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ABSTRACT

Essays on Credit Frictions, Market Expansion, and Strategic Team Production

by

Benjamin Tengelsen

Chair: Sevin Yeltekin

The first chapter, jointly authored with Nicolas Petrosky-Nadeau and Etienne Wasmer,

studies the relationship between credit markets and labor markets over the business cycle.

We explicitly categorize US quarters between 1953 and 2017 as being “recession”, “normal”,

or “expansion” based on the deviation of unemployment from its long-run trends. We then

examine how various credit-market measures correlate with unemployment in the following

quarters. We find changes in the credit market have correlations with future unemployment

that vary dramatically with the initial state of the economy. We then show that the same

patterns of state-dependency exist in a model with search-frictional credit and labor markets.

After calibrating the model to match key labor and credit-market moments, we estimate

impulse response functions and find the impact of any adverse shock on unemployment to

be meaningful only under certain initial conditions. We also find that while unemployment

is about 1.6 times more responsive to productivity shocks than credit-market shocks, the

response of the credit spread is about even between productivity and credit-market shocks.

In the second chapter, I examine several instances where the removal of geographic barri-

ers caused increased competition between formerly isolated firms, resulting in fewer firms and

a more concentrated market. Notable instances of this pattern include the US commercial
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banking industry, the US retail industry in response to the advent of e-commerce, exporting

firms following the removal of international trade barriers, and the US brewing industry

following the adoption of national television and mass advertising. I propose a theoretical

model that explicitly accounts for geographic distance and the power it grants firms to act

monopolistically within their local markets. As these geographic barriers are removed over

time, either gradually or suddenly, prices experience downward pressure from increased com-

petition and upward pressure as firms exit and surviving firms inherit larger market shares.

I also explore a range of parameter values that demonstrate nonlinear relationships between

market size and market concentration. While market concentration is generally increasing

in these settings, increased market expansion can also reduce firm output such that large

firms acquire less market share in the long-run even though the number of active firms has

decreased.

The final chapter, jointly authored with Emilio Bisetti and Ariel Zetlin-Jones, re-examines

the importance of separation between ownership and labor in team production models that

feature free riding. In such models, conventional wisdom suggests an outsider is needed to

administer incentive schemes that do not balance the budget. We analyze the ability of

insiders to administer such incentive schemes in a repeated team production model with free

riding when they lack commitment. Specifically, we augment a standard, repeated team

production model by endowing insiders with the ability to impose group punishments which

occur after team outcomes are observed but before the subsequent round of production.

We extend techniques from Abreu (1986) to characterize the entire set of perfect-public

equilibrium payoffs and find that insiders are capable of enforcing welfare enhancing group

punishments when they are sufficiently patient.
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CHAPTER I

Credit and Labor-Market Frictions over the Business

Cycle

1.1 Introduction

What is the relationship between credit and labor markets and how does it vary over the

business cycle? In this paper we document empirical evidence suggesting there is a strong

degree of state dependence in the relationship between fluctuations in credit-market spreads

and unemployment in the following quarters. During recessions, the estimated response of

unemployment to an increase in credit spreads is many times larger than during normal

times. This would suggest that credit-market shocks normally play a modest role in business

cycles, but are capable of playing a substantial role if the economy has already begun to

slow down.

This business cycle asymmetry arises naturally in a model with search-frictional labor

and financial markets, and we use such a model to provide an interpretable lens on our

empirical findings. In a typical search model, the probability of finding a match varies

with the relative size of the unmatched parties (e.g. unemployed individuals, firms without

creditors), which can vary significantly over the business cycle. Consequently, the impact of

an adverse shock will depend on the aggregate state of the economy and its corresponding

matching probabilities. In the case of the labor market, the magnitude of the response to
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an adverse shock is positively correlated with the unemployment rate. Similarly, the credit

market is increasingly sensitive to additional shocks when there are many unmatched firms

seeking creditors. In both cases, tighter matching markets increase the elasticity of job

creation to shocks. The asymmetric effect of shocks in this economy can thus originate in

either the labor or credit market, as well as both simultaneously.

The model builds on Wasmer and Weil (2004) and Petrosky-Nadeau and Wasmer (2012).

Firms form matches with financial institutions in a search-frictional credit market in order to

expand productive capacity, which for simplicity we refer to as a job. Financial institutions

provide funds to a firm when the job is open and searching for a worker in the search frictional

labor market, and receive a share of the profit flow generated when the job is filled. Prices

in the credit and labor market are determined by Nash bargaining. The model nests the

canonical Diamond-Mortensen-Pissarides (DMP) as a special case when the credit market is

removed.

We consider two sources of business cycle fluctuations, shocks to labor productivity and

shocks to the cost of credit-market search for financial institutions. Productivity shocks

affect firms directly as part of the production function. Credit-market shocks affect the effort

financial institutions put into searching in the financial market. An adverse shock reduces a

financial institution’s search effort, making it harder for the firm to increase its production

capacity. Moreover, a negative shock increases the value of the financial institution’s outside

option in bargaining with the firm over the repayment. This further squeezes profits away

from the firm, depressing job creation and making the economy more vulnerable to additional

shocks.

The dynamic properties of the model are first illustrated by its ability to match a collec-

tion of state-dependent moments. We attempt a novel calibration strategy in which moments

are computed for recessions and normal periods, and the model parameters are tuned until

the model simulations match volatility moments in both states. The model’s state-dependent

properties are also evident through its theoretical impulse responses to productivity and
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credit-market shocks at different initial conditions. The response of both unemployment and

the credit-spread is negligible when the adverse shocks arrive during expansionary or even

normal periods. Only when unemployment is already high and the economy is beginning

from a relatively poor position does an adverse shock cause large movements in our variables

of interest. We also find that during a period of high unemployment, unemployment is about

1.6 times more responsive to productivity shocks than credit-market shocks. The response

of the credit spread, however, is about even between productivity and credit-market shocks.

This paper follows a long line of research into the macroeconomic consequences of financial

frictions on the business cycle. Early work modeled either agency costs or problems of limited

commitment in financial markets (Bernanke et al., 1996, Kiyotaki and Moore, 1997). In

Bernanke et al., 1996 agency costs in lending relationships introduce a financial accelerator

that amplifies business cycles. House (2006) shows that, in general, models of adverse

selection in financial markets will either amplify or mitigate business cycles, depending on

whether the friction leads to insufficient or excessive investment. Collateral constraints have

been shown in some contexts to provide a powerful amplification mechanism (Cordoba and

Ripoll , 2004), especially when a fixed resource such as land serves as collateral (Liu et al.,

2013).

A more recent literature has approached modeling financial markets as search markets

(Wasmer and Weil , 2004; Lagos and Rocheteau, 2009; Petrosky-Nadeau, 2013). The model of

Section 1.3 builds on the work of Wasmer and Weil (2004) and Petrosky-Nadeau and Wasmer

(2012), which studies the business cycle dynamics of the labor market in the presence of

search-frictional labor and financial markets. Their work establishes the efficiency properties

of the model, and in particular the existence of a Hosios-type condition in the financial

market which minimizes the amplifying factor of the financial friction. This work further

develops the notion of financial institutions and casts the theory in a representative agent

environment. In addition, it introduces shocks to financial markets very much in the spirit

of Jermann and Quadrini (2012). Bai (2016) uses a Diamond-Mortensen-Pissarides with

3



defaultable debt to examine credit-spreads and finds that the model does well at matching

key properties of the credit market.

The business cycle literature notes time series asymmetries in the unemployment rate

for the U.S. in work such as Neftci (1984). Petrosky-Nadeau and Zhang (2013a) show that

the congestion externality of the matching function leads the search and matching model

of equilibrium unemployment of DMP to generates unemployment times series with deep

troughs during recessions and a degree of skewness in line with U.S. data (see also Hairault

et al., 2010). Our empirical evidence adopts the flexible framework developed by Jordà

(2005). Other research focused on the asymmetric impact of fiscal shocks, implements smooth

transition VARs (Auerbach and Gorodnichenko, 2012, 2014, Caggiano et al., 2014). However,

that approach estimates the impact of a shock under the assumption that the current state

of the economy will endure indefinitely. In the approach we follow, the future impact of a

shock accounts for the most likely state of the economy following its initial regime.

Section 1.2 presents the empirical evidence on the effects of credit-market shocks over the

business cycle. Section 1.3 develops the model of the macroeconomy with search-frictional

labor and financial markets, while the quantitative results are in Section 1.4. Section 1.5

concludes.

1.2 Credit-market shocks over the business cycle

We first show the asymmetry of the relationship between credit and labor markets over

the business cycle within a simple regression framework. Specifically, we use credit market

data, unemployment, and indicator variables for the aggregate state of the economy to

estimate the response of unemployment to a change in credit market conditions. As shown

in Jordà (2005), the coefficients of this regression trace out an empirical impulse response

function as the forecast horizon is extended. Moreover, with this framework we can compute

the impulse responses of unemployment conditional on the initial state of the economy.
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Figure 1.1: Time Series of Unemployment and Credit Spreads∗
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∗Grey areas indicate NBER recessions. GZ spread is obtained from
Gilchrist and Zakraǰsek (2012) and is a composite of a broad range of
outstanding senior unsecured bonds. BAA is an investment bond that
acts as an index for all bonds given a BAA rating by Moody’s Investor
Service.

1.2.1 Data and Econometric Framework

Our economic outcome of interest is the unemployment rate U . All time series are at

a quarterly frequency. We use two data sources for measuring credit-market conditions,

the spread between BAA corporate bonds and 10 year treasury notes and the Gilchrist and

Zakraǰsek (2012) “GZ credit spread.”1 The BAA-10 Year spread is especially appropriate to

consider in relation to unemployment, as it compensates for default risk in addition to non-

default factors such as liquidity risk which correlate less with unemployment (Bai (2016)).

Both credit-market series are plotted along side the unemployment rate over the period

1The GZ spread is constructed using micro-data on a broad range of corporate bonds, and is a better
predictor of changes in the real economy than other popular corporate bond spreads. Gilchrist and Zakraǰsek
(2012) show the GZ spread to be useful in forecasting unemployment over short horizons. Our forecasts differ
from theirs in that we include variables that allow for business cycle asymmetries.
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1953:II to 2017:I in Figure 1.1.2 Data for the GZ spread are only available from 1973:II to

2017:IV. Grey, shaded, areas indicate NBER recessions dates.

The BAA spread and unemployment track each other closely with a correlation coeffi-

cient of 0.57. Generally speaking, both series demonstrate sharp increases during economic

downturns and demonstrate markedly less volatility during normal times. The GZ spread

also spikes during recessions along with the unemployment rate, but does not measure a

strong statistical correlation with unemployment. The contemporaneous correlation coeffi-

cient between the two series is .01.

In order to measure the correlation between changes in the credit market to subsequent

changes in the unemployment rate, we estimate the following regression:

Ut+h = β0 + βR(L)Rt + βD(L)Dt + βDR(L)DRt + βX(L)Xt + εt+h. (1.1)

The dependent variable, Ut+h, is the h-step-ahead forecast of the U.S. unemployment rate

with h > 0. On the right hand side, the Rt is a measure of credit-market activity, and Dt is

a matrix of dummy variables indicating whether the economy is in a period of high, normal,

or low unemployment. We refer to these periods, respectively, as “recession”, “normal”, and

“expansion” states of the economy. Specifically, Dt includes two dummy variables DEXP and

DREC to indicate whether the economy is in an expansion or a recession. The normal state

occurs when DEXP and DREC are both zero. For ease of interpretation, we prefer to interact

our credit-market variable with a small number of discrete states rather than a continuous

variable, but similar results are obtained. These interaction terms are contained in the

matrix DRt, and are key regressors in our analysis. The coefficients on these interaction

terms indicate whether or not credit markets move symmetrically with unemployment over

the business cycle. The matrix Xt contains additional control variables and summarizes all

additional information available at time t. The lag operator denotes how many historical

2Unemployment rate for the civilian population over the age of 16, published by the Bureau of Labor
Statistics (BLS), based on the Current Population Survey (CPS).
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Figure 1.2: Discrete Economic States as Determined by First-differenced Ut
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Red shaded regions denote recessions while blue shaded regions denote
expansions. Recessions are defined to be periods where first-differenced
unemployment is above its 80th percentile. Expansions are defined
to be periods where first-differenced unemployment is below its 20th
percentile. The data range from 1953:Q3 to 2017:Q4.

values of each variable are included as additional controls. Finally, εt+h is our h-step-ahead

forecast error.

The state of the economy is determined by the a first-difference time series of unem-

ployment which we write as Ũ . The economy is said to be in a recession when Ũ exceeds

a threshold amount U . In the context of equation (1.1), DREC,t = 1 when Ũt > U . The

threshold U is chosen so that the economy is in a recession 20 percent of our sample, which

is only slightly more frequent than recessions as dated by the NBER and is consistent with

the definition of a recession as a period of rapidly increasing unemployment. Similarly, we

define a lower threshold U for expansion states, setting DEXP,t = 1 when Ũt < U . This

threshold is selected such that an expansion also occurs in 20% of periods. Figure A.1 shows

the time series for Ut with shaded regions indicating the state of the economy. Our rule of

thumb for characterizing the state of the economy captures the well-known recessions in the

post-war era. Changing U and U by small amounts (plus or minus three percentiles of Ũ)

has no substantial impact on our results.

7



Matrix Xt contains three control variables, including the period t unemployment rate, the

vacancy to unemployment ratio θt, and labor productivity xt. The time series for vacancies

is taken from Petrosky-Nadeau and Zhang (2013b). Labor productivity is measured as real

output per person for all non-farm business sectors, and is measured as a percent deviation

from a long-run trend which we identify via an HP-filter with λ = 1600. We choose the

optimal lags in each regression via the AIC and BIC selection criteria, using the smaller of

the two.

Our choice of methodology merits some comment as we depart from a frequently used

approach in measuring business cycle asymmetries. Several studies use smoothly varying

weights to indicate the state of the economy between regimes (see Auerbach and Gorod-

nichenko, 2012, 2014, Caggiano et al., 2014). However, smooth transition VARs assume the

state of the economy to be permanent, and ignore the probability that the economy moves

to another regime in the future. This assumption will obviously bias the resulting impulse

response functions. Under our approach, the regime is allowed to vary according to the

average path of the economy, moving away from an initial regime to another. This approach

is more realistic over longer horizons. Our approach, as described in Jordà, 2005, is also

more robust to erroneous specifications and handles nonlinearities with greater accuracy. 3

1.2.2 Empirical results

Equation (1.1) is estimated by ordinary least squares. The coefficients of interest, those

on Rt and its interaction terms at different forecast horizons are reported in Table 1.1. Panel

A reports the results for the BAA-10 year spread, and panel B reports the results using the

GZ spread. The coefficients can be interpreted as the level response of unemployment to a

1 point increase in the credit-market spread. The first row indicates the response when the

economy is in a “normal” state. The second and third rows report the additional impact on

3Auerbach and Gorodnichenko (2014) combine these methods by augmenting local projection regressions
with smooth transition weights. However, we prefer dummy variables for their transparency and ease of
interpretation.
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Table 1.1:
The Relationship between Credit Markets and Future Unemployment at Different
Forecast Horizons and in Different Economic States

Panel A: Credit market series R = BAA− 10 year spread
Time sample: 1953:II-2017:IV

Forecast horizon: h=1 h=3 h=6 h=9

R 0.325 ** 0.416* 0.203* 0.156
(0.128) (0.251) (0.390) (0.258)

R REC 0.190 0.440*** 0.551** 0.529
(0.148) (0.249) (0.292) (0.251)

R EXP -0.097* -0.261 -0.228 -0.039
(0.086) (0.157) (0.222) (0.263)

Constant 0.309* 0.519 0.641 0.671
(0.475) (0.995) (1.427) (1.842)

Observations 253 251 248 245

Panel B: Credit market series R = GZ spread
Time sample: 1973:I-2017:IV

Forecast horizon: h=1 h=3 h=6 h=9

R 0.282*** 0.381 0.175 0.165
(0.099) (0.244) (0.349) (0.369)

R REC 0.153 0.295 0.349 0.261
(0.120) (0.285) (0.323) (0.349)

R EXP 0.096 0.042 -0.176 -0.524
(0.115) (0.207) (0.276) (0.336)

Constant 0.276 0.155 0.653 -1.516
(0.497) (.976) (1.463) (1.655)

Observations 173 171 168 165
Standard errors in parentheses. ∗∗∗: p<0.01, ∗∗: p<0.05,: ∗ p<0.1
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unemployment when the economy is in a recession or expansion, respectively. The interaction

terms R×Drec and R×Dexp allow the relationship between unemployment and the various

credit spreads to vary depending on the state of the economy.

In normal times there is a small, positive correlation between innovations to the spread

and the unemployment rate. A unit increase in the BAA-10 year spread is associated with

a 0.33 percentage point increase in the unemployment rate the following quarter (h = 1).

The coefficients are positive for all values of the forecast horizon h, and peak in the sixth

quarter with a 0.55 percentage point increase in unemployment. The coefficients for R ×

Drec, reported in the second row, are positive for all the forecast horizons considered, and

significant for forecast horizons of 0 through 1 quarters. These coefficients suggests that

credit-market shocks matter more, or are associated with more pronounced increases in

unemployment, when they occur during recessions as opposed to normal times. The peak in

the additional reaction in unemployment to credit market shock during a recession occurs

after 6 quarters, adding 0.55 more percentage points to the unemployment rate relative to

response in normal times. This additional increase by itself is more than twice the response

of unemployment in normal times. The coefficient on the interaction term for expansions,

R × Dexp, is significant only for h = 1 and is negative, suggesting a smaller response in

unemployment during expansionary periods.

The results using the GZ spread as a measure of credit-market conditions similarly demon-

strate asymmetric responses in unemployment over the business cycle. The smaller response

from the GZ spread is expected to a degree as the GZ spread remains fairly flat up until

the mid 1990’s. Another reason to expect a lesser response from the GZ spread is that

the spread is an unweighted average of coorporate bond spreads including relatively riskless

bonds which track closely with treasuries. The BAA10YM spread, on the other hand, is

focused only on relatively risky busineses which are more likely to fail during an economic

downturn. The response from a GZ shock occurring in normal times peaks at 3 quarters

but loses statistical significance after 2 quarters. A shock during a recession, however, has
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Figure 1.3: Estimated Response of Ut to a Unit Increase in BAA10YM Spread
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a response that is statistically greater than zero for over 10 quarters. At h=3, the total

response is over 75% larger in a recession than in normal times. At this forecast horizon, a

unit increase in the GZ spread leads to a .67 percentage point increase in unemployment.

The coefficients estimated from (1.1) allow us to trace out the impulse response of un-

employment to an innovation in the credit-market spread (see Jordà, 2005). The effects of

a unit increase in the BAA-10 year spread on the unemployment rate are plotted in Figure

1.3 under two different scenarios. In the first case, the blue line, the economy is in a normal

phase of the business cycle when the innovation occurs. In the second, the effects of the

innovation to the spread when the economy is already in a recession are plotted in Figure

1.3 as the red line. When considering the BAA-10 year spread, the response of the unem-

ployment rate in the period of the innovation in normal times is consistently less than when

the economy is in a recession until h = 12. The impulse responses using the GZ spread are

plotted in Figure 1.4. The pattern is similar to the previous case, if not more pronounced.

The peak response occurs later, and the difference relative to normal times is larger. In

both cases, the standard errors are large, even when individual coefficients are statistically

significant, as they combine the standard errors from both coefficients (βR and βDR) as well
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Figure 1.4: Estimated Response of Ut to a Unit Increase in GZ Spread
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as their covariance.

1.3 Model

We model an economy with search frictions in labor and credit markets, building on the

work of Wasmer and Weil (2004) and Petrosky-Nadeau and Wasmer (2012). A represen-

tative household provides labor to produce output and makes current risk free bond and

consumption choices. Firms produce with labor and finance their expansion efforts through

a frictional financial market in which they are paired with a creditor. A creditor is an insti-

tution maximizing profits for its shareholders (the representative household) by managing a

large number of credit relationships creating new credit matches.

1.3.1 Matching in financial and labor markets

In order for firms to create an additional job, they must first establish a partnership with

a creditor to finance the upfront costs associated with recruiting a worker. At any point in

time there are Nct such projects searching for a creditor. On the other side of the financial
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market, financial intermediaries place Bct units of effort to seek new projects with which to

be matched. Meetings in the financial market are governed by the constant returns to scale

matching function Mc(Bct,Nct), which is increasing and concave in both arguments. We use

φt the denote the ratio Nct/Bct, which reflects credit market tightness from the point of view

of new projects. The contact rates for each side of the credit market are:

pt =
Mc(Bct,Nct)
Nct

= p(φt) with p′(φt) < 0,

p̄t =
Mc(Bct,Nct)
Bct

= p̄(φt) with p̄′t(φt) > 0.

The first equation states the probability pt of a project matching with a creditor in a unit

of time is a decreasing function of credit market tightness. The second equation states the

rate p̄t at which a creditor matches with a project is an increasing function of the relative

abundance of investment projects. The assumption of constant returns in matching implies

p̄t = φtpt.

New positions are added to the pool of vacant jobs Vt in the labor market. These job

vacancies are sought after by the unemployed Ut. We normalize the labor force to 1, and

consequently Ut also denotes the current unemployment rate. Matching in the labor market

is governed by the function Ml(Vt,Ut), which demonstrates constant returns and is increasing

in all arguments. We define the ratio Vt/Ut = θt as the tightness of the labor market from

the perspective of the firm. The meeting rates for each side of the labor market are:

qt =
Ml(Vt,Ut)
Vt

= q(θt) with q′(θt) < 0,

ft =
Ml(Vt,Ut)
Ut

= f(θt) with f ′(θt) > 0.

The first line states a vacancy is filled in period t with probability q(θt), which is decreasing

in labor-market tightness. The second line states that a worker finds employment in a unit

of time with probability f(θt). This job -finding probability is increasing in labor-market
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tightness. The assumption of constant returns in matching implies ft = θtqt.

1.3.2 Firms

A firm produces with linear production technology Yt = XtNt. Here, with slight abuse

of notation from Section 1.2, Xt denotes productivity and is both exogenous and stochastic.

The variable Nt is the share of workers currently engaged in production. In order to hire a

worker and generate output, a firm must first create additional productive capacity which will

be either vacant or filled with a worker. This requires searching for a new credit relationship

in the financial market. Searching in the credit market is costly, incurring a flow cost κI per

project. Once a firm establishes a match in the financial market, the creditor finances the

costs of searching in the labor market. The creditor pays recruiting cost γ when a position

is vacant, and is paid an amount Ψt when the position is filled and generating revenue. Each

period the firm pay workers a wage Wt. Prior to the start of the next period, a deterministic

share of matches in both the labor and credit markets are severed at random. The labor-

market separation rate is given by sL ∈ (0, 1). Separations in the labor market become open

vacancies, but the firm-creditor match remains intact. Credit relationships separate at rate

sC ∈ (0, 1), in which case the entire position is destroyed.

Given this environment, the firm’s objective is to maximize the value of its equity by

choosing the amount of projects to place on financial markets, Nct:

St = max
Nct

[XtNt −WtNt −ΨtNt − κINct] + EtMt+1 [St+1] (1.2)

subject to Vt =
(
1− sC

) [
(1− q(θt−1))Vt−1 + sLNt−1

]
+ p(φt)Nct (1.3)

Nt+1 =
(
1− sC

) [(
1− sL

)
Nt + q(θt)Vt

]
(1.4)

where Et is the expectation operator, Mt+1 is the representative household’s stochastic dis-

count factor between periods t and t+ 1, and (1.3) and (1.4) are the laws of motion for open

job vacancies and employment, respectively.
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We assume in equation (1.3) that a new project matched with a creditor becomes an open

vacancy and begins the recruiting process within the period. These vacancies join the pool

of vacant positions that did not match in the previous period, (1− q(θt−1))Vt−1, and those

position that lost their worker, sLNt−1, as long as the position was not also hit by a credit

match termination shock sC . Equation (1.4) assumes that a successful meeting between a

firm and worker begins production the following period, again, as long as the position is not

hit by a credit match termination shock sC between the time of meeting and the start of the

following period.

The asset values of a project in the three stages described above - search in the financial

market, search in the labor market, and production - are found by differentiating the firm’s

value function. Denote these marginal asset values by Sj,t with j = c, l or g, standing for,

respectively, the credit, labor and goods markets, corresponding to the market in which a

project is currently operating. We have:

Sc,t = −κI + ptSl,t + (1− pt)EtMt+1Sc,t+1, (1.5)

Sl,t =
(
1− sC

)
EtMt+1 [qtSg,t+1 + (1− qt)Sl,t+1] (1.6)

+sCEtMt+1 [Sc,t+1] ,

Sg,t = Xt −Wt −Ψt +
(
1− sC

)
EtMt+1

[(
1− sL

)
Sg,t+1 + sLSl,t+1

]
(1.7)

+sCEtMt+1 [Sc,t+1] .

Equation (1.5) states that, at the margin, an additional project Nc reduces the firm’s value

by the cost of search κI within a time period, and pays off with two possible marginal values

going forward. Either search is successful, with probability pt, in which case the effect is

valued by the firm at the margin by Slt+1, or it is not. Equation (1.6) states that, at the

margin, a vacant job position that is not randomly separated in the credit market affects

the firm’s value through the possibility of matching with a worker. With probability qt the

position is filled, and has value to the firm Sgt+1. All filled positions, described in equation
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(1.7), generate a profit flow (Xt −Wt −Ψt), and continue into the next period as a filled

position with probability
(
1− sC

) (
1− sL

)
.

