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Abstracts

This dissertation contains three chapters and focuses on the optimal design of fiscal policy and

multi-item auction mechanisms where there is an informational friction in the economy.

In the first chapter, I examine the optimal taxation of families in an environment in which

(i) the earning abilities and child tastes of parents are private information, and (ii) child-rearing

requires both parental time and goods. The optimal tax system combines an income tax schedule

for childless families with tax credits for families with children. These components insure parents

against low income and high taste for children draws respectively. The parental time and cost of

goods involved in child-rearing have distinct impacts on the shape of optimal child tax credits. In

the quantitative part, I estimate these costs and show that they translate into a pattern of optimal

credits that is U-shaped in income. As a result, the credit to one (two) child families is decreasing

over the first 40% (50%) of the income distribution. In addition, the credit for the second child

is not equal to the credit for the first, owing to economies of scale in child-rearing. For median-

income families, the credit for the second child equals 44% of the credit for the first child. Finally,

I offer a simple linear-income dependent credit policy that achieves most of the welfare gain from

the optimum.

In the second chapter (joint with Laurence Ales and Christopher Sleet), we considers the nor-

mative implications of technical change for tax policy design. A task-to-talent assignment model of

the labor market is embedded into an optimal tax problem. Technical change modifies equilibrium

wage growth across talents and the substitutability of talents across tasks. The overall optimal pol-

icy response is to reduce marginal income taxes on low to middle incomes, while raising those

on middle to high incomes. The reform favors those in the middle of the income distribution,

reducing their average taxes while lowering transfers to those at the bottom.

In the third chapter (joint with Isa Hafalır), we consider multi-unit discriminatory auctions

where ex-ante symmetric bidders have single unit demands and resale is allowed after the bidding

stage. When bidders use the optimal auction to sell the items in the resale stage, the equilibrium

without resale is not equilibrium. We find a symmetric and monotone equilibrium when there

are two units for sale, and, interestingly, show that there may not be a symmetric and monotone

equilibrium if there are more than two units.
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Chapter 1

Optimal Taxation of Families

1.1 Introduction

How many children to have is an important decision for parents. The number affects child-rearing

which requires significant resources of goods and time. These resources interact with parents’ la-

bor decision, and consequently affect family income. A large positive literature studies this inter-

action extensively. However, normative work exploring the policy implication of such interaction

is sparse. Almost all governments consider the impact of child-rearing costs and provide some

benefits for parents. However, there is no consensus on how these benefits should be structured.

For example, the UK government has proposed cutting the benefits for third children born after

2017, while the US has gradually increased the credit-per-child rate between 2000 and 2010. These

facts indicate the importance of family taxation and motivate the following questions: How should

the government optimally tax families? Should child tax credits be part of an optimal tax system?

What are the key forces shaping the credits? What are the quantitative implications of these forces

for the US economy?

This paper focuses on the optimal design of income taxes and child tax credits. I make both

theoretical and quantitative contributions. On the theoretical side, I explore the forces shaping op-

timal income taxes and child tax credits. The former is redistributive towards low-earning families.

The latter reduces the income tax liabilities of those with children who are made monetarily worse

off by child-rearing. On the quantitative side, I study the key forces behind the credits. While the

goods cost reduces the welfare of low-earning families more relative to the high, the time cost re-
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duces the welfare of the high-earning families more relative to the low. These impacts suggest that

the goods cost is a motive for more provision to poor families, on the other hand, the time cost is a

motive for more provision to the wealthier. As a result, the optimal child tax credits are U-shaped

with respect to income.

I study a Mirrleesian environment in which families face shocks on earning abilities and tastes

for children and decide how much income to generate and how many children to have. A higher

ability shock decreases the cost of generating income and a higher taste for children increases the

desire to have more children. Both shocks are families’ private information. Facing a problem

of asymmetric information, the redistributive government maximizes social welfare by choosing

labor income taxes and child tax credits. Optimal taxes are characterized by a formula which links

marginal income tax rates to the exogenous ability distribution, the redistributive motives of the

government, and the sensitivity of family income to taxes. In addition, the formula has two novel

terms introduced by the child choice. The first term measures the prevalence of different family

sizes. This measure provides information on parents’ underlying child tastes. The second term is

the tax differences for families with n children and with n + 1 children. This term is a reflection

of the motive for redistributing to families with children whose wealth is reduced by child-rearing

costs.

Since earning abilities and tastes for children are both private information, the government

faces an informational friction along two dimensions. The two-dimensional friction creates some

technical issues. Because of the issues, the literature on optimal taxation dealing with multidimen-

sional screening is sparse. In this paper, I handle such issues by assuming that family welfare is

separable in the shocks. The separability assumption facilitates the family problem in which fami-

lies generate income after determining family size. The number of children to have is determined

by an analysis on the marginal cost and the benefit of children. The benefit is purely driven by

the tastes while the cost is measured by the impact of child-rearing on family consumption and in-

come, and consequently on family welfare. Under the separability assumption, for a given family

size, optimal consumption and income depend only on the families’ earning abilities. Therefore,

the marginal cost of a child is independent of families’ tastes for children. The child tastes that

equate the marginal benefit and the marginal cost of children are defined as threshold tastes. Using

this definition, the two-dimensional friction is resolved by a pair of incentive constraints. Given

2



a family size, one in the pair prevents mimicking the earnings of other families. The other of the

pair assures that the given family size is optimal.

The threshold tastes are a crucial concept in this paper. These thresholds provide a rationale for

the tax difference terms in the optimal tax system. To grasp the intuition behind the terms, consider

two families with same earning ability who would choose to have one child given a tax system. In

addition, assume that their tastes for children are on the distinct thresholds. This implies that one

family is indifferent between zero children and one child, while the other is indifferent between

one child and two children. If the government raises the taxes of one-child families by a small

amount, these families would be better off with zero and two children, respectively. As a result,

these families would change their size and their new tax liabilities would depend on their new

sizes. The differences between the new and the old liabilities would affect the total tax revenue,

and hence the differences should be considered in an optimal tax system.

I calibrate my model to the US economy and quantitatively analyze the optimal tax system.

First, I calculate families’ earning abilities using the first-order conditions of their problem and

the information about their income and tax brackets, which are taken from the March release of

the Current Population Survey (CPS) administered by the US Census Bureau and the US Bureau

of Labor Statistics. Using the weights of families provided by data, I derive the earning ability

distribution. Second, I assume a particular distribution for child tastes and use maximum like-

lihood estimation to capture its parameters. To the best of my knowledge, few works estimate

the distribution of tastes for children, and my paper is one of the first attempts to derive such a

distribution.

Optimal child tax credits are shaped by child-rearing costs. I estimate the goods and time costs

of child-rearing. These costs have distinct impacts on the shape of credits. On the one hand, the

goods cost decreases the welfare of low-income families relatively more than the high. On the

other, the time cost is more dominant for high-income families. These costs push the child credits

up for low and high-income families, respectively. As a result, the optimal credits are U-shaped.

The credit to one (two) child families decreases in the first 40% (50%) of the income distribution

and increases in the rest. In contrast, the child tax credits in the US are constant for families with

earnings less than a threshold level and decrease slowly after that level. The shape of the US

child tax credit over income seems that the government focuses only on the impact of goods cost.
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Considering the impact of time cost and shaping credits according to both impacts may improve

social welfare.

In addition, I show that the optimal credits are not same for each child in a family because of

economies of scale in child-rearing. The ratio of time costs of two children and one child is 1.55. In

addition, goods cost of two children is 66% more than the goods cost of one child. Because of the

scale, the credit to the second child is less than the first child for all families. In particular, the credit

for the second child is 44% of the first child credit for the median income families. In contrast, the

child tax credits in US are constant for each child.

I evaluate the potential welfare gain from implementing the optimum. First, the welfare gain

from the optimum relative to the current tax system is 1.1% in terms of equivalent increase in

consumption for all families. Next, I propose a tax system in which the income taxes are based

on optimal taxes of childless families and the child tax credits are linear with respect to income.

This proposal captures 87% of the welfare gain attained by the optimum. Another tax system, in

which income taxes are same as in my proposal but the credits are constant and equal per child,

can reach only 70% of the welfare gain. This suggests that income-dependent credits can improve

social welfare significantly.

The remainder of the paper is organized as follows. After a brief review of the literature, I

provide an institutional background for taxation of families in Section 1.2. I introduce the model

in Section 1.3. I derive the optimal tax schedule and also show why the conventional tax formula

should be adjusted with new terms. Section 1.4 quantitatively analyzes the model. I check the

robustness of results in Section 1.5 and conclude with Section 1.6.

Related Literature: This paper links the literature on fertility theories to public finance literature.

Most of the public finance literature abstracts from the child decision and the majority of work in

the fertility theories abstracts from optimal taxation. My paper fills this gap.

There is a vast literature on fertility theories. The related works to my paper study well-known

empirical evidence that fertility is negatively correlated with income. Schultz (1986) is an example

of such works, which explicitly focuses on wages of spouses and relates the evidence with the

changes in wage gap. Recently, Jones, Schoonbroodt, and Tertilt (2010) give a brilliant summary of

fertility theories. They state that child-rearing costs are on the focus of many studies. Empirically,
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Haveman and Wolfe (1995) work on the goods and the time costs. They find that these costs

incurred by parents and the government are around 14.5% of 1992 GDP. Two-thirds of the costs is

financed by parents. In addition, 82% of parental costs is goods cost which includes expenditures

on food, housing, health care, and clothes. There are many studies that work on the impact of the

goods cost. Golosov, Jones, and Tertilt (2007) and Hosseini, Jones, and Shourideh (2013) are recent

examples. The former paper studies the efficiency of the future allocations and the latter focuses

on the consumption inequality in the long run.

The second cost of child-rearing is parental time. Jones et al. (2010) state that parental time is

a crucial ingredient to explain the negative correlation between fertility and labor income. This is

mainly because the opportunity cost of time devoted to child-rearing is higher for the high-wage

workers. As a result, high wage workers produce fewer children. In addition, time cost increases

the labor sensitivity of parents to the wage changes which is a major component in the optimal

tax system. Blundell, Meghir, and Neves (1993) estimate that married families with children have

higher Frisch elasticity than married families without children. In this paper, I endogenize the

income elasticity of parents and show that parents with more children have higher elasticity. This

is mainly because more children requires more time and reduces available time for labor.

The child-rearing costs are important ingredients in my model. In contrast with many works, I

study with both costs and show that their interaction with different family income levels is impor-

tant to shape optimal policies.

My paper also contributes to the public finance literature, which is based on the trade-off be-

tween efficiency and equity. The trade-off arises because agents’ earning abilities are their private

information. In my paper, not only earning abilities but also tastes for children are families’ private

information, and hence the friction in the information is two dimensional. Because of the technical

difficulties of multi screening problems, there are few works study such an environment.1 Kleven,

Kreiner, and Saez (2009) and Jacquet, Lehmann, and der Linden (2013) are notable exceptions. The

former focuses on the jointness of family taxation in which primary earner’s earning ability and

secondary earner’s work cost are families’ private information. They show that marginal income

tax rates of the primary earner should be smaller if his or her spouse works. The latter studies an

1Baron and Myerson (1982) and Rochet and Chone (1998) provide some additional requirements to solve a multi
screening problem in the industrial organization literature.
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environment in which workers have private information regarding their earning abilities and their

taste of work and make a labor decision extensively and intensively. They provide a rationale for

non-negative marginal rates. Unlike the studies above, I focus not only on the marginal rates but

also on tax liabilities of families to study child tax credits. Moreover, both studies have only two

categories of agents. In this paper, I derive optimal taxes for an arbitrary number of family sizes.

The other contribution of this paper to the public finance literature is to the studies which

“tags” agents. In an interesting work, Mankiw and Weinzierl (2010) study optimal income taxa-

tion by considering agents’ heights. They notify that the income distribution of a particular height

group is an informative tool for the government. One can consider that families are tagged ac-

cording to their number of children in my paper. If children exogenously appeared in a family, the

optimal tax formula would be very similar to that of Mankiw and Weinzierl (2010). However, the

number of children to have is a choice in real life, and hence the tax formulas in the literature are

not applicable.

In the next section, I briefly state the US government-oriented welfare programs.

1.2 Institutional Background

There are around 80 mean-tested federal programs providing for different needs of families such

as cash, food, housing, medical care, and social services. Almost 50% of the budget for welfare

programs is spent for families with children.2 In this section, I give information about some of the

cash programs: Child Tax Credit, Earned Income Tax Credit, and Child and Dependent Care Tax

Credit. These are the main cash assistance programs provided to families with children.

1.2.1 Child Tax Credit

The Child Tax Credit (CTC) was enacted as a temporary provision in the Taxpayer Relief Act of

1997. A credit of $400 is given to families for each qualifying children and the credit was refund-

able only for families with more than two children.3 The credit has gradually increased to $1,000

from 2001 to 2010 by the Economic Growth and Tax Relief Reconciliation Act of 2001. Moreover,

the refundability is extended to all families. This refundable tax credit is called Additional Child

2Refer to Chart 3 of http://budget.house.gov/uploadedfiles/rectortestimony04172012.pdf
3See http://www.irs.gov/uac/Ten-Facts-about-the-Child-Tax-Credit for eligibility tests.
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Tax Credit. If a family has less tax liability than their child tax credit, they may get the minimum of

unclaimed credits and 15% of their income above $3,000. Because of the changes in the eligibility

conditions and the credit amount, the federal spending for CTC increased from 0.2% to 0.4% of

GDP between 2000 and 2010. Currently, the credit decreases for high income families. For exam-

ple, the credit is reduced by $50 for each $1,000 when aggregate gross income is above $110,000

for married tax payers filing jointly. Finally, the credit has become permanent by the American

Taxpayer Relief Act of 2012.

