate

1.0

Figure 13: Training and Cross validation (1 of 5 folds) ROC curves for Support Vector Classification
(SVC), Logistic Regression (Logit), Adaboost (AdaB) and Quadratic Discriminant Analysis (QDA).

Note that a direct one to one comparison between performance metrics is a little tricky since every

paper uses a slightly different scale of attractive to plain looking ratings. Nevertheless admittedly our

predictive algorithm lags behind some of these contemporary papers. This is largely explained by our

corpus of subject pictures taken in “wild” i.e. picture not taken for prime purpose of attractiveness

prediction modeling. In the section A.2.2, we report how well our predictive model does on other

picture datasets. Our classification accuracy on lot more standardized dataset such as SCUT-FBP and

Todorov Lab dataset is as high as 78% and 100% respectively.
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A.2.2. Testing on external dataset
We want to verify that our attractiveness prediction model has picked up causal drivers of attractive
looks, rather than alterable correlated features chosen by individual on their self posted profile picture.
An example of correlated feature would be photograph quality, if attractive people are more likely to
post high quality picture than the model may be predicting attractiveness ratings based on photograph
quality rather than face structure or symmetry. This concern is reasonable because our training and
validation is done on self posted professional profile pictures from the same platform, where individuals
may be expected to have such systematically biased picture choice behavior. Therefore we test on
dataset from experimental settings where individuals have no control on their face images. We collect
images and labels from three different prior experiments — (i) Chicago Face Dataset (CFD) (ii) SCUT-FBP
Dataset (iii) Todorov Lab Computer Generated. We want to ensure that the predictive model can learn
from any of these datasets and predict on another. This would ensure that the predictive model can
learn and predict attractiveness for any subject pictures (not just professional social network profile
pictures). If we fail to do so, it may mean that our prediction is picking up some picture characteristics
peculiar to how individuals post pictures on the professional social network. In this case we would not
be able to trust the predicted attractiveness to be informative of how these individuals are perceived in

the real world.

Figure 14: (Top) Chicago Face Dataset sample from Ma et al 2015, (Middle) SCUT-FBP sample from
Xie et al 2015 and (Bottom) Todorov Lab computer generated face samples from Rojas et al 2011.
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Figure 14 shows a small sample of face pictures from these three datasets. Note that the datasets
capture face images in widely different settings. Chicago Face Dataset has high picture quality and
standardized clothing and background. SCUT-FBP has a more variable setting but it predominantly
captures Asian ethnicity faces. Todorov Lab faces are computer generated faces with fully standardized
backgrounds, no hair, no skin blemishes or accessories. All of these independent datasets gather
attractiveness ratings at different scales and in-fact very different distribution over the discrete rating
options from human raters. We presume this is because of different definitions of discrete rating scale
options. In order to standardize across datasets, we derive a simple attractive (1) and plain looking (0)
binary classification for each dataset. Table 19 shows that model trained on our AMT dataset is able to

correctly predict attractiveness, accuracy of 0.70,0.71,0.78 well above random 0.5, on all other datasets.

Table 19: Each cell is attractiveness prediction accuracy, with 0.5 being random prediction. The model
is trained on the dataset in the rows and accuracy is tested on dataset in columns. A test accuracy of
0.78 means that the Support Vector Classification model predicted 78% of attractiveness labels on
Todorov’s dataset correctly and 22% incorrectly.

Train \ Test | AMT CFD SCUT-FBP | Todorov
AMT 0.76 0.70 0.71 0.78
CFD 0.76 0.73 0.66 0.97
SCUT-FBP 0.67 0.58 0.78 0.37
Todorov 0.62 0.57 0.46 1.00

A.3 CAAE Image Morphing

The CAAE produces an output X' (an entire image) for a profile picture X and a target age a. CAAE model
learns the probability distribution p(X'/X, @) i.e. age evolution path for face looks. For a new test face not
seen during training, the model predicts an evolution path based on evolution seen for training faces that
were similar to the new test face. It does so by creating a low-dimensional representation for an input
face picture such that similar faces are close together in this low-dimensional space. Thus, the model has
two building blocks - one used to find a low-dimensional latent representation z for an input image X
i.e., p(z/X) and the second used to create pictures at the target age a from this latent representation z
i.e, p(X'/z,a). This latent representation ensures that the image morphing is generalized to faces not
seen during training. These two blocks are common in Computer Vision literature, i.e., Autoencoders (AE)
and Generative Adversarial Networks (GAN, Goodfellow et al. 2014) respectively. We provide intuition

behind these two building blocks and then describe how they are combined together in CAAE.



GAN: The GAN learns to “hallucinate” photo-realistic face pictures of a certain age a. The hallucinated
images X' are generated by using the age a and white-noise random shock € as inputs, i.e., p(X'/€,a). A
GAN has two components, namely, a generator (G) and a discriminator (D). The generator takes white
noise as input. A single realization of white noise is a random shock €. It outputs an image X'. The
discriminator takes an image as an input and tries to distinguish whether the input is real (class y = 1) or
fake (y = 0). Thus the generator hallucinates pictures; the discriminator tells if the image is “hallucinated”
by the generator or its an actual image. The discriminator’s job can be thought of as a person giving
feedback on the quality of the hallucinated pictures. These models take millions of iterations: it is not

feasible to use human feedback on millions of generated pictures.

Initially, both these components are terrible at their task. The generator parameters ¢ are initialized
randomly and thus produce arbitrary outputs X' = Gg(€) which look nothing like X. Even though
generator creates pixel values that look nothing like a face, the discriminator cannot tell this garbage from
actual face pictures. Over training iterations, the discriminator becomes better at discerning
“hallucinated” pictures from actual images. The discriminator parameters 6 are iteratively trained to
classify real versus fake. The loss function pushes the discriminator to output Dg(X) = 1 for real and
Dg(X") = 0 for fake inputs. Next, the generator parameters ¢ are trained to fool the discriminator into
confusing fake samples for real. The generator loss function pushes Dg (X") towards 1 for fake inputs. This
discriminator and generator training steps are repeated numerous times. Thus the model’s objective
function pits the generator against the discriminator. Therefore, the generator also becomes truly
proficient at producing near real images for any age. This method derives its power from the ability of the
deep neural network layers of the generator and the discriminator to break down high-dimensional
complex distributions into simpler building blocks. The shallow layers of the generator learn to create
basic image pieces(e.g., edges, circles). The deeper layers combine together these basic pieces into more
sophisticated forms (e.g., ears, hair, texture). We call pictures created by the GAN generator
“hallucinations” because its random shock input € means that pictures cannot be targeted to a specific

individual. The arbitrary random shocks result in arbitrary (but real looking) face images.

JO,¢) = _Ex~preal [log Dg(x)] + Ex~G¢ [log 1 — Dg(x)] (14)

A conditional GAN used in CAAE allows the generator and discriminators to learn G (€/a) and Dg(X'/a)

conditioned on age a respectively. While the images X’~G¢,(e/a) are now realistic for an age a, the



random shock € means that pictures can not be targeted to a specific individual. We need to replace these

random shocks to be able to create more deterministic outputs.
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Figure 15: Generative Adversarial Network (GAN) architecture with a two layer generator and two
layer discriminator.

AE: The AE block helps to create pictures targeted toward a specific individual. AE’s are used to map a
high dimensional (e.g. 640x480) image X onto a low dimensional embedding z (e.g 128-D) through a series
of neuron layers called encoder (X — z). Next this low dimensional embedding Z is mapped back to an
output X' with the same dimensionality as the input through another series of convolutional filters called
decoder (z = X'). AE’s do not need labels, instead they attempt to directly minimize the difference (or L2
loss) between their output X’ and input X i.e., (| X’ — X| — 0). Intuitively, a low reconstruction loss means
that the network has found encoder (X — z) and decoder (z —» X’) parameters such that the low
dimensional representation z has captured necessary information to reconstruct back the original image.
This is similar to PCA which is used to find a small number of dimensions (principal components) that

preserve the maximum variance in the original high dimensional space.
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Figure 16: Autoencoders with a two layer encoder and a two layer decoder.
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The CAAE model overall combines the AE and CGAN building blocks. More specifically it forces the decoder
(z = X') on the AE module to also act as the generator X'~Gg(€/a) for the GAN module. The latent
representation z replaces the random shock €. While the AE objective function forces the decoder output
to be close to the input (]JX' — X| — 0), the output need not be realistic. The additional CGAN loss further
forces the decoder to generate realistic (Dg(X') = 1) outputs. Once the entire CAAE network is trained it

is able to produce realistic images for a new face image conditioned on any arbitrary age value.

A.4 Attractiveness Evolution Model
Our attractiveness evolution approach models an average decline of attractiveness over age (4,a) and

an additional heterogeneous component of decline among individuals (pila). We first present some
model free evidence to motivate this attractiveness evolution approach. Note that our original dataset
only has access to a single face image per individual. We have access to two external dataset where
individual face images are available at a sequence of age milestones. The CACD dataset [ref] contains
104,595 images for 1282 celebrities between age of 25 and 60. The FGNET dataset [ref] contains 217
images for 42 subjects between age of 21 and 34. The original FG NET dataset contains a large number
of images for subjects at age below 21, but we exclude those. Figure 17 plots the average attractiveness
of subjects at different age in three datasets. The first is our professional social network profile pictures,
second is Cross Age Celebrity Dataset (CACD) [ref] and third is FG-NET dataset [ref]. As expected, the
celebrity photographs in CACD dataset tend to be more attractive on an average. But all three datasets

exhibit a decline in attractiveness over age which is central to our attractiveness evolution model.

beauty;, = Ao+ (A + pHa+pf +e;q (15)

Attractiveness

,,,,,




Figure 17: Average attractiveness of subjects at different age for three datasets - CACD, FGNET and
our professional social network profile pictures.

Attractiveness of individual subjects may deviate from the average trend over age. This heterogeneity is
not available to analyze in our professional social network profile pictures. Figure 18 explores this
heterogeneity among four celebrities in the CACD dataset. For each of these celebrities the CACD
dataset contains publicly available face images over 10 years. We average predicted attractiveness
rating across all images of a celebrity at every available age. As an example we observe that Claire Danes
has a higher attractiveness rating but declines more rapidly with age compared to Anthony Mackie.
These examples also suggest that — (i) individuals attractiveness does not fluctuate wildly i.e. she is 1 std.
dev above average at age 25, then 1 std. dev below average at age 26 and then average at age 27. (ii)
individuals attractiveness may slowly evolve over 10 years from being above average to below average
among their peers. (iii) while differences in picture characteristics (see Joan Cusack’s picture samples)
may seep into attractiveness prediction errors, these errors are still small relative to the std. dev. of

attractiveness ratings.
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Figure 18: (Left) Attractiveness evolution of four celebrities compared against the average (+ 1 std.
dev.) attractiveness evolution. (Right) A single image is randomly chosen for every celebrity e.g. at age
44 years for Joan Cusack as the training sample. We will evaluate if the model can project the
evolution across age 42 years to 52 years for Joan Cusack.
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Figure 19: Joan Cusack’s photograph at age 44 years randomly chosen into the training set, while
others are left out for test performance evaluation.

We formally test our attractiveness evolution approach by first randomly sampling a single image for every
celebrity e.g. snapshot at age 44 years for Joan Cusack. This acts as the training sample, which is akin to
our professional social network profiles with one picture per individual. Next we predict the be/a_\utyi,a at
all age milestones a using a single image for every celebrity i. Finally we compare the predicted be’a\utyi,a
with actual beauty; .. The same steps are repeated for four candidate models. Table 20 describes the
four candidates and Figure 20 depicts how the first three are merely simplification of the final
beautyfgm model in equation 3. Figure 21 illustrates intuition on how these four candidate model differ

in predicted attractiveness evolution.

beauty;, = Ao+ (A + pHa+pf +e;q (16)

Table 20: Four candidate models for predictive individuals attractiveness at a sequence of age

milestones.
beautysitic Attractiveness remain static over age.
beauty{’;m Attractiveness evolves homogeneously over age. Homogeneous model (pl.1 = 0)
estimated using single picture per individual.
beauty {4t Attractiveness predicted from morphed images.
beauty{ifE Attractiveness evolves heterogeneously over age. Regularized Heterogeneous model
estimated using multiple morphed picture per individual.

We report five performance metrics for each of the candidate models. Root mean square error (RMSE)
and Mean Absolute Error (MAE) are standard for any prediction task. Note that beautin'ﬁAE has a similar
MAE to beautyfi'* but much inferior RMSE. This is consistent with intuition illustrated in Figure 21 that
morphs and therefore direct attractiveness predictions on the morphs can have large noise at some age
milestones. The regularized RHE model essentially removes such unjustifiable outliers. The remaining two

measures inform us if the prediction have systematic bias. This is again consistent with the intuition
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Figure 20: The beautyfffE model is our primary model. We first create morphed picture M; , 4, at all

age milestones where actual picture is not available for individual i. Then RHE model is estimated

using predicted attractiveness of morhped pictures. The other three candidates are simplification of

this primary model. beautyic_ngE doesn’t use the RHE estimation. beautyi"{;m doesn’t use image

static

morphing at all. beauty; ,;*"*“ does not apply any attractiveness evolution at all.
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Figure 21: Comparison of actual attractiveness evolution of two individuals (Joan Cusack and Neal
McDonough) against candidate model outcomes. beautyfﬁlatic is constant over age. beautyf;m has
same slope over age for all individuals. beautyf(fAE evolution is heterogeneous but morphs and
therefore attractiveness predictions at some age milestones can have large noise. beautyf;fAE has
heterogeneous slope over age for all individuals. Note that these model predictions are hand picked for

illustration only.

illustrated in Figure 21 that static model will over predicted at higher age milestones and under predict

at lower age milestones. Note that the fifth model is same as RHE, but using actual images instead of
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morphed images at sequence of age milestones. We can not use this model in practice because unlike the
Celebrity CACD dataset we do not have access to actual images at sequence of age milestones. This is

meant to be a reference point to evaluate how well the four viable candidate models perform. The RMSE

for beautyffE is 0.245 on a 1 to 7 scale.

rmse = \/E[(be/aTtyi‘a - beautyi,a)z] ; mae = E[|be/d\utyi,a - beautyi,a”

biasRight = E[beautyi‘a — beauty;,/a = 43] ;  biasleft = E[beautyi‘a — beauty; ,/a < 42]

Table 21: Performance metrics of four candidate models for predictive individuals attractiveness at a
sequence of age milestones. The fifth model is same as RHE, but using actual images instead of
morphed images at sequence of age milestones.

Model RMSE MAE Bias Right | Bias Left
beauty e 0.307 | 0.206 | 0.040 -0.029
beauty/?" 0342 [0.238 | 0.008 -0.003
beauty{s** 0299 [0.191 |-0.003 0.002
beautyft 0.245 | 0.183 | -0.001 0.000
beautyfF' (Without morphing) | 0196 | 0.140 | -0.000 0.000

A.5 Job Rank Model

In Section 4.3 we describe a three step procedure to assign job ranks. First, we define jobs as “title +
employer size + industry”. Second, we assign page ranks to N = 1000 most frequent jobs. Third, we
extrapolate ranks to remaining infrequent jobs from ranked frequent jobs in the neighborhood. The
neighborhood is defined as k=10 nearest jobs where every job is represented by tf-idf vocabulary size of
v = 2000. This procedure makes very specific choices for hyper parameters (N = 1000, k = 10, v = 2000),
job definition, ranking procedure and extrapolation procedure. We arrive at this specification by

comparing performance of alternative specification on held out validation and test sets.

Page Rank K = 10 Nearest Neighbor
Job Definition = [—f Ordering E—' Extrapolation of
“Title + Employer Size + Industry” 75— -
N = 1000 Jobs represented by V = 2000
Most frequent jobs size vocabulary

Figure 22: The final job desirability model. This is discovered after ruling out alternative choices for k,
v, N, job definition, ranking procedure and extrapolation procedure.
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Validation: We perform a traditional five-fold cross validation with 80% of job switches as training and
remaining 20% as validation in every fold. We calculate the ratio of job switches in the validation set that
go from lower-ranked job to a higher-ranked job. Our validation set ratio is 0.69 i.e. 69% of job switches
go from lower-ranked job to a higher-ranked job. If the job ranks were uninformative (or random), this
ratio would be 0.5. This validation is inherently limited because we do not know the ground truth on ratio
of job switches that move from low desirability to high desirability jobs. While our job rank models ratio

of 0.69 is better than an entirely random 0.5, the ground truth ratio is not known.

Testl: We collect dataset on job salaries from salarylist.com. This website reports large number of salaries
for jobs across different companies, location and time periods. As an example it reported 901 salaries for
the job title “Account Manager” across companies like Mu Sigma, IBM, Microsoft etc. Note that the
website suggest that its data is self reported by companies and US Department of Labor, but we have
limited transparency in confirming the data collection process. We pick out for each job title the median
job salary. We discard job titles that are not available in our professional social network dataset or have
less than 10 reported salaries on salarylist.com. We rank the remaining 817 job titles by median salary.
We test if rank ordering by salary matches rank ordering by job ranks. The rationale being that a higher

salary job is typically more desirable and therefore should have higher rank.

Test2: We collect dataset on job hierarchies from heirarchystructure.com. This website maintains a
description of job hierarchies across a large number of domains such as — Financial Services, Management,
Investment Banking, Corporate Finance, Advertising etc. The Investment Banking hierarchy consists of
Managing Director, Director, Vice President, Associate and Analyst. We assign ranks to job title in each of
these hierarchies. We discard hierarchies that do not have significant overlap with our professional social
network dataset. We are left with 13 rank ordered job lists with every list consisting of 61 distinct
jobs on an average. We test if rank ordering by hierarchy matches rank ordering by job ranks. The
rationale being that a higher seniority job is typically more desirable and therefore should have higher
rank. For the salary list and the 13 hierarchy lists combined, we get a spearman rank correlation coefficient

of 0.44 and Kendall rank correlation coefficient of 0.36%°.

16 The job hierarchies from heirarchystructure.com are manually crafted and limited to a single career path within an industry.
Thus it is not very apt for cross industry switches observed in our dataset. Similarly, order by salary captures only one facet of a
job’s desirability. In-fact empirically observed switches over 100,000 MBA graduate profiles is perhaps a better approximation of
average desirability then an industry specific hierarchy or salary data. We expect our desirability measure to be loosely correlated



Table 22: Model in the first row represents the final choice of Page Rank with k =10, v = 2000, N =
1000 and job = “Title + Employer Size + Industry”. The subsequent rows show validation/test
evaluation with alternative choices for k, v, N, job definition, ranking procedure and extrapolation

procedure.
Models Held-out 13 Hierarchy Lists + 1 Salary List
Validation | Spearman Kendall
Correlation Correlation
Page Rank 0.69 0.44 0.36
Page Rank (k=2) 0.64 0.34 0.31
Page Rank (k=50) 0.59 0.38 0.27
Page Rank (v = 1000) 0.68 0.41 0.24
Page Rank (v = 5000) 0.63 0.46 0.23
Page Rank (N = 100) 0.66 0.34 0.27
Page Rank (N = 5000) 0.71 0.33 0.37
Page Rank (Job = “Title”) 0.63 0.31 0.30
Page Rank (Job = “Title + Employer Size”) | 0.64 0.33 0.25
Average Duration (instead of page rank) 0.58 0.24 0.22
Levenshtein Distance (instead of tf-idf) 0.54 0.25 0.22

We also report in Table 22 performance for alternative specifications —

(i) Alternative hyper parameters for the job rank calculations - k=2 or 50 instead of 10 for k-NN,
N=100 or 5000 instead of 1000 for the top N frequent jobs, and tf-idf vocabulary size = 1000 or
5000 instead of 2000.

(ii) Alternative definitions of job - “title” or “title + employer size” instead of “title + employer size +
industry”.
(iii) Alternatives for ranking 1000 most frequent jobs - average duration to reach job instead of the

page rank procedure.
(iv) Alternative for extrapolating ranking of 1000 most frequent jobs to remaining infrequent jobs -

Levenshtein distance instead of tf-idf.

The search for good hyper parameters and model design is largely informal based on heuristics and

subjective judgement.

with industry hierarchies or salary data but we do not expect a high degree of match. Therefore we report the correlation purely
as a sense check.
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A.6 Feature Calculations
Section 4 in the main text provided a list of features, their source (or calculation) and resulting values.

Below are the details on how these features are specifically calculated.

A.6.1 Demographics

Gender: We use Microsoft Azure Cognitive Face API to identify individual’s gender using their profile
picture. While this service does not reveal exact algorithms used, our best guess would be a deep CNN
trained on gender labels collected from human taggers. We manually verify at least 100 gender tags
provided by this service. We find it to be accurate in 100 out of 100 cases.

Ethnicity: We use ethnicity classifier built by Ambekar et al (2009) which uses names to identify ethnicity.
The possible ethnicities provided by the classifier are — GreaterEuropean, EastAsian, SouthAsian,
NorthAfrican or WestAsian, GreaterAfrican, Others. A vast majority of profiles in our dataset belong to
the first three classes. We re-categorize these outputs into three possible values — Greater European, East
Asian and Others. Ambekar et al (2009) report validation F-scores of greater than 0.8 for easily discernible
coarse classes such as GreaterEuropean and Asian. We also use Face Plus Plus API

(https://www.faceplusplus.com/) to detect ethnicity from face images. While this service does not

reveal exact algorithms used, once again our best guess would be a deep CNN trained on ethnicity labels
collected from human taggers. We retrieve three possible values — Caucasian, Asian, Black and Others.
Table 23 below provides the degree of match between name based and face based classification. We do
not necessarily expect name based and face based ethnicities to match up since some ethnicities have
more diverse looks and skin tone, while global migration has led to a degree of standardization of first
names. While the match seems reasonable, we are unable to explain a large number of “East Asian” names
corresponding to “Caucasian” face appearance. We have two reasons to collect these ethnicity tags — (i)
attractiveness ratings may be systematically higher or lower for individuals whose face is closer to certain
ethnicities, (ii) individual may face bias in their career because their name or face are perceived to belong
to certain ethnicities. These goals are achieved by randomizing attractive and plain looking groups on both
ethnicity tags.

Table 23: The percentage of profiles with every combination of name based and face based ethnicity
tags.

Face Based
Name Based White Asian Others Black
Greater European 73.5 14.3 2.8 9.3




East Asian 87.4 4.7 2.7 5.0
Other 34.3 5.6 28.5 31.3

Age: We use year of undergraduate completion to calculate individual’s age. We assume that everyone
completes their undergraduate at the age of 22. Thus we find age at MBA graduation and all subsequent
career milestones. We have no plausible reason nor empirical evidence to believe that this measure is
systematically biased across attractive and plain looking individuals. We also use Microsoft Azure
Cognitive Face API which predicts age for a face picture. This Face API has a large mean absolute error of
7.62 years (Dehgan et al 2017). Nevertheless a comparison between the two calculations serves as a sense
check. The two methods, Face APl and self reported UG graduation year, differ on a case by case basis by
0-10 vyears (less than 3 years more often than not). We calculate the number of profiles for each
undergraduate year using the self-reported graduation year. We also calculate the same numbers using
the current age from the Face API service on pictures. If the current age in 2017 is 40, we presume the
individual completed undergraduate studies in 1999 = (2017 — 40 + “22”). We compare these two
distributions. A visual analysis of these distributions (Figure 23) suggests a good match, with the face
image based age prediction being more clustered in the middle, while UG graduation based measure more
spread out. This is not surprising since the former, a deep learning based prediction which likely minimizes

some form of squared error, tends to predict closer to the mean/median when uncertain.

1200
1000 g '.
800 1 -

600 4

Number of profiles

400

2004

~
[ I -

1980 1985 1990 1995 2000 2005 2010 2015
Year of UG graduation

o
I

Figure 23: Year of undergraduate completion by (bar plot) self reported UG graduation and (dashed
line) likely UG graduation based on profile picture age calculated as 2017 - “age prediction on current
picture” + 22.0

We have two reasons to collect age tags — (i) attractiveness ratings are systematically lower for individuals

with older facial looks, (ii) individual may face ageism positive/negative bias in their career compared to
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peers with same quality and type of experience and training. Randomizing attractive and plain looking
groups on both age tags caters to both the issues. Now we will effectively be comparing performance of
attractive and plain looking counterparts who appear to be of the same age by looks and who have the

same UG graduation year.

A.6.2 Education

University Ranking: We use US News (www.usnews.com) to retrieve rankings for undergraduate and MBA

education. We use National University ranking (up to ~1000) for assigning rank to an individuals
undergraduate education. We use Business Program rankings for assigning rank to an individuals MBA. As
an example, New York University is currently ranked 30" among National Universities while its MBA
program at Stern school is ranked 19™". These rankings vary over time, so we collect university rankings for
all years between 2008 and 2019 and MBA rankings for all years between 2001 and 2012. We show
robustness of our results using alternative rankings years.

Table 24: University undergraduate rankings for a sample of 10 universities from 2008 to 2019.

University 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019
Harvard University 2 1 1 1 1 1 2 2 2 2 2 2
Stanford University 4 4 4 5 5 6 5 4 4 5 5 7
Princeton University 1 2 1 2 1 1 1 1 1 1 1 1
Yale University 3 3 3 3 3 3 3 3 3 3 3 3
MIT 7 4 4 7 5 6 7 7 7 7 5 3
Columbia University 9 8 8 4 4 4 4 4 4 5 5 3
University of Pennsylvania 5 6 4 5 5 8 7 8 9 8 8 8
Duke University 8 8 10 9 10 8 7 8 8 8 9 8
Dartmouth College 11 11 11 9 11 10 10 11 12 11 11 12
University of Notre Dame 19 18 20 19 19 17 18 16 18 15 18 18

Undergraduate Degree: We first identify education milestone corresponding to the MBA degree. This is
done by searching for one of the terms “MBA”, “M.B.A” or “masters of business administration” in the
individuals self-reported degree. Next we classify education milestone prior to their MBA into
undergraduate Science, Arts and Business. The Table 25 provides the search terms used to make this
classification. Every self-reported education degree is searched for these terms. These search term lists
are manually created to ensure we can classify more than 90% of undergraduate degrees into one of these
categories.

Table 25: Education degree and corresponding search terms used for classification.

Degree Search Terms
MBA MBA, M.B.A, masters of business administration
UG Science b.tech, btech, b. tech, b.s, b.e, BS, SB, s.b, BE, b. e




BA, b.a, AB, a.b
bba, bsba, b.com, business

UG Arts
UG Business

University Fees: We collect university undergraduate tuition fees and MBA program tuition fees from

https: //www.usnews.com. For public universities we average in-state and out-of-state tuition fees. MBA

tuition fees have a smaller variation over and above the rankings, compared to UG tuition fees. The fees

for most of the top 20 MBA programs that make up more than 50% of profiles in our sample are clustered

above $50,000.
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Figure 24: (Left) A scatter of university fees against university ranking. (Right) A scatter of MBA fees
against MBA ranking.

A.6.3 Job Domain
Location Size: We determine location size endogenously. We first find a complete list of locations self-
reported in profile career milestones. For each location we calculate the number of profiles where the
location is mentioned at least once. A large location (e.g. New York, San Francisco) is mentioned by more
profiles compared to a small location (e.g. Cleveland). The binary tags - large Location (1) and small

Location (0) equally split all available profiles.

Employer Size: We determine employer size endogenously. We first find a complete list of employers self-
reported in profile career milestones. For each employer we calculate the number of profiles where the
employer is mentioned at least once. A large employer (e.g. Google, IBM, McKinsey, Citibank) is
mentioned by more profiles compared to a small employer. The binary tags - large Employer (1) and small

Employer (0) equally split all available profiles
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We use this employer size in two ways. First, our main analysis uses a binary classification large Employer
(1) and small Employer (0) as a control. Second, our job rank calculations using page rank use employer
size. Remember that we defined job as combination of title, employer size and employer industry e.g.
“CEOQ at very small internet”. Here the employer size is split into five categories — “Very Small”, “Small”,
“Medium”, “Large”, “Very Large”. A fine grained employer size (say 10 categories) is more informative but
it makes page rank calculations difficult because of sparse job switch observations. A coarse split (say 2
categories) is less informative but the resulting jobs have a large number of observed switches. The 5-way
split was determined as an optimal hyper parameter setting. This was set to maximize the performance

at held out validation set.

Industry Category: The professional social network uses 100s of industry names. An individual can self-
report their job to belong to one of these available industry names. We manually'’ create 3 industry
categories — IT, Finance and Management. The Table 26 below shows the mapping from industry to
industry categories. These 3 industry categories cover more than 80% of all profile career milestones. All
remaining industry names are mapped to Others. We use these industry categories in two ways — (i) In
our main attractiveness bias analysis to control for career growth idiosyncrasies in specific industries (ii)
In definition of a “job” during calculation of job ranks. We do this because same title “analyst” may mean
something very different in Finance vs IT vs Management Consulting. As with employer size, a very spare
or very coarse categorization creates a problem. This 4-way split works relatively well. This was chosen to
maximize the performance of job ranks at held out validation set.

Table 26: Mapping table from industry category to industry

Industry Industry
Category

IT/Computers | Computer Software, Information Technology and Services, Internet, Telecommunications, Online Media,
Computer Networking, Information Services, Computer & Network Security, Wireless, Computer Games,
Computer Hardware, Consumer Electronics, Semiconductors, Electrical/Electronic Manufacturing, Market
Research

Finance Financial Services, Venture Capital & Private Equity,Accounting,Investment Management, Real Estate,
Banking, Investment Banking,Insurance,Capital Markets, Commercial Real Estate, International Trade and
Development

Management | Management Consulting, Marketing and Advertising, Nonprofit Organization Management, Education
Management, Human Resources, Executive Office, Staffing and Recruiting,Hospitality,Government
Administration, Public Relations and Communications, Broadcast Media, Program Development,
Philanthropy, Outsourcing/Offshoring, Public Policy, International Affairs, Government Relations, Think
Tanks, Religious Institutions, Civic & Social Organization,Fund-Raising,Import and Export, Political
Organization

17 This manual mapping is informed by a hierarchical clustering. This ML algorithm clusters together different industries with a
large number of within cluster job transitions and a small number of across cluster job transitions.



Others Hospital & Health Care, Consumer Goods,Retail,Pharmaceuticals,Higher Education, Entertainment,
Medical Devices, Defense & Space,Research,Logistics and Supply Chain, Law Practice,Utilities,Health,
Wellness and Fitness, Food & Beverages, Professional Training & Coaching etc.

JobType: We manually classify self-reported titles into one of four categories — “Technical”, ”"Consultant”,
”"Management” and “Others”. Note that our research does not attempt to answer if attractiveness bias is
more or less in certain jobs. We only use these to capture idiosyncrasies with respect to different career
progression in different job types.

Table 27: Strings used to search self-reported titles for three job types.

Job Type Search String

Technical software, developer, engineer, scientist

Consultant consultant, account

Management manager, director, president, partner, ceo, founder, owner, chief

A.6.4 Picture Characteristics

We use the Microsoft Azure Face API and Face++ API (https://www.faceplusplus.com/) to extract

Picture Quality (PQ) features, Face Characteristics (V'C, IC) and health characteristics (H). These features
largely cover features provided by major face image analysis tools including those offered by Microsoft,
Amazon and Google. Collecting these wide range of features comes with the caveat that these face image
analysis tools don’t reveal their exact methodology. We believe that most of them are deep learning based
predictive models trained on human labels. For example, human raters being asked to rate “stains on
skin” or tag earrings. Its plausible that some of these features like Picture Quality may be algorithmically
tagged without human labels. We re-scale these features to restrict the min and max values to 0 and 1

respectively (Table 13).

We would expect serious individuals to pay attention to desirable picture characteristics on their posted
profile pictures and therefore these features are likely correlated among each other. In Table 29, we
report presence of some of these correlations. It is also plausible that some of these characteristics seep
into attractiveness ratings assigned by human raters and mimicked by our attractiveness prediction
module. Therefore we also want to know which alterable features (PQ,VC,IC, H) are correlated with
attractiveness ratings. We see that low picture blur, low noise and high exposure are associated with
higher attractiveness ratings. Facial hair is associated with higher attractiveness ratings, likely indicating

role of popular fashionable choices. Good face health and minimal face stains are associated with higher



attractiveness ratings. Some correlations are not trivial to interpret. For example high face quality and

high picture resolution are associated with lower attractiveness. We also see formal clothing associated

Table 28: Descriptive statistics for Picture Characteristics, all scaled between [0,1].

Feature % pictures where .
mean std. dev. median
feature detected
Photograph Quality resolution 100 0.6 0.32 0.58
PQ blur 100 0.16 0.19 0.1
exposure 100 0.65 0.11 0.66
noise 100 0.16 0.22 0.06
roll 100 0.11 0.11 0.08
pitch 100 0.11 0.09 0.09
yaw 100 0.08 0.07 0.06
face quality 100 0.76 0.31 0.91
Visible Characteristics beard 100 0.12 0.14 0.1
ve moustache 100 0.12 0.14 0.1
sideburns 100 0.09 0.09 0.1
eye makeup 100 0.3 0.46 0
lip makeup 100 0.29 0.45 0
smile 100 0.89 0.28 1
glasses 100 0.85 0.36 1
Invisible necklace 9.7 0.71 0.12 0.21
Characteristics /¢ fashion accessory 13 0.74 0.14 0.24
hat 0.3 0.8 0.15 0.32
earrings 0.1 0.6 0.09 0.08
bald 100 0.17 0.25 0.07
racy clothing 100 0.01 0.02 0.01
Health H dark circles 100 0.1 0.18 0.04
skin health 100 0.15 0.2 0.06
skin stain 100 0.22 0.26 0.11

with higher attractiveness for men but lower for women. Similarly, formal background associated with
higher attractiveness for men but lower for women. We also see correlation between racy clothing and
attractiveness ratings. Background and clothing are characteristics are not visible to the attractiveness
raters or our attractiveness prediction. We believe that these correlation are likely spurious. For

example individual wearing racy clothing, may also post higher quality picture with eye and lips makeup.

Table 29: Correlation among four category of picture characteristics (PQ, VC,IC, H) and
attractiveness rating. We report and highlight a few strong and intuitively explainable correlations.

attractiveness | resolution | blur | exposure | noise | face quality

attractiveness 1

resolution -0.01 1
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blur -0.05 0.11 1

exposure 0.03 0.01 | 0.01 1

noise -0.02 -0.13 | 0.33 0.05 1

face quality -0.03 0.2 | -0.14 0.04 | -0.12 1
attractiveness | beard | moustache | sideburns | eyeMakeup | lipMakeup

attractiveness 1

beard 0.13 1

moustache 0.13 0.88 1

sideburns 0.13 0.71 0.73 1

eyeMakeup 0.02 -0.37 -0.37 -0.44 1

lipMakeup 0.02 | -0.32 -0.31 -0.39 0.56 1
attractiveness | dark circle | skin health | skin stain

attractiveness 1

dark circle 0 1

skin health 0.1 -0.2 1

skin stain -0.1 0.17 -0.37 1
attractiveness | bald necklace | hat earrings | racy clothing

attractiveness 1

bald 0.05 1

necklace -0.03 0.04 1

hat 0] -0.01 0 1

earrings -0.2 0.03 0.57 0 1

racy clothing 0.01 0.06 0.03 | -0.11 -0.04 1

There is a reasonable concern that serious individuals who pay attention to desirable picture
characteristics are also likely to be more successful in job market. Thus association of attractiveness
pictures with job market success is purely coincidental. In order to resolve this concern, we match
attractive and plain looking groups on all picture characteristics. We would be comparing attractive and
their plain looking peers who have posted pictures with similar characteristics and thus no systematic
difference in attention to profile pictures. This lends to a natural follow up question - How much
explanatory power (r-squared) do all these picture characteristics (PQ,VC, IC, H) combined have for
attractiveness ratings? If these picture characteristics largely explain the attractiveness ratings, then the

profile pictures don’t really contain a useful signal of individuals un-alterable attractiveness.



The Table 30 reports explanatory power (r-squared) of picture characteristics using an Ordinary Least
Square (OLS) and Support Vector Regression (SVR) models. We also report r-squared on a five fold held
out cross validation. We use different set features —picture characteristics visible to attractiveness ratings
(PQ,VC,H),andall picture characteristics (PQ,VC, H, IC). The addition of cropped out characteristics (IC)
invisible to our raters or attractiveness prediction model does not add much to explanatory power.
Explanatory power of less than 15% suggest that the pictures do contain significant useful signal of
individuals un-alterable attractiveness that are not trivially altered by adjusting picture characteristics
alone.

Table 30: Training and validation R-squared of OLS and Support Vector Regression to predict
attractiveness ratings from picture characteristics.

OoLsS SVR Training | SVR 5-fold cross validation
beauty = f(PQ,VC,H,IC) 13.0% 14.7% 13.2 + 2.6%
beauty = f(PQ,VC,H) 12.7% 14.5% 13.2 + 2.5%

A.6.5 Other Text Cleaning
We deal with numerous self-reported free text fields — school name, degree name, employer name etc.
This creates two problems — (i) mis-spellings because of the free text nature, (ii) usage of different terms
with otherwise synonymous meaning. For example MBA school names — “University of Pennsylvania”,
“Wharton School” and “Whrton School” should all be treated the same. We use numerous small tools for
data cleaning, a couple of examples include - Levenshtein distances to match employer and school name

strings, and autocorrect software packages on degree and title strings.

A.7 Propensity Score Matching for Model Free Evidence

We use propensity score matching for model free comparison between career progression of attractive
and plain looking groups. We perform PSM to match the two groups on pre MBA graduation
characteristics — Undergraduate area of study, Undergraduate university ranking, Year of undergraduate
completion, Length of Pre MBA experience, MBA School and MBA rank. Individuals are classified into the
two groups using their attractiveness at the time of graduation (¢t = 0). pScore; ;(¢) parameterized by ¢
denotes individual i’s propensity to be assigned in attractive group instead of the plain looking group. We
find a plain looking (b; ; = 0) counterpart for every attractive individual (b; = 1) with closest propensity
score pScore;(¢p) = pScore;(¢). We use nearest neighbor matching with a caliper width at 0.01,

matching ratio at 1 and without replacement for matching. The dataset contained 23,638 individual



profiles initially, that were reduced to 19,075 after matching. The Table 31 provides the distribution of
characteristics F{ in the two groups before and after matching.

(17)

Score; = =
p l,t(d)) 1 + exp(—Ei N ¢)

E; = (ugRank;,ugArea;, preMbaExperience;, mbaRank;, mbaSchool;, graduationYear;)

Table 31: Propensity Score Matching on pre MBA characteristics for Male Profiles

Before Matching After Matching
Attractive Plain looking | Attractive Plain looking

Number of Profiles 8511 8461 7069 7089
Undergraduate Rank 389 435.6 413.5 396.8
MBA Program Rank 14.8 15.3 14.7 14.5
Year of Graduation 2003.4 2003.1 2003 2003.6
Undergraduate Degree 18.8%,5.6%, 14.5%,5.3%, 16.53%,5.6%, 16.04%,5.45%,
(Arts,Business,Science) 75.5% 80.1% 77.8% 78.4%

Table 32: Propensity Score Matching on pre MBA characteristics for Female Profiles

Before Matching After Matching
Attractive Plain looking | Attractive Plain looking

Number of Profiles 3401 3265 2472 2445
Undergraduate Rank 342.2 391.7 361.8 352.7
MBA Program Rank 14.4 14.9 13.7 13.8
Year of Graduation 2004.5 2003.7 2004.0 2004.0
Undergraduate Degree 34.1%,9.3%, 33.2%,8.1%, 33.4%,8.9%, 33.4%,8.5%,
(Arts,Business,Science) 56.5% 58.6% 57.6% 58.0%

A.8 Propensity Score Matching for Main Econometric Models

We create propensity score matched (PSM) sample of attractive and plain looking groups both for our
dynamic bias model that discerns preference and beliefs biases as well as lifetime models that studies
attractiveness premium over 15 years. Table 33 report the percentage standardized bias for all matching

covariates (D;, E;, ] Di, PQ;, VC;, H;) before and after matching. The largest percentage standardized bias
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is 1.35% and 3.94% for the dynamic and lifetime models respectively. Note that for categorical variables
(e.g., job type) we create (L — 1) binary variables corresponding to L categories for PS model and %Std
bias calculations. Categories which accounts for less than say 1% observations are typically combined into
an “Other” category. We reports at most three largest categories in the Table.