1.3.3 Financial Institutions

Financial institutions provide liquidity to firms in the labor-recruiting stage. This occurs

either following a new match with a project, which results in the entry of a new vacancy,

or following a labor turnover shock sL. These institutions, owned by the representative

household, maximize profits by setting an amount of potential new credit relationships Bct,

searching for new investment projects at individual per period cost κBt. These search costs

are subject to exogenous, stationary, shocks. As a large institution, it pays an outflow γVt

for the recruiting activities of each vacant position Vt, and receives payment Ψt from each

of the Nt filled positions. The financial institution’s decision problem is given by

Bt = max
Bct

[ΨtNt − γVt − κBtBct] + EtMt+1 [Bt+1] (1.8)

subject to Vt =
(
1− sC

) [
(1− q(θt−1))Vt−1 + sLNt−1

]
+ p̄(φt)Bct (1.9)

Nt+1 =
(
1− sC

) [(
1− sL

)
Nt + q(θt)Vt

]
. (1.10)

Equation (1.9) is equivalent to (1.3) in the firm’s problem, with the flow of new matches in

the financial market expressed as matched searching creditors, p̄tBct. Likewise, the financial

intermediary is subject to the law of motion for employment (1.4) which governs its revenue

stream ΨtNt.

The marginal asset values of each of the three stages of a project to a financial institution,

denoted by Bj,t, j = c, l or g respectively, are obtained from differentiation of the financial
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institutions value function:

Bc,t = −κBt + p̄tBl,t + (1− p̄t)EtMt+1Bc,t+1, (1.11)

Bl,t = −γ +
(
1− sC

)
EtMt+1 [qtBg,t+1 + (1− qt)Bl,t+1] + sCEtMt+1Bct+1, (1.12)

Bg,t = Ψt +
(
1− sC

)
EtMt+1

[
(1− sL)Bg,t+1 + sLBl,t+1

]
+ sCEtMt+1Bc,t+1. (1.13)

Adding an additional unit of search in the financial market, by equation (1.11), reduces

the financial intermediary’s value by flow cost κB. With probability p̄t, however, a project

is found within the period adding the value Blt. Being in a match with a project in the

labor-market search stage is costly to the financial intermediary. It involves a per period

cost γ (see equation (1.12)). Once the position is matched with a worker, which occurs with

probability qt per period, this adds to the value of the financial institution. As the last

equation (1.7) states, the financial intermediary receives payments Ψt each period until the

either the financial market match or the labor market match are destroyed.

1.3.4 Representative Household

The household is composed of a continuum of members of unit mass who are either

employment or unemployed. The employed earn per period wage Wt. The unemployed

have utility from leisure l > 0, search for a job, and receive unemployment compensation

b > 0. Household members pool resources, and the household chooses an aggregate level

of consumption Ct, over which they have preferences u(C) with the usual properties, and

holdings of risk free bonds At to maximize:

Ht = max
Ct,At

[u(Ct) + lUt] + βEt [Ht+1] (1.14)

subject to WtNt + bUt + At−1(1 + rt−1) +DS
t +DB

t = Ct + Tt + At (1.15)
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and subject to the laws of motion for employment and unemployment. The terms DS
t =

XtNt −WtNt −ΨtNt − κINCt and DB
t = ΨtNt − γVt − κBtBct in the budget constraint are

period profits from firms and financial institutions, respectively, rebated lump sum at the

end of the period.

The marginal value of an additional unemployed and employed worker, respectively, are

obtained by differentiating the household’s value function:

HUt

λt
= Zt + βEt

λt+1

λt

[
f(θt)

HNt+1

λt+1

+ (1− f(θt))
HUt+1

λt+1

]
,

HNt

λt
= Wt + βEt

λt+1

λt

[(
1− sC

) (
1− sL

) HNt+1

λt+1

+
(
sC +

(
1− sC

)
sL
) HUt+1

λt+1

]
.

An unemployed worker adds Zt = b + l/λt per period to the household value, where λt is

the marginal utility of consumption Ct, and, if search is successful - with probability f(θt)

- adds an additional employed worker to the household. The employed workers are valued

for the wage earned every period, and with probability
(
1− sC

) (
1− sL

)
, in the subsequent

period.

1.3.5 Bargaining and Equilibrium in the Financial Market

The first order conditions for the household’s problem in (1.14) yield the standard Euler

equation relating the risk-free rate to expected aggregate consumption growth:

1

1 + rt
= Etβ

[
uc (Ct+1)

uc (Ct)

]
≡ EtMt+1. (1.16)

A firm and a financial institution’s decisions in the financial market, given by their

respective choices of Nct and Bct which solve problems (1.2) and (1.8), satisfy the following
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optimality conditions

κI
p(φt)

= Slt, (1.17)

κBt
p̄(φt)

= Blt. (1.18)

Choices in the financial market ensure that the marginal impact on the value functions of

firms and financial institutions are equal to zero. In other words, Sct = 0 and Bct = 0 at

the optimum. This is a free entry condition in the financial market that leads to equations

(1.17) and (1.18). These state that in equilibrium the value of an open job vacancy to either

the firm or the financial institution is equal to the average, respective, search costs in the

financial market required to form a match.

After contact, the creditor and the firm engage in bargaining to determine Ψt, which de-

notes the creditor’s share of the total match surplus (Bl,t + Sl,t). The repayment is negotiated

each period and solves the problem:

Et [Ψt+1] = argmax (Blt −Bct)
αC (Slt − Sct)1−αC , (1.19)

where αC ∈ (0, 1) is the creditor’s bargaining power relative to that of the firm. With

αC = 0 the creditor leaves all the surplus to the firm. The solution to the generalized Nash

bargaining problem is an agreed to repayment rule such that the current match surplus is

shared as:

(1− αC)Bl,t = αCSl,t. (1.20)

The expected repayment rule that solves this Nash bargaining problem is:

Et [Ψt+1] = αCEt [Xt+1 −Wt+1] + (1− αC)

[
γ

qt

(
1 + rt
1− sC

)
−
(
1− sL

)
Et
[
γ

qt+1

]]
.

The above expression for the negotiated repayment states that the creditor will receive a

fraction αC of the expected profit flow from labor at date t+ 1. The second term represents
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how the creditor will receive more if the current costs to fill a vacancies γ/qt - which are

being paid by the creditor in the period of price setting - are large relative to what they are

expected to be in the future.

Combining (1.17), (1.18) and (1.20), we obtain the equilibrium value of credit-market

tightness φt:

φt =
1− αC
αC

κBt
κI

. (1.21)

Financial-market tightness is decreasing in the creditor’s bargaining power αC . Increasing

the share of the economic rents given to the creditor of a financial market match leads to

more entry of creditors relative to investment projects. Likewise, a shock increasing the cost

of search for financial intermediaries κBt will reduce entry by creditors, and increase market

tightness.

1.3.6 Return on loans

The expected rate of return on loans to firms, Rt, is the rate which sets the expected

discounted value of a loan, γ
Rt+q(θ)

equal to the expected discounted repayment on the loan

q(θ)
Rt+q(θ)

Et[Ψt+1]
Rt+sC+(1−sC)sL

(as in Wasmer and Weil (2004) and Petrosky-Nadeau (2013)). This

results in a an expected return from lending in the credit market:

Rt =
Et[Ψt+1]

γ/q(θt)
−
(
sC +

(
1− sC

)
sL
)
. (1.22)

The expected return depends, first, on the expected flow of repayments to the creditor

relative to the size of the outflow during the labor-market recruiting stage, γ/q(θ). The

second term corresponds to discounting from the termination of the repayment flow. An

increase in αC results, all else equal, results in a greater flow repayment Ψt.
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1.3.7 Equilibrium in the Labor Market

The total amount of search costs in financial markets involved in creating a position in

a firm, those associated with creating a new financial relationship, are summarized by the

variable:

Kt ≡
κI
p(φt)

+
κBt
p̄(φt)

. (1.23)

These costs represent the value of a match in the financial market to both parties, or their

joint surplus (Bl,t + El,t). The marginal values from a creditor-project match in the labor

recruiting stage l and the production stage g are given by

Slt +Bl,t ≡ Flt = −γ +
(
1− sC

)
EtMt+1 [qtFg,t+1 + (1− qt)Fl,t+1] (1.24)

Sgt +Bg,t ≡ Fgt = Xt −Wt +
(
1− sC

)
EtMt+1

[
(1− sL)Fg,t+1 + sLFl,t+1

]
. (1.25)

At any date the value of a vacant position in the labor market to the creditor-project pair is

equal to the current value of its creation costs in the financial market, Kt. Equation (1.25)

is reminiscent of the expression for the value of a job vacancy in the standard DMP model,

and converges to such an expression when sC = 0. A free-entry equilibrium without search

frictions would have the value of Flt converge to 0 at all dates.

Substituting Flt = Kt in equation (1.24) we have

Kt + γ

q(θt)
=

(
1− sC

)
EtMt+1

[
Fgt+1 +

(
1− q(θt)
q(θt)

)
Kt+1

]
. (1.26)

This job-creation condition equates the expected costs from financial-market and labor-

market search to the expected benefit from filling the position (conditional on the financial-

market match surviving to the next period). In the limit, as Kt tends to zero at all dates we

recover the canonical DMP job-creation condition. In the presence of a frictional financial

market, the right-hand side has an additional term
(
1− sC

)
(1− qt)EtMt+1Kt+1/qt. This
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captures the value of an unfilled vacancy in the event search is not successful in the period,

and the position survives into the next.

By defining a variable to summarize the job-creation costs net of the position’s value

in the event of unsuccessful search as Γt = Kt+γ
(1−sC)

− (1− qt)EtMt+1Kt+1, we obtain the job

creation condition for the model with search frictional credit and labor markets

Γt
qt

= EtMt+1

[
Xt+1 −Wt+1 +

(
1− sC

) [(
1− sL

) Γt+1

qt+1

+ sLKt+1

]]
. : (1.27)

The wage is the solution to a Nash bargaining problem between the worker and the firm.

It is the solution to the problem:

Wt = argmax

(
HNt −HUt

λt

)αL
(Fgt − Flt)1−αL . (1.28)

The worker-firm negotiated wage must satisfy the usual sharing rule

αL (Fgt −Kt) = (1− αL) (HNt −HUt) /λt,

and the resulting wage is:

Wt = αL

(
Xt + θt

[
γ

(1− sC)
+

[
rt + sC

(1− sC) (1 + rt)

]
Kt

])
(1.29)

+ (1− αL)Zt − αL
[
rt + sC

1 + rt

]
Kt.

1.3.8 Stochastic processes

Labor productivity and the cost of search for financial institutions follow stationary AR(1)

processes in logs. That is, we have logXt = ρx logXt−1 + νxt, where 0 < ρx < 1 and νxt

is white noise for labor productivity. In the financial market, the search costs are assumed

to follow log κBt = (1− ρκB) log κB + ρκB log κBt−1 + νκBt. The innovations νxt and νκBt are

assumed to be independent. It is certainly possible that credit and productivity shocks are
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correlated in reality, and we aim to explore this concept in future work.

1.3.9 Equilibrium

The household’s budget constraint leads to the economy’s aggregate resource constraint

Yt = Ct + γVt + κBtBct + κINct. (1.30)

An equilibrium is defined as a set of functions from labor market tightness θt, wage Wt,

credit market tightness φt, aggregate consumption Ct, risk free rate rt, that, for current

employment Nt, productivity Xt, credit market search costs κBt, solve: (i) the job creation

condition (1.27); (ii) Nash wage rule (1.29); (iii) credit market equilibrium condition (1.21);

(iv) consumption Euler equation (1.16), and; (v) aggregate resource constraint (1.30).

1.4 Quantitative Results

The model is calibrated to match key features of U.S. labor and credit markets. Our

calibration strategy is described in Section 1.4.1 and the results are given in Section 1.4.2.

Section 1.4.3 assesses the effects of productivity and credit-market shocks on labor market,

and examines how those effects vary across recession, normal, and expansion periods as

defined in our empirical exercise in Section 1.2.

1.4.1 Parameterization and calibration

Our model has many parameters. We use commonly accepted values where appropiate,

but otherwise resist the temptation to use parameter values from the labor market search

literature. Most models in this literature do not have search-frictional credit markets, and

borrowing parameters from this literature would effectively relegate credit markets to an ap-

pendage of a pre-calibrated labor-market model. Instead, we take an approach that provides

credit and labor markets frictions an equal chance at influencing the data generating process.
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We do this by performing a comprehensive search over a discretized parameter space and

examining the model’s key moments at each parameterization. While this approach is more

cumbersome than a traditional calibration exercise, it prevents us from setting parameters

to values that are sensible in one family of models but not necessarily this family of models.

The outcome of this exercise is summarized in Table 1.2 and the corresponding moments

generated by the data are discussed in Section 1.4.2.

Table 1.2: Model Parameters

Parameter Value
Labor market:

job-separation rate sL 0.035

worker bargaining weight αL 0.40

vacancy cost γ 0.10

labor matching curvature ηL 1.15

non-employment value z 0.84

Credit market:
credit-match separation rate sC 0.01/3

creditor bargaining weight αC 0.30

mean search costs κB = κI 0.16

credit matching curvature ηC 1.2

discount factor β .997

Shock processes:
productivity persistence ρx 0.951/3

productivity volatility σx 0.0065

credit search persistence ρκB
0.951/3

credit search volatility σκB
0.0065

Credit market parameters: β, sC, ηC, αC, κI, and κB

The discount factor β is set such that the risk-free rate r averages an annualized 4%.

The separation rate sC is set for a 1% quarterly firm exit rate. The credit matching function

Mc(Bct,Nct) = NcBc/ (N ηC
c BηCc )1/ηC as in Den Haan et al. (2000), and set the curvature

parameter ηC = 1.2. This value is comparable to the curvature parameter used in a labor-
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market search model in Den Haan et al. (2000), which is 1.27. The creditor’s bargaining

weight resulting from our parameter search is αC = 0.30 which is notably smaller than the

values between .5 and .9 seen in Petrosky-Nadeau and Wasmer (2012). To keep our analysis

straightforward, we set κI = κ̄B and find the best performance when κI = .16. This is

considerably larger than the cost of credit-market search in Petrosky-Nadeau and Wasmer

(2012), though our model differs in several ways.4

Labor market parameters: sL, ηL, γ, z, and αL

The rate of labor separation sL is set to a monthly rate of 0.035, consistent with the

estimate based on JOLTS data and accounting for concurrent separations from credit-market

separations. The curvature parameter in the matching function NlU/ (N ηL
l + UηL)

1
ηL , is set

to ηL = 1.15. As was the case with ηC , this is well below values seen in comparable models

without credit-market frictions. This suggests that the presence of additional frictions allows

matching functions to be less elastic in order for their combined effect to compare to a model

with only one friction. The parameter search process yields a labor-market search cost of

γ = 0.10, a value of unemployment of z = .84, and a worker’s share of wage bargaining of

αL = .40, which is larger than values in Petrosky-Nadeau and Wasmer (2012) which range

from .03 to .15. The cost of searching in the labor market, γ, is comparable to Petrosky-

Nadeau and Wasmer (2012), while the our value of unemployment is notably higher as

Petrosky-Nadeau and Wasmer (2012) uses values between .4 and .7. We are, however, well

below other values seen in the labor market literature such as in Hagedorn and Manovskii

(2008) where z would be closer to .9.

Shock process parameters: ρx, σx, ρκB , σκB .

The basic unit of time is a month. The process for productivity described in Section 1.3.8

has a persistence parameter ρx = 0.951/3, and conditional volatility, σx = 0.0065. These are

standard parameter values in line with the volatility and persistence of labor productivity

4Key differences include the introducing stochastic search costs, the use of a Den Haan et al. (2000)
matching function as opposed to a Cobb-Douglas matching function, and exogenous separation of firm-
creditor relationships.
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measure by the BLS. For symmetry, we use matching values for ρκB and σκB and allow the

credit and labor market parameters to bring model volatility to values comparable to the

data.

1.4.2 Stationary and business cycle moments

The “best” parameters are chosen by comparing the following moments between the

model and the data. The observed credit spread is simply the BAA - 10 year treasury

spread. The credit spread in the model is computed by comparing the return on loans with

and without credit frictions. The special case of competitive prices in the financial market

with no surplus to the creditor arises when αC = 0. The returns on loans in this competitive

pricing are denoted R∗t . The model’s friction credit spread is simply the difference between

the bargained Rt and the competitive R∗t .

The moments of interest include first moments and autocorrelations of unemployment

and the credit spread observed across all periods. Additionally, we consider second moments

of unemployment and the credit spread as observed in different economic states. Our interest

in state-dependence arises from our empirical findings in Section 1.2.2 where we observed

a larger response in unemployment following credit-spread increases during recessions. We

consider two economic states, recession and normal, which adhere to the same definitions used

in our empirical analysis (see Section 1.2.1). In addition to these first and second moments,

we examine key correlations between productivity, vacancies, unemployment, and the credit

spread in normal and recession states. The moments for both observed and simulated data

are given in Table 1.3.

The model performs well, though slightly high, on first-order moments. The model

generates a mean unemployment of 6.26 compared to 5.92 in the data and a mean credit

spread of 2.44 compared to 1.90 in the data. For second-order moments, the model generally

matches the pattern of increased volatility during recessions and does a good job overall

at matching volatility levels in both states. The model generates slightly less volatility for
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Table 1.3: Moments from Observed and Simulated Data

Normal States:
U Spread

Data Model Data Model
Mean 5.92 6.26 1.90 2.44
St. dev. 0.12 0.08 0.19 0.20
Autocorrelation 0.97 0.93 0.93 0.91
Correlation w. Xt -0.10 -0.58 -0.23 -0.44
Correlation w. Vt -0.93 -0.88 -0.59 -0.80
Correlation w. Rt 0.55 0.81 - -

Recession States:
U Spread

Data Model Data Model
St. dev. 0.16 0.16 0.26 0.33
Correlation w. Xt -0.50 -0.28 -0.65 -0.43
Correlation w. Vt -0.93 -0.70 -0.73 -0.81
Correlation w. Rt 0.57 0.83 - -

Notes: Unemployment rate data obtained from the BLS for the population over 16

years of age. The credit spread is the difference between the return on BAA corporate

bonds and the 10 year Treasury notes. Model moments are from 5000 simulations of 2,232

months each, transforming to quarterly values by simple averaging. Standard deviations

and correlations are computed for HP-filtered deviations from means.
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unemployment during normal periods with a standard deviation of 0.08 compared to 0.12

in the data. The volatility of the simulated credit-market spread, on the other hand, closely

matches the data during normal times, with respective standard deviations of 0.19 and .20.

During recessions, however, it is unemployment that performs best in terms of matching the

volatility observed in the data. Unemployment in both the model and data has standard

deviations of 0.16 during recessions. The credit spread in the model demonstrates increased

volatility during recessions as does the data, with a standard deviation of 0.33 compared to

0.26 in the data.

For correlations, the model does well at matching the signs and relative magnitudes

observed in the data. In both the model and data, the correlation between productivity and

unemployment is negative as is the correlation between unemployment and vacancies. The

strength of the correlation with unemployment is stronger for vacancies than productivity,

which is true for both the model and the data. Key correlations include the correlation

between unemployment and vacancies (the Bevridge curve), which is as measured by as -

0.88 in the model and -0.93 in the data. Another key correlation is the relationship between

unemployment and the credit spread, which is 0.83 in the data and 0.57 in the data. Neither

of these key correlations differ between normal and recession states. Other correlations, such

as the relationship between productivity and unemployment, become stronger in the data

during recession states while they become weaker in our model simulated data. This is a

point that future research should aim to investigate and improve upon.

1.4.3 State Dependance and the transmission of shocks

We compute impulse response functions to measure the impact of adverse productivity

and financial-market shocks on unemployment in our model. To examine state dependence,

we consider different initial conditions for each impulse response function. Our three key state

variables are the employment rate, productivity, and the cost of credit-market search, and

we consider initial conditions spanning the distributions of these variables. During recession
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periods, mean unemployment is 10% and our productivity and credit-market variables are

near their 5th and 95th percentiles, respectively. In normal periods, mean unemployment is

5% and our productivity and credit-market variables are near their median values. When

the economy is in an expansion period, mean unemployment is 4%, productivity is near its

5th percentile and the credit-market is near its 95th percentile.

Figure 1.5: Impulse responses for Unemployment
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Impulse response functions from a standard deviation increase in credit-market
search cost (left), and a standard deviation decrease in productivity (right). IRFs
are computed as the mean of 500 simulations.

Our results are shown in Figure 1.5. Just as in the search-frictional models in Petrosky-

Nadeau and Zhang (2013b), Petrosky-Nadeau and Wasmer (2012) and Petrosky-Nadeau

(2013), the impulse response functions differ dramatically with the initial state of the econ-

omy. Due to the nonlinearities nature of the matching functions, and because we solved

our model relying on linear approximations, unemployment is much more sensitive to shocks

when the labor market is already slack. In our model a standard deviation increase in the

cost of credit-market search during a recession leads to an increase in unemployment of

nearly 10 percentage points. The same shock during an expansion or normal state has no

noticeable affect on unemployment. The same is true of productivity shocks. A standard

deviation decrease in productivity during a recession results in a 16 percentage point increase

in unemployment, while the same shock during normal states results in only a 2 percentage
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point increase in unemployment. In both credit-search and productivity shocks, the response

in unemployment peaks at around 20 months after the shock.

Note that the impulse response functions are not immediately comparable to the empirical

exercise in Section 1.2. Those results examine the relationship between the unemployment

and the credit spread itself, whereas these results examine the relationship between unem-

ployment and credit-market search. The general pattern of state dependence, however, is

present in both settings and we are encouraged that our structural model and unique cali-

bration strategy yield a model that demonstrates state dependence as we found empirically.

Figure 1.6: Impulse responses for Credit Spread
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Impulse response functions from a standard deviation increase in credit-market
search cost (left), and a standard deviation decrease in productivity (right). IRFs
are computed as the mean of 500 simulations.

The credit spread also demonstrates state dependence in its response to both productivity

and credit-market search costs. Figure 1.6 shows the impulse response functions for the credit

market spread in response to a standard deviation increase in the cost of credit market search

(left panel), and a standard deviation decrease in productivity (right panel). During normal

and expansion states, a standard deviation increase in the cost of credit search results in a

40% increase in the credit spread. During recessions, however, the response is over three times

larger with more than a 125% increase. The response resulting from to productivity shocks

are similar to those caused by credit shocks, and differ mostly in that productivity shocks
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make a larger impact during normal and expansion periods than shocks to the cost of credit-

market search. A standard deviation decrease in productivity increases the credit spread

in recession, normal, and expansion states by, respectively, 120%, 75%, and 35%. While

unemployment is about 1.6 times more responsive to productivity shocks during recessions,

the response of the credit spread is about even between productivity and credit-market

shocks. This insight is new to the search and matching framework as we are the first to use

stochastic credit-market shocks which allows us to compute their resulting impulse response

functions.

1.5 Conclusion

The relationship between credit and labor markets will continue to be an important field

of study in future decades. In this study we provide empirical evidence that the relationship

between these two markets demonstrates a marked degree of state dependence; the impact

of an adverse shock will be much larger during recessions than at other stages of the business

cycle. We also make theoretical contributions in the form of a model with search-frictional

credit and labor markets, which we bring to the data through a rigorous calibration exercise.

The model matches all of our major labor market moments, including a matrix of correlation

coefficients. The moments are examined and matched for both normal times and periods

of economic recession. The impulse response functions demonstrate the same kind of state

dependence as seen in our empirical exercise, and suggest that credit market fluctuations can

have potentially large impacts if the economy is already in a poor state. Both credit-market

and productivity shocks are able to generate large movements in unemployment and the

credit spread, but unemployment is about 1.6 times more responsive to productivity shocks

than credit shocks when the economy is in a poor initial state.

There are many ways to extend and improve upon our current analysis. One could use

this model to better understand the most likely sequence of shocks to match an event such as

the 2008 recession or other historical events. This kind of analysis would provide insight into
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the relative importance, in a search-frictional framework, of productivity shocks as compared

to financial market shocks. Mapping this model to the data would also be improved by the

discovery of any empirical counterpart to κb, the cost of searching within the credit-market.

This would enable a true mapping of model fundamentals to the data as opposed to our

current approach of mapping model outputs to data. Future studies might examine credit

constraints as they relate to capital or other expenses which are more likely to require outside

financing, as opposed to hiring costs which are relatively inexpensive for many firms. Future

work might also consider the impact of monetary policy interventions in search-frictional

markets, and how the impact of those interventions vary over the business cycle.
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CHAPTER II

Market Expansion and Market Concentration

2.1 Introduction

For most of human history, geographic distance has played an important role in determin-

ing the extent to which different firms act as competitors. When two firms are sufficiently

distant, each can make decisions without fear of losing customers to the other. Over the

past century, however, the concept of distance has changed in ways that have changed mar-

kets in fundamental ways. Across several industries, changes in both technology and policy

have steadily removed barriers to trade, geographic or otherwise, such that firms can reach

customers located farther and farther away. These changes have dramatically changed the

economic environment for many affected industries as market expansion has pitted firms

against one another across larger geographies.

The pattern of market expansion leading to higher market concentration is evident in

several industries. Well studied examples include the US commercial banking industry, the

US brewing industry, international trade and manufacturing, and US retail. Studies for each

of these examples, however, largely appear in isolated literatures. The siloed nature of these

literatures makes it difficult to recognize that even though these industries differ in many

ways, all of these examples follow the same pattern: markets expansion leads to a reduction in

the number of firms and increased market concentration. Motivated by this pattern, I present

a novel theoretical model featuring heterogeneous firms competing within a single industry
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but in different locations a la Hotelling (1929). Firms compete more intensely against firms

located in close proximity and do not compete at all against firms located beyond a given

radius. Firms may endogenously exit if their idiosyncratic and persistent shocks become

unfavorable. Within this theoretical framework, I examine the impact of market expansion

by increasing the radius at which firms are unable to compete, and compare the results of

both sudden and gradual changes to this parameter. The model succeeds in reproducing the

aggregate behavior of firms in the face of market expansion as observed in various industries.

Market expansion places downward pressure on prices through increased competition. Firm

exit, however, places upward pressure on prices in the short-run by shifting out the demand

curves among surviving firms. Whether prices increase or decrease in the long run depends

only on the size of the market expansion and not the speed at which the expansion occurs.