1.2.2 Earned Income Tax Credit

The Earned Income Tax Credit (EITC) is another program for working families. The literature on

the EITC is voluminous and cannot be fully reviewed here. I refer to Hotz and Scholz (2003), and

the references there. Here, I focus on how the credit differs with family size. The maximum credit

and phase in and out rates drastically change with the number of children in families (see Table A.1

in Appendix A.0.5). Figure 1.1 plots the EITC for 2014. Families with more children are given more

credits.
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Figure 1.1: Earned Income Tax Credit in 2014
Numbers in parenthesis represent the number of children in the family.
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1.2.3 Child and Dependent Care Tax Credit

The Child and Dependent Care Tax Credit (CDCTC) program decreases the tax liability of families

by 20% to 35% of child care expenditures for a qualifying child up to $3,000 for up to two children.

Also, $5,000 from the salary can be excluded from adjusted gross income for child care if certain

regulations are satisfied. The credit is non-refundable, and hence many low-income families do not

participate in this program.4 I refer to Blau (2003) for the history and effectiveness of the program.

To conclude this section, I focus on the functionality of these welfare programs. According to

the Tax Policy Center, which is a joint venture of the Urban Institute and the Brookings Institution,

6.6 million families are qualified for the CDCTC in 2010,5 more than 26 million taxpayers received

the EITC in 2015,6 and 38 million families claimed from the CTC in 2013.7 More families benefit

from the CTC because its eligibility requirement is more relaxed than the other welfare programs.

Moreover, the CTC has become one of the most expensive welfare programs for the US government

(see Figure 1.2).
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Figure 1.2: Government Spending for EITC and CTC
Source: http://www.taxpolicycenter.org/taxfacts/Content/PDF/eitc_child_historical.pdf.

In the following section, I introduce a static model, in which families face shocks on earning

abilities and tastes for children and simultaneously decide how much income to generate and how

4See http://www.irs.gov/taxtopics/tc602.html for more details.
5See http://taxpolicycenter.org/numbers/displayatab.cfm?Docid=2616.
6See http://www.taxpolicycenter.org/briefing-book/key-elements/family/eitc.cfm
7See http://www.taxpolicycenter.org/briefing-book/key-elements/family/ctc.cfm.
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many children to have. Child-rearing requires both goods and parental time, and these costs shape

the optimal child tax credits.

1.3 Model

I consider a population of families, where the size is normalized to 1 and families have iden-

tical preferences over consumption c ∈ R+, earnings z ∈ [0, z̄], and number of children n ∈

{0, 1, . . . , N}. The families are characterized by two channels. Each family has an earning ability

θ distributed on (θ, θ) in the population. The ability decreases the cost of earning z reciprocally:

z
θ . The second characterization is on the taste for children: β ∼ (β, β). The benefit of n children,

m(n, β), separately increases the utility of the family. On the other hand, rearing n children requires

goods (expenditures), en, and a fraction of parental time, bn.

The family characteristics (β, θ) are distributed according to a continuous density distribution

over B × Θ = [β, β] × [θ, θ]. Let Π(β, θ) be the cumulative distribution. I denote by P(β|θ) the

cumulative distribution of β conditional on θ: Π(β, θ) =
´

Θ P(β|θ) f (θ)dθ where f (θ) is the uncon-

ditional distribution of θ. Both β and θ are families’ private information.

Families report their income z and number of children n to the government, and the govern-

ment constructs a nonlinear tax system: T(z, n). Since n is binary, the system can be simplified

with an N + 1-tuple tax vector: Tn(z) for n = 0, 1, . . . , N. I define the child tax credit to nth children

as: kn(z) = Tn−1(z)− Tn(z) for n = 1, . . . , N. The total tax credit received by n−child families is:

∑n
j=1 k j(z). Note that credits are income dependent.

A family consumes c, which equals the net of income from taxes and expenditures for child

raising: c = z− Tn(z)− en. The preference of a family is represented by:

U (c, z, n, θ, β) = u(c)− h (z, bn, θ) + m(n, β) (1.1)

which satisfies Inada conditions: limz→0
∂U
∂z = 0 and limz→∞

∂U
∂z → −∞, and Spence-Mirrlees

condition: ∂
∂θ

(
−

∂U
∂z

θ ∂U
∂c

)
≤ 0.

Note that child choice is discrete, and hence first-order conditions are not immediately appli-

cable. Therefore, I solve the family problem in two steps.
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1.3.1 Family Problem

Initially, families determine how many children to have. Second, consumption and income are

chosen given the number of children. I use backward induction: Given n, the optimal income, zn,

and the optimal consumption, cn should satisfy the first-order condition and the budget set:

u′(cn)

(
1− ∂Tn(zn)

∂z

)
=

∂h(zn, bn, θ)

∂z
(1.2)

cn = zn − Tn(zn)− en. (1.3)

These equations imply cn and zn depend on child-rearing costs, bn and en, but they are indepen-

dent of taste for children, β. Next, I define the indirect utility of n−child families using optimal

consumption and income:

Vn(θ) := u(cn)− h (zn, bn, θ) . (1.4)

Using this definition, a θ−ability family will have n children if and only if n− children choice

provides the highest utility:

Vn(θ) + m(n, β) ≥ V(θ, β, n′) := max
n′
{Vn′(θ) + m(n′, β)}.

This expression can be simplified by an analysis on the marginal cost and benefit of n chil-

dren. Note that child rearing costs are captured by Vn(θ). This implies the marginal cost of n

children equals Vn−1(θ)−Vn(θ). In addition, m(n, β)−m(n− 1, β) represents the marginal benefit

of having n children. The family decides to have n children if and only if the marginal benefit of n

children is larger than the marginal cost of n children while the marginal benefit of n + 1 children

is less than the marginal cost of n + 1 children. Formally, (β, θ) families decide to have n children

if and only β ∈ (βn(θ), βn+1(θ)), where

βn(θ) := M−1(Vn−1(θ)−Vn(θ)), (1.5)
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for n = 1, 2, . . . , N and M(β) := m(n, β) − m(n − 1, β).8 I assume that exogenous parameters

satisfy β = β0 < β1(θ) < . . . < βN+1 = β. This assumption satisfies that each n ∈ N is chosen by

a θ− ability family. Since data provides that for all earning ability levels, there is no jump in family

sizes, this assumption is valid.

In Figure 1.3, I illustrate the child choice graphically for n = 0, 1. For a particular ability level,

the families with β ∈ (β0, β1(θ)) choose to have no children because the marginal benefit of one

child is less than its costs. For β = β1(θ), the benefit and cost having one child is equalized. When

β ∈ (β1(θ), β2(θ)), the families decide to have one child because the marginal benefit of one child

is higher than its cost and the marginal benefit of second children is less than the marginal cost of

second children.

θ

β

β1(θ)

β2(θ)

0 child families: V(θ, β, 0) = V0(θ) + m(0, β)

1 child families: V(θ, β, 1) = V1(θ) + m(1, β)

Figure 1.3: Critical Child Taste Levels

In the next subsection, I solve the government’s problem using these threshold tastes to handle

two dimensional friction in the information.

1.3.2 The Government’s Problem

The government has a preference over the utilities of families, Ψ : R → R which is increasingly

weakly concave. Using this preference, the government maximizes social welfare. The concavity

of Ψ creates an equity criterion in the government’s objective. I also want to mention that this

environment is equivalent to an environment in which the government is Utilitarian and Ψ is a

concave transformation of utilities.
8I fix β0(θ) = β and βN+1 = β.
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The characteristics of families are private information. To solve the problem of private infor-

mation, the government uses a mechanism design.

Mechanism Design Problem

To construct the optimal tax mechanism, I focus on implementation via direct mechanisms. In

a direct mechanism, families report their characteristics to the government and the government

optimally chooses consumption, number of children, and income for each families. In addition,

these allocations also satisfy that families are not better off by pretending to be another family.

Formally, the government solves:

max
c(β,θ),n(β,θ),z(β,θ)

ˆ
Θ

ˆ
B

Ψ(U ((β, θ)))p(β|θ) f (θ)dβdθ (MDP)

subject to the incentive constraints

U ((β, θ)) ≥ max
(β̃,θ′)∈B×Θ

U ((β, θ), (β̃, θ′)) ∀(β, θ) ∈ B ×Θ (1.6)

and the resource constraint

ˆ
Θ

ˆ
B

T(β, θ)p(β|θ) f (θ)dβdθ ≥ G,

where T(β, θ) = z(β, θ)− c(β, θ)− en1(n(β, θ)) and G is the government’s expenditure.

Equation (1.6) states that the government should prevent mimicking via two channels, earning

abilities and tastes for children. Consequently, ∞ × ∞ possible deviations should be handled,

which is hard to solve. To handle such deviations, I follow the arguments of the family problem

solution and use the definitions of indirect utility and threshold tastes for children. First, for a

given family size, the government uses a first-order approach to prevent deviation via earning

abilities:

V̇n(θ) :=
∂V(θ)

∂θ
= −h

( zn

θ
+ bn

)
+ h′

( zn

θ
+ bn

) zn

θ
≥ 0 (1.7)

for all n = 0, 1, . . . , N. Second, the deviation in tastes are handled by (1.5). First of all, Equation (1.5)
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directly implies that mimicking the tastes of families with different sizes does not make families

better off. In addition, for a particular family size, mimicking the tastes for children does not alter

the children choice and hence does not change the family utility. As a result, the possibility of

double deviation in the Equation (1.6) can be handled via Equation (1.4) and (1.5).

I use the Equation (1.4) and (1.5) and adjust the objective function and constraints. In addition,

the constraint (1.6) of the problem MDP is replaced by Equation (1.4), (1.5), and (1.7). This new

problem is a sophisticated version of the original mechanism design problem, and without loss of

generality, I call the new problem as the “pseudo-mechanism design problem”.

Pseudo-Mechanism Design Problem

The government problem solves the following problem:

max
Tn(θ)

ˆ
Θ

ˆ β1(θ)

β
Ψ(V0(θ) + m(0, β))p(β|θ) f (θ)dβdθ +

ˆ
Θ

ˆ β2(θ)

β1(θ)
Ψ(V1(θ)−m(1, β))p(β|θ) f (θ)dβdθ

+ . . . +
ˆ

Θ

ˆ β

βN(θ)
Ψ(VN(θ) + m(N, β))p(β|θ) f (θ)dβdθ (PMDP)

subject to Equation (1.4), (1.5), and (1.7) and the resource constraint:

ˆ
Θ

ˆ β1(θ)

β
T0(θ)p(β|θ) f (θ)dβdθ +

ˆ
Θ

ˆ β2(θ)

β1(θ)
T1(θ)p(β|θ) f (θ)dβdθ

+ . . . +
ˆ

Θ

ˆ β

βN(θ)
TN(θ)p(β|θ) f (θ)dβdθ ≥ G (1.8)

where Tn(θ) := zn(θ)− cn(θ)− en for all n = 0, 1, . . . , N.

Note that the solution of (MDP) and (PMDP) are identical:

Lemma 1. The solution of (MDP) equals to the solution of (PMDP).

Proof. See Appendix A.0.1.

The solution of (PMDP) provides the optimal taxation of families. The optimal taxation is

characterized by the marginal income tax rates for each family size:
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Proposition 1. The solution of (PMDP) satisfies the following differential equation

T′n(θ)
1− T′n(θ)

=
1

εn(θ)
× 1

θ f (θ)(P(βn+1|θ)− P(βn|θ))
×

ˆ θ

θ

[
(1− gn(θ′))

u′(cn(θ′))
(P(βn+1|θ′)− P(βn|θ′)))

+ ∆Tn−1(θ
′)p(βn|θ′)

∂βn

∂Vn
+ ∆Tn(θ

′)p(βn+1|θ′)
∂βn+1

∂Vn

]
u′(cn(θ)) f (θ′)dθ′ (1.9)

for n = 0, 1, . . . , N where zn, Tn is continuous in θ, and εn(θ) is the elasticity of family income with respect

to marginal taxes, and gn(θ) is the weight assigned by the government to θ−ability families with n children,

and ∆Tn(θ) := Tn(θ)− Tn+1(θ) are the tax difference terms.9

The formal proof is given by Appendix A.0.2. Here, to provide intuition, I follow Saez (2001)

and show the heuristic proof of the Proposition 1. For simplicity, I focus on one-child families and

assume u(c) = c.

Suppose that the government increases the taxes of one-child families with θ′ ≥ θ earning

abilities by dT (see Figure 1.4). This change creates three effects. First, since the one-child families

θ

Tn(θ)

T0(θ)

T2(θ)

T1(θ)

θ θ + dθ

T̃1(θ)

dT = τdθ
↑ τ = τ̃ z

θ

Figure 1.4: Increase in T1(θ) by dT

consume less, there will be a welfare loss for the society by g1(θ
′) for each dollar of dT for all θ′ > θ

where

g1(θ) := Eβ

[
Ψ′(V1(θ) + m(1, β)))

λ
|β1(θ) < β < β2(θ)

]
.

9I let ∆T−1(θ) = 0 when n = 0 and ∆TN(θ) = 0 when n = N.
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g1(θ) measures the average cost of taking an extra dollar more from θ families with one-child in

terms of the public good.10 On the other hand, the government collects $dT from all of these

families, and hence the revenue increases. The total effect for a θ′ family is: dT(1− g1(θ
′)). The

aggregate effect for all families with θ′ ≥ θ can be written as:

dG = dT
ˆ θ

θ
(1− g1(θ

′)) [P(β1|θ′)− P(β2|θ′)] f (θ′)︸ ︷︷ ︸
density of 1 child-families

dθ′.

Note that dG is a mechanical effect, which does not contain any behavioral responses. Next, I focus

on the behavioral responses to dT.

Second effect is on the income decision of families whose abilities are in [θ, θ + dθ]. To increase

taxes by dT, the government should increase the marginal taxes of families with [θ, θ + dθ] by

τ = τ̃ z1
θ , where τ̃ represents the change in the marginal tax rates on income (see Figure 1.4).11 This

increment creates a behavioral effect, i.e. the families in the small band decrease their income by

dz = z1ε1(θ)τ̃
1−T′1(θ)

, where ε1(θ) := ∂ log z1
∂ log(1−T′1(z1))

is the elasticity of income with respect to marginal tax

rates. Combining the terms gives the first behavioral effect is:

dB1 = −T′1(θ)dz f (θ)dθ = −dT
T′1(θ)

1− T′1(θ)
ε1(θ)θ [P(β1|θ)− P(β2|θ)] f (θ)︸ ︷︷ ︸

density of 1 child-families

.