Table 33: Percentage Standardized Bias for all matching covariates before and after matching.
Dynamic Bias Model is used to discern preference versus belief bias. Lifetime Bias Model is used to
measure attractiveness bias at 15 years career outcome.

Dynamic Bias Model Lifetime Bias Model
Before After
Covariates Matching Matching Before Matching | After Matching
Rank Previous 2.63 -0.06 n.a. n.a.
Large Location 1.42 0.59 0.95 2.45
Large Employer 2.13 0.12 -1.75 0.17
Job Type (Management) -2.39 1.35 4.22 3.38
Job Type (Others) 4.06 -0.52 -0.46 -0.88
Job Type (Consultant) 2.85 -0.18 -2.42 -0.74
Industry Category (IT) -8.47 -0.41 -5.39 -2.17
Industry Category (Management) 4.73 -0.29 -0.84 -0.19
Industry Category (Others) -0.23 0.52 7.78 3.94
Ethnicity (Eu) 16.9 -0.45 14.02 0.09
Ethnicity (Other) -23.23 0.62 -20.28 -0.72
Ethnicity (As) 5.93 -0.22 5.29 1
Face Ethnicity (Asian) -61.01 -1.95 -52.18 -1.45
Face Ethnicity (Black) 0.23 0.52 1.89 0.26
Face Ethnicity (Other) -20.05 1.38 -16.48 0.94
MBA Graduation Year 7.98 0.57 11.14 0.49
UG Graduation Year 16.51 0.19 20.17 1.3
UG Graduation Year (Unknown) -12.94 0.14 -12.71 -0.7
Face Age -35.38 -0.29 -46.82 -0.06
UG Degree (Science) -18.08 0.26 -15.29 -0.13
UG Degree (Others) 16.42 -0.27 16.4 0.85
UG Degree (Arts) 1.75 0.09 -2.16 -0.78
UG Rank -0.21 0.03 0.96 0.69
UG Rank Unknown -16.42 0.27 -16.4 -0.85
UG School (Others) 1.05 0.06 -0.75 1.54
UG School (Stanford) 0.4 -0.46 0.59 -1.75
UG School (Cornell) 0.88 0.29 1.69 0.27
MBA Rank 0.39 -0.23 0 2.06
MBA School (Others) 4.21 -0.06 5.68 1.85
MBA School (Kenan-Flagler) -2.25 0.16 1.11 -2.55
MBA School (Harvard) 2.41 -0.18 -3.69 -1.1
Blur -10.45 0.31 -8.78 1.52
Exposure 3.48 0.13 3.85 -1.01
Noise -3.88 0.1 -3.47 -0.17
Roll 2.82 0.29 2.1 -0.51
Pitch 15.91 0.23 16.46 0.05
Yaw 6.93 0.35 5.12 0.36
Face Quality -5.37 -0.21 -3.57 -1.52
Resolution -0.86 -0.1 -1.94 -0.4
Lip Makeup 10.61 -0.13 0.31 -0.19
Eye Makeup 13.63 -0.01 1.11 -0.6
Bald 4.06 0.19 8.83 -0.83
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Beard 15.76 0.31 18.23 1.56
Moustache 15.87 0.13 18.34 14
Side Burns 14.63 0.46 18.39 1.61
Dark Circles 1.51 0.4 -0.01 0.16
Face Health 15.48 -0.25 14.43 -1.37
Face Stains -14.64 0.11 -16.23 -0.29
UG Fees -0.03 0.14 1.06 0.19
MBA Fees 1.78 -0.14 2.94 -0.82

A.9 Alternative PSM Design

We discuss PSM model specification choices in Section 5.2. We show here alternative candidates for the
propensity score model and the matching. In our main analysis we use PSM for the dynamic preference
vs belief bias model and lifetime bias model. We only report below performance of candidate models on
matching for the lifetime bias model. The relative performance of candidate models are largely similar for

the dynamic preference vs belief bias model as well.

A.9.1 Propensity Score Models
We use a logistic propensity score model pScore; . (¢) with linear covariate effects (equation 5). Instead
of the linear effects we could potentially include squared terms as well as interaction effects (equation
6) to attain greater fit. Such a specification is likely to attain greater fit (high training accuracy) at the
cost of lower generalizability (low validation accuracy). We also evaluate alternative choices for
pScore; (¢) namely — Logistic with small regularization penalty (C = 100), Logistic with large
regularization penalty (C = 0.01), Support Vector classification and Gradient Boosting classifier. The
Table 34 reports the evaluation results. We evaluate the alternatives using five-fold cross validation on

a held out sample.

Score; +(¢p) = . 18)
p Lt 1+ exp(=[D;, E;,JD;, PQ;, VC;, H] * )
pScore; (¢) = - -t

1+ exp(—[D;, E;, ] D;, PQ;, VC;, H;] * Dy, E;, Dy, PQ;, V Gy, Hi] * )

Table 34: Training and validation accuracies of candidate propensity score models. The Logistic Model
with low regularization (C = 100) and linear covariates produces the highest validation accuracy.

ei(¢) li e (@) Training Accuracy | Cross-Validation Accuracy
Only Linear Effects Logistic (C=0.01) 67.47 68.74
All Interaction Effects | Logistic (C=0.001) 67.62 66.95
Only Linear Effects Logistic (C = 100.0) 69.32 69.01
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Only Linear Effects

All Interaction Effects | Logistic (C = 1000.0) 69.84 68.27
Only Linear Effects SVC(C=5) 69.84 68.30
Gradient Boosting (GBC) | 71.19 68.20

A.9.2 Matching

We use nearest neighbor matching of treated units with un-treated ones without replacement using a

caliper width of 0.01. We could potentially match with replacement. We could use alternative caliper

widths. We could use exact or optimal match instead of nearest neighbor match. These alternatives

matching choices need to be evaluated based on the following tradeoff — minimal bias in matched samples

while keeping the matched sample large enough for successful estimation. We report in Table 35 mean

percentage standardized bias, Rubin’s R, Rubin’s B and size of matched sample as a percentage of total

sample.

Table 35: Mean percentage standardized bias, Rubin’s R, Rubin’s B and matched sample size before
and after matching. A Rubin’s R between 0.5-2.0 and a Rubin’s B less than 25% indicate a reasonable

match.
Before Matching 8.88% 0.88 93.65% 100%
Mean % Std. Bias | Rubin’s R | Rubin’s B | Matched Samples
Without replacement Caliper Width =0.01 | 1.12% 1.01 0.57% 62.3%
Caliper Width = 0.1 1.37% 1.05 7.55% 65.7%
Caliper Width = 1.0 6.54% 1.08 65.45% 85.3%
With replacement 3.44% 1.03 32.58% 66.8%

Number of Profiles

4 Control

Ireatment

o
0.0 0.2 0.4 0.6

Propensity Score

0.8

Before Matching

Matching with
Caliper 0.01

Matching with
Caliper 1.0

Figure 25: Histogram of treatment and control group propensity scores before and after matching.
Rubin’B captures the difference between the means of the treatment and control propensity score
distributions. Rubin’R captures the ratio of variance of the treatment and control propensity score
distributions.
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A.10 Alternative Regression Specification
A.10.1 Stratified treatment effects

In our main analysis, we estimate a single attractiveness bias (or single preference and belief bias) across
the entire matched sample. Alternatively, we can get an attractiveness bias estimate for different
propensity score stratas (Imbens 2015, Eckles and Bakshy 2017). We divide the propensity scores (Figure
25Top Plot) into four contiguous stratas (pScore [0-0.25], [0.25-0.45], [0.45-0.6], [0.6-1])*8. Then we match
attractive and plain looking individuals in each strata. The motivation is to study if the attractiveness bias
differs significantly across the covariate space. The first strata (pScore 0 to 0.25) compared to fourth strata
(pScore 0.6 to 1) represents individuals who have low propensity of being assigned the attractiveness
treatment. Stratified results will show if attractive individuals in this strata have significantly different
premium. This is important because the support of propensity scores for attractive and plain looking group
is quite different before matching. We want to be certain that attractiveness bias results do not increase
or decrease with higher propensity of being attractive. Table 36 Model 1 shows interaction effect of

attractiveness with strata to be statistically insignificant.

[Insert Table Here — Refer End of Appendix]

Table 36: (Model 1) The impact of attractiveness bias across four strata with strata indicator
interaction effect. (Model 1 to 4) The impact of attractiveness bias in one propensity score strata at a
time..

A.10.2 Attractiveness Measure
In our main analysis, we use binary classification for attractiveness (b; ;). We report robustness of our
results for alternative measures of attractiveness - continuous rating scale instead of binary classes
(beauty; .), static measure as on MBA graduation (beauty; ;~¢), and static measure as at data collection
in 2017 (beauty; 1=2017-mbacradavear)- We find the impact of attractiveness on lifetime career success to

be positive and significant.

[Insert Table Here — Refer End of Appendix]

Table 37: The impact of attractiveness bias using different measures for attractiveness -
(Model 1) binary classification (b; ;), (Model 2) continuous measure (beauty; .), (Model 3) static
measure as on MBA graduation (beauty; ;~,), (Model 4) static measure as at data collection in 2017.

18 The strata boundaries are chosen to attain reasonable sample sizes.
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A.10.3 Job Rank Measure
In our main analysis, we standardize the job ranks for all individuals i whose job transition is observed
between t — t 4+ At to have zero mean and unit standard deviation. We report robustness of our results

for alternative unstandardised job ranks (rank; ;).

[Insert Table Here — Refer End of Appendix]

Table 38: The impact of attractiveness preference and belief bias using (Model 1) standardized job
ranks (r; ), (Model 2) unstandardized job ranks (rank; ). The impact of attractiveness on career
outcome at the end of 15 years using (Model 3) standardised job ranks (r; ), (Model 4) unstandardised
job ranks (rank; ;).

We also construct an alternative model that does not rely on job rank calculations. Our profile data
captures jobs that are self-reported by individuals in free text form. This creates an extremely large and
sparse list of jobs. While a handful of job titles (e.g. Software Developer, Associate Consultant) are
reported frequently, most job titles are somewhat customized by individuals (e.g. Principal consultant in
Energy and Qil). One approach could be to compare individuals on time taken to achieve the same job.
Attractiveness bias can be established if attractive individuals systematically take a shorter duration. 6;

represents job specific effects i.e. average time to reach the specific job.

Atyj =00 +06; +0,b; + 0,7; + u;; (20)

Table 39: A small sample of very frequent jobs in Management Consulting

Job Number of individual
Associate at McKinsey and Company 235
Case Team Leader at Bain and Company 145
Consultant at The Boston Consulting Group 315
Manager at Deloitte 108

We observe a total of 59,854 distinct jobs in our dataset. The number of jobs are extremely large, with a
vast majority of jobs not providing sufficient variation across individual characteristics (beauty, gender
etc.). We can focus only on frequently observed jobs, say jobs self-reported by at least 20 individuals. We
are left with 209 jobs and 23,443 career milestones. This model finds attractiveness to have a significant
and negative impact on time taken. A coefficient of -0.268 means that attractive individual attains the

same job approximately quarter year faster than plain looking individuals. Alternatively we could also
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model 6; as an unobserved random effects. As expected, we find (model 2) beauty to have a significant
and negative impact on time taken. This establishes that our attractiveness bias finding is robust with and

without the use of page rank procedure.

We can theoretically extend this method to identify belief and preference bias. We can model dependent
variable At; ;; j, to represent time taken by individual i to move from job j1 to job j2. We can split §, to
(B, BL). Here the belief bias S plays a role if the transition (j; = j,) happens during the first 6 years.
The fBj1,j, captures fixed effects specific to the j1 to j2 transition. This would allow us to compare time

taken by different individuals for the same job transition.

At; j1,j2 = Bo + Bj1,jz + Ba2bi + BaZi + uyjyjo (21)
Atij1j2 = Bo+ Bjrjz + 1t < 6)BSb; + B3b; + Bl + Uijaj2 (22)

Table 40: A small sample of very frequent jobs transitions in Management Consulting

Job From Job To Num of individual
Associate at McKinsey and Co. Engagement Manager at McKinsey and Co. | 94
Consultant at Bain and Company Case Team Leader at Bain and Company 61
Consultant at BCG Project Leader at BCG 94
Manager at Deloitte Senior Manager at Deloitte 12

Unfortunately we observe 75,669 unique job transitions in our dataset. Further, restricting to job
transitions reported by at least 20 individuals, we are left with 36 transitions and 1082 career milestones.
Not surprisingly, all estimates are insignificant. This model fails to utilize more than 90% of all job
transitions. The lack of generalization results in large standard errors for key parameters (5, 52, f) we
are interested in. We also unsuccessfully attempt a random effects model for ;4 j,. This limitation is why

we use page rank procedure to calculate a create a ranked list of otherwise dissimilar jobs.

[Insert Table Here — Refer End of Appendix]

Table 41: (Model 1) Time Taken to attain job j with 0; fixed effects for all jobs reported by at least 20
individuals, (Model 2) Time Taken to attain job j with ;random effect with all jobs reported by at
least 2 individuals, (Model 3) Time Taken in job transition j; = j, with Bjq j, random effects with all
jobs reported by at least 2 individuals.
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A.10.4 Career Stage Cut-off
In our main analysis, we use 6 years as an early career cut off. The underlying assumption being that a
period of 6 years is more than sufficient time duration for prior beliefs to be overcome by actual
performance signals. Belief-based attractiveness rewards should vanish after this point. We report

robustness of our results with alternative cut off points — 4 years and 8 years.

[Insert Table Here — Refer End of Appendix]

Table 42: The impact of attractiveness preference and belief bias with different early career
cutoff for belief bias - (Model 1) original cut off at 6 years, (Model 2) cut off at 4 years (Model 3) cut off
at 8 years.

A.10.5 University Rankings

In our main analysis, we use university rankings and MBA rankings from 2017. We report robustness of
our results with alternatives — undergraduate university rankings from 2010, MBA rankings from 2001 and

MBA rankings from 2012.

[Insert Table Here — Refer End of Appendix]

Table 43: The impact of attractiveness preference and belief bias using different university rankings -
(Model 1) original UG and MBA ranks (Model 2) UG rank from 2010, (Model 3) MBA rank from 2001,
and (Model 4) MBA rank from 2012.

A.10.6 Alternative Scope
In our main analysis, we collect MBA graduates from 1990 and 2015. This provides confidence that the
preference and belief bias findings are perpetual over last few decades. We report robustness of our
results with alternative sets of — recent graduates between 1998 and 2015 and older graduates between

1990 and 2008.

[Insert Table Here — Refer End of Appendix]

Table 44: The impact of attractiveness preference and belief bias using (Model 1) all MBA graduates,
(Model 2) MBA graduates after 1998, (Model 3) MBA graduates prior to 2008, (Model 4) MBA Rank
less than 20, and (Model 5) MBA Rank less than 100.

In our data collection, we target top 100 MBA programs. But due to opaque search functionality on the

professional social network we retrieve profiles outside of top 100 MBA programs. We want to be certain

that lower tier MBA programs where individuals may have very different career goals and prospects are
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not driving the results. We report robustness of our results with alternative sets of profiles — graduates

between from top 20 MBA programs and graduates from top 100 MBA programs.

A.10.7 Addition Controls
In our main analysis, we match attractive and plain looking groups on various potential confounders. A
large set of these are derived from the profile picture. After the groups are matched on profile picture
characteristics, we do not use these as controls in the regression model. This is motivated by significant
degree of correlation among these variables. We report below the variance inflation factors (VIF) if all
possible variables where included. Different researchers have suggested a VIF greater than 2 or greater
than 5 to be a matter of concern. With the risk of correlations in mind, we report robustness of our results

with all controls thrown in together.

Table 45: Variance Inflation Factors when largest set of controls are added in. Attractiveness is almost
uncorrelated because of propensity score matching on most of the remaining features.

Face Ethnicity Face Ethnicity Face Ethnicity

Features | Attractiveness | Gender | Ethnicity (Eu) Ethnicity (Other) (Asian) (Black) (Other)
VIF 1.02 5.14 4.07 4.33 1.14 1.25 1.24

Job Type Job Type Job Type Industry | Industry Industry | Large Large
Features | (Management) | (Other) (Technical) | (IT) (Management) | (Other) Employer | Location
VIF 3.04 2.92 1.47 1.81 1.71 1.63 1.05 1.05

MBA | UG MBA Grad UG Grad UG MBA | UG Degree UG Degree UG Degree
Features | Rank | Rank | Year Year Fees | Fees | (Business) (Science) (Other)
VIF 1.18 | 1.62 4.42 4,57 | 1.11 | 1.03 1.4 2.51 3.04

face

Features | blur | exposure | noise | roll pitch | yaw | Quality | resolution
VIF 1.29 1.1 1.18 | 1.11 | 1.03 | 1.45 1.60 1.18

lip eye dark Eye
Features | Makeup | Makeup | bald | beard | moustache | sideburns | circle | health | stain | Glasses Lipstick
VIF 1.88 2.74 | 1.15 5.12 5.15 2.65 1.11 1.47 | 1.25 1.18 1.24

Formal Informal Formal Informal

Features | Smile | Racy Clothing | Background | Background Clothing | Clothing Necklace | Hat Earrings
VIF 1.1 1.07 1.45 1.05 1.88 1.01 1.6 1.02 1.03

[Insert Table Here — Refer End of Appendix]

Table 46: The impact of attractiveness preference and belief bias with additional controls - (Model 1)
Original set of controls (Model 2) Picture quality controls (PQ;), (Model 3) Picture quality, visible face
characteristic (AVC;) and face health controls (H;). (Model 4) Picture quality, facial hair, face health
controls and picture characteristics from outside of cropped area (AIC;).
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A.11 Robustness Checks

Our primary dataset (43,533 profiles) suffers from sample selection issue wherein MBA graduates may be
systematically missing from our data collection. We collect profiles in 2017 for graduates between 1990
and 2015. Every individual in the original graduating class lies in one of four mutually exhaustive sets - (a)
she drops out of the job market prior to data collection in 2017 i.e. they either never create a profile or
delete their profile prior to the data collection period. (b) she has an active profile but our search criterion
does not successfully find their profiles. (c) she has an active profile but do not have a picture. (d) she has
an active profile with a profile picture. The first three sets (aUbUc) are together censored profiles. Note
that while set (b) is an idiosyncratic result of our data collection methodology, set (a) and (c) are based on
individuals choice. This drop out choice for individuals can be modeled as follows.

di; = 8o+ 61Tit—1 + O2b; 1 + 83gender; + S,gradYear; + ;¢ (23)

An individual makes a choice whether to drop out of the job market if d;, < 0. We assume that all
graduates choose to stay in the market at the year of MBA graduation. Subsequently, if they exit the job
market at year t because (d;,; < 0), then they stay out of the job market permanently (dzt, <0Vt =t).
Individual can make the choice to exit based on various factors — (i) An unsuccessful individual (small 7; ;4 )
may be more likely to drop out of the job market if they have an outside option (ii) the outside option may
be better (or worse) for attractive individuals (e.g. via marriage prospects), (iii) the outside option may be
better (or worse) for one gender than the other (e.g. homemaker or blue collar work). (iv) certain periods
may have unusually low employment e.g. 2008-09 crisis where unemployment temporarily went from 4%

to 10%. The drop out model above captures all these factors.

Since our dataset captures MBA classes from 1990 to 2015, comparisons between graduating classes is
one way to ascertain whether or not drop out occurs. In Appendix A.11.1, we show lack of evidence for
systematic drop out based on job rank (8;7;,_1) or attractiveness (8,b;_4). In Appendix A.11.2, we
reinforce lack of evidence for systematic drop out based on job rank (§;7;;_4). In Appendix A.11.3, we
show evidence for systematic drop out based on gender (§;gender;) and year of graduation
(64gradYear;). We also present a robustness check to ensure attractiveness bias estimates remain

unaffected.



A.11.1 Job Rank and Attractiveness Dropout
First we describe a test for job rank based dropout. Then we describe a test for attractiveness based
dropout. Finally we highlight a statistical, but not very plausible, situation where our attractiveness bias
results may be effected even though we reject both job rank based and attractiveness based drop outs

individually.

Let us consider that an individual makes a choice whether to drop out of the job market based on the job
rank 7; .. The average rank of individuals remaining in the job market at year 1 (E’[rl-,l]) would be different
from an uncensored average (E[ri,l]) as shown in equation 12. Similarly, the average rank of individuals
in the job market at year 2 (E’[ri‘z]) is further censored by the dropouts in year 1 or year 2.

die =080+ 017 e—1 + Pis (24)

E’[Ti,1] =E[ri1/Yio > —(80 + 617i0)] # E[Ti,1] (25)
E'[Ti,z] = E[ri2/Yio > —(8 + 617i0), i1 > — (g + 61731)] # E[Ti,z]

Consider profiles collected in 2017 for graduates from 1997. The average observed job rank E’[riys] for
these individuals in 2002 will be different than the actual E[ri,s]. This is because some of those graduates
may have dropped out prior to 2002 (d;,; < 0 for t € [0,5]) or between 2002 and 2017 (d;, < O for t €
[5,20]). If individuals drop out because of lower job ranks, we would expect that remaining available
profiles are upwardly biased in terms of career success (E’[ri,5] > E[ri,5]).

Egraa=1907[1is] = E[rys/die > 0 for t € [0,5]U[5,20]] (26)

grad=2012 [i5] = E[ris/di; >0 for t € [0,5]]

Now consider a different graduating class from 2012. Once again, the observed average (E’[ri's] > E[ri's])
is upwardly biased. However, this upward bias is only the result of dropouts prior to 2017 (d;, < 0 for t €
[0,5]). We can compare the average job rank for 1997 graduates in 2002 and 2012 graduates in 2017. The
second sample also looks at job ranks 5 years from graduation but has a smaller dropouts. If unsuccessful
individuals systematically drop out (§; > 0), then Eérad=zo1z[ri,5] < Eémd:lgw[ri,s]. The Figure 26
provides this comparison and suggests no significant impact of job rank on drop out. We also find that the
job rank (Eg [ri't]) and graduation year (g) correlation to be statistically insignificant. This means that

dropout is not a systematic result of a lower (or higher) job rank.



Similar as above, a second argument could be that attractive individuals are more (or less) likely to drop
out (8, # 0). We can compare the average attractiveness for MBA class of 2005 and 2007 in 2017 matched
on age in 2017. If attractive individuals systematically drop out (4§, > 0), then E’[bi,2017/
age, gender, gradYear = 2005] < E’[bi'2017/age,gender, gradYear = 2007]. We construct a
simple regression (equation 14) to check if MBA Graduation Year has an impact on observed
attractiveness among individuals of same age in 2017 and similar demographics (gender, ethnicity). We
do not find statistically significant relationship between MBA Graduation Year and attractiveness. Thus

we do not have any evidence to support systematic drop our based on attractiveness.

bi 2017 = @ + @1age + ayD; + agmbaGradYear + €; (27)
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Figure 26: Average job page ranks (and standard deviation) attained in 5 years for different
graduating classes between 1990 and 2010. If lower-ranked individuals drop out, the earlier
graduation year should appear to have higher job page ranks. No evidence of dropouts of lower-
ranked individuals was found.

Even though we reject drop out based on rank and attractiveness individually, consider a setting where
both of the following are true: (i) Attractive unsuccessful individuals are more likely to drop out. Our data
will only observe relatively successful attractive individuals, thus creating a false perception that attractive
individuals have a premium. (ii) Plain-looking, successful individuals are more likely to drop out. Our data
will only observe relatively unsuccessful, plain-looking individuals, thus creating a false perception that
plain-looking individuals incur a penalty. Note that (i) and (ii) must hold simultaneously; otherwise, we

would have seen a systematically higher drop out based on job rank or attractiveness alone. We admit
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that (i) is plausible since attractive individuals may be more likely to have marriage prospects with
financially well-off individuals. We do not see a plausible explanation for (ii). Nevertheless we admit that

we do not have evidence to reject this.
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Figure 27: Average observed attractiveness (and standard deviation) for different MBA graduating
classes among individuals of same gender and age in 2017. No correlation or evidence of systematic
attractiveness dropout.

A.11.2 No picture drop out
We further reinforce the argument that job rank (8;7; ;—1) does not play a role in sample drop outs by
specifically comparing profiles with and without pictures. Its plausible that plain looking ambitious
individuals strategically decide to not post pictures in order to hide their plain looks. If so, profiles
without pictures would be systematically more successful in job market than profiles with pictures. We
run a simple regression (equation 15) to check if job rank (7;) is associated with individuals decision to
post picture. Unfortunately, our original data gathering did not fetch full profiles for individuals who do
not post profile pictures. Nevertheless we do have their “headline” — Name, Current Job Title and
Industry. We can use the name to infer the gender and ethnicity. We can apply the page rank module to
rank desirability of “Title” + “Industry Category”. Note that this is a little different from the definition of
Job = “Title” + “Employer Size” + “Industry Category” used in our main analysis. We do not find

statistically significant relationship between decision to post picture and the job rank (7;). Thus we do
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not have any evidence to support strategic decision to not post profile pictures by plain looking

successful individuals.

picture; = ay + a;genderName; + a,ethnicityName; + azindustry; + asr; + €; (28)
[Insert Table Here — Refer End of Appendix]
Table 47: Relationship of job rank and likelihood of a clearly posted profile picture.

A.11.3 Gender and Rank Dropout

We use a secondary dataset (2,506 profiles) where we can observe gender and year of graduation based
drop outs. This dataset captures entire MBA directory for one school, thus sheds light on exact number
of individuals by gender and graduation year that are selected out of the professional profile collection.
Figure 28 show percentage of profiles missing from each graduation year. Missing profiles for year 2000
graduates can be interpreted as all dropout between 1-17 years of MBA. Similar missing profiles for
2010 graduates can be interpreted as all dropout between 1-7 years of MBA. Naturally, drop out is much
greater for earlier graduation years than recent graduation years. This is reasonable as there may simply
be retirements as well as individuals who never got onboard professional social networking websites.

We can see that dropout rate for women is much higher. This may be explained by switch to

homemaking or childcare for women.
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Figure 28: Percentage of profiles missing from each graduation year for men and women.

There is no obvious argument why gender or graduation year based dropout would impact our
attractiveness bias results. Nevertheless, we create an alternate specification of our attractiveness bias

analysis following Heckman’s sample selection model. We only observe (1;; = r[ft) for individuals who
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choose to remain in the job market (d; > 0). The drop out decision depends on gender (§3) and the
graduation year (d,). Model free evidence above suggests that both these factors play a big role in
dropouts. Note that we model a single drop out decision for an individual d; instead of a time varying
decision d;"'t. This is because we have already dropped time varying drop out factors (7 s, b; t—1) and we

directly observe accumulation of all drop outs between graduation and 2017.

d; = 8y + 83gender; + S,gradYear; +; (29)
Ti2017 = P1 + B2bi + BaZi +u; (30)
Tig017 = {7‘;2017 if di >0
b Not observed Else

[Insert Table Here — Refer End of Appendix]

Table 48: (Modell) Impact of attractiveness without selection model (Model2) Impact of
attractiveness with Heckman selection model (Model3) Impact of belief and preference bias with
heckman selection model.

Table 48 reports Heckman estimation results. As expected we find dropout decision to be significant for
both gender and graduation year. Our primary results — persistent preference bias, insignificant belief bias
and lifetime premium remain the same. As expected, the standard errors are much larger on this dataset
given a 8 times smaller dataset (2,506 in secondary vs 43,533 in primary dataset). The data size further
reduces below 1000 as we try to replicate all the analysis done with the primary dataset, which requires
dropping profiles with missing control covariates (Education, Job Domain etc.) and using matched samples
only. After controlling for or randomizing over 50 covariates most of the standard errors become too large.
This small robustness check should only be seen as indicative. We dropped any attempts to increase the

sample size, because it would requires us to go after full MBA alumni directories for more schools.

A.11.4 Reverse Causality
We study if attractiveness leads to career success. It could be argued that successful individuals are
financially well off and may have more resources to spend on their appearance. These resources may be
spent directly on the posted profile picture (e.g., professional photoshoots of executives) or indirectly
spent over a long term on healthy lifestyle or cosmetic products. The latter may lead to fewer episodes of
ilinesses and wholesome skin. Therefore, success leads to attractiveness. This concern is alleviated in our
paper because of our attractiveness calculations which crops, re-orients, standardizes photograph quality

and devalues temporary characteristics. Further we randomize on alterable photograph quality, facial



hair, makeup and even health related features such as skin health, dark circles and skin stains. All of these
are meant to ensure that subjects choice of profile picture or long term investment into their appearance
does not effect our results. Keeping all of these mitigants discussed above aside, let us assume that long
term lifestyle and beautification investment by successful people leads to a permanent (not just a
superficial) change in their attractiveness. These factors presumably take significant time (say 3-5 years)
to have permanent impact. This means that an MBA graduate from 2005 who had a successful career has
better looks in 2017 than a counterpart who was unsuccessful. However, an MBA graduate in 2015 who
has a successful first two years would hardly look different in 2017 than a counterpart who was
unsuccessful. Two years between 2015 and 2017 is too little time for the successful individual to improve
their looks via better health, lower stress etc.
biz017 = @y + @1D; + axJD; + azE; + asr; + asmbaGradYear + (31)

agr; * mbaGradYear + ¢

We construct a simple regression (equation 18) check if a higher job rank is associated with greater
attractiveness in 2017. In particular we would expect the relationship to be stronger for older MBA
graduates compared to more recent graduates. We do not find this interaction effect (g) to be
statistically significant. Thus we do not have any evidence to support the hypothesis that attractiveness is

driven by investment of greater resources by successful individuals.

[Insert Table Here — Refer End of Appendix]

Table 49: Relationship of job rank and individuals attractiveness with interaction with MBA
graduation year.



Main Text Regression Tables

Table 10: (Model 1 and 2) The impact of attractiveness on career rank with and without gender
interaction. (Model 3 and 4) The impact of attractiveness preference and attractiveness belief on career
rank with and without gender interaction.

O @ o) @
rank (7; ;) rank (77 ) rank (77 ) rank (77 )
Attractiveness 0.011** 0.012**
(0.003) (0.004)
Attractiveness * Female -0.003
(0.008)
Belief Bias -0.005 -0.008
(0.007) (0.008)
Preference Bias 0.013%: 0.015%*
(0.005) (0.005)
Belief Bias * Female 0.013
(0.015)
Preference Bias * Female -0.009
(0.010)
Gender(Male) 0.164** 0.162%* 0.163** 0.178**
(0.004) (0.006) (0.004) (0.007)
Ethnicity (European) -0.046** -0.046** -0.046** -0.046**
(0.009) (0.009) (0.009) (0.009)
Ethnicity (Others) 0.024* 0.024* 0.025%* 0.025*
(0.010) (0.010) (0.010) (0.010)
UG (Business) -0.147+* -0.147+* -0.147+* -0.147+*
(0.009) (0.009) (0.009) (0.009)
UG (Science) -0.019** -0.019** -0.018** -0.018**
(0.006) (0.006) (0.006) (0.006)
UG (Others) -0.072%* -0.072%* -0.073** -0.073**
(0.006) (0.006) (0.006) (0.006)
MBA Rank -0.199* -0.199%* -0.200* -0.200%*
(0.005) (0.005) (0.005) (0.005)
UG Rank -0.094** -0.094** -0.094** -0.094**
(0.005) (0.005) (0.005) (0.005)
Job Type (Management) -0.186** -0.186%** -0.188%* -0.189%*
(0.006) (0.006) (0.006) (0.006)
Job Type (Others) -0.594x* -0.594x* -0.595%* -0.595%*
(0.0006) (0.000) (0.000) (0.006)
Job Type (Technical) -0.685%* -0.685%* -0.685%* -0.686**
(0.010) (0.010) (0.010) (0.010)
Industry Category (IT) -0.118%* -0.118%* -0.118%* -0.118%*
(0.005) (0.005) (0.005) (0.005)
Industry Category (Management) 0.406** 0.406** 0.407** 0.407**
(0.005) (0.005) (0.005) (0.005)
Industry Category (Others) -0.397** -0.397%* -0.398%* -0.398**
(0.005) (0.005) (0.005) (0.005)
Large Employer -0.208** -0.208** -0.206** -0.206**
(0.004) (0.004) (0.004) (0.004)
Large Location 0.058** 0.058** 0.058** 0.058**
(0.003) (0.003) (0.003) (0.003)
Early Career -0.015%* -0.025%*
(0.005) (0.006)
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Early Career * Female
pScore

Constant

Obs.
R-squared

Adj R-squared
F

RMSE

0.075%*
(0.011)
0.495%*
(0.014)

275858
0.169
0.169

3111.048
0.914

0.075%*
(0.011)
0.496%*
(0.014)

275858
0.169
0.169

2947.309

0.914

0.081%*
(0.011)
0.500%*
(0.014)

275858
0.169
0.169

2801.290

0.914

0.036+*
(0.011)
0.080%*
(0.011)
0.490%*
(0.015)

275858
0.169
0.169

2437.457
0.914

Standard errors are in parenthesis
¥ p<0.01, * p<0.05 .

Table 13: (Model 1) The impact of attractiveness on career rank at the end of 15 years. (Model 2) The
impact of attractiveness with gender interaction. (Model 3) The impact of attractiveness with ethnicity
interaction. (Model 4) The impact of attractiveness for individual of European ethnicity alone.

Q) @ 3 Q)
rank (77 15) rank (77 15) rank (77 15) rank (75 15)
Attractiveness 0.060** 0.055** 0.048% 0.081**
(0.017) (0.019) (0.022) (0.018)
Attractiveness * Female 0.021
(0.040)
Attractiveness * Ethnicity (Others) -0.037
(0.168)
Attractiveness * Ethnicity 0.033*
(European)
(0.015)
Gender (Male) 0.203** 0.213%* 0.203** 0.209**
(0.021) (0.029) (0.021) (0.022)
Ethnicity (European) 0.001 0.001 -0.016
(0.043) (0.043) (0.062)
Ethnicity (Others) 0.109* 0.109* 0.175%
(0.050) (0.050) (0.070)
UG (Business) -0.123%* -0.123%* -0.122%* -0.114*
(0.045) (0.045) (0.045) (0.047)
UG (Science) -0.083** -0.084** -0.083** -0.100%*
(0.027) (0.027) (0.027) (0.028)
UG (Others) -0.035 -0.035 -0.033 -0.023
(0.031) (0.031) (0.031) (0.033)
MBA Rank -0.198** -0.198** -0.198** -0.206%*
(0.022) (0.022) (0.022) (0.024)
UG Rank -0.094** -0.094** -0.096** -0.099**
(0.025) (0.025) (0.025) (0.027)
Job Type (Management) 0.100%** 0.101** 0.099** 0.094*
(0.035) (0.035) (0.035) (0.038)
Job Type (Others) -0.219** -0.219** -0.220%* -0.221**
(0.037) (0.037) (0.037) (0.039)

99



Job Type (Technical) -0.4206%* -0.4206%* -0.429%* -0.415%*

(0.055) (0.055) (0.055) (0.060)
Industry Category (IT) -0.306** -0.307** -0.307** -0.333**
(0.024) (0.024) (0.024) (0.0206)
Industry Category (Management) 0.119%* 0.119%* 0.120%* 0.089**
(0.020) (0.020) (0.020) (0.028)
Industry Category (Others) -0.617*+* -0.617** -0.617** -0.624**
(0.025) (0.025) (0.025) (0.027)
Large Employer -0.346** -0.346** -0.347%* -0.352%*
(0.018) (0.018) (0.018) (0.019)
Large Location 0.077** 0.077** 0.076** 0.065%*
(0.017) (0.017) (0.017) (0.019)
pScore 0.043 0.043 0.040 -0.011
(0.054) (0.054) (0.054) (0.058)
Constant 0.376** 0.368** 0.385%* 0.424x*
(0.069) (0.070) (0.081) (0.058)
Obs. 12100 12100 12100 10176
R-squared 0.151 0.151 0.152 0.153
Adj R-squared 0.150 0.150 0.150 0.151
F 119.372 113.097 108.010 114.503
RMSE 0.932 0.932 0.931 0.926

Standard errors are in parenthesis
** p<0.01, * p<0.05 .

Table 14: The impact of attractiveness on career rank at the end of 15 years. (Model 1) Interaction with
Undergraduate degree, (Model 2) Interaction with undergraduate degree classified as Arts versus all
others (Model 3) Interaction with Industry Category, (Model 4) Interaction with Industry Category
classfied as Management versus all others. (Model 5) Interaction with Job Type. (Model 6) Interaction
with MBA Rank.