In addition to juxtaposing these literatures in a way that makes this pattern apparent,

in this paper I present a theoretical model with heterogeneous firms distributed over an

abstract geographic space. The model explicitly parameterizes the geographic size of the

market, allowing firms to compete across larger distances over time. The model is general

enough to include, as special cases, an economy comprised of isolated monopolists and also a

dynamic oligopoly model with endogenous entry and exit. The model successfully duplicates

the key pattern of market expansion driving market concentration, and allows me to compare

outcomes between sudden and gradual episodes of market expansion.

The novel feature in the model is an inverse demand curve that explicitly accounts for

the geographic distance between a firm and its competitors. The price for a given firm is a

decreasing function of its own output as well as the output of all competing firms weighted

by distance. The weight is only positive within a specified radius, such that a firm will

not be influenced by a competing firm unless it is within the given radius. Distance is

achieved by assigning each firm a set of coordinates in a compact metric space. Weights are

given by a function that resembles a kernel density estimator, where the radius of interest is

determined by the kernel’s bandwidth parameter. By increasing the bandwidth parameter,
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firms are subject to competition from firms that were formerly too distant, as is the case

when markets expand due to changes in policy or technology.

A key assumption of the model is that firms do not attempt to forecast the states of

relevant competitors as they would under rational expectations. Rather, they only keep

track of the weighted sum of competitor output. While this reduces the dimensionality

of the firm’s problem, it complicates the firm’s ability to form expectations as the future

weighted sum of competitor output does not evolve in a predictable way due to firm exit and

random productivity shocks. Consequently, firms form näıve expectations over observable

aggregate variables such as the sum of competitor output weighted by distance, and the

total number of active firms. Firms observe the current aggregates and assuming they will

be the same the following period. This assumption, while severe, is justified for several

reasons. First, it makes the model solvable for any number of firms. Second, it simplifies the

equilibrium concept to that of a simple recursive equilibrium and avoids the multiplicity of

equilibria present in repeated games.

The model demonstrates rich dynamics in the face of expanding markets. Simulations

begin from a point in which markets are so small each firm acts effectively as a monopolist

in their own isolated economy. Over time, the parameter for market size increases and the

economy evolves in response to the changing environment. In the first and simplest version

of the model, exiting firms do not acquire market share from exiting firms. In this case,

when markets expand, increased competition places downward pressure on prices and many

firms exit as a result. Firm exit, however, relieves much of these competitive pressure and

pushes prices back toward their starting values. In the long run, in spite of a smaller number

of firms, the expanded markets remain more competitive and prices decline in the long run.

The severity of price fluctuations varies with the speed of market expansion, which larger

fluctuations occurring during rapid episodes of market expansion. In the long run, prices

converge to a single, lower price regardless of market size.

Each firm’s inverse demand curve shifts outward when other firms exit such that aggre-
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gate demand remains unchanged. This creates another channel by which prices experience

upward pressure in the short run, as demand increases for output from surviving firms while

production takes time to adjust. This additional channel causes prices to fluctuate more in

the short run when markets expand quickly. The long-run impact on prices varies with the

degree of market expansion. The impact on market concentration, however, is nonlinear.

Market expansion leads to increased firm exit which increases market concentration, but

market expansion also leads to decreased output per firm which in my model prevents large

firms from grabbing additional market share. The resulting levels of market concentration,

however, are still much larger than in any isolated monopolist setting.

The paper continues as follows. In Section 2.2, I review the literature immediately ap-

plicable to geographic expansion and its role in enabling increased market concentration. In

Section 2.3, I review the literatures of several well-studied episodes where market expansion

preceded dramatic increases in market concentration. In Section 2.4, I outline the theoretical

model and in Section 2.5, I describe my solution method and quantitative exercises. Section

2.7, concludes. I provide additional background information in the Appendix, including a

step-by-step outline of my solution algorithm.

2.2 Literature Review

In this section, I examine studies which analyze the broader trend of market concentration

across industries. The literature focused on concentration as a whole is relatively small

compared to many of the literatures focused on concentration for single industries. I examine

several of these industries and their respective literatures in Section 2.3.

The majority of market concentration studies, whether micro or macro, measure market

concentration by the ratio of output between the four largest firms in an industry relative to

the total. Colloquially, this term is known as the “four-firm industry ratio” or CR4. Some

studies, where data is sufficiently detailed, include HHI or Gini values as measures of market

concentration.
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Mueller and Hamm (1974) use US Census data to aggregate market concentration trends

across industries. They find both output-weighted and unweighted CR4 measures increase by

about 2 percentage points between 1947 and 1970. To my knowledge, there are no additional

studies that have brought the analysis Mueller and Hamm (1974) into more recent decades.

Several studies look at the relationship between market concentration and broad eco-

nomic outcomes such as economic growth or innovation. Pagano and Schivardi (2003) find a

positive correlation between economic growth and market concentration. Beck et al. (2008)

shows financial developments interact with the distribution of firm size to disproportionately

accelerate the growth of smaller firms. Acs et al. (1999) measures market share by the both

the proportion of total employment hired by a firm and the proportion of establishments

owned by a firm. They find, under either measure, that industries in which larger firms have

larger market share have greater productivity growth.

One economic outcome of particular interest to many market concentration studies is

the amount of R&D spending. Many speculate that larger firms would be more likely to

undertake R&D projects, and so an economy with fewer and larger firms could be beneficial

for innovation (Cockburn and Henderson, 2001). Conversely, Mukhopadhyay (1985) finds

that R&D intense industries are correlated with declining levels of market concentration. Bos

et al. (2013), on the other hand, suggests the relationship between market concentration and

R&D follows an inverted-U shape with extremely-low and extremely-high levels of market

concentration associated with low levels of investment in R&D. Symeonidis (1996) claims

that R&D intensity and market structure are jointly determined by technology, the economic

environment, and chance. None of these studies, however, are interested as much in the

origins of market concentration as in the potential consequences. While discussion around

the causes of market concentration are present in many industry-specific literatures (see

Section 2.3), my paper uniquely brings these examples together using a common element of

distance.

This paper also is relevant to the literature on geospatial competition. Paramount within
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this literature is the framework proposed by Hotelling (1929) in which firms are mapped to

a point along an interval and a customer pays a travel cost in addition to the price of a

good. Where a firm is positioned, relative to both customers and other firms, determines

the market clearing price. There are numerous extensions of this framework, including

locations with heterogeneous products (Phlips and Thisse, 1982; Irmen et al., 1998), strategic

entry (Lancaster , 1982), and search-frictional goods markets (Stahl , 1982). The Hotelling

framework has been used to explain, among other things, the trade-off between product

similarity and product accessibility, why establishments selling similar products occasionally

locate in close proximity (Stahl , 1982) – or far apart Brown (1989) – and the existence of price

discrimination (Norman and Nichols , 1982). An important discussion within this literature

is the similarity between geographic distance and product differentiation.1 Both geographic

distance and product differentiation serve the purpose of minimizing direct competition from

neighboring establishments. Firms can set prices knowing that customers will have to engage

in costly travel and search to consider products from other establishments. Beyond Hotelling,

there are geospatial frameworks based on the work of Cournot competition (Anderson and

Neven, 1991), network structures (Economides , 1996), and labor market search and matching

(Wasmer and Zenou, 2006). My work differs in its emphasis on how the concept of distance

has changed over time for different industries. To focus on this issue directly, I do not

make location a choice as is typical in Hotelling-type models. I also limit my understanding

of “distance” to a single dimension. These simplifying assumptions allow me to use the

most important concepts from the Hotelling literature in an environment that is slowly but

steadily changing over time.

Empirically, the literature surrounding geographic distance as it pertains to economic

phenomena is surprisingly small. Hanson (2005) estimates a Krugman (1991) model using

US county-level data for wages, consumption, housing stock, and exports. He finds that

demand linkages between distant counties are growing between 1970 and 1990 (i.e. markets

1As examples, see Stahl (1982), Capozza and Van Order (1982), Economides et al. (1986), and Chang
et al. (1991).
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are expanding). Distance still takes a toll economic relationships, however, as counties over

1000 kilometers away demonstrate no significant economic linkages. Evans and Harrigan

(2005) finds that geographic distance determines the location of imports in a way that

reduces shipping times and inventories. Kvasnička et al. (2018) finds gasoline prices are lower

when stations are located close to each other, suggesting that even though the commodity

is essentially the same across locations, the market is local rather than national.

A separate literature, pertinent to this study, is focused on the narrower question of how to

measure economic distance. It is clear from many studies that geography is only part of what

comprises distance between firms and customers (or firms and other firms). Infrastructure,

for example, may reduce the impact of geographic distance on economic activity between

two regions. Conley and Ligon (2002) combine shipping rates with airline fares to estimate

an infrastructure-weighted distance between countries. They use the resulting cross-section

of distance to explain patterns in economic growth rates. Tsang and Yip (2007) measure

economic distance as the difference in real GDP per capita between two countries, suggesting

that developed countries are more distant to undeveloped than to other developed countries.

They find that FDI hazard rates are lower in more distant countries, whether more or less

developed than the host country. Yitzhaki (1994) uses the amount of overlap areas in two

neighboring distributions to infer a measure of economic distance between industries with

varying degrees of similarity.

Alternative theories as to the fundamental cause of market concentration certainly exist.

Lucas (1978) suggests that firm size simply mirrors the distribution of managerial talent.

Luttmer (2007) points to a process where successful firms invest in productivity improve-

ments and smaller/newer firms imitate the larger firms. He concludes that, in the context of

his model, the US distribution of firm size is the result of costly firm entrance costs... Coad

(2010) finds a model of random growth, when combined with an accurate distribution of

firm age, effectively matches the observed distribution of firm size. These studies differ from

mine in that my interest is dynamic in nature. Rather than explaining the market funda-
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mentals that might create a particular distribution of firm size, I am interested in how those

market fundamentals are changing over time in a way that describes the observed trends

in market concentration over time. Technology certainly has played a role in facilitating

market expansion for some industries. Sinai and Waldfogel (2004) examines the extent to

which the internet removes geographic barriers. Goldmanis et al. (2010) study a number of

niche retail industries and show that the advent of e-commerce within these industries affects

the distribution of market shares. In every case, a consequence of the technologically-driven

market expansion is a production sector that has fewer, but larger firms.

2.3 Examples of Market Size and Market Concentration

While my study is not focused on a particular industry, there are several industry-specific

examples of market expansion leading to higher levels of market concentration. Each of these

examples have their own literatures (with larger literatures when data is publicly available).

I make no claim to cover all known episodes of industries that have been transformed by

expanding markets, but include a sufficiently diverse set of examples to make a convincing

argument that this phenomena is not limited to particular industries. I include examples

from several US industries where markets have expanded dramatically by a combination of

policy and technology including commercial banking, retail, brewing, and media/publishing

industries. I also examine international markets in the wake of trade liberalization.

2.3.1 US Banking Deregulation

One striking example of market expansion is the US commercial banking industry. Prior

to the 1994 Riegle-Neal Interstate Banking and Branching Efficiency Act (IBBEA), state-

chartered banks were not able to establish out-of-state branches except for in states which

specifically allowed it. Throughout the 1970’s and 1980’s, these barriers to interstate branch-

ing were removed by individual states until 1994 when the IBBEA removed all remaining

barriers. As these barriers were removed, local banks suddenly faced competition from out-
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of-state banks.2 Figure 2.1 shows that in 1993, about 90 of 14,000 FDIC insured institutions

operated interstate branches. In the years following, banks have exited rapidly while the

number of banks with interstate branches has dramatically increased. In 2017, 711 of only

6,000 FDIC banks had interstate branches.

Figure 2.1: FDIC Institutions and Interstate Branching over Time
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Source: author’s calculations from FDIC Statistics on Depository Institutions data,
Q1 values only. The red (dashed) line shows the number of FDIC insured institutions
over time. The blue (solid) line shows the number of FDIC insured institutions with
branches in multiple states over time.

The rapid exit of banks should not be confused with a lack of demand for banking services.

Figure 2.2 shows the volume of assets held by the 4 largest banks (blue) and all other banks

(green). Assets steadily increase from 1993 on, but have become increasingly concentrated

among a small number of large banks. In 1993, the largest 4 banks hold about 11% of total

assets. In 2017, the largest 4 banks hold about 40%.

Other studies provide further evidence of an increased market. Petersen and Rajan

(2002) show using data from the National Survey of Small Business Finance, firms with

2For a history of the regulations on interstate banking, see Kroszner and Strahan (1999). For state-level
details on deregulation process, see Strahan (2003). For a general survey of banking deregulation, see Levine
(2005).
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Figure 2.2: Asset Share of the Four Largest Commercial Banks over Time
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Source: author’s calculations from FDIC Statistics on Depository Institutions data,
Q1 values only. The green region shows the volume of total assets owned by the four
largest FDIC insured institutions, as measured by total assets. The blue region shows
the volume of assets owned by all other FDIC insured institutions.

credit relationships established between 1973 and 1979 are located an average of 51 miles

from their creditor. By comparison, firms entering into credit agreements between 1990 and

1993 did so with creditors located an average distance of 161 miles away. “While our evidence

indicates that small businesses continue to use their local banks for deposit transactions, the

effective size of the credit markets faced by small firms is continuously expanding” (pages

3-4, emphasis added).”

While this market expansion occurred while states were removing barriers to interstate

banking, policy was certainly not the only driver. Many studies, including Senzel (1992),

Rollinger (1996) and Kroszner and Strahan (1999), show improvements in technology to be

key drivers in this market expansion, and facilitated the ensuing changes in policy. Technolo-

gies including the Automatic Teller Machine (ATM), electronic transfers, and the availability

of banking services via phone and mail-order removed or diminished many of the geographic

barriers that were protected by regulations on interstate branching. More recently, the ad-
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vent of online banking has continued to redefine “local” as a requirement for consumers

choosing among different bank service providers (See Lambrecht et al. (2006), Allen et al.

(2008)).

The consequences of increased market concentration within the US banking industry are,

at least initially, beneficial to consumers of banking services. Black and Strahan (2002) and

Chava et al. (2013) find small-business have increased access to capital as a result of removed

interstate banking restrictions and increased competition. Cetorelli and Strahan (2006)

support these findings, but also points out that a concentrated banking sector is detrimental

for firms’ access to capital. In this case, the immediate advantages of deregulation would

diminish over time as the number of banks decreases. See Berger et al. (2004) for an extended

survey on the consequences of increased market concentration among commercial banks.

2.3.2 Retail

US retail has evolved in dramatic ways over the past 15 years. In 2002, there were 11,265

firms selling books, periodicals, and music (NAICS code 4512). Of these, the four largest

firms made up nearly 49% of industry revenue. In 2012, the were 4125 firms and the four

largest firms account for over 66% of industry revenue (US census). Books stores, both large

and small, point to e-commerce as a reason for their demise (Herman (2001), Weisman

(2004), Hooper and Rawls (2014)). Goldmanis et al. (2010) finds that, due to how online

classification of online retailers, it is difficult to confidently measure the impact of online sales

on the success and survival of brick-and-mortar establishments. Zhu (2001) points to the

internet as the primary reason for the collapse of the brick-and-mortar movie-rental business.

Using phone book data, Zentner (2008) finds a causal relationship between the introduction

of broadband Internet services and increased exit rates of music specialty stores.

The same trend exists, to varying degrees, for retailers selling furniture, electronics,

building materials, and clothing. Figure 2.3 depicts the change in CR4 against the change

in the number of firms between 2002 and 2012. For context, I also include panels for FIRE
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Figure 2.3: Changes in CR4 vs Changes in Firm Counts by Industry Subgroups
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(finance, insurance, real estate), utilities/transportation, and information/accommodation.

Note that in the panel for retail, nearly all of the sub-industries are located in the upper-

left quadrant with a positive change in CR4 and a negative change in the number of firms.

This shows that between 2002 and 2012, a net positive number of retail firms exited and

the largest firms increased their market share. The only exception is NAIC group that

experienced a decrease in CR4 is 451, the group for food and beverage retailers. The only

group to experience a large increase in the number of firms is NAIC group 454, which is the

group for “nonstore retailers” which includes electronic stores. The decrease in the number of

retail firms in most industries, then, is not because retail is becoming less popular. Retailers

are simply adopting more “nonstore” business models which include electronic and mail

order businesses that can compete compete across wider geographies.

The same cannot be said of other all other industries. In the panels for FIRE, infor-

mation/accommodation, and utilities/transportation, NAIC groups experience a more bal-

anced change in CR4. For FIRE and industry/accommodation, nearly half of the NAIC

groups are less concentrated in 2012 than they were in 2002, as measured by CR4. In util-

ities/transportation, 3 of 10 NAIC groups experienced a decrease in market concentration

while in retail only 1 in 12 NAICS groups experienced a decline in concentration. For changes

in the number of firms, more than half of the non-retail NAIC groups demonstrate in increase

in the number of firms between 2002 and 2012. While these non-retail industries experienced

many changes between 2002 and 2012, they did not experience a dramatic market expansion

as was observed in retail.

2.3.3 Trade liberalization

One simple way that markets can increase in size is by removing barriers to trade with

neighboring markets. There are many types of policies which can accomplish this, including

the removal of tariffs and quotas, entering into trade agreements or economic unions, or by

developing new infrastructure to facilitate larger trade volumes. Here I detail a number of
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well-studied policies and their affect on market size/concentration, measured in various ways

over various economic studies.

The North American Free Trade Agreement (NAFTA), established in 1994, created a

trade bloc between Canada, the United States, and Mexico. Over the next 10 years, nearly

all remaining tariffs between the three countries were eliminated. In removing these barri-

ers to trade, exporting firms simultaneously faced larger markets for selling their products

and increased competition from imports. According to several studies, the years following

NAFTA saw increased exit rates among smaller and more highly leveraged firms (Head and

Ries (1999), Gu et al. (2003), Baggs (2005), Colantone et al. (2008), Lileeva (2008)). In ad-

dition to firm exit, Breinlich (2008) points to an increase in mergers and acquisition activity

as a source of increased market concentration following Canadian-US trade liberalization.3

The exit of firms in this setting does not necessarily suppress total output. As described in

Melitz and Ottaviano (2008) and Melitz (2003), firm exit is simply the result of increased

competition. In smaller markets with fewer competitors, firms can operate with some in-

efficiency and still remain profitable. When the market expands and new competition is

introduced, resources will be reallocated to the firms that can produce most efficiently.

Increases in firm exit rates following the enactment of trade liberalization policy is cer-

tainly not limited to the US and Canada. Looking at US manufacturing plants and a

cross-section of US trading partners, Bernard et al. (2003) estimates a 5% reduction in ge-

ographic barriers to trade would lead to a 15% increase in trade as well as the exit about

3% of firms. Breinlich (2008) finds results comparable to the NAFTA literature using data

from Columbian manufacturing plants in the 1980’s and 1990’s. Álvarez and Claro (2009)

also find similar results looking at Chilean manufacturing plants. In all of these studies,

the removal of trade barriers resulted in larger markets which ultimately resulted in a more

concentrated market as less efficient firms struggle in the face of increased competition.

3See Long and Vousden (1995) for another example of trade liberalization preceding an increase in mergers.
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2.3.4 US Breweries and Mass Advertising

According to Gokhale and Tremblay (2012) and Swaminathan (1998), in 1935 there were

about 766 major breweries in the US. Of these, the largest four firms accounted for about 11%

of total sales. In 2012, there are only about 20 breweries and the largest four firms collect

over 90% of total sales. Several studies, including George (2009), Lee and Tremblay (1992),

and Färe et al. (2004) point to nationalized television campaigns and improved delivery and

logistics that allowed firms to increase the potential size of their market. As the size of the

market increased, the additional competition forced competitors to exit or merge with other

firms. Bhuyan and McCafferty (2013) shows that the dramatic change in market structure

affects the profitability of these firms.

An important response to this increased market concentration is the emergence of a thriv-

ing micro-brewing industry (Tremblay et al., 2005). As described in Cabras and Bamforth

(2016), local breweries are able to enter and successfully compete with national incumbents

by offering a product that differs in some meaningful way. By inserting a degree of differen-

tiation (distance) between themselves and their competitors, these firms are able to recover

some of the advantages they experienced in a smaller, more isolated market.

2.3.5 Broad Trends in US Firm Dynamics

In addition to the specific examples mentioned above, there is a separate literature show-

ing that since at least the 1970’s the US has trended toward a distribution of larger and older

firms. In other words, the US economy as a whole is becoming increasingly concentrated.

Decker et al. (2013) documents this trend and shows that over several decades the trend is

evident in all geographies and industries. Reedy and Strom (2012) and Pugsley and Sahin

(2015) show the shift can be attributed to a declining startup rate. Davis and Haltiwanger

(2014) document a decreased frequency of IPOs and decreased labor-market mobility. Mol-

loy et al. (2016) claims that the trend is only partly explained by concurrent demographic

trends and argues that a substantial portion of the trend is still unexplained. My claim is
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that market expansion would facilitate this increase in concentration.

2.4 Model

Time is discrete, infinite, and indicated by t. The number of active firms is given by Nt.

Each firm has a location denoted by xi ∈ [0, 1], which allows for some notion of distance

between firms in the spirit of Hotelling (1929). Distance can be interpreted geographically,

but can also be thought of more broadly as differences in product offerings or customer

populations.4 For brevity we simply refer to all visible differences between firms as “distance”

and assume firms all create the same product. The distance between firms i and j is given

by the distance metric d(xi, xj), which satisfies the mathematical properties of a distance

metric.

Distance between firms is important in determining each firm’s market-clearing price.

Prices are set via an inverse demand function that parametrically accounts for the output of

all other firms, weighted by distance.

pi,t =

(
N1

Nt

)(
χ− ψ

N∑
j=1

w(xi, xj;h)qj,t

)
. (2.1)

Here, ψ is the slope of the inverse demand curve. The weighting function w(xi, xj;h) :

[0, 1]2 → [0, 1] is non-negative, symmetric, and integrates to 1. Under these assumptions,

w(xi, xj;h) belongs to the generic family of kernel functions used in many statistical applica-

tions. The parameter h specifies the distance at which firms no longer are able to influence

each other. As this parameter increases, firms find themselves subject to competition from

increasingly distant firms. The term N1

Nt
scales market share according to the number of ac-

tive firms, such that surviving firms acquire a share of the market deserted by exiting firms

and lose market share when a new firm enters. Due to this term, the size of the market is

4Capozza and Van Order (1982) shows that product differentiation within monopolistic competition
models can be achieved using spatial distance. While a single dimension is sufficient for my purposes, others
studies, such as Phlips and Thisse (1982), allow for multiple dimensions of product differentiation.
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unchanged by the number of participants (See Appendix B.3 for additional details).

This pricing function implicitly assumes a distribution of households making decisions

regarding which of several firms to transact with. As with a standard Cournot oligopoly

model, it is not necessary to model the household explicitly as the sum of all preferences,

constraints, and environmental conditions affecting the households are captured in the inverse

demand function. The fact that my model generates a distribution of prices is justifiable

in the presence of distance as a friction. In a frictionless environment, no household would

optimally transact with a firm selling output at a higher price than another firm and the

distribution of prices would collapse to a single market-clearing price. In my environment,

however, geographic distance alters household decisions such that households can optimally

transact with a firm even if its price is not the lowest.

2.4.1 Production and Profits

At the start of each period, each firm observes its private capital stock kt as well as an

idiosyncratic productivity shock zt. Productivity shocks follow an AR(1) process.

zt+1 = ρzzt + εt (2.2)

Output is given by the following production function:

qt = ztf(kt) (2.3)

where f(·) satisfies f ′ > 0, f ′′ < 0, and f(0) = 0. As all inputs are observed at the start

of the period, output within the period is deterministic. Firms can only influence future

earnings profits by choosing how much new capital to invest each period, denoted by it.

Capital depreciates at rate δ and evolves according to a standard law of motion
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kt+1 = kt(1− δ) + it, (2.4)

(2.5)

Firms face a per-unit cost c to manufacture a unit of output. Additionally, firms must

pay a fixed cost cm each period to stay open. The fixed cost can be thought of as overhead

expenses, and is helpful for creating an environment in which firms will potentially choose

to exit.5 The firm’s profit period t is consequently given by

πt = ptqt − cqt − it(1 + r)− cm (2.6)

Here r is an exogenous interest rate that applies when revenue net of operating costs is

negative and hence borrowing is necessary. I set r to a high value such that borrowing is

possible but rarely optimal. The presence of a “soft” borrowing constraint is computationally

convenient, but will also allow new firms to successfully enter without an existing capital

stock.

2.4.2 Expectations over Variables Associated with Neighboring Firms

In a rational expectations setting, each firm would have to know both the productivity

and capital holdings of all other firms in order to accurately predict future states of the

world. This is clearly intractable (and unrealistic) for more than a small number of firms.

Here, I focus on a boundedly rational setting in which a firm only uses weighted aggregate

output as a state-variable. Let Qi be the weighted sum of output from firms neighboring

firm i.

Qi =
∑
j 6=i

wj(xi, xj;h)qj (2.7)

5This is a standard feature in many labor-market models with endogenous firm exit. See Hopenhayn and
Rogerson (1993).
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How this variable will evolve over time is not at all clear. When the number of neighboring

firms is small, or when a neighboring firm has a relatively high weight aggregate output

Qi will be highly correlated to the output of the closest neighboring firm. When a firm

has several equally sized neighbors, it’s possible that Qi could stay close to the mean of its

stationary distribution. It’s also possible for the volatility of Qi to change as firms enter

or exit. Potentially changing volatility rules out simple forecasting rules as in Krusell and

Smith (1999) as well as constant values for Qi as in models like Huggett (1993) or Hopenhayn

and Rogerson (1993). Consequently, I adopt a näıve expectation rule under which a firm

observes Qi,t and expects that the value of Qi,t+1 will be the same

E (Qi,t+1) = Qi,t. (2.8)

As it is present in equation 2.1, the share of surviving firms
(
Nt
N1

)
is another state variable

associated with neighboring firms. Since N1 is fixed, this leaves Nt as the only variable firms

need to observe each period. As I do with output, I assume firms only observe the share

of surviving firms instead of tracking the activity of individual firms (even firms in close

proximity). Firms assume the future value of Nt is the same as observed within the period.