If the number of children was exogenously given, there would not be any extra effect. Hence,

if the original mechanism was optimal, these effects should sum up to zero: dG + dB1 = 0. In this

situation, the optimal tax formula would then be very similar to that of Mankiw and Weinzierl

(2010).12 However, the number of children to have is a choice in my set up, and dT affects the

optimal number of children of families whose tastes for children are in the neighborhood of β1(θ)

and β2(θ) (see Figure 1.5).

The one-child families whose tastes for children are in the neighborhood of β1(θ) prefer to

have no children after the increase in their taxes. As a result, their tax liabilities are changed by:

∆T0(θ′) := T0(θ′)−T1(θ
′) for all θ′ ≥ θ. For a particular θ′, the effective change is: ∆T0(θ′)

∂β1(θ
′)

∂V1(θ′)
p(β1|θ′) f (θ′)

where ∂β1(θ
′)

∂V1(θ′)
is the mechanical effect of V1(θ

′) on β1(θ
′) and p(β1|θ′) f (θ′) is the density of these

10See Equation (A.1) for a general definition.
11To change the marginal rates over abilities by τ, the marginal rates on income should increase by τ̃.
12Taxes for different categories can be considered as taxes for families with different sizes.
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families. Similarly, one-child families in the neighborhood of β2(θ) prefers to have two children.

For this case, the effective change is: ∆T1(θ
′) ∂β2

∂V1
p(β2|θ′) f (θ′).13

θ

β

β1(θ)

β2(θ)

θ

β̃1(θ)

β̃2(θ)

Figure 1.5: Changes in Critical Child Taste Values

The aggregate effect of the change of the family size is represented by:

dB2 =

ˆ θ

θ

(
∆T0(θ

′)p(β1|θ′)
∂β1

∂V1
+ ∆T1(θ

′)p(β2|θ′)
∂β2

∂V1

)
f (θ′)dθ′.

Together with the second behavioral effect, the original mechanism is optimal if dG + dB1 +

dB2 = 0. This equality gives the equation in Proposition 1 when u(c) = c for n = 1. Note that,

these procedures can be applied for any n = 0, 1, . . . , N to find the optimal marginal tax rates of

families with n children.

Next, I state how the tax formula in Proposition 1 differ from the tax formulas in the literature.

Novelty of the tax formula: The tax formula in Proposition 1 varies from the conventional for-

mulas of the literature in three ways. First, the elasticity component, εn, is endogenous. The endo-

geneity arises because time is perfectly substitutable between child care and market time. Time

devoted to child care reduces the time devoted to labor and makes labor (income) more sensitive

to tax changes. In the following lemma, I prove this for a particular case:

Lemma 2. Let u(c) = c and h(x) = x1+ 1
ε

1+ 1
ε

. The elasticity of income with respect to marginal tax rates is:

εn(θ) = ε(1 + bn
zn/θ ).

Proof. Define elasticity as εn := log ∂zn
log ∂(1−T′n)

= 1−T′n
zn

∂zn
∂(1−T′n)

. The first-order condition for income

is: (1 − T′n) = h′( zn
θ + bn). Taking the derivative with respect to (1 − T′n) and rewriting yields:

13The new threshold tastes are represented by β̃1(θ) and β̃2(θ). See Figure 1.5.
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εn =
h′( zn

θ +bn)

h′′( zn
θ +bn)

zn
θn

= ε(1 + bn
zn/θ ).

It is straightforward to see that εn(θ) depends on zn, and hence the elasticity of income of

parents is endogenous. Moreover, ε1(θ) > ε0(θ) because childless families do not spend time on

child care, i.e. b0 = 0. This result is in line with Blundell et al. (1993) who find the labor elasticity

of families with children is higher than those without children.

Second, a novel term, the density of family sizes appear in the formula: f (θ)(P(βn+1|θ) −

P(βn|θ)). This term is endogenous because the family size is a choice. The term provides infor-

mation about the underlying tastes for children. The government knows that families with tastes

in (βn(θ), βn+1(θ)) will generate same income and will have same number of children if they face

same marginal tax rates.

Third, the second novel term, the tax difference term ∆Tn(θ), shows up in the formula. This

is mainly because the government’s redistributive motives are shaped not only by insuring low

earning abilities but also by insuring families with more children. Families with more children

are faced with the high child taste draws. Because of this draw, they produce children, and con-

sequently their consumption and time to generate income are reduced. As a result, their welfare

decreases. Hence, the government provides insurance for these families.

Next, I provide an interpretation of the conventional and novel terms that appear in the tax

formula.

Interpretation of the terms: The interaction of the terms in Equation (A.2) is complex. Here, I

go over term by term and provide a basic interpretation of each term. First, the elasticity, εn, is

reciprocally correlated with the marginal taxes. Note that the marginal taxes create distortions on

income decision and the distortions are higher for families with higher elasticity of income. The

distortions create a deadweight loss for the economy and the government considers this loss and

reduces the marginal taxes of those with higher income elasticity.

Second, the density of family sizes, f (θ)(P(βn+1|θ)− P(βn|θ)), decreases the marginals. Intu-

itively, if the density is large, the impact of the distortions created by the marginal taxes will be

large. Therefore, the government decreases marginal rates.

Third, when the benefit of increasing taxes, (1− g(θ)), rises, the government increases marginals.

The intuition is straightforward.
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Finally, I focus on the tax difference terms. The first term, ∆Tn−1, tightens the incentive con-

straints (see Equation (1.5)). The government relaxes such constraints by decreasing the marginal

rates of n− children families. On the other hand, ∆Tn relaxes the incentives, and hence government

increases marginal rates.14

In order to explore the forces behind the tax formula, I bring my model to the data.

1.4 Quantitative Analysis

In this section, I quantitatively examine the optimal taxation of families using the US data. Initially,

I estimate the earning ability distribution and the child taste distribution. Using these estimates, I

solve the optimal tax mechanism numerically.

According to the empirical labor market literature, the effect of non-labor income on labor is

small (see Blundell and Macurdy (1999)). In addition, to understand the relationship between

labor income and number of children, it is natural to eliminate the non-labor income effect on

labor. Therefore, I assume that families have a quasi-linear preference in consumption: u(c) = c.

Moreover, I assume that childless families a constant elasticity of income with respect to marginal

rates: h(z, θ) = ε
1+ε

( z
θ

) ε
1+ε θ where ε := ∂ log z

∂ log(1−T′) is the elasticity of the total family income with

respect to marginal taxes. The estimate for the elasticity of family income requires attention, because

the literature on elasticity of income is based on individual levels. I study individual elasticities to

figure out the family elasticity in Appendix A.0.3. In the benchmark, I use ε = 0.56. Note that this

number is quite close to the elasticity estimates in Chetty (2012), who creates a common confidence

interval for the elasticities of different studies.

1.4.1 Sample Selection

To capture estimates for earning ability and child taste distribution, I use the March release of the

Current Population Survey (CPS) administered by the US Census Bureau and the US Bureau of

Labor Statistics.15 I use the sample of 2005-2014 years. In these years, families report both their

child tax credits and their marginal tax rates. Also, I make some sample restrictions on data.

14Note that ∂βn
∂Vn

< 0 and ∂βn+1
∂Vn

> 0.
15Data is taken from: Miriam King, Steven Ruggles, J. Trent Alexander, Sarah Flood, Katie Genadek, Matthew B.

Schroeder, Brandon Trampe, and Rebecca Vick. Integrated Public Use Microdata Series, Current Population Survey:
Version 3.0. [Machine-readable database]. Minneapolis: University of Minnesota, 2010.
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First, I restrict the sample to two-spouse families in which both spouses are employed. This

restriction eliminates potential time difference between one-spouse and two-spouse families. In

addition, the employment status of spouses rules out the extensive margin decision, which helps

to capture a fine estimate for elasticity of income. I also naturally assume that both spouses work

at least 5 hours per week.

Second, I put lower and upper bound on the age of each spouse. The spouses are 35-45 years

old. The age restriction helps in three ways: First, the age effect on income and children is elimi-

nated. Empirical evidence suggests that earnings increase in the early ages (16-35) and become sta-

bilized after the age of 35.16 Moreover, early age households may postpone child decision because

of socioeconomic factors. The possibility of this delay is filtered by the age restriction. Second,

the fertility behavior can still evolve in this age range. Third, the probability of that some children

have grown up and left the family is minimized. Age restriction is used by many works such as

Docquier (2004), Jones and Tertilt (2008), and Jones et al. (2010). These positive works study the

relationship between fertility and family income and put boundaries on the female ages to rule out

the age effect.

Third, I remove families whose main source of income is not labor income. The total labor

income of family should be 80% of total family income. Also, I focus only on families in which

total labor income of each spouse is at least 80% of their total income (refer to Ales, Kurnaz, and

Sleet (2015)). This assumption is constructed to validate the quasi-linear preference assumption

and to capture a fine estimate for the family income elasticity.

Finally, I eliminate families who earn less than $250 (see Heathcote, Perri, and Violante (2010b)

for further details on CPS). The final sample has 37,165 families.

I plot the relationship between family labor income and the number of children in the family in

Figure 1.6. The figure implies the well-known empirical evidence that the fertility rate is negatively

correlated with family labor income.

In the next two subsections, I focus on the child-rearing costs and find estimates for bn and en.

16See http://www.bls.gov/news.release/wkyeng.t03.htm
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Figure 1.6: Income-Fertility Relation
Data: CPS 2005-2014. The sample is restricted to married (both spouses are present) households whose main source of
income is labor. Total family wage income is converted to 2014$ using CPI deflator. The age of the spouses is between
35 and 45. The sample size is 37,165 after all restrictions.

1.4.2 Parental Time

The assumption on the cost of earnings and child care suggests that time is normalized to one:

h(0) = 0 and h′(1) = 1 (see Kleven et al. (2009)). Hence, bn is the fraction of child care to the

total labor time (market work and child care). To capture an estimate for bn, I use the 2003 wave

of American Time Use Survey (ATUS) sample which is also used by Aguiar and Hurst (2007). I

restrict the sample using the criteria stated in Subsection 1.4.1. I show the time devoted to child

care and market work in Table 1.1.

Category of labor: 0 child family 1 child families ≥ 2 children families
child care 0.2 5.7 9.4

market 57 54.9 54.9
bn ' 0 0.09 0.14

sample size 158 247 547

Table 1.1: Time Devoted to Market and Childcare
Data: ATUS-2003. Each number in the second and the third row represents the weighted average hours per week
devoted to the related category. The sample is restricted to married, 35-45 years aged, and working households who
devote total time to market and child care at most 100 hours. Since b2 ' b≥2, I used the latter one.

Table 1.1 shows that there is an economics of scale in the time cost of child-rearing. More

analysis on bn can be found in Appendix A.0.4. In the benchmark, I assume one-child families

devote 9% of their time to child care and two-child families spend 14% of their time for child-
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rearing.

1.4.3 Cost of Goods

Haveman and Wolfe (1995) use Consumer Expenditure Survey (CEX) data and suggest that the

goods cost is $12,788 per child (in terms of 2014$). Examples of such costs include expenditures

on food, housing, transportation, clothing, and health care. More recently, a publication of the US

Department of Agriculture, Lino (2014), analyzes the goods cost of child-rearing for families with

different wealth.17 This work particularly provides information on expenditures for children with

different age. Using this information, I derive a range of expenditures for two-spouse families in

Table 1.2.

Category of Families Average Income 1 child 2 children 3 children
Low Income 39,989 11,597-13,211 19,847-21,137 23,710-24,683

Middle Income 84,114 16,442-19,014 28,149-30,426 33,444-35,273
High Income 189,443 27,095-32,646 47,793-52,234 56,104-58,022

en ' $12,000 $20,000 $24,000

Table 1.2: Expenditures on child-rearing
Table-1 and Table-8 of Lino (2014) is used. The first column categorizes families according to their income level. The sec-
ond column presents the average income for each category. The last three columns represent the range of expenditures
on child-rearing. The expenditures are converted to 2014$.

Note that the ranges of expenditures for each category of families are small. In benchmark case,

I follow low-income family expenditure and let e1 = $12, 000, e2 = $20, 000, and e3 = $24, 000. I

interpret the extra costs for middle and high income families as a part of their family consumption.

Note that e2 ' e3. In the numerical solution, I assume that families can have either 0 children or 1

child or 2+ children.

Using the estimates of child-rearing costs, I derive distribution of earning abilities and tastes

for children in the next two subsections, respectively.

17See http://www.cnpp.usda.gov/sites/default/files/expenditures_on_children_by_families/crc2013.

pdf.
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1.4.4 Estimation of the Distribution of Earning Abilities

The quasi-linear preference structure allows me to find earning abilities of families (see Equa-

tion (1.2)):

θ =
z

(1− T′)ε − bn
. (1.10)

Note that CPS has information about family structure and detailed family income and taxes.18

Given the complexity of state rates, I focus only on federal tax rates. In addition, I add earned

income tax rates to the federal marginal tax rates.19 Using bn values from Table 1.1 and the weights

of families given in the data, I derive the distribution of earning abilities and show it in Figure 1.7.

20 50 100 150 200 250 300
1

2

3

4

5

6

7
x 10

−3

f
(θ
)

θ in 000s of 2014$

Figure 1.7: Earning Ability Distribution

1.4.5 Estimation of the Distribution of Child Taste

An important contribution of this paper introduces a distribution of tastes for children to the lit-

erature. I assume that β
i.i.d∼ [0, β] is distributed according to a power function, i.e. the cumulative

18The data I use contains information on characteristics of each spouse in a family. Also, types of income for each
spouse are given in detail. Moreover, families also report their the child tax credits, federal marginal tax rates, and
federal and state tax liabilities.