) ) ©) 4 ©) ©)
rank rank rank rank rank rank
(Ti,15) (Ti,15) (Ti,15) (Ti,15) (Ti,15) (Ti,15)
Attractiveness 0.065* 0.045% 0.053* 0.042%* 0.093 0.092%*
(0.027) (0.018) (0.028) (0.019) (0.089) (0.024)
Attractiveness * 0.091
UG (Arts) (0.053)
Attractiveness * 0.004
UG (Business) (0.082)
Attractiveness * -0.042
UG (Science) (0.038)
Attractiveness * 0.112*
UG (Arts) (0.049)
Attractiveness * -0.043
Ind. Cat. (Others) (0.083)
Attractiveness * -0.002
Ind. Cat. (IT) (0.066)
Attractiveness * 0.075%
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Ind. Cat.
(Management)
Unattractiveness *

Ind. Cat.
(Management)

Attractiveness *

Job Type (Consultant)
Attractiveness *

Job Type (Technical)
Attractiveness *

Job Type (Others)
Attractiveness *

MBA Rank
Gender(Male)
Ethnicity (European)
Ethnicity (Others)

UG (Business)

UG (Science)

UG (Others)

MBA Rank

UG Rank

Job Type (Management)
Job Type (Others)

Job Type (Technical)
Industry Category (IT)

Industry Category
(Management)

Industry Category
(Others)

Large Employer
Large Location
pScore

Constant

0.203%*
(0.021)
0.001
(0.043)
0.108*
(0.050)
-0.079
(0.063)
-0.017
(0.038)
0.010
(0.041)
-0.198%*
(0.022)
-0.094%*
(0.025)
0.100%*
(0.035)
-0.220%*
(0.037)
-0.427%*
(0.055)
-0.307%*
(0.024)
0.119%*

(0.026)
0.617%*

(0.025)
-0.346+*
(0.018)
0.076**
(0.017)
0.042
(0.054)
0.330%*

0.203%*
(0.021)
0.001
(0.043)
0.109%
(0.050)
-0.179%+
(0.052)
-0.140%
(0.037)
-0.091*
(0.040)
-0.198%+
(0.022)
-0.094%+
(0.025)
0.100%*
(0.035)
-0.220%+
(0.037)
-0.427%+
(0.055)
-0.307%*
(0.024)
0.119%*

(0.026)
-0.617%+

(0.025)
-0.346%+
(0.018)
0.076%*
(0.017)
0.043
(0.054)
0.441%*

(0.031)

0.203%*
(0.021)
0.002
(0.043)
0.109%
(0.050)
01245+
(0.045)
-0.084%*
(0.027)
-0.036
(0.031)
-0.197%*
(0.022)
-0.093%*
(0.025)
0.100%*
(0.035)
-0.220%*
(0.037)
-0.427%*
(0.055)
-0.301%*
(0.034)
0.087*

(0.037)
-0.590%*

(0.036)
-0.346%*
(0.018)
0.077%
(0.017)
0.044
(0.054)
0.373%*
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0.086*
(0.042)

0.203%*
(0.021)
0.001
(0.043)
0.108*
(0.050)
-0.123%*
(0.045)
-0.084%*
(0.027)
-0.036
(0.031)
-0.198%*
(0.022)
-0.093%*
(0.025)
0.100%
(0.035)
-0.220%*
(0.037)
-0.427%
(0.055)
-0.307%*
(0.024)
0.162%*

(0.034)
0.617%*

(0.025)
-0.346%*
(0.018)
0.077%
(0.017)
0.043
(0.054)
0.385%*

0.060
(0.360)
-0.133
(0.187)
0.019
(0.091)

0.203%*
(0.021)
0.001
(0.043)
0.107*
(0.050)
-0.123%+
(0.045)
-0.083%*
(0.027)
-0.035
(0.031)
-0.197%+
(0.022)
-0.094%+
(0.025)
0.130%*
(0.049)
-0.199%+
(0.051)
-0.356%*
(0.074)
-0.307%*
(0.024)
0.119%

(0.026)
0.617%+

(0.025)
-0.346%+
(0.018)
0.077%*
(0.017)
0.043
(0.054)
0.351%*

-0.076
(0.041)
0.202%*
(0.021)
0.003
(0.043)
0.110%
(0.050)
-0.122%*
(0.045)
0,084+
(0.027)
-0.034
(0.031)
-0.160%*
(0.030)
-0.095%*
(0.025)
0.101%*
(0.035)
-0.219%*
(0.037)
-0.424%+
(0.055)
-0.307+*
(0.024)
0.119%*

(0.026)
-0.616%*

(0.025)
-0.345%*
(0.018)
0.076**
(0.017)
0.044
(0.054)
0.359%*



0.072) (0.074) (0.071) (0.069) (0.076) (0.069)

Obs. 12100 12100 12100 12100 12100 12100
R-squared 0.151 0.151 0.151 0.151 0.151 0.151
Adj R-squared 0.150 0.150 0.150 0.150 0.150 0.150
F 102.656 113.396 102.602 113.340 102.422 113.296
RMSE 0.931 0.931 0.931 0.931 0.932 0.931

Standard errors are in parenthesis
¥ p<0.01, * p<0.05.

Appendix Regression Tables

Table 21: (Model 1) The impact of attractiveness bias across four strata with strata indicator
interaction effect. (Model 1 to 4) The impact of attractiveness bias in one propensity score strata at a
time. The sample sizes are smaller and standard errors are larger in the first and fourth strata.
Attractiveness bias is insignificant at 5% level (significant at 10% level) in these stratas.

0 @ © @ Q
All Strata Strata 1 Strata 2 Strata 3 Strata 4
rank (77 +) rank (7 ¢) rank (7 ¢) rank (77 ¢) rank (7 ¢)

Attractiveness 0.107* 0.095 0.081* 0.081** 0.060

(0.053) (0.051) (0.032) (0.030) (0.036)

Attractiveness * Strata [1-4] -0.011

(0.018)
Strata [1-4] -0.001
(0.024)
Gender (Male) 0.188** 0.157** 0.191%** 0.228%** 0.147**
(0.022) (0.059) (0.039) (0.040) (0.053)
Ethnicity (European) -0.044 -0.062 -0.034 -0.011 -0.098
(0.045) (0.164) 0.097) 0.077) 0.077)
Ethnicity (Others) 0.056 -0.114 0.145 0.155 -0.083
(0.052) (0.172) (0.104) (0.091) (0.118)
UG (Business) -0.160%* -0.079 -0.235%* -0.040 -0.294%
(0.047) (0.134) (0.085) (0.080) (0.101)
UG (Science) -0.103%* -0.035 -0.118* -0.081 -0.163%*
(0.028) (0.082) (0.051) (0.047) (0.063)
UG (Others) -0.066%* -0.063 -0.081 0.005 -0.167*
(0.033) (0.097) (0.059) (0.054) 0.074)
MBA Rank -0.183%* -0.247%* -0.148** -0.177%* -0.204%*
(0.023) (0.066) (0.042) (0.039) (0.047)
UG Rank -0.102%¢ -0.162%* -0.080 -0.102* -0.092
(0.026) (0.072) (0.045) (0.046) (0.063)
Job Type (Management) 0.096** -0.055 0.107 0.099 0.164*
(0.037) (0.100) (0.065) (0.063) (0.077)
Job Type (Others) -0.229% -0.384%* -0.244% -0.168* -0.213%*
(0.038) (0.110) (0.068) (0.066) (0.080)
Job Type (Technical) -0.474** -0.477+* -0.582** -0.495** -0.380**
(0.058) (0.153) (0.109) (0.107) (0.115)
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Industry Category (IT) -0.323%* -0.324% -0.325%* -0.348** -0.289**

(0.025) (0.075) (0.047) (0.042) (0.050)
Industry Category 0.128** 0.137 0.181%* 0.106* 0.091
(Management)
(0.028) (0.081) (0.051) (0.047) (0.056)
Industry Category (Others) -0.613** -0.563** -0.558** -0.657** -0.648**
(0.026) (0.080) (0.049) (0.045) (0.053)
Large Employer -0.325** -0.320%* -0.279** -0.318** -0.388**
(0.018) (0.054) (0.034) (0.032) (0.038)
Large Location 0.054** 0.056 0.060 0.009 0.103**
(0.018) (0.052) (0.032) (0.031) (0.037)
pScore 0.115 -0.014 0.352 -0.188 0.492*
(0.123) (0.364) (0.264) (0.209) (0.230)
Constant 0.413** 0.652** 0.232 0.502** 0.263
(0.076) (0.223) (0.157) (0.167) (0.204)
Obs. 11000 1348 3086 3802 2764
R-squared 0.153 0.157 0.164 0.150 0.162
Adj R-squared 0.151 0.146 0.159 0.146 0.157
F 99.091 13.784 33.326 36.958 29.488
RMSE 0.928 0.934 0.897 0.934 0.948

Standard errors are in parenthesis

# p<0.01, * p<0.05 .

Table 22: The impact of attractiveness bias using different measures for attractiveness - (Model 1)
binary classification (b; +), (Model 2) continuous measure (beauty; ), (Model 3) static measure as on
MBA graduation (beauty; ;~,), (Model 4) static measure as at data collection in 2017.

©) ) €) )
rank (77 +) rank (77 +) rank (77 +) rank (77 +)

Attractiveness Class (b; ¢) 0.011**

(0.003)
Attractiveness Rating 0.016%*
(beauty; )

(0.004)
Attractiveness Rating att = 0 0.011%**
(0.004)
Attractiveness Rating in 2017 0.017%%
(0.004)

Gender(Male) 0.164** 0.163** 0.164** 0.174**

(0.004) (0.004) (0.004) (0.004)
Ethnicity (European) -0.046%* -0.046%* -0.046%* -0.046%*

(0.009) (0.009) (0.009) (0.009)
Ethnicity (Others) 0.024%* 0.023* 0.024%* 0.023*

(0.010) (0.010) (0.010) (0.010)
UG (Business) -0.147%* -0.148** -0.147%* -0.148**

(0.009) (0.009) (0.009) (0.009)
UG (Science) -0.019%* -0.019%* -0.019%* -0.019%*
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(0.006) (0.006) (0.006) (0.006)

UG (Others) -0.072%* -0.072%* -0.072%* -0.072%*
(0.006) (0.006) (0.0006) (0.0006)
MBA Rank -0.199** -0.199** -0.199** -0.199**
(0.005) (0.005) (0.005) (0.005)
UG Rank -0.094x* -0.094** -0.094** -0.094**
(0.005) (0.005) (0.005) (0.005)
Job Type (Management) -0.186** -0.185** -0.186** -0.186**
(0.000) (0.000) (0.000) (0.006)
Job Type (Others) -0.594** -0.594** -0.594** -0.594**
(0.006) (0.006) (0.006) (0.0006)
Job Type (Technical) -0.685%* -0.685%* -0.685%* -0.685%*
(0.010) (0.010) (0.010) (0.010)
Industry Category (IT) -0.118** -0.118** -0.118** -0.118**
(0.005) (0.005) (0.005) (0.005)
Industry Category 0.406** 0.406** 0.406** 0.406**
(Management)
(0.005) (0.005) (0.005) (0.005)
Industry Category (Others) -0.397** -0.397** -0.397** -0.397**
(0.005) (0.005) (0.005) (0.005)
Large Employer -0.208** -0.208** -0.208** -0.208**
(0.004) (0.004) (0.004) (0.004)
Large Location 0.058** 0.058** 0.058** 0.059**
(0.003) (0.003) (0.003) (0.003)
pScore 0.075** 0.068** 0.071** 0.067**
(0.011) 0.011) 0.011) (0.011)
Constant 0.495%* 0.506** 0.503** 0.422%*
(0.014) (0.014) (0.014) (0.021)
Obs. 275858 275858 275858 275858
R-squared 0.169 0.169 0.169 0.169
Adj R-squared 0.169 0.169 0.169 0.169
F 3111.048 3111.735 3111.024 3111.891
RMSE 0.914 0.914 0.914 0.914

Standard errors are in parenthesis
** p<0.01, * p<0.05.

Table 23: The impact of attractiveness preference and belief bias using (Model 1) standardised job
ranks (1;+), (Model 2) unstandardised job ranks (rank; ;). The impact of attractiveness on career
outcome at the end of 15 years using (Model 3) standardised job ranks (r; ), (Model 4) unstandardised

Jjob ranks (rank; ;).
©) ) ©) ©)
Standardized Unstandardized Standardized Unstandardized
rank i, t) rank rank Tit) rank
(rank; ;) (rank; +)
Belief Bias -0.005 -0.003
(0.007) (0.005)
Preference Bias 0.013%** 0.008%**
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Attractiveness Bias
Gender(Male)
Ethnicity (European)
Ethnicity (Others)

UG (Business)

UG (Science)

UG (Others)

MBA Rank

UG Rank

Job Type (Management)
Job Type (Others)

Job Type (Technical)
Industry Category (IT)

Industry Category
(Management)

Industry Category (Others)
Large Employer

Large Location

Years from graduation (t)
Early Career

pScore

Constant

Obs.

R-squared

Adj R-squared

F
RMSE

(0.005)

0.163%*
(0.004)
-0.046%*
(0.009)
0.025*
(0.010)
-0.147%+
(0.009)
-0.018%*
(0.006)
-0.073%*
(0.006)
-0.200%*
(0.005)
-0.094
(0.005)
-0.188%*
(0.006)
-0.595%*
(0.006)
-0.685%*
(0.010)
-0.118%*
(0.005)
0,407+

(0.005)
-0.398%*
(0.005)
-0.206%*
(0.004)
0.058**
(0.003)

-0.015%+
(0.005)
0.081%*
(0.011)
0.500%*
(0.014)

275858
0.169
0.169

2801.290
0.914
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(0.003)

0.108%*
(0.003)
-0.031%x
(0.006)
0.016*
(0.007)
-0.098**
(0.006)
-0.012%+
(0.004)
-0.051%+
(0.004)
-0.134%+
(0.003)
-0.062%+
(0.003)
-0.139%+
(0.004)
-0.409%+
(0.004)
0,467
(0.007)
-0.074%+
(0.003)
0.276%*

(0.003)
-0.258%*
(0.004)
-0.133%+
(0.002)
0.039%*
(0.002)
0.016%*
(0.001)
-0.015%*
(0.005)
0.053%*
(0.007)
~7.600%
(0.011)

275858
0.178
0.178

2838.294
0.607

0.060%*
(0.017)
0.203**
(0.021)
0.001
(0.043)
0.109%
(0.050)
-0.123%*
(0.045)
-0.083%*
(0.027)
-0.035
(0.031)
-0.198%*
(0.022)
-0.0947*
(0.025)
0.100%*
(0.035)
-0.219%
(0.037)
-0.426%*
(0.055)
-0.306%*
(0.024)
0.119%+

(0.026)
-0.617%*
(0.025)
-0.346%*
(0.018)
0.077%+
(0.017)

0.043
(0.054)
0.376%*
(0.069)

12100
0.151
0.150
119.372
0.932

0.038%*
(0.011)
0.128%*
(0.013)
0.001
(0.028)
0.069*
(0.032)
-0.078%*
(0.029)
-0.053%*
(0.017)
-0.022
(0.020)
-0.125%+
(0.014)
-0.060%*
(0.016)
0.064%*
(0.022)
-0.139%*
(0.023)
-0.270%*
(0.035)
-0.194%+
(0.015)
0.075%*

(0.017)
-0.391%*
(0.016)
-0.219%*
0.011)
0.049%+
0.011)

0.027
(0.034)
7.493%x
(0.044)

12100
0.151
0.150
119.372
0.591



Standard errors are in parenthesis
* p<0.01, * p<0.05 .

Table 26: (Model 1) Time Taken to attain job j with 6; fixed effects for all jobs reported by at least 20
individuals, (Model 2) Time Taken to attain job j with ;random effect with all jobs reported by at
least 2 individuals, (Model 3) Time Taken in job transition j; — j, with B}, j, random effects with all
jobs reported by at least 2 individuals.

) @ ©)
Gender(Male) -0.053* -0.052 -0.106*
(0.021) (0.050) (0.045)
Attractiveness -0.401%* -0.268** -0.009
(0.018) (0.041) (0.038)
Constant 8.373%* 10.451°%* 3.7071%
(0.100) (0.584) (0.256)
Job (var) 9.433%*
(0.0746)
Job Pair (var) 2.136%*
(0.129)
Residual (var) 5.710%* 0.679%*
(0.002) (0.016)
Obs. 209924 23443 4365
Groups 54,582 209 694
R-squared 0.436
r2_a 0.431
F 85.792
rmse 3.012
Log Likelihood -526678.9 -6272.7

Standard errors are in parenthesis
** p<0.01, * p<0.05

Table 27: The impact of attractiveness preference and belief bias with different early career cutoff for
belief bias - (Model 1) original cut off at 6 years, (Model 2) cut off at 4 years (Model 3) cut off at 8

years.
Q) 2 3
Teutoff = 6yrs Teutoff = 4yrs Teutoff = 8yrs
rank (77 +) rank (75 1) rank (77 +)
Belief Bias -0.005 -0.008 -0.012
(0.007) (0.008) (0.007)
Preference Bias 0.013%* 0.013%* 0.018%**
(0.005) (0.004) (0.005)
Gender(Male) 0.163%* 0.163** 0.163%*
(0.004) (0.004) (0.004)
Ethnicity (European) -0.046%* -0.046%* -0.045%*
(0.009) (0.009) (0.009)
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Ethnicity (Others)

UG (Business)

UG (Science)

UG (Others)

MBA Rank

UG Rank

Job Type (Management)
Job Type (Others)

Job Type (Technical)
Industry Category (IT)
Industry Category (Management)
Industry Category (Others)
Large Employer

Large Location

Early Career

pScore

Constant

Obs.

R-squared

Adj R-squared

F
RMSE

0.025*
(0.010)
-0.147%
(0.009)
-0.018%*
(0.006)
-0.073%*
(0.006)
-0.200%
(0.005)
-0.094%+
(0.005)
-0.188**
(0.006)
-0.595%*
(0.006)
-0.685%*
(0.010)
-0.118%*
(0.005)
0.407%*
(0.005)
-0.398%*
(0.005)
-0.206%*
(0.004)
0.058%*
(0.003)
-0.015%*
(0.005)
0.081%*
(0.011)
0.500%*
(0.014)

275858
0.169
0.169

2801.290

0.914

0.025%
(0.010)
-0.147%*
(0.009)
-0.019%*
(0.006)
-0.073%*
(0.006)
-0.200%*
(0.005)
-0.094%+
(0.005)
-0.188%*
(0.006)
-0.595+*
(0.006)
-0.686+*
(0.010)
-0.118%*
(0.005)
0.407%+
(0.005)
-0.398+*
(0.005)
-0.207%*
(0.004)
0.058%*
(0.003)
-0.012*
(0.006)
0.079%*
0.011)
0.498*+
(0.014)

275858
0.169
0.169

2800.942

0.914

0.025*
(0.010)
-0.147%
(0.009)
-0.018%*
(0.006)
-0.073%*
(0.006)
-0.200%
(0.005)
-0.094%*
(0.005)
-0.188**
(0.006)
-0.595%*
(0.006)
-0.685%*
(0.010)
-0.118%*
(0.005)
0.406**
(0.005)
-0.398%*
(0.005)
-0.206%*
(0.004)
0.058%*
(0.003)
-0.013*
(0.005)
0.082+
(0.011)
0.500%*
(0.014)

275858
0.169
0.169

2801.685
0.914

Standard errors are in parenthesis

# p<0.01, * p<0.05 .

Table 28: The impact of attractiveness preference and belief bias using different university rankings -
(Model 1) original UG and MBA ranks (Model 2) UG rank from 2010, (Model 3) MBA rank from 2001,
and (Model 4) MBA rank from 2012.

©)

rank (75 ¢)

rank (75 ¢)

rank (15 ¢)

)

rank (75 ¢)
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Belief Bias

Preference Bias
Gender(Male)

Ethnicity (European)
Ethnicity (Others)

UG (Business)

UG (Science)

UG (Others)

MBA Rank

MBA Rank 2001

MBA Rank 2012

UG Rank

UG Rank 2010

Job Type (Management)
Job Type (Others)

Job Type (Technical)
Industry Category (IT)
Industry Category (Management)
Industry Category (Others)
Large Employer

Large Location

Early Career

pScore

Constant

Obs.

-0.005
(0.007)
0.013%*
(0.005)
0.163%*
(0.004)
-0.046%*
(0.009)
0.025%
(0.010)
-0.147%+
(0.009)
-0.018%*
(0.006)
-0.073%*
(0.006)
-0.200%*
(0.005)

-0.094%x
(0.005)

-0.188%*
(0.006)
-0.595%*
(0.006)
-0.685%*
(0.010)
-0.118%*
(0.005)
0.407%*
(0.005)
-0.398%*
(0.005)
-0.206%*
(0.004)
0.058%*
(0.003)
-0.015%+
(0.005)
0.081%*
(0.011)
0.500%*
(0.014)

275858

108

-0.005
(0.007)
0.013%*
(0.005)
0.165%*
(0.004)
-0.046%*
(0.009)
0.026%*
(0.010)
-0.133%*
(0.009)
-0.012*
(0.006)
-0.072%*
(0.006)
-0.196%*
(0.005)

-0.113%*
(0.005)
-0.189%*
(0.006)
-0.594%*
(0.006)
-0.685%*
(0.010)
-0.119%*
(0.005)
0.407%*
(0.005)
-0.397%*
(0.005)
-0.206%*
(0.004)
0.058**
(0.003)
-0.015%*
(0.005)
0.081%*
(0.011)
0.516%*
(0.014)

275858

-0.004
(0.007)
0.011%
(0.005)
0.162%*
(0.004)
-0.042%+
(0.009)
0.032%+
(0.010)
-0.138%*
(0.009)
-0.015%*
(0.006)
-0.031%*
(0.007)

-0.198%
(0.005)

-0.094%*
(0.005)

-0.194%+
(0.006)
-0.594%*
(0.006)
0.657%*
(0.010)
-0.117%*
(0.005)
0.407%*
(0.005)
-0.401%*
(0.005)
-0.204%*
(0.004)
0.060%*
(0.003)
-0.019%*
(0.005)
0.106**
(0.011)
0.500%*
(0.014)

275858

-0.005
(0.007)
0.011*
(0.005)
0.162%
(0.004)

-0.0425
(0.009)

0.030%
(0.010)

-0.141%+
(0.009)

-0.016%*
(0.006)

-0.038%*
(0.007)

-0.183%*
(0.005)
-0.098%*
(0.005)

0,192+
(0.006)
-0.594%+
(0.006)
0.667**
(0.010)
0.116%*
(0.005)
0.408%*
(0.005)
-0.400%
(0.005)
-0.204%+
(0.004)
0.061%*
(0.003)
-0.018%*
(0.005)
0.104%*
(0.011)
0.495%*
(0.014)

275858



R-squared 0.169 0.169 0.169 0.168

Adj R-squared 0.169 0.169 0.169 0.168
F 2801.290 2809.789 2803.706 2785.996
RMSE 0.914 0.914 0.914 0.915

Standard errors are in parenthesis
¥ p<0.01, * p<0.05.

Table 29: The impact of attractiveness preference and belief bias using (Model 1) all MBA graduates,
(Model 2) MBA graduates after 1998, (Model 3) MBA graduates prior to 2008, (Model 4) MBA Rank
less than 20, and (Model 5) MBA Rank less than 100.

0) @ o) @ ®
All MBA MBA MBA MBA
Grad Year  Grad Year Rank Rank
> 1998 <2008 <=20 <100
rank r;, 0 rank_std rank_std rank_std rank_std
Belief Bias -0.005 -0.015 0.001 -0.002 -0.009
(0.007) (0.009) (0.008) (0.009) (0.008)
Preference Bias 0.013%* 0.014** 0.011* 0.021** 0.017**
(0.005) (0.005) (0.005) (0.000) (0.005)
Gender(Male) 0.163** 0.175%* 0.162** 0.180** 0.178**
(0.004) (0.005) (0.004) (0.005) (0.005)
Ethnicity (European) -0.046** -0.044** -0.053** -0.051** -0.043*
(0.009) (0.010) (0.010) (0.012) (0.011)
Ethnicity (Others) 0.025* 0.025* 0.019 0.021 0.026*
(0.010) (0.012) (0.011) (0.013) (0.012)
UG (Business) -0.147%* -0.151** -0.143%* -0.128** -0.138**
(0.009) (0.011) (0.010) (0.012) (0.010)
UG (Science) -0.018** -0.033** -0.011 -0.030** -0.018**
(0.006) (0.000) (0.000) (0.007) (0.006)
UG (Others) -0.073*%* -0.060** -0.070%* -0.082%* -0.085%*
(0.0006) (0.007) (0.007) (0.008) (0.007)
MBA Rank -0.200%* -0.184** -0.211% -2.113%* -0.366**
(0.005) (0.005) (0.005) (0.043) (0.010)
UG Rank -0.094** -0.094** -0.094** -0.061** -0.083**
(0.005) (0.006) (0.006) (0.006) (0.0006)
Job Type (Management) -0.188** -0.151** -0.219** -0.181** -0.166**
(0.006) (0.007) (0.007) (0.008) (0.007)
Job Type (Others) -0.595%* -0.552%* -0.612%* -0.544x* -0.558**
(0.0006) (0.007) (0.007) (0.008) (0.007)
Job Type (Technical) -0.685** -0.706** -0.678** -0.660** -0.638**
(0.010) (0.012) (0.011) (0.015) (0.012)
Industry Category (IT) -0.118** -0.177** -0.083** -0.178** -0.152%*
(0.005) (0.006) (0.006) (0.007) (0.0006)
Industry Category 0.407** 0.362%* 0.417** 0.364** 0.380*
(Management)
(0.005) (0.006) (0.006) (0.007) (0.0006)
Industry Category (Others) -0.398** -0.436** -0.389** -0.475** -0.435%**
(0.005) (0.000) (0.000) (0.007) (0.006)
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Large Employer -0.206** 02128 L0.228%F 02350 -0.220%

(0.004) (0.004) (0.004) (0.005) (0.004)
Large Location 0.058%* 0.056%* 0.066%* 0.049%* 0.059%*
(0.003) (0.004) (0.004) (0.005) (0.004)
Early Career 0.015% 00245 0.020%* 0.008 0.001
(0.005) (0.006) (0.006) (0.007) (0.006)
pScore 0.081%* 0.111%* 0.063%* 0.089%* 0.085%*
(0.011) (0.013) (0.012) (0.014) (0.012)
Constant 0.500%* 0.481%* 0.535%* 0.660%* 0.504%*
(0.014) (0.017) (0.016) (0.019) (0.016)
Obs. 275858 202163 221801 161347 207000
R-squared 0.169 0.164 0.171 0.170 0.164
Adj R-squared 0.169 0.164 0.171 0.170 0.164
F 2801.290 1988.577  2288.985  1648.141  2024.070
RMSE 0.914 0.913 0.910 0.921 0.920

Standard errors are in parenthesis
** p<0.01, * p<0.05 .

Table 31: The impact of attractiveness preference and belief bias with additional controls - (Model 1)
original set of controls, (Model 2) Picture quality controls (Model 3) Picture quality, facial hair and
face health controls (Model 4) Picture quality, facial hair, face health controls and picture
characteristics from outside of cropped area.

M @ €) Q)
rank (77 1) rank (77 +) rank (77 +) rank (77 1)

Belief Bias -0.005 -0.005 -0.005 -0.004
(0.007) (0.007) (0.007) (0.007)

Preference Bias 0.013%* 0.013%* 0.013%* 0.013%*
(0.005) (0.005) (0.005) (0.005)

MBA Graduation Year 0.288** 0.289** 0.293** 0.297**
(0.015) (0.015) (0.015) (0.015)

UG Graduation Year -0.493%* -0.482%* -0.514** -0.514**
(0.030) (0.030) (0.030) (0.030)

UG Fees 0.163** 0.165** 0.164** 0.162**
(0.014) (0.014) (0.014) (0.014)

MBA Fees 0.316** 0.314** 0.312%* 0.307**
(0.011) (0.011) (0.011) (0.011)

Picture Blur -0.049+* -0.047%* -0.020%
(0.010) (0.010) (0.010)

Picture Exposure 0.097+* 0.074** 0.075%*
(0.017) (0.017) (0.017)
Picture Noise 0.001 -0.001 0.005
(0.008) (0.008) (0.008)

Picture Face Quality 0.031%* 0.030%* 0.018**
(0.006) (0.006) (0.006)
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Picture Resolution
Picture Bald

Picture Beard
Picture Moustache
Picture Sideburns
Picture Dark Circles
Picture Health
Picture Skin Stains
Picture Smile
Picture Eye Glasses
Racy Clothing
Informal Background
Formal Clothing
Informal Clothing
Picture Necklace
Picture Lipstick
Picture Hat

Picture Earrings
Industry Category (IT)

Industry
(Management)

Industry Category (Others)

Large Employer
Large Location
Early Career

pScore

-0.123%*
(0.005)
0.400%*

(0.005)
-0.400%
(0.005)
-0.205%*
(0.004)
0.063**
(0.004)
~0.027%*
(0.005)
0.100%*

-0.041%+
(0.006)

-0.121%*
(0.005)
0.400%*

(0.005)
-0.399%*
(0.005)
-0.206%*
(0.004)
0.063%*
(0.004)
-0.026%*
(0.005)
0.093%*

-0.039%*
(0.006)
-0.065%*
(0.008)
-0.060*
(0.029)
-0.062*
(0.029)
0.078*
(0.032)
0.011
(0.010)
0.085%*
(0.010)
0.045%*
(0.007)

-0.120%*
(0.005)
0.401%+

(0.005)
-0.397+*
(0.005)
-0.206%*
(0.004)
0.063%*
(0.004)
-0.027+*
(0.005)
0.108%*

~0.051%*
(0.006)
-0.063**
(0.008)
-0.060%
(0.029)
-0.057
(0.029)
0.080*
(0.032)
0.026%*
(0.010)
0.076*
(0.010)
0.04 1%
(0.008)
-0.035%*
(0.007)
0.032%
(0.012)
-0.268**
(0.078)
-0.007
(0.013)
0.076**
(0.012)
0.008
(0.033)
-0.001
(0.010)
-0.059%+
(0.016)
0.026
(0.038)
-0.113
(0.075)
0.119%
(0.005)
0.402%*

(0.005)
-0.395%*
(0.005)
-0.208%*
(0.004)
0.063**
(0.004)
-0.028%*
(0.005)
0.112%*



(0.011) (0.011) (0.011) (0.011)

Constant 0.238%* 0.180%* 0.174%* 0.176%*
(0.022) (0.025) (0.025) (0.028)
Obs. 275858 275858 275858 275858
R-squared 0.173 0.173 0.174 0.175
Adj R-squared 0.173 0.173 0.174 0.174
F 2398.652 1991.540 1611.199 1241.384
RMSE 0.912 0.912 0.912 0.911

Standard errors are in parenthesis
** p<0.01, * p<0.05 .

Table 32: Relationship of job rank and likelihood of a clearly posted profile picture.

M
Profile Picture Posted
Rank -0.016
(0.015)
Gender (Female) 0.116%*
(0.032)
Gender (Male) 0.048
(0.028)
Gender (Mostly Female) 0.037
(0.054)
Gender (Mostly Male) 0.119%
(0.045)
Gender (Unknown) -0.054
(0.032)
Ethnicity (Britsh-GreaterEuropean) -0.062
(0.051)
Ethnicity (EastEuropean-GreaterEuropean) -0.030
(0.067)
Ethnicity (GreaterEastAsian-Asian) -0.449%*
(0.053)
Ethnicity (IndianSubContinent-Asian) -0.121*
(0.054)
Ethnicity (Jewish-GreaterEuropean) -0.029
(0.054)
Ethnicity (Muslim-GreaterAfrican) -0.105
(0.067)
Ethnicity (WestEuropean-GreaterEuropean) -0.037
(0.053)
Constant 1.749%x
(0.145)
Obs. 97771

R-squared
Adj R-squared
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F
rmse

Standard errors are in parenthesis

* p<0.01, * p<0.05 .

Table 33: (Modell) Impact of attractiveness without selection model (Model2) Impact of
attractiveness with heckman selection model (Model3) Impact of belief and preference bias with
heckman selection model.

(1) (2) (3)

Gender (Male) -0.004 -0.011 -0.004

(0.047) (0.034) (0.039)
Attractiveness 0.085* 0.060*
(0.041) (0.026)

Preference Bias 0.065*
(0.030)

Belief Bias -0.010
(0.027)

Graduation Year 0.003 0.004 0.005
(0.004) (0.004) (0.006)
Select: Graduation Year -0.020** -0.027**
(0.003) (0.003)
Select: Gender (Male) 0.109** 0.107**
(0.034) (0.037)
Select: Constant 0.596** 0.514**
(0.100) (0.106)
rho -.058 -0.054*
(0.032) (0.037)
sigma 0.995** 0.997**
(0.012) (0.014)

Obs. 1,198 3,082 3,082

Uncensored Obs. 1,198 1,198

Standard errors are in parenthesis

**p<0.01, * p<0.05

Table 34: Relationship of job rank and individuals attractiveness with interaction with MBA

graduation year.
@ @) ©) *
Attractiveness Attractiveness Attractiveness Attractiveness
Rank 0.009 0.009 0.011 0.010
(0.006) (0.006) (0.006) (0.006)
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MBA Graduation Year
Rank * MBA Graduation Year
Gender(Male)
Ethnicity (European)
Ethnicity (Others)

UG (Business)

UG (Science)

UG (Others)

MBA Rank

UG Rank

Large Employer
Large Location
Constant

Obs.

R-squared

Adj R-squared

F
RMSE

0.076%*
(0.010)
0.000
(0.010)
0.014*
(0.006)
0,047+
(0.013)
-0.179%+
(0.014)
0.009
(0.013)
0,042
(0.008)
0.084%*
(0.009)
0.002
(0.007)
-0.066**
(0.007)
0.015%*
(0.005)
0.010%
(0.005)
0.549%*
(0.017)

38129
0.023
0.023
69.039
0.494

0.001
(0.010)
0.010
(0.006)
-0.048%*
(0.013)
-0.176%*
(0.014)
0.014
(0.013)
-0.041%*
(0.008)
0.083**
(0.009)
-0.002
(0.007)
-0.065%*
(0.007)
0.017%*
(0.005)
0.002
(0.005)
0.598%*
(0.016)

38129
0.022

0.021

70.272
0.494

0.045%*
(0.010)
-0.007
(0.010)

0.489%
(0.006)

38129
0.001
0.001
9.290
0.500

-0.006
(0.010)

0.514%+
(0.003)

38129
0.000
0.000
3.882
0.500

Standard errors are in parenthesis
** p<0.01, * p<0.05 .



Chapter 2:
Why Bitcoin will Fail to Scale?
Economics of Collusion on Blockchains

Bitcoin falls dramatically short of the scale provided by banks for payments. Its ledger grow by the addition of
blocks of ~ 2000 transaction every 10 minutes. Intuitively, one would expect that increasing the block capacity
would solve this scaling problem. However, we show that increasing the block capacity would be futile. We analyze
strategic interactions of miners, who are heterogeneous in their power over block addition, and users, who are
heterogeneous in the value of their transactions, using a game-theoretic model. We show that a capacity increase
can facilitate large miners to tacitly collude — artificially reversing back the capacity via strategically adding partially
filled blocks in order to extract economic rents. This strategic partial filling crowds out low value payments. Collusion
is sustained if the smallest colluding miner has a share of block addition power above a lower bound. We provide

empirical evidence of such strategic partial filling of blocks by large miners of Bitcoin.

We show that a protocol design intervention can breach the lower bound and eliminate collusion. However, this
also makes the system less secure. On the one hand, collusion crowds out low-value payments; on the other hand,
if collusion is suppressed, security threatens high-value payments. Thus its untenable to include range of payments
with vastly different outside options, willingness to bear security risk and delay onto a single chain. Thus, we show
economic limits to the scalability of Bitcoin. Under these economic limits, collusive rent extraction acts an effective
mechanism to invest in platform security and build responsiveness to demand shocks. These traits are otherwise
hard to attain in dis-intermediated setting owing to the high cost of consensus. We discuss recommendations to

public Blockchain designers.

1. Introduction

Bitcoin has been touted as a revolutionary technology that would disrupt the traditional payments industry
(Popper 2017, Tasca 2018). Bitcoin's market capitalization stood at $100 billion in Oct 2018 (Zaitsev
2018), and it is being used for transactions worth $1 billion on a daily basis (BlockchainExplorer 2018).
In June 2018, Bitcoin was used for a $300 million payment completed in 10 minutes at a fee of 4 cents
(Blockchain.com 2018). In comparison, transactions through banks as intermediaries are costly, and cross-
border transactions take several days to complete (TransferWise 2018). In recent times, these slow and
costly banking intermediaries have also faltered at providing security against data hacks (McMillan 2018,
Glazer and Farrell 2018) and frauds (Glazer 2018). As a result, Bitcoin has garnered enormous attention

with promise of inexpensive, fast and trustless payments (Jordan and Kerr 2018).

Traditional banks maintain a ledger of transactions. Users make payments by instructing banks to add

desired transactions onto this ledger. Banks guarantee integrity (no one can spend more than their balance)



and security (outsiders cannot steal balances). Bitcoin maintains a similar ledger, but it is maintained by
consensus among a peer-to-peer network. Bitcoin's current technology is capable of adding only up to 3
transactions per second (Eyal et al. 2016) to this ledger, compared to VISA's 5000 transactions per second
(Yli-Huumo et al. 2016). In December 2017, this limited throughput fell well short of demand; a vast
majority of users were turned away, and a large number of users were unable to spend any of their Bitcoins.
On December 21, 2017, under severe congestion, Bitcoin witnessed users offering up to $54.90 to obtain

preferential treatment on this limited throughput (Buntinx 2017).

Bitcoin's ledger consists of a chain of blocks. Blocks with a limited size of 1 MB (~ 2200 transactions)
are added every 10 minutes. This low frequency of block addition is required to propagate a new block over
a large network to keep all participants in sync. As a result, to increase the transaction throughput, Bitcoin
developers have been aggressively debating technology upgrades for increasing the block capacity. Segwit2x
was an attempted upgrade of Bitcoin to 2 MB blocks in Nov 2017 (Bitcoin Wiki 2017). Meanwhile, Bitcoin
Cash was launched as a competing platform in Aug 2017 with an 8 MB block size (Wilmoth 2018). In this
paper, we ask a fundamental question: Would a simple redesign (e.g., 2x block size or 0.5x block duration)

allow Bitcoin to scale?

Counterintuitively, we show that increasing the capacity (e.g., doubled block size or halved block duration)
would be futile in terms of scaling Bitcoin. Thousands of participants, called “miners”, who validate and
add transactions to the Bitcoin ledger collude to revert back increased Block capacity. These miners in
large numbers are meant to provide ledger integrity and security. Miners spend computational resources to
add transactions for which they collect a fixed block reward plus any transaction fees offered by the users.
Although transaction fees are optional, miners can chose which transactions to process and prioritize those
that pay high transaction fees. As a result, users tend to offer high transaction fees when the block capacity is
well below the demand to obtain preferential treatment. However, when the demand competition decreases,
users do not face the same risk of being left out. As a result, they offer near-zero transaction fees. We show
that under such a scenario, a large number of miners could enter a tacit collusion to artificially lower the
effective block size to raise transaction fees. They would strategically add partially filled blocks by including
only those transactions that offer high transaction fees. We identify one such equilibrium condition where
such tacit collusion is sustained. This equilibrium requires the computing power of the smallest colluding
miner to be larger than a threshold. A large miner invests more in computational power and, as a result, wins
blocks more frequently. These large miners are most suited to sustain collusion via a long-term punishment
threat. In contrast, small miners win so infrequently that they are not deterred by future punishment and

thus deviate from collusion.

There are two aspects of Bitcoin's mining process that are necessary for such a collusive equilibrium. First,

the public ledger allows anyone to identify which mirber added a particular block and their choice of full or
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Figure 1 The average block size has been significantly below full capacity since January 2018, shown in terms of the

number of transactions (top) as well as the actual size in KB (bottom).

partial block fill. This allows other miners to verify if a colluding miner has deviated. Second, the miners
are in the game for perpetuity. The group can punish the deviating miner by getting into a transaction fee

war in perpetuity, making all miners worse off, which ensures that no colluding miner deviates.

A closer examination of Bitcoin' ledger confirms the above intuition — miners indeed partially fill their
blocks when demand competition is weak. Figure 1 shows block sizes pushing on the ~ 2200-transaction
ceiling around December 2017. Since then, block sizes (~ 500 — 1500 transactions) in 2018 have been
well below their maximum limit. This observation seems to suggest insufficient interest to make payments
via Bitcoin. In reality, user payments are still being turned away as empty blocks are added to the ledger.
Numerous partially filled blocks have recently been observed regularly, even when tens of thousands of
transactions were waiting to be processed. Figure 2 shows a very specific instance on September 31, 2018,
when AntPool (which is a very large mining pool) added partially filled blocks. The first two blocks used
up less than 10% of the block capacity, while more than 1000 transactions were in the queue. It is critical
to note that very few transactions in waiting were offering a high fee (> 15 satoshi ! /Bytes) when these
blocks were added. The third block utilized its full capacity when a significant number of high-fee-offering

transactions were in the queue.