E (Nt+1) = (Nt) . (2.9)

These simplifying assumptions make this model solvable, but also remove opportunities for

strategic policies as in Guillén and Pinto (2007). Under näıve expectations, a firm ignores

the interaction between its decisions and the the decisions of other firms which may not be

realistic when the number of firms is small. While this assumption simplifies my equilibrium

concept considerably and allows the model to be solvable even for large values of N , it

comes at the expense of a rich set of collusive or otherwise strategic policies. There are

methods for solving dynamic models with heterogeneous firms, such as those presented in

Ericson and Pakes (1995) Pakes and McGuire (2001) for finding Markov Perfect equilibria.
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These solution methods, however, do not scale with the number of firms. To overcome this,

Weintraub et al. (2008) proposes a new equilibrium concept which allows firms to remain

oblivious to the states of other firms and focus instead on the aggregate states of the economy

– even in a strategic setting. Unlike Weintraub et al. (2008), however, firms in my model do

not necessarily perceive the same aggregate state of the economy (Qi,t, while an aggregate

variable, differs across firms due to their different locations and proximities to other firms).

Like Krusell and Smith (1998) and Krusell and Smith (1999) firms make their decisions based

on aggregate observables which allows their model to include a large number of firms without

increasing the dimensionality of the state space. The key characteristic that distinguishes

these boundedly rational approaches from more traditional full-information approaches is

that boundedly rational solution methods base expectations on aggregates or patterns which

summarize available data rather than keeping track of every data point individually. My

solution method follows this boundedly rational tradition by assuming firms focus on simple

aggregate statistics Qi,t and Nt rather than attempting to monitor an ever-increasing state

space as the number of firms increases (an assumption that is both intractable and unrealistic

for a large number of firms).

It is important to note that forming expectations in this way, while computationally

important, can result in wildly cyclical short-term behavior if those expectations are ever

wildly incorrect. In my simulations in Section 2.5.3 I push the model to these extreme

scenarios by dramatically changing the parameter h over a short number of periods. These

cycles still occur around clearly discernable long-run trends, however, and these long-run

trends are my primary interest as changes in market concentration typically take place over

several decades. To ensure the model had more realistic short-term dynamics, one would

only need to form expectations in a way that considers a longer-term average value for Qi,t

and Nt instead of simply taking the previous values and ignoring the previous history.
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2.4.3 Entry

Firm entry is modeled in a fashion comparable to Hopenhayn and Rogerson (1993). At

the start of each period, each firm in a pool of potential entrants draws a location xi along

with an idiosyncratic productivity shock zt. As neighboring firms produce, potential entrants

can observe the output of neighboring firms and all other variables observed by active firms,

Qi and Nt. At the end of the period, potential entrants decide whether to pay a one-time

entrance fee ce and become an active firm. The firm has no capital, but can borrow to

acquire it which will enable production the following period. The new entrant must also pay

the operating fee cm, required by all active firms. New entrants will not produce within the

period, as their period t capital holdings are zero. Consequently, entering firms knowingly

incur a loss within the period but expect to earn positive profits in the future.

Altogether, the within-period profits for new entrants is given by

πe(it) = −it(1 + r)− cm − ce. (2.10)

Rather than track potential entrants over time, I assume potential entrants which choose

to not to enter the economy exit the pool and are replaced by a new population of potential

entrants. This is done without any loss of generality as the distribution of zt shocks is

stationary. The decision to enter is denoted by ẽt ∈ {0, 1}, where ẽt = 1 represents a

decision to enter.

2.4.4 Exit

At the end of each period, after earnings are realized, a firm makes a binary choice

concerning whether it will continue to operate. This decision is denoted by et ∈ {0, 1}. Due

to the persistent nature of productivity and capital, as well as the fixed cost for remaining

active, there are some states in which a firm will anticipate an extended duration of negative

profits. If these negative profits are severe enough, a firm will find it optimal to exit. Existing
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capital is discarded at no cost.

An important consequence of firm exit is that nearby surviving firms will realize higher

prices and profits for the same level of output. The exiting firm no longer enters into the

inverse demand function of the surviving firms. As firms continue to exit, the surviving firms

will come closer to targeting monopolistic levels of output. As this happens, the departure

of firms should decelerate and the economy should reach a stable distribution of firms.

New entrants will also make an exit decision, but will never actually choose to exit as

they have no new information at the end of the period as they did at the start. Any firm

with a high enough zt value to enter cannot simultaneously expect an extended future of

losses low enough to motivate an exit.

2.4.5 Dynamic Optimization

The firm’s problem is to maximize expected profits over its lifetime, which is potentially

finite if the firm chooses to exit. Firm’s face no cost after exiting, so the firms value function

value upon exit, denoted by Jexit, is simply 0.

Jexit = 0 (2.11)

The value function for active firms, given by J , includes profits for the current period in

addition to a continuation value. If a firm remains active by choosing et = 0 the continuation

value will be given by J . If the firm chooses et = 1, the continuation value will be equal to

Jexit. Altogether, the firm’s problem is given by

J(zt, kt, Qt, Nt) = max
it,et

πt(zt, kt, Qt, Nt) + β ((1− et)Et [J(zt+1, kt+1, Qt+1, Nt+1)] + etJexit)
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subject to the following set of constraints

E (Qi,t+1) = Qi,t (2.12)

E (Nt+1) = Nt (2.13)

kt+1 = kt(1− δ) + it (2.14)

zt+1 = ρzzt + εt (2.15)

The firm’s problem for potential entrants differs slightly. Let Je denote the value function

for potential entrants and ẽt ∈ {0, 1} the decision to enter or not. When a potential firm

enters, ẽt = 1 and the new firm receives πe(it) within the period and J as a continuation

value. When potential entrants who do not enter, ẽt = 0 and the firm leaves the pool of

potential entrants with a continuation value of zero, Jexit

Je(zt, kt, Qt) = max
it,ẽt

ẽt(πe(it) + βEt [J(zt+1, kt+1, Qt+1)]) + (1− ẽt)Jexit (2.16)

subject to kt = 0 as well as (2.8), (2.9), (2.4), and (2.2).

2.4.6 Equilibrium Concept

As a result of näıve expectations, a single firm’s actions have no expected impact on its

neighbors. Consequently, I can ignore strategic interactions between firms and make use of

a simple recursive equilibrium concept.

Definition II.1. For a set of variables kt, Qt, and zt, a recursive equilibrium is defined as a

set of policy functions et(kt, Qt, zt), ẽt(kt, Qt, zt), it(kt, Qt, zt) and firm-specific price functions

pt(qt, Qt) such that both active firms and potential entrants maximize their lifetime expected

earnings J(zt, kt, Qt) subject to equations (2.8), (2.9), (2.4), and (2.2).

Verifying the existence of an equilibrium is straightforward since the inverse demand

curves are taken as given for each firm. Since the production function is concave in capital
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and marginal costs increase linearly with output, there must exist an optimal level of capital

that would maximize long term profits. Since firms form näıve expectations for total output

in their neighborhood, firms cannot anticipate the consequences their actions may have on

the firms around them. Consequently, there are no strategic complexities to consider. If firms

developed forward looking expectations for aggregate output in their neighborhood, however,

the model would become a repeated game in which firms may attempt to overproduce in the

short-run to drive out competition and achieve long-term gains.

2.5 Quantitative Results

Here I provide a brief overview of my solution method. A detailed description of how to

solve the model is included in Appendix B.1. Additionally, all code and programs used in

solving the model are included with documentation at https://github.com/btengels.com.

2.5.1 Model Calibration

Since firm location is projected onto a single dimension, I use a simple distance function

d(xi, xj) = |xi − xj|. This distance function enters the model only through the weighting

function w (equation (2.1)). Distant firms will have a proportionally smaller impact on a

firm’s price in comparison to competing firms in close proximity. The functional form I

choose for w is a triangular kernel function. With this functional form, competitor weights

linearly diminish with distance until a certain maximal distance is reached. The results were

found not to change in any important ways under alternative kernels such as a parabolic

weighting function. The equations for this weighting functions are included in Table 2.1, and

Appendix B.3 includes details how the resulting weights vary with the bandwidth parameter

h. Weights are weakly positive, such that if a competitor for a given firm is too distant the

resulting weight is zero.

In order to maintain focus on the novel model ingredients, the remaining elements and

assumptions of the model are set to values typical to macroeconomic studies. The produc-
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Table 2.1: Model Calibration

Value
Functional Forms:

Production function f(kt) = kαt
Distance function d(xi, xj) = |xi − xj|
Competitor Weighting Function w(xi, xj;h) = max

{
0,
[
1− d(xi,xj)

h

]}
Model Parameters:

Discount factor β 0.98
Depreciation rate δ 0.02
Production function curvature α 0.5
Productivity autocorrelation ρz 0.98
Productivity volatility σz 0.05
Slope of inverse demand function ψ 0.5
Marginal cost c 0.1
Operating cost cm 0.4
Entry cost ce 0.3
Initial number of firms N 100

tivity of capital is given by f(kt) = kαt with α ∈ (0, 1). I assume each period corresponds to

a quarter and consequently set the discount factor β to .98 and the capital depreciation rate

δ to .02. As my model has no exogenous aggregate uncertainty, I choose parameters for the

evolution of zt such that the idiosyncratic volatility of firm output is similar to Hopenhayn

and Rogerson (1993).6

2.5.2 Model Solution

To find the optimal policy functions, I set up a discrete state space for productivity z,

capital k, and the weighted sum of competing output Q. I compute the transition probabili-

ties between different productivity states using the method outlined in Rouwenhorst (1995).

I similarly approximate the choice variable i using a discrete grid (choice variable et is al-

ready discrete). See Appendix B.1 for a more detailed description of my solution method,

6Aggregate uncertainty still exists in the model due to firm entry and exit. This, however, is entirely
endogenous.
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as well as parameters governing idiosyncratic productivity for firms.

At each possible state, I compute the period t profits for each possible (z, k,Q, i) com-

bination. On this feasible set, I use value function iteration to solve for the values of J

satisfying the firm’s problem.

2.5.3 Model Simulations

I solve and simulate the model under 3 main scenarios, detailed in Table 2.2. Simulations

feature 100 initial firms with locations randomly drawn over the [0, 1] interval. Simulations

begin after a sufficiently long burn-in period and continue for 300 periods after burning in.

Each parameterization is simulated 5000 times so as to generate a comprehensive range of

outcomes.

Each of the three scenarios explores a different path for h over time. In every simulation,

however, h begins at a very small value of 1e−8, which is small enough that firms act as

local monopolists. Then h transitions to larger values of .01, .03, and .05, respectively, in the

first, second, and third scenarios. In the first case, h quickly jumps to these higher values

in imitation of a legal or policy changes occurring over 25 quarters. In the second case, h

increases linearly over 60 periods. In the final case, h increases gradually over 150 periods,

in imitation of demographic or technological changes which increase market size gradually

over several decades.

Table 2.2: h values in simulations
Description Final value

Scenario 1 Linear increase (25 periods)
.03
.06
.1

Scenario 2 Linear increase (60 periods)
.03
.06
.1

Scenario 3 Linear increase (150 periods)
.03
.06
.1
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The results for the first scenario are shown in Figure 2.4. Short term movements are

denoted in light colors while long-term trends, my primary focus, are denoted in darker

colors. Initially, all firms act as monopolists and share a common price. Then prices drop

rapidly from t = 1 to t = 25 as h increases and firms face increased competition from

neighboring firms. Simulations with larger values of h demonstrate more severe decreases in

price. Once h stops increasing at t = 25 prices change much more slowly, decreasing slightly

over the final 250 periods.

As prices decrease, so does the number of active firms. In simulations where h increases

to .03, the number of active firms stabilizes near 65. Larger increases in h result in fewer

active firms, with an average of 60 and 55 active firms resulting from h increasing to .06 and

.1, respectively. Once h increases, the number of firms begin to oscillate from one period

to the next. The severity of these oscillations is greater for larger increases in h, and is a

natural consequence of the backward-looking expectations in (2.9). Since all active firms and

potential entrants observe the same number value for Nt and expect the same value in the

following period, they are all surprised the following period to find more (less) active firms

the following period than expected. As firms expect this new value of Nt for the following

period, some firms will exit (enter) and the economy will return to the state it was two periods

prior. When h increase by small amounts between periods, these näıve expectations are

correct enough to avoid any kind of hog-cycle. Alternative methods of forming expectations

(e.g. moving average or some linear function fit to historic values) would yield more stable

results. Even with these oscillations, however, the long-term relationship between market

size and market concentration is still apparent.

Firm entry and exit rates are substantial, especially for simulations where the final value

of h is large. In the long-run when there are about 60 active firms, nearly 40 firms are

exiting/entering the economy each period. Only firms with very fortunate positions xi and

productivities zi,t survive for more than a few periods.

Average output per firm steadily decreases while the economy transitions to higher values
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Figure 2.4: Scenario 1: Increase in h over 25 quarters
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Lightly colored lines are the average period t value across all simulations. The darker
colored lines are a 3 period centered moving average and denote the long-term trends
which are my primary focus. The vertical dashed line denotes when h finishes expand-
ing.

of h. Once h stabilizes, however, and both prices and the number of active firms reach a

more consistent range of values, output per firm begins to steadily increase as firms scale up

to serve larger markets. Overall, the changes in output per firm are minor compared to the

large changes observed in price and in the number of active firms.

Finally, market concentration as measured by CR4 rapidly increases as h increases. In a

monopolistic setting, the four largest firms account for about .04 of total output (there are
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100 firms initially). In these simulations, CR4 increases to values of .13, .25, and .35, as h

increases to .03, .06, and .10, respectively. Some of this is the natural consequence of having

fewer firms. If all active firms were approximately the same size, however, the resulting CR4

values for these simulations would be between .06 and .07 given the long-run number of active

firms. A CR4 value of .35, then, suggests that some firms have become disproportionately

large following an increase in market concentration while other firms continue to operate at

a much smaller scale.

In the second scenario, shown in Figure 2.5, h begins at monopolistic values of h = 1e−8

and linearly increases to values of .03, .06, and .010 over a longer time frame of 60 quarters.

While the simulations are similar in many ways to those in the first scenario, there are

also several differences. One notable difference is the smaller oscillations in the number of

active firms. This is because the slower changes in h allow firms to more correctly form

expectations over the number of active firms. As in the first scenario, increasing h decreases

prices as markets become more competitive. This leads to an increase in firm exits and

market concentration. Even though h increases less rapidly than in the previous case, the

long-run values for endogenous values are mostly the same as in scenario one. Importantly,

the average CR4 within my simulations for this scenario is several times higher than it would

be if all firms were approximately the same size at the end of the simulation.

The results from the third and final scenario are shown in Figure 2.6. This scenario has

the same initial values and ending values for h as the other scenarios, but in this scenario

h increases slowly to its final value over the course of 150 periods. This is in imitation of

markets increasing from slow changes in demographics or taste.

As before, the long-run implications of an increase in h are the same as the previous

scenarios with a few key differences. With smaller changes in h from one quarter to the

next, expectations over Nt are more accurate and the model avoids large oscillations over

the number of active firms. Another trend that becomes more apparent when h increases

slowly is that even though h increases linearly, the response in prices is not similarly linear
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Figure 2.5: Scenario 2: Increase in h over 60 Periods
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Lightly colored lines are the average period t value across all simulations. The darker
colored lines are a 3 period centered moving average and denote the long-term trends
which are my primary focus. The vertical dashed line denotes when h finishes expand-
ing.

if h is sufficiently large. When h is increasing to it’s largest value of .10, prices decrease

gradually for the first 50 periods, then rapidly decline over the next 5 periods, and then

resumes a more gradual pace of decline until h stabilizes and prices hold steady at their

long-run values. Finally, a key difference between this scenario and the previous scenarios is

that the long-run average output per firm varies less for different values of h than in previous

scenarios where h increased more rapidly.
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Figure 2.6: Scenario 3: Increase in h over 150 Periods
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Lightly colored lines are the average period t value across all simulations. The darker
colored lines are a 3 period centered moving average and denote the long-term trends
which are my primary focus. The vertical dashed line denotes when h finishes expand-
ing.

As a final exercise, I examine the long-run values of CR4 and the number of active

firms over a greater range of terminal h values. The results are shown in Figure 2.7 I

find that while the number of active firms decreases monotonically as h increases, market

concentration as measured by CR4 does not similarly increase. Instead, CR4 increases with

h up until h = .11 at which point it begins to decrease with h. Even though there are fewer

firms, the distribution of output across firms is more uniform for h > .11. This is because
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Figure 2.7: Key Long-run Values vs h

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

h parameter value
0

20

40

60

80

100

N
um

be
r 

of
 A

ct
iv

e 
Fi

rm
s

Number of Active Firms vs h

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

h parameter value

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
R

4

Long-run CR4 vs h

Long-run values are computed as an unweighted mean of the final 10 periods across 70
simulations.

larger values of h tend to decrease prices. Initially, these decreased prices force inefficient

firms to exit. The decreased prices, however, also mean that the largest firms will produce

less which pushes CR4 downward. As currently calibrated, the affect of decreased output

dominates for values of h > .11. This trend would eventually reverse if h continued to

increase as CR4 necessarily approaches 100 as the number of active firms tends to 4.

2.6 Model Interpretation

While the interpretation of h is clear in the context of this model, a realistic counterpart

is not immediately obvious. Market boundaries are not readily observable in most industries

and consequently difficult to measure or track over time. In light of these apparent difficulties,

I recommend a few directions to consider in thinking of an empirical counterpart of h.

One way to measure the strength of competition between two firms is to examine their

marketing efforts. If firms selling similar products are launching marketing campaigns in

the same locations and are targeting the same populations, then they would be considered

stronger competitors than firms with marketing campaigns in different locations. A simple

metric which accounts for the relative sizes of marketing expenditures is the Jaccard distance
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between the set of customers exposed to each marketing campaign.7 Similar distances could

be computed between sets of locations containing some physical presence of a firm or sets of

customers who have made visits to or purchases from a firm. The average distance between

firms over time would map to a value for h.

How this model applies to an industry will, of course, vary across industries. In Section

2.2 I described several industries where market expansion facilitated increased market con-

centration. In the context of the model in Section 2.4, each industry can be described in

part by the parameter h which determines the extent to which firms are in competition with

neighboring firms. The rate at which h changes differs across industries, as demonstrated

by the long and slow evolution of the brewing industry as compared to the relatively rapid

evolution of the US retail and banking sectors. Some industries such as utilities (see Figure

2.3), have no apparent change in market concentration in recent years. Goods and services in

this industry are, by nature, expensive to transport large distances. More specifically, water

and electricity are often sourced locally and have no “wireless” way of reaching customers as

in retail and entertainment industries. While it is impossible to anticipate how future tech-

nologies might change these industries, to date technology has not expanded utility markets

in dramatic fashion as seen in other industries. In the context of my model, new technologies

cause h to increase within an industry only if the technology enables goods and services to

reach customers more easily.

Finally, an econometrician must be careful to not simply call any increase in market

concentration the result of market expansion. A merger between two firms, for instance, may

have the effect of expanding markets and increasing market concentration simultaneously.

In my model, the causality is evident. In any empirical exercise, however, establishing the

direction of causality would be more difficult. One advantage of any specific industry-level

analysis is that available data on entry and exit rates can help discipline parameters such as

h, even if h is though to be changing over time.

7Jaccard distance is given by 1− S(A,B) where S(A,B) = A∩B
A∪B .
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2.7 Conclusion

It is difficult to understate the importance of understanding the causes and consequences

of market expansion. The steady transition from a large collection of small markets to a

small collection of large markets has important implications for financial industry, income

inequality, housing prices, and entrepreneurship, among other things. Even so, the literature

examining general patterns of market expansion is small in comparison to various industry-

specific literatures. This is likely due to the difficulty of measuring market size, especially

when changes occur gradually as the result of technological improvements or demographic

changes. In the absence of readily-available data, I motivate my theory by identifying a

common pattern which has played out across many different industries: as markets expand,

increased competition results in a smaller number of firms and a more concentrated industry.

This paper also takes a first step in developing a tractable, theoretical framework which can

be used to frame future discussions on market expansion and its consequences.

The model adds the notion of distance within a Cournot-like pricing function such that

nearby firms compete more aggressively than distant firms. Firms observe persistent pro-

ductivity shocks as well as the aggregate competitive landscape as it affects their market

clearing price. Firms make decisions each period regarding capital investments and whether

or not to exit the economy entirely. In one model version, a firm’s inverse demand function

is invariant to the exit of other firms. This acts as a point of comparison to another version

of the model in which inverse-demand functions shift out when firms exit to ensure aggregate

demand remains unchanged. The model parameterizes the notion of market size, allowing

me to examine the impact of market expansion on firm investment and exit decisions in

model simulations.

In my theoretical setting, I find that market expansion increases competition and cre-

ates downward pressure on prices. Firm exit, on the other hand, reduces competition and

consequently creates upward pressure on prices. In the version of the model when demand

curves shift outward among surviving firms, the accumulation of demand among surviving
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firms creates additional upward pressure. The relative strength of these competing forces

determines whether prices ultimately increase or decrease. I find that the magnitude of

market expansion, and not the pace of market expansion has an effect on long-run prices.

The effect is parabolic in nature, such that mid-ranged levels of market expansion increase

long-run prices while small and large amounts of market expansion result in lower long-run

prices.

As this model is novel in its treatment of market expansion, there are many opportunities

for future research. Here I detail three possible paths for future work. The first would be to

consider the affect of market expansion on firm entry. In a model with market expansion,

increased competition would likely reduce firm entry rates and create a net decline in the

number of active firms. This would provide some theoretical underpinnings to the largely

empirical literature on declining entrepreneurship rates (see Decker et al. (2013), Decker

et al. (2014), and Davis and Haltiwanger (2014) for examples.) A second opportunity for

future research would be to use observed exit rates within specific industries and use a

model such as the one in this paper to back out the most likely path for h in order to

match the observed exit rates. One could then compare the quantified histories of market

expansion across industries and determine where the economy would be under a different

history. Finally, a third opportunity for future research would be to introduce a degree of

asymmetry in how firms experience market expansion. The introduction of an online retail

platform, for example, will expand h for all firms in the industry, but will also transfer

demand for output from the late adopters of the platform to the early adopters.
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CHAPTER III

Group Punishments without Commitment

3.1 Introduction

Teams exist in many economic settings, ranging from teams of individuals working to-

gether in clubs or firms, to teams of companies in the form of cartels and lobby groups, to

teams of nations in the form of political alliances and economic unions. In each of these

settings, teams aim to improve outcomes by coordinating efforts across members and are of-

ten successful in doing so. Organizing as a team, however, may also introduce moral hazard

problems, especially when team outcomes are shared and individual effort is not perfectly

observed.

In static environments of team production, Holmström (1982) shows the only way to

alleviate moral hazard problems is to rely on an outsider who can punish the entire team

following a deviation from any team member. Punishments take the form of throwing away

some share of the team’s output. Holmström (1982) argues that the intervention of an

outsider is also necessary to implement such punishments in a repeated environment, as

the team might not want to enforce these punishments once team production outcomes are

realized: “There is a problem [...] in enforcing such group penalties if they are are self-

imposed by the worker team. [...] Ex post it is not in the interest of any of the team members

to waste some of the outcome. But if it is expected that penalties will not be enforced, we are

back in the situation with budget-balancing, and the free-rider problem reappears.”
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In this paper, we ask if and under what conditions outsiders are truly needed to enforce

group punishments in a repeated context. In other words, we ask whether the ability of

individual team members to punish other team members in the future enables the team

to enforce group punishments which occur after aggregate outcomes are realized but before

the realization of individual payoffs in the current period. We call such within-the-period

punishments static group punishments. We show that, depending on the nature of the

payoffs that agents obtain from team production, the team can indeed enforce static group

punishments. In such cases, the threat of static group punishments is welfare enhancing

relative to an environment in which the team’s action set does not allow for static group

punishments.

We start our analysis from a generalized model of repeated team production, featuring a

team of agents and a benevolent Principal—a construct to represent team-wide preferences.

In our model, agents individually choose a level of effort to contribute to the realization of

a common outcome. After observing this common outcome, the Principal chooses a group

punishment (possibly zero) which negatively affects the common outcome. The Principal,

like the agents, cannot commit to a long-term strategy for group punishments. Since the

Principal’s action occurs after the common outcome is observed, the benevolent Principal

values period utility of all agents plus the sum of future discounted stage-game payoffs of all

the agents.

Our main contribution is to show that a broad class of repeated team production en-

vironments admits a simple, recursive characterization for the set of perfect-public equilib-

ria. Specifically, we show how to characterize the entire equilibrium set of our generalized

team production model using simple “carrot-and-stick” strategies for the worst perfect-public

equilibrium (as in Abreu (1986)). We show that group punishments reduce the gains from

deviations in the “carrot” phase, but increase the gains from deviations in the “stick” phase.

Therefore, deviations from the “stick” never call for the implementation of group punish-
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ments, further simplifying the recursive characterization of the equilibrium set.1

Our main findings are that static group punishments can be enforced by the threat of

future actions by team members ; and that the threat of static group punishments strictly

improves the best attainable equilibrium welfare relative to an economy where the Princi-

pal’s actions are restricted to never implement group punishments. Moreover, we show that

a necessary condition for static group punishments to improve welfare is the presence of

complementarities between aggregate outcomes and private actions in team members’ stage

game payoffs. We show that the total static deviation payoff (the total payoff that a deviant

team member obtains within the deviation period) can be expressed as the deviant’s static

private gain minus a cost to incentivize the Principal to implement group punishments. Ab-

sent complementarities between aggregate outcomes and private actions, group punishments

have no impact on this total static deviation payoff, and are therefore ineffective in deterring

individual deviations—an outsider à la Holmström (1982) is required to improve welfare.

Conversely, when team members’ private actions interact with aggregate outcomes group

punishments do reduce the total static deviation payoff by indirectly reducing team mem-

bers’ private incentives to deviate. In these cases, group punishments are useful to deter

individual deviations, and an outsider may not be needed to improve welfare.