19The families report how much earned income credit they received. Yet, the data does not provide if credits are in
the phase-in or out region. I use the information on EITC for years 2005-2014 to figure out the marginal effect of the
credit.
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density is P(β) =
(

β

β

)η
. The density of childless families equals P(β1(θ)) for each θ. Hence, I in-

terpret η := ∂ log P(β1)
∂ log β1

as the non-participation elasticity of zero-child families with respect to their

tastes for children. Moreover, I assume m(n, β) = −(N − n)pβ. Within this framework, I need to

estimate η and p.

I use Bernoulli maximum likelihood estimation to find the estimates. First, I derive percentiles

of θ distribution and calculate Vn(θj) for each j− th percentile.20 Second, I can calculate the fraction

of n− child families: πn(θj). In addition, I calculate the average number of children for each θj:

n(θj). I plot Vn(θj), πn(θj) and n(θj) in Figure 1.8.
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Figure 1.8: Data: Vn(θj), πn(θj), and n(θj)
Figures for Vn(θj), πn(θj), and n(θj) respectively. Also within the sample restriction, the average number of children in
the environment is 1.492. Note that families with more than two children are considered as they have two children.

Note that the probability of having n = 0, 1, 2 children are represented by P0(θj) := P(β1(θj)),

P1(θj) := P(β2(θj)) − P(β1(θj)), and P2(θj) := 1 − P(β2(θj)), respectively. The Equation (1.5)

provides their values for each θj. Next, I fix the upper bound with β = 300 and derive the Bernoulli

maximum likelihood function:

max
η,p
L = ∏

j
P0(θj)

π0(θj)P1(θj)
π1(θj)P2(θj)

π2(θj). (1.11)

The estimates are given in Table 1.3 and I plot the distribution of child taste in Figure 1.9.

20Note that CPS has information on how much taxes a family pays. Hence, I can calculate Vn(θ).
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η p
0.31 4.82

( 0.83) (13.50)

Table 1.3: Estimation of Child Taste Distribution
Standard errors in parenthesis. Also Cov(η, p) = 8.5.
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Figure 1.9: Probability distribution of child taste: p(β)

1.4.6 Deriving the Optimal Tax System

To solve the problem numerically, I find that the government collects $13,412 per capita taxes from

the sample I use, while the population produces $109,421 per capita income. Hence, I set G =

$13,412 in my calculations. Before solving the optimal system, first I show the taxes of families

under the current tax system in Figure 1.10. Panels A and B show the tax liabilities for low and

high income families, respectively. Panels C and D suggest that the child tax credits are constant for

the first seven quantiles. The credits decline after that and reach zero around the ninth quantile.

Moreover, the marginal tax rates are higher for families with children at the first two quantiles.

This is because the earned income tax credits fall from the plateau and increase the marginal rates

(see Figure 1.1).

I solve the government’s problem (i.e. PMDP) at my selected and estimated parameters using

the GPOPS-II software.21 Note that the government problem is an optimal control problem and

21GPOPS-II is a flexible software for solving optimal control problems. For additional details see Patterson and Rao
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Figure 1.10: Current Tax System
Left (right) panel is for the left (right) side of the income distribution. The first row shows the actual taxes paid by
families. The second row shows how much child tax credits they get. Note that k1 (k2) represents the tax credits for one
(two) child families. The last row shows the federal marginal tax rates of families. See Figure A.3 in Appendix A.0.5 for
$ base taxes.

(2013).

25



the Hamiltonian of the problem is stated in Appendix A.0.2.

First I plot the optimal indirect utilities and optimal family sizes in Figure 1.11. It is clear
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Figure 1.11: Optimum: Vn(θj), πn(θj), and n(θj)
Figures for Vn(θj), πn(θj), and n(θj) respectively. Average number of children is 1.539 which is relatively 3% more than
the current number children in the data.

that the current and the optimal indirect utilities of families are similar. However, the density of

family sizes has distinct patterns across abilities (see Figure 1.8). The density of two child families

decreases with earning abilities. The situation is reversed for childless families. The main reason

behind this result is the time cost of child-rearing. The cost is relatively higher for families with

higher earning abilities and the higher earning families produce fewer children. Interestingly,

the density of the one-child family also increases. This result stems from economies of scale in

child-rearing. Because of this scale, the credit received by one child families is higher than the

average child credit received by two children families. As a result, the density of one child families

increases with earning abilities.

Next, I numerically solve for the optimal tax system. First of all, the transversality conditions

of Hamiltonian satisfy the conditions in Sadka (1976) and Seade (1977). As a result, the bottom and

top of the incomes for each family sizes face zero marginal rates (see Panels E and F of Figure 1.12).

Panel E of Figure 1.12 shows that the government distorts the labor decision of two-child fam-

ilies more at the bottom. In return, these families receive a high subsidy via tax credits (see Panel

A of Figure 1.12). This mainly stems from the effect of goods costs. The government provides
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Figure 1.12: Optimal Tax System
Left (right) panel is for the left (right) side of the income distribution. The first row shows the actual taxes paid by
families. The second row shows how much child tax credits they get. Note that k1 (k2) represents the tax credits for one
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enough goods to low-income families to raise their children. This also provides incentives for the

low-income families to produce more children and less income, because the cost of generating

income is relatively higher than the cost of child-rearing for the bottom. On the other hand, the

distortion is relatively less for families with children at the top of the income distribution (see Panel

F of Figure 1.12). This is mainly because the government does not want to increase the distortion

on the income decision of the families with children whose income is more elastic because of the

time cost of the child-rearing. In addition, the government subsidizes these families to relieve their

income loss due to the time cost of child-rearing (see Panel B of Figure 1.12).

Panels C and D of Figure 1.12 show the pattern of the child tax credit terms. Both credit terms

(k1(z) and k2(z)) are U-shaped and affected by the impacts of child-rearing costs. The left tick

stems from the goods costs. Although, the goods costs decrease the consumption of all families

with children, the decrease for low-income families is relatively higher. On the other hand, the time

cost affects the consumption of high-income families more and creates the right tick. To grasp the

intuition behind these results, consider two one-child families with θ = 20, 000 and θ = 100, 000.

In a laissez-faire economy, the goods costs (e1 = $12, 000) consume 60% and 12% of the family

income, respectively. Hence, the decrease in the marginal utility of consumption because of the

goods cost is higher for the family with low earning ability. As a result, the credits are pushed up

for low income families. On the other hand, the virtual income losses of families due to the time

cost (b1 = 0.09) are $1,800 and $9,000, respectively. This implies that the reduction on the marginal

utility of consumption because of the time cost is higher for the family with higher earning ability

with sufficient risk aversion in the preferences. As a result, the credits are pushed up for the high

income families. Therefore, the credits are U-shaped.

These results suggest that the current US tax system ignores the time cost of parents. An ad-

justment on child tax credits and especially on the top-income earners can improve welfare. I find

that the welfare gain from implementing the optimum is 1.1% in terms of equivalent increase in

consumption for all families.

In the next subsection, I provide a simpler version of the optimal child tax credits. I create tax

credits which are linear with respect to income.
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1.4.7 Proposal

In this subsection, I propose a simple tax schedule. I let that the income taxes are determined by

the optimal taxes of childless families. In addition, I propose a linear income dependent tax credits.

The credits for the first (second) child linearly decrease in the first quartile, and are constant for the

25-65% (25-75%) of the income distribution. For the rest of income distribution, the credits linearly

increase. I state the linear rates in Table 1.4. In addition, the minimum credits is determined by

using the minimum values of the optimal credits.

Credit Credit Rate Phase In Phase Out Credit Rate
k̂1 -2% $46,700 $110,000 3.7%
k̂2 -2.8% $46,700 $139,000 2.1%

Table 1.4: Credit Rates in Phase In and Phase Out

$46,700, $110,000, and $139,000 refer to 25 %, 65%, and 75% of the income distribution, respectively.

I plot the optimal and the proposed credits in Figure 1.13. With this proposal, almost 87% of

the welfare gain attained by the optimum is captured. To understand how the income dependent

taxes improve social welfare, I also consider a proposal in which the credit per child is same for all

children and constant across income. This proposal only captures 70% of the welfare gain. As a

result, the income dependent child tax credits can improve social welfare significantly.

In the next section, I check the robustness of the U-shaped tax credits. I relax restrictions on the

sample and derive the optimal tax credits.

1.5 Robustness

In this section, I analyze robustness of U-shaped tax credits. First, I relax the age restriction on the

sample in the following subsection. Next, I work on the types of the goods and time costs in detail.

Finally, I study the optimal tax credits for single mothers.

1.5.1 Age Analysis

In this subsection, I relax age restriction of the sample. The minimum age of a spouse in a two-

spouse family is relaxed to 25. I calculate the optimal credits and plot them in Figure 1.14. The
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Figure 1.13: Proposal Tax Credits
Left and right panel show the credits for the first child and the second child, respectively. The amounts are 1,000 in
2014$. kn is the optimal tax credits and k̂n is the proposed tax credit for n = 1, 2. See Figure A.5 in Appendix A.0.5 for $
base credits.

tax credits are U-shaped for this sample. As a result, the credit shapes are quite robust without a

restriction on ages of spouses.
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Figure 1.14: Tax Credits: Age Analysis
Left and right panel show the credits for the first child and the second child, respectively. The amounts are 1,000 in
2014$. See Figure A.6 in Appendix A.0.5 for $ base credits.

In the next subsection, I focus on the details of child-rearing costs.
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1.5.2 Detailed Cost Analysis

I focus on the details of the child-rearing costs. Some analysis suggests that not all types of time

devoted to child raising are costly for parents. For example, Godbey and Robinson (1999) state that

parents enjoy playing with their children and reading to their children. In this subsection, I set the

time cost of child-rearing to basic child care activities such as looking after children, activities

related children health. ATUS 2003 data provides such information on child-rearing. I set b1 = 7%,

b2 = 11%.

Next, I change the set of expenditures on the goods cost. Some might consider that not all types

of goods cost are on the basic needs for children. For example, moving a bigger house, which is

around 30% of the goods cost, can be considered as a non-required cost for child-rearing. I modify

the set of goods costs for basic needs. The new set consists of the expenditure on food, clothing,

health care and education. These costs are around 50% of the original goods costs (see Lino (2014)).

As a result, I set e1 = $6, 000 and e2 = $10, 000.

In Figure 1.15, I show that the optimal tax credits for this environment. Note that the credit

amount are reduced due to the reduction in the child-rearing costs (see Figure 1.13). However, the

credits are still U-shaped, and my results are robust.
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Figure 1.15: Tax Credits: Costs Analysis
kn is the optimal tax credits for n = 1, 2. The amounts are 1,000 in 2014$. See Figure A.7 in Appendix A.0.5 for $ base
credits.

In the next subsection, I study if the marital status of households matters for the shape of tax
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credits. Since there are few single fathers, I focus only on single mothers.22

1.5.3 Marital Status Analysis

In this subsection, I study the optimal taxation of single females. I make adjustment on child-

rearing costs. The time costs for single mothers are set by b1 = 10% and b2 = 19%, and goods

cost are set by e1 = $11, 500 and e2 = $18, 500 (see Table 8 in Lino (2014)). I pick the elasticity

of income as ε = 0.8 (see Blundell, Pistaferri, and Saporta-Eksten (2012)). The optimal tax credits

are U-shaped (see Figure 1.16). Note that the credit amounts are larger than the case for married

families. The main reason is that the time cost for singles is bigger than the time cost for marrieds.
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Figure 1.16: Tax Credits: Marital Status Analysis
kn is the optimal tax credits for n = 1, 2. The amounts are 1,000 in 2014$. See Figure A.8 in Appendix A.0.5 for $ base
credits.

1.6 Conclusion

This paper studies optimal income taxation and child tax credits in a static Mirrlees model with

heterogeneous shocks of child tastes and earning abilities. By facing these risks, families decide

how much income to generate and how many children to have by considering child-rearing costs.

The government aims to provide insurance against the shocks, which are families’ private infor-

mation. To do so, the government designs an optimal tax system which combines income taxes of

22See https://www.census.gov/hhes/families/files/graphics/CH-1.pdf.
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childless families and child tax credits. The sufficient statistics for labor wedges and their relation-

ship with child tax credits are derived.

Income taxes are designed to redistribute from high to low-income families and child tax credits

decreases tax liabilities of parents who incur child-rearing costs. The child-rearing costs are crucial

inputs on the shape of the child tax credits. The goods cost mostly affect the low-income families

and drives the government’s motives towards to poor families. On the other hand, time cost is the

dominant cost for high-income families and increases provisions for the wealthier. As a result, the

credits are U-shaped. Quantitatively, I find that the optimal credits are decreasing especially in the

first half of income distribution and are increasing in the rest. In addition, the credit for the second

child is less than the credit for the first child, because there is economies of scale in child-rearing.

This paper sheds light on the optimal income taxation including the child benefits for families

who have multidimensional private information. I conclude by describing three extensions that

I leave for future research. First, the paper abstracts from a dynamic setting. Such a setting can

explain how the child benefit should be characterized by the age of the children. Moreover, two

heterogeneous risks, the earning abilities and child tastes, can be linked with the age of the parents

and, therefore, the effect of optimal taxes on the fertility age can be studied. Second, the paper ab-

stracts from the child quality decision, which is positively correlated with parental time according

to Boca, Flinn, and Wiswall (2013). Such a decision can explain why high-income families spend

more time with their children (see Guryan, Hurst, and Kearney (2008)). Third, the costs of child-

rearing can be endogenous. This endogeneity can help policy makers for designing the optimal

provisions via costs. For example, policies that provide a high-quality child care in return of goods

might be tempting for high-income families. This extension can also examine the current debate

in the US on universal child care provisions for working parents.
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Chapter 2

Technical Change, Wage Inequality and

Taxes

2.1 Introduction

Technical change is inherently redistributive, complementing the labor of some whilst substituting

for that of others. A large positive literature has analyzed its impact on the wage distribution.