Figure 3 reports the criticism received by AntPool on Twitter for partially filling their blocks when thou-

sands of transactions were waiting to be processed. Figure 4 provides the reply of an AntPool representative

11 Bitcoin = 1 x 10® satoshi
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Figure 2 Three blocks mined by AntPool on September 31, 2018. The first two blocks used up less than 10% of the
block capacity, while more than 1000 transactions were in the queue. The third block utilized its full
capacity when a significant number of high-fee-paying (> 15 satoshi/Byte) transactions were waiting, as

indicated by the dark gray region.

who admits to this practice and responds to the criticism by saying that their actions are within the rights
provided by the consensus mechanism of Bitcoin. 2 We will show that the strategy of sacrificing present
capacity for future earning surges is rational for large miners only. In line with this finding, Figure 5 shows
that AntPool (which currently holds 20% of the overall mining power) has been underfilling blocks compared

to all other miners.

Softforks Softforks 7 \
( Follow ) ( Follow v
@Softforks @Softforks \ %

AntPool mined a 298.72kb block AntPool mined a 240.355kb block
Height: 466469 Height: 466420
Mempool: 61297 txs, 91MB+ Mempool: 74501 txs, 96MB+
305s since last block 632s since last block
8:50 PM - 14 May 2017 2:02 PM - 14 May 2017
Figure 3 Two instances where a large bitcoin mining pool (AntPool) was criticized on Twitter for mining partial

blocks (298 KB and 240 KB) while more than 60000 transactions were waiting in the queue.

2 An alternative explanation for the partially filling of blocks could be related to the computation time advantage.
A miner is required to prepare a new block with a set of awaiting transactions. This requires a small amount of
computation time to validate all newly added transactions. Some miners prefer to forego the verification and therefore
the transaction fees by preparing a small block to start puzzle solving as soon as possible. The validation time and
puzzle-solving time trade-off should be equally beneficial for all miners. Partial block filling by a select few large miners
contradicts this explanation. A
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Figure 5 In periods of high demand (Pre-January 2018), AntPool fully fills their blocks similar to any other miner.
In periods of low demand (Post-January 2018), AntPool has underfilled blocks compared to those of all

other miners.

Miner collusion would effectively reverse back any capacity increase, which resembles an intermediary
unilateral action to extract excess economic rents. The Bitcoin community can respond to miner collusion via
technology interventions. Banning large miners is one potential intervention to make collusion unsustainable.
We show that while eliminating collusion (via banning miners) may increase throughput and lower transaction
fees, this makes the system less secure from double-spend attacks. In a double-spend attack, a miner
sacrifices block revenue for a small probabilistic shot at stealing a payment value. This sacrifice of block
revenue is a small price to pay once the collusion is eliminated. Powerful miners would then prefer to
launch double-spend attacks rather than earn these small revenues. Eliminating collusion removes artificial

capacity constraints; however, the security threat dg’ves away the demand for transactions. Thus, these



collusion and security threats place economic bounds on Bitcoin's scale. In fact, we will demonstrate a
different perspective where collusion is a necessary endogenous mechanism for the participants to coordinate

investment in security or respond to temporary exogenous demand fluctuations.

Our work has four major contributions. First, we provide economic limits to Bitcoin's scale. Industry debate
and some early research have largely focused on technological cost of repetitive information propagation to
keep multiple copies of the Blockchain ledger in sync. We instead focus on inability of decentralized platforms
to offer differentiated service tiers to spectrum of users with dissimilar outside options, and willingness to
bear security risk and delay. Second, we argue that decentralization and its many facets (number of miners,
cumulative mining power, miner homogeneity) are not simultaneously achievable or even desirable. Third,
we are one of the first to simultaneously model rational equilibrium decision choices for users and miners. We
are the first to suggest miners’ economic incentives to tacitly collude for coordinating on efficient security
funding. Existing research largely focuses on strategies for one of these agents in isolation. We show how
user preferences (banks vs Bitcoin) impact miner earnings and how miner block filling impacts user fees
and security. These externalities are highlighted because we model the two sets of agents in a single game.
Finally, we argue the generalizability of our findings and design suggestions to major peer-to-peer payment
blockchains that broadly follow the paradigm kickstarted by Nakamoto 2008. We also expect elements in
our model to form a basis for future |/O research in Decentralized Apps, smart contracts, and decentralized

and dark web markets.

In the next section, we describe the Bitcoin ledger and consensus mechanism in greater detail and highlight
relevant prior literature on the economics of Bitcoin. Section 3 presents the model to illustrate Bitcoin's
transaction fees as an outcome of user competition to earn space on the limited ledger throughput. We extend
this base model to show the equilibrium collusion strategy sustained by a group of large miners. Section
4 discusses potential methods to break the collusion and the perilous double-spend security implications.
Section 5 discusses the robustness of our findings to a wider range of available blockchain design choices
and provides guidance on potential redesign that tackles the underlying problem, i.e., accommodating users

with vastly different willingness to pay for delay and security onto a single chain.

2. Background

A simplified example of Bitcoin's payment transaction ledger is shown in Figure 6. The ledger is broken
into blocks, where each block records details of transactions including the sending and receiving account
information, transaction fees offered by each sender for a transaction, and the cryptographic signature of
the sender, which is needed to verify that the transaction is genuine. This ledger is secured by a group of

miners, i.e., any willing individual with compute power connected to the Internet. A new block is added to



the ledger on average every 10 minutes. Miners compete for the privilege of adding a block of transactions
by solving a computationally expensive cryptographic puzzle (Nakamoto 2008). The cryptographic puzzle
used by Bitcoin requires the miners to find a rare SHA256 hash, which is time consuming to identify even
for the fastest available computing hardware. Each block also stores the hash of the previous block, which
ensures that blocks are added chronologically. The fastest solver is able to add the next block on top of the
existing chain. This miner broadcasts his or her new block to the network. All other miners update their
copies of the ledger after validating the puzzle solution as well as the block content. If a majority of miners
accept the block, the state of the ledger is seen to be updated. These block addition steps are repeated

infinitely to grow the ledger.

The balance in an account is determined by adding up all transactions that appear in the unique longest
chain of blocks. Because Bitcoin is a peer-to-peer network and because block propagation takes time, two
miners who are far from each other in the network can often find a solution to the puzzle at approximately
the same time. Both miners could propagate the solution to peers, which may lead to parallel chains.
This situation is resolved endogenously. A chain with support from the miners with the largest combined
computing power grows faster than others, eventually becoming the longest chain. This is because higher
computing power leads to faster puzzle solving and therefore more block additions. Once a longer chain of

blocks emerges, all shorter chains are typically abandoned.

Users make payments by broadcasting desired transactions to all miners. Because of the fixed block size,
not all transactions pending at a given time can make it into the next block. The consensus mechanism of
Bitcoin provides a miner full autonomy over which pending transactions to include in a block. Users hope
that a sufficiently high fee offer will incentivize any miner to include their transactions over other pending
transactions (Huberman et al. 2019, Easley et al. 2019). Thus, unlike banks, Bitcoin does not set a fee.
Users seeking transaction processing enter an auction to find a spot on the limited throughput (transactions
per sec) of the Bitcoin ledger. The winning miner collects these transaction fees. Every block also records a
transaction called the “generation transaction”. The winning miner is awarded with a block reward (newly
minted Bitcoins), which is recorded as a generation transaction. The fees offered by all transactions in a

block plus the newly minted Bitcoin make up revenues to incentivize miner participation.

As a miner invests more in computing power, they become increasingly faster at solving the mining puzzle.
A select few miners have gained access to high-quality ASIC hardware specialized for Bitcoin mining. These
large miners make up a large proportion of the total computing power. The remaining computing power
comes from a large crowd of small miners utilizing inferior hardware (e.g., GPUs and CPUs). The mining
network overall has become faster at solving puzzles due to the increase in computational power devoted

to mining Bitcoins. The puzzle difficulty is thereforez adjusted endogenously to keep the average time to
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Figure 6 Left to Right: The 0th or Genesis block records a single fixed block reward transaction. The 0th, 1st and
2nd blocks are mined by miners A, B and A, respectively. These respective miners are the quickest to
solve those three puzzles. Each miner receives 10 coins as a fived reward for block creation. They also

collect fees offered by respective transactors. The 3rd block is proposed by C. Because of an invalid
transaction whereby C attempts to spend 20 coins that they do not have, this block is rejected by all other
miners. An alternative 3rd block is then proposed by the 2nd fastest puzzle solver B. The chain is extended
on top of this block by a majority of the mining community. The rewards earned by miner C on their

proposed block do not form a part of the longest unique chain.

a solution at 10 minutes. A natural question arises: Why not have 1 minute between blocks? The puzzle-
winning miner needs to transmit a new block to the entire mining network. Because of the peer-to-peer
nature of the network, blocks propagate slowly, and a short duration allows too little time for all miners to
sync with the new state of the ledger. A shorter time between blocks could lead to the creation of multiple
forks as new blocks are being proposed faster than any single miner can sync with their peers. In addition,
users would need to wait for a longer chain to emerge to determine whether their transactions have made it
to a block in the longest chain. Hence, reducing the time between blocks would not necessarily reduce the
effective transaction validation time. While our research focuses on the economic limit, the above discussion

should underscore that it remains a technological challenge as well.

2.1. Prior Literature

The economics of blockchains has gained attention relatively recently. Halaburda and Haeringer 2018 provide
an excellent literature review. Our work focuses on the trade-off between capacity, security and decentraliza-
tion. Four key areas of research within economics of blockchain intersect with our model: user transaction
fee models, miner entry models, collusion and security. Huberman et al. 2019 and Easley et al. 2019 were
the first to model user transaction fees, and they serve as the starting point for our model. Both of

these papers model users as heterogeneous in bIockc§1ain fee savings and delay costs. However, unlike our



approach, neither users nor miners are rational or strategic about block fill levels and security. The goal of
Huberman et al. 2019 is to explain why transaction fees exist even when the average blockchain capacity
is greater than average demand. They point to stochasticity in demand and block arrival rates as the rea-
sons. Our goal is to show why transaction fees exist even when the first mechanism provided by Huberman
et al. 2019 is absent. Therefore, we assume nonstochastic demand arrival and block addition rate. This
theoretically eliminates the primary mechanism described by Huberman et al. 2019, allowing us to show the

secondary phenomenon.

A majority of the literature models miner entry with zero profits resulting in small homogeneous miners
(Huberman et al. 2019, Easley et al. 2019, Prat and Walter 2018, Abadi and Brunnermeier 2018). Huberman
et al. 2019 conclude that “small miners cannot affect user behavior” and that the “protocol lacks an
easily workable mechanism to change prices, offerings and rules ...". Abadi and Brunnermeier 2018 say that
“coordination requires dynamic punishment schemes, but in an environment without rents, such punishments
are infeasible”. We show participants’ endogenous ability to make artificial protocol adjustments without
designer action. This relies on the presence of large miners via a degree of miner heterogeneity, which is
an outcome of the skewed distribution of mining hardware and cost efficiency, also argued by Arnosti and

Weinberg 2018.

Cong and He 2019 and Malinova and Park 2017 highlight the unique public address identity on Bitcoin,
which allows users to consistently exhibit their actions while maintaining anonymity. This is a crucial feature
that allows small miners to sustain a grim trigger collusion in our model. However, unlike us, few existing
examples of collusion consider the price of quantity setting among firms that use blockchain for payments
instead of miners/gatekeepers of the blockchain itself. This also differentiates our work from standard
collusion in Cournot markets (Green and Porter 1984). It is worth highlighting two key differences: (i) In
the standard Cournot setting, all firms decide supply quantities simultaneously. In our setting, an individual
firm makes a quantity decision for the entire market at different time slots. (ii) In the standard Cournot
setting, all users observe the same quantity and price in the market. In our setting, a user bids first, which

leads to user discrimination by private valuations.

The academic literature has discussed a few adversarial attack strategies — double-spend attack (Som-
polinsky and Zohar 2015a), selfish mining attack (Nayak et al. 2016a), eclipse attack (Natoli and Gramoli
2017), etc. Gervais et al. 2016 simulate gains for double-spend attacker under different blockchain design
choices. We build upon a simple double-spend attack strategy to analytically formulate economic trade-
offs for an attacker — honest mining revenues versus low-probability attack payoff. Budish 2018 consider
a similar trade-off, but they focus on settings that would make the trade-off unappealing to the attacker,

e.g., non-repurposable mining hardware. Contemporaéy work by Chiu and Koeppl 2017 is closest to ours in



considering different levels of security induced and security desired by small versus large payments. Unlike
our approach, they focus on block rewards as the primary source of miner revenues and simplify transaction
fees as exogenously given rather than the endogenous outcome of the auction and collusion. In fact, this
leads them to some contrasting conclusions. We try to elucidate how these two works should be viewed in

conjunction.

Finally, we add to the growing literature on information security economics (Gao et al. 2013, Cezar et al.
2013, Kannan and Telang 2005, Arora et al. 2007, August et al. 2014, Hsu et al. 2012, Dey et al. 2018).
This literature focuses on the strategic interactions of firms and hackers. Our work is a unique setting
whereby a firm is replaced by decentralized miners and users. Our work also intersects with the literature on
P2P platforms (Asvanund et al. 2004, Wei and Lin 2016, Li and Agarwal 2016). Johar et al. (2011) study
participant equilibrium sharing responses to lower congestion in P2P platforms. In Bitcoin, miners control

the supply side; they instead prefer to increase congestion in this P2P setting.

3. Model

Our model captures three desirable features of Bitcoin — (i) Capacity: Large number of payments at low
fees and small delay, (ii) Security: Low likelihood of payment value being hacked (double spent) and (iii)
Decentralization: Zero-barrier entry of large number of miners. In this and the next section, we analyze
trade-offs between capacity and security, treating decentralization to be a static requirement for a peer-
to-peer blockchain-based payment solution. We consider the impact of both protocol design choices (e.g.,
block size, block duration, mining puzzle) and endogenous participant strategies (e.g., user fee offers and

miner block filling) on the capacity-security trade-off.

3.1. Baseline Model

We model Bitcoin's blockchain as an infinitely repeated block creation game between miners and users.
Users decide whether to use the blockchain for their payment needs and what fees to offer. Heterogeneous
miners decide whether to participate in block creation and which user transactions to include on blocks. Our
baseline model obtains the equilibrium transaction fee offered by users and the endogenous entry decision

by miners.

Users: All users realize the need for a new payment value v drawn independently from a uniform dis-
tribution g(v) with domain [0, V.| every period. A user can complete his or her transaction using either
the blockchain or an off-chain fiat option. This choice is based on a comparison of (i) fees, (ii) delay and
(iii) security risk on the two channels. Fee on the off-chain option is modeled as a proportional (pv) fee

structure. The proportional nature of this cost is d{'bven by payment value-dependent factors such as fx



margins and liquidity guarantee®. The fee on the blockchain, denoted by f, is endogenously determined by

the demand and capacity of the blockchain.

Delay on the blockchain is the result of duration d between the addition of blocks of payments. This delay
decreases the user’s utility by a factor of § =0(d) (< 1), i.e., the discount factor is increasing in duration
d. Further, users also face an uncertainty in successful inclusion of their transaction on the blockchain.
The platform has a hard upper limit on the number of transactions ny that can be included on a single
block. Users who take the on-chain option broadcast their transaction to all the miners with a fee offer.
Next, miners prepare a block independently by selecting transactions from the waiting queue up to the
blockchain's capacity. The block prepared by the puzzle-winning miner is added to the blockchain. A user’s
transaction may not be picked up on the new block. In this case, they revert to the off-chain option, albeit

with delay (0).

Security cost on the blockchain arises from a possibility of payment reversal*. Consider a user making
a payment to purchase a product from a merchant. The merchant normally delivers the product after they
see the payment recorded onto a block. In Section 4, we elaborate the likelihood that a (double-spend)
attack reverses this payment after the product is delivered. The user needs to insure the merchant against
a future (double-spend) attack. However, double-spend attacks are costly to execute for an attacker. A
transaction should be of high enough value to attract a double-spend attack. Let Vi..... represent the
value of a transaction such that none of the transactions with v < V... are attractive to the attacker.
The remaining transactions with v > V... face a likely threat. An attack effectively reverses the target
payment after the merchant delivers the product. Let S(v) represent this cost of insuring the merchant
against such a reversal or double spend®. Then, we have

0, if v<V,
S — b secure 1
(v) {v else (1)

This formulation implicitly assumes that payment v > V,...... will be double spent by an attacker with
certainty® and therefore need to be insured in full. In Section 4, we endogenize V..., as rational expectation

of (double-spend) security attack likelihood. For now, this is treated as exogenous and known to all users.

A combined consideration of fees, delay and security allows us to formulate users’ utility on the available

payment channels. Off chain, the user derives a utility v — pv. On chain, the user derives a utility of

3Shy and Wang 2011 show why traditional intermediaries prefer proportional fees to maximize profits. In practice,
different off-chain options vary on proportional rate and time delays. Appendix A provides the motivation behind a
single off-chain fee structure.

4 We assume zero security risk off chain because intermediaries insure users against such risks
® For simplicity, we assume that the insurance is provided via some off-chain secure method

5In Appendix D, we discuss probabilistic threat 11



Stage Game: Sequence of Events
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Figure 7 The figure shows the single-period extensive form game between the users and miners that is infinitely

repeated at every block creation period.

(v— f)d — S(v). This can be interpreted as fixed fees df, delay cost (1 —d) * v and security cost S(v)
for completing payment v. If excluded on the chain, the user derives a utility of (v — pv)d. This can be
interpreted as a discounted proportional fee dpv and delay cost (1 — §) *x v. The user’s utility from the

available choices is shown in figure (7).

Let f represent the maximum fee that a user is willing to offer on chain, i.e., this is the fee offered by

the user who is indifferent between on-chain and off-chain options. Thus, solving

v—pv=(v—f)d—S(v)

for f we obtain

= v(p+d—1) S(v)
==

Users in high-risk regions (i.e., v > Vi cure) Will never find an on-chain channel viable for any positive fee
offer f because f< 0 for all v > V,ccure. Users in the zero-risk region make up the overall demand for the
blockchain. Define V' = min{V, .., Viecure}. The payment-value uniform distribution g(v) has a domain

[0, Vinaz)- If Vinaz = Viecure, then the highest value vyfag for an on-chain payment is V = V... Otherwise,
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Figure 8 Users with a transaction value higher than vy transact on the Bitcoin network.

if Vinaz < Viecure, then the highest value vying for an on-chain payment is V =V,,,,. The total on-chain

payment demand is given by”,

v N,
/ g(v)dv ; where g(v) = d—"** (2)
0 Vmaac
v N,
/ g(o)do =2V = N(d,V) = N (3)
0 max

where N(d, V) is the total number of users that draw a payment need between 0 and V' in d = 10-minute
block duration. We simplify the notation N(d,V') to N since d and V' are held constant for large parts of

our model.

Figure 7 represents the sequence of events in a block creation game. We first investigate subgame perfect
equilibrium (SPE) strategies for a single stage using backward induction. Miners will pick the top-np
transactions in the order of fee offers if more than ny users offer on chain fees. In an auction-like manner,
users determine their fee offer based on rational beliefs of competing offers. Note that f is monotonically
increasing for v € [0,V], i.e., users with a large value payment stand to gain most by avoiding the off-
chain channel. It follows that in equilibrium, user fee offers will be increasing in f and therefore in v, i.e.,
f(v1) > f(vg) if v1 > vy. Thus, we investigate equilibrium where the winning miner includes the top-ng

transactions in the order of payment value v, which is same as the order of fee offers.

We define the following constants, which will be used throughout the paper:

n 5+ —1 1 1_ ap —
’Y:WF> Olh:$; al:ah<ry—1),and5=(7)i}). (4)

Let v be the transaction value such that there are exactly np users that transact a greater value. Since N

transactions are uniformly distributed between 0 and V', we have
vy =V (1 — ZL\I;) ,

" A different distribution (e.g., exponential g(v) = dNmqzAe™ ") instead of uniform does not change our core findings.
We discuss this in Appendix D 13



where 7 is defined in (4). All users with the top-np values (v > vy) offer a fee such that the remaining users
(v <wg) are driven out. The marginal user with v = vj is indifferent between the on-chain and off-chain

option. Thus, we have

(v = f5)0 =v5 (1= p) (6)

where f; is the transaction fee offered by the user with transaction value vj. Note that security cost S(v) =0

for payment domain [0, V]. Using the above equation and expression of v} from (5), we obtain

fo = pan(1=7)V, (7)

where «, is defined in (4). Let R, represent the transaction fee revenue earned by miners. Then, we have

Ry = fing = pa,(1 =)V N. (8)

Proposition 1 Bitcoin limits entry of low-value users (v <vg) due to the competitive fee auction for
limited capacity ng. It limits entry of high-value users (v >V ) due to the security threat. The following
inferences ignore collusion and security issues to be discussed later,
o As capacity nr increases, Bitcoin fee f decreases. User cost savings are greatest at very high block
size (ngp — N ).
e As block duration d increases, the Bitcoin fee decreases but delay disutility increases. User cost
savings are greatest at very low block duration (d—0).

e As the proportional rate p levied on the off-chain option increases, the Bitcoin fee increases.

Note that in practice, coinbase block rewards B distributes additional currency supply to miners. This is
an additional cost borne by users. We model B =0 because (i) most blockchains have a diminishing block
reward schedule eventually expected to decrease to zero anyway. A perpetual block reward design, which
leads to infinite supply, does not have a major practical example yet. (ii) Transaction fees are unavoidable
even if a blockchain had a perpetual block reward because they provide an endogenous mechanism for
prioritizing payments. It avoids flooding the blockchain with 1 cent payments. (iii) Our primary focus is user
choice for means of payment not store of value. Therefore, we want to abstract away from myriad issues
related to cryptocurrency valuation, e.g., investors, speculators, and fiat currency to cryptocurrency exchange
rates. Chiu and Koeppl 2017 make the opposite modeling choice, i.e., abstracting away the transaction fee
model, instead of delving deeper into endogenous user demand for coin holdings. In Appendix E, we discuss

extension of our model with block rewards (B > 0) and contrast with Chiu and Koeppl 2017.

8 Appendix E provides user cost charts for a more detaile(i Xxplanation



Table 1 Power and costs for popular computing hardware. ASICs are more expensive but have exponentially higher

power.

h(m) c(m)
Hash Power (GH/sec) | Power Consumption (Watt) | Hardware Cost (USD)
AntMiner S9 (ASIC) 14000 1375 2400
Avalon Batch 1 (ASIC) 66.3 620 1300
NVIDIA GTX 460 (GPU) 0.127 340 200
Intel Corei-5 (CPU) 0.014 95 82

Miners: We model miners as heterogeneous in terms of the quality of computing hardware®. We assume
that when arranged in decreasing order of hardware quality, a miner with rank m has a mining power h(m)
(number of cryptographic hashes performed per second), which runs at a periodic cost ¢(m) (USD per
second). This hardware distribution h(m) over rank is a monotonically decreasing convex function'® with
domain m € [0,00) and h(co) = 0. The convexity represents a long tail, i.e., a large number of potential
miners own a small CPU. A few miners have access to high-quality ASIC hardware. High-quality hardware
h(m) also consumes greater cost ¢(m). This periodic cost ¢(m) is a combination of running costs (e.g.,
electricity) and the amortized cost of the hardware purchase. Table 1 provides a small comparison of

computing hardware.

The best hardware (ASICs) costs up to 10 times more than a CPU but can deliver thousands of times
more hash power. The hash power delivered is disproportionately larger than the higher cost. If this were
not true, simply purchasing multiple CPUs would be preferable to buying a single ASIC.
h(my)  h(ms)

>
c(my) = c(my)

(9)

The running cost component does not change any of our analysis. Without loss of generality, we set this cost

my <my => h(my) > h(msa); c(my) > c(my);

to zero going forward. We focus on the upfront cost of hardware purchases, which is amortized periodically

C

1-6°

at ¢ (USD/period). This is equivalent to an upfront fixed cost of This upfront fixed cost plays a

significant role in miners’ decisions to participate in Bitcoin mining.

Miners join the mining network to earn revenues from transaction fees (R) offered by users and block

rewards (B) fixed in the protocol. A large number of hashes per second h(m) means a greater likelihood of

9 We model consensus achieved by commitment of computing power (PoW). Alternative p2p payment blockchains may
use a different (costly and well-distributed) commitment resource, e.g., mining equipment, coin stake, and storage
capacity. In all of these settings, miners must purchase mining equipment or coin stake upfront for frequent opportunities
to decide ledger additions. The underlying intuition should remain valid. The heterogeneous miner enters up to a
marginal miner who has a cost of purchasing commitment resource that is just low enough. We do not rigorously
incorporate PoS into our model because (i) practical examples of PoS blockchains are still rare. (ii) Blockchains that
have considered it usually rely on PoW to cold-start their mining ecosystem anyway. At the outset, compute power
commitment still remains the only reasonably fairly distributed resource. (iii) PoS has decentralization concerns (the
rich obtain a richer outcome) because it helps large coin holders to earn even more coins in revenue. As the research
and applications of PoS mature, we indeed expect this to be an interesting direction of future research.

10 h(m) = Xe™™ is one potential distribution.
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Figure 9 Miner j first realizes access to hardware computing power h; such that the miner of rank m has access to
the computing power of h(m). Next, the miner decides whether to buy the hardware for mining. If they
buy, it is only rational to mine every block period thereafter. The period revenue is based on one’s own

power relative to everyone else’s power. The same payoff is repeated infinitely with a discount factor §.

finding the Bitcoin mining puzzle solution faster than other miners. The expected revenue earned by a miner
is given by block revenue (R + B) multiplied by the miner's probability of creating any given block. This
probability is a ratio of their own computing power h(m) relative to the network's overall power. As more
miners enter the network, each miner's puzzle-winning probability decreases, as they all share the same pie.
We model miner entry as a zero-barrier event, i.e., miners enter until the marginal miner makes zero profits.
Miners with efficient hardware (high h(m)/c(m)) will naturally crowd out inefficient hardware because of
their competitive advantage. The marginal miner is the one who earns just enough expected revenue to
equal his or her cost. Let mg represent the rank of marginal miner and I represent the total mining power

in the network. The network's overall power is the sum of power for all miners ranked between 0 and m,

e, [0 h(m)dm = H(m).

We can uniquely identify the marginal miner mj. The uniqueness is guaranteed since R+ B > ¢(0) and

A(mg) = H(hﬂ is monotonically decreasing from 1 to 0 on its domain m € [0, 00)"".

m)c(m)

(R+ B) x hlmg)

H(m3) =c(my); where H(mg) :/0 h(m)dm (10)

This simplifies to

mg=A"" <Ri3) (11)

11 h(m) g monotonically decreasing, as discussed above. A%gitionally, H(m) is a cumulative sum, thus increasing in m.

c(m)



Table 2 A summary of the main notation used in the analysis throughout the paper.

Notation | Description

v Value of a payment.

Vinax Maximum payment value in the market.

Vieeure | Maximum payment value secure against double-spend attack.

V Maximum value vying for payment via blockchain V' =min{V,,u., Viecure }-

N Total number of payments distributed in [0, V},,4.] every period.

N Total number of payments distributed in [0, V] every period.
f Transaction fee offered by a user.

p Proportional transaction fee charged by a bank.

) Discount factor delay in verification of a transaction.

c Per period amortized cost of mining.

ng Fixed capacity (block size) of Bitcoin, decided by its designer.

np Size of a partially filled block.

¥ Ratio of Bitcoin capacity to its demand.

Q@ Proportion of computing power relative to the total mining network.
Qy Minimum power for a single miner to profit from partial blocks.

& Minimum power for an individual miner in a colluding group.

Qo Power of smallest colluding miner.

Qg Power of smallest free riding miner.

We consider the nonzero block reward in Appendix E. Earlier in this section, we derived the equilibrium

expressions for transaction fee revenue R as follows,
Ry = papy(1—7)NV (12)

Proposition 2 The number of miners and the corresponding network computing power increase with
increasing mining revenues. The mining power collapses at zero revenue

e As capacity nr increases, revenue from the transaction fee first increases then decreases.

o As duration d increases, revenue from the transaction fee first increases then decreases.

e As hardware running cost ¢ (USD/block) increases, the number of miners and network computing

power decreases.

3.2. Strategic Mining

We have shown that user cost savings are maximized when nr = N. However, this raises zero revenues for

miners. In this section, we consider the case Whereb%,}he blockchain designer has set capacity ny € [%, N]



above the revenue-maximizing value, i.e., np = % We investigate if an individual strategic miner, with «
proportion of the total network hash power, has a profitable strategy to extract excess rents, specifically
by deviating to create partially filled blocks np. These partial blocks include only the top-np (< nr)
transactions. Such a strategy could potentially create an artificial capacity constraint. A smaller capacity
means that individual users need to beat greater competition to have their transaction included. It is initially
unclear if the increased fee competition among users will make up for fewer transactions being included
on the block. We will show that a strategic miner with at least a; (defined in (4)) proportion of the total
computing power is able to extract excess revenues via partial block filling. A miner smaller than «; creates
blocks too infrequently and, therefore, is not able to create sufficient congestion to make up for their sacrifice

of block capacity.

The game tree provides the sequence of choices exercised by users and miners as well as payoffs in every
block creation period. First, the user with payment v chooses to either make their payment off chain or
to make a fee bid f(v) on chain. Next, nature determines if the block is added by a passive miner with
probability (1 — «) or a strategic miner with probability «. If it is a strategic miner, the miner picks an
optimal partial fill level np from a choice of levels in [0,nr]. There are three critical points to note in
this game description: (i) The strategic miner is forward-looking. They choose np to maximize lifetime
discounted revenue over infinite repetitions of this stage game. (iii) Users are myopic about maximizing
utility from current payment'?, and they have rational expectations about competing bids. (ii) Users know
the identity of the strategic miner; they can see the history of partial blocks created by the strategic miner,

and they have rational expectations of the strategic miner's actions.

Users now face uncertainty in whether the next block will be mined by a strategic or passive miner.
They have three choices: (1) offer zero fee and take the off-chain option, (2) offer a low fee f; that beats
only N —np other users hoping for a full block (nr), or (3) offer a high fee f), that beats N —np other
users to be included irrespective of a full (nr) or partial (np) block. The users with the highest values
stand to lose the most if excluded on the chain. High-value users (v > v;,) unwilling to take this risk pay
higher fees f;,. They are included in the immediate block, deriving a payoff 6(v — f5,). A middle tier of users
(v € [vg,vp]) will prefer to take the risk rather than pay a higher fee. A lower fee offer of f; derives a payoff
of d(v — f;) with probability (1 — «) or a fallback off-chain payoff of dv(1 — p) with probability «. The
lowest tier (v € [0,v;]) will continue to be left out of the chain as before. The three segments of users are
illustrated in Figure 11. Thus, we are searching for an equilibrium bidding function for users f*(v) in the

following parametric strategy space,

0 ifve(0,v]
fo)y=q/f fve(uu] i uo, <V (13)
fh ifUE(Uh,V}
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Figure 10 User first draws a payment need v, then decides off chain or on chain bid. The next Block is added by
either a strategic miner (probability o) or a passive miner (probability 1 — o). Unlike the passive miner,

the strategic miner has an additional decision to decide optimal partial fill level np.

Transaction Verification Under Collusion

| pv | f | fn

| | | | v
Ui Vh Vinax
Banks Both Passive and Strategic Miners
> < >
Only Passive Miners
Figure 11 Three segments of users and their respective off-chain and on-chain fees.

We must find an equilibrium bidding function for users (f;*, fi, v, v;;) and an equilibrium block fill level
response for the strategic miner (n},) such that neither the users nor the miner have profitable deviations
from these strategies. This requires

(a) Low-value users v € [0,v;] prefer off-chain bidding. They do not find it profitable to deviate to an
on-chain bid f > f.

(b) Medium value users v € (v;,vy,] prefer on-chain bid f(v) = f;. They do not find it profitable to deviate
to (1) going off chain, (2) bidding f; > f(v) > f, or (3) bidding f(v) > fi, on chain.

(c) High-value users v € (vy,, V] prefer on-chain bid f(v) = f,. They do not find it profitable to deviate to
(1) going off chain, (2) bidding f(v) < f5, or (3) bidding f(v) > fs.

(d) The strategic miner, who moves second, must not deviate from their equilibrium partial fill level n%

when faced with any off-equilibrium bid vector f(v) # f*(v). The strategic miner stands to earn Rp.,

12 We relax this assumption in Appendix B.

19



by deviating to a partial fill level np # n}, in the current period. This may be preferable to not deviating
R,0per. However, the subsequent lifetime payoff should be sufficient to compensate the strategic miner
for this single-period loss (Rpey, — Rnopewy)- This ensures that partial fill commitment is credible even

though the miner plays second in the stage game.

We know that the value of vj, (resp., v;) should be such that there are exactly np (resp., nr) transactions

that have transaction values above v;, (resp., v;). Thus, we have

vh_v<1—7}\f;>, (14)
vl:\/<1—7]l\l;>. (15)

The conditions (a), (b.1) and (c.1) are satisfied if the user at v = v; is indifferent between using on-chain
low fee f; and off chain. Consequently, all lower value users prefer off chain and all higher value users will

prefer on chain at fees f > f;. Thus, we have
(1—a)o(v, — fi) + adv(1—p) = v(1—p).

From the above equation, we obtain

I (0 +p—1—adp)
e (1—a)d

Substituting the value of v; in (16), we obtain

fi= (1 =7)(an—a)(1—a)pV (17)

The conditions (b.2), (b.3) and (c.2) are satisfied if user at v = v, is indifferent between on-chain low

fee f; and on-chain high fee f;,. Thus, we have
6(vn = fr) = 0(1—a)(vn — fi) + oy (1= p).
From the above equation, we have
fo = apon+ (1—a)fu (18)
Using (17) and (18), we have

ng—n N —n
frn=( FN Lo N Fah)pV (19)

The condition (c.3) is trivially satisfied because user payment receives the exact same treatment whether a

user’s fee offer ranks in top np or top 1. There is n%éncentive to offer a fee higher than f.



The revenue for strategic miner (f, X np) is maximized as follows,

v {f;<(1—v>ah+w>, if a<a )

N
oR else
We know that the strategic miner cannot choose a value of np higher than np, i.e.,, np < npg. Using the

expression of n}, from (20), this condition simplifies to

(1) l—vy

M- where oV = aj,— (21)

a> o
This condition implies that for a miner with low hash power (a < al(l)), the partial block filling strategy is
always dominated by a full block filling strategy. A small (less than al(l)) strategic miner adds blocks too
infrequently to seriously threaten users to increase their transaction fee offers. If alpha is low at 0.05, there
is only a 5% chance that any given block is partially filled. This creates too little risk for users to compete
for top-np rank. An extremely powerful strategic miner (« > ay,) can force users to either offer a high fee
(fn=anpV/2, fi=0) or not take a risk with the on-chain option at all. A miner who wants to add a full
block nr does not find any awaiting transactions beyond np paying a lower fee f;. In other words, this
miner can take complete control of Bitcoin and act like a revenue-maximizing monopolist by keeping the
effective capacity at its optimal value, i.e., np = % This partial filling strategy is irrelevant if the capacity

. . . N
on the chain is already constrained (say, np < 3).

Consider a hypothetical situation whereby demand is 25% over capacity (i.e., % =1.25; y=12). A miner
with power greater than 90.9% (a) = ‘Ha%l =0.909 for § =0.99; p = 10%) shrinks the artificial capacity
to the revenue-maximizing level np = % by filling 62.5% (np/nr) of their block. A miner with as little
as 22.7% of the total computing power (oy = ahl_T”) of the network fills 78% (np/nr = %) of their
block and extracts undue revenues. A miner with less than 22.7% of the total computing power is unable
to unilaterally engage in a partial block filling strategy. Assume that the blockchain designer attempts to
increase the block capacity to serve greater demand, say, nr = 0.9N. The same miner (« = 0.227) performs
partial filling. These partial blocks are only 59% full in the second setting compared to 78% in the first
setting. Furthermore, at np =0.9N, a miner with as little as 9.09% of the total network power strategically
performs underfilling. They fill 60% (np/nrp = %) of their block. Therefore, an increase in block capacity
allows an increasingly smaller miner to perform strategic underfilling. Figure 12 shows three scenarios for a
large miner with power o = ay,, /2, «; /4. The largest miner is able to keep the effective block capacity
at N/2. The effective capacity is given by np * a+np * (1 — «) when the individual miners have less than

Qv power.

Finally, condition (d) is satisfied if not deviating in response to an off-equilibrium bid vector f(v) dominates

deviation. If the miner does not deviate, they earrblRmDev now and subsequently they earn partial fill



equilibrium revenues R}, in all following periods where they add a block. The expected reward ¢ periods
ahead is given by probability («) of winning the mining puzzle multiplied by the discounted reward value
(a x 6f R3). The expected lifetime rewards correspond to summation (ad), Ry + adZ R + ..). Similarly, if
the miner deviates, they earn Rp., now and subsequently earn complete fill equilibrium revenues R in all

following periods where they add a block.

Om O
RnoDev + a——— *P 2 RDev + o RS (22)
N—— 1-— 5m SN—~— 1-— (5m
No Deviation Revenue S——— Deviation Revenue
Partial Fill Revenue Complete Fill Revenue
This simplifies to
o 2 1-— 6m RDev - RnoDev (23)

Om Ry — R
We can upper bound the right-hand side by considering the most enticing fee bid vector f(v) that maximizes
the single-period deviation payoff Rp., — R,opes. This most enticing fee bid vector corresponds to all
mid-tier users (v € (v, vy]) offering highest possible fees such that they gain no on-chain savings compared
to off chain, i.e., f(v) = f = anpv V v € (v;,vp]. For this bid vector, the strategic miner stands to gain
by deviating to a full block nr composed of payments (v;, V] instead of np only composed of payments

(U}w V}'

Vh N appN
RDev - RnoDev S /Ul (@h,pv)vdv — oV ('UZ — Ul2)

Thus, we have

1—0m, N P—uf
; where a}”) = 5 : a;f/ X };}f _?;l%*
m P 0

(2)
l

a>aw (24)

The strategic miner's partial filling threat is credible if the miner adds blocks frequently. This is true either
if the miner is large enough or sufficiently forward-looking (high 0,,). This miner will not be enticed away
from partial filling because her or she is willing to sacrifice payoffs in the immediate block creation game
for near-future payoff in subsequent block creation periods. Thus, al(l) and al(z) make up two constraints

on the smallest size of the strategic miner'?.

Proposition 3 A strategic miner with proportion of the total mining network’s computing power « is
able to conduct a partial block filling strategy and extract undue revenues from Bitcoin transaction fees
if a > oy, where

11—y 1-6, awpN v —0v}
a; =max(ap X , X X )
! (o v bim 2V R*P—Rg)

(25)

13 The first constraint agl) turns out to be the binding constraint, while the second constraint a§2) is trivially satisfied

in practical parameter ranges. The second constraint playi f more critical role in the next section.



100

a = ay/4

a=ay/2

60

40

Effective Capacity

o 20 40 60 B0 100

Actual Capacity (as % of demand)

Figure 12 A wvery larger miner (o= ap =0.909) does not let the effective capacity increase beyond 50% of demand.
A small miner (o= apn/4=0.227) performs partial filling when the actual capacity is raised beyond 80%.
They do not let the effective capacity increase beyond 86% of demand. (6 =0.99, p=10%)

o As the strategic miner’s power increases, the optimal partial fill level, i.e., n}, decreases.

o As block size ng increases (v increases), strategic partial filling can be performed by an increasingly
smaller miner.

o As block duration d increases (y decreases bul «y, decreases), strategic partial filling can only be

performed by an increasingly larger miner.