Our findings in the generalized model indicate that in presence of complementarities

between aggregate outcomes and private actions, the Principal who lacks commitment (i.e.

the team) might be capable of replicating incentive schemes which do not satisfy budget

balancing without the aid of outsiders. In the second part of the paper, we apply our

generalized team production model to the repeated oligopoly model of Abreu (1986), and

ask which features of producers’ payoffs make self-imposed group punishments most effective

in improving team welfare—and therefore limit the need for an outsider. In the oligopoly

model, team members are producers individually choosing how much output to produce,

and the team outcome is the common price faced by all producers (a decreasing function of

1In the literature review, we argue that imperfect observability plays a key role in our recursive charac-
terization, making continuation payoffs independent of the identity of the deviator (Mailath et al. (2017)).
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aggregate team output). On the other hand, the group punishment imposed by the Principal

is a tax rate (possibly zero) which has the effect of reducing the price of producers’ output.

As in the generalized model, the Principal cannot commit to a long-term strategy for taxes.

Within the context of the oligopoly model, we first show that group punishments imposed

by the Principal are particularly effective in increasing team welfare for intermediate levels

of the producers’ discount factor. Intuitively, when producers are very impatient the threat

of future punishments is weak and only small group punishments can be sustained following

static deviations. For intermediate levels of the discount factor, the team can sustain large

enough static group punishments such that the threat of these punishments allows the team

to achieve the socially-optimal level of production. When producers are very patient, the

threat of future punishments is strong enough that the team can sustain the socially-optimal

level of production even without resorting to group punishments. Second, we show that for

a given level of the discount factor group punishments are more effective when producers’

output is highly substitutable. In these cases, deviations by individual producers have a

small impact on the common price, increasing producers’ static incentives to deviate, and

increasing the ability of group punishments to improve team welfare relative to an economy

where group punishments are not part of the team’s action set.

Related Literature Our paper is related to a large literature concerning moral hazard in

static team production settings. Alchian and Demsetz (1972) describe the opportunity for

team members to shirk and still receive compensation and the need for a principal to prevent

shirking. Holmström (1982) suggests a particular kind of contract in which a principal

withholds payment whenever output is below its socially optimal level. Other studies solve

the moral hazard problem by injecting a degree of competition among team members via

tournaments, rankings, or other relative performance measures (see Hart and Holmström

(1986) for a survey).

One of the main challenges in taking these static team production games to the infinitely-
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repeated domain is to characterize the set of perfect-public equilibrium payoffs. Mailath et al.

(2017) show that in a wide range of extensive-form games (including team production games)

the equilibrium set cannot be characterized using simple penal codes, because both within-

period punishments and continuation payoffs need to fit the identity of the deviator after a

deviation has occurred. In our paper, we assume that group punishments can only affect

team outcomes (due to imperfect observability), and show how under this assumption the

equilibrium set can be characterized using simple penal codes. In other words, we show that

simple penal codes can be used to characterize the entire set of perfect-public equilibrium

payoffs in a broad set of repeated extensive-form games featuring imperfect observability.

An alternative to group punishments is to allow agents to make side payments to each

other (Goldlücke and Kranz (2012, 2013)). This arrangement avoids costly forms of retalia-

tion when an agent deviates, and yet is still incentive-compatible since the non-deviant agent

receives a positive money transfer from the deviant. Harrington and Skrzypacz (2007, 2011)

describe how the lysine and citric acid cartels successfully used these types of contracts,

and employed monitors to audit the money-transfer process. This class of models offer a

recursive characterization of the equilibrium set using simple penal codes, but is limited to

teams of two agents or settings in which individual actions are observable.

More in general, our analysis is concerned with team production when a static game is

repeated for infinitely many periods. In this setting, agents have an opportunity to retali-

ate against the team in future periods if shirking is detected (Fudenberg and Maskin, 1986;

Ostrom et al., 1992). Moreover, in repeated settings enforcing the aforementioned mecha-

nisms of peer evaluations and relative performance rankings can become strategic problems

in their own right, as exemplified by Che and Yoo (2001), Fuchs (2007), and Cheng (2016).

Finally, our question bears some similarity to the “Who will guard the guardians?” question

examined in Hurwicz (2008), Rahman (2012), Aldashev and Zanarone (2017), and Acemoglu

and Wolitzky (2015) among others. Our setup differs slightly in that the guardian is the

team itself, and individual team members must be willing to retaliate against the team when
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group punishments are not enforced.

3.2 A Generalized Model of Repeated Team Production

We begin by describing a model of repeated team production where a benevolent Principal

can impose group punishments after observing aggregate deviations. We provide conditions

under which the Principal’s ability to impose static group punishments—defined as punish-

ments that occur after aggregate output is observed, but before currrent-period payoffs are

realized—can be sustained in equilibrium to increase the welfare of the team. Moreover, if

team members are sufficiently patient, the threat of these punishments can strictly increase

team welfare relative to an environment where the Principal’s actions are restricted to never

implement group punishments.

3.2.1 Stage Game

A team consists of n agents indexed by i = 1, . . . , n.2 Each agent chooses an unobservable

and nonnegative action ai ∈ R+, representing a level of effort. The cost of action ai is given

by c(ai), where c′(ai) > 0, c′′(ai) ≥ 0, and c(0) = 0. Moreover, we write

a−i = (a1, . . . , ai−1, ai+1, . . . , an) , a = (ai, a−i) ,

where the vector a constitutes an effort profile. An effort profile determines the aggregate

outcome of team production according to a generic outcome function x : Rn
+ → R+.

In addition to team members, a benevolent Principal (a construct for team payoffs)

observes the aggregate outcome x and chooses a group punishment τ ≥ 0 that reduces the

team’s aggregate outcome. A strategy for the Principal is therefore τ : R+ → R+. For

notational convenience, we define the final result of the team’s effort after the Principal

imposes punishments as the aggregate net outcome function `(a, τ), where ` : Rn+1
+ → R+.

2In what follows, we use the terms “agents”and “team members” interchangeably.
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We make two sets of assumptions on this aggregate net outcome function. First, `τ (a, τ) < 0,

where the subscript denotes the partial derivative of `(·) with respect to τ . This assumption

reflects the fact that in our model the Principal is just a construct for the team. Since the

only resource available to the Principal is the outcome of team production, the Principal can

never increase this outcome using group punishments. In other words, our first assumption

rules out external subsidies from the model. Second, to keep the analysis close to Holmström

(1982) we assume that for all i, j, `ai(a, τ) = `aj(a, τ) ≥ 0 and `aiaj(a, τ) ≤ 0, where the

subscripts again denote partial derivatives.

Finally, the net outcome ` is distributed among team members according to a predeter-

mined set of sharing rules {si}ni=1, where each si ∈ (0, 1) and

n∑
i=1

si = 1. (3.1)

To keep our analysis concise, we limit ourselves to cases where si = 1/n. This assumption

can be relaxed to other sharing rules as long as each si is constant and (3.1) is satisfied.

Team members have identical preferences over their share of the aggregate outcome.

Utility is given by π : R+ → R which satisfies standard assumptions π′(`) > 0, π′′(`) ≤ 0,

and lim`→0 π(`) = −∞. Additionally, utility from output interacts with individual effort

according to a function f : R+ → R+, which satisfies f ′(ai) ≤ 0 and f ′′(ai) ≤ 0. The function

f(·) represents possible interactions between the common payoff component, `(a, τ), and the

individual agent’s private effort ai, and its interaction with π (·) allows us to nest the Abreu

(1986) repeated oligopoly model within our generalized framework. In the oligopoly model,

π (·) and f (·) respectively correspond to prices and quantities. Prices, like output shares, are

common across all agents. Quantities, however, can vary across agents.3 In our more general

setting, one interpretation sees f(·) as part of a labor/leisure trade-off, while the cost function

c(·) reflects all other personal costs related to production. The important feature that f(·)
3The fact that oligopoly prices decrease in q while output shares increase in a is offset by f(a) decreasing

in a while q is increasing (in itself).
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captures is that private and public gains from effort have a nontrivial interaction. In this

general model, we can discipline this interaction more explicitly through our assumptions on

f(·). Later on, we remove this interaction and find that a principal has no ability to improve

outcomes.4

Since the Principal ignores sunk effort costs c(·), payoffs to the agents and Principal are

respectively

u(ai, a−i, τ) = π(si`(ai, a−i, τ))f(ai)− c(ai), (3.2)

w(a, τ) =
n∑
i=1

π(si`(a, τ))f(ai). (3.3)

3.2.1.1 Stage Game Equilibrium

A symmetric perfect-public equilibrium of the stage game consists of effort choices ai by

team members and a group punishment choice τ(x) by the Principal such that for every x,

τ(x) maximizes (3.3) and such that given τ and a−i, ai maximizes (3.2)

Since in a static setting it is optimal for the principal not to impose group punishments

(i.e. to set τ(x) = 0), the optimal effort aN of the static equilibrium, which we denote by

aN , is given by

aNi = argmaxai
[
π(si`(ai, a

N
−i, 0))f(ai)− c(ai)

]
. (3.4)

Note that facing the Principal’s optimal decision not to impose group punishments, the

socially-optimal level of effort a∗ which maximizes the sum of individual utilities is given by

a∗ = argmaxa

n∑
i=1

u(ai, a−i, 0). (3.5)

4The assumption that lim`→0 π(`) = −∞ is only needed when `ai ≥ 0 to ensure that the team members
can impose unbounded punishments on each other. On the other hand, the assumption that f ′(·) ≤ 0 is
necessary to guarantee the problem has an interior solution when `ai ≥ 0. More generally, the necessary
assumption for the repeated model of team production to have an interior solution is that sign(`ai) =
−sign(f ′). The assumption that f ′′(·) ≤ 0 is sufficient but not necessary to obtain our results, and allows us
to easily compare the generalized model with the repeated oligopoly model of Abreu (1986) in Section 3.3.
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In the following Lemma 3.2.1.1, we establish that the equilibrium level of effort of this

static game is smaller than the socially-optimal level of effort.

Lemma III.1. 0 < aNi < a∗i .

Proof. An individual agent’s first-order conditions yield

si`ai(ai, a−i, 0)π′(si`(ai, a−i, 0))f(ai) + f ′(ai)π(si`(ai, a−i, 0)) = c′(ai). (3.6)

The profile aN necessarily satisfies (3.6) for all agents i = 1, . . . , n. That is,

si`ai(a
N , 0)π′(si`(a

N , 0))f(aNi ) + f ′(aNi )π(si`(a
N , 0)) = c′(aNi ). (3.7)

The first order condition for the socially-optimal level of effort, on the other hand, implies

that for all i

c′(a∗i ) = si`a(a
∗, 0)π′(si`(a

∗, 0))f(a∗i ) + f ′(a∗i )π(si`(a
∗, 0)) (3.8)

+
∑
j 6=i

sj`ai(a
∗, 0)π′(sj`(a

∗, 0))f(a∗j).

Conditions (3.6) and (3.8) differ by an additional term in (3.8). This extra term represents

the positive externality of one agent’s additional effort on the remaining (n−1) agents. Since

π′ > 0, si ∈ [0, 1], and f(aj) > 0 for any aj > 0, the additional term is necessarily positive.

This implies that

si`ai(a
N , 0)π′(si`(a

N , 0))f(aNi ) + f ′(aNi )π(si`(a
N , 0))− c′(aNi ) >

si`ai(a
∗, 0)π′(si`(a

∗, 0))f(a∗i ) + f ′(a∗i )π(si`(a
∗, 0))− c′(a∗i ). (3.9)

The result follows from our assumptions on `(·), π(·), and f(·). Since lim`→0+ π(`) = −∞,

we rule out the boundary solution aNi = 0, so 0 < aNi < a∗i .

76



Note that if the Principal were able to commit to group punishments when the aggregate

outcome is smaller than x(a∗), then each producer contributing a∗i would be an equilibrium.

For example, for a given effort profile a, if the Principal’s strategy was to implement some

τ (x (a)) > 0 such that `(a, τ (x (a))) = 0 if x(a) < x(a∗), and conversely to implement τ = 0

if x(a) = x(a∗), then each agent’s best response to a∗−i would be to choose ai = a∗i .
5 In

this sense, the threat of group punishments would be useful if the Principal could commit

to such a strategy. In the next section, we investigate whether group punishments may

be sustainable and welfare-improving when agents and the Principal interact repeatedly.

Before proceeding to the repeated game, we establish the intermediate result that agents

will increase their effort in the interior of [aNi , a
∗
i ] when a−i < aNi .

Corollary III.2. If a−i < aNi , then the most profitable deviation a′i is such that a′i > aNi .

Proof. Consider the condition that is satisfied when ai = aNi for i = 1, . . . , n.

si`ai(a
N , 0)π′(si`(a

N , 0))f(aNi ) + f ′(aNi )π(si`(a
N , 0)) = c′(aNi ). (3.10)

Now suppose that the effort by all other producers but i (denoted by a−i) decreases from

aNi . Then,

si`ai(a
N
i , a−i, 0)π′(si`(a

N
i , a−i, 0))f(aNi ) + f ′(aNi )π(si`(a

N
i , a−i, 0)) > c′(aNi ). (3.11)

The optimal response a′i by agent must satisfy the first-order condition

si`ai(a
′
i, a−i, 0)π′(si`(a

′
i, a−i, 0))f(a′i) + f ′(a′i)π(si`(a

′
i, a−i, 0)) = c′(a′i), (3.12)

which means that the right-hand side of (3.11) must increase and/or its left-hand side must

decrease. Therefore, a′i > aNi .

5In this example, we assume that for each a, there always exists some τ (x (a)) > 0 such that
`(a, τ (x (a))) = 0. In other words, we assume that there exists a punishment such that the Principal
can completely destroy the aggregate outcome.

77



3.2.2 Infinitely-Repeated Game

In this section, we develop and analyze an infinitely-repeated version of the static team

production model described above. We focus on symmetric, perfect-public equilibria and

illustrate how team members may incentivize the Principal such that group punishments are

sustainable in equilibrium even when the Principal lacks commitment. We go on to show

that along the best equilibrium path, group punishments are not implemented. However,

the threat of group punishments allows team members to attain strictly higher welfare than

they would in an economy where group punishments are not allowed—the Principal’s actions

are restricted to never impose group punishments.

3.2.2.1 Histories, Perfect-Public Equilibria, and One-Shot Deviations

Here we describe the infinitely-repeated game, define our notion of equilibrium, and

simplify our equilibrium characterization by appealing to the one-shot deviation principle.

Proposition III.3 of this section shows that the entire set of perfect-public equilibria can be

attained by preventing single-period (one-shot) deviations in the infinitely-repeated game.

Let hwt ∈ Hw where Hw = R2
+ denote the public outcomes (xt, τt) observed at the end

of period t. Then, let Hw denote set of public histories with Hw=
⋃∞
t=0 (Hw)t. Similarly,

define the set of histories for agent i as Hi=
⋃∞
t=0 (R+ ×Hw)t. A pure strategy for agent i

is a mapping from the set of all possible agent i histories into the set of pure actions,

σi : Hi → R+.

A pure strategy for the Principal is a mapping from the set of public histories and an

observation of the aggregate outcome into the set of pure actions for the Principal,

σw : Hw × R+ → R+.
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We assume agents and the Principal have a common discount factor δ and restrict at-

tention to public strategies which are functions only of the public history. Given a strategy

profile σ = ({σi}ni=1 , σw) , if hwt ∈ Hwt denotes a generic period-t history, we let U t
i (hwt, σ)

denote the discounted continuation payoffs agent i obtains from period t onwards. Since the

Principal chooses an action after period-t effort decisions are sunk, the Principal’s discounted

continuation payoffs satisfy

Uw
t

(
hwt, σ

)
=
∑
i

U i
t

(
hwt, σ

)
+ (1− δ) c

∑
i

σi
(
hwt
)
. (3.13)

In Appendix C.2.1.1 we define continuation games and strategies, perfect-public equi-

libria, and one-shot deviations. In the next proposition, we prove that equilibria can be

constructed recursively by ensuring that for any history, neither the agents nor the Principal

have a profitable one-shot deviation.

Proposition III.3. A strategy profile σ = ({σi}ni=1 , σw) is perfect-public if and only if there

are no profitable one-shot deviations for the agents and there are no profitable one-shot

deviations for the Principal.

Proof. See Appendix C.2.1.2.

3.2.2.2 Equilibrium Set Characterization

We now describe a procedure to characterize the set of symmetric equilibrium payoffs

using carrot-and-stick strategies as in Abreu (1986). As we will argue, individual deviations

by team members may be subject to group punishments chosen by the Principal. However,

limited commitment of the Principal implies that agents will need to impose discipline on

the Principal in the event that the Principal attempts to avoid the static losses associated

with group punishments. Nonetheless, we will show that extremal equilibrium payoffs (both

the best and the worst equilibrium payoff) need not feature group punishments.

We focus on characterizing strongly symmetric equilibria, and we therefore simplify our
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notation by dropping i subscripts and by using a in place of (a, a, . . . , a) for producers’

strategies, u (a, 0) in place of ui (a, a, . . . , a, τ = 0) for producers’ payoffs and so on.

Under the one-shot deviation principle, given the worst perfect-public equilibrium payoff

v, the best perfect-public equilibrium payoff v̄ can be constructed as the solution to the

following program:

v̄ = max
a,τ(·),v(·,a,τ(·))

u (a, 0) , (3.14)

subject to, for all a′

u (a, 0) ≥ (1− δ)u (a′, a, τ (x (a′, a))) + δv (a′, a, τ (x (a′, a))) (3.15)

v (a′, a, τ (x (a′, a))) ∈ [v, v̄] , (3.16)

and

(1− δ)w (a′, a, τ (x (a′, a))) + nδv (a′, a, τ (x (a′, a))) ≥ (1− δ)w (a′, a, 0) + nδv. (3.17)

Inequality (3.15) represents the incentive compatibility constraint for each agent, which re-

quires the symmetric payoff u (a, 0) to be greater or equal to the payoff associated with a devi-

ation effort a′ with static payoff u(a′, a, τ(x(a′, a))) and continuation payoff v(a′, a, τ(x(a′, a)).

Equation (3.16) represents the feasibility constraint for the continuation payoff v(a′, a, τ(x(a′, a)),

which must lie between the worst equilibrium payoff v and the best equilibrium payoff v̄.

Finally, (3.17) is the incentive compatibility constraint for the Principal, requiring the Prin-

cipal to have sufficient incentives to enforce the prescribed group punishment once one of the

n team members deviates to a′. The left-hand side of (3.17) is the Principal’s payoff when

implementing the prescribed group punishment while the right-hand side is the payoff from

a deviation to τ = 0, followed by the worst perfect-public equilibrium payoff v.

It is useful here to reduce the dimensionality of the problem by eliminating the Principal’s
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incentive-compatibility constraint. Since (3.17) must bind in any solution to the above

program, the continuation payoff following a deviation by an agent must satisfy

v (a′, a, τ (x (a′, a))) = v +
1− δ
δ

1

n
[w (a′, a, 0)− w (a′, a, τ (x (a′, a)))] . (3.18)

Hence, for any deviation a′, we may write the agent’s incentive-compatibility constraint

(3.15) as

u (a′, a, 0) ≥ (1− δ)
[
u (a′, a, τ (x (a′, a))) +

1

n
[w (a′, a, 0)− w (a′, a, τ (x (a′, a)))]

]
+ δv.

(3.19)

Let g (a′, a, τ (x (a′, a))) denote the static payoff for an individual agent exerting effort a′

when all other producers producers produce a—the term in the outer square brackets on the

right-hand side of (3.19). We call this quantity the total static deviation payoff. Using this

definition, we re-write the problem (3.14)-(3.17) as

v̄ = max
a
u (a, 0) , (3.20)

subject to, for all a′,

u (a, 0) ≥ (1− δ) g (a′, a, τ (x(a′, a))) + δv, (3.21)

v̄ ≥ 1− δ
δ

1

n
[w (a′, a, 0)− w (a′, a, τ (x(a′, a)))] + v, (3.22)

g (a′, a, τ (x(a′, a))) = u (a′, a, τ (x(a′, a)))− 1

n
[w (a′, a, τ (x(a′, a)))− w (a′, a, 0)] .

(3.23)

Next, it is useful to define the maximum deviation payoff an agent can achieve by devi-
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ating to a′ from profile a, which we denote by ĝ (a, τ (·)). This payoff satisfies

ĝ (a, τ (·)) = max
a′

g (a′, a, τ(x(a′, a)) .

In the next lemma, we show that as long as the prescribed level of effort is smaller than the

static Nash equilibrium level of effort, the maximum deviation payoff ĝ(a, τ (·)) is minimized

when the Principal imposes no group punishments (i.e. when τ = 0).

Lemma III.4. Supppose that f ′(a) < 0. Then ĝ (a, τ (·)) ≥ ĝ (a, τ = 0) when a ≤ aN .

Proof. For notational simplicity, we remove the dependency of τ(·) on its arguments. Note

that

∂g

∂τ
= si`τ (a

′, a, τ)π′(si`(a
′, a, τ))f(a′)

− 1

n
si`τ (a

′, a, τ)π′(sih(a′, a, , τ)) [(n− 1)f(a) + f(a′)] (3.24)

= si`τ (a
′, a, τ)π′(si`(a

′, a, τ))
n− 1

n
[f(a′)− f(a)] . (3.25)

Since `τ ≤ 0 and π′ > 0, for ∂g/∂τ > 0 we need only show that [f(a′)− f(a)] < 0. This is

true, however, since f(a) is decreasing and a′ > a by Corollary III.2.

Lemma III.4 establishes that group punishments (τ (·) > 0) increase the incentives of

individual agents to deviate when a ≤ aN . Intuitively, when the perscribed level of effort is

smaller than the static Nash equilibrium level, each agent has a (static) incentive to exert

more effort. Imposing group punishments for excess effort in this region simply strength-

ens individual agents’ incentives to exert effort, and therefore has no use in enforcing the

prescribed behavior.

Lemma III.4 plays a key role in allowing us to characterize simple equilibrium strategies

which obtain the the infimum perfect-public equilibrium payoff v. To construct v, we propose

a carrot-and-stick strategy, which with a small abuse of notation we write as σ ((ã, ā) , (0, 0)).

This strategy calls for agents to play some “stick” level of effort ã and subsequently revert to
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the “carrot” level ā—the level of effort prescribed in the best perfect-public equilibrium. If ei-

ther the carrot or the stick are played by all agents as prescribed by the strategy, the Principal

chooses τ = 0. If the Principal detects an aggregate deviation x(a′, ā) 6= x(ā) from the carrot

ā, the Principal chooses to implement a group punishment τ(x(a′, ā)) > 0, and the agents

consequently revert to some strategy with value v(a′, ā, τ(x(a′, ā)). If the Principal observes

an aggregate deviation x(a′, ã) 6= x(ã) from the stick ã, the Principal chooses τ(x(a′, ã)) = 0,

and the producers consequently revert to the carrot-and-stick strategy σ ((ã, ā) , (0, 0)) with

value v. Finally, any deviation by the Principal causes the carrot-and-stick strategy to be

repeated.

Proposition III.5. There exists an output ã such that the carrot-and-stick strategy

σ ((ã, ā) , (0, 0)) attains the value v—that is, σ ((ã, ā) , (0, 0)) is an optimal punishment.

Proof. Given v, the infimum of symmetric perfect-public equilibrium payoffs and hence ā

(the value that attains the maximum, v̄ in the program (3.20)-(3.23)), we may obtain ã such

that

v = (1− δ)u (ã, 0) + δu (ā, 0) . (3.26)

We now argue that the carrot-and-stick strategy σ ((ã, ā) , (0, 0)) is an equilibrium. By

construction, the punishment has value v. Since deviations from ā are unprofitable when

punished by v, they are by construction unprofitable when punished by σ ((ã, ā) , (0, 0)).

To show that no producer wishes to deviate when prescribed to contribute effort ã, we

must show that for all a′,

v = (1− δ)u (ã, 0) + δu (ā, 0) ≥ (1− δ) g (a′, ã, 0) + δv, (3.27)

and in particular

v = (1− δ)u (ã, 0) + δu (ā, 0) ≥ (1− δ) ĝ (ã, 0) + δv. (3.28)
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We proceed by contradiction. Suppose (3.28) does not hold. Then there must exist another

(strongly symmetric) equilibrium σy with first-period output ay ≤ aN such that

(1− δ) ĝ (ã, 0) + δv > (1− δ)u (ay, 0) + δU (σy|ay) ≥ v (3.29)

where U (σy|ay) is the continuation payoff to a single producer from σy after contributing ay

in the first period.6

Replacing the definition of v in (3.29) implies

(1− δ)u (ay, 0) + δU (σy|ay) ≥ (1− δ)u (ã, 0) + δu (ā, 0) . (3.30)

Since U (σy|ay) ≤ u (ā, 0), it must be that u (ay, 0) ≥ u (ã, 0) and therefore ay ≥ ã. How-

ever, we will show that if σy is a perfect-public equilibrium, ã > ay, yielding the necessary

contradiction. Since σy is an equilibrium,

(1− δ)u (ay, 0) + δU (σy|ay) ≥ (1− δ) ĝ (ay, τ (x(ay))) + δv, (3.31)

so that from (3.29)

(1− δ) g (ã, 0) + δv > (1− δ) ĝ (ay, τ (x(ay))) + δv. (3.32)

Since ay ≤ aN , Lemma III.4 implies that

ĝ (ay, τ (y(ay))) ≥ ĝ (ay, 0) (3.33)

6Since repeated play of the static Nash equilibrium output aN with no punishments must be an equi-
librium, it is straightforward to show that the prescribed effort under the “stick” must satisfy ã ≤ aN . If
ay > aN , however, (3.29) implies that

ĝ(ã, 0) > ĝ(aN , 0).

Since the best deviation payoff in the absence of punishments is increasing in a, this would imply aN < ã, a
contradiction.
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so that

ĝ (ã, 0) > ĝ (ay, 0) . (3.34)

Since ĝ (a, 0) is increasing in a, (3.34) implies ã > ay providing the needed contradiction.