This literature has emphasized skill-biased technical change that favors the skilled over the un-

skilled and, more recently, has stressed the role of technical change in replacing “routine labor”

in the middle of the wage distribution. However, while the positive literature documenting the

redistributive nature of technical change is extensive, normative work exploring the policy impli-

cations of such change is not.1 Our paper fills this gap. We explore how more than thirty years

of technical change in the US has affected the policy recommendations that economic theory pro-

vides. Overall, we find that such change creates a rationale for a modest adjustment of optimal

policy in a direction that favors middle income earners, reducing their average taxes while low-

ering transfers to those at the bottom. Optimal marginal taxes are reduced on incomes that are

low (but not the lowest) and raised on incomes that are high (but not the highest). Although, the

overall effects are moderate, they are the net effect of larger countervailing forces stemming from

1For a historical account of the relationship between skill and technology see Goldin and Katz (1998), Autor, Katz,
and Krueger (1998) and the references therein. Bresnahan, Brynjolfsson, and Hitt (2002) look at firm level evidence
connecting technology and the demand for skills. Autor, Levy, and Murnane (2003) argue that recent technical change
has led to the replacement of “routine” labor in the middle of the wage distribution. Autor, Katz, and Kearney (2006)
and Goos and Manning (2007) document “job polarization”: growth in low and high skill occupations.
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technical change. First, such change directly modifies wage differentials across differently talented

workers; second it alters the substitutability of talent across occupations and, hence, the sensitivity

of wage differentials to taxes. The evolution of optimal policy depends upon the balance of these

conflicting forces.

We make theoretical and quantitative contributions. On the theoretical side, we embed a talent-

to-task assignment model into an optimal tax framework. The former has been used by labor and

trade economists to analyze the implications of technical change for the structure of wages and

employment. We show how the technological parameters emphasized in this work shape optimal

tax formulas. On the quantitative side, we bring a parametric assignment model to the data; we

estimate the key parameters and derive the implications of technical change from the 1970’s to the

present day for policy.

The normative tax literature largely focusses on the incentive to supply effort by perfectly sub-

stitutable and privately informed workers. An exception is Stiglitz (1982) who allows for imperfect

substitutability between the effort of two different talents.2 This assumption renders relative wages

sensitive to the profile of effort across talents and, hence, tax policy. In particular, Stiglitz identifies

a wage compression motive for subsidizing high and taxing low talents. By doing so the wages of

high talents are compressed relative to low and the former’s incentive constraints are relaxed. We

begin our analysis with a Stiglitz-type environment in which the production function is defined

directly over the imperfectly substitutable labor input of many different worker types. In this set-

ting with minimal restriction on the production function, we derive a general formula for optimal

taxation. The formula provides a framework for interpreting subsequent results. Stiglitz (1982)’s

wage compression channel remains operative, but now takes a more complex form: the motive to

tax a given talent type k at the margin depends, in part, on the elasticity of the relative wages of

all pairs of adjacent talent types (ordered by wages) with respect to k’s effort. This setting suggests

two ways in which technical change can influence optimal policy. First, factor augmenting techni-

cal change that is biased towards a subset of talents can do so by modifying relative wages and,

hence, tightening or relaxing incentive constraints. Second, technical change that alters the effect of

one talent type’s effort on the relative wages of other talent types impacts policy by strengthening

2Other important exceptions include Lockwood, Nathanson, and Weyl (2014), Rothschild and Scheuer (2013), Roth-
schild and Scheuer (2014), Rothschild and Chen (2014) and Slavı́k and Yazıcı (2014).
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or diluting the wage compression channel described above.

We next embed an assignment model into an optimal tax framework.3 In the class of assign-

ment models we consider talented workers have a comparative advantage in complex tasks and

assortative matching of workers to tasks occurs. Such models omit an intensive effort margin, a

societal motive for redistribution and explicitly private talent; the optimal tax framework adds

these things.4 In the equilibria of our embedded model, workers sort themselves efficiently across

tasks conditional on the effort of other workers. This induces an indirect production function over the

effort of different talents of the sort that our earlier analysis assumed. Technological parameters

that determine relative task demand and the productivity of task-talent matches in the assignment

framework are thus mapped to the variables and elasticities necessary for optimal tax analysis. In

particular, the pattern of comparative advantage of talents across tasks shapes the sensitivity of

relative wages to variations in the effort profile and, hence, policy. A local reduction in marginal

taxes that induces a given talent type to increase its effort, depresses the (shadow) price of the

task to which the type is assigned and, hence, the type’s relative wage. Workers of this type offset

this reduction by migrating into neighboring tasks, mitigating the impact on their original task’s

shadow price. However, the offset is partial since this migration erodes their productivity relative

to neighboring talents. The greater is the comparative advantage of talented workers in complex

tasks, the greater this erosion and the more sensitive are relative wages to task assignment. Thus,

technical change that raises talent-complexity comparative advantage enhances the policymaker’s

ability to influence the wage structure through taxation. It strengthens the wage compression force

identified in the more reduced form Stiglitz setting.5

We take our model to the data and quantify the implications of 30 years of technical change in

3The assignment framework originated with Roy (1950). Versions with a continuum of tasks, single dimensional
talent and comparative advantage of talented workers in complex tasks were developed by Sattinger (1975) and Teulings
(1995). Such models have proven to be a rich laboratory for analyzing the role of task-talent distributions and the
productivity of task-talent matches in shaping the wage distribution. Recently, these models have been used to explore
the implications of technical change that attaches to tasks (rather than talents), see Costinot and Vogel (2010), Acemoğlu
and Autor (2011) and Autor and Dorn (2013).

4Rothschild and Scheuer (2013) were the first to consider the optimal tax implications of an assignment model. They
do so in the context of a Roy model, i.e. a model with two sectors and no explicit notion of comparative advantage. We
elaborate below on the differences between our and their focus and approach.

5Migration of workers into neighboring tasks depresses the shadow prices of these tasks inducing the talents occu-
pying them to migrate as well. A ripple effect is created and, so, an adjustment in one talent type’s effort can induce
reassignment of many types, affecting their relative wages and in the process relaxing and tightening many incen-
tive constraints. However, the greater is talent-complexity comparative advantage the more contained the impact of a
policy-induced effort adjustment.
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the US for optimal policy. We treat information on occupations, incomes and hours in the Current

Population Survey (CPS) as if it was generated by an equilibrium of our assignment model and

use parametric assumptions and equilibrium restrictions to recover estimates of key technological

parameters for the 1970’s and the 2000’s. To relate empirical occupations to the ordered set of tasks

in our model, we order the former by the average wage paid. We recover an empirical proxy for

the assignment of tasks to talents from the distribution of workers across occupations (ordered by

wages). The estimation of parameters determining the demand for tasks is separated from those

determining the productivity of task-talent matches by assuming a Cobb-Douglas technology for

final goods as a function of tasks. This enables us to identify the demand parameters with oc-

cupational compensation shares. Parameters determining the productivity of talent-task matches

and, hence, comparative advantage are recovered from the empirical assignment function and the

distribution of wages across tasks using the envelope condition for wages implied by the model.

After obtaining these estimates and supplementing them with calibrated preference parameters,

we calculate optimal tax policies for the 1970’s and 2000’s.

We find evidence of relative reductions in demand for mid-level tasks and relative increases in

demand for low and high level tasks. We also find evidence of a twisting of the talent-task produc-

tivity function, with low talent productivity catching up to high talent in simple tasks and falling

behind in more complex ones. The latter is associated with significant increases in the comparative

advantage of more talented workers in more complex tasks. Moving from the 1970’s to the 2000’s,

we find that under our benchmark estimation/parameterization, optimal marginal tax rates rise at

the very bottom of the income distribution, fall on low to middle level incomes, rise on higher ones

before falling again at the very top of the income distribution. This change in policy favors those in

the middle of the income distribution who pay lower average taxes; optimal transfers to workers

at the first and second income deciles are reduced. The twisting of the productivity function is the

main force at work. It has two effects. First, it suppresses wage variation at the bottom of the in-

come distribution, while enhancing it at the top. This relaxes incentive constraints on low incomes,

while tightening them on high ones; it is a force for reductions in optimal marginal taxes on the

former and increases on the latter. These effects are slightly enhanced by the relative reduction

of demand for mid-level tasks populated by mid-level talents. Second, there is a partially offset-

ting strengthening of the wage compression channel. Higher comparative advantage of talented
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workers in complex tasks increases the policymaker’s motive to apply high marginal taxes on low

talents. Such taxes deter low talent effort, raise low-level task prices and encourage higher talents

into these tasks. The relative productivity of these task migrants is eroded, suppressing their wage

premia and relaxing incentive constraints. A parallel strengthening of the policymaker’s motive

to reduce marginal taxes on high talents occurs. Policy depends on the balance of these two forces.

The first dominates at most incomes under our benchmark parametrization (except those in the

extreme tails), but since the second dampens the first, the overall effect is modest.

The equilibrium of our baseline model does not exhibit intra-task wage dispersion or the pay-

ment of the same wage in multiple tasks (“wage overlap”). Thus, it cannot capture the policy

implications stemming from these. At the end of the paper, in Section 2.7 (with details and elab-

oration in Appendix B.7), we describe an extension that permits non-degenerate and overlapping

supports for intra-task wage distributions. This extension incorporates a second talent dimension,

which impacts absolute advantage alone. We find that our results concerning the implications of

technical change for policy are qualitatively robust to, but quantitatively dampened by this exten-

sion. We use it to obtain a lower bound on the responsiveness of policy to technical change.

The remainder of the paper proceeds as follows. After a brief literature review, Section 2.2

provides motivating facts. Section 2.3 gives optimal tax formulas for economies with imperfectly

substitutable labor types and provides an initial discussion of the implications of technical change

for policy. In Section 2.4 an assignment model is embedded into an optimal tax framework. An

indirect production function over worker effort is derived and the parameters of the assignment

model related to the relevant terms of the optimal tax formulas from Section 2.3. In addition, the

implications of technical change for policy in a simple two talent model are discussed. Section 2.5

describes how the assignment model is used to identify estimates of technical change and reports

these estimates. In Section 2.6, optimal policy for the 1970s and 2000s is computed and the im-

plications of technical change for policy recovered. The tax formula from Section 2.3 is used to

decompose and account for changes to optimal taxes. Section 2.7 describes a model extension that

can accommodate intra-task wage variation; Section 2.8 concludes. Appendices contain proofs,

robustness checks and extensions.
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LITERATURE A contribution of our paper is to bring together the normative optimal taxation

literature and a positive literature that analyzes the impact of technical change on the wage dis-

tribution. Both literatures are large. Many contributions to the latter have attributed increases in

the skill premium to skill-biased technical change, formalizing this insight in what Acemoğlu and

Autor (2011) have called the “canonical model”, i.e. a model with imperfectly substitutable skilled

and unskilled workers and factor-augmenting technical change directed towards the skilled.6 Re-

cently, a more nuanced view of the labor market has emerged that emphasizes growth in low and

high wage occupations relative to those in the middle. It has spurred the development of assign-

ment models that endogenize the joint distribution of workers across wages and occupations and

in which technical change attaches to tasks rather than worker types. Examples include Acemoğlu

and Autor (2011) and Autor and Dorn (2013).

Most contributions to the normative literature focus on the incentive to supply labor in envi-

ronments with privately known talent and perfectly substitutable labor. Stiglitz (1982) was the first

to introduce imperfectly substitutable labor into such a setting. Rothschild and Scheuer (2013) (ex-

tended in Rothschild and Scheuer (2014)) were the first to introduce assignment.7 Rothschild and

Scheuer show that a worker’s ability to select her task mutes the regressivity of optimal taxes found

by Stiglitz. They also show that optimal tax formulas are substantially complicated by additional

terms stemming from wage overlap. The focus in Rothschild and Scheuer (2013) is on economies

with two tasks and two dimensional talents.8 In contrast, our baseline assignment model features

a continuum of tasks and one dimensional talent. In our model a more talented worker is better

at everything, but especially good at some things, with those things interpreted as more complex

tasks. The restriction to one dimensional talents follows a tradition in labor economics initiated

by Sattinger (1975) and adopted recently by the positive literature described above. Its adoption

allows us to make contact with these recent contributions, to formulate the notions of talent and

task complexity in a parsimonious way and to develop a strategy for bringing our model to the

data. It permits a significant simplification of the tax formula in Rothschild and Scheuer (2013)

(via the omission of wage overlap) and leads us to adopt a substantially different approach to an-

6Examples include Acemoğlu (2002) and Krusell, Ohanian, Rı́os-Rull, and Violante (2000).
7Also related is Rothschild and Chen (2014). In contrast to Rothschild and Scheuer (2013) and similar to us, this pa-

per considers a model with a finite number of talents. It illustrates the difficulties of applying the method of Rothschild
and Scheuer (2013) in such settings.

8This is generalized in Rothschild and Scheuer (2014) to K tasks and K dimensional talent.
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alyzing the problem than that in Rothschild and Scheuer (2013). However, it cannot accommodate

intra-task wage dispersion or wage overlap. In Section 2.7 and Appendix B.7 we provide an exten-

sion that can. Lockwood et al. (2014) also integrate tax considerations into an assignment setting.

They focus on the externalities associated with certain assignments and characterize the optimal

structure of corrective Pigouvian taxation.9 We abstract completely from this tax motive.

Slavı́k and Yazıcı (2014) apply the logic of Stiglitz (1982) to capital taxation. In their paper

they introduce two sorts of capital: buildings and machines. Following the skill premium litera-

ture, they assume a machine-skill (or machine-talent) complementarity. Thus, machines raise the

marginal product of the talented relative to the untalented and, as in Stiglitz (1982), this dilutes

incentives. It is socially desirable to deter the accumulation of machines. In quantitative work,

Slavı́k and Yazıcı (2014) show that this creates a rationale for quite high rates of (machine) capital

taxation. Slavı́k and Yazıcı (2014)’s contribution is complementary to ours. They endogenize tech-

nical change in the context of a two talent ”canonical model” and develop policy implications. We

treat technical change parametrically, but do so in a multi-talent/multi-task assignment setting.