In practice, the accumulation of a high amount of computing power (« > 0.5) may not be realistic for a
single miner. This can be accomplished by a mining pool (e.g., AntPool). Although a mining pool allows for
some coordination of mining resources, they do not have complete control. Individual participants can hop
on and hop off at any time. In the next section, we discuss the possibility of small miners tacitly colluding

to achieve computation power larger than «; as a group.

3.3. Collusion

Partial block filling by a large strategic miner (with at least oy fraction of the total computing power)
achieves extra mining revenues. A group of small miners comprising the same computation power (Xa; = ;)
should similarly be able to achieve the same extra revenues. This requires miners to agree on the mutually
beneficial partial block filling strategy. Such coordination is complicated by the low barriers to entry of new

miners. In this section, we identify the conditions under which a tacit collusion is stable.

There is one key difference between the incentives of a single large miner and a group. The large strategic

miner sacrifices nonzero fees. This creates artificialzgongestion and increased fee offers. The subsequent



benefit of higher fee offers via this congestion is shared by the large miner as well as all other miners. The
remaining miners (1 — «;) thus free-ride on congestion created by the large miner. Full blocks added by
free riders gather larger fee revenues (Ry) than partial blocks (Rp) added by the large miner (equation
26). A group of small miners is not incentivized to make the same sacrifice. Every individual miner prefers
that others perform the partial block filling while they free-ride on the resulting congestion. The mutually
beneficial Nash equilibrium is therefore unstable in a single-block creation game, i.e., all miners want a free

ride.

RP = fhnj;—’a (26)

Bitcoin’s block creation is repeated infinitely among the same set of miners. The infinite repetitions allow
miners to sustain a tacit collusion. They can mutually commit to partial block filling under the threat
of future punishment. A single deviation by an individual miner would result in no collusion for T" block
periods in order to wipe out single-period deviation profits. In a single-stage game, an individual miner has
a profitable deviation. However, the deviation is no longer profitable when accounting for all future payoffs.
We therefore focus on subgame perfect equilibrium (SPE) miner strategies in an infinitely repeated block

creation game.

We obtain the following lower bound on the smallest colluding miner; the proof of this result can be
found in the Appendix. We also discuss verifiability of a miner’s action, which is a key requirement for
tacit collusion. A small miner (a; < &) mines blocks infrequently, say, once a month or year. They are less
threatened by punishment far off in the future. This can also be seen as a small miner's desire to make the
most out of winning a mining puzzle once in a long while. A large miner sticks to the collusion strategy,
as they expect frequent or near-term fee revenues. This difference in commitment of a small versus large
miner arises because the decision to follow the collusion with partial blocks or deviate with full blocks is
only revealed if the miner wins the puzzle race. In typical Cournot settings, the quantity produced by both
small and large firms are observed in all periods.

1—90,, onhpN vi — v}
o1 —01) 2V “Rp—Ry’

a; > &, where &=

(28)

The constraints above (a; > &, Ya; > ;) assure a colluding miner's commitment to the collusion. We
could use this to check if an exogenously given distribution of mining powers («;) conforms to collusion
requirements. However, miner entry is endogenously determined by available revenues and hardware distri-
bution. Next, we identify corresponding constraints on mining hardware distribution for collusion. This is
useful because a blockchain designer does not directly control mining powers («;), but they control hard-

ware distribution via choice of the mining puzzle (e.gMSHA 256 Hash, Scrypt). It would allow us to discuss
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Figure 13 A wvery large group (o= ay) does not let the effective capacity increase beyond 50% of demand. They do
not need to satisfy any & constraint. A small group (o= ap/4) does not let the effective capacity
increase beyond 86% of demand. They only perform partial filling when the actual capacity is increased
beyond 90%. The group is slightly less effective than a single miner because they also need to satisfy the
& constraint. (6 =0.99, p=10%)

potential blockchain designs for averting collusion. We obtain a constraint on mining cost ¢ and hardware

distribution A. The proof can also be found in the Appendix; the proposition below captures the conclusion.

Proposition 4 A group of miners with a; proportion of the total mining power can sustain collusion

if the hardware distribution (c,\) satisfies,

c(Ag) zart (29)

o Rp

o Under this collusion, all miners with greater than a,, proportion of the total mining power collude.
e The total number of miners s* exceeds the total number of miners who joined under the no-

collusion strategy mf. '*

Note that the miner collusion described above has similarities with collusion among firms in Cournot
markets with repeated interactions. It is worth highlighting two key differences: (i) In the standard Cournot
setting, all firms decide supply quantities simultaneously. In our setting, the firm's quantity decisions (np)

are instead separated in time. The standard Cournot collusion places a bound on the discount factor. Our

1 Gince Rp > Ro and A™! is monotonically decreasing, 3*2% m* >mg.



setting places a bound on the colluding firm size because the firm’s effective discount factor depends on
size. This happens in our context because firms have the opportunity to set quantity for the entire market
at a frequency proportional to their size. (ii) In the standard Cournot setting, all users irrespective of
private valuations observe the same quantity and price in the market. In our setting, the user bids first with
rational expectations of markets’ output quantity levels. While users have the ability to affect the firms’
collusive behavior being the first mover, it also leads to user discrimination. Users with different valuations
bid differently for a homogeneous product. While colluding firms must only supply to high valuation users,
noncolluding firms can supply to both high and low valuation users. A similar collusion equilibrium may be

applicable in markets beyond p2p payment blockchains, with unique characteristics described above.

4. Security

The collusion equilibria discussed in the previous section results in a smaller effective block capacity, greater
fees and larger revenues for the mining network. The Bitcoin community wants to eliminate this collusion
to serve the entire user demand at low fees. A simple intervention could be to enforce block filling. Such an
intervention is easily defeated, as the colluding miners could simply fill their remaining blocks with artificial
transactions. They could add zero-fee-paying transactions sending coins back and forth between their own
accounts. Such artificial transactions would achieve the same objective as partial block filling by keeping

out actual user demand. A more realistic solution could be to effect a change in the hardware distribution.

The existence of large mining hardware (> &) helps sustain the collusion. Bitcoin's mining puzzle requires
miners to perform SHA256 hash calculations. These calculations are computationally intensive, i.e., requir-
ing high calculation speeds but minimal memory. Large miners deploy ASIC machines that are orders of
magnitude faster than GPUs and CPUs at SHA256 hash calculations. A few blockchains — alternatives to
Bitcoin — implement ASIC-resistant mining puzzles. ASIC-resistant mining puzzles are memory intensive,
i.e., requiring substantial storage memory. ASIC machines deployed by large miners are efficient at compu-
tations but inefficient at memory-intensive operations. As ASICs become uncompetitive, miners with GPUs
and CPUs are able to enter the mining network. Since GPUs and CPUs are more widely accessible than
ASICs, this change has the potential of making miners more equitable. In the context of our hardware
distribution model, this effectively means that mining is now performed by large numbers of miners all in

the tail of the distribution.

The hardware distribution functions h(m), c¢(m) and A(m) are now updated to A'(m),c’ (m) and A’'(m),
respectively. A colluding group could still form, thereby adding up to the same («;) proportion of the total
computing power. The proportion of the total computing power for the marginal miner must still remain

greater than &. This is satisfied if

X & (30)
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Figure 14 The z-axis represents miners ranked by access to hardware. The ASICs on the left are blocked by an
intervention. A colluding group with a; power would need to include a larger number of small miners.

The new marginal miner (m*) may not be willing to sacrifice block capacity under tacit collusion.

The updated cost function ¢’(m), similar to ¢(m), is a decreasing function of m.

¢(m) = {oo if m in.banned region
c(m) otherwise

Prior to the ban, the marginal miner's cost was large enough to sustain collusion. As high-quality mining
hardware is banned, the new marginal miner moves toward the right (see Figure 14). The cost of an
infinitely small hardware (say, hand-held mobile devices) is near zero ¢’(00) = 0. There exists a unique level
of hardware ban beyond which the inequality above is shattered. In summary, banning large miners invites
smaller hardware that can be operated at lower cost. A lower cost attracts a more equitable community of
miners — a larger number of miners each expending a smaller computing cost. The new marginal miner may
be too small (> &). The marginal miner may not be willing to sacrifice block capacity under tacit collusion.
At first glance, this appears to be an effective method to eliminate collusion and recover the full block

capacity. We will show that the intervention (ASIC resistance or otherwise) to eliminate collusion threatens

the security of user payments by inviting hacks.

4.1. Double-Spend Attack

A double-spend attack poses a threat to the validity of a payment. Note that the Bitcoin ledger is a unique
longest chain of blocks. As discussed earlier, when multiple chains emerge, the chain that attracts the
majority of the mining power emerges as the longest and thus the accepted chain. Once the longest chain
emerges, all other parallel chains are abandoned. The transactions that appear in these shorter parallel
chains but not in the longest chain are deemed invalid. An adversary with computing power (a; = #) can
create a parallel chain. In addition, if the adversary has majority power (6 > 0.5), his or her chain will always
be the longest chain. Such an adversary essentially controls the blockchain. This adversary could prevent

new transactions from gaining confirmation, add invaéi7d transactions, or even reverse transactions that were



completed to double-spend their coins. This is well known as a 51% attack. If any miner were to achieve
51% of the aggregate computing power of the Bitcoin network, Bitcoin would lose all trust and value. As

a result, it is not in the interest of any miner to accrue that much power.

A smaller adversary (6 < 0.5) cannot arbitrarily add invalid transactions onto their block. Their block
would be rejected in favor of a valid block. However, they can spend their account balance twice by creating
parallel chains (Figure 15). The attack involves an adversary and a merchant. The adversary orders some
service or product from a merchant and pays the merchant in Bitcoin. The adversary wants to receive
the product but does not want to pay. The merchant would deliver the product only after they see the
payment recorded on the single longest chain. In a double-spend attack, the adversary records payment
on the longest chain, the merchant delivers the product; then, the adversary is able to respend the same
payment on a different fork, which later emerges as the longest chain. The attack would be successful if
the adversary could convince a majority of the mining community to switch away from the longest chain
where they initially make payment to the merchant. The original chain (and the payment to the merchant
on it) ends up being abandoned in favor of a new longest chain. The merchant has effectively delivered a

valuable product for a payment that never really occurred.

Before Attack After Attack

Merchant B delivers " p .
valuable service /1 FAN — Miners

N AN
A->B(v) —» Miners A ->B(v)

Figure 15 Adversary (A) sends a payment v to the Merchant (B). The merchant delivers a valuable service once
this transaction is added onto a Bitcoin block. The adversary then manages to resend the same value v

to another account (A’). The second transaction is recorded on the eventual longest chain.

We describe a simple double-spend attack strategy employed by an adversary. The attack is launched
when the adversary has just mined a new block. The adversary decides to keep this block private. Honest
miners are attempting to add a new block in parallel, which will eventually create a parallel chain. We denote
the adversary chain by a and the honest chain by h. State O represents the launch of the attack when the
height of @ is 1 and that of h is 0. The adversary's goal is to mine a private chain a with more blocks than
the honest chain h. If the adversary releases their private chain, all miners will accept this adversary chain
as the longest unique chain. The shorter honest chain would be abandoned. This is a risky strategy, with

power 6 < 0.5, the adversary is likely to be left behig%. If the adversary becomes left behind, they will lose



the block fees earned on their abandoned blocks. If the small probability that their chain wins is realized,

they want to make the most out of it by duping a merchant.

The adversary adds a payment of value v to one of their own accounts. They do not broadcast this spend
publicly; instead, they add this to their private block. The adversary also broadcasts a payment of value v.
This payment is meant to purchase valuable goods or services from a merchant. As h =0, the adversary's
payment has not been picked up on the publicly visible chain yet. The adversary must continue mining
privately since the merchant does not deliver the valuable service before they see the payment added to the

longest publicly visible chain.

[ State 0: Wait

(h=0,a-h=1)
/\
State 1: Wait State 2: Wait
(a-h =0, h >=0) (a-h>1,h=0)
1-6 0 1
State 3: Give Up State 4: Release
(a-h=-1,h>=0) (a-h>1,h>0)

Figure 16 Adversary double-spend Markov decision process (MDP). Each node represents a state and the
corresponding action for the adversary. State 0 is the initial attack launch state, and States 3 and 4 are

terminal states. The edges represent the state transitions and the corresponding probabilities.

The next block is added to the honest chain with probability 1 — @ landing in State 1. In this state, the
honest and adversary heights are equal. If the adversary adds the next block (probability 6 to State 4),
they succeed. If the honest miners add the next block (probability 1 — @ to State 3), the adversary gives
up, and the attack fails.!® If the next block from the initial State 0 is added by the adversary, we land in
State 2. The two heights are updated to h =0 and a = 2. The attack is not complete since the broadcasted
transaction has not been added to the honest chain yet. However, the adversary is certain to succeed in his
attack at this point. He or she will release the longer chain once a single block is added to the honest chain.
All miners will accept this adversary chain as the longest unique chain. The transactions on the adversary's
!5 The adversary has other options: (1) release the private chain in State 1 and let the honest miners decide on a

toss-up between two equal-height chains or (2) continue mining privately at State 3 in hopes of once again obtaining
the advantage. These alternatives are preferable in certairbgarameter ranges but do not change the core result.



blocks remain valid. When the ledger entries on the unique chain of blocks are added up, no balance seems

to be double spent once the honest chain is ignored.

It is important to reiterate that we have described a simple form of the double-spend attack MDP
strategy. Following Eyal and Sirer 2018, the attacker could choose to keep mining privately in State 4
instead of ending the attack with one block advantage. This results in competing miners expending their
power on a fork that eventually fails to become the single longest chain. A more comprehensive strategy
would certainly improve the attacker's payoff. On the other hand, following Biais et al. 2018, the attack
may have a lower chance of success if one or more large honest miners have received block revenues on the
shorter fork in State 4 and thus have a "vested interest” in not moving to the attacker’s longer fork. In fact,
there are numerous variants of the attack strategies and equilibrium fork outcomes that would change the
exact formulation of the attacker's payoff. We argue that the underlying intuition of an attacker’s trade-off
remains the same: (i) guaranteed honest participation revenues versus (ii) a costly attempt at creating an
alternative profitable “state of the world” (fork) with significantly less than 51% consensus power. A similar

trade-off is formulated by Chiu and Koeppl 2017 and Budish 2018.

In our simple MDP, the adversary fails in this attack with a probability of (1 — ). This corresponds to
the probability of two consecutive blocks being added to the honest chain. As an example, an adversary with
a 0.05 proportion of the total computing power has a success rate of [1 — (1 —6)?] =9.75%. If the adversary
succeeds, he or she obtains the double-spend value (v) in addition to the usual block fee. The adversary
fails if honest miners add two blocks before the adversary is able to find a single block on top of their private
chain. In this scenario, the adversary’s private chain consists of a single block. This private block records
a list of transactions that offer fees to the block creator (adversary). Unfortunately, this private chain is a
short chain from the longest main honest chain. Therefore, none of these transactions are added up as the
final balance of the adversary. The adversary forfeits the block revenue R on their private chain when they
fail to perform their double-spend attack. A small adversary (6 << 0.5) fails more often than not. Equation
31 captures the profits for the adversary when they have just launched the attack. They earn (v + R) on
the first block if it is eventually included in the main chain with a probability of [1 — (1 —6)?]. Subsequently,

they earn the usual honest mining rewards in the future.
Tdouble spend = |1 — (1 = 0)?](v + R) — ¢+ 6,,(OR — ¢) + 62, (0R — ¢) + ... (31)

As an alternative to this attack, an adversary could have simply engaged in the usual mining, i.e., not

mining private blocks. The adversary would avoid losing the fee on their abandoned private block.

Thonest — (R - C) + 6m(9R — C) + (an(eR — C) + ... (32)
30



This attack is worthwhile if the likely loss of block fees on the adversary's abandoned private chain is
compensated by the double-spend value v. Equation (33) represents the additional payoff in launching a

double-spend attack.
Tldouble spend — Thonest — Am = U[]. - (1 - 0)2] - R(]- - 9)2a (33)

To dissuade an adversary from performing a double-spend attack, we need Aw < 0. From (33), this
condition simplifies to

(% S ‘/SEC’LL’I'€7

where

(1-0)*

Viecure = R————=
secure 1_ (1 _9)2

(34)

The above condition shows that only transactions with value v < Vi cu.. are safe from a double-spend

attack with miner revenue R. If all users have knowledge of an adversary with power 6, merchants expect

buyers to pay an extra security cost S(v) to insure against an attack. We assume a binary security cost!S,
0 if v<Viecur

S V) = ) - securey 35

() {v else (35)

Thus, in equilibrium, users with transactions above V... will not consider the blockchain channel at all
owing to the high security cost. Note that we had treated V..., as an exogenous known security upper
bound at the outset. We had modeled a payment upper bound V' with a demand for N payments uniformly
distributed in [0, V]. Now, to fully endogenize users' security consideration, we hope to derive the payment

upper bound V with a demand for N payments uniformly distributed'” in [0, V].

v Noaz ViV < Vi
Nv)= [ g(v)dv:{Vmw e (36)

We use (8) to substitute miner revenue R generated from these payments, and we try to find conditions

where all payments [0, V] are secure, i.e., V < Viccure,

nrg

N(V)

Wi x — (37)

V== 7(60)

where

L1-(-02 o) 58)

)= T ¢ av 2

16 We show a continuous security cost in Appendix D

"'We also show an exponential payment density instead of uniform in Appendix D.

1
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Highest Payment Secured (V;oryre)

Vmax
Payment Value Upper Bound (V)
Figure 17 The z-axis is payment upper bounds V. The y-axis is the maximum payment value Vsecure secured by
revenue generated from N (V') payment in [0,V]. This is shown for alternative threat levels (6) and block

capacities (np). If the resulting Vsecure s less than V (gray trend), the corresponding setting
(10,V],0,nr) is infeasible.

Equation (37) simplifies to,

ng

N(V)

n(0) <(1- Jnr (39)

The RHS is increasing in payment upper bound V' until V,,,, because the number of payments (N (1))
vying for execution via blockchain [0, V] grow linearly with V. Thus, if there exists a V' € [0, V4] such
that demand [0, V] is secure, this implies that full demand [0, V},..] must also be secure. On the other
hand, if even full demand [0, V,,,...] cannot raise sufficient miner revenue and is insecure, then no payment
demand [0, V'] will be secure. Therefore, we replace upper bound V' by the highest revenue-raising upper

bound V.., and demand N (V') by full demand N,,... We obtain

(nF)2 - (nF)Nmaz + 77(€>Nmax S 0 (40)
This is satisfied for
Nmaz Nmax 4n(0
nr S [1 - (nF>ma:L’7 (nF)max] ) (nF)max = 9 + 9 1- ]\Ziai (41)

The miner revenue is highest at a block capacity ny close to N,,../2. A feasible range of block capacity
around N,,.../2 raises sufficient revenues to secure the payment demand [0, V,,..]. This range of feasible

block capacities depends on adversary threat 7(6). If35he adversary is extremely powerful (high 6,7(0)), the
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Figure 18 (Left) The adversary power required to perform double-spend attacks decreases if the capacity is close to
100% or 0% of demand. (Right) The mazimum allowed capacity nr decreases with adversary power.
Note that even a 6 > 0.5-adversary may not perform an attack if there are sufficient revenues to be

acquired.

feasible range shrinks and no real-valued nr exists. This occurs when 7(6) < N,,../4, which simplifies to

/ 4
Oyp=1—| ——m—F 42
e 4+patha:E ( )

In this case, even the revenue-maximizing capacity (nr = Nyu../2) may not be sufficient to avert such a

0 > 0y 5, where

powerful adversary (6 > 6y ). More generally, the existence of a smaller adversary (say, 6 < 0y ) places
a bound on the maximum (and minimum) block capacity. The maximum possible capacity decreases in
0. Figure 18 shows the trade-off between block capacity and minimum adversary power required for a

worthwhile double-spend attack.

Note that collusion among a large group of miners (Xa; > ay,) shrank the block capacity artificially to half
the demand. We had discussed possible intervention in mining hardware distribution to avert such a collusion.
However, given the security implication, such an intervention could make the blockchain open to the double-
spend attack. Further, the intervention specifically required blocking out miners with disproportionately more
efficient hardware (high h(m),c(m)), and these banned miners may even be the most likely double-spend
adversary if they cannot earn honest mining revenues at all. Given the importance of security, we could in
fact consider collusion as a positive characteristic. Security on the platform is an outcome of total mining
power, which may often be below desired level. Collusion among miners raises additional revenues; a chunk

of these revenues go toward adding more mining eoégpment by endogenous zero-barrier new miner entry.
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Figure 19 A summary of collusion’s impact on Capacity-Decentralization-Security trilemma. [Capacity] Collusion
allows fewer payments at higher fees, but dynamically adjusts the throughput in response to demand.
[Capacity — Decentralization] Collusive rent extraction partially goes to colluding miner, but also spills
over into entry of more miners. [Capacity + Decentralization — Security] A higher cumulative
commitment of resources mean that an attacker has smaller proportion of network’s power (low 0) and
higher incentive to gain honest revenues (higher collusion revenue R). Thus affording a higher level of

Security. [Security — Capacity] Higher security means larger payments are facilitated (higher Vsecure ).

Thus, economic rent extraction of collusion spills over into investment in greater security. Additionally, note
that block capacity np to avert the adversary depends on demand level V,,..; the latter can fluctuate in
practice, while the former is relatively inflexible. Collusion acts as an endogenous mechanism for participants
to make artificial adjustments (e.g., np) in response to small fluctuations in demand (N,,..), payment

spectrum ([0, V},,4.]) or off-chain fee rates (p).

Proposition 5 If collusion is eliminated, the Bitcoin block size remains bounded by the threat of

double-spend attacks:

Nmaz Nmaw (9)
2 + 5 1-— 47Nmam (43)

(nF)maz =

o An adversary greater than Oy would perform an attack, even if the block size is set at the block-

revenue-mazimizing level of %

In July 2014, Bitcoin faced the first and perhaps only realistic risk of a 51% double-spend attack. A single
mining pool, Ghash.lO, accumulated close to 51% of the total computing power. While mining pools are

composed of a large number of contributing miners, §4poo| owner typically coordinates block addition. The



pool’s total power would have allowed Ghash.lO to easily launch a double-spend attack. Ghash.lO voluntarily
promised to reduce its power below 40% to minimize the potential risk of double spend (ArsTechnica 2014).
Ghash.lO acted rationally since they most likely expected to earn more from continued honest block revenues
than a double-spend attack. The average transaction value on Bitcoin was $5000, while a single-block
reward was worth $100,000 (bitinfocharts 2018). Ethereum is the 2nd-largest public blockchain by usage
and market capitalization after Bitcoin. Ethereum has also not yet faced a double-spend attack. It is not

surprising that miners preferred to continue earning the reward instead of launching a double-spend attack.

Bitcoin Gold is a fork of Bitcoin launched to eliminate large ASIC miners. Bitcoin Gold has a substantially
smaller demand from users and is valued 100-times less than Bitcoin. In May 2018, Bitcoin Gold experienced
double-spend attacks. A payment worth $17.5 Mn (Osborne 2018) was stolen at a time when Bitcoin Gold
blocks paid less than $1000 per block (bitinfocharts 2018). Ethereum classic is a fork of Ethereum valued at
30-times less than Ether (Ethereum coin) and pays $20 per block (40 blocks every 10 minutes). In January
2019, Ethereum classic suffered a theft of $1.1 Mn from a double-spend attack (Casey 2019). Crypto51
(2019) estimates the cost to rent sufficient hashing power to match the current network hashing power for
an hour. This cost is estimated at $239,263 for Bitcoin, $79,699 for Ethereum, $3,969 for Ethereum Classic
and $737 for Bitcoin Gold. This cost is a reasonable proxy for comparing the cost of a double-spend attack.
Both Ethereum Classic and Bitcoin Gold have low mining power due to a combination of smaller revenues

and their ASIC-resistant mining puzzles.

5. Generalization Beyond Bitcoin

While we connect our model to Bitcoin, our findings are generalizable to a large variety of peer-to-peer
payment blockchains (Table 3). These blockchains broadly follow a broad paradigm kickstarted by Nakamoto
2008 with the following design elements: (i) Limits on ledger addition size and frequency to allow sufficient
time for dissemination (syncing) over the peer network (nr, d). (ii) Rewards (transaction fee auction f or
block reward R) for validating peer payments when making ledger entries. (iii) Consensus among participants
by commitment of costly and fairly distributed resources (compute h(m),c(m) or coin stake) for a fair and
distributed opportunity to make ledger entries. We model a large space of design choices followed by these
p2p blockchains: (i) Block sizes are flexible and their optimal choice is central to our model, (ii) Block
durations are flexible, and we discuss their impact, (iii) Miner revenue is modeled as an outcome of the
transaction fee auction, but we discuss intuition and show (in Appendix E) the robustness of findings even
if some revenues come from block rewards in perpetuity, (iv) the PoW hashing algorithm is flexible in our
model via choice of compute power distributions (h(m),c(m)), and (v) the PoW consensus mechanism is

fixed, but we discuss the intuition behind the robustness of our findings for proof of stake (PoS) systems.

Note that among these design choices, block size and block duration are still direct levers to adjust

available capacity for ledger growth rate. Other desigggeatures have a role to play by changing the incentives



Table 3 Major peer-to-peer payment blockchains and their block size, block duration, miner rewards and consensus

methods.

Blockchain Cap (Bn$) Proof Block Reward Daily Fee Capacity
Bitcoin 202.8 PoW 12.5 coin (4 years halving) $545,000 1 MB per 10 min
Bitcoin Cash 6.2 PoW 12.5 coin (4 years halving) $185 8 MB per 10 min
Bitcoin Gold 0.5 PoW 12.5 coin (4 years halving) $908 1 MB per 10 min
LiteCoin 6.3 PoW 25 coin (4 years halving) $1,700 1 MB per 2.5 min
Ethereum 28.8 PoW 2 coin (Variable) $70,000 20 KB per 10 sec
Ethereum Classic ~ 0.73 PoW 4 coin (Variable) $77 20 KB per 10 sec
EOS 4.3 PoS 1% Inflation per year Stake 1 MB per 0.1 sec
Steem 0.09 PoS 0.95% Inflation per year Stake 65 KB per 3 sec

for collusion and security. First, miner revenue from block rewards weakens the incentive to fill blocks
partially. However, as long as some portion of revenues comes from transaction fee offers, collusion on
underfilling still remains relevant. Second, cryptographic hash puzzles can significantly change heterogeneity
among participating miners, thus weakening (or strengthening) their ability to collude and double spend.
Third, consensus commitments in addition to computing power (e.g., coin stake or storage space) may

change some formulations, but they do not change the underlying double-spend trade-off.

Permissioned enterprise blockchains (e.g., Ripple, HyperLedger) and intermediated marketplace platforms
(e.g., Airbnb, Uber, Amazon) have some similarities with public p2p blockchains. Our model does not extend
to centrally permissioned enterprise blockchains. These chains may have miner revenues that are entirely
outside the blockchain ecosystem. User competition for space may be obviated since extremely large storage
space can easily be synced between a handful of mining nodes. These settings do not conform to zero
entry barrier decentralization, which is a necessary requirement for our model. Intermediated marketplace
platforms (e.g., Airbnb, Uber, Amazon) have replaced traditional large firms. These marketplaces provide
low-barrier entry to small cost efficient firms (e.g., home owners, cabs, small sellers), thus significantly
reducing costs. In doing so, the platform intermediary gains significant power to extract economic rents.
Blockchains disintermediate this concentrated power while keeping the low costs arising from low barrier
entry to firms (miners). Unfortunately, the low costs and disintermediate market power come at the cost
of consensus limits, firm anonymity and lack of unilateral incentive to invest in product quality (security).
This trade-off will become critical with the emergence of decentralized apps (DApps) or smart contracts
that go beyond payment and try to disintermediate ride-sharing, house rentals, lending, insurance, etc. Our

paper forms the basis for future research in these disintermediated marketplaces.

Design Guidance: We have shown that as long as blockchains follow the design elements discussed
above, capacity will be limited by collusive economic rent extraction or security threat. Collusion overlooks
small transactions, while double-spend security threatens large transactions. Therefore, it is untenable to

include the entire range of payment values with vagtéy different willingness to pay for delay and security



Main Chain 1

ny, fi = Qppvy

Side Chain 2

Ny, f2 = Appv;

Side Chain 3

n3, f3

0 V3

Figure 20 (Top) The main chain caters to n1 payments in [Vi,Vmas| at a fee of fi. (Middle) The second chain
caters to na payments in [Va,Vi] at a fee of fa. (Bottom) The third chain caters to ng payments in

[V3, V2] at a fee of fs3.

onto a single chain. A natural solution is “side chains"”. Here, the primary chain serves the highest segment
of payments with greatest willingness to pay, while smaller side chains serve lower payment value segments.
Figure 20 shows the blockchain broken down into multiple chains. The first or main chain caters to the
highest value payments between V; and V... The block size (1) on this chain is set below full demand (NV)
in order to raise sufficient transaction fee revenue (n; f;) and mining power to secure the largest payments
Vinaz- Subsequently, the second side chain caters to payments between V5 and V;. The block size (ny) on
this chain is set below full remaining demand (N — n;) in order to raise sufficient transaction fee revenue
(n2f2) and mining power to secure the largest payments V. The same follows for smaller side chains. Side
chains lower down the hierarchy have lower fees and lower security. Low-value payments are not incentivized
to pay high fees on higher chains, while high-value payments are not incentivized to risk high-security risk

on lower chains.

This design paradigm effectively discriminates among users on willingness to pay for delay and security.
In fact, this starts to resemble service levels offered by financial intermediaries in lieu of proportional fee
rates. Each chain offers a different delay and security guarantee. We assume that cryptographic mining
is adjusted to ensure that miners are too small to sustain collusion on these chains. Note that protocol
designs (n1,n,,..) are hard to adjust in response to demand shocks (N — AN). This may create temporary
settings where, say, the main chain capacity n; is greater than demand (N — AN), thus raising zero fee
revenue and security guarantees. The prospect of zero no-collusion mining revenue incentivizes even small

miners to engage in collusion. This acts as an endoggnious mechanism for the participants to make artificial



adjustments over the inflexible protocol in response to small market fluctuations. Note that this is merely a
guidance, which would benefit from full-fledged technology design and adversarial attack proposals. Similar

ideas albeit with different terminology or definitions have in fact also received some attention in practice.

6. Conclusion

Our work places economic bounds on the capacity of Bitcoin. In contrast to popular belief, merely upgrading
the block size does not scale Bitcoin. We show why miners will underutilize block capacities to force users
into competition on fees. Bitcoin mining puzzles could be redesigned to eliminate collusion-driven artificial
constraints. This approach results in too little mining revenue and security guarantees. Interestingly, collusion
can be seen as a platform attribute rather than a shortcoming. The purpose of p2p blockchains is to
provide disintermediated payment service. Disintermediation inherently creates challenges with investment
in security and inflexibility of protocol. (i) Security on the platform is an outcome of total mining power. No
individual service provider (miner) has incentive to invest in security because upgrade in mining power raises
payment security on blocks created by any miner, not just the miner who does incremental investment in
mining power. Collusion raises additional revenues; a chunk of these revenues go toward adding more mining
equipment by new miners. Therefore collusion among firms is a useful mechanism for firms to coordinate
investment in security of payments. (ii) Protocol (e.g., block size, duration, mining puzzle) is inflexible
because any change requires offline agreement between participants to upgrade their software. Collusion
acts as an endogenous mechanism for the participants to make artificial adjustments (e.g., np) over the
inflexible protocol (e.g., nr) in response to small exogenous fluctuations in demand, payment spectrum or

off-chain fee rates.

A few limitations of our research are worth highlighting. First, we largely ignore Bitcoin features, such as
privacy, and traditional off-chain services (e.g., customer service and credit) in the user's utility. Researchers
in the future could model user choice more thoroughly. Second, investors and speculators have played a
major role in Bitcoin valuation and demand. We model users and miners and discuss some options for
Bitcoin designers. However, we refrain from modeling investors. Nevertheless, we expect the core intuition
in the paper to be broadly applicable to a wide range of peer-to-peer payment blockchain solutions that

roughly follow the paradigm kickstarted by Nakamoto 2008.
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Appendices
Proof of Proposition 4:

The verifiability of a miner's action is a key requirement for tacit collusion. Colluding miners should be
able to verify each other's partial block filling actions. New blocks on the Bitcoin network — full or partial
— are public. Colluding miners can perform their actions using a unique public address to add their blocks.
An alternate method is for colluding miners to pool their computational power. For example, Antpool is a
group of miners who have decided to pool their resources together for mining. Each miner participating in
a pool contributes a verifiable amount of computational power and submits blocks under the pool ID. The
pool then distributes the rewards from winning blocks based on the work performed. Regardless of whether
the miners gather together in a pool or perform their actions using a unique public address, they can still
deviate. However, such a deviation is easily detectable (Cong and He 2019, Malinova and Park 2017). If the
colluding miners use the same public address, transactions included in any block that they win will reveal if
they are deviating. However, it is possible for the miner to use a different public address when cheating. In
a pool, this would not be possible because the pool can verify the computational power contributed by the
miner to the pool and also the transactions included by the miner in a block. Outside of a pool, a drop in the
win rate of a large miner (identified by the public address) may indicate that he is cheating using another
address to submit fully filled blocks. Further, a colluding miner does not need to verify every other miner's
actions. Overall, if o; fraction of the total computational power is assumed to be involved in collusion, a
participating miner simply needs to check that on average «; fraction of blocks are partially filled to ensure

that no one is deviating.

Every miner prepares a block of transactions and then starts to look for the solution to the Bitcoin mining
puzzle. Miners need to decide their filling action — full or partial — before starting to find the mining puzzle
solution. A colluding miner considers a trade-off (equation 44) between (a) immediate revenues from a
partial fill n}, facing a bid vector f(v) i.e., R, ,pey, followed by expected collusion profits Rp for T' periods
or (b) deviation to maximize revenues from current block R,,,p.,, followed by expected no collusion profits
Ry for T periods. Recall that d represents the time discounting factor for Bitcoin users, which can potentially

be different from that for miners (d,,). A colluding miner of size «; will not deviate from collusion if

5, (1— o7 5, (1— o7

RnoDev + ajRP * M Z RDev + ajRO * M? (44)
1—6m, 1=

This simplifies to,
1—- 6771 RDEU - RnoDev ) (45)

>
= 1—0r) " Rp— Ry

If the miner observes equilibrium fee bid f*(v) then R, ,p., corresponds to Rp, and Rp., corresponds to

Rp. Further, miner must be able to sustain the coIIus}lv?? partial fill level n}, in response to any off equilibrium



enticing bid vector f(v) # f*(v) as well. We can upper bound the right hand side (Rpe, — Rnopes) by

considering the most enticing fee bid vector f(v) similar to single strategic miner setting in the last section,

1_(Sm XahpNx v,%—vlg
om(l—0T) 2V " Rp— Ry’

a; > &, where &= (46)

This represents different trade-off faced by heterogeneous miners. A small miner (co; < &) mines blocks
infrequently, say, once a month or year. They are less threatened by punishment far off in the future. This
can also be seen as a small miner’s desire to make the most out of winning a mining puzzle once in a long
while. A large miner sticks to the collusion strategy, as they expect frequent or near-term fee revenues. The
lower bound on the smallest colluding miner (&) can be reduced by a longer punishment strategy (7' — o0).

This can be useful if small miner participation is necessary to attain a colluding group with total power «;.
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Figure 21 The z-axis represents miners ranked by access to hardware. The y-axis represents the computing power of

m

the respective miner. An example of a monotonically decreasing concave function h(m) = e M with a

long tail. Three categories of miners, from left to right, - (1) Colluding by partial block filling, (2) Free
Riding by full block filling, and (3) Inactive miners. m* and s* represent the boundary between these

groups in a collusion equilibrium.

The constraints above (aj > &, Yo > ;) assures a colluding miner's commitment to the collusion. We
could use this to check if an exogenously given distribution of mining powers («;) conforms to collusion
requirements. However, miner entry is endogenously determined by available revenues and hardware distri-
bution. Next we identify corresponding constraints on mining hardware distribution for collusion. This is
useful because a Blockchain designer does not directly control mining powers («;), but they control hard-
ware distribution via choice of mining puzzle (e.g., SHA 256 Hash, Scrypt). It would allows us to discuss
potential Blockchain designs for averting collusion. Figure 21 illustrates our model of miner heterogeneity
with respect to access to computing hardware. A large miner has access to hardware capable of faster hash
calculations at the same cost. Given the favorable trade-off for the large miners, we focus on collusion
among a group (X«; = ay) of the largest miners. We must ensure that no miner (colluding, free riding, or

outside) deviates from their action in equilibrium. m
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Figure 22 Miner j with access to computing power (a;) decides whether to buy hardware. Next, the miner decides
whether to follow the collusion strateqy. The colluding group of miners chooses Partial fill. The
free-riding group chooses Full. Deviation by a colluding group member leads to a no-collusion setting
whereby everyone always fully fills their block. The block creation sub-games on equilibrium (right) and

off equilibrium (left) are repeated infinitely with a discount factor dp,.

Figure 22 depicts the sequence of choices for a miner. First, they decide whether to purchase the hardware.
Second, they decide whether to follow the collusion strategy. The second choice is repeated over infinite
block creation periods. These choices are made by all miners simultaneously. We want to identify conditions
under which the top m* miners collude and the next (s* —m*) miners participate as free riders. In a subgame
equilibrium, these participating miners should be willing to purchase the hardware and stick to the collusion
strategy. All miners beyond s* should be better off not purchasing the hardware. Individual miners have
rational expectations of equilibrium strategies followed by all other miners. The focal miner first decides
whether to buy the hardware. Under collusion equilibrium, a rational miner expects the top s* miners to
buy hardware. Next, they decide whether to follow the equilibrium collusion strategy or the no-collusion
strategy. On the collusion path, a rational miner expects the top m* miners to add partial blocks. On the
no-collusion (off-equilibrium) path, a rational miner expects all active miners to add full blocks. On both the
collusion equilibrium and the no-collusion off-equilibrium path, the focal miner exercises a choice of partial
filling, full filling or no mining. The block creation sub-game on-equilibrium (right) and off-equilibrium (left)

paths are repeated infinitely with a discount factor d,,.

Single-block-fee payoffs are denoted by R(x,x*,%) with three arguments. The first argument represents

the mining power of the focal miner. The second argignent represents the focal miner block fill action, i.e.,



Table 4 Single-period expected payoffs corresponding to three actions (Partial, Full, and No Mining) off and on
collusion equilibrium paths.

On Equilibrium (o)  Off Equilibrium (a; =0)

Partial R(o;, P, *) frnip Jonp
Full R(a;, F,*) funp + filng —np) fonr
No Mining R(q;,0, %) 0 0

Table 5 List of all constraints that ensure that no miner has a profitable deviation in an SPE. Three pairs of
constraints (1a,1b), (2a,2b) and (3a,3b) correspond to three types of miners - (1) colluding miners, (2) free-riding

miners and (3) inactive miners, respectively.