Proposition III.5 greatly simplifies the characterization of the set of perfect-public equi-

librium payoffs. We have shown that the worst equilibrium payoff can be attained without

requiring group punishments (either on the equilibrium path, or off the equilibrium path fol-

lowing deviations from the “stick”). The key feature of our economy which yields this result

is the fact that during the “stick” phase of the worst equilibrium strategy, group punish-

ments actually make deviations from the stick more appealing to producers. Consequently

the optimal strategy for the Principal is to not impose group punishments. Using the results

from Proposition III.5, we now characterize strategies that allow us to attain the entire set

of perfect-public equilibria.

Proposition III.6. If the strategy σ is a Perfect-Public Equilibrium, then u (σ) ∈ [v, v̄]. If

v ∈ [v, v̄], then there exists a Perfect-Public Equilibrium strategy σ such that u (σ) = v.

Here we provide a sketch of the argument and leave a formal proof to Appendix C.2.1.3.

It is clear that any equilibrium satisfies the constraints of the program (3.14)-(3.17) and

therefore U(σ) ∈ [v, v̄]. It only remains to show that any value in this set may be attained

by some equilibrium strategy. We prove this result using an induction argument. To begin,

it is straightforward to characterize the set of values that can be attained with strategies

which restrict the Principal never to impose punishments (either on or off the equilibrium

path). This set, which we denote [vA, v̄A] defines the set of values that are attainable as

subgame-perfect equilibria, and can be easily constructed with carrot-and-stick strategies

following Abreu (1986).7

7We use subgame-perfect equilibria as our benchmark, as opposed to renegotiation-proof equilibria. The
characterization of renegotiation-proof equilibria in repeated games is complex and can depend on the model’s
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Since vA < v̄A, it is feasible to sustain one period of punishments in the event some

agent deviates from a prescribed level of effort. We therefore construct equilibria in which

all agents are asked to contribute some effort level a. If all agents do so, then no punishments

are implemented and the strategy repeats. If some agent deviates to some a′—so that the

aggregate outcome is different than x (a)—then the Principal is called upon to implement

a punishment. If the Principal implements the prescribed punishment, agents play some

equilibrium without punishments which delivers the value v(a′, a, τ). If the Principal does

not implement the prescribed punishment, agents play the strategy associated with the

worst equilibrium of a model where punishments are not allowed, with value vA. We choose

a positive but sufficiently small punishment τ to ensure that v(a′, a, τ) ∈
(
vA, v̄A

]
for all

relevant deviations a′. We show that this strategy delivers equilibrium values u(a) > v̄A.

Given these strategies, we are able to construct carrot-and-stick equilibrium strategies which

deliver values strictly below vA. In following these steps, we have constructed an operator

which maps equilibrium value sets supported by perfect-public equilibrium strategies into

similar sets that are strictly larger and yet still attainable with perfect-public equilibrium

strategies. We show that repeated application of this operator starting from a set where

group punishments are not part of the Principal’s action set necessarily converges to the

set [v, v̄] defined by the program (3.14)-(3.17). In this way, we construct a perfect-public

equilibrium strategy which delivers each value v ∈ [v, v̄].

We now use Proposition III.7 to fully characterize the values of the best and worst

perfect-public equilibrium payoffs.

Proposition III.7. The optimal carrot-and-stick punishment satisfies

ĝ (ã, 0) = (1− δ)u (ã, 0) + δu (ā, 0) = v, (3.35)

ĝ (ā, τ (·)) = u (ā, 0) + δ (u (ā, 0)− u (ã, 0)) if ā < a∗, (3.36)

parameters (see, e.g. Aramend́ıa et al. (2005)), which makes the renegotiation-proof set a less amenable
benchmark for our model. Here we want to emphasize that our setup has the flavor of within-period
renegotiation, excluding the possibility of renegotiation in future periods.
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and

ĝ (ā, τ (·)) ≤ u (ā, 0) + δ (u (ā, 0)− u (ã, 0)) if ā = a∗. (3.37)

The proof is a straightforward extension of those found in Abreu (1986) and hence rele-

gated to the Appendix (see Section C.2.1.4). Propositions III.5 and III.7 show that neither

the best nor the worst perfect-public equilibria feature group punishments imposed by the

Principal. Nonetheless, we will show momentarily that the out-of-equilibrium threat of group

punishments allows team members to attain higher welfare than in an economy where group

punishments are not part of the Principal’s action set. For expositional brevity, we will refer

to such economy as an economy where group punishments ”are not allowed.” Let āA and

ãA respectively denote the carrot and stick levels of output in the model where group pun-

ishments are not allowed. Similarly, let v̄A and vA denote the best and worst perfect-public

equilibrium values in the model where group punishments are not allowed. Proposition III.8

formally establishes that if the equilibrium output level ā is sustained by a positive pun-

ishment threat (a deviation by an agent is followed by a strictly positive group punishment

implemented by the Principal), then the presence of such a threat strictly improves welfare,

or v̄ > v̄A.

Proposition III.8. For any equilibrium output levels ā ≤ a∗, āA < ā if ā is sustained by a

positive punishment threat (for some a′ 6= ā, τ (x (a′, ā)) > 0), then v̄ = u (ā, 0) > u
(
āA, 0

)
=

v̄A.

Proof. First, note that since the Principal can always choose τ = 0,
[
vA, v̄A

]
⊆ [v, v̄].

Therefore u (ā, 0) ≥ u
(
āA, 0

)
, or ā ≥ āA. Now suppose by contradiction that if ā is sustained

by a positive threat τ > 0, then ā = āA. Since ā = āA > aN , ĝ
(
āA, 0

)
= ĝ (ā, 0) > ĝ (ā, τ).

From (3.36),

u
(
āA, 0

)
+ δ

(
u
(
āA, 0

)
− u

(
ãA, 0

))
> u (ā, 0) + δ (u (ā, 0)− u (ã, 0)) , (3.38)
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or

u (ã, 0) > u
(
ãA, 0

)
. (3.39)

But from (3.35), this implies

v = (1− δ)u (ã, 0) + δu (ā, 0) > (1− δ)u
(
ãA, 0

)
+ δu

(
āA, 0

)
= vA, (3.40)

a contradiction with
[
vA, v̄A

]
⊆ [v, v̄].

We conclude this section by providing conditions on agents’ static payoffs such that

group punishments improve welfare. Specifically, we note that the assumption underlying

our Lemma III.4 and Propositions III.5 to III.8 is that the private utility component f(ai), is

decreasing in effort. Proposition III.9 considers the alternative case where f(ai) is constant.

We find that the interaction between private and publicly observed payoffs is essential in

enabling static group punishments to enlarge the equilibrium set, relative to an economy

where punishments are not allowed.

Proposition III.9. Let κ be some constant. If f(a) = κ, for all a ∈ [0, a∗], static group

punishments do not improve equilibrium outcomes relative to a model where the Principal is

not allowed to impose group punishments.

Proof. This result is clear from Equation (3.25). If f(a) = f(a′) = κ, then ∂g/∂τ = 0 and

group punishment have no effect on producers’ payoffs.

Proposition III.9 states that a necessary condition for static group punishments to im-

prove welfare is the presence of complementarities between aggregate outcomes and private

actions in the individual agents’ stage game payoffs. Absent these complementarities (i.e.

when f(a) = κ), group punishments have no effect on the total deviation payoff g because

the impact of the punishment on the static deviation gain u (a′, a, τ (x(a′, a))) is the exactly
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equal to the impact that these punishments have on the per-capita share of the cost to

incentivize the Principal, [w (a′, a, τ (x(a′, a)))− w (a′, a, 0)] /n.

When team members’ private actions instead interact with aggregate outcomes (i.e. f(a)

is not constant in a), then group punishments can reduce team members’ private incentives

to deviate through the interaction of these private incentives with the aggregate outcome.

In these cases, group punishments are useful to deter individual deviations, and an outsider

is not needed to improve welfare. In other words, in presence of complementarities between

aggregate and individual outcomes, the team (represented by the Principal) can implement

budget-breaking static punishments that improve welfare without requiring the intervention

of an outsider.

3.3 An Application: Repeated Oligopoly with a Principal

In this section, we apply our generalized team production model to the repeated oligopoly

model of Abreu (1986). We start by characterizing the stage game payoffs and equilibria,

and we then provide a numerical illustration of our main result that group punishments

increase team welfare in a repeated setting. In Section 3.3.3, we show how different de-

grees of interaction between oligopolistic producers can impact the effectiveness of group

punishments.

3.3.1 Stage Game

A team is composed by n producers indexed by i = 1, . . . , n. Each producer chooses an

unobservable action qi ∈ R+ where qi represents a level of output generated by producer

i. Each producer generates output at a constant marginal cost c ∈ (0, 1). We let q =

(q1, . . . , qn) ∈ Rn
+ and we write

q−i = (q1, . . . , qi−1, qi+1, . . . , qn) , q = (qi, q−i) .
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The producers’ choices of output give rise to an aggregate quantity of output Q =
∑n

i=1 qi.

Each producer’s stage-game strategy is simply qi ∈ Rn
+.

In addition to the producers, a benevolent Principal observes aggregate output Q and

imposes an observable group punishment τ ∈ [0, 1], which represents an implicit tax imposed

by the Principal on the consumers of the good. A strategy for the Principal is τ : R+ → [0, 1].

The price at which producers sell their output is a function of aggregate output and the

tax chosen by the Principal. Specifically,

p (Q, τ) = max {(1− τ)−Q, 0} . (3.41)

This price function represents an inverse demand curve for consumers who face taxes τ on

purchases of units of output. From (3.41) it is clear that the Principal’s choice of the tax

may reduce the price of output for all producers.

Given actions by the producers and the Principal, each producer’s payoff is given by

ui(q, τ) = p (Q, τ) qi − cqi. (3.42)

We again assume that the Principal is benevolent in the sense that the Principal has prefer-

ences over a weighted average of the producers’ utility. Since the Principal chooses the tax τ

after production costs are sunk, the Principal’s payoff from any level of total output Q and

tax τ is given by

w(Q, τ) = p (Q, τ)Q. (3.43)

Note that (3.42)-(3.43) immediately map to the generalized payoffs (3.2)-(3.3) when we

i) impose symmetric sharing rules (i.e. si = 1/n), ii) impose linear utility, interaction and

cost functions of the form π(si`) = si`, f(ai) = ai and c(ai) = cai, respectively, and iii)

define the aggregate net outcome function as `(a, τ) = nmax{1− τ −
∑

i ai, 0}.8

8Contrary to our generalized model, the oligopoly model’s net outcome function is such that, for all i, j,
`ai(a, τ) = `aj (a, τ) < 0. This changes the sign of the main inequalities of our paper (for example, the
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A symmetric perfect-public equilibrium in the stage game consists of choices for producers

qi and a Principal’s strategy τ (Q) such that for every Q, τ (Q) maximizes (3.43) and given

τ and q−i, qi maximizes (3.42). This equilibrium is straightforward to determine since for

any Q, the Principal optimally chooses τ(Q) = 0. Facing q−i each producer’s best response

satisfies

qi =


1
2

(
1−

∑
−i q−i − c

)
if 1−

∑
−i q−i − c > 0,

0 otherwise,

(3.44)

with the equilibrium level of qi satisfying

qNi =
1− c
n+ 1

. (3.45)

Note that facing the Principal’s optimal decision to set the tax equal to zero, the level of

output which maximizes the producers’ joint profits satisfies

qmi = arg max
qi

qi (1− nqi − c) , (3.46)

with solution

qmi =
1− c
2n

. (3.47)

From (3.45) and (3.47), observe that the level of output which maximizes joint producer

profits is lower than the perfect-public equilibrium outcome. Intuitively, producer i has an

incentive to generate more output when the other producers generate less than qNi and prices

are high. In contrast, producer i has an incentive to generate less output when the other

producers generate more than qN .

Nash equilibrium level of output is larger than the socially-optimal level of output), but the procedure to
characterize the set of equilibrium payoffs is identical to the procedure developed in the previous section.
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3.3.2 Infinitely-Repeated Game

As in the previous sections, we focus on characterizing strongly symmetric equilibria.

Following the same steps as in Section 3.2.2, it is easy to show that the generalized program

(3.20)-(3.23) maps to the following program in the repeated oligopoly model:

v̄ = max
q
u (q, 0) , (3.48)

subject to, for all q′,

u (q, 0) ≥ (1− δ) g (q′, q, τ (q′ + (n− 1) q)) + δv, (3.49)

v̄ ≥ 1− δ
δ

1

n
[w (q′ + (n− 1) q, 0)− w (q′ + (n− 1) q, τ (q′ + (n− 1) q))] + v,

(3.50)

where v and v̄ again denote the worst and the best perfect-public equilibrium payoffs of

the repeated game, and where (using (3.42) and (3.43)) the total static deviation payoff

g (q′, q, τ (q′ + (n− 1) q)) is given in closed-form by

g (q′, q, τ (q′ + (n− 1) q)) = q′ ((1− τ (q′ + (n− 1) q))− (q′ + (n− 1) q)− c)

+
1

n
τ (q′ + (n− 1) q) (q′ + (n− 1) q) . (3.51)

This closed-form expression reveals that the static deviation payoff in the oligopoly model

is comprised of two components. The first component can be re-written as p(q′, q, τ(q′ +

(n − 1)q))q′, and represents the static payoff that the producer obtains by deviating to q′

from q when the deviation is punished by a tax τ(q′ + (n − 1)q). The second component,

τ(q′+(n−1)q)(q′+(n−1)q)/n, is a cost that individual producers have to pay to incentivize

the Principal to implement the prescribed punishment τ = τ (q′ + (n− 1) q) as opposed to

her most profitable deviation τ = 0.
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Finally, let ĝ (q, τ (·)) denote the maximum deviation payoff one producer can achieve

from a deviation to q′ when other producers generate q. As in Lemma III.4, we now show

that as long as the prescribed output is larger than the static Nash equilibrium output, the

maximum deviation payoff ĝ(q, τ (·)) is minimized when the Principal levies no taxes (i.e.,

when τ = 0).

Lemma III.10. ĝ (q, τ (·)) ≥ ĝ (q, τ = 0) when q ≥ qN .

Proof. See Appendix C.2.1.5.

Using Lemma III.10, the results from Propositions III.5 to III.8 naturally extend to the

repeated oligopoly model, and are therefore omitted for the sake of brevity. In particular, we

find that the worst perfect-public equilibrium payoff can be attained by strategies that do not

feature on-path group punishments, and the best and the worst can be jointly characterized

as solutions to (3.48)-(3.51). Moreover, group punishments are sustainable and strictly

improve welfare relative to a model where group punishments are not allowed.

In Figure 3.3.2, we provide a numerical illustration of how group punishments can increase

the welfare of the team of oligopolists. In Figure 3.1, we fix the number of producers n to

ten and plot the value of the best and worst perfect-public equilibria for each level of the

discount factor δ. Note that in Figure 3.1, for any δ, values to the left of the static Nash

equilibrium value (roughly 0.007) represent worst equilibrium values while values to the

right represent best equilibrium values. The dashed line in Figure 3.1 shows these best and

worst equilibrium values when group punishments are allowed, while the solid line shows

these values when these punishments are not allowed. Since the dashed lines lie outside

the solid lines, for all levels of the discount factor the model where taxes are allowed yields

weakly higher best equilibrium payoffs than the model where taxes are not allowed. In

particular, the repeated interaction between producers and the Principal leads to welfare

gains for intermediate values of the discount factor, and no (or relatively small) gains when

the discount factor is low or high.
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For low values of δ, the Principal has weak incentives to levy the prescribed taxes. The

continuation value that producers have to promise to the Principal for implementing such

taxes is too to satisfy the feasibility constraint (3.50). As a result, very small or (approx-

imately) no taxes can be sustained leading to small or (approximately) no welfare gains.

On the other hand, for high values of δ the repeated interaction of producers is sufficient to

guarantee the static most collusive level of output even in the absence of the Principal.

For intermediate levels of δ, the presence of the Principal increases welfare considerably.

To illustrate the gains associated with sustainable group punishments (or taxes), Figure

3.2 illustrates the effect of the Principal’s punishments on the level of output in the best

equilibrium. Specifically, the solid line shows the percentage reduction in output in the best

equilibrium which is obtained in our model relative to a model where group punishments are

not allowed. Observe that our model features a most collusive output level as much as thirty

percent lower than the model where group punishments are not allowed. To achieve these

lower levels of output, which correspond to higher levels of welfare, the Principal reduces the

value of the most profitable, static deviation by any of the producers by as much as 80%.

This finding suggests that the role of the Principal in the oligopoly model is to decrease

the common price to a level closer to the producer’s marginal cost in case of a deviation,

therefore reducing the value of deviations.

3.3.3 Substitutability and Price Externalities

In this section, we provide an overview of our additional results on how different degrees of

interaction between oligpolistic producers can impact the effectiveness of group punishments.

A full discussion of these results is provided in Appendix C.1.

The main point of departure of this section is the use of a new price function, which

allows for different degrees of substitutability between producers’ output. Specifically, we
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Figure 3.1: Equilibrium Value Sets
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Figure 3.2: Impact of Group Punishments
Numerical illustration of the equilibrium value sets (panel (a)) and impact of group

punishments on best equilibrium output and best deviation payoff from best equilibrium
(panel (b)).
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make the assumption that the inverse demand function for each producer i’s output satisfies

pi (q, τ) = α
qρ−1
i∑n
i=1 q

ρ
i

− τ, (3.52)

where α ∈ (0, 1) and ρ ∈ (0, 1) are exogenous parameters, qi is the quantity produced by

producer i and τ is the tax chosen by the Principal. This price function arises naturally

in an economy where consumers have Cobb-Douglas preferences over a bundle of individual

producers’ output and a numeraire good. In particular, the parameter α is a Cobb-Douglas

parameter that governs the substitutability between the numeraire good and the bundle

of producers’ output, while the parameter ρ governs the degree of substitutability between

each producer’s output. Under this formulation, a higher level of ρ implies a higher degree

of substitutability.

In the Appendix, we extend the analysis of the previous sections to the new inverse

demand function (3.52), and we analyze the relationship between the usefulness of group

punishments and the substitutability parameter ρ. Specifically, we ask how the effectiveness

of taxes in improving welfare (relative to a model where taxes are not allowed) changes as the

substitutability of producers’ output changes. Our main result for this section shows that

the effectiveness of taxes in improving welfare increases as the substitutability parameter ρ

increases:

Proposition III.11. Fix ρ ∈ (0, 1). For n sufficiently large, there exist a δ ∈ (0, 1) and

ρ̄ > 0 such that for all ρ′ ∈ (ρ, ρ̄), the welfare gains from allowing the Principal to implement

group punishments are increasing in ρ′.

Proof. See Appendix C.1.

The intuition behind the result of Proposition III.11 is that when goods become more

substitutable, individual producers have higher incentives to deviate from their prescribed

quantities because deviations have a lower negative impact on the common price. This

increases the producers’ incentives to over-produce and leads to lower equilibrium values,
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but also increases the relative gains from group punishments relative to the model where

these punishments are now allowed. In other words, when goods are more substitutable

and deviations are more profitable, group punishments that deter these deviations increase

welfare by more.

Finally, in Figure 3.3 we provide a numerical illustration of our result. The figure shows

the value of the best equilibrium under a low value of the substitutability parameter (ρ =

0.31) and under a high value of the substitutability parameter (ρ = 0.83). As in Figure 3.1,

the solid lines in Figure 3.3 represent the best equilibrium payoffs in the economies where

group punishments are not allowed, and the dashed lines represent the equilibrium payoffs

in the economies where group punishments are allowed. The difference between the dashed

lines and the solid lines represent the welfare gains from allowing group punishments.

Figure 3.3: Value Sets with and without Group Punishments
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The figure provides a clear illustration of our result that group punishments yields sig-

nificantly larger increases in best equilibrium values when producers’ output is more substi-

tutable relative to when producers’ output is less substitutable. For example, for a discount

factor of roughly 0.4, with high degree of substitutability, the best equilibrium value when

group punishments are not allowed is roughly 0.1 while it is roughly 0.13 when they are

allowed, implying a 30% gain from group punishments. Instead, with a low degree of sub-

stitutability, the best equilibrium value when group punishment are not allowed is roughly

0.125 while it is roughly 0.13 when they are allowed, implying only a 4% gain from group

punishments.

3.4 Conclusion

The potential for moral hazard is ubiquitous in team production settings and especially

where the actions of individual team members are not perfectly observable. A widely ac-

cepted principle is that in these team production settings it is against the team’s own interest

to implement a group punishment when an individual deviation has occurred. An outsider

is therefore needed to implement the team’s first-best level of production.

In a generalized repeated team production model, we show that the team can always

sustain self-imposed group punishments after aggregate outcomes are observed when team

members’ utility interacts in non-trivial ways with aggregate team outcomes. Moreover, we

provide conditions under which the threat of these punishments improves the welfare of the

team relative to a model where group punishments are not part of the team’s action set.

Using the repeated oligopoly model of Abreu (1986) as an application, we show that team

self-imposed group punishments are most effective in improving team welfare when team

members are sufficiently patient and when their contributions to the aggregate outcome are

more substitutable.

Our theoretical results provide direct guidance for future applied and empirical research.

In particular, our model predicts that team production environments featuring a strong inter-
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action between aggregate outcomes and individual utilities are also environments where self-

inflicted group punishments can provide large welfare gains to the team. Economic unions

such as the European Union are particularly good examples of teams where team members

have historically been tempted to deviate from their prescribed actions, and where aggregate

team outcomes (e.g. common interest rates and exchange rates) interact in non-trivial ways

with the individual utility of team members (e.g. individual output). Large corporations

with multiple project managers are another setting to apply our model, especially since the

presence of a non-benevolent top management lacking commitment to group punishments

might exacerbate the moral hazard problem among individual project managers. Additional

settings relevant to our analysis include environmental pacts, workplace management, and

cartels. The analysis of the interaction between team members and the quantification of

possible welfare gains from implementing group punishments in these settings constitutes in

our opinion areas of fruitful future research.
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APPENDIX A

Appendix for Credit Market Search

A.1 Identifying Recessions

Figure A.1: Discrete Economic States as Determined by Ũt
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A.2 Representative Household

The representative household’s problem is:

Ht(Nt, At) = max
Ct,At

[u(Ct) + lUt] + βEt [Ht+1(Nt+1At+1)] (A.1)

subject to WtNt + bUt + At−1(1 + rt−1) +DS
t +DB

t = Ct + Tt + At (A.2)

Nt+1 =
(
1− sC

) (
1− sL

)
Nt + q(θt)Vt (A.3)

Ut+1 = (1− f(θt))Ut +
(
sC + (1− sC)sL

)
Nt (A.4)

Let λt denote the Lagrange multiplier for the household budget constraint. The first

order conditions w.r.t. to Ct is:

uc(Ct) = λt

The first order condition w.r.t. to At is:

0 = −λt + βEt
[
∂Ht+1

∂At

]
(A.5)

1 = βEt
[
uc(Ct+1)

uc(Ct)
(1 + rt)

]
(A.6)

A.2.1 Marginal values of employed and unemployed household members

The total derivative of the household’s value function w.r.t Nt is given by:

HNt = Wtλt + βEt
(
∂Ht+1

∂Nt+1

∂Nt+1

∂Nt
+
∂Ht+1

∂Ut+1

∂Ut+1

∂Nt

)
HNt = Wtλt + βEt

[
(1− sC)(1− sL)HNt+1 +

(
sC + (1− sC)sL

)
HUt+1

]
HNt

λt
= Wt + βEt

1

λt

[
(1− sC)(1− sL)HNt+1 +

(
sC + (1− sC)sL

)
HUt+1

]
HNt

λt
= Wt + βEt

(
λt+1

λt

[
(1− sC)(1− sL)

HNt+1

λt+1

+
(
sC + (1− sC)sL

) HUt+1

λt+1

])
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The total derivative of the household’s value function w.r.t Ut is given by:

HUt = bλt + l + βEt
(
∂Ht+1

∂Nt+1

∂Nt+1

∂Ut
+
∂Ht+1

∂Ut+1

∂Ut+1

∂Ut

)
HUt = bλt + l + βEt

[
f(θt)HNt+1 + (1− f(θt))HUt+1

]
HUt = bλt + l + βEt

[
f(θt)HNt+1 + (1− f(θt))HUt+1

]
HUt

λt
= b+

l

λt
+ βEt

(
λt+1

λt

[
f(θt)

HNt+1

λt+1

+ (1− f(θt))
HUt+1

λt+1

])

A.3 Repayment to Creditors

The expected repayment rule that solves the Nash bargaining must satisfy the sharing

rule:

(1− αC)Bl,t = αCSl,t (B.1)

Expanding both sides of the equality using equations (1.12) and (1.6), we have:

(1− αC)
[
−γ +

(
1− sC

)
EtMt+1 [qtBg,t+1]

]
= αC

(
1− sC

)
EtMt+1 [qtSg,t+1]

+
(
1− sC

)
(1− qt)EtMt+1 [αCSl,t+1]

−
(
1− sC

)
(1− qt)EtMt+1 [(1− αC)Bl,t+1]

(1− αC)
[
−γ +

(
1− sC

)
EtMt+1 [qtBg,t+1]

]
= αC

(
1− sC

)
EtMt+1 [qtSg,t+1]

(1− αC)EtMt+1 [Bg,t+1] = (1− αC)
γ

qt (1− sC)
+ αCEtMt+1 [Sg,t+1]

(1− αC)EtMt+1 [Ψt+1

+
(
1− sC

)
Mt+2

[
(1− sL)Bg,t+2 + sLBl,t+2

]]
= (1− αC)

γ

qt (1− sC)

+αCEtMt+1 [Xt+1 −Wt+1 −Ψt+1

+
(
1− sC

)
Mt+2

[(
1− sL

)
Sg,t+2 + sLSl,t+2

]]
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EtMt+1 [Ψt+1] = (1− αC)
γ

qt (1− sC)
+ αCEtMt+1 [Xt+1 −Wt+1]

+αCEtMt+1

[(
1− sC

)
Mt+2

[(
1− sL

)
Sg,t+2 + sLSl,t+2

]]
− (1− αC)EtMt+1

(
1− sC

)
Mt+2

[
(1− sL)Bg,t+2 + sLBl,t+2

]
EtMt+1 [Ψt+1] = (1− αC)