Heathcote, Storesletten, and Violante (2014) analyze optimal income tax progressivity in a rich

dynamic environment. They assume imperfectly substitutable skills, but do not explicitly model

tasks. Our model is static, but we add assignment and, hence, endogenize the substitutability of

skills and relate it to technical change. In addition, Heathcote et al. (2014) restrict optimal taxes to

a parametric class, we do not.

2.2 Evolution of the Occupational Wage Distribution: Stylized Facts

We first document some stylized facts that motivate our analysis. Figure 2.1 displays changes in

average incomes across (1-digit) occupations from the 1970’s to the present.10 The figure indicates

considerable variation in the experience of different occupations, with some exhibiting significant

average income growth and others stagnating. Moreover, occupations with slow average income

growth were predominantly middle income in the 1970’s, while fast growers were mainly low or

high income at that time. For example, precision production, craft and repair workers had a mid-

9Rothschild and Scheuer (2014) also incorporate this motive into their theoretical work.
10The data is taken from the March survey of the Current Population Survey (CPS). See Appendix B.4 for additional

details on the data and our sample selection.
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Figure 2.1: Evolution of average income by occupation over time.

level income of $33,109 in 1975 (all incomes are expressed in 2005 dollars) and negligible income

growth subsequently. In contrast, the two occupations with the fastest growing average incomes,

services and managerial and professional, had average incomes in the mid-1970’s of $12,912 and

$40,013, placing them at opposite extremes of the income distribution. Such occupational polar-

ization, with the middle growing more slowly than the extremes, is not confined to earnings; it is

also present in various measures of occupational size and demand. Figure 2.2, displays changes in

the share of employment of different occupations over time.11 Here managerial/professional and

service related occupations that are concentrated in the extremes of the income distribution are ex-

panding in size, while mid-income level occupations operators and fabricators (mostly employed

in manufacturing) are shrinking over time.

Overall, the picture that emerges from the CPS (and other data sources) is one in which high

wage and low wage occupations are growing in size and in average compensation relative to mid-

dle ones. If talent is imperfectly substitutable across occupations, then these varied occupational

fortunes suggest varied fortunes for differently-talented workers. In the remainder of the paper

we consider the optimal policy response to such events.

11See, inter alia, Goos and Manning (2007), Acemoğlu and Autor (2011) and Autor and Dorn (2013) for related
evidence.
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Figure 2.2: Evolution in size of employment by occupation over time.

2.3 Taxation with Imperfectly Substitutable Workers

Mirrlees (1971)’s model of optimal taxation assumes that workers of different types are perfect

substitutes and that final output is a weighted sum (or integral) of worker efforts, with the weights

given by private productivities. Stiglitz (1982) allows for a more general production function. He

assumes that workers are one of two imperfectly substitutable types and interprets these types

as ”low” and ”high” skilled. In this section, we generalize Stiglitz (1982) to K-types, but place

no interpretation on a worker’s type (the nature of which is defined implicitly by the production

function). In this (and compared to later sections reduced form) context we discuss implications

of technical change for taxes.12

2.3.1 Physical Environment

WORKERS A continuum of workers has identical preferences over consumption c ∈ R+ and

effort e ∈ [0, e] described by a utility function U : R+ × [0, e] → R. The function U is assumed

to be concave, twice continuously differentiable on the interior of its domain, with for each e ∈

[0, e], U(·, e) increasing and for each c ∈ R+, U(c, ·) decreasing and strictly concave. First and

12Much of the optimal tax literature is cast in terms of a continuum of types. This literature maintains the linear
production function assumption. Although versions of the results that we give below are available for continuum
economies, for general constant returns to scale production functions, their derivation requires leaving the framework
of optimal control and maximizing an infinite-dimensional Lagrangian directly. To avoid technical complications that
do not generate additional economic insight we do not do this.
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second partial derivatives of U are denoted Ux and Uxy with x, y ∈ {c, e}. U satisfies the Inada

conditions: for all c > 0, lime↓0 Ue(c, ·) = 0 and lime↑e Ue(c, ·) = −∞. In addition, U satisfies the

Spence-Mirrlees single crossing property: −Ue(c, y/w)/{wUc(c, y/w)} is decreasing in w.Workers

are partitioned across a finite number of “types” K ≥ 2 with a fraction πk of workers being of type

k ∈ {1, . . . , K}. The fraction of workers with type less than or equal to k is denoted Πk = ∑k
j=1 πj.

Workers sell their labor to firms and pay taxes on the income that they earn. Let T : R+ → R

denote an income tax function.13 A worker of type k receiving wage wk solves the problem:

max
R+×[0,e]

U(c, e) s.t. c ≤ wke− T(wke). (2.1)

TECHNOLOGY A representative competitive firm hires workers of all types. The firm uses a pro-

duction function F : RK
+ → R+ defined directly on the labor inputs of the different types. The firm

solves:

max
R

K
+

F(e1π1, . . . , eKπK)−
K

∑
k=1

wkπkek,

where ek is the common effort level of workers of type k. F is assumed to be a continuously

differentiable, constant returns to scale function with k-th partial derivative Fk. At this stage, we

place no further restrictions on F. In classical Mirrlees models F(e1π1, . . . , eKπK) = ∑K
k=1 akekπk for

some positive constants {ak} and workers of different types are perfectly substitutable. However,

we allow for and focus upon worker types that are imperfect substitutes in production. Since F

defines what it means for a worker to be of one type or another, the economic nature of a worker’s

type is for the moment left implicit.14

TAX EQUILIBRIUM Let G ∈ R+ be a fixed public spending amount. Given G, a tax equilibrium is

an income tax function T : R+ → R, an allocation {ck, ek}K
k=1 and a wage profile {wk}K

k=1 such that

(i) for each k = 1, . . . , K, (ck, ek) solves (2.1), (ii) for each k = 1, . . . , K, wk = Fk(e1π1, . . . , eKπK) and

(iii) the goods market clearing condition holds: G + ∑K
k=1 ckπk ≤ F(e1π1, . . . , eKπK). Let E denote

the set of tax equilibria (given G), which we take to be non-empty.

13We restrict attention to non-stochastic tax functions. See Hellwig (2007) for sufficient conditions for such mecha-
nisms to be socially optimal in utilitarian settings.

14The firm’s problem determines relative levels of efforts across types. The scale of the representative firm is deter-
mined in equilibrium.
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2.3.2 Optimal Policy

A government attaches Pareto weight gk to workers of type k, with weights normalized to satisfy

∑K
k=1 gk = 1. It selects a tax equilibrium to solve:

sup
E

K

∑
k=1

U(ck, ek)gk. (PP)

Let T∗ and {c∗k , e∗k , w∗k}K
k=1 denote an optimal tax equilibrium. Define the corresponding (optimal)

marginal tax rate at income q∗k := w∗k e∗k > 0 to be:15

τ∗k = 1 +
Ue(c∗k , e∗k )

w∗k Uc(c∗k , e∗k )
.

To characterize optimal tax equilibria, we follow the conventional procedure of recovering op-

timal allocations from a mechanism design problem. Subsequently, prices and (optimal) taxes are

determined to ensure implementation of this allocation as part of a tax equilibrium. The mecha-

nism design problem associated with (PP) is:

sup
{ck ,ek}K

k=1∈{R+×[0,ē]}K

K

∑
k=1

U(ck, ek)gk (MDP)

s.t. for each k, j ∈ K := {(l, m) ∈ {1, . . . , K}2, l 6= m},

ηk,j : U(ck, ek) ≥ U
(

cj,
Fj(e1π1, . . . , eKπK)

Fk(e1π1, . . . , eKπK)
ej

)
(2.2)

and

χ : F(e1π1, . . . , eKπK) ≥ G +
K

∑
k=1

ckπk. (2.3)

In (MDP) the government selects a report-contingent allocation of consumption and effort {ck, ek}K
k=1

that induces each worker to truthfully report its type k and produce the associated income qk =

Fk(e1π1, . . . , eKπK)ek. Incentive constraints that ensure the optimality of truthful reporting are

given in (2.2) with corresponding Lagrange multipliers ηk,j. If type k claims to be of type j she

15(PP) does not uniquely determine T∗. However, T∗ may be chosen to be directionally differentiable in which case:
∂T∗−(q

∗
k ) ≤ τ∗k ≤ ∂T∗+(q

∗
k ), where ∂T∗−(q

∗
k ) and ∂T∗+(q

∗
k ) are left and right derivatives of T∗ at q∗k > 0. If T∗ is (chosen to

be) differentiable at q∗k , then its derivative at that point equals τ∗k .
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must reproduce the corresponding income qj = Fj(e1π1, . . . , eKπK)ej. The effort cost to her of do-

ing so is Fj(e1π1,...,eKπK)

Fk(e1π1,...,eKπK)
ej. Thus, the (k, j)-th incentive constraint (2.2) depends upon the entire profile

of worker efforts via the (k, j)-th shadow wage ratio. We refer to a (k, j)-incentive constraint as

local if j = k− 1 or j = k + 1, local downwards if j = k− 1 and local upwards if j = k + 1. The

final restriction (2.3) in (MDP) is the resource constraint with corresponding multiplier χ.

Towards understanding how technical change shapes policy, we give a proposition that re-

lates optimal taxes to F. This proposition is a consequence of a more general result given in the

Appendix. In the latter, we show that when worker types are ordered consistently with opti-

mal wages and incomes, then only local downwards (k, k − 1) or upwards (k, k + 1) incentive

constraints bind. In the main text we follow the common convention of assuming that only

the former are binding and then verifying this assumption in numerical calculations.16 To state

the proposition (and its generalization in the appendix) it is convenient to re-express the con-

straints in (MDP) in the form G({ck, ek}K
k=1) ≥ 0, where G : R2K

+ → R
K(K−1)+1 combines the

constraint functions from (2.2) and (2.3). Problem (MDP) satisfies a (Mangasarian-Fromowitz)

constraint qualification at {ck, ek}K
k=1 ∈ R2K

++ if there is an x ∈ R2K such that ∇G({ck, ek}K
k=1)x < 0,

where ∇G({ck, ek}K
k=1) is the Jacobian of G at {ck, ek}K

k=1. Let η∗k,j and χ∗ denote the optimal

(Karush-Kuhn-Tucker) multipliers associated with the incentive and resource constraints. Finally,

let ∆eUc(c′, e′; δ) := Uc(c′,e′+δ)−Uc(c′,e′)
δ denote a finite difference approximation to the derivative of

Uc with respect to e at (c′, e′) and define ∆eUe analogously.

Proposition 2. Let T∗ and {c∗k , e∗k , w∗k}K
k=1 denote an optimal tax equilibrium with worker types indexed

so that w∗k = Fk(e∗1π1, . . . , e∗KπK) is non-decreasing in k. Assume that {c∗k , e∗k , w∗k}K
k=1 is interior (i.e. in

R
2K
++), that G satisfies the constraint qualification at {c∗k , e∗k , w∗k}K

k=1 and that the local upwards incentive

constraints are non-binding, i.e.:

U(c∗k , e∗k ) > U(c∗k+1, q∗k+1/w∗k ), where q∗k+1 := w∗k+1e∗k+1. (NUIC)

16A general formula with possibly binding upwards incentive constraints is supplied in the Appendix.
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Optimal tax rates then satisfy:

τ∗k
1− τ∗k

=
1−Πk

πk

∆w∗k+1

w∗k+1
Ψ∗kH∗k︸ ︷︷ ︸

Mirrlees

+
K−1

∑
j=1
M∗

k,jφ
∗
k,j︸ ︷︷ ︸

Wage Compression

, (2.4)

where ∆w∗k := w∗k − w∗k−1,

Ψ∗k :=
K−1

∑
j=k
N ∗k,j

{
1−

gj+1Uc(c∗j+1, e∗j+1)

πj+1χ∗

}(
Uc(c∗k , e∗k )

Uc(c∗j+1, e∗j+1)

)
πj+1

1−Πk
,

with N ∗k,j := ∏
j
i=k+1

Uc(c∗i ,q∗i /w∗i+1)

Uc(c∗i ,e∗i )
,

H∗k := −
∆eUc(c∗k , e∗k ; q∗k /w∗k+1 − e∗k )

Uc(c∗k , e∗k )
e∗k +

∆eUe(c∗k , e∗k ; q∗k /w∗k+1 − e∗k )
Ue(c∗k , e∗k )

w∗k
w∗j

e∗k + 1,

M∗
k,j := Uc(c∗k ,e∗k )

Ue(c∗k ,e∗k )e
∗
k

Ue(c∗j ,q∗j /w∗j+1)
Uc(c∗j ,e∗j )

q∗j
w∗j+1

1−Πj
πj

πj
πk

Ψ∗j and cross relative wage elasticities φ∗k,j :=

e∗k
w∗j+1/w∗j

∂w∗j+1/w∗j
∂ek

(e∗1 , . . . , e∗K).

Proof. See the Appendix.

The right hand side of the optimal tax formula (2.4) is the sum of two terms, which we label

“Mirrlees” and “Wage Compression”.

MIRRLEES TERM The Mirrlees term in (2.4) is quite standard in optimal tax analyses. We very

briefly review and interpret its four components.17 H∗k is a discrete approximation to 1+Eu,k
Ec,k

, where

Ec,k and Eu,k are, respectively, the compensated and uncompensated labor supply elasticities at

(c∗k , e∗k ). If worker preferences are additively separable, this reduces to one plus (a discrete approx-

imation to) the reciprocal of the Frisch elasticity. Incentive-compatibility considerations require

that if worker type k receives an increment in consumption all higher types j = k + 1, k + 2, . . . , K

receive an increment in utility sufficient to deter them from reporting a lower type. Ψ∗k captures

the net societal cost of such a redistribution; it weighs the cost of extracting resources from the

population at large against the benefits of raising the welfare of higher income types. 1−Πk
πk

is the

reciprocal of the type hazard. This plays an important role in conventional optimal tax analysis

17For detailed discussion of these components in a continuous-type setting see Salanié (2011).
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since, if types have compact support (as in the current finite setting), it implies zero marginal taxes

at the maximal income. However, it is unaffected by technical change and, thus, is less central to

our analysis. In contrast, the wage growth (across types) term ∆w∗k+1/w∗k+1 is endogenous and im-

portant in what follows. To understand its role consider the local downwards incentive constraint:

U(ck+1, ek+1) ≥ U(ck, ekwk/wk+1) (2.5)

As noted previously, the wage ratio wk+1/wk appears on the right hand side of this inequality.