Focal Miner Constraint

la R(aj, P,oy) + o722 R(ay, P,ay) > Ry, Fyaq) + 5’"mR(aj,F,O)

1—-0m 1-6

Qj > 0y 1b ﬁR(aj,P, a))—c; >0

2a R(a;, F, o) +aj1f—’ng(aj,F, a;) > R(aj, P,ag+ o) —&-ozj1f—’(’;m}2(0zj,P7 a + o)

3a a5 R(a;, F,0) —¢; <0

3b ——R(a;, P,aj+aj) —c; <0

1— 6””

partial (P) or full (F). The third argument represents the colluding group power, i.e., collusion (a;) or no
collusion (0). Table 4 provides the single-period expected payoffs corresponding to all actions. Single-period
payoffs are strictly better under the full block filling action for all miners. If the focal miner has power
a; > oy, but decides to add a full block under collusion, they expect to be punished. All miners would move

to the no-collusion sub-game if a single miner deviates from the collusion.

Table 5 lists all constraints that ensure that no miner has a profitable deviation in an SPE. For a large
focal miner (c; > av,,), constraint 1a ensures that they prefer to add partial blocks rather than a full block
in the repeating block creation sub-game. This is fulfilled if the marginal miner satisfies «,,, > &. Constraint
1b represents their preference to buy the hardware at the start of the game. This is satisfied for the marginal
miner making at least zero profits.

cm(1—=0)

> &, where Rp= fynp (47)
Rp

Oy =

A miner with (o, > a; > ;) proportion of the total power free rides. The lower limit a denotes the
smallest miner that joins the mining network. Constraint 2a represents the preference to free ride over

joining the colluding group. Joining the colluding gropp would increase the power of the colluding group to



a; + a; and therefore the partial block revenues. If the marginal miner (a; = «v,,,) is large enough, they may
increase the partial block revenues Rp(a; + ;) to be higher than the full block revenue Rp(cy). In this
section, we are interested in settings whereby even the largest miner is too small to perform partial block
filling without a threat of punishment '®. Large miners unilaterally perform partial block filling as shown in

Section 3.2.

Constraint 2b represents free-riding miners’ preference to buy the hardware at the start of the game. This
is satisfied for the smallest miner making positive profits.

aszc‘g(;;a); where  Rp = fynp+ fi(ngp —np) (48)
For a focal miner who stays out (c; < «), constraint 3a represents their preference to not join as a free
rider. Joining in as a free rider reduces the power of the colluding group below «; and makes collusion
unprofitable. Since the smallest miner makes zero profits when free riding, they are guaranteed to make
negative profits when collusion breaks. Finally, constraint 3b represents their preference to join the colluding
group. Similar to the free rider, this increases the power of the colluding group to o; + «; and therefore

the partial block revenues. These partial block revenues R(c; + ¢, P, ;) must be smaller than zero. This

is automatically satisfied since a; < .

We now proceed to obtain the equilibrium expressions for the smallest colluding miner, denoted by m*,
and the smallest free-riding miner, denoted by s*. For the smallest colluding miner, we need constraint 1b

to become an equality. Specifically, we need
L R(am, Poa) — e =0
1 — 6 O, L7, O Cm =U.
We know that R(w,,, P,a;) =, X Rp. Thus, from the above equation, we have

am X Rp =c¢,,(1—=9)

or equivalently

cm(1—=0)
= 49
an = (19)
From the definition of «;, we know that
H(m")
T H(s)
Thus, we have
o H(m")
H(s") = ) (50)
g

18 An equilibrium at «; is only valid when individual min%,? are relatively small: a;, < R;l(RF(al)) — )



From the definition of «;, we also know that

h *
Oy = (m )
H(s*)
Substituting the expression of H(s*) from (50), we obtain
h *
O = Im =A(m")e(m™)ay,
where A(m) = % Using (49), we have
N1—0
Ay — A=)
Rp
or
1—6
= (L2, 51
m e (51)
The monotonically decreasing function A = % ensures unique solutions. The marginal colluding miner

earns zero profit and must be large enough such that future punishment is a credible threat (c,« > &).
c(m”)(1 = 0m)
Rp

Free-riding miners present in equilibrium enter until colluding miners have exactly «; proportion of the total

>a (52)

computing power. Using (50), we have
] (53)
87/
where m* is given in (51). In addition, the smallest free-riding miner must be large enough to make positive
profits.
c(s*)(1—=d,)

T H(s) Ry (54)
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The subgame perfect equilibrium above focuses on a colluding group with exactly a; power. All miners
adding partially filled blocks (3Xc; =1) is yet another SPE. In such a case, users either stay off the chain
or offer a high fee (f1,); no one offers a low fee (f;). As a result, a deviation to add a full block (RF)
with low-fee-paying transactions is not an option. We have not observed such full collusion on the Bitcoin
network. We do not provide a specific justification for one equilibrium over other; however, we focus on
the «; collusion as a more interesting and practical setting. In addition to these extreme cases, collusive
equilibria with a; < Yoa; < aj, may also be possible. If a single miner with power o deviates from such
collusion, the remaining group is left with power Xa; — ;.. Punishing the deviating miners requires this
group to not engage in collusion permanently. This is not necessarily a rational strategy for the remaining
Ya; — o group at this stage. They are better off colluding on partial block filling if Ya; — o > oy. This
rational strategy to collude with a smaller group does not constitute a threat to the deviating miner. The
deviating miner is thus better off by continuing to free ride. In this paper, we do not validate or reject the

existence of miner strategies that sustain such equiliEgia.



A. Off Chain Payment

In practice, off-chain alternative for Bitcoin is a combination of Credit Cards, PayPal and Wire Transfer
(SWIFT). Following is a very rough estimate of proportional fees charged and time to complete for these
off-chain modes on an international payment. While Credit Cards offer almost instant payment faster than
Bitcoin, Wire transfers are much slower than Bitcoin. Our writing did not provide this detail on off-chain

alternatives.

Mode Fees Time

SWIFT (Wire) 1-3% (fx markup) + $50 (payer bank) 4+ $20 (correspondent bank) 3 Days
+ $20 (receiver bank) +

PayPal 3% (to send) + 4.4% (to receive) 3+ Days

Credit Card 1-5% (to send) + 3% (to receive) Instant

The utility of making an international payment v using mode m could be modeled as U,,(v), where p,,
is the proportional fees and d(t,,) is the discount factor over the payment completion time. The off-chain
modes offer different combination of fees and time to completion (p,,, ). We assume a single proportional
cost p = p, + 0(t,) as a combination of fees and time delay. This is reasonable because typically low

proportional rate options have large delay and vice versa.

Un(v) =0 = ppv —0(tm)v

Un(v)=v— pv where p = p,,, +(t.,)

Modeling the on-chain time discount factor is critical because time to completion is endogenously determined
by user action (e.g., fee offer) and competition. Modeling the off-chain discount factor is not necessary
because it is fixed in advance irrespective of user action. It is accounted for via (p). The choice of off-chain
features (pm,t,,) provided by Banks or Credit Cards in response to user choices are outside the scope of

our research.

B. User Collusion

Let us consider a scenario where miners act passively by adding full blocks (nz). If users compete every
period, top np users each pay fees fo = a,p(1 —)V. Let us consider users collusion such that the top nz
users pay a lower fees f. < fo while the remaining users stay off-chain instead of competing with the top nr
users on fee. The marginal user v = v, has the highest value payment among users who stay off chain. This
user has greatest incentive to deviate by offering a fees f. + € to complete their payment on chain. This
user can be prevented from deviating to f.+ ¢ fee bid by a punishment threat i.e. no collusion in future.

This threatens the marginal user because they will Iiﬁ@ly draw a payment need v € [vg, V;naz] in subsequent



periods. A break down in collusion means that they will not be able to benefit from the low collusion fees f.
(< fo). The marginal user pays f.+ € by deviating and expects to pay no collusion fees E°[f(v)] in future
periods. Otherwise, they stay off chain and pay pv; in the current period and expects to pay lower collusion
fees (ES[f(v)]) in future. The collusion is sustained if the future punishment would lead to larger lifetime

fee payments compared to no deviation.

) o ,
fe+ * EO[f(0)] > pvg + —— = ES[f (v)] (55)
1—46 1—0
where,
v, ) v
Eooolf0)] = (1= o) fot [ oy (56)
and
v vy
B ponlf@] = (1= fo+ [ pitde (57)
_
On Chain Fee Off Chain Fee
This simplifies to,
1 1-9¢
J > or np>NXx( 5 ) (58)
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Interestingly this condition on the discount factor 0 is independent of the equilibrium choice of f. (< fo). In
fact f. =0 is pareto optimal collusion fees for all users. This condition captures the intuition that the user
collusion is averted if - (i) the block capacity is extremely small compared to the demand. This means that
the marginal user v, strongly prefers to get on-chain now, instead of waiting for the low likelihood event
of being one of top np << N users in the near future. (ii) users transact infrequently (small §) i.e. the
demand N every period is made up of payment needs for a small fraction of overall users. (iii) user payment
value v is sampled once instead of being randomly sampled from [0, V},,..] every period. Small value users
are always small and large value are always large. If none of these three settings hold then user collusion at

zero fees is trivial.

Theoretically, colluding miners can respond to this user collusion by only including payments that bid
fn=aupV/2. Remember that f;, was the fee offered when all miner collude to add revenue maximizing
blocks at half the demand np = N/2. Since both users and miners are forward looking, both are willing
to forego payments via Blockchain and revenue from Blocks respectively for a few periods. The relative
values of discount factors (4,4,,) and collusion savings would determine which side comes out on top in
threatening the other into deviating from collusion. We skip delving deeper into this formulation because of
limited evidence of forward looking user fee biding or strategies - counter strategies between users and miner.
Future research could delve into some related questions - (i) Would forward looking (even colluding) users
account for security risks and pay fees higher than the outcome of competitive auction? (i) Would large
users that comprise say 20% of all payment demand (e.g. major Bitcoin-USD exchanges) have strategies to

unilaterally alter fees, delay and security to their adv5admtage?



C. User Waiting

Our primary model assumes that users are impatient. They bid on chain and wait a maximum of one block
period for their payment to be included. If not, they complete the payment off chain. In this section we
ground this assumption to rational user behavior. Note that we originally modeled user payment values as
continuously distributed in [0,V]. This was done to simplify the exposition of our research question. Here
we take a more realistic set up wherein, IV users that arrive every period have payment that take on one of
V' possible discrete values 1,2, ..., V. There are exactly N/V users at every payment value v € 1,2,...,V.
The discrete levels can be arbitrarily closely spaced. Similarly, fee bids are offered in discrete increments
with € (e.g. 1 cent or 1 satoshi) being the smallest increment. We will show a stable equilibrium where no
user makes an on chain bid that results in a wait longer than single block period. Users either bid rationally

expecting to be included on the immediate block or they go off chain.

At the outset let us assume that n,, users are present in the waiting queue, while N new users arrive in
any given period. Every period miners add a block on chain, including top nr (< N +n,,) payments by fee
offers. We want to find an equilibrium bid function f*(v) and the expected wait time w*(v) for a user with

payment value v. Let vg be a payment value such that,

V—wv V—vg+1
- OganN#O (59)

N

Figure 24 shows corresponding three segment of users - high value, low value and marginal users.

Let f(v,w) be the maximum fees a user is willing to bid for a payment of value v and a wait time w.
At this maximum fees the user is indifferent between on chain and off chain proportional fees. f(v,w) is
naturally increasing in v, we investigate equilibrium fee bid function f*(v) that is monotonically increasing
in v since a user with larger payment value has a higher willingness to bid owing to costlier off chain option
pv and greater per period delay cost dv. All high value users v > vy + 1 are in top ny new payment value
arrivals, they offer an equilibrium fee higher than all users with payment values v < vy. They do not need
to wait i.e. w*(v) =1V v > vy + 1. Note that none of the bids in the waiting queue belong to payment

value v > vg + 1, thus do not compete with these high value users anyways.

All low payment value users v < vy — 1 are outside the top nr new payment value arrivals. They
are competing against more than ny higher value users in this period. In equilibrium, where fee offers are
monotonically increasing, these users do not expect to find space on the immediate block. Even if they bid
and wait in queue, they will be competing against more than nr higher value payments in all future periods.
Their attempt to wait in queue will be futile in perpetuity. All these low value users are better off going off

chain. 51
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Figure 23 Every block period N user payments arrive distributed uniformly over values 1,2, ...,V . Users with
payment value vy are alluded to as marginal users. Some of these users but not all can find space on the
immediate block the rest may have to either go off chain or remain in waiting queue. Higher value users
(v>vo+1) always find space on the immediate block, lower value users (v <wo—1) never find space on

any future block.

Finally, all marginal users with payment value v = vy have a probabilistic shot at getting into top
np bids. Let n, (= N/V) be number of users with payment value v, that arrive every period. Let n,
be number of users with payment value vy that have been waiting in queue for at least one period. ny
(=np — N(V —19)/V) is the remaining capacity on any given block after the miner has included all
payment bids with v > vy + 1. Only n,4 out of (n, +n,,) can get onto the immediate block. New arriving
users can either go off chain or place a bid on chain for these limited spots. We search for a mixed strategy

equilibrium where these users randomize i.e. a fraction of these users n, ., place an on chain bid, while the

k
a,on

remaining go off chain n, o7 (04 — Na,0n). If equilibrium n? or n} .. turn out to be zero, it collapses to

a pure strategy.

In steady state, the total number of users vying for an on chain spot (74 ., + 1,,) must equal the users
that are included plus the users that are left waiting (14 + n.,) i.€. Mg on = na. Thus in equilibrium n, out
of n, users with payment value vy make an on chain fee offer f*(vy) while the rest n, —ng go off chain.
Figure 24 shows a single block period arrival and payment completions of these marginal users v =wv,. The

expected waiting time for these users is given by,

w*(vo):le—I—Qx fw B 43x
Ny + Ng anrnder)LéﬂJrnd Ny +Ng~ My +7g

o 9 Ng

(60)
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Figure 24 Every period starts with n., waiting on chain bids and ne, new payment arrivals. Some the new arrivals

(na —ma) go off chain, while the rest (nq) make an on chain bid. Miners pick nq random payments from

the total ng +n. on chain bids. This leaves n., payments waiting for the next block period.

From the setup above, we investigate equilibrium in following strategy space with unknowns (f;, f, f)

resulting in steady state waiting queue length (n%) and waiting time (w*),

This equilibrium is stable if,

d
ng’
ng—"Ng

Na

fr(w) = fr,w*(v) =1 where v > vy + 1
. £ with probability =
frloy=977 " -
1 with probability

[ (v) = fi,w*(v) = 0o where v < vy —1

,w*(v) =w* where v =1,

e High value users v > vy + 1 bid greater than all other users and are better off than the off chain option.

floo+1L,1)> fr>fo > ff

(64)

e Low value users v < vy —1 are better off with the off chain option rather than competing with marginal

or high value users.

floo=L1)<fr < fi

(65)

e Marginal user could deviate to a higher bid (f + ¢). By doing so, they overcome all other waiting or

new arrival marginal users who all bid f . Thus guaranteeing inclusion on the immediate block without

additional wait (w =1). This deviation is not profitable if the increased bid is greater than maximum

willingness to bid for an immediate inclusion f(vg, 1).

fo+e> f(vo, 1)

(66)

Further, marginal user v = vy must bid less than or equal to their maximum willingness to bid

(f(vo,w*)) at a wait of w*.
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We also know that f(vg,w*) < f(vg,w = 1) since user always willing to bid more for minimal waiting

w = 1. All the constraints above can be written as,
f(UOJrl’l) >f;zk >f;:z+€>f(0071) zf(UOaw*) >f;z>f_(v0_1>1) (67)

This condition is satisfied for an arbitrarily small ¢ for following equilibrium strategy,

fa=Fflwo)+e 5 frn="Fflwol) 5 f=Fflv,1)—e (68)

In this equilibrium, marginal users randomize between on chain and off chain payments with probability
na/ng and 1 —ngy/n, respectively. But when bidding on chain they do not expect any wait time (w* =1)

or any waiting queue (n,, =0).

Underlying the formulation above is the simple intuition that the marginal user is competing against all
other marginal users in the current block period as well as marginal users that arrive in future period. If
they bid anything less than full willingness to pay f than they will be superseded by the competition in
this period as well as all subsequent periods in perpetuity. Note that this happens in particular because
number of arriving users N and block capacity ny are not stochastic. Waiting queues will emerge if these
are considered to be stochastic. This is in-fact the case with Huberman et al. 2019 and Easley et al. 2019,
who incorporate stochasticity but assume that users bid without knowledge of the exact bids in the waiting

queue, instead relying on expectations of average waiting bids.

D. User Security Utility

In this section we discuss alternative payment value distribution and security cost distribution. We show in
Section 4.1 the largest payment secured V... when the demand is made up on N(d, V') payments uniformly
distributed in [0,V]. Now we contrast with a setting where demand is made up of N(d,V) payments
exponentially distributed in [0, V]. The left half in Figure 25 shows two different payment distributions. The
right half in Figure 25 shows the largest payment secured when demand is made up of N(d,V') payments
distributed uniformly or exponentially in [0, V]. In case of uniform distribution, the largest payment secured
increases linearly with payment upper bound V' until V,,,.... Participation of large value payments both raises

and needs greatest level of security.

This is not the case with exponential distribution of payment demand. Increase in revenue with larger
payments grows slowly because there are fewer large payments. This revenue growth may not be sufficient
to provide security to increasingly higher payments. A middle segment of user with high enough fee savings
and low enough security risk may have greatest willingness to participate on the Blockchain. Contempora-
neous work by Chiu and Koeppl 2017, consider settings where a large number of small payment demand
are compared against small number of large payment demand. Not surprisingly, such a setting resembles

exponential distribution and leans in favor of the forgzler i.e. small payments.
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Figure 25 The left figure shows two payment value distributions uniform (U[0, Vinaz]) and exponential (Ae™>?).
The right figure plots highest payment secured when the demand is made of payments in [0,V] following

the two distributions. In the region where highest payment secured is less that required security, at least

some of the large payments in [0,V] are insecure.

Beside the payment value distribution, we also make an assumption on the functional form of the security
cost. In Section 3.1 we assume only transactions with value v < V... are safe from a double-spend attack
when miner revenue is R. We go on to endogenize this upper bound V... in Section 4.1. Throughout the
analysis we assume a binary security cost i.e. payments above V... are certain to be double spent and
payments below V... are certain to be safe. This happens if users have knowledge of specific adversary
with power 6. In practice, users may only have beliefs of adversary power i.e. a distribution over possible
adversary power P(f). The probability of a payment v double spent will be,

/01 1 [U > Rlil(zﬁ);)?} x P(0)do, (69)

where 1[-] is an indicator variable that takes value 1 when the condition inside it is true, and value 0
otherwise. Thus the security cost takes a continuous form instead of binary,

S(v) = /0 X1 {v > R%} % P(6)df (70)

We defined f as the maximum on chain fees a user is willing to offer in order to avoid off chain proportional

rate |ef Where Uofffchain — Uon—chain—included -

f = anpv—S()/5 (71)

Under a binary security cost f is monotonically increasing for v € [0, V] i.e. users with large value payment

stand to gain most by avoiding the off chain channeg.g)This results is an outcome where Blockchain is used



by largest value payments that crowd out smaller payments. f is monotonically increasing for a security
cost distributions if,

0S(v)
v

<dapp; VY vel0,V] (72)

This is trivially satisfied for a binary distribution, but may not be true for all security cost distributions. If
not satisfied, a middle tier of values will have the greatest willingness to pay for payment via Blockchain,

instead of the highest tier of values.

Figure 26 shows three possible security cost distributions - binary distribution (S*(v)) similar to one
considered in the main text, and two continuous distributions (S5?(v), S*(v)). All these security cost distri-
butions take a monotonically increasing form since larger payments offer greater double spend incentive for
any adversary 6. Distributions S*(v) and S?(v) satisfy (72) because the largest value v =V still has the
highest willingness to pay after accounting for the security cost. This can be interpreted from the figure as
the gap between the (fee savings - delay cost) and the security cost. Distributions S?(v) does not satisfy
(72), in fact a different payment value in the middle has the largest gap or the largest willingness to offer
Blockchain fee ((fee saving - delay cost) - security cost). Such a security cost distribution would change our

analysis such that a middle tier of values will get preferential treatment for payment via Blockchain.

—— WTP = (Fee Savings - Delay Cost)

=== Security Cost 1 Lt
—-— Security Cost 2 -
------ Security Cost 3 e

8
@)
5H(v)
I/N’LII.X'
Payment Value (V)
Figure 26 The willingness to pay on chain incorporates fee savings and delay. This is compared against security

cost S(v) with three different formulations. S*(v) is the binary formulation used in the main text. S*(v)

and S3(v) are two alternative formulations.

Alternative models for payment value distribution or security cost distribution do not change the primary

insight. Users are heterogeneous (off chain fee, deIay,§6ecurity risk) in willingness to pay. A group of strategic



miner can benefit from creating artificial capacity constraints to keep out low willingness to pay users. A
re-design to weaken the miner, reduces the security and thus all users willingness to pay. The double edged
sword of collusion and security threat keeps the Blockchain accessible to only a fraction of the overall

payment demand.

E. Users Costs and Block Reward

The total cost borne by Bitcoin users can be categorized into the following three components.
On Chain Transaction Fee = fv‘; fodv=npf;
Off Chain Proportional Fee = fov(*’ (pv)Sdv
Delay Cost = fv‘g(l —d)vitdy

Figure 27 shows block size ny varied between 0-100% of demand N as a protocol design choice. This
changes equilibrium outcomes v§ and f;. The left figure shows three components of total user costs —
Transaction Fee, Off Chain Proportional Fee and Delay dis-utility. The right figure shows all three compo-
nents combined into total costs with Blockchain, compared against total cost in a world without Blockchain
option. The combined cost always dominates a setting without Blockchain i.e. more payment channel options
are strictly better for users. Figure 28 shows block duration d on x-axis varies between 0.5 to 1.5 times the
current duration d =10 minutes. We assume that an increase in duration d, linearly decreases demand N
in every Block period and linearly decreases the discount factor . A cursory analysis indicates that user
surplus is greatest at very high block size ny or very low block duration d, but we caveat this with collusion

and security issues to be discussed in later section.

Note that we model users choices of channel determined by fees, delay and security. We made two implicit
assumptions in doing so - (i) Users do not have a need for exchanging native Blockchain crypto currency for
fiat currency. In our model, all users draw periodic payment needs from the same distribution. We assume
that all users carry sufficient stock of crypto currency to send and receive payments without needing to
exchange from fiat currency. Since all users are homogeneous in their long term payment needs, all of them
hold the same average stock of crypto currency. (ii) Users do not face any inflation in crypto currency prices
relative to fiat currency on their coin stock. In practice, coinbase Block rewards B distributes additional
currency supply to miners. Given constant demand for payments, an increasing supply of coins leads to
inflation. Effectively all users pay a combined B in rewards to miners every period. This would be a fourth
cost component beside fees, delay and security. This reward is proportional to gross activity or total value
of payments on the platform,

V N kN .
B:k:/v* vdv= T (V2 ) (73)
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Figure 27 The left figure shows three components of total user costs against block size np. The right figure shows
the total cost (sum of three components), compared against payment costs in a world without Blockchain

option.
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Figure 28 The left figure shows three components of total user costs against block duration d. The right figure shows

three components combined, compared against payment costs in a world without Blockchain option.

The proportionality constant k captures markets inherent currency velocity i.e. number of payments where

the same coin is used and inflation level or block reward level set on the protocol.

In our model, since all users are homogeneous in their long term payment needs, all of them hold the
same average stock of crypto currency and thus face the same block reward inflation cost. Individual user

is paying B/N in inflation cost to miners every perigéi in addition to transaction fees. Users pays this per



period average cost of holding inflationary crypto currency even if they happen to use the fiat channel for
payment in a given period. Our primary model found that a setting with additional payment channel option
is strictly better for users compared to a no Blockchain world. This is not necessarily the case anymore
where we account for Block Reward Inflation cost in addition to fees, delay and security costs. Figure 29 is
similar to an earlier Figure 27, albeit with this additional fourth cost component. A rational user will keep
stock of coins for regular payments via Blockchain channel if these combined four cost components are

strictly better for users compared to a no Blockchain world.
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Figure 29 The left figure shows four components of total user costs against block size np. The right figure shows

four components combined, compared against payment costs in a world without Blockchain option.

This leads to an additional constraint,

C(0<9ton chain fees T COStofF chain fees T C(OStdelay + c\’OSthock reward inflation > COStOff chain only (74)
v oh Vo1 _ v v
pU (1—=9)v / kv / pU
ydv+ —dv+ / ——dv+ —dv > —d 75
/Ugf”ov”vg v T v , v ()

Non zero Block Rewards (k >0, B > 0) may have total costs greater than a no Blockchain world. This
happens at very low Block capacity nyr because, users are required to keep a stock of periodically inflating
native coins for infrequent payment needs. Figure 30 shows user costs and miner revenues as block reward
inflation levels are varied on the protocol between k = 0%, 1%,2%. Miner revenues increase with higher
Block Reward. A group of colluding miner now prefer a block size higher than before (np > N/2) where
they earn larger revenues thus raising security. The overall impact for users is mixed - negative impact of

additional cost component but positive impact of grggter collusion capacity and greater security.



—— Miner Revenue

Y
=
v
+~ s
(7
8 ~
Q -
[0}
=
[}
=
—— Cost With Blockchain
Cost Without Blockchain
o 20 4IU 5‘U SID 1U‘U 6 Z‘U 4‘0 60 80 100
Block Size (ng) Block Size (ng)
Figure 30 The left figure shows four components combined against total user costs in a no Blockchain world. As

Block rewards increase (k= 0%,1%,2%), the overall cost for users are higher at the same block capacity
ng. The right figure shows total miner revenues (auction fees and block rewards). As Block rewards
increase (k=0%,1%,2%), colluding miner will prefer an increasing partial fill level. With increasing

Block rewards users face greater costs but less severe collusion prospects.

While it is not the focus of our work, future researcher can venture further in direction to find optimal
design balance between Block rewards and capacity. In fact its possible that very high Block Rewards and
near zero transaction fee (ny or np < N, f =0) are overall more optimal in certain market parameter
ranges (e.g. N,V,p). In-fact such a design is proposed by Chiu and Koeppl 2017. Transaction fee in our
model are determined by competitive auction i.e. entry of a large value user increases bids by all other
users. Chiu and Koeppl 2017 set transaction as an exogenous proportional rate i.e. entry of a large value
user only adds a small fee paid by that individual user. Under this assumption they show that high Block
Rewards and near zero transaction fee (ng or np < N, f =0) dominate. Naturally, such a design will need
a different mechanism to prioritize payments without auctions. Since Block capacities are limited and miner
endogenously prioritize payments via the auction mechanism in most existing p2p Blockchain designs, we

would argue that our work caters more to current market conditions and popular design paradigms.

F. Readings on Bitcoin

Bitcoin's ecosystem is composed of four major components: (1) users, (2) miners, (3) the platform protocol,
and (4) the cryptocurrency. We suggest Huberman et al. (2019) for a deeper understanding of user waiting
queues and transaction fee decisions. Cong et al. (2018) provides an in-depth discussion of the arms race
by miners for computing hardware and their organization into mining pools. The protocol itself is most
accurately described by Satoshi Nakamoto — the creator of Bitcoin (Nakamoto 2008). Finally, Cong et al.

(2018) can be used as a resource for a primer on cr%%tocurrencies and their adoption.



Table 6 Major P2P payment Blockchains and their design choices.

Blockchain Cap(Bn$) Proof Block Reward Daily Fee Capacity
Bitcoin 202.8 PoW 12.5 coin (4 years halving) $545,000 1MB per 10 min
Bitcoin Cash 6.2 PoW 12.5 coin (4 years halving) $185 8MB per 10 min
Bitcoin Gold 0.5 PoW 12.5 coin (4 years halving) $908 1MB per 10 min
LiteCoin 6.3 PoW 25 coin (4 years halving) $1,700 1MB per 2.5 min
Ethereum 28.8 PoW 2 coin (Variable) $70,000 20KB per 10 sec
Ethereum Classic ~ 0.73 PoW 4 coin (Variable) 377 20KB per 10 sec
EOS 4.3 PoS 1% Inflation per year Stake 1MB per 0.1 sec
Steem 0.09 PoS 0.95% Inflation per year Stake 65KB per 3 sec

G. Generalizability to Blockchains beyond Bitcoin

Nakamoto 2008 proposed Bitcoin as a “peer to peer electronic cash that would allow payments without going
through financial intermediaries”. This requires a ledger of payment transactions without a trusted third
party responsible for its integrity. Bitcoin attempts to reach this goal by making the ledger public, allowing
anyone to add to the ledger in return for committing a resource and designing a resource fairly distributed
in small quantities, yet prohibitively expensive to accumulate in large proportions for one individual. Bitcoin
executes this paradigm by making following design choices — (i) Limit on ledger additions size and frequency
to allow sufficient time for dissemination (sync-ing) over peer network. (ii) Rewards for validating large
number of peer payments when making ledger entries. (iii) Compute power as commitment proving resource
for fair and distributed opportunity to make ledger entries. Beside Bitcoin, this broad paradigm is followed

by numerous public Blockchains, albeit with variations in design choices.

We consider below each of these design choices to discuss — alternative choices beside those taken by
Bitcoin, whether we model the choice space or keeps it fixed to Bitcoin's choice. If fixed, are our findings

robust to relaxed assumptions on the design choice.

Block size and block duration: Block size directly changes capacity and it is central to our paper already.
Our previous version keeps Block duration fixed. We implicitly assumed that halving the duration between
blocks is effectively equivalent to doubling the block size. This happens because both scenario’s will result
in the same transaction capacity (per unit time), fees, miner revenues and costs (per unit time). We make
use of gamma (v =np/N) across our derivations to underscore that most of our results effectively depend
on the ratio of capacity to demand (per unit time). We now recognize that a halved block duration does
provide users greater utility via faster payments. This outcome is not replicated by doubling the size. Now
we model Block duration choice explicitly. In so far as 10 minutes discount factors are close to 1 (e.g., d ~

0.99 or 0.999 ), this update does not have a significant impact but nevertheless offers completeness.

Miner Revenues: There are two distinct choices for rewarding miners — taxing transactions and taxing coin
holders. In the first case, transactions are typically taxed by forcing users to bid in a competitive auction for

limited throughput. Blockchains (Table 6) differ on Céj{rent levels of transaction fee rewards due to different



degree of user competition and throughput limits. Nevertheless, they all follow similar auction models. Note
that in some cases, the user may stake coins or stake compute resources or burn coins as an auction bid.

Naturally, this endogenous auction mechanism is central to our paper already.

Alternatively, coin holders can be taxed by giving miners coins as block reward. This increases the total
supply of coins and thus causes inflation, if demand is held constant. Effectively, users who hold coins transfer
a portion of their real value (inflation adjusted) to miners. We have added an extension in Appendix [D] to
show robustness of collusion results even with Block reward. In summary, colluding miners face two opposite
forces when deciding optimal partial fill level - increasing transaction fee bids by creating fierce auction
competition and decreasing demand for coin holding due to fewer payments facilitated on the platform.
Our main text assumes away the second effect, but an extension in Appendix E incorporates both effects.
This has a moderating effect on miner collusion, they may not want to restrict capacity as low as N/2.
Nevertheless some degree of partial filling will remain as long as a chunk of revenue comes from transaction

fee auction.

Contemporary research focused on crypto currency valuation is equally important to build a complete
picture. For example Chiu and Koeppl 2017 make the opposite modeling choice i.e. abstracting away the
transaction fee model, instead delving deeper into endogenous user demand for coin holdings. We contrast

our findings with theirs.

We make a conscious choice of not modeling demand for coin holding in our primary model, instead
we assume that coin holdings remain static and large enough to allow users to complete random periodic
payment needs (v ~ U[0,V,4z]). We do so because — (i) most Blockchains have a diminishing block
reward schedule eventually expected to go down to zero anyways. A perpetual block reward design, which
leads to infinite supply, does not have a major practical example yet. (ii) Transaction fee are unavoidable
even if a Blockchain had perpetual block reward, because they provide a secondary benefit of prioritizing
payments. It avoids flooding the Blockchain with 1 cent payments. Fee auctions for limited capacity and
miner incentive to collude on artificially lower capacity are therefore unavoidable even with Block reward.
(iii) Our primary focus is user choice for means of payment not store of value. Therefore we want to abstract
away from myriad issues related to crypto-currency valuation e.g., investors, speculators, fiat currency to

crypto currency exchange rates etc.

Consensus mechanism: The consensus mechanism is meant to prove commitment of a fairly distributed
resource. Proof of Work (PoW) Blockchains use computing power as this resource. These blockchains differ
on cryptographic hash puzzle e.g., SHA256 (Bitcoin and Bitcoin Cash), Equihash (Bitcioin Gold), Scrypt
(Litecoin) and Ethash (Ethereum and Ethereum Classic). The primary motivation for these alternatives is
to make cryptographic hash puzzle solving resistant to Application Specific Integrated Circuits (ASIC), thus

changing distribution of committed resource (h(m)Gg(m)) We indirectly consider alternative choices for



hash puzzles when we discuss choices of compute power distribution (h(m),c(m)) that would make miner
collusion in-feasible. Our results are therefore applicable over alternative PoW hashing algorithm design

choice.

The second most popular consensus mechanism is Proof of Stake (PoS) which require miners to show
commitment by staking coins instead of compute power . We do not incorporate PoS as a choice in our
model. However as long as PoS chains have the same auction mechanism to raise transaction fees, miners
would collude on a smaller artificial capacity. Our double spend model assumes that adversarial miner faces
no cost from loss of community confidence after attack. This is reasonable if wider community views double
spend attack as a rational action by large miner on an ill-advised large payment rather than a threat to
normal payments. Under this assumption, adversarial miner does not need to accounts for loss in future
value of their mining equipment (if on PoW) or coin stake (if on PoS) when launching the attack. Thus
PoS systems will have same incentives for double spend attacks i.e. honest mining revenues versus double

spend value.

Naturally this is only a broad inference about PoS systems. We do not rigorously incorporate PoS into our
model because - (i) practical examples of PoS Blockchains are still rare. (ii) Blockchains that have considered
it, usually rely on PoW to cold start their mining ecosystem anyways. At outset, compute power commitment
still remains the only reasonably fairly distributed resource. (iii) PoS has decentralization concerns (a rich get
richer outcome) because it helps large coin holders to earn even more revenue. As research and applications

of PoS mature we indeed expect this to be an interesting direction of future research.

The third most popular consensus mechanism is Practical Byzantine Fault Tolerance (pBFT). This consen-
sus does not require a costly commitment from miners as it expects miner entry to be centrally permissioned.
This is used in enterprise or permissioned Blockchains. These chains may have miner revenues that are
entirely outside the Blockchain ecosystem. User competition for space may be obviated since extremely large
storage space can easily be synced between a handful of mining nodes. In fact these chain do not intend to
attain the same goal of “peer to peer electronic cash for payments without intermediaries”. As enterprise
adoption of these systems increase, future researchers could study economics of permissioned Blockchains

as a contrast to distributed information systems (or databases), instead of P2P currency-payment mode.

H. Application beyond Blockchains and contribution to IO Theory

We first highlight differences in our model from standard collusion in repeated cournot markets. We use
these differences to predict three examples of markets where our models and findings will be applicable.
Finally, we summarize the key drivers in the Blockchain setting that form the basis for our model and
findings.

19 Proof of Burn (PoB) typically have similar miner commitment as PoS but may require miners to burn coin perma-
nently instead of staking coins temporarily or they involv?3 élsers to burn coin instead of direct fees or block reward



Differences from collusion in repeated cournot markets: As pointed out by a few review comments, tacit
collusion on quantity among firms using punishment strategies over repeated interactions is well established.
The first part of our paper uses a similar idea to achieve higher price for recording transactions. There are
some key differences compared to standard cournot repeated game setting — (i) Firm's quantity decisions
are not simultaneous, instead separated in time. The standard cournot collusion places a bound on discount
factor. Our setting places a bound on colluding firm size because firm's effective discount factor depends
on size. This happens in our context because firms have opportunity to set quantity for the entire market
at a frequency proportional to their size. (ii) In standard cournot setting, arbitrarily small homogeneous
firms could collude. Firm heterogeneity plays a distinct role in our setting as greater heterogeneity allows
handful of top firms to constitute large enough market power and sustain collusion even with zero barrier
entry of new firms. This happens because new entrants always have inefficient cost structure compared to
incumbents (iii) In standard cournot setting, all users irrespective of private valuations observe the same
quantity and price in the market. In our setting, user bid first with rational expectations of markets output
quantity levels. While users have ability to effect firms's collusive behavior being the first mover, it also leads
to user discrimination. Users with different valuations bid differently for a homogeneous product. While
colluding firms must only supply to high valuation users, non colluding firms can supply to both high and

low valuation users.

Application beyond Blockchains - Firm Supply Decision: We expect such collusion to be more broadly
applicable with decentralized markets where services, that are otherwise provided centrally, would be provided
by individual crowd participants chosen randomly. Some examples being — fx rate reporting on decentral-
ized currency exchanges, physical event reporting on decentralized betting markets, etc. These setting are
uniquely different from oligopolies (e.g., airplane manufacturer) or inter-mediated marketplaces (e.g., Uber,
Airbnb) where supply is a summation of quantities offered by individual sellers. In decentralized markets
supply is not a summation of quantities. Instead it is agreement of individual service providers or even

unilateral decision of a single randomly chosen service provider.

Application beyond Blockchains - Consensus Capacity: In the past decade inter-mediated marketplace
platforms (e.g., Airbnb, Uber, Amazon) have replaced traditional large sellers. These marketplaces provide
low barrier entry to small firms (e.g., home owners, cabs, small sellers) thus significantly reducing costs.
In doing so, the platform intermediary gains significant power to extract economic rents. Blockchains “dis-
intermediate” this concentrated power, while keeping the low costs arising from low barrier entry to firms
(miners). Unfortunately, the low costs benefits are watered down due to high cost of consensus without
an intermediary. This trade-off will become critical with the emergence of Decentralized Apps (Dapps) or
Smart Contract that go beyond payment, and try to disintermediate ride sharing, house rentals, lending,

insurance, etc. Our paper form basis for future regiarch in dis-intermediated marketplaces. As long as



consensus capacity remain limited, participants with high willingness to pay will continue to crowd out

smaller users on such dis-intermediated marketplaces.

Application beyond Blockchains - Investment Spillovers: Decentralized marketplaces (e.g., Airbnb, Uber,
Amazon) differentiate product quality using history of ratings and reviews. It is interesting to note that
perfectly homogeneous product (a payment transaction), still has a notion of quality i.e. security (or finality)
of payment. However, quality (security) offered by all firms (miners) is at the same level. No individual
firm has incentive to invest in quality because of spill overs i.e. it raises not only their own quality but
quality of all competitors. Therefore collusion among firms is a necessary mechanism for firms to coordinate
investment in quality of payments. Collusion raises additional revenues, a chunk of these revenues go toward
adding more mining equipment by new miners. This additional investment into mining costs raises security
of payments. Role of intermediary (e.g., Airbnb, Uber, Amazon) in marketplace platforms is critical when
investment in product has strong spillovers (Hagiu and Wright 2015). The same role is played by tacit
collusion in dis inter-mediated Blockchain setting. Thus collusion in our setting is not just a mechanism for

firms to extract economic rents, rather to invest back in product security (quality).

Summary of key drivers: Keeping specific details of Bitcoin aside, we believe following economic incentives
are key drivers for our model - (i) Product supply is not a summation of quantities simultaneously produced
by competing firms, rather decided by a randomly chosen participant firm. (ii) Eliminating economic power
of intermediary comes at a high cost of consensus. (iii) A lack of unilateral incentive to invest in product
quality (security) because of high spillover effects of investment. (iv) Firms with greatest market power,

also constitute greatest threat to market stability/security.