γ

qt (1− sC)
+ αCEtMt+1 [Xt+1 −Wt+1]

+
(
1− sC

)
EtMt+1

[
Mt+2

[(
1− sL

)
(αCSg,t+2 − (1− αC)Bg,t+2)

+sL (αCSl,t+2 − (1− αC)Blt+2)
]]

EtMt+1 [Ψt+1] = αCEtMt+1 [Xt+1 −Wt+1] + (1− αC)
γ

qt (1− sC)

+
(
1− sC

)
EtMt+1

[(
1− sL

)
Mt+2 [(αCSg,t+2 − (1− αC)Bg,t+2)]

]
EtMt+1 [Ψt+1] = αCEtMt+1 [Xt+1 −Wt+1] + (1− αC)

γ

qt (1− sC)

+
(
1− sL

)
EtMt+1

[(
1− sC

)
Mt+2 [(αCSg,t+2 − (1− αC)Bg,t+2)]

]
Expanding the Nash sharing rule leads to:

0 = αCSl,t − (1− αC)Bl,t

0 = αC
(
1− sC

)
EtMt+1 [qtSg,t+1 + (1− qt)Sl,t+1]

−(1− αC)
[
−γ +

(
1− sC

)
EtMt+1 [qtBg,t+1 + (1− qt)Bl,t+1]

]
0 = (1− αC) γ + qt

(
1− sC

)
EtMt+1 [αCSg,t+1 − (1− αC)Bgt+1]

+
(
1− sC

)
(1− qt)EtMt+1 [αCSl,t+1 − (1− αC)Bl,t+1]

− (1− αC)
γ

qt
=

(
1− sC

)
EtMt+1 [αCSg,t+1 − (1− αC)Bgt+1]

which, iterated one period forward, can be substituted into the previous expression to yield:

EtMt+1 [Ψt+1] = αCEtMt+1 [Xt+1 −Wt+1]+(1− αC)

[
γ

qt (1− sC)
−
(
1− sL

)
Et
[
Mt+1

γ

qt+1

]]
(B.2)
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A.4 Job creation condition

Flt = −γ +
(
1− sC

)
EtMt+1 [qtFg,t+1 + (1− qt)Fl,t+1]

K(φt) = −γ +
(
1− sC

)
EtMt+1 [qtFg,t+1 + (1− qt)K(φt+1)]

K(φt)−
(
1− sC

)
(1− qt)EtMt+1K(φt+1) = −γ + qt

(
1− sC

)
Et [Mt+1Fg,t+1]

K(φt)−
(
1− sC

)
(1− qt)EtMt+1K(φt+1) + γ

qt (1− sC)
= Et [Mt+1Fg,t+1]

Γt
qt

= Et [Mt+1Fg,t+1]

where Γt =
K(φt)−(1−sC)(1−qt)EtMt+1K(φt+1)+γ

(1−sC)
, and then

Fgt = Xt −Wt +
(
1− sC

)
EtMt+1

[(
1− sL

)
Fg,t+1 + sLK(φt+1)

]
Fgt = Xt −Wt +

(
1− sC

) [(
1− sL

) Γt
qt

+ sLEtMt+1K(φt+1)

]
which yield the job creation condition:

Γt
qt

= EtMt+1

[
Xt+1 −Wt+1 +

(
1− sC

) [(
1− sL

) Γt+1

qt+1

+ sLK(φt+1)

]]

A.5 Nash Bargained Wage

The wage is bargained between an individual worker and the creditor-project pair, or

with a marginal job for the firm. It solves the following problem:

argmax

(
HNt −HUt

λt

)αL
(Fgt − Flt)1−αL

and thus must satisfy the labor match surplus sharing rule:

(1− αL)

(
HNt −HUt

λt

)
= αL (Fgt − Flt)
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Begin with the right hand side:(
HNt −HUt

λt

)
= Wt + Et

(
Mt+1

[
(1− sC)(1− sL)

HNt+1

λt+1

+
(
sC + (1− sC)sL

) HUt+1

λt+1

])
−Zt +−Et

(
Mt+1

[
f(θt)

HNt+1

λt+1

+ (1− f(θt))
HUt+1

λt+1

])
= Wt − Zt − f(θt)Et

(
Mt+1

(
HNt+1 −HUt+1

λt+1

))
+(1− sC)(1− sL)Et

(
Mt+1

[
HNt+1 −HUt+1

λt+1

])
and working with the left hand side;

(Fgt −K(φ∗)) =
(
Xt −Wt +

(
1− sC

)
EtMt+1

[(
1− sL

)
Fg,t+1 + sLK(φ∗)

]
−K(φ∗)

)
=

(
Xt −Wt +

(
1− sC

)
EtMt+1

[(
1− sL

)
(Fg,t+1 −K(φ∗)) +K(φ∗)

]
−K(φ∗)

)
Substituting into the sharing rule, we have:

(1− αL)

(
Wt − Zt − f(θt)Et

(
Mt+1

(
HNt+1 −HUt+1

λt+1

)))
= αL

(
Xt −Wt +

[(
1− sC

)
EtMt+1 − 1

]
K(φ∗)

)
and

Wt = αL
(
Xt +

[(
1− sC

)
EtMt+1 − 1

]
K(φ∗)

)
+ (1− αL)Zt

+ (1− αL) f(θt)Et
(
Mt+1

(
HNt+1 −HUt+1

λt+1

))
= αL

(
Xt +

[(
1− sC

)
EtMt+1 − 1

]
K(φ∗)

)
+ (1− αL)Zt

+αLf(θt)Et [Mt+1 (Fgt+1 −K(φ∗))]

Use

K(φ∗)
[
1−

(
1− sC

)
(1− qt)EtMt+1

]
+ γ

qt (1− sC)
= Et [Mt+1Fg,t+1]
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to obtain

Wt = αL
(
Xt +

[(
1− sC

)
EtMt+1 − 1

]
K(φ∗)

)
+ (1− αL)Zt

t +αLf(θt)Et

[
K(φ∗)

[
1−

(
1− sC

)
(1− qt)EtMt+1

]
+ γ

qt (1− sC)
−Mt+1K(φ∗)

]
= αL

(
Xt +

[(
1− sC

)
EtMt+1 − 1

]
K(φ∗)

)
+ (1− αL)Zt

+αLθtEt

[
K(φ∗)

[
1−

(
1− sC

)
(1− qt)EtMt+1

]
+ γ

(1− sC)
− qtMt+1K(φ∗)

]
= αLXt + (1− αL)Zt

+αL
[[(

1− sC
)
EtMt+1 − 1

]
K(φ∗)+

θt

[
K(φ∗)

[
1−

(
1− sC

)
(1− qt)EtMt+1

]
+ γ

(1− sC)
− qtMt+1K(φ∗)

]]
= αLXt + (1− αL)Zt

+αL
[[(

1− sC
)
EtMt+1 − 1

]
K(φ∗)

+θt

[
γ

(1− sC)
+

[
1

(1− sC)
− (1− qt)EtMt+1

]
K(φ∗)− qtMt+1K(φ∗)

]]
Wt = αL

(
Xt + θt

[
γ

(1− sC)
+

[
rt + sC

(1− sC) (1 + rt)

]
K(φ∗)

])
+ (1− αL)Zt − αL

[
rt + sC

1 + rt

]
K(φ∗)
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APPENDIX B

Appendix for Market Size and Market Concentration

B.1 Appendix: Numerical Solution Methods

In this section I describe my solution method in detail. Code used to solve the model,

along with documentation, is included at https://github.com/btengels.com. My solution

algorithm follows the steps below:

1. Establish a discrete state space and transition probability matrix for zt. I

create evenly-spaced grids of values for kt, Qt, zt containing 20, 17, and 13 points

respectively. The ranges of these grids are large enough such that further expansion

has no noticeable impact on the model’s results. The transition probability matrix for

zt is computed using the method of Rouwenhorst (1995) which is ideal for simulating

autoregressive processes with high levels of persistence.

2. Establish a discrete action space for choice variable it. I create an evenly-spaced

grid of potential it values. The lower limit is 0 and the upper limit is chosen such that

increasing the limit further has no impact on the model’s results.

3. Create an initial guess for value function J . I use a matrix zeros with three

dimensions corresponding to the sizes of the grids for k, Q and z.

4. For every state (K,Q, z) and for every choice i:

• Compute the contemporaneous payoff π(kt, Qt, zt, it) using equation (2.6).

• Compute kt+1 given values for K and i and equation (2.4).
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• Use the value of kt+1 to interpolate the value function J for potential future states

(kt+1, Qt+1, zt+1)

• Use the transition probability matrix and the expectation rule in equation ?? to

compute the expected value of Jt+1 given the current state and choice of i

• Determine the optimal choice of i based on the sum of current payoffs π(kt, Qt, zt, it)

and continuation values Et [J(kt+1, Qt+1, zt+1)]

• Determine whether choosing it > 0 is better or worse than exiting and choosing

it = 0. This occurs when Et [Jexit(kt+1, Qt+1, zt+1)] > Et [J(kt+1, Qt+1, zt+1)])

• Save the optimal decision for it, et at each state

5. Update the value function. Use the values of J resulting from the optimal choice

of i at each state to update the value function J(k,Q, z)

6. Iterate until convergence. Return to Step 4 and repeat until the value function J

converges.

B.2 Appendix: Details on Weighting Functions

Prices in my model are set via an inverse demand function that considers the output

from competitors in typical Cournot-oligopoly fashion. I add a notion of distance between

competitors and the affect of their output on competitors’ prices through a weighting function

w(·). This weighting function is decreasing with the distance between two firms i and j, such

that nearby firms have a larger affect on one another. The only requirements I assume for

w(·) are
∂w(xi,xj ;h)

∂d(xi,xj)
≤ 0, w(·) ∈ [0, 1], and w(xi, xj) = w(xj, xi). All of these are satisfied by

the family of symmetric kernel functions.

The main kernel function used throughout the paper is the “triangular” kernel, given by

w(xi, xj;h) = max

{
0,

[
1− d(xi, xj)

h

]}
. (D.1)

The parameter h, called the “bandwidth” of the function, determines the range of distances

which will receive positive weights. With the triangular kernel, a firm located at xi will be

affected by firms in the interval (x− h, x + h). Figure B.1 plots w(xi, xj;h) for xi = .5 and

xj ∈ [0, 1] for different values of h.

When h→ 0, the interval (xi − h, xj + h) approaches a single point and w(xi, xj;h) = 0

for all xi 6= xj. Conversely, when h → ∞ , the term
d(xi,xj)

h
→ 0 and w(xi, xj;h) → 1

for any pair of firms xi, xj. In trying different functions, including parabolic and Gaussian
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Figure B.1: Triangular Weighting Function for Different h Values
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kernels, the shape of the function does not seem to matter as much as the value of h. I use

a triangular kernel throughout my analysis due to its simplicity and interpretability.

B.3 Appendix: Details on Inverse Demand Function

In Section ??, I introduce a pricing function that adjusts based on the number of active

firms in the economy. The goal is to prevent the aggregate economy from shrinking as firms

exit. In a hypothetical scenario where prices are fixed at some price p̄ and half of active firms

exit, the surviving firms would clear the market at p̄ by producing twice as much output as

before.

p̄ = χ−
(
Nt

N1

)
Q (D.2)(

Nt

N1

)
Q = (χ− p̄) (D.3)

Q = (χ− p̄)
(
N1

Nt

)
(D.4)

Let Q̄ denote the value of Q at period 1 when Nt = N1. If at some future period

Nt = .5N1, then equation (D.4) becomes Q = (χ− p̄) 2 = 2Q̄ and the amount of output by

the firm required to clear the market at p̄ has doubled. The same is for any ratio between
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Nt and N1, such that the aggregate market size will increase proportionally to the share of

firms exiting each period.
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B.4 Appendix: Change in CR4 for Select 4-Digit NAICS Codes

NAICS Description CR4 2002 CR4 2012 Rev. Growth

5172 Wireless telecommunications carriers (except s... 61.7 89.1 328.4
4512 Book, periodical, and music stores 48.3 66.1 76.0
4422 Home furnishings stores 20.9 36.4 168.5
4461 Health and personal care stores 45.7 60.0 199.8
5174 Satellite telecommunications 34.6 48.1 164.5
4441 Building material and supplies dealers 42.0 53.8 142.9
4541 Electronic shopping and mail-order houses 18.7 30.2 433.3
5191 Other information services 30.7 41.9 2619.6
4431 Electronics and appliance stores 44.3 54.1 152.2
4539 Other miscellaneous store retailers 13.2 22.9 210.1
4421 Furniture stores 8.1 17.3 207.5
4413 Automotive parts, accessories, and tire stores 21.2 30.3 192.0
4442 Lawn and garden equipment and supplies stores 10.4 18.4 223.2
4542 Vending machine operators 20.7 28.2 113.4
4521 Department stores 66.4 73.2 88.6
4471 Gasoline stations 8.2 13.3 360.6
4529 Other general merchandise stores 78.8 82.7 216.4
4511 Sporting goods, hobby, and musical instrument ... 24.2 27.4 146.5
4532 Office supplies, stationery, and gift stores 45.9 48.8 91.6
4533 Used merchandise stores 9.9 12.7 214.4
4483 Jewelry, luggage, and leather goods stores 22.3 24.9 137.7
4412 Other motor vehicle dealers 4.2 6.4 154.0
5112 Software publishers 39.5 41.4 173.0
4453 Beer, wine, and liquor stores 8.3 10.1 184.3
5179 Other telecommunications 31.4 32.6 1825.4
5151 Radio and television broadcasting 39.1 39.8 132.5
4411 Automobile dealers 5.3 5.9 119.3
5111 Newspaper, periodical, book, and directory pub... 13.6 14.0 75.0
4543 Direct selling establishments 11.0 11.2 129.4
4531 Florists 1.7 1.6 66.4
4452 Specialty food stores 6.8 5.9 117.6
4481 Clothing stores 28.0 27.0 138.2
4451 Grocery stores 31.0 29.8 129.7
5121 Motion picture and video industries 37.4 34.9 119.5
5221 Depository credit intermediation 24.2 20.8 68.2
5152 Cable and other subscription programming 63.9 58.9 230.7
4482 Shoe stores 39.9 34.3 114.9
5171 Wired telecommunications carriers 59.7 51.3 103.4
5122 Sound recording industries 60.9 51.0 61.2
5182 Data processing, hosting, and related services 33.7 15.9 95.7
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APPENDIX C

Appendix for Group Punishments

C.1 Substitutability and Price Externalities

In this Appendix extend the analysis of Section 3.3 by allowing for a rich degree of price

externalities. In particular, we analyze the degree to which the ability of the Principal to

impose group punishments improves social welfare when varying the degree of substitutability

between the output of individual producers. In Section C.1.1, we introduce a new pricing

function which admits a variable degree of substitution across producers’ goods and derive

equilibrium outcomes of the stage game. In Section C.1.2, we develop a recursive formulation

of the infinite-horizon game and show that the usefulness of group punishments increases as

goods become more substitutable.

C.1.1 Stage Game

We generalize the price function by assuming that consumers have Cobb-Douglas pref-

erences over a bundle of individual producers’ output and a numeraire good, and that these

consumers face taxes τ on purchases of each producers’ output. In this economy, the inverse

demand function for each producer i’s output satisfies

pi (q, τ) = α
qρ−1
i∑n
i=1 q

ρ
i

− τ, (D.1)

where α ∈ (0, 1) and ρ ∈ (0, 1). Here, the parameter α is a Cobb-Douglas parameter that

governs the substitutability between the numeraire good and the bundle of producers’ output,

while the parameter ρ governs the degree of substitutability between each producer’s output.

Under this formulation, a higher level of ρ implies a higher degree of substitutability.
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With prices specified in (D.1), each producer i obtains a static payoff given by

ui (q, τ) = α
qρi∑n
i=1 q

ρ
i

− τqi − cqi, (D.2)

while the Principal obtains a static payoff given by

w (Q, τ) =
n∑
i=1

pi(q, τ)qi (D.3)

= α− τQ. (D.4)

As in the case of a linear inverse demand function, after observing any level Q, the

Principal optimally chooses τ (Q) = 0 in the stage game. We impose a restriction on the

strategy set of each producer which requires strictly positive production. Formally, we restrict

qi ∈
[
q,∞

]
with q < qNi . Under this restriction, the level of output that maximizes joint

profits in the stage game satisfies

qmi = arg max
qi≥q

(α
n
− cqi

)
(D.5)

= q. (D.6)

Next, to solve for the unique perfect-public equilibrium of the stage game qNi , we note that

for each q−i, producer i solves

max
qi

α
qρi

qρi +
∑
−i q

ρ
−i
− cqi.

It is straightforward to show that the unique perfect-public equilibrium of the stage game is

qNi =
n− 1

n2

αρ

c
. (D.7)

C.1.2 Infinitely-Repeated Game

We focus on characterizing strongly symmetric perfect-public equilibria. We denote by

u (q, τ) the producer’s payoff and by w (Q, τ) the Principal’s payoff, and after appealing to

the one-shot deviation principle, we proceed to characterize the best and worst perfect-public

equilibria of the repeated game. Under the inverse demand function (D.1), for a given level

of the worst equilibrium payoff v the best equilibrium payoff v̄ solves

v̄ = max
q
u (q, 0) ,
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subject to, for all q′,

u (q, 0) ≥ (1− δ) g (q′, q, τ (q′ + (n− 1) q)) + δv, (D.8)

v̄ ≥ 1− δ
δ

1

n
[w (q′ + (n− 1) q, 0)− w (q′ + (n− 1) q, τ (q′ + (n− 1) q))] + v,(D.9)

where g (q′, q, τ (q′ + (n− 1) q)) now satisfies

g (q′, q, τ (q′ + (n− 1) q)) = u (q′, q, τ (q′ + (n− 1) q)] +
1

n
w (q′ + (n− 1) q, 0)

− 1

n
w (q′ + (n− 1) q, τ (q′ + (n− 1) q)) . (D.10)

As in the previous section, we define the maximum payoff that can be achieved by a producer

by deviating to q′ when the others are producing q as ĝ (q, τ (·)). This maximum payoff

satisfies

ĝ (q, τ (·)) = max
q′

g (q′, q, τ(q′ + (n− 1)q)) .

In the next lemma, we show that as long as the prescribed output is larger than the static

Nash equilibrium output, the maximum deviation payoff ĝ(q, τ (·)) is minimized when the

Principal levies no taxes (i.e., when τ = 0).

Lemma C.1. ĝ (q, τ (·)) ≥ ĝ (q, τ = 0) when q ≥ qN .

Proof. See Appendix C.2.2.1.

Given Lemma C.1, the key propositions of Section 3.3 immediately extend to the envi-

ronment with imperfectly substitutable goods. Here, we explore how the usefulness of group

punishments in improving welfare depends on the degree of substitutability between individ-

ual producers’ output. We start by showing in the following lemma that when the number

of producers n is sufficiently large, the best equilibrium level of output of the model where

taxes are not allowed is increasing in the substitutability parameter ρ.

Lemma C.2. For n sufficiently large, dq̄A/dρ > 0.

Proof. See Appendix C.2.2.2.

The intuition behind this lemma is that when output is more substitutable the negative

impact of an individual producer’s output on the common price is lower. This increases

producers’ incentives to over-produce, and leads to higher levels of production and lower

equilibrium values in the best equilibrium.

Finally, in the following proposition we formalize our numerical illustration from Section

3.3.3 that the welfare gains from group punishments are increasing in the parameter ρ. For a
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given set of parameters, let ∆U denote the change in the value of the best equilibrium in our

model relative to the value of the best equilibrium in the model where group punishments

are not allowed, i.e.

∆U ≡
u (q̄)− u

(
q̄A
)

u (q̄A)
. (D.11)

Proposition C.3. Fix ρ ∈ (0, 1). For n sufficiently large, there exists a δ ∈ (0, 1) and ρ̄ > 0

such that for all ρ′ ∈ (ρ, ρ̄), d∆U (ρ′) /dρ′ > 0.

We give here a sketch of our argument, and leave a formal proof to Appendix C.2.2.3.

For a fixed level of the substitutability parameter ρ, we know that our model achieves the

first-best level of output qm at a lower level of the discount factor than the model where taxes

are not allowed. This happens because, as showed in Proposition III.8, the threat of taxes

always weakly enlarges the equilibrium set, and strictly enlarges the equilibrium set when

producers are sufficiently patient. We denote by δA∗(ρ) the threshold level of the discount

factor at which the model where taxes are not allowed first achieves qm as the most collusive

level of output, and by δ∗(ρ) the level of the discount factor at which our model first achieves

qm as the most collusive level of output. Since δ∗(ρ) < δA∗(ρ), we can always find a discount

factor δ0 such that δ∗(ρ) < δ0 < δA∗(ρ). At δ0 the model where taxes are allowed achieves qm

as the most collusive level of output, while the model where taxes are not allowed achieves

a higher level of output (a lower value) than qm. In the final step of the proof we argue

that by continuity at this δ0, if ρ increases by a sufficiently small amount to some ρ̄′ > ρ,

the model where taxes are allowed still achieves qm as the most collusive level of output.

At δ0, on the other hand, the most collusive level of output under ρ̄′ is strictly greater than

the most collusive level of output under ρ in the model where taxes are not allowed (from

Lemma C.2). Therefore the increase in output (and decrease in value) relative to qm (the

most collusive level of output at δ0, in the model where taxes are allowed) increases when ρ

increases to ρ̄′. Using the same argument, we prove that for all ρ′ ∈ (ρ, ρ̄), d∆U (ρ′) /dρ′ > 0.

Different parametrizations of the model suggest that the results of Proposition C.3 hold

for a wide range of the model’s key parameters. As an example, Figure C.1 shows the

percentage increase in welfare in the best equilibrium associated with group punishments for

various values of the degree of substitutability ρ and the marginal cost of production, c. In

this figure, we hold the discount factor fixed at a value of δ = 0.16. This figure clearly shows

that an increase in the degree of substitutability strictly raises the welfare gains associated

with group punishments and that these welfare gains are not particularly sensitive to the

marginal costs of production.
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Figure C.1: Percentage increases in Welfare from Group Punishments
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Percentage increase in welfare in best equilibrium resulting from the introduction of
group punishments for various marginal costs of production c for a fixed discount factor
(δ = 0.16).

C.2 Definitions and Proofs

C.2.1 Definitions and Proofs from Sections 3.2 and 3.3

C.2.1.1 Repeated Game Definitions

Definition 1. For any history hwt ∈ Hw the continuation game is the infinitely-repeated

game that begins in period t, following history hwt. For any strategy profile σ = ({σi}ni=1 , σw),

agent i’s continuation strategy induced by hwt is given by σi (h
wthws) for all hws ∈ Hw, where

hwthws is the concatenation of history hwt followed by history hws. Similarly, the Principal

continuation strategy induced by hwt is given by σw ((hwthws) , x (σ1 (hwthws) , σ2 (hwthws) , . . . , σn (hwthws)))

for all hws ∈ Hw.

Definition 2. A Perfect-Public Equilibrium is σ = ({σi}ni=1 , σw) such that, for all histories

hwt ∈ Hw,

U t
i

(
hwt, σ

)
≥ U t

i

(
hwt, (σ̃i, σ−i, σw)

)
(D.12)

for all i, σ̃i, and

U t
w

(
hwt, σ

)
≥ U t

w

(
hwt, ({σi}ni=1 , σ̃w)

)
(D.13)

117



for all σ̃w.

Definition 3. A one-shot deviation for agent i from strategy σi is a strategy σ̃i 6= σi such

that there exists a unique history h̃wt ∈ Hw such that for all hws 6= h̃wt,

σi (h
ws) = σ̃i (h

ws) . (D.14)

Similarly, a one-shot deviation for the Principal from strategy σw is a strategy σ̃w 6= σw such

that for all hwt ∈ Hw there exists a level of the total outcome x̃t such that for all xt 6= x̃t,

σw
(
hwt, xt

)
= σ̃w

(
hwt, xt

)
. (D.15)

Definition 4. A one-shot deviation σ̃i from the agent strategy σi is profitable if at history

h̃wt for which σ̃i

(
h̃wt
)
6= σi

(
h̃wt
)

,

U t
i

(
h̃wt, (σ̃i, σ−i, σw)

)
> U t

i

(
h̃wt, σ

)
. (D.16)

A one-shot deviation σ̃w from the Principal strategy σw is profitable if for all hwt ∈ Hw, at

the outcome level for which σ̃w

(
h̃wt, xt

)
6= σw

(
h̃wt, xt

)
,

U t
w

(
h̃wt, ({σi}ni=1 , σ̃w)

)
> U t

w

(
h̃wt, σ

)
. (D.17)

C.2.1.2 Proof of Proposition III.3

If a profile is perfect-public, clearly there are no profitable one-shot deviations. Now

suppose that the profile σ is not perfect-public. We want to show that there must be a

profitable one-shot deviation. Since σ is not perfect-public, there exists a history h̃wt, an

agent i and a strategy σ̃i (the proof for the Principal follows the same steps) such that

U t
i

(
h̃wt, σ

)
< U t

i

(
h̃wt, (σ̃i, σ−i, σw)

)
. (D.18)

Let ε = U i
t

(
h̃wt, (σ̃i, σ−i, σw)

)
−U i

t

(
h̃wt, σ

)
. Letm = mini,q,τ ui (q, τ) andM = maxi,q,τ ui (q, τ),

with T large enough that δT (M −m) < ε/2.1. Finally, for any agent i and history hws ∈ Hw,

let

usi

((
h̃wthws

)
, σ
)

= ui

({
σi

(
h̃wthws

)}n
i=1

, σw

((
h̃wthws

)
, x
(
h̃wthws

)))
, (D.19)

1Note that ui (·) is potentially unbounded below. Here we impose that m is an arbitrarily large negative
number.
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where x
(
h̃wthws

)
is short-hand notation for x

(
σ1

(
h̃wthws

)
, σ2

(
h̃wthws

)
, . . . , σn

(
h̃wthws

))
,

and denote by h̃ws the period-s history induced by (σ̃i, σ−i, σw). Then,

(1− δ)

[
T−1∑
s=t

δsusi

((
h̃wthws

)
, σ
)

+
∞∑
s=T

δsusi

((
h̃wthws

)
, σ
)]

= (1− δ)

[
T−1∑
s=0

δsusi

((
h̃wth̃ws

)
, (σ̃i, σ−i, σw)

)
+
∞∑
s=T

δsusi

((
h̃wth̃ws

)
, (σ̃i, σ−i, σw)

)]
− ε,

(D.20)

so that

(1− δ)
T−1∑
s=t

δsusi

((
h̃wthws

)
, σ
)

< (1− δ)
T−1∑
s=0

δsusi

((
h̃wth̃ws

)
, (σ̃i, σ−i, σw)

)
− ε

2
.(D.21)

Then the strategy σ̂i such that

σ̂i (h
ws) =

σ̃i (hws) if s < T,

σi (h
ws) if s ≥ T,

(D.22)

is a profitable deviation from σi

(
h̃wt
)

. Now let ĥw(T−1) denote the period T − 1 history

induced by (σ̂i, σ−i, σw). There are two possibilities. First, suppose

UT−1
i

((
h̃wtĥw(T−1)

)
, σ
)

< UT−1
i

((
h̃wtĥw(T−1)

)
, (σ̂i, σ−i, σw)

)
. (D.23)

Then, since σ̂i agrees with σi in period T and after T , we have a profitable one-shot deviation

after history h̃wtĥw(T−1). Alternatively, suppose

UT−1
i

((
h̃wtĥw(T−1)

)
, σ
)
≥ UT−1

i

((
h̃wtĥw(T−1)

)
, (σ̂i, σ−i, σw)

)
, (D.24)

and construct the strategy

σ̄i (h
ws) =

σ̂i (hws) if s < T − 1,

σi (h
ws) if s ≥ T − 1.