Higher values of this ratio reduce the effort that a k+ 1-th type worker must exert to mimic a k-type.

Consequently, they tighten the incentive constraint and lead to greater distortions of allocations.

Higher wage growth across the k and k + 1 types is, other things equal, a force for higher marginal

taxes on the k-th type.18

WAGE COMPRESSION TERM The second term in (2.4) does not appear in standard optimal tax

equations that are derived from models with linear production functions and exogenous wages.

In settings with non-linear production functions, such as ours, the effort of the k-th worker type can

affect the marginal rate of transformation and, hence, the ratio of wages between the j and j + 1-th

types. Following the logic of the previous paragraph, more compressed wage ratios relax incentive

constraints and to the extent that the effort of a given type enhances such compression it should be

encouraged through taxation. Conversely, larger values of the cross relative wage-effort elasticities

φ∗k,j imply that wage differentials are increasing in the effort of the k-th type and, hence, this type’s

effort should be deterred via higher marginal taxes. Stiglitz (1982) identifies this wage compression

channel in a two type model. In that case there is only one binding incentive constraint and−φ∗1,1 =

φ∗2,1 = 1/E∗, where E∗ is the elasticity of substitution between the two worker types (i.e.
w2
w1
e2
e1

∂
e2
e1

∂
w2
w1

)

at the optimum. Assuming this is positive, compression of wages between the two types, requires

that the effort of the high (resp. low) type should be relatively encouraged (resp. discouraged).

18The terms 1−Πk
πk

and ∆w∗k+1
w∗k+1

may be consolidated as: 1−Πk
πk

∆w∗k+1
w∗k+1

. In the continuous limit the latter reduces to

Haz(w) = 1−Ξ(w)
ξ(w)w , where Ξ and ξ are the wage distribution and density functions and, following the usage of Saez

(2001), Haz(w) is the wage hazard ratio. In the continuous setting, the impact of a change in wage growth across types
1

w∗(k)
∂w∗
∂k (k) on marginal taxes may be understood via its impact on Haz. Specifically, an increase in ∂w∗

∂k (k) reduces
ξ(w∗(k)) (the “fraction” who will be distorted by a marginal tax) relative to 1 − Ξ(w∗(k)) (the fraction who will be
undistorted and will pay higher average taxes). It is, therefore, a force for higher marginal taxes at w∗(k).
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Since the first term in (2.4) is zero for k = K = 2, this translates into an optimal marginal income

subsidy for high types and an enhanced marginal income tax for low types.

THE FORM OF F The functional form for F plays an important role in shaping wage growth across

types ∆w∗k+1/w∗k+1, the cross relative wage-effort elasticities φ∗k,j and, hence, optimal taxes. If F is

a weighted sum of type efforts, as in the classical Mirrlees model, then ∆w∗k+1/w∗k+1 is treated

as structural and invariant to policy, while each φ∗k,j is set to zero. A more general alternative

is to allow F to be a CES function.19 This assumption permits policy to affect ∆w∗k+1/w∗k+1, but

continues to treat the elasticity of substitution and, hence, the relative wage-effort elasticities as

structural. It also places strong restrictions on the latter requiring that they equal:

φ∗k,j =


− 1
E j = k

1
E j = k− 1

0 otherwise,

(2.6)

where E is the elasticity of substitution between the effort of worker type pairs. Thus, for each

worker type k, the elasticities φ∗k,j are non-zero only locally (i.e. a variation in a type’s effort only

affects its wage relative to others, it does not affect the relative wage of other type pairs) and all

elasticities φ∗k,k and φ∗k,k−1 take common values independent of k. These features have led to some

resistance amongst labor and public finance economists to the use of CES production functions in

modeling labor demand. For example, Salanié (2011) asserts: “It is, unfortunately, quite difficult to

specify a production function that models the limits to factor substitution with an infinite number

of factors.” (Chapter 4, p.111). He emphasizes that the substitutability of similar and dissimilar

worker types may be quite different, but that such differences cannot be accommodated under the

CES assumption.

TOWARDS AN ASSIGNMENT ECONOMY Rothschild and Scheuer (2013) and its generalization

Rothschild and Scheuer (2014) consider assignment economies in which workers choose tasks as

well as effort. In their setting a worker’s multidimensional type gives his or her productivity in all

19See Heathcote et al. (2014) for an analysis of optimal taxation within a special class of tax functions that makes such
an assumption in a rich dynamic setting.
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tasks. If, in the latter paper, the distribution over worker types places all mass on types that have

positive productivity in only one task, then it reduces to a K-type Stiglitz economy with workers

effectively “locked” into particular tasks. Consequently, results similar to Proposition 2 would

emerge in Rothschild and Scheuer (2014) under this restriction. Below, however, we show that

Proposition 2 is much more generally applicable. In particular, in Section 2.4, we use an assign-

ment framework to micro-found a production function F defined directly over worker efforts. In

this setting workers are not locked into tasks. Instead, the allocation of workers to tasks is efficient

given worker effort and F is the upper envelope to a family of production functions indexed by

worker task choices. Proposition 2 is applicable and, importantly, relative wage-effort elasticities

φ∗k,j are influenced by policy and are no longer structural.

TECHNICAL CHANGE The formulas in Proposition 2 point to several channels through which

technical change can influence optimal policy. Most simply, if technical change raises the return to

effort of all workers equally at a given effort profile, then it does not directly affect wage growth

over types ∆w∗k+1/w∗k or the responsiveness of relative wages to effort φ∗k,j in (2.4). Such “type-

neutral” technical change impacts policy only insofar as it affects labor supply elasticities and

relative marginal rates of substitution across workers.20 If, on the other hand, technical change

augments the effort of a subset of workers, then, in general, it does affect wage growth over types.

Specifically, if F is a CES function of the form F(e1π1, . . . , eKπK) = A[∑K
k=1 Dke

E−1
E

k ]
E
E−1 , then:

∆wk+1

wk+1
≈ − log

(
wk

wk+1

)
= − log

(
Dk

Dk+1

)
+

1
E log

(
ek

ek+1

)
(2.7)

and technically induced variations in the log relative CES weights {log Dk
Dk+1
} additively translate

the map from efforts to wage growth over types. Such variations, by modifying the productiv-

ity of one type of worker relative to another at a given effort profile, relax or tighten incentive

constraints and, hence, elicit an optimal tax response. They do not affect the responsiveness of

relative wages to effort, i.e. they leave the elasticities φk,j unaltered (at the fixed values given in

(2.6)). For more general production functions (such as the induced F in the next section), technical

change can influence the sensitivity of wages to the effort profile as well. In particular, by reducing

substitutability between skills, technical change can enhance the impact of variations in relative
20In our later numerical work, we shut this channel down by restricting to utility functions: log c + h(e).
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labor supplies on relative wages and, hence, the policymaker’s influence over the wage distribu-

tion. This strengthens the wage compression motive and is a further channel via which technical

change can influence optimal policy (and a channel that is absent under the CES specification).

2.4 Taxation, Assignment and Technical Change

We now consider optimal taxation in a framework with task assignment. As noted in the intro-

duction, assignment-based frameworks have been used in the positive literature to formalize the

impact of technical change on the distribution of workers across wages and occupations. As we

show below they imply and, hence, micro-found an indirect production function over worker ef-

forts. Consequently, we are able to relate key elasticities in the optimal tax equation (2.4) to deeper

structural parameters that describe the relative demand for tasks and the way in which tasks and

talent interact. We interpret changes in these parameters as technical change and conclude this

section by deriving implications of such change for optimal policy in a very simple assignment

model.

2.4.1 Physical Environment

As before workers are partitioned across types 1, . . . , K with a fraction πk being of type k. Types

are now explicitly identified with talents. In addition, there is a continuum of tasks v ∈ [v, v]

differentiated by complexity. Workers can choose which task to work (exert effort) in; they cannot

work in multiple tasks. They face a schedule of task-specific wages ω : [v, v]→ R+, with ω(v) the

wage per unit of effective labor paid in task v. A worker of talent k has productivity ak(v) ∈ R+ in

task v. If she exerts effort e in this task her effective labor is ak(v)e and her income is ω(v)ak(v)e.

The worker chooses her consumption, effort and task to solve:

sup
R+×[0,e]×[v,v]

U(c, e) s.t. c ≤ ω(v)ak(v)e− T(ω(v)ak(v)e). (2.8)

The productivity functions {ak}, ak : [v, v] → R+, play a key role in the subsequent analysis.

The following condition is imposed upon them.

Assumption 1. The functions ak : [v, v] → R+, k ∈ {1, . . . , K} are continuous and satisfy (i) (Weak
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comparative advantage) for each k ∈ {1, . . . , K − 1} and v′, v ∈ [v, v] with v′ > v, log ak+1(v′) −

log ak(v′) ≥ log ak+1(v)− log ak(v) and (ii) (Absolute advantage) for each k ∈ {1, . . . , K− 1}, ak+1 > ak.

By Assumption 1(i) a is a weakly log super-modular function of talent and task and higher

talents have a weak comparative advantage in more complex tasks. In the subsequent analysis

this assumption is often strengthened to strict log super-modularity: for k ∈ {1, . . . , K − 1}, and

v′, v ∈ [v, v] with v′ > v, log ak+1(v′) − log ak(v′) > log ak+1(v)− log ak(v). This stronger condi-

tion ensures assortative matching of tasks and talents in equilibrium. Assumption 1(ii) implies that

more talented types have an absolute advantage in all activities. It is not essential for all of our re-

sults, but it guarantees that wages are strictly increasing in talent. Hence, the orderings over talent

and wages conform and there is no “wage pooling” (multiple talents earning the same wage).

Remark 1 (Interpreting a). The function a captures the idea that different workers may be more or less ef-

fective at performing specific tasks or using task-specific capital. Combined with Assumption 1 it formalizes

the notions of talent and task complexity. More talented workers are better at all tasks and are especially

good at more complex ones. Relatedly, more complex tasks are more talent-intensive. The formulation of pro-

duction here follows that in the assignment literature, e.g. Costinot and Vogel (2010), with the important

addition of an intensive effort margin.21

Later we allow for the possibility that a may change over time. We interpret such change as technical

progress and allow it to depend upon both worker talent and task complexity. In particular if, for each v

and k′ > k, log ak′ (v)
ak(v)

increases, then technical progress is talent-biased; if for each k and v′ > v, log ak(v′)
ak(v)

increases, then it is complexity-biased and if for each k′ > k, v′ > v, log
( ak′ (v

′)
ak(v
′)

ak′ (v)
ak(v)

)
increases, then it is biased

towards high talent-high complexity matches. In the latter case, it enhances the comparative advantage of

talent in complex tasks and reduces the substitutability of talent across tasks. �

The task choices of workers imply a distribution of workers and, hence, effective labor across

tasks. Let Λk denote a distribution of k-th talent workers over tasks with density λk. If k-th talent

workers exert effort ek, then the supply of effective labor in task v is:

K

∑
k=1

λk(v)ak(v)ek.

21The assignment literature refers to a worker’s innate productive attribute as ”skill”. Since skills are endogenous,
we prefer the word talent. Our model could be reinterpreted as one in which workers exert effort partly or wholly in
acquiring skills rather than working.
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A representative firm hires effective labor to perform tasks and combines task output to pro-

duce final output. Let l : [v, v] → R+ denote an allocation of effective labor across tasks and let L

denote the set of such allocations (with L restricted to ensure the integrals defined below in (2.9)

are well defined). Output is assumed to equal effective labor in each task v. Final output Y is pro-

duced from task output and, hence, from an allocation of effective labor l using a CES-technology:

Y = H(l) :=


A
{´ v

v b(v)l(v)
ε−1

ε dv
} ε

ε−1
ε ∈ R+\{1},

A exp
{´ v

v b(v) ln l(v)dv
}

ε = 1,
(2.9)

where A > 0 and b : [v, v] → R++ is a continuous function such that if B(v) :=
´ v

v b(v′)dv′, then

B(v) = 1. Let ω : [v, v] → R+ be the wage per unit of effective labor in each task v. The firm

solves:

max
l∈L

H(l)−
ˆ v

v
ω(v)l(v)dv. (2.10)

Remark 2 (Interpreting b). The function b weights task output in the final good aggregator. Variations in

b may be interpreted as stemming from technological or preference-based variations in demand for different

task outputs. We do not explicitly model capital. However, the model may be extended in this direction, in

which case the production functions in (2.9), under the assumption B(v) ∈ (0, 1), can be reinterpreted as

indirect production functions for labor across tasks after the substitution of optimal capital. The parameter

b(v) is then interpreted as the sensitivity of final output with respect to the labor input in task v. It is influ-

enced not only by variations in demand for different tasks, but also variations in the capital/labor intensity

of tasks. Such variations are stressed by Acemoğlu and Autor (2011) who emphasize the automatization of

middle complexity tasks. A further possibility is that b captures the extent to which workers purchase task

output in domestic markets, produce it at home or purchase it in foreign markets. Shifts in b for some tasks

may reflect the substitution of market for home production as in Buera and Kaboski (2012) or domestic for

foreign production as in Grossman and Rossi-Hansberg (2008).

2.4.2 Tax Equilibria and the Government’s Policy Problem

In the assignment setting, the definition of a tax equilibrium is modified as follows.22

22As before, we constrain the set of mechanisms available to the government to ones that deterministically condition
upon worker incomes. This assumption is standard in the literature and to a first approximation describes current tax
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TAX EQUILIBRIUM Let G be a fixed public spending amount. Given G, a tax equilibrium is an

income tax function T : R+ → R, an allocation {l, {ck, ek, λk}K
k=1} and a wage profile ω such that

(i) for each k = 1, . . . , K, (ck, ek) and v in the support of Λk solves the k-th worker’s problem at T

and ω, (ii) l solves (2.10) at ω, (iii) the final goods market clears:

G +
K

∑
k=1

ckπk ≤ H(l), (2.11)

and (iv) labor markets clear, for all v ∈ [v, v],

l(v) =
K

∑
k=1

λk(v)ak(v)ek, (2.12)

and for all k = 1, . . . , K,

πk =

ˆ v

v
λk(v)dv. (2.13)

Again, let E denote the set of tax equilibria. Proposition 3 below characterizes tax equilibria.