Considering the key drivers stated above one by one, we expect broader applicability of our model to
- (i) Decentralized services like fx rate reporting, event reporting to betting markets. These are unique
settings where supply in market is not a summation of quantities simultaneously produced by competing
(or colluding) firms, rather agreement among them. (ii) Decentralized Apps (DApps) or Smart contracts
that attempt to dis-intermediate currently inter-mediated marketplaces (e.g., Uber, Airbnb, Lending). These
future DApps face high information consensus costs similar to our Bitcoin model. (iii) Markets or products
where investment in quality or security has strong spillovers. (iv) Markets with anonymity guarantees where
market power does not necessarily result in long term reputation value or legal scrutiny (e.g., Dark web

markets, money laundering or mixing services)

I. Blockchain Economics Literature
The table below summarizes recent Blockchain literature with connections to our work. We have discussed

individual items in detail in response to specific review comments and the literature review section.
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Domain

Paper

Major similarities and differences

User Transaction Fee
Models

Huberman et al. 2019

Easley et al. 2019

Same as us, users with heterogeneous willingness to pay compete for
Block capacity. But neither users nor miners are rational or strategic
about block fill levels and security.

Hinzen et al. 2019

Unlike us, endogenizes block duration as a function of mining com-
munity size.

Miner Entry Models

Arnosti and Weinberg
2018

Prat and Walter 2018

One argues that cost efficient miners will keep raising their hash power
leading to high degree of heterogeneity among miners. Other argues
for high degree of homogeneity. We keep degree of heterogeneity as a
flexible design choice

Collusion

Cong and He 2019

Malinova and Park

2017

Same as us, they use transparency of Blockchain payment to sus-
tain collusion. But unlike us, they look at collusion among firms that
use Blockchain for payments instead of miners/gatekeepers of the
Blockchain itself.

Security Models

Chiu and Koeppl 2017

Same as us, they model attackers tradeoff between honest revenues
and double spent payment value. Unlike us, they simplify the trans-
action fee revenue model and instead focus on block reward miner
revenue. Our and their paper can be seen in conjunction for a complete
picture.

Budish 2018

They focus on designs to weaken double spend attack.

Gervais et al. 2016

They run simulations double spend attacks under variety of design
choices.

Carlsten et al. 2016

They argue for block rewards instead of transaction fee revenues to
weakend double spend attack.

Trilemma

Abadi and Brunner-
meier 2018

NeonVest 2018

Same as us, they discuss tradeoffs between scale, security and decen-
tralization. Unlike us, they claim very different mechanisms to argue
the tradeoffs.

Forks in Equilibrium

Biais et al. 2018

Kroll et al. 2013

Attack Strategies

Eyal et al. 2016

Sompolinsky and

Zohar 2015b

Nayak et al. 2016b

Some of our security formulations can be fine tuned by incorporating
equilibria other than longest chain or more sophisticated attack and
defense strategies. We do not think it changes the underlying trade-oft
for an adversary - honest mining revenue vs double spend payment
value.
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Chapter 3:
Does Machine Learning Amplify Pricing Errors in Housing Market? :
Economics of ML Feedback Loops

Abstract
ML pricing models (Zillow’s Zestimate, Redfin Estimate) have been deployed in the last decade
to make house price predictions. These ML models are revised regularly using recent sample of
sales. The recent sales are themselves confounded by previous version of the ML model. We
theoretically show how this Feedback Loop creates a self fulfilling prophecy where ML over
estimates its own prediction accuracy and market participants over rely on ML predictions. We
formulate size of resulting pricing bias. We identify conditions on ML and market characteristics
such that participants are worse off after introduction of ML. We use data from Zillow’s
Zestimate for empirical evidence for necessary primitives of our theoretical model.

1. Introduction

Buyers and Sellers in the housing market need to accurately determine price of a house.
Zillow’s Zestimate and Redfin’s Estimate are at least two examples of Machine Learning (ML)
algorithms meant to assist market participants. Zillow (Redfin) state a median error of 1.9%
(1.7%) between ML price of an on-market house and its eventual sale price [12, 17]. Both these
platforms caution about price errors, and suggest that participants rely on professional
appraisals or real estate agents. In spite of the risk, ML price has some obvious attractions — (i)
costless accessibility, unlike a professional appraisal, (ii) sense of impartiality, unlike agents* and
(iii) low error rates (1.7-1.9%) reported by the platform. Empirically we find an average reliance
of 15% on ML price i.e., if ML price of a $200,000 house was displayed as $220,000 (+10% error)
then the expected sale price of house is $203,000 (+0.15*10% error). Across submarkets this

reliance varies from 10% to as high as 50%.

A market participant may use multiple signals to construct a private valuation for a house.
These private valuations are noisy and are likely to create disagreement among participants.

Participants need to spend time in the market to resolve these disagreement. For example, a

1 Prior housing market literature provides evidence of mis-aligned pricinpal-agent incentives.



seller enters the market over-optimistic about how buyers will value a backyard swimming
pool. The seller observes low buyer offers and corrects their valuation. Thus valuations
disagreement, while costly, are corrected as long as the these private valuations are unbiased
and uncorrelated across the participants. Introduction of ML price plays a unique role, in that it
is a neutral and pervasive? signal to all buyers and sellers. If accurate, it is powerful in alleviating
costly price disagreement among participants. If inaccurate, participants can not learn and
correct since all other participants hold the same erratic signal. Ideally, an oracle social planner
could tune a dial to set market’s degree of reliance on ML price based on perfect knowledge of
ML accuracy. In practice, we show that the calculated ML accuracy and market’s reliance are

intertwined in a Feedback Loop that doesn’t converge to the socially optimal level.

Feedback Loop Definition: Buyers and Sellers in the market interact to complete sale of a house
with feature X at price p. The house sale process can be summarized as (X, p) sampled from a
probability density function f (X, p) parameterized by market structure ®. Some of the
elements that make up the market structure include - Hedonic value of floor area or
neighborhood, sellers uncertainty about value of their house, variance among buyer offers,
rental income options and agent costs. The ML pricing model f,,(X; 6) is retrained every period
in order to minimize expected prediction loss. Here 8 are model parameters and w are model
design hyperparameters. The expected loss is approximated using observed sale samples of
(X,p). For example, our reverse engineering of Zillow’s algorithm shows that a single house X
that sells at p = $210,000 (say 5% over its actual value of $200,000) shifts ML model 8 such
that ML price Zestimate z = f,,(X; 8) for 10-500 (25 on average) peer houses moves up by 1-
1.25%.

= j : 1
6, argmin ., - ~§;7¢(9t_1) [loss(p, £, (X;0))] (1)

Some elements of the market structure @ are sensitive to ML model 8;_,, and ML model 68,

naturally depends on samples drawn from fg. In essence, ML model 8 is chasing a distribution

2 ML price is not the only such pervasive signal. Global events and expert opinions can have the same effect.



shift imposed by its own previous version. We call this repeating process where model training
samples are confounded with models own past version as the Feedback Loop. This formulation?
of Feedback Loop (6 < f4) is a general description for any online ML platform. We focus on
feedback between two key elements (g, < a) — (i) ML accuracy o, which is part of the ML
model 8 and (ii) participants reliance on ML a which is part of the market structure fg. In a
“self fulfilling prophecy” houses sell closer to the ML price, than they would if ML price was
hidden. Thus ML accuracy g, is increasingly underestimated with high reliance on ML a. Market

reliance on ML « is reinforced by the over estimated accuracy g,.

Rigorous empirical evidence of Feedback Loop is hard to establish because Zillow’s proprietary
algorithm is opaque. In this paper, we show anecdotal comparison of Zillow’s stated ML
confidence interval compared against actual observed ML errors for a large sample of houses
across three US counties. We note that Zillow made a conservative upward adjustment to its
confidence interval in July-August 2019 while the actual error rate has been steady or declining.
This would suggest that stated average confidence intervals in first half of 2019 of < +9% may

have be over-optimistic compared to actual error rates of 13% or more.

We identify conditions on ML and market characteristics such that introduction of ML makes
participant expected payoff worse off. ML model, capable of high explanatory power in a
hypothetical unconfounded setting, can surprisingly make participants worse off under the
Feedback Loop. This happens as ML error estimate collapses to zero (g, — 0) and reliance on
ML goes to one (& — 1). A low complexity ML model works better under the confounded
Feedback Loop. A “self-sufficient” market can resolve disagreement in participant private
valuations, but it is more likely to be worse off after introduction of ML. We also provide a
feedback correction procedure by setting aside p proportion of houses where ML signal is
hidden. But the solution comes with the obvious caveat that the ML platform may not have the

necessary incentive to sacrifice revenue in favor of this correction procedure. We also

3 Perdomo et al (2020) introduced this formulation to derive convergence properties.



extrapolate from our findings to discuss implications for participants heterogeneous in - ability

to accurately price and patience to spend time in the market.

2. Literature Background

ML pricing has a significant impact if buyers and sellers are not able to accurately price houses.
Linneman, P. (1986) show that market participants have a large variance of house value
estimates because — they transact infrequently (say once in 10 years), and, unlike other assets,
housing has large diversity of features. Prior field survey and experimental research has tried to
determine size of these valuation errors. Goodman Jr, J. L., & Ittner, J. B. (1992), Kiel, K. A., &
Zabel, J. E. (1999) and Ihlanfeldt, K. R., & Martinez-Vazquez, J. (1986) find average absolute
valuation errors of 14%, 5.3% and 16% respectively*. The heterogeneity comes from different

sub markets and whether the individual participated in the market recently.

In theory, agents, brokers or other market experts can correct valuation errors (Han, L., &
Strange, W. C. 2015). In practice, sellers and expert agents contract under information
asymmetry. Since a seller cannot observe how much effort his agent is putting into selling his
house, a Moral Hazard problem arises in the principal (seller) — agent contract (Anglin, P. M., &
Arnott, R. 1991). The agent has an incentive to under value the house, and save on search cost.
In a competitive market, agents may have incentive to over value the house in order to win the
listing against competing agents. Further, Adverse Selection problem makes the seller unable to
judge perfectly whether the agent is knowledgeable about the state of the market. Thus agents
can not reliably reveal their expertise on house valuation. Beside agents, experts may still be
able to identify price bias in a sub market. For example, a 5% overpricing sustained for 12-36
months in 1000-2000 sqft single family homes in Charlestow neighborhood of Boston. Expert
may identify such pricing bias by observing summary level demand-supply across comparable
neighborhoods or using knowledge of ML Feedback (as described in this paper). We do not

model such external monitoring offered by market experts. In fact, Cheng, I. H. et al. (2014)

4 Some of the literature also measures bias, i.e., different between actual value and expected value among
prospective buyers and sellers. We model private valuations as unbiased, in order to assume away this second
layer of potential behavioral anomaly



show that securitized home loan managers were themselves unaware of a large-scale housing
bubble in 2004-06, preceding the 2007-08 collapse. ML Feedback Loop is a statistically complex
phenomenon, similar to risk pricing of securitized home loan assets. It would not be surprising if
pricing bias from the ML Feedback Loop similarly remain opaque to experts for an extended

period of time.

ML Feedback Loops are not unique to the housing market. For example, Google Maps traffic
routing model imposes a change in driver behavior, which are then consumed by Google Map
to update its routing model. In fact, feedback labels are useful in a wide range of online learning
settings where an ML algorithm learns by making mistakes. While innocuous is some settings,
they can slowly accrue as technical debt (Sculley, D. et al. 2015) in large ML platforms posing a
significant danger (Amodei, D.et al. 2016). Bottou, L. et al. (2013) discuss ML scoring of Ad
placement options using training data from past Ad placements imposed by previous version of
the ML model. Wager, S. et al (2014) discuss ML click through rate prediction using click data
from past search engine result imposed by previous version of the ML model. They show how
to detect the loops by introducing small amount of random noise in search result rankings.
Sinha, A. et al. (2016) discuss ML recommender systems that model user-item matrices using
training data from past user-item rating feedback provided by users under recommendation
sets imposed by previous version of the ML model. They identify sufficient assumptions on the
recommender system feedback process to discern intrinsic preferences from the confounded

user-item model.

These examples from Ad placement, Search Engine rankings and recommendations focus on
settings where individuals interact with ML predictions in isolation. For example, a user doesn’t
have an alternative mechanism, beside ML, to interact with a crowd of her peers and determine
relevant search results. A crowd of housing market participants, in absence of ML, can interact
and determine pricing. Thus introduction of ML in housing market is unique in replacing
wisdom of the crowd with a single correlated signal. Literature on implications of ML Feedback

Loop on the overall market is limited. Chaney, A. J. et al (2018) is a rare examples that



demonstrates homogenization of crowd behavior and loss of utility for at least some subset of

users under recommender system Feedback Loop.

Our model of market participants has similarities with Schmit, S., & Riquelme, C. (2018). In a
recommendation system setting, they assume that — users are naive in believing that ML scores
are unbiased estimates, and users are myopic and honest about their current action without
regard to its impact on future state via the Feedback Loop. We make similar assumptions to
rule out potential actions of agents or experts who may take strategic actions based on
knowledge of the Feedback Loop and its associated biases. Perdomo et al (2020) identify
conditions where repeated empirical risk minimization (RERM) converges to an optimal and
stable point. They frame the problem as a unique case of covariate distribution shift, often
studied in Computer Science literature on robustness of ML. In short, convergence requires ML
loss function to be “nicely behaved” and market actions to be sufficiently insensitive to ML.
Since we also model housing market ML pricing as RERM algorithm, we discuss if Perdomo et al
(2020)’s convergence conditions are satisfied. However, we are not as concerned with
robustness of ML accuracy at this converged state. Instead we want to discern what part of the
covariate distribution shift is coming from evolution of intrinsic housing preferences and what
part is artificially created by ML Feedback. If the latter starts to dominate, social surplus may be

lost even as ML accuracy reaches its optimal.

3. Theoretical Framework
In this section, we formally model the Housing Market, the Machine Learning platform and the
Feedback Loop. We identify necessary conditions under which introduction of Machine

Learning makes the market participants better off.

3.1 House Value

We define the value vy, of a house k at time t as the expected sale price E[pk,t] if the house is
put up for sale. The realized sale price for a house may deviate from the expected sale price
because of heterogeneity among seller and the buyers who visit the house. Individual seller i,

who values the house higher (or lower) than actual v; ;. . > vy, asks a price above (or below)



the expected sale price. A house on the market may encounter visits from a set of buyers who
value the house higher (or lower) than actual and offer a price above (or below) the expected
sale price. Thus, the expected sale price E[pk,t] depends on average valuation across market
participants E[vi,k't]. If all participants were to start valuing a house 5% higher, it would

increase the expected sale price E[py ;| and therefore the value v ;.

Ukt = E[pk,t] = E[vi,k,t] (2)
Pt = Vie + €xr 5 €e~N(0,08) (3)
Traning Sample {pk,t}
Machine Buvers and Sellers Valuations :
House Sale Prices

QM = argming, 62(Q) Tigr = AV + (1 — @)z,

ML —E[B
— . . . = E|7; +e€
Empirical Error c% Prediction Individual private valuation Vg Pt [ l'k'r] kit
Model Parameter QML {Zk o O-ZZ} Reliance on private valuation o

Figure 1: Feedback cycle from ML to buyer-seller valuations to house sales and back to ML.

A seller (or buyer) i estimates house value v;  ; to decide ask (or offer) price for her house. This
estimate is made up of — her private valuation of keeping ownership of house and her guess of
the expected sale price of the house. Similarly, a buyer estimate is made up of — his private
valuation of ownership of house and his guess of the expected sale price of the house. If all buyers
had the same private valuation and all participants were rational about this homogeneity, then
ei ke = 0. Subsequently, all houses would sell at their expected sale price €, . = 0. In practice,
participants are heterogenous in private valuations and have noisy guess of the expected sale
price.

Vikt = Vit + € 5 €ie~N(0,02) (4)

Individual buyers (seller), due to erroneous valuation e; ., offer (asks) above or below the

expected sale price. Large errors in value estimates make instances of such erroneous offers



(asks) more likely®. Thus dispersion in value estimates o2 increases dispersion in realized sale
prices g2. Some of the dispersion in realized sale prices may be moderated as market participants
learn from each other. For example, a seller with incorrect high estimate will eventually be able
to correct her mistake after she encounters buyers with low offers. This correction happens as
deviations e; , , among participants are constructed independently and therefore uncorrelated.
We model a linear relationship 62 = §02, where § captures moderation of valuation errors as

participants learn during search and bargaining in the market.

The value of a house depends on its unique features — location (neighborhood, zip code, county),
size (area, bedrooms, floors) and finer structural details (year of construction, style, flooring,
patio, etc.). A house k can be fully described using Q dimensional feature set X_)k Every feature

Xqk takes a binary value of 1 or 0 e.g., whether house has a patio or not®. A cumulative valuation

house feature gt(XT() make up value of house v, at time t. The value of the features and

therefore the value of the house evolve as a random walk over time.

Xk = [xl’k, ...xq’k, ...,XQ’k] ; xq‘k € {0,1} (5)
Vit = Vi1t ept 5 ekt ~ N(0,07,) (6)

3.2 Machine Learning (ML) Feedback Loop

An ML model predicts house value z = f,,(X; 8), where 6 are model parameters (e.g., weights in
linear model or boundaries in a decision tree) and w is model design hyperparameters (e.g., set
of features to use or regularization strength). For a given w, the parameters 6 are updated by
minimizing in-sample expected loss. The hyperparameters in w are choosen to minimize out-of-

sample expected loss in order to avoid overfitting.

0, = argmin E loss f (X 6 7)
t g9 (Xipit) ~ fq,(et_l)[ (pk,t foo (X ))]

5> Individual seller has higher or lower patience (or reservation value) than an average seller, thus allowing
6 We assume that continuous or multi valued features can be represented through binary features. This simplification does not
change any of the results.



The expected loss is approximated using a sample of N houses, which is small compared to 20Q
unique sets of house features. Therefore we focus on a class of ML models f,, that prices J (<
ZQ) house clusters, instead of pricing every unique house. The clusters are based on “priced”
features Q (< Q), such that any pair of houses k; and k, with Xqk, = Xqk, Vq €{1,...,Q} are
collapsed into a single cluster. Since ML assigns a single price to all houses in a cluster, effectively
the remaining (Q — Q) unique features q € {Q + 1, ..., Q} are left “unpriced”. Thus model design
f. is equivalent to choice of hyperparameter Q which governs the model complexity. The model
parameters 6 are made up of vector of J cluster prices z; ;. Finally, for clean analytical
expressions we choose loss(p,z) = (p — z)2. Under these choices for (f,,, 8, loss), the ML price
prediction z;, is the sample mean of observed sale prices p,,_; for all houses k' in cluster j,

that were sold at t — 1.

Zp s = Z;i . = 2k it p-1 X L = Ji) (8)
ot ™ Tt Yr LGk = Ji)

Beside the predictions z; ;, a key ML output is an estimate of error in ML prediction 62. This error
comes from three sources — (a) sale prices from last period can not forecast random walk (e,Cf’{ =
Vit — Vkt—1) into the next period, (b) (Q — Q) unique features are left unpriced (v ;1 — Vj, 1)
and (c) small sample mean of observed sale prices (v, ;-1 — Dj,t-1) may be different from
population mean. We will endogenize (e,f‘t,az(e,f,t) = 0?2) and its empirical approximation

(ékc ¢ az(é,it) = 672) later in the section by substituting analytical expression for p.

z _ _ _
it = Zit — Vit = Vkt-1 — Ukt T Vjpt-1 — Vkt-1 + Djpt-1 — Vjpt-1 (9)
— —
Random Unpriced Sample Error
Walk Features

A seller (buyer) i constructs the estimate ¥; ; , as a combination of own private signal v; . and
the MLsignal z;, .. We assume that individuals have knowledge of noise in their own private signal

(62) and the ML model provides empirical estimate of its own noise (62). The two signals are



weighted based on corresponding degree of noisiness. For example, an accurate ML signal (small

o) would lead to lower reliance on private valuation.

62 (10)

Dige = Ve + (1—a)z, ; a= o2+ 62
z

Remember, that the expected sale price py ; if the house is put up for sale matches up with the
mean value estimate of the seller and visiting buyers. The noisiness in individuals own private
estimates e; , , cancel out because they are constructed independently, but the noisiness in ML

signal ey, , adds a bias because its correlated across individuals.
E[pk,t] = aE[vl-,k,t] +(1- a)E[zk,t] = v + (1 — a)ef, (11)
Pit = Ve + (1 —a)ef, + €'y (12)
In a hypothetical where all buyers and sellers rely entirely on the ML signal (¢« = 0), there would
be no dispersion of sale prices py, = E[py]. All houses would be sold exactly on the ML

predicted pricei.e. €', ; = 0. As the individuals rely more on own private independent valuations

(a > 0), sale prices are more likely to be dispersed i.e. e’k,t # 0.
02(€'ys) = 802(vip,) = Sa’c? (13)
Now we can substitute py , in equation (9),

€t = (vk,t—l - vk,t) + (ﬁjk,t - vk,t) +€p+ (- a)ejgr_q (14)

which corresponds to an error variance,
07(Q,a) =E [(ei't)z] =AQ,a)/(2a — a?) (15)

where



Q Q
AQ.@) =aﬁw+(Q Q) <1_2_> (o) + 2 bato? (16)

Q N
~—————
unpriced features Sample Error

The empirical approximation 62 is calculated as squared difference of predicted zestimate z ot and

sale price pj, . averaged over sales observed across T periods.

1
6(Q,0) = =5 Sy (@fk,) = E [(aef,)’] = AQ @) » a2/ 20 — a?) (17)

In a hypothetical where ML signal is hidden from the market, the ML signal noise is given by
02(Q,1) = A(Q, 1). Going forward this is refered to as the unconfounded ML signal noise ¢2.
The correct confounded ML signal noise (62) is higher than the unconfounded ML signal noise
02 by a factor of (1/(2a — a?)). This inflation is the result of autoregressive accumulation of
ML signal errors. Since sale price outcomes shift towards ML signal, a “self fulfilling prophecy”

leads to an underestimation of ML signal noise 62 by a factor of a?.

Proposition 1: If market participants have reliance on ML signal is (1- a) and the unconfounded ML
signal noise is 62 then the empirically underestimated and the corrected ML signal noises are

respectively given by,

a? ) (18)

2= 0l (08), =g O

The interdependence of 62(Q, a) and a(62) form the core of the Feedback Loop. Prior to
introduction of ML (a = 1), the observations (X, px ) are unconfounded. The ML error
estimate 62 = A(Q, 1) is minimized at QO. The random walk component in A can not be
modeled and remains static for any choice of Q. The optimal choice Q, finds a balance between
the remaining two components. A Q < Q, would increase the sample size (N27¢) and reduce
the sample error. However, it lead to a large cluster size, with larger number of unpriced houses

features and a large dispersion of values within cluster. A Q > QO would gain on distinguishing



unique houses at the cost of an erratic small sample mean cluster price estimate. Once the ML
prediction is available, a reduces below 1. The new ML error estimate 62 = A(Q, @) is
minimized at @1. Note that at @ < 1, the sample error diminishes and the unpriced component
starts to dominate A. Since the latter is decreasing in Q, we have Q; > Q,. This cycle repeats,
resulting in increasing reliance on ML (decreasing a) while the ML gradually overfits (increasing
Q). Note that this phenomenon occurs if ML hyperparameter (Q) is iteratively adjusted. For the
rest of the section, we assume that this first order problem can be overlooked if the ML design
hyperparameters change infrequently. We focus on the more challenging problem of (a, 62)

convergence under a constant ML design hyperparameter Q.

Consider introduction of ML when individuals originally rely entirely on own valuation (a = 1).
Let the ML signal noise calculated offline before introduction 62 = 02 = 402. Substituting 672
and a in equation (10), individual reliance a on own valuation drops from 1 to 0.8. Now, the ML
signal shifts the sale prices, resulting in underestimation of empirical error variance (62 =
0.6602). The lower estimate of ML error further lowers individuals reliance on own valuation
(¢ = 0.8 —» 0.72). This cycle repeats until reliance and ML error converges’ to a = 0.66 and

62 = 0.502 respectively. This feedback cycle is even more acute if actual ML error is low to begin

with (62 < 202). In this case individuals eventually rely entirely on ML (@ = 1 — -+ — 0)8.

Proposition 2: Empirical under-estimation of ML signal noise worsens with high reliance on ML. And
over-reliance on ML signal grows with diminishing ML signal noise. This feedback cycle repeats until

reliance a and ML error estimate 63 converges to,

(19)

7 See Appendix A.1 for discussion on convergence of stable points.
8 Note that G2 is calculated over T periods, where 1 period may be a year or longer. In practice, this convergence a — 0 will be
thwarted by mitigating factors in the market such as expert observers. We do not model such external factors.
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Figure 2: (Left) Reliance (a) for different levels of unconfounded y (= 6?2 /a?) after convergence.
Empirical underestimation results in a low ay; (black dashed line), while a corrected estimation should
lead to a high a. (grey dashed line), relative to an unconfounded setting (red solid line). (Right) ML noise
underestimation ¥ (black dashed line) and corrected estimate y- (grey dashed line), relative to
unconfounded y (red solid line).

3.3 Economic Implications

Using the framework above, now we can examine if ML introduction makes the participants
better off. Instead of fully modeling participant payoff°, we assert that two market
characteristics are key drivers behind average payoff I1— (A) error in participants valuations

(Vi k.t — Vi) and (B) error in house sale prices (p; x ¢ — Vi.t)-

=00 — 0 E [(viger = viee) | = Q2 [(Pisee — viee) ] (20)
Valuation Sale Price
Error Error

The component (A) measures error in valuation of a seller (or buyer) at market entry. A seller
with rational expectation of error in their valuations acts cautiously. They are less likely to enter
the market, they starts with a conservative high list price, and prefer to spend time learning
from buyer offers. Similarly, a cautious buyer is less likely to enter the market, starts with a
conservative low offers price, and prefers to spend time learning from variety of seller list
prices. This buyer and seller behavior under noisy valuation lowers everyone’s expected payoff

I1.

% In Appendix A.2,we provide an approach to structurally estimate payoff, to replace the simplified metric used
here. The full payoff model cis more apt to answer deeper questions on — type of heterogenous participant that are
better off after introduction of ML.
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The component (B) measures errors in eventual sale prices. If the participants on an average
have unbiased valuations (even if individual participant is erratic) and they can resolve errors in
their private valuations via market interaction. However, if valuations have systematic bias or
learning in markets is weak then errors in valuations will propagate to errors in sale prices. Note
that sale price errors can go in favor or against a seller (buyer). A risk averse seller is less likely
to enter the market if the sale price outcome, even after cautious pricing and waiting, is a

gamble.

Proposition 3: Buyers and Sellers are better off after introduction of ML if following conditions on
error variance ratios (y = 02/6?) and (8 = 6% /0?) are satisfied. Both conditions are relaxed if the ML

noise underestimation is corrected.

Table 1: Conditions where market outcomes are better off after introduction of ML

Condition where outcomes are better off
Market Outcomes

Underestimated 62 Corrected (62),
2 y-1?
A E [(vi,k,t — Vie) ] 7 —2)2y —3) <1 Always
f— 1 2 + 1 2
B. E [(pi,k,f — vk,t)z] (y ) M < 6
r—2)2r-3) 22 +5y+1

The former y is a measure of unconfounded (by feedback) power of ML signal. The latter § is a

measure of market “self-sufficiency” in resolving valuation errors via buyer-seller cross learning.

Figure 3 visually depicts regions of (y, §) where introduction of ML improves the market
participant payoff. The horizontal line at 8 = 1 corresponds to payoff I component (A). With
correctly estimated ML noise, component A is always better off after the introduction of ML.
With under estimated ML noise, component A is worse off when private valuations are noisy
(high o2). In this setting, participants eventually start relying entirely on ML. However such
absolute reliance on ML is flawed because empirical ML error approximation is severely

underestimated. It deceptively appears preferable to private valuation.
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Figure 3: Regions of (y, §) where ML introduction makes market participants better off with corrected
(Left) as well as under estimated (Right) ML noise. The Left figure also shows a slightly extended (y, 6)
where a hypothetical unconfounded ML would be better off.

A similar tradeoff holds true for payoff I component (B). Once again with under estimated ML
noise, component B is worse off when private valuations are noisy (high a2 or low y). The
crucial difference is the role of market “cross learning” or “self-sufficiency” §. A small §
corresponds to a settings where buyers and sellers, each with noisy valuation, are able to
resolve errors by learning via market interactions. If the market is not “self sufficient” or
participant bear a large cost of learning (high §), than importance of entry with good valuation
and therefore utility of ML signal is high. Instead if the market is “self sufficient”, then
introduction of ML doesn’t add any value in participants discovering the unbiased sale price. In
fact, over reliance on ML only serves to add a correlated bias across all participants. Given this
ML error is correlated, unlike private valuation errors that were uncorrelated, it is not resolved
by market interaction. Thus ML error under low ¥ and low é propagates uncorrected to sale

price errors, thus making participants worse off.

Correction of Feedback Loop can be achieved by setting aside p proportion of houses where ML
signal is hidden. Over T periods pKT sale prices can be used to estimate unconfounded ML error

62(Q,1) as,
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62(Q,1) = Kl — L3 (ki p) (&, t) = E[(ef,)’] = a1 (21)
The ML estimate z; ; using p and (1 — p) fraction is given by,
B (A1 =106 ) + (1= D10 ) -y X 1 = i) (22)
e e 10k =)
where
r(k; p) {(1) if k does not recei:liz .= = 1)(2 1)(Q ~ A(Q 2)((3 1) (23)

>+ A(Q,1)

While this or a similar statistical solution are straightforward, the challenge lies in mis-aligned
incentives for the ML platform. ML platform revenues directly or indirectly depend on - number
of houses where ML signal is available and proximity of ML signal with eventual sale prices.
These metric do not incentivize the ML platform to sacrifice visibility of ML signal to p
proportion of houses or deviate from the default “self fulfilling prophecy” outcome. Resolving

these mis-aligned incentives remain an open question for future work.

Theoretical results in this section are driven by three crucial model primitives — (a) First, ML
signal influences (ask or offer) actions taken by buyers and sellers in the market, thus indirectly
influencing the sale prices. The feedback cycle is irrelevant if ML has little or no influence on
sale price. (b) Second, recently observed sale prices of houses with matching features
influences ML value estimates. Once again, feedback cycle is broken if ML estimates are
relatively static (e.g., they do not attempt to follow the price random walk) and do not rely
heavily on recent sales. (c) Third, ML platforms estimate of size of its own errors deviates from
actual errors. In the next two section we provide empirical evidence for these two necessary
primitives. Further, we also highlight significant variation in strength of the feedback cycle

across housing sub markets.



4. Data Description

Table 2: Sample values for hose features, location, listing and price estimate.

Category | Variable Sample Value

Location | Latitude 29.7 - 42.3 degrees North
Longitude 71.0 - 95.3 degrees West
Neighborhood South Boston ,Carrick, Brighton Heights, etc
Zip Code 15210, 15212, 15232, etc.
County Suffolk, Allegheny, Travis

Features | Floor Size 100 - 10,000 sq. ft.
Year Built 1799 - 2019
Last Remodel Year 1799 - 2019
Bathrooms 0-15
Bedrooms 0-15
Parking 0-1000 sq. ft.
Lot 100 - 10,000 sq. ft.
Stories 0-50
Solar Potential 0-100
Type Single Family, Multi Family, Condo, etc.
Structure Type Colonial, Victorian, Modern, etc.
Roof Type Composition, Shingle, Asphalt, etc.
Flooring Hardwood, Carpeted, Tile, etc.
Patio Porch, Deck, None, etc.
Ex-Material Brick, Wood, Cement, etc.

Listing List Price $10,000 - $10,000,000
Days Listed 1-365 days
Sale Price $10,000 - $10,000,000

ML Price | Z (Zestimate) $10,000 - $10,000,000

We use housing market data from Zillow.com, which is an online real estate database company.
Zillow provides information on house features (e.g., floor size, year build), house location (e.g.,
county, zip code, street address), historical as well as current listing information (e.g., list price,
sale price) and a price estimate called Zestimate. Zillow describes Zestimate as an “estimate of
a home’s market value” and it presents a comparison of Zestimate with actual sale price
outcomes as a measure if its accuracy. From this and other publicly available posts [17] from
Zillow, we infer from that Zestimate is an ML power prediction of sale price as a function of
house features, locations and economic environment. We have access to over 750,000 houses

across Austin (Travis County, Texas), Boston (Suffolk County, Massachusetts) and Pittsburgh
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(Allegheny County, Pennsylvania). Table 2 provides samples values of features we collect from

Zillow.

While house features and location are largely static, listing state and Zestimate change over
time. Zillow provides listing and Zestimate history going back up to 10 years. Since Zillow
regularly makes minor and major upgrades to Zestimate algorithm, entire 10 year Zestimate
trend shifts on a regular basis. For example on 1°t Jan 2020, Zillow presents a Zestimate trend
from $100,000 on 15t Jan 2010 to $122,000 on 1°t Jan 2020 increasing at 2% every year for a
house. But following an algorithm update on 1t Feb 2020, Zillow presents a Zestimate trend
from $100,000 on 15t Jan 2010 to $148,000 on 1°t Jan 2020 increasing at 4% every year for the
same house. Thus two Zestimate versions, pre update and post update, assign two different
values to the same house on the same date. Our empirical analysis requires us to keep track of
such algorithm updates. Therefore we take 25 snapshots of Zillow information at a frequency of

approximately two weeks between Feb 2019 and March 2020.

5. Empirical Evidence
In this section we first provide evidence for impact of Zestimate z; on house sale prices p;.
Second, we show how house sale prices p; impact the Zestimate z; of “peer” houses in the

neighborhood.

5.1 Impact of Zestimate on House Sale Price
The impact of Zestimate on Sale Price can be determined by randomly assigning similar houses
into two groups. First group is provided a Zestimate 5% over true price, while the second group
is provided a Zestimate 5% under true price. With both home buyers and sellers having access to
these experimental prices, we can determine the difference between average sale prices in the
two groups. Naturally, it is not possible to experimentally present incorrect prices in the actual
housing market nor is it possible to mimic the entire home search process in lab. But, we know
that Zestimate algorithm is frequently upgraded to reduce errors. Thus we can infer historical

instances where an erratic Zestimate was presented in the market. The current Zestimate



available for a house when it was listed on the market at time t is z;. The Zestimate available at
time T > t post algorithm upgrade is z; . The error in Zestimate e; (e; = z; — p;) can be

instrumented using z; .

zi — Z; (24)
— . > — > . e _ "1 t
zi=pite ; zi=pite oz =——
Zj
Listed at Sold at
li SPE
| | |
I I |
Zestimate available Zestimate available
at List Time post algorithm upgrade
for List Time for List Time
7. R Time ----------- - 7.
Lt Lt T

Figure 4: An illustration of list price (l;), zestimate z; (= z; ¢ ¢) for time t available at list time t and

zestimate Z; (= z; ¢+ 1) for time t available post algorithm update at time T.

We create two groups, one that received positive error (z{ >+1%) and other that received
negative error (z{ <-1%). While we do not exactly know the true price of a house, a (less erratic)
post algorithm upgrade Zestimate Z; and expansive set of house features )?l- (such as Floor Area,
Number of Bedrooms, Year of construction etc) contain information on the underlying true price.
Therefore two groups propensity score matched (PSM) on post algorithm upgrade Zestimate Z;
and house features )?i are expected to have similar true prices. We can measure the difference

in average sale prices across the two groups. Figure 5,6 and Table 3 report effectiveness of PSM?°,

(25)

pScore;(¢p) = 1+ exp(—[2, %] * ¢)

The first group received an average Zestimate error z; =7.1% while the second group received
an average Zestimate error z{ =-7.1%. Table 4 Model 1 reports a difference in sale price of

2.22% among the two groups. This suggests that Zestimate error gap of 14.2% is shrunk to a to

10 Appendix Table 12, 13 reports standardized bias for every covariate before and after PSM. It also reports the
descriptive statistics for key covariates in the matched samples.



a sale price gap of 2.22% because buyers and sellers only rely partially on Zestimate for pricing.
Model 3 suggest that the difference in sale prices is as high as 7.5% among small $50,000 (or
500 square feet) houses that are likely to be more standardized and may witness greater
reliance of buyers and sellers on Zestimate. The difference is only 1.4% among large $500,000
houses. If buyers and sellers relied entirely on Zestimate for pricing, we would see a sale price
difference of 14.2% between the two groups. Using the observed sale price difference, we infer
degree of reliance on Zestimate as ranging from 0.1 (14.2% — 1.4%) to 0.5 (14.2% — 7.5%).
Going forward we use the range 0.1-0.5 to emphasize differences in reliance on Zestimate

across housing sub markets.

log(p;) = Bo + B1log(z;) + B (zf > 0) + P3pScore; (26)

Treatment

Table 3: Treatment and Control statistics before and after PSM. A Rubin’s R between 0.5-2.0 and a
Rubin’s B less than 25 indicate a good match.

Statistic Before Matching After Matching
Mean % Std. Bias 10.21% 0.93%

Rubin’s R 0.99 1.01

Rubin’s B 71.82% 0.30%

Before Matching

20 {

Group 2

20 1

Group 1

Number of Houses

o ap
After Matching

Number of Houses

Propensity Score

Figure 5: Histogram of propensity score for treatment and control groups before and after PSM.



Covariates
(Ascending order
of Pre-Match Bias)

Percentage (%0) Bias

Figure 6: Percentage Standardized Bias for matching covariates before (dark) and after (light) PSM.

Next we use observed list price and time to sale to uncover Zestimate impact on buyers and
sellers independently. Table 5 Model 1 reports a difference in initial list price of 1.4% among the
two groups. Since list price is decided by the seller in isolation, this confirms Zestimate impact on
seller. If Zestimate had no impact on buyers, houses that are listed higher under influence of
positive Zestimate error should be harder to sell. Controlling for Seller’s initial list price, Model 2
reports a difference in sale price of 1.2% and Model 3 report a shorter time to sale by 4 days.

Both of these demonstrates Zestimate influence on buyer’s willingness to pay.

log(ly) = Bo + B1log(z;) + B, (zf > 0) + BspScore; (27)
Treatment
_ . li —z; (28)
log(:) = fo + s 10g(7) + Bz (26 > 0) + FapScore; + b (")
Treatment N
Markup

5.2 Impact of House Sale Price on Zestimate
The Zestimate algorithm is proprietary to Zillow and thus opaque to us. Zillow describes the
Zestimate as composed of both expert driven economic modeling and data driven predictive ML.
For the Feedback Loop phenomenon to be relevant, it is critical that the latter, data driven
predictive ML, is a significant driver for Zestimate. We know that Zillow reports a set of 4 or 5
house sales alongside Zestimate of every house. These houses, referred to as peer houses

hereon, are in geographical vicinity and have similar features as the focal house. In Appendix A.3,



Table 4: (Model 1)Primary specification for impact of Zestimate error treatment on sale price (equation
26). (Model 2) Interaction of Zestimate error treatment with house size. (Model 3) Interaction of
Zestimate error treatment with house price. (Model 4) The treatment effect after adding explicit

regression controls for house features X;.