(D.25)
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Since

UT−2
i

((
h̃wtĥw(T−2)

)
, (σ̂i, σ−i, σw)

)
= (1− δ)uT−2

i

((
h̃wtĥw(T−2)

)
, (σ̂i, σ−i, σw)

)
+ δUT−1

i

((
h̃wtĥw(T−1)

)
, (σ̂i, σ−i, σw)

)
(D.26)

≤ (1− δ)uT−2
i

((
h̃wtĥw(T−2)

)
, (σ̂i, σ−i, σw)

)
+ δUT−1

i

((
h̃wtĥw(T−1)

)
, σ
)

(D.27)

= UT−2
i

((
h̃wtĥw(T−2)

)
, (σ̄i, σ−i, σw)

)
, (D.28)

then

U t
i

(
h̃wt, (σ̂i, σ−i, σw)

)
≤ U t

i

(
h̃wt, (σ̄i, σ−i, σw)

)
, (D.29)

and σ̄i is a profitable deviation at h̃wt that only differs from σi in the first T − 1 periods.

Proceeding in this way, we find a profitable one-shot deviation.

C.2.1.3 Proof of Proposition III.6

We need only prove that for each v ∈ [v, v̄], there exists a perfect-public equilibrium

strategy which attains the value v. To construct such strategy, we start from the set of

perfect-public equilibrium strategies of the game where the Principal is not allowed to impose

group punishments,
[
vA, v̄A

]
. We know from Abreu (1986) that any equilibrium value v0 such

that v0 ∈
[
vA, v̄A

]
can be achieved with a perfect-public equilibrium strategy σ0. Under

σ0, the Principal never imposes group punishments and agents exert effort a0 such that

u (a0) = v0 on path, and punish deviations by both Principal and agents by reversion to the

worst (carrot-and-stick) perfect-public equilibrium with value vA. Therefore, we focus on

characterizing the equilibrium strategies for the cases in which
[
vA, v̄A

]
⊂ [v, v̄].

Consider a new strategy σ1. Define by āA the carrot output in the model where group

punishments are not allowed. Under σ1, for some ε1 > 0 agents choose a1 = āA + ε1 as

long as the aggregate outcome x1 is such that x1 = x (a1), and the Principal never imposes

punishments. Suppose that an agent deviates to some a′, such that the observed aggregate

outcome is x1 = x (a′, a1). In this case, the Principal imposes an arbitrarily small punishment

τ 1 (x1) > 0 such that the punishment is feasible. That is, such that v1 (a′, a1, τ 1 (x1)) ∈ [v, v̄],

where

v1
(
a′, a1, τ 1

(
x1
))
≡ 1− δ

δ

1

n

[
w
(
a′, a1, 0

)
− w

(
a′, a1, τ 1

(
x1
))]

. (D.30)
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If an agent deviates and the Principal implements the prescribed punishment, then agents

follow the strategy σ1 (v1 (a′, a1, τ 1 (x1))). Therefore, the continuation value promised to

agents when one of the agents deviates and the Principal imposes τ 1 (x1) can be achieved

with a perfect-public equilibrium strategy. Conversely, deviations by agents followed by

deviations by the Principal are punished by the worst perfect-public equilibrium strategy

σ1
(
vA
)
. Clearly, this strategy is a perfect-public equilibrium. Moreover, it achieves a value

u (a1) ≡ v̄1 > v̄A.

Next, note that reversion to the perfect-public equilibrium v̄1 > v̄A allows to construct

a new carrot-and-stick strategy in which agents contribute an effort level ã1 < ãA for one

period and then revert to v̄1, with deviations from the prescription causing the prescription

to be repeated. Moreover, note that this new carrot-and-stick strategy has value v1 < vA.

Hence, for any value v1 ∈ [v1, v̄1], we can find a perfect-public equilibrium strategy σ1 such

that u (σ1) = v1.

Now take some k ≥ 2 and set
[
vk, v̄k

]
such that [v1, v̄1] ⊂

[
vk, v̄k

]
⊂ [v, v̄], and assume

that for any vk ∈
[
vk, v̄k

]
we can construct a perfect-public equilibrium strategy σk such

that u
(
σk
)

= vk. Denote by āk the effort level with value v̄k, and construct a new strategy

σk+1. Under σk+1, for some εk+1 > 0 agents produce ak+1 = āk+εk+1 as long as the observed

aggregate outcome xk+1 is such that xk+1 = x
(
ak+1

)
, and the Principal never imposes punish-

ments. Suppose that an agent deviates to some a′, such that the observed aggregate outcome

is xk+1 = x
(
a′, ak+1

)
. In this case, the Principal imposes a punishment τ k+1

(
xk+1

)
> 0 such

that the punishment is feasible. That is, such that vk+1
(
a′, ak+1, τ k+1

(
xk+1

))
∈ [v, v̄], where

vk+1
(
a′, ak+1, τ k+1

(
xk+1

))
≡ 1− δ

δ

1

n

[
w
(
a′, ak+1, 0

)
− w

(
a′, ak+1, τ k+1

(
xk+1

))]
.(D.31)

Note that since v̄k > v̄1, the range of punishments that can be sustained is larger than

[0, supx1 τ
1 (x1)]. If an agent deviates and the Principal implements the prescribed tax,

then agents follow the strategy σk+1
(
vk+1

(
a′, ak+1, τ k+1

(
xk+1

)))
. Therefore, the continua-

tion value promised to agents when one of the agents deviates and the Principal imposes

τ k+1
(
xk+1

)
can be achieved with a perfect-public equilibrium strategy. Conversely, devia-

tions by agents followed by deviations by the Principal are punished by the worst perfect-

public equilibrium strategy σk+1
(
vk
)
. Clearly, this strategy is a perfect-public equilibrium.

Moreover, it achieves a value u
(
ak+1

)
≡ v̄k+1 > v̄k. Next, note that reversion to the perfect-

public equilibrium v̄k+1 > v̄k allows to construct a new carrot-and-stick strategy in which

agents exert an effort level ãk+1 > ãk for one period and then revert to v̄k+1, with deviations

from the prescription causing the prescription to be repeated. Moreover, note that this new

carrot-and-stick strategy has value vk+1 < vk. Hence, for any value vk+1 ∈
[
vk+1, v̄k+1

]
, we
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can find a perfect-public equilibrium strategy σk+1 such that u
(
σk+1

)
= vk+1. The proof is

completed by induction.

C.2.1.4 Proof of Proposition III.7

Suppose σ ((ã, ā) , (0, 0)) is an optimal carrot-and-stick punishment. Recalling from

Proposition III.5 that ã ≤ aN , the requirement that producers do not deviate from the

stick and carrot outputs ã and ā are, respectively:

(1− δ)u (ã, 0) + δu (ā, 0) ≥ (1− δ) ĝ (ã, 0) + δ (1− δ)u (ã, 0) + δ2u (ā, 0) , (D.32)

u (ā, 0) ≥ (1− δ) ĝ (ā, τ (·)) + δ (1− δ)u (ã, 0) + δ2u (ā, 0) .(D.33)

Rearranging these inequalities, we get

ĝ (ã, 0) ≤ (1− δ)u (ã, 0) + δu (ā, 0) = v, (D.34)

ĝ (ā, τ (·)) ≤ u (ā, 0) + δ (u (ā, 0)− u (ã, 0)) . (D.35)

If (D.34) holds strictly, we can decrease ã and hence reduce u (ã, 0) while preserving (D.35).

But this yields a lower punishment value than the infimum v, a contradiction. Hence (D.34)

holds with equality. Now suppose that if ā < a∗, (D.35) holds as a strict inequality. Then

we can simultaneously decrease ã by a small amount (therefore not violating (D.35)) and

increase ā to preserve (D.34). But then since ĝ (ã, 0) is increasing in ã and (D.34), we also

found a lower punishment value than the infimum, again a contradiction.

C.2.1.5 Proof of Lemma III.10

First, note that

ĝ (q, τ (·)) ≥ max
q′

g (q′, q, τ (q′ + (n− 1) q)) (D.36)

≥ g

(
1− (n− 1) q − c

2
, q, τ

(
1− (n− 1) q − c

2
+ (n− 1) q

))
. (D.37)

Moreover, note that

∂g (q′, q, τ)

∂τ
= −q′ + 1

n
(q′ + (n− 1) q) (D.38)

=
n− 1

n
(q − q′) , (D.39)
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so that ∂g (q, q′, τ) /∂τ ≥ 0 if and only if q′ ≤ q. Finally, for q ≥ qN if we choose the deviation

q′ =
1− (n− 1) q − c

2
, (D.40)

then it must be that q′ ≤ q, since

1− (n− 1) q − c
2

≤ q ⇐⇒ qN ≤ q. (D.41)

Hence, for q ≥ qN ,

ĝ (q, τ (·)) ≥ g

(
1− (n− 1) q − c

2
, q, τ

(
1− (n− 1) q − c

2
+ (n− 1) q

))
(D.42)

≥ g

(
1− (n− 1) q − c

2
, q, 0

)
(D.43)

= ĝ (q, 0) . (D.44)

C.2.2 Proofs from Appendix C.1

C.2.2.1 Proof of Lemma C.1

The proof is a straightforward extension of the proof found in Appendix C.2.1.5. In

absence of a closed-form for the optimal deviation for the model where taxes are not allowed,

the only additional step required to complete the proof is to show that for q ≥ qN if we choose

the deviation

q′ = q̂ (q) , (D.45)

then q′ ≤ q. We prove this by showing that q̂ (q) is a smooth function that only intersects

the 45 degree line at zero and qN , and that for some q > qN , q̂ (q) < q. First, note that

q̂ (0) = 0, and that by definition of Nash equilibrium for q > 0, q̂ (q) = q if and only if

q = qN . Moreover, note that q̂ (q) is smooth, since the problem is smooth and q̂ (q) is

the implicit function that generates from the first order conditions determining the most

profitable deviation from q. Finally, note that for some q > qN , q̂ (q) < q. To show this,

consider any q > q0, where q0 is the minimum q > 0 such that q̂ (q) = 0 if and only if

ĝ (q, τ = 0) = 0. This level of q exists (as q goes to infinity, the price is driven to zero and

the most profitable deviation is not to produce and avoid the associated cost) and we can

always find it large enough such that q > qN .
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C.2.2.2 Proof of Lemma C.2

Since in what follows we focus on a model where taxes are not allowed, for notational

convenience we drop functional dependencies on taxes (e.g. we denote u(q, 0) by u(q)). We

similarly drop the superscript “A” which we use to compare the model where taxes are

allowed to the model where taxes are not allowed. To show that for sufficiently large n,

dq̄/dρ > 0, we analyze the two equations that characterize the carrot and the stick output

in the model where taxes are not allowed, i.e.

g (q̃ (ρ) ; ρ) =
α

n
− (1− δ)cq̃ (ρ)− δcq̄ (ρ) , (D.46)

g (q̄ (ρ) ; ρ) =
α

n
− (1 + δ)cq̄(ρ) + δcq̃ (ρ) . (D.47)

Totally differentiating these two expressions, we obtain

gq (q̃ (ρ) ; ρ)
dq̃(ρ)

dρ
+ gρ (q̃ (ρ) ; ρ) = −(1− δ)cdq̃(ρ)

dρ
− δcdq̄ (ρ)

dρ
(D.48)

gq (q̄ (ρ) ; ρ)
dq̄(ρ)

dρ
+ gρ (q̄ (ρ) ; ρ) = −(1 + δ)c

dq̄ (ρ)

dρ
+ δc

dq̃ (ρ)

dρ
(D.49)

We solve for dq̃/dρ from the first equation and substitute into the second to obtain a form

for dq̄/dρ. We have

[gq (q̃ (ρ) ; ρ) + (1− δ) c] dq̃(ρ)

dρ
= −gρ (q̃ (ρ) ; ρ)− δcdq̄ (ρ)

dρ
, (D.50)

so that

[gq (q̄ (ρ) ; ρ) + (1 + δ)c]
dq̄(ρ)

dρ
= −gρ (q̄ (ρ) ; ρ) + δc

[
−gρ (q̃ (ρ) ; ρ)− δcdq̄(ρ)

dρ

gq (q̃ (ρ) ; ρ) + (1− δ) c

]
.(D.51)

To be able to determine the sign of dq̄/dρ, we determine the sign of the derivatives gq (q̂; ρ)

and gq (q̂; ρ). First, for any q̂ we denote the most profitable deviation from q̂ as a function

of q̂ and ρ as q∗ (q̂, ρ). From the optimality conditions, we know that any q∗ (q̂, ρ) satisfies

αρ (n− 1) q̂ρ (q∗)−ρ−1[
1 + (n− 1) q̂ρ (q∗)−ρ

]2 = c. (D.52)
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Next, note that the payoff from the best response satisfies

gq (q̂; ρ) =
d

dq̂

[
α

1 + (n− 1) q̂ρq∗ (q̂, ρ)−ρ
− q∗ (q̂, ρ) c

]
(D.53)

=
−α[

1 + (n− 1) q̂ρq∗ (q̂, ρ)−ρ
]2 [(n− 1) ρq̂ρ−1q∗ (q̂, ρ)−ρ

− (n− 1) ρq̂ρq∗ (q̂, ρ)−ρ−1 q∗q (q̂, ρ)
]
− cq∗q (q̂, ρ) (D.54)

=
−αρ (n− 1) q̂ρ−1q∗ (q̂, ρ)−ρ[
1 + (n− 1) q̂ρq∗ (q̂, ρ)−ρ

]2 +

[
α (n− 1) ρq̂ρq∗ (q̂, ρ)−ρ−1[
1 + (n− 1) q̂ρq∗ (q̂, ρ)−ρ

]2 − c
]
q∗q (q̂, ρ)(D.55)

=
−αρ (n− 1) q̂ρ (q∗)−ρ

q̂
[
1 + (n− 1) q̂ρ (q∗)−ρ

]2 , (D.56)

where the last equality follows from optimality of q∗. Note also that using optimality of

q∗, we may write gq (q̂; ρ) as

gq (q̂; ρ) =
−αρ (n− 1) q̂ρ (q∗)−ρ

q̂
[
1 + (n− 1) q̂ρ (q∗)−ρ

]2 = −cq
∗ (q̂, ρ)

q̂
. (D.57)

Since if q̂ < qN then q∗(q̂, ρ) ≥ q̂ and if q̂ ≥ qN then q∗(q̂, ρ) ≤ qN , this implies

gq (q̂; ρ) ≤ −c if q̂ < qN , (D.58)

gq (q̂; ρ) ≥ −c if q̂ ≥ qN . (D.59)

Similarly, note that

gρ (q̂; ρ) =
d

dρ

[
α

1 + (n− 1) q̂ρq∗ (q̂, ρ)−ρ
− q∗ (q̂, ρ) c

]
(D.60)

=
−α (n− 1) q∗ (q̂, ρ)−ρ q̂ρ[
1 + (n− 1) q̂ρq∗ (q̂, ρ)−ρ

]2 [log q̂ − log q∗(q̂, ρ)] , (D.61)

so that we can write

gρ (q̂; ρ) = − c
ρ
q∗ (q̂, ρ) [log q̂ − log q∗(q̂, ρ)] . (D.62)

We then have

gρ (q̂; ρ) ≥ 0 if q̂ < qN , (D.63)

gρ (q̂; ρ) ≤ 0 if q̂ ≥ qN . (D.64)
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Next, substituting (D.57) and (D.62) into (D.51), we obtain

dq̄(ρ)

dρ

[
gq (q̄ (ρ) ; ρ) + (1 + δ)c+

δ2c2

gq (q̃ (ρ) ; ρ) + (1− δ) c

]
= −gρ (q̄ (ρ) ; ρ)

− δcgρ (q̃ (ρ) ; ρ)

gq (q̃ (ρ) ; ρ) + (1− δ) c
(D.65)

Simplifying and using short-hand notation, we have

q̄ρ

[
− q̄
∗

q̄
+ (1 + δ) +

δ2

− q̃∗

q̃
+ (1− δ)

]
=

1

ρ
q̄∗ log

(
q̄

q̄∗

)
+
δ 1
ρ
q̃∗ log

(
q̃
q̃∗

)
− q̃∗

q̃
+ (1− δ)

(D.66)

q̄ρ

1− q̄∗

q̄
+
δ
[
1− q̃∗

q̃

]
1− q̃∗

q̃
− δ

 =
1

ρ
q̄∗ log

(
q̄

q̄∗

)
+
δ 1
ρ
q̃∗ log

(
q̃
q̃∗

)
1− q̃∗

q̃
− δ

(D.67)

q̄ρ

[
q̄ − q̄∗

q̄
+

δ [q̃ − q̃∗]
(1− δ)q̃ − q̃∗

]
=

1

ρ
q̄∗ log

(
q̄

q̄∗

)
+
δ 1
ρ
q̃q̃∗ log

(
q̃
q̃∗

)
(1− δ)q̃ − q̃∗

. (D.68)

Since q̄ ≤ q̄∗ and q̃ ≥ q̃∗, if

(1− δ)q̃ − q̃∗ ≤ 0, (D.69)

then each term in brackets on the left-hand side and each term on the right-hand side of

(D.68) are negative. This implies q̄ρ ≥ 0. Hence, (1 − δ)q̃ − q̃∗ ≤ 0 is a sufficient condition

for q̄ρ to be positive. To show this, we use the expression for g(q̃, ρ) and g(q̄, ρ) in (D.46)

and (D.47):

α

1 + (n− 1)
(
q̃
q̃∗

)ρ − cq̃∗ =
α

n
− (1− δ)cq̃ − δcq̄, (D.70)

α

1 + (n− 1)
(
q̄
q̄∗

)ρ − cq̄∗ =
α

n
− (1 + δ)cq̄ + δcq̃. (D.71)

Equation (D.71) implies

(1 + δ)cq̄ − cq̄∗ =
α

n
− α

1 + (n− 1)
(
q̄
q̄∗

)ρ + δcq̃ (D.72)

≤ δcq̃, (D.73)
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which substituted into (D.70) yields

(1− δ)cq̃ − cq̃∗ =
α

n
− α

1 + (n− 1)
(
q̃
q̃∗

)ρ − δcq̄ (D.74)

= (1 + δ)cq̄ − cq̄∗ +
α

1 + (n− 1)
(
q̄
q̄∗

)ρ − α

1 + (n− 1)
(
q̃
q̃∗

)ρ − δc (q̃ + q̄)(D.75)

≤ δcq̃ +
α

1 + (n− 1)
(
q̄
q̄∗

)ρ − α

1 + (n− 1)
(
q̃
q̃∗

)ρ − δc (q̃ + q̄) . (D.76)

Then, we have

(1− δ)cq̃ − cq̃∗ ≤ −δcq̄ +
α

1 + (n− 1)
(
q̄
q̄∗

)ρ − α

1 + (n− 1)
(
q̃
q̃∗

)ρ . (D.77)

For n sufficiently large, q̄∗ converges to q̄ and q̃∗ converges to q̃. Hence, for n sufficiently

large the right-hand side is less than or equal to zero and the needed condition is verified.

C.2.2.3 Proof of Proposition C.3

Fix ρ ∈ (0, 1). We know that there exist a unique δA∗ (ρ) in the model where taxes are

not allowed such that q̄A (ρ) = qm. This δA∗ (ρ) simultaneously solves

ĝ (qm, 0) =
(
1 + δA∗ (ρ)

)
u (qm)− δA∗ (ρ)u

(
q̃A (ρ)

)
, (D.78)

ĝ
(
q̃A (ρ) , 0

)
=

(
1− δA∗ (ρ)

)
u
(
q̃A (ρ)

)
+ δA∗ (ρ)u (qm) , (D.79)

and represents the threshold level of the discount factor for which the model where taxes

are not allowed achieves the first-best level of output qm. Similarly, for the same ρ we know

that there exists a unique δ∗ (ρ) in the model where taxes are allowed such that q̄ (ρ) = qm,

which simultaneously solves

ĝ (qm, τ (·)) = (1 + δ∗ (ρ))u (qm)− δ∗ (ρ)u (q̃ (ρ)) , (D.80)

ĝ (q̃ (ρ) , 0) = (1− δ∗ (ρ))u (q̃ (ρ)) + δ∗ (ρ)u (qm) . (D.81)

Next, note that since i) for any level of the discount factor we have
[
vA; v̄A

]
⊆ [v; v̄], and ii)

for q̄A > qm if q̄ is sustained by a positive tax threat (for some q′ 6= q̄, τ (q′ + (n− 1) q̄) > 0)

then q̄A > q̄ ≥ qm, then δ∗ (ρ) < δA∗ (ρ) (i.e. the model where taxes are allowed achieves the

first best level of output qm at a lower value of the discount factor than the model where

taxes are not allowed). Next, let δ0 be such that δ∗ (ρ) < δ0 < δA∗ (ρ). Note that at δ0,
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q̄ (ρ) = qm and q̄A (ρ) > qm. Now let ρ̄′ > ρ, and let δ∗ (ρ̄′) in the model where taxes are

allowed be such that q̄ (ρ̄′) = qm, which solves

ĝ (qm, τ (·)) = (1 + δ∗ (ρ̄′))u (qm)− δ∗ (ρ)u (q̃ (ρ′)) (D.82)

ĝ (q̃ (ρ̄′) , 0) = (1− δ∗ (ρ̄′))u (q̃ (ρ̄′)) + δ∗ (ρ)u (qm) . (D.83)

By continuity we know that we can always choose ρ̄′ small enough such that δ∗ (ρ̄′) < δ0.

Therefore, in the model where taxes are allowed q̄ (ρ̄′) = q̄ (ρ) = qm. Moreover, since from

Lemma C.2 we know that for n sufficiently large dq̄A/dρ > 0, then q̄A (ρ̄′) > q̄A (ρ). Hence,

at δ0

u (q̄ (ρ̄′))− u
(
q̄A (ρ̄′)

)
u (q̄A (ρ̄′))

>
u (q̄ (ρ))− u

(
q̄A (ρ)

)
u (q̄A (ρ))

. (D.84)

Finally, following the same argument we have that for all ρ′ ∈ (ρ, ρ̄′), d∆U (ρ′) /dρ′ > 0.

C.3 Computational Algorithm

In this Appendix, we describe the computational algorithm for our numerical results in

Section 3.3. Define q̂ ≡ arg maxq′ ĝ (q′, q̄, τ (q′ + (n− 1) q̄)). For each level of the discount

factor δ, we aim to find q̃, q̄, q̂ and τ that solve the following system of equations:

ĝ (q̃, 0) = (1− δ)u (q̃, 0) + δµ (q̄, 0) , (D.85)

ĝ (q̂, τ (·)) ≤ u (q̄, 0) + δ (u (q̄, 0)− u (q̃, 0)) , (D.86)

u (q̄, 0) ≥ 1− δ
δ

1

n
[w (q̂ + (n− 1) q̄, 0)− w (q̂ + (n− 1) q̄, τ (q̂ + (n− 1) q̄))]

+ĝ (q̃, 0) . (D.87)

From Proposition III.7, Equation (D.86) holds with equality only when q̄ > qm and is slack

when q̄ = qm. The algorithm works as follows:

1. For each level of the discount factor δ, we know τ ∈
[
0, 1− (n− 1) qN − c

]
. Start with

τ̂ = 1− (n− 1) qN − c.

(a) Check if qm can be supported:

i. Set q̄ = qm. Solve (D.85) for q̃.

ii. Obtain q̂ = arg maxq′∈[qm,qN ] ĝ (q′, q̄, τ̂). We do this by searching for q̂ over a

fine grid for q′. Evaluate ĝ (q̄, τ̂).
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iii. Check if the resulting values for q̃ and q̄ satisfy (D.86) (with inequality) and

(D.87). If so, the algorithm is finished.

(b) If either (D.86) or (D.87) is not satisfied (qm cannot be supported), jointly solve

for q̄ and q̃. We do this using a nested bisection algorithm to solve (D.85) and

(D.86) with equality (also solving for q̂ as before).

i. The nested bisection algorithm proceeds as follows. The outer bisection al-

gorithm searches for q̃ ∈ [q̃`, q̃h]. The inner bisection algorithm solves for the

corresponding q̄.

ii. At each iteration of the double bisection algorithm, check whether (D.85)-

(D.87) are all satisfied.

2. If (D.85) and (D.87) are satisfied, we are done. If not decrease τ̂ by a small amount

and return to step 1.
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