Log(Sale Price)

(1) (2) (3) (4)
Log{Z post algorithm update) 1.822%%% 1.825%%* 1.8370% 1.83@%**
(8.e84) (8.8085) (8.807) (8.289)
Treatment 0.022+%+ 0.379%%* B.368%+* 9.024+++
(e.008) (e.110) (e.110) (@.006)
Treatment*Log(Floor Size) -8.949*% "
(@.015)
Treatment*Log(Z post algorithm update): ~B. 827"
(8.003)
Log(Floor Size) 2.e28 -@.835%*
(e.e11) (e.e15)
p5Score -@.e67** -B.876%*" -B.866%* -9.863""
(e.827) (0.027) (e.827) (@.e32)
Constant -@.28744+ -@.384%%* -0.478%++ -9.026
(©.055) (@.092) (0.082) (0.283)
Cbservations 2,414 2,414 2,414 2,414
R2 @.958 9.958 8.958 8.968
Adjusted R2 @.958 8.958 8.958 8.959
Residual Std. Error 8.157 (df = 2418) 8.156 (df = 2488) B.156 (df = 2489) 8.154 (df = 2348)
F Statistic 18,297.810%** (df = 3; 2418) 11,039.298*** (df = 5; 2488) 13,776.388*** (df = 4; 2489) 844.670*** (df = 67; 2346)
Note: *p<@.1; **p<0.85; ***p<0.01

Table 5: (Model 1) Impact of Zestimate error treatment on list price (equation 27). (Model 2) Impact of
Zestimate error treatment on Sale Price, controlling for list price (equation 28). (Model 3 and 4) Impact
of Zestimate error treatment on Time to Sale (in days).

Dependent variable:

Log(List Price) Log(Sale Price) Time to Sale Time to Sale
(1 (2) (3) (4)

Treatment 8.014%** a.e12%* -3.794* -3,.791%

(@.e83) (@.005) (2.012) (2.809)
Markup B.874%%* 8.3084

(e.819) (8.276)

Log(Z post algorithm update) 1.819%** 1.@17%%* 4,271%%% 4,273%%%

(8.002) (e.0032) (1.384) (1.383)
pScore -0.813 -@.e2e 9.461 9.448

(9.011) (e.e20) (8.509) (8.50@)
Constant -8.13@9%** -B.243%%* 22.673 22.657

(8.028) (e.e41) (17.401) (17.393)
Observations 7,678 2,414 2,414 2,414
R2 @.967 @.977 .08 8.8086
Adjusted R2 8.967 @.977 @.e84 0.e04
Residual Std. Error 8.122 (df = 7666) 8.115 (df = 2409) 49.303 (df = 2409) 49.293 (df = 2418)
F Statistic 75,234.640*** (df = 3; 7666) 25,868.590*** (df = 4; 2489) 3.445*** (df = 4; 2409) 4.595*** (df = 3; 2418)
Note: *p<@.1; *¥p«@.85; ***p<o.0l
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we reverse engineer the choice of these peer sales and determine a precise criteria with a high
confidence — (i) sales within past 12 months, (ii) distance <2 km from focal house and (iii) floor
size that is between half to double of the focal house. Figure 7 and Table 6 illustrates an
example house and its five peer sales. We hypothesize that a simple average sale price of peer
houses p; is a dominant driver of Zestimate z;. If established, it would greatly simplify the

mechanism behind Zestimate calculation and help to illustrate the presence of Feedback Loops.

Allegheny County (Pittsburgh)

40.60
40.46 .
Zipcode 15212 . % Zipcode 15235 - | House 5 s ] , House 2 Hou-se 1
. g g g (1740 sqft) T POl (1504 sqft) (1067 sqft)
Latitude @ %00 iﬂ‘ ouse g *
bl o ' | |
Zipcode 15210 e Y Latitude : ; SR -
. E House 4 : % House3
Focal House (1476 sqft) (1454 sqft) -
(1860 sqft, 3BR) L
40.35 ,
o Focd I-n..se
i i i B Poer House Sakes
-80.15 _ -79.80 4044 | MEe .
Longitude -79.86 -79.85
Longitude

Figure 7: (Left) All houses in Allegheny County. Houses from three zip codes are used for evaluating
impact of peer sales on Zestimate. A 3 bedroom 1660 square feet house in Zip Code 15235 is depicted as
an example. (Right) A zoom in view of 1.5 km radius around the focal house shows many sales in last 12

months (small blue x). Five peer houses with similar floor size are shown as large blue X.

Table 6: Floor size, sale price and sale time for each of these five peer houses.

Peer Floor Sale Sale Peers of Peer
House Size (sqft) Price Month Houses
1 1067 $160,575 04/2019 a,ef,3,4
2 1504 $161,000 04/2019 b,cd,3
3 1454 $160,500 03/2019 c,defg
4 1476 $149,900 03/2019 f,hi3
5 1740 $160,000 12/2018 Not available in our sample

One approach to establish the role of p; would be to, consider a pair of adjacent similar houses -
A and B. At time t;, both houses have same Zestimate, same peer house sets (/] = {1,2,3,4}) and

therefore same p;. At time t,, the peer set for one house remains static while the peer set
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changes for the other house. Given the geographical adjacency and similarity in features, any
difference in Zestimate (zp:, — Z4:,) at time t, arises from change in the peer set (/5 =
{1,2,3,4} - {1,3,4,5}). Thus we would be able to isolate the role of average sale price of peer

houses p; as a dominant driver of Zestimate z;.

Time &4 Time t,
House 1 House 2 House 1 House 2
$103,000 $100,000 $103,000 $100,000
7
’
’
¥ House 5
House A House B House A House B i $105,000
z, =5$100,000 || zg = $100,000 2z, = $100,000 || zg= $101,000
House 3 House 4 House 3 House 4
$95,000 $102,000 $95,000 $102,000

Figure 8: A hypothetical example where at time t;, House A and B have the same set of peer sales
{1,2,3,4}, thus the same “average peer sale price” and Zestimate. At time t,, House 5 replaces House in
the peer set of House B. The “average peer sale price” for House B increases by 51,250 and its Zestimate
increases by 51,000.

. ) (29)
5 v ’ (pj)it - Z Pj

1+exp (_ [(Pj)lt 1 Zity Hi,tltAei;Xi] * ¢> ’ jEpeersofiatt
1

pScore;(¢p) =

We operationalize this approach by creating — control group with no change in peer set and
treatment group with change in peer set corresponding to 0-5% increase in p;j with an average
2.3% increase. Next, we propensity score match (PSM) the control and treatment group units on
— peer set at t;, Zestimate at t;, house features )?i and other potential drivers of Zestimate
change (6) such as tax estimate. The treatment effect of Ap; can now be measured as f3, in
equation (29). An average 2.3% increase in pj corresponds to a 1.9% increase in Zestimate. We
repeat the same steps with two alternative treatment groups - 5-10% increase in p; and 10-15%
increase in p;. Table 7 reports the corresponding results. Overall, a 1% increase in p; corresponds

10 0.66-0.83% increase in Zestimate.
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AZi = (Zi,tz — Zi,tl) = ,30 + ﬁlAQi + ﬂz(Aﬁ] > O) + ﬁ3pSCOT‘ei (29)

Treatment

Table 7: Treatment effects using three different treatment groups with varying level of treatment
intensity or “average peer sale price” change.

Treatment | Range of Mean Treatment | Treatment

Group Treatment Treatment Effect (8,) | Effect/Intensity
intensity change Intensity

I 0-5% 2.3% 1.9% 0.83

Il 5-10% 6.7% 4.4% 0.66

1 10-15% 11.5% 8.6% 0.75

In order to further reinforce the role of p; in driving Zestimate z;, we also look at out of sample
explanatory power. We find that this simple metric p; explains close to 96% variation in the
Zestimate. While we are aware that the actual Zestimate model may be significantly more
sophisticated, the extremely high out of sample explanatory power (R? ~ 0.96) suggest that a big
chunk of the full model is driven by information contained in peer sale average. In Appendix, we
present more details as well as alternative models that incorporate — weighted average of peer
sale, unsold peer listings, focal house features, geographical fixed effects, tax information etc. In
summary, we find that these contain much less Zestimate explanatory power on their own and

add very little or no explanatory power when used alongside the simple peer sale average metric.

5.3 Feedback Loop
Empirical evidence in this section suggest that market participants have a reliance of 0.1 to 0.5
on Zestimate. For example, if Zestimate of a house has an error of +10%, sale prices is likely to
shift up by 1 to 5%. Consider such a house that sells 5% over its true price. Empirically we observe
that a single new house sale acts as a peer sale for 25 houses on average, but it may act as peer
sale for up to 500 houses. Assuming a house has four peers, the average peer price p; for up to
500 houses increases by 1.25%. Since every 1% increase in p; corresponds to 0.66-0.83% increase
in Zestimate, this is equivalent to a Zestimate increase of 0.82 to 1% (0.66*1.25 to 0.83*1.25%)
for up to 500 houses. This would be a significant artificial price inflation originating from a

Zestimate error on a single house. This Feedback is intensified if market participants over rely on



Zestimate. In Section 2, we describe under estimation of ML errors as a key driver of over reliance.
If Zestimate has large errors, but Zillow underestimates these errors and projects high level of

confidence, the error amplification via the confounded feedback is more intense.

Price
Error

|2 — Py
Zx

Projected

Mar 2019 ' ' ' ' Feb 2020
Months

Figure 9: Actual monthly average error between Zestimate and sale price for houses sold between March
2019 and Feb 2020. Projected error refers to monthly average of Zillow’s estimate of likely error for the
same houses before the houses go on the market.

Figure 9 provides monthly average of error between Zestimate available before a house goes on
the market and its eventual sale price. This “actual” error is inclusive of any confounding since

III

Zestimate is likely to pull the sale prices closer to itself. One would expect this “actual” error to
be the lower bound on the unconfounded error. Figure 9 also provides Zillow’s own estimate of
likely error in its Zestimate for the same set of houses before the houses go on the market. On a
cursory look, Zestimate error appears to be significantly under estimated by Zillow. But its worth
noting that Zillow doesn’t provide the exact formula behind its error estimate. For example, it
simply says that sale price of a house is likely to be within +7% of Zestimate $200,000. Figure 9
simply plots the confidence interval (e.g., 7%) averaged over all houses that sold in a given month.
Nevertheless, its important to note that Zillow likely performed an upgrade of its confidence
interval calculations in July-August 2019. Its projected confidence went down from £8% to +11%

I"

on an average!l. Since its “actual” error have been declining, its very likely that confidence

interval or equivalently projection of its Zestimate error in the first of half of 2019 were

11 Zillow also reported [17] median errors for houses in Boston and Pittsburgh as 7.4% and 12% respectively. These
numbers also appear to be optimistic or underestimated for what is empirically observed.



underestimated. Since Zillow’s algorithm is opaque, these empirical observation are purely a

conjecture.

6. Conclusion

We expect ML price with its costless accessibility, perceived impartiality and high reported
accuracy to have significant influence on housing market participants. An average 15% reliance,
and up to 50% reliance in some sub markets, on ML price empirically validates this hypothesis.
We also expect ML to learn accurate pricing from modeling large amounts of historical data.
But in contrast to this conventional wisdom, we find that ML pricing can be myopic and “self
fulfilling”. ML price of a house is largely a derivative of sale prices of 4-5 peer houses. A single
sale can contribute 10% in ML price for up to 500 peer houses. Further, ML platform may
systematically under estimates its own error. Using these primitives we propose a theoretical
model of ML Feedback Loop. We formulate equilibrium level of ML error estimate, reliance on
ML and resulting expected payoff for the participants. We identify condition where participants
can be worse off after introduction of ML. A low complexity ML model is more robust under the
confounded Feedback Loop. A “self-sufficient” market can efficiently resolve disagreement in

participant private valuations, but it is more likely to be worse off after introduction of ML.

We anticipate two significant lines of enquiry in follow up to this paper. First, a solution to the
Feedback Loop that deals with the statistical challenge as well as the problem of mis-aligned ML
platform incentives to sacrifice revenue in favor of any correction procedure. Second, a full
structural estimation of utility and payoff for heterogeneous market participants. In particular,
distinguishing payoffs for participants heterogeneous in ability to accurately price and patience
to spend time in the market can be particularly informative. Prior to introduction of ML, the
housing market is characterized by — long time to sale, large participation costs, and high
variance in valuations. This benefits participants that are willing to patiently spend time in the
market but keeps out participants with high ability to accurately price. The latter category of
participants prefer to utilize their superior pricing ability at transacting higher level financial

instruments e.g., REITs, securitized home loans. Introduction of ML changes market



characteristics to — shorter time to sale, lower perceived participation costs, and high bias in

valuation. This encourages entry of participants with high ability to accurately price. While one

expects ML pricing to level the playing field across participants with different ability to price, in

fact it may increase the disparity. Naturally, this is a conjecture that requires future work.
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Appendix

A.1 Performative Stability

We follow Perdomo et al (2020) to identify convergence properties of the ML Feedback Loop in
the housing market. The Machine Learning model 8 = [ZL__J,O'ZZ] induces a joint distribution D
over covariates'? and outcome variable y = (ji, px)- The model 6 is evaluated over resulting
distribution D () via a loss function I(y; 8). A model 85 is performatively stable if it minimizes
risk over the distribution D(6pg) imposed by itself. In practice, ML model is iteratively updated
(6; = 6;,1) with repeated empirical risk minimization (RERM) using n; samples drawn from
D(6,) at iteration t. We want to understand convergence to performative stable 85 using
RERM. We need to loss [(y; 8) to be “nicely” behaved and the distribution D(6) induced by the
ML model 8 to be sufficiently insensitive to changes in the ML model 8. More formally we
check whether I(y; 8) is S-jointly smooth and y-strongly convex, and whether D(6) is e-
sensitive with e < y/20.

2
l(y;0) = l(jk;pk;zl,...,]' Uzz) = (Pk - ij)z + ((Pk - Z};)Z - Uzz)

Opc = argmin E I(y;0
PS ge y~D(8) (v; 6)

0 = argmin E I(y; 0
t+1 ga Y~DE(6y) (v; 6)

B-jointly smooth enforces a strong form of continuity such that I[(y; 8) changes slowly both in y

and 6. This is satisfied for all § > 2.

|1961(y; ) = Vol(y; 61|, < Bllo - 6'l], v6,6'€0

2 2
= 4( (z, — z,')" + (02 — 0" 2) < B2 ((zl —z)++(z—2') + (62— 02 2)

12 The probability distribution over covariates is independent of ML model in our case. We made an implicit
assumption that the ML model imposes a shift in sale price, but does not impose any change in sample of houses
that go on the market in any given period. In practice, houses with high accuracy ML model may be more likely to
go on the market.



=>p=>2

[1V61(y;0) = Vol (YOI, < Blly = ¥'ll, Vy,y' €Y
= 4(pr —vi)? < B*(px — pi')?
>p=2

y-strongly convexity extends strict convexity of [(y; 8). This is satisfied for all y < 2.

I(y;6) = 1(y;6") + Vgl(y;6)7(6 — 6") + (v/2)|l6 — 6'1
= (pk - ij)z = (pk - ij,)z + 2(pk - ij,)(zjk - ij’) + (y/z)(zjk - ijl)z

= (p — ij)z > (px — ij)z + /2 - D(z, - ka’)z
>0=>y/2-1
>y<2

e-sensitivity checks if the earth mover distance (Wasserstein-1) between probability
distributions D induced by two different models 8 and 8’ is sufficiently small. Specifically, €
must be less than y /2 . Using maximum and minimum values of y and [ respectively, y /28 <
0.5. Thus we need € < 0.5, which is satisfied for (1 — @) < € and g, < €. This corresponds low

reliance and small errors in an ML predictions respectively.

W1 (DG, Pi; 0), Do i; 07)) < €16 = 6l
where D(ji, pi; 0) = (1/DZ¢(px — avy — (1 — a)z;, o)

= ||(a —a v+ (1 —a)zj— (1 - a’)z’j||2 <e€ ||[le"],022] — [2'1...],0'§]| ,

= ||(1 —a)(z — z’j)||2 <e ||Z1...1 - Z’1...]||2 and ||(a —a") (v — zj)||2 < €llo? - a’§||2

> (1—-—a)<eandog, <e€

Under “nicely” behaved loss [(y; ) and sufficiently insensitive distribution D(6) RERM
initialized at 8, converges within radius 6 of stable point 8,5 using n, samples at iteration t

with probability 1 — p.

||9t - 9Ps||2 <é

where



-1

1 2 160 — Ops
nt=0<(66)mlog(t/p)) ; tZ(l—%’B) log<%)

A.2 Payoff Calculation

In Section 2, we motivated valuation error and sale price error as drivers of participants payoff
I1. Now we provide an approach to empirically estimate payoff as a function of heterogeneous
participant characteristics and ML signal. This will answer — what type of participant are better

off after introduction of ML, and under different ML settings.

A house listed for sale on the market receives offers from prospective buyers every week. The
best offer for house k in week T is (uy + ey ;). Here e, .~N (0, o) reflects noise in arrival of
offers and heterogeneity in buyer preferences. A seller k starts with a belief N(u}, 00) at week
T = 0 about the best offer (1, + e ;) they will receive if their house listed for sale on the
market. After spending T weeks in the market, the seller updates their belief to N(ug, a¢). The
more weeks they spend in the market the closer their belief gets to actual average offer u; —
Ui and a¢ — og. Hypothetically, if all buyers and sellers had perfectly matching valuations

(0§ = og = 0, ui, = py) then every house would be listed at I o = p;, and sell instantaneously.
In practice, noisy valuations mean that market participants act cautiously to protect themselves
from erratic decisions. For example, sellers (buyers) enter the market at a high list price (low
offer price), they prefer to cautiously lower the list price once they observe low offers from
buyers. Thus they incur the cost of keeping the house on market for longer in order to resolve

their valuation noise.

Offer Parameter Estimates: For every house on market, we observe house characteristics, list
price and whether or not the week 7 ends in a sale completion (X, [, ;, saley ;), until the
sequence terminates in a sale or exit from the market. Observed sale or no sale outcome
saley ; at week 7 reveals the underlying offer distribution parameterized by /i) and (63)]-. We
assume dp to be a constant in a submarket j e.g., 1000-2000 sqft single family homes in

Shadyside neighborhood of Allegheny county. Note that individual buyers valuations and



willingness to offer may evolve as they spend time in the market. But, we can not discern
behavior and dynamics of an individual buyer. Therefore we only model offers drawn from a
stationary distribution that is a combination of a crowd of buyers at different stage of their

search process.

Listing Choice Parameter Estimates: The seller chooses list price [}, ; to maximize their lifetime
value V(S) = V({uﬁ, as, lk,r}; oB,rl, oMC) which is a function of state {,u};, as, lk,T}, variance
in offers (oB), fixed costs (e.g., outside option of rental income rI;,, on market cost oM(), and
discount factor. Observed sequence I ; reveals - seller beliefs N(@?, 69), costs (11, oMC),

lifetime value ¥ and optimal listing policy CCP(a/S) = CCP(lxv41/{1k, 0%, L })-

Buyer and Seller Sensitivity to ML Signal: Introduction of ML signal (z, g,) has two main effects,

a. W (2), 1ud(z): ML price shifts both buyer offers i, (z) and seller belief up (z).

b. 0f(0,),05(0,): Asmall ML noise g, lowers seller uncertainty o and variance in buyer
offers 8. The latter indirectly helps the seller quickly alleviate their uncertainty (6 — ap).

Using the estimates fiy, iy, (65), (6p) j we can identify the sensitivity to ML signals (z, d;).

Market Data
Ik,t! Salek‘t, Xk

i l

Offer Estimates Listing Estimates
fire, (Gg)j i ﬁg,(ﬁgc')j,rlk,oMC
Buyer Model Seller Model
.ak(zkaaz):a-s (Jz) ﬁg(zkﬂz), 6-_8(62)
| |::> Seller Pavoff Distribution
' ~M(o,, 0, vl )
ML

zg~N (U, 07)
Oz Oy




Figure 10:Market Data is used to estimate Offer Parameters and then Listing Choice Parameters. Then
Buyer (fiy, 6g) and Seller (/22, 39) parameter sensitivity with ML Signal (z,, 6,) is identified. Finally
seller’s payoff distribution (n*~Il(a,, 0,", 11} )) is approximated using monte carlo simulations.

Payoff: The seller enters the market with an expected lifetime value V (S) and follows policy
CCP(a/S) to maximize this payoff. But both V computation and CCP policy rely on ML signal
noise g, presented by the ML platform. Therefore IV and CCP are erroneous if the true
unconfounded ML signal noise g, > g,. We (econometrician) want to infer the actual seller
payoffs as a function of ML noise underestimation (o, — a,). The inference can be performed
using structural estimates described earlier and Monte Carlo simulations over stochastic

measures as follows,

[1] ue~N (e, o)) 5 2~N(uy; 0,%)
[2] E[ﬁ;(co)] = E[ﬁ;(co)(#k;z)]; e = i (e, 2)

B 67 = 65(0,) i G5 = G5(,)
41 ag~N (E|a]. 6% (o, = 0))

[5] m*~marketSim(CCP, 19, i, asgo), og,7l)

Note that in market simulation to calculate payoff outcomes ¥, we use seller’s policy
CCP(a/S) which is optimal for his computation of lifetime value V, even if it is suboptimal with

respect to true lifetime payoff know to us (econometrician).

The inference yields a probability density function over possible payoff outcomes

n~Il(o,, 0,%, rI). This payoff density function captures both payoff expectation E[r] and
variance Var(m). We expect introduction of ML price to have two main effects - increases E[]
via lowered (005, 08) and a stretched out Var(m) due to large o, but underestimated o,. A large
Var(m) is akin to the seller gambling on a coin toss, instead of a deterministic payoff. This
would be undesirable to a risk averse seller. We can use payoff density functions IT under

counterfactual (g,, 0, rI) settings to answer following questions — (i) How much does a seller



gain after introduction of ML? (ii) Under what conditions (g, < a,") is a seller worse off after
introduction of ML? (iii) How do the gains differ for patient (high outside rental income) and
impatient (low outside rental income) seller? (iv) How do the gains differ for risk neutral (E[m])

and risk averse (E[m] — A *x Var(m)) seller? (v) How do the gains differ for seller who has

accurate valuation (/,t,(co) ~ Uy, €.8. using high quality agents) and sellers who has noisy

valuation.

A.3 Proxy Peer Sales Model

Zillow reports a set of 4 or 5 peer house sales alongside Zestimate of every house. We attempt
to reverse engineer the choice of these peer sales. We use isPeer; ;. = {0,1} to represent if
house sale j is tagged as a peer sale of house i at time snapshot t. Given the characteristics of
house i and j, we want to predict if the pair would be tagged as peers. We analyze 1346 houses
(i € [1,1346]) in Allegheny county, each observed over 7 time snapshots. In Allegheny county,
we have approximately 1400 house sales (j € [1,1400]) in Allegheny county that form candidate
peer set for every house. Out of 1400 candidates only 4-5 houses are selected as peer sales for

each house.

Probability

0.00 0.25 0.50 100 125 150 L 0.6 08 10 12 14 16 18 20
Distance between Focal and Peer House Floor Size ratio between Focal and Peer House
(0 to 2 km) (0.5t0 2)

Figure 11: Probability distribution of (Left) geographical distance and (Right) floor size ratio between
focal and peer sales. The distribution are empirically calculated using Zillow’s reported peer sales for
houses in Zip Codes (15210, 15212, 15235) between March and August 2019.

We infer from simple descriptive analysis that a house has a very high likelihood of being

tagged as a peer (isPeer; j = 1) if — (i) sold within past 12 months, (ii) it is within 2 km of the



focal house and (iii) it has a floor size that is no less then half and no more than double of the

focal house.

P(isPeer;j, = 1) = (t — saleTime; < 12months) x (Dist; ; < 2kms)

floorSize; > 1

X105 <—7—"7— PRI
< floorSize; 1+ exp(—}’ijt)

where

B +ﬁ Dist +ﬁ (Z Cod ZinCod )+[)) b <l (fZOOT'SiZGj>>
ijt o T P1ltsty; + b j g 3 g floorSize;

+ﬁ4abs(bedroomsj - bedroomsi) + Bsabs(bathroomsj - bathroomsi)

To further predict isPeer; j , among houses that satisfy the three criterion above, we use a simple
logistic regression model using — distance between house i and j, binary indicator whether the
two houses are in the same zipcode, ratio of floor sizes, absolute difference of number of
bedrooms and bathrooms. As expected, Table 9 reports that houses in close geographical vicinity
(distance and zip code) and similar house features (size, bedrooms, bathrooms) are more likely
to be peers. An accuracy of 98.7% and an F1 score of 0.32 (compared with F1 score of 0.02 for a

random model) suggest that our predictive model is able to successfully pick out peers of a house.

Table 8: (Top) Confusion Matrix and classification evaluation metrics (TPR, FPR, Accuracy, F1 Score) for
the peer prediction model. (Bottom) The logistic regression components y; ;. within the overall predictive

model.
Actual True Positive Rate | 80%
Confusion Matrix —

Peer | Not a Peer False Positive Rate | 1.14%

. Peer 4 16 Precision 20%

Predicted

Not a Peer 1 1379 Accuracy 98.7%

F1 Score 0.32

Table 9: Model of whether a house, which satisfies sale time within 12 months, distance within 2 km and
floor area between 0.5 to 2 times of focal house, is a peer to the focal house.
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Peer Match

oLs logistic
(1) (2)
Peer Distance -8.@98*** -3.716%%*
(9.0003) (e.016)
Peer Floor Ratio -8.069*** -3.049%%*
(e.e01) (e.e38)
Peer Bedrooms Diff -8.010%** -8.425%%*
(0.2002) (0.010)
Peer Bathrooms Diff -0.017%** -8.822%%*
(9.0002) (e.010)
Peer ZipCode Match 9.008*+* .813
(0.0004) (e.019)
Constant @.179%** @.756***
(e.e01) (2.022)
Observations 1,383,795 1,383,795
R2 8.e86
Adjusted R2 8.e86
Log Likelihood -136,567.208
Akaike Inf. Crit. 273,146.5080
Residual Std. Error 8.172 (df = 1383789)
F Statistic 26,137.13@*** (df = 5; 138B3789)
Note: *p<B.1; **p<0.85; ***p<0.01

A.4 Proxy Zestimate Model

Ziy = Po+ b1 (1_9]-)” Tt €
We propose a very simple and interpretable proxy metric for approximating the Zestimate of a
house as - an average of peer sale prices p;. Table 10 Model 1 reports that this simple proxy
metric explains close to 96% variation in the actual Zestimate. While we are aware that the actual
Zestimate model may be significantly more sophisticated, the extremely high out of sample
explanatory power (R? =~ 0.96) suggest that a big chunk of the full model is driven by information
contained in peer sales. We iterate over various alternative predictors — (i) weighted (instead of
unweighted) average of peer sale prices, (ii) House Features X;, (iii) Location (Neighborhood,

ZipCode, County) fixed effects, (iv) Time fixed effects, (v) Tax Estimate. We first describe the

various peer sale weighting strategies and then the remaining predictors.

Table 10: Model of Zestimate using average peer sale price, weighted peer sale prices, average peer floor
size, average peer list price and county tax estimate.
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Zestimate

Avg. Peer Sale Price 1.858%++ 1.848* 1.842%+% B.77a%+*
(8.002) (0.002) (@.802) (8.087)
Time Since Sale Weight 9.934%+¢ 1.@15%+
(0.142) (0.136)
Peer Distance Weight -1.395 -1.186%%*
(0.137) (@.132)
Peer Floor Ratio Weight -8.908 -1.@65%%*
(9.095) (e.091)
Avg. Peer Time Since Sale -323.955%++
(64.591)
Avg. Peer Floor Size 12.474%%+
(8.543)
Avg. Peer List Price -g.883
(8.804)
Tax Estimate B.268%%*
(8.885)
Constant -5,916.929%++ -5,751.926%++ -3,907.004t++ -3,517.14@%++
(372.910) (368.627) (422.500) (307.487)
Observations 9,383 9,383 9,366 9,283
R2 @.058 9.959 2.963 8.973
Adjusted R2 @.958 0.959 8.963 8.973
Residual Std. Error 12,730.448 (df = 9381) 12,578.420 (df = 9378) 12,816.53@ (df = 9353) 10,240.538 (df = 9199)

F Statistic

214,093.800*** (df = 1; 9381) 54,882.648%** (df = 4; 9378) 40,188.470*** (df

6; 9359) 1@9,863,788*** (df = 3; 9199)

Note:

*p<@.1; **p<0.085; ***p<o.0l

ze =Po+ B (B) + B2 (= (5), ) * Tk + e

2] )

We test if deviation of a peer sale price p, from average peer sale price p; weighted by Wy, has

a significant correlation with Zestimate z; .. We investigate following peer weighting,

= Dist;; : A house closer to the focal house should have a higher weight

= abs(log(floorSize, /floorSize;)) : A house with floor size

closer to the focal house should have a higher weight in determining focal house Zestimate.

Time since sale: w;,; = (t — saleTimey,) : A house sold more recently should have a higher

e Peer Distance Wl-(kl)
in determining focal house Zestimate.
e Peer Floor Size Ratio Wl-(kz)
o (3)
weight in determining focal house Zestimate.
®

Degree of Peer Independence : A house which contains more independent (and less
correlated information) should have a higher weight in determining focal house Zestimate.
Consider a focal house i, and its peers given by S(i). House k € S(i) is one of these peer
houses. Houses S(i) — k are the remaining peer houses. S(k) are peer houses that
determined Zestimate of house k when it was listed in the market. Similarly, S(S(i) — k) are
peer houses that determined Zestimate of houses S(i) — k when they was listed in the

market.
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)

0 Wy~ = Zjesi)Distix/IS(D)]: Ahouse k that is farther away from all other peers (S(i) —

k) of the focal house i adds more independent information. It should have a higher weight

in determining focal house Zestimate.

o Wi(,f) : A house k which is peer for other peers of the focal house k € S(S(i) — k) adds

less independent information. It should have a lower weight in determining focal house

Zestimate.

o wi(,f) : A house for whom other peers of focal house acted as peers (S(i) — kN S(k) #

¢) adds less independent information. It should have a lower weight in determining focal

house Zestimate.

0 Wi(k7): A house whose peers intersect with peers of other peers of focal house (S(S(i) —

k) nS(k) # ¢) adds less independent information and it should have a lower weight in

determining focal house Zestimate

Table 11: Model of Zestimate using different weighted peer sale prices.

Zestimate
(1) (2) (3)
Avg. Peer Sale Price 1.851*** 1.859%** 1.839**++*
(8.801) (e.201) (8.882)
Peer Sale Price Deviation -8.888 -g.804 -8.822
(8.004) (0.288) (8.172)
Peer Price Dey*Peer Distance 8.933%**
(e.004)
Peer Price Dev*Peer Floor Ratio @.119%**
(@.827)
Peer Price Dev*Time Since Sale -9.e@o***
(e.ee1)
Peer Price Dev:Ind wl e.e18*
(8.811)
Peer Price Dev:Ind w2 -9.888
(8.172)
Peer Price Dev:Ind w3 8.867
(8.173)
Peer Price Dev:Ind w4 ©.133
(8.124)
Constant -6,152.34]1%** -6,692.196%** -4,586.921%%*
(160.929) (185.685) (1,705.838)
Observations 46,735 46,735 18,609
R2 8.961 8.961 8.961
Adjusted R2 @.961 8.961 @.961
Residual Std. Error 12,233.420 (df = 46732) 12,184.870 (df = 46726) 11,954.88@8 (df = 18598)
F Statistic 575,691.000*** (df = 2; 46732) 145,139.200%*** (df = 8; 46726) 26,283.850*** (df = 18; 10598)

We find the wi(klt),w.(z) wi(,ft) to be statistically significant. A peer sale 2 km from focal house is

ikt’

weighted 6.8% more then an adjacent peer sale. A peer sale with double or half the floor size of
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the focal house is weighted 8.6% more then a peer sale of same size. A peer sale 12 months from
present is weighted 11% less then a peer sale in the current month. We use Wy, =

[W(l) @ .3

ikt » Wikt » Wikt | in @ Kernel regression to predict Zestimate of the focal house.

5. _ Zibi * KCo — x5 6) _
bt 2 K (xp — x5 6) '
5 =[0.32,1.6,0.042]

K(xy — x;;6) = exp(=6 W)

Table 11:Alternative Models and features to predict Zestimate

Features Out of Sample R?
Linear Model | Support Vector Model
Average Peer Sale Price only | 96.15 95.97
+ Kernel Weights 96.59 96.61
+ All other covariates 96.79 97.34

We find that additional features (House Features, Location fixed effects, Time fixed effects, and
Tax Estimate do no contain significant Zestimate explanatory power on their own. Table 11 shows
that all these features and weighted peer sale price add very little to the explanatory power when

used alongside the simple average peer sale price p; metric.
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Figure 12: (Top) A zoom in view of 1.5 km radius around the focal house. Each of the five peer houses
(1,2,3,4,5 blue X) had a Zestimate when they were on market. Those Zestimate were determine by their
own set of peers (a,b,...,h,i red ).
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Figure 13: (Left) Zestimate for the focal house depends on sale price of peers house 1, 2, ... etc. The
sale price of peer house 1 depends on the zestimate received by house 1. This zestimate in turn
depends on sale price of its peers house a, b, ... etc. (Right) Zestimate for the focal house depends on
sale price of peers house 1, 2, ... etc. But house 1 and house 2 sale prices are not independent signals.
House 1 drives Zestimate of House 2 and House a drives Zestimates of both house 1 and house 2.
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Figure 14: Two groups classified on positive error (z{ > 1%) and negative error (z{ < —1%) for

propensity score model of Zestimate impact on List and Sale Prices.

Table 12: Percentage Standardized Bias for all matching covariates before and after matching for

propensity score model of Zestimate impact on List and Sale Prices

Covariate Post Bias | Pre Bias Covariate Post Bias | Pre Bias
Z (post algorithm update) -0.01 -11.01 RoofType (Composition) -0.37 -15.98
Abs(Z Error) 4.46 -32.65 RoofType (Shake/Shingle) -1.53 7.91
Last Remodel Year 2.3 -9.65 RoofType (Asphalt) -0.48 3.2
Solar Potential -0.14 -1.96 StructureType (Unreported) 0.32 -12.6
Lot Size 0.03 -3.74 StructureType (Other) -0.06 9.57
Bedrooms 0.24 -14.34 StructureType (Colonial) -0.86 6.04
Month of Listing -1.49 9.48 Flooring (Other) 1.1 -8.43
Number of stories -0.35 4.45 Flooring (Unreported) -0.42 13.18
Parking 2.41 -21.85 Flooring (Hardwood) -1.04 3.47
Bathrooms 0.87 -16.45 Patio (Unreported) -1.05 17.26
Year Built 0.74 -19.24 Patio (Porch, Patio) -1.44 -11.05
Floor Size 0.93 -18.27 Patio (Other) 0.68 -2.12
Zipcode (15237) 0.87 3.32 ExMaterial (Brick) -0.83 6.74
Zipcode (78704) -0.95 -7.87 ExMaterial (Unreported) -0.4 -1.22
Zipcode (78745) 0.64 3.01 ExMaterial (Other) -0.66 -1.16
County (Travis) -0.26 -19.4 Type (Single Family) 0.18 -13.89
County (Allegheny County) -2.25 11.21 Type (Condo) 0.47 12.38
County (Suffolk) 2.47 16.8 Type (Multi Family) -0.34 3.28
Nbrhood (South Boston) 1.95 8.76

Nbrhood (Other) 0.16 3.08




Table 13: Descriptive Statistics for key house features, Zestimate, List and Sale Prices for propensity score
model of Zestimate impact on List and Sale Prices

Variable Mean Std. Dev | Min Max

Z (pre algorithm update) 433737.6 | 393379.4 25065 | 8244491
Z (post algorithm update) 433321.7 | 382211.1 21226 | 7911868
ZError % 0.109 0.09 -20 20
Z Confidence Interval % 17.3 10.34 10 130
Sale Price 387602.5 | 376852.3 13000 | 4950000
List Price 438729.8 390021 4800 | 6675000
Markup % 1.08 0.12 -9.55 22.5
Time to Sale 27.8 47.94 1 350
Floor Size 1768.6 831.3 293 6000
Year Built 1961 37.56 1799 2019
Bathrooms 2.3 0.96 1 14
Bedrooms 3.1 1.2 1 12
Parking 156.6 220.55 0 995
Lot 4396.4 | 5113.88 293 9000
Stories 1.9 2.39 0 25
Last Remodel Year 1973.2 39.91 0 2019
Solar Potential 73 25.47 0 95.66

Figure 14: Four groups classified on no change, 0-5% change, 5-10% change and 10-15% change in
average peer sale price for propensity score model for impact of average peer sale price change on
Zestimate.

100 4~

Control Group: Zero Change

L

60

Treatment Group 1
0-5% Change

Percentage of Houses

Treatment Group 2
5-10% Change

Treatment Group 3
10-15% Change

MR 1Y 1T EP P

0d— L
0.000 0023 0.030 0073 0.100 0123 0130 0173 0200

Peer Sale Price Change

42



Table 14: Descriptive Statistics for key house features, Zestimate, List and Sale Prices for propensity score
model for impact of average peer sale price change on Zestimate.

Variable Mean Std. Dev | Min Max

Z(t1) 155351.5667 | 61937.24 14716 653757
Z(t2) 155461.1689 | 62407.52 14716 657858
Z change % 0.004 3.88 -45 54.1
Peer Sale Price (t1) 153689.7778 | 57805.42 13704 481000
Peer Sale Price (t2) 153742.7283 | 58189.89 13704 481000
Peer Sale Price change % -0.04 5.38 -59.2 97.1
Peer List Price (t1) 155413.3021 | 66661.28 | 21459.9 617000
Peer List Price (t2) 155219.6595 | 66456.15 | 21459.9 617000
Peer List Price change % -0.136 9.78 -42.2 42
Tax Estimate (t1) 151884.0816 | 65303.19 10427 649119
Tax Estimate (t2) 152919.8321 | 65688.55 10427 649119
Tax Estimate change % -0.67 0.72 -1.2 4
Floor Size 1583.139891 | 460.4352 828 3840
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Figure 15: (Left) Histogram of propensity score for treatment and control groups before and after PSM.
(Right) Percentage Standardized Bias for matching covariates before (dark) and after (light) PSM for
impact of average peer sale price change on Zestimate

Table 15: Treatment and Control statistics before and after PSM. A Rubin’s R between 0.5-2.0 and a
Rubin’s B less than 25 indicate a good match.

Statistic Before Matching After Matching
Mean % Std. Bias 15.24% 2.88%

Rubin’s R 1.68 1.00

Rubin’s B 93.44% 0.14%
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Table 16: Percentage Standardized Bias for all matching covariates before and after matching.

Covariate Post Bias Pre Bias

Z (t1) 2.16 -7.09
Avg. Peer Sale Price (t1) 3.99 -9.36
Tax Estimate (t1) 3.59 -3.35
Change in Tax Estimate 3.02 53.11
Avg. Peer List Price (t1) 3.17 6.34
Change avg. in Peer List Price 0.16 19.29
Floor Size 3.27 -2.66
Neighborhood (others) -2.77 453
Neighborhood (BrightonHeights) 3.73 0.8
Neighborhood (Carrick) -1.25 -8.4
Time FE (6) 3.94 -3.97
Time FE (3) -2.24 -25.46
Time FE (7) -6.71 -61.37
Zipcode (15235) -1.96 16.05
Zipcode (15212) 3.1 -10.45
Zipcode (15210) -1.02 -11.58
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