It contains the simple, but important result that conditional on effort assignment in a tax equilibria

maximizes output.

Proposition 3. Let Assumption 1 hold. Let {l, {ck, ek, λk}K
k=1} and ω be, respectively, the allocation and

wage profile of a tax equilibrium. Then there is a tuple of threshold tasks {ṽk}K−1
k=1 such that:

λk(v) =


0 v ∈ [v, ṽk−1) ∪ (ṽk, v]

b(v)εak(v)ε−1

Bk(ṽk−1,ṽk)ε πk v ∈ (ṽk−1, ṽk),

where Bk(ṽk−1, ṽk) :=
[´ ṽk

ṽk−1
b(v)εak(v)ε−1dv

] 1
ε . All workers of talent k earn a common wage wk =

ω(v)ak(v), v ∈ [ṽk−1, ṽk]. Relative wages are given by:

wk+1

wk
=

ak+1(ṽk)

ak(ṽk)
=

Bk+1(ṽk ,ṽk+1)

{πk+1ek+1}
1
ε

Bk(ṽk−1,ṽk)

{πkek}
1
ε

. (2.14)

Conditional on the effort profile {ek}, the equilibrium allocation of talent to tasks maximizes output.

codes. In our setting, it implies that the government cannot observe the task a worker does or the amount of task output.
The former may reasonably reflect the inherent difficulties in distinguishing between a worker’s formal job description
and the tasks that the worker actually performs.
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Proof. See Appendix B.2.

Efficiency of assignment (in the sense of output maximization) conditional on effort implies that

output is given by the following indirect production function over efforts:

F(π1e1, . . . , πKeK) = sup

{
A

{
K

∑
k=1

Bk(ṽk−1, ṽk) {ekπk}
ε−1

ε

} ε
ε−1
∣∣∣∣∣s.t. v ≤ ṽ1 ≤ . . . ≤ ṽK−1 ≤ v

}
.

(2.15)

With F determined in this way, the environment effectively reduces to that in Section 2.3 and the

government’s problem to (PP). Recovery of an optimal tax equilibrium can be decomposed into

two steps. The outer step is simply (PP) at the induced production function F; the embedded

inner step solves the assignment problem (2.15) at each candidate effort allocation {ek} and, hence,

evaluates F at {ek}.23

In contrast to Section 2.3, the production function F is micro-founded; changes in parameters of

this production function can be related to changes in the demand for tasks b and the productivity

of task-talent matches {ak}. The inner step assignment problem is essentially the same as those

considered in Teulings (1995), Costinot and Vogel (2010) and Acemoğlu and Autor (2011) (with the

distinction that the supply of each talent’s labor is selected as part of an optimal tax equilibrium

rather than being pinned down parametrically).24 Solving the assignment problem at an effort pro-

file {ek} reduces to finding a sequence of task thresholds {ṽk}K−1
k=1 satisfying the discrete boundary

value problem:

ak+1(ṽk)

ak(ṽk)
=

Bk+1(ṽk ,ṽk+1)

{πk+1ek+1}
1
ε

Bk(ṽk−1,ṽk)

{πkek}
1
ε

, (2.16)

with ṽ0 = v and ṽK = v.

An immediate consequence of Proposition 3 and the absolute advantage condition Assump-

tion 1(ii) is that wk+1
wk

= ak+1(ṽk)
ak(ṽk)

> 1. Consequently, talents are strictly ordered by by equilibrium

wages and “wage pooling” (the payment of the same wage to different talent types) does not oc-

23In a tax equilibrium, a worker reproducing the income and paying the taxes of a less talented type will exert less
effort in the task that pays her the best wage, she does not move to the task of the less talented whose income she mimics.
Thus, worker task (and wage) choice is independent of the effort she exerts and the income she earns in the task. The
counterpart of this in the decomposition just described is the incentive constraint in the outer step which depends on
relative wages and only via them on task choice.

24In fact the analysis on p. 758-60 of Costinot and Vogel (2010) in which the labor input across ”skills” is changed in
particular ways represents a partial exploration of the indirect production function.
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cur.25 Proposition 2 identifies relative wage-effort elasticities φk,j as key determinants of the wage

compression channel and, hence, marginal taxes. If each log(aj+1/aj) is differentiable, then in a tax

equilibrium the terms φk,j can be expressed as:

φk,j = −
∂ log(wj+1/wj)

∂ log ek
=


− ∂ log(aj+1/aj)

∂ log ṽj
∏

j−1
l=k

(
∂ log ṽl+1

∂ log ṽl

)
∂ log ṽk
∂ log ek

j ≥ k

− ∂ log(aj+1/aj)
∂ log ṽj

∏k−2
l=j

(
∂ log ṽl

∂ log ṽl+1

)
∂ log ṽk−1

∂ log ek
j < k

. (2.17)

Thus, elasticity φk,j depends upon the local comparative advantage of talents j and j+ 1 ∂ log(aj+1/aj)
∂ log ṽj

at the threshold ṽj, the sensitivity of the k− 1-th or k-th task threshold to the effort of the k-th talent
∂ log ṽk
∂ log ek

and the sensitivity of thresholds intermediate between j and k to one another ∂ log ṽl+1
∂ log ṽl

.

Only under very special conditions is the induced production function F a CES function. One

such case occurs when each ∂ log(aj+1/aj)
∂ log ṽj

= 0, φk,j = 0, talents are perfectly substitutable across tasks

and F is linear. Another26 occurs when the ak functions are indicators for the sub-intervals [v, ṽ1],

(ṽ1, ṽ2], . . ., (ṽK−1, v]. Then workers are as substitutable as the tasks into which they are locked.

For more general cases, however, relative wage-effort elasticities are functions of technological

parameters and the effort profile {ek} and, hence, indirectly policy. Thus, they are not structural.

In the appendix, we prove:

Lemma 3. Each ∂ log ṽj
∂ log ṽj+1

, ∂ log ṽj+1
∂ log ṽj

and ∂ log ṽk
∂ log ek

is positive. Each ∂ log ṽk−1
∂ log ek

is negative. If ∂ log(aj+1/aj)
∂ log ṽj

> 0,

then φk,j < 0 if j ≥ k and φk,j > 0 if j < k. In addition, φk,k ∈ [−1/ε, 0] and φk,k−1 = [0, 1/ε].

Proof. See Appendix B.2.

The economics behind Lemma 3 is straightforward. Consider a small increase in ek (perhaps in

response to a policy change). This raises output in tasks [ṽk−1, ṽk], placing downward pressure on

[ṽk−1, ṽk]-shadow prices and, hence, the wage wk of talent k workers. These workers respond by

populating tasks that are both below ṽk−1 and above ṽk. This task migration moderates, but does

not fully offset the impact of the increase in ek on wk. As k-talents move into less complex tasks in

which they have a comparative disadvantage relative to k− 1-talents and more complex tasks in

25Assumption 1(ii) (i.e. global absolute advantage of more talented types across the entire task space) is sufficient,
but not necessary for this result. Local absolute advantage of successive talents k+ 1 at each task boundary ṽk is enough.

26Although, this case is not consistent with talent-complexity comparative advantage (except when K = 2), smooth-
ness or continuity of the ak functions.
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which they have a comparative disadvantage relative to k+ 1-talents so wk/wk−1 falls and wk+1/wk

rises. Moreover, as k-talents spill into neighboring tasks, output of these tasks increases, depressing

their shadow prices and inducing neighboring talents to migrate into new tasks. Workers of talent

k + 1 move into tasks above ṽk+1, while workers of talent k− 1 talents move into tasks below ṽk−1.

A ripple effect is created with each task threshold ṽj above k rising and each threshold below k

falling. Since relative wages between adjacent talents are determined by productivity ratios at

thresholds (i.e. by aj+1(ṽj)/aj(ṽj)), an effort change by talent k workers can affect relative wages

across the whole spectrum of talents and be a motive for encouraging or discouraging that talent’s

effort.

Expressions for the threshold elasticities ∂ log ṽj
∂ log ṽj+1

, ∂ log ṽj+1
∂ log ṽj

and ∂ log ṽk
∂ log ek

are given in the proof of

Lemma 3. They point to the role of the parameters b and a in influencing the sensitivity of task

choices and, hence, relative wages to a given talent’s effort. Suppose that workers of talent j mi-

grate into more complex tasks either because they have increased their effort or because the tasks

that they originally performed have been encroached upon by j− 1 talents. If there is much de-

mand and, hence, high b-values for tasks immediately above ṽj, then these tasks will soak up this

migration with little change in the threshold ṽj. Conversely, if b-values in this neighborhood are

low, then talent j-workers will migrate further up through the task set pushing ṽj to a new possibly

much higher level. In the former case, the impact on the wj+1/wj wage differential will be muted;

in the latter case, it will be enhanced. Turning to the a function, an increase in the comparative ad-

vantage of talent in complex tasks, raises ∂ log(aj+1/aj)
∂ log ṽj

and, hence, the sensitivity of relative wages to

task threshold adjustment. The resulting upwards pressure on φk,j is dampened by the deterrence

to task migration and task threshold adjustment and, hence, lower values for ∂ log ṽj+1
∂ log ṽj

and ∂ log ṽk
∂ log ek

,

created by higher comparative advantage.

2.4.3 An Example: Technical Change in the Two Talent Model

We now make some of the preceding observations more precise in the context of a simple two

talent example. For concreteness, we label these talents low (k = L) and high (k = H) rather than 1

and 2. We restrict preferences to be quasi-linear in consumption, U(c, e) = c− e1+γ

1+γ , with γ > 0 and

denote the government’s Pareto weights by gk, k ∈ {L, H}. To create a motive for redistribution to

low skills, we assume gL > πL. In this case, the Mirrlees and Wage Compression components can
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be consolidated to give the (Stiglitz) optimal tax functions:

τ∗L
1− τ∗L

=

(
gL

πL
− 1
){

1−
(

1
W∗

)1+γ {
1− 1
E∗

}}
≥ 0, (2.18)

τ∗H
1− τ∗H

=

(
gH

πH
− 1
)(

1
W∗

e∗L
e∗H

)1+γ 1
E∗ ≤ 0, (2.19)

whereW∗ = w∗H
w∗L

is the optimal talent premium and the substitutability of talents at the optimum

is completely described by the elasticity of substitution E∗. In the assignment setting, both W∗

and E∗ are endogenous. If Assumption 1 is maintained, then in an optimal tax equilibrium the

set of tasks is partitioned at a threshold ṽ∗, with low talents working in tasks below ṽ∗ and high

talents working in tasks above. The talent premium satisfies W∗ = aH(ṽ∗)
aL(ṽ∗)

, while the elasticity of

substitution between the labor of the two talents is given by E∗ = E(ṽ∗; a, b), where

E(ṽ; a, b) := −
∂ log eH

eL

∂ log wH
wL

= ε +
1

∂ log aH
aL

∂v (ṽ)

[
bH(ṽ)
BH(ṽ)

+
bL(ṽ)
BL(ṽ)

]
≥ ε, (2.20)

BL(ṽ) :=
´ ṽ

v b(v)εaL(v)ε−1dv, BH(ṽ) :=
´ v

ṽ b(v)εaH(v)ε−1dv and for k ∈ {L, H}, bk(ṽ) := b(ṽ)εak(ṽ)ε−1.

Equation (2.20) makes explicit the role of task migration in raising the elasticity of substitution be-

tween talents above that of task outputs:
∂ log aH

aL
∂v (ṽ) is the local comparative advantage of high

talents in the neighborhood of the threshold task ṽ. If this term equals ∞, then workers are substi-

tutable as the interval of tasks into which they are locked. Otherwise, their ability to migrate across

tasks enhances their substitutability. Equation (2.20) highlights the dependence of the elasticity of

substitution on technological parameters and its (implicit) dependence on policy.

The workers’ equilibrium first order conditions in this setting together with (2.14) gives:

W∗ = aH(ṽ∗)
aL(ṽ∗)

=

(
BH(ṽ∗)
BL(ṽ∗)

) γε
1+γε

(
πL

πH

) γ
1+γε

(
1− τH

1− τL

) 1
1+γε

. (2.21)

Equation (2.21) gives the threshold ṽ∗ and relative wages as functions of a and b and relative

marginal taxes. Substituting for optimal marginal taxes from (2.18) and (2.19) reduces the system
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of equilibrium equations to a single equation in one unknown, ṽ∗:

aH(ṽ∗)
aL(ṽ∗)

=

(
BH(ṽ∗)
BL(ṽ∗)

) γε
1+γε

(
πL

πH

) 1+γ
1+γε

×


gH − (πH − gH)

(
aH(ṽ∗)
aL(ṽ∗)

)(1+γ)(ε−1) ( BH(ṽ∗)
BL(ṽ∗)

)−(1+γ)ε
1
E∗

gL − (gL − πL)
(

aL(ṽ∗)
aH(ṽ∗)

)1+γ ( E∗−1
E∗
)


1

1+γε

. (2.22)

It follows easily from (2.22) that if ε ≥ 1 (so that goods, and, hence, efforts of different talents

are gross substitutes) and if E(·; a, ·) is (locally) constant, then complexity-biased perturbations of

b that raise BH/BL lead to increases in ṽ∗ and W∗. Intuitively, increases in the relative demand

for more complex tasks raise the relative shadow price of such tasks and encourage less talented

workers to migrate into them (ṽ∗ rises). However, such task-upgrading erodes the comparative

advantage of low talents and the talent premium (W∗) rises. These effects are mitigated by ad-

justments in relative efforts that occur in response to wage adjustments and that are reinforced by

changes to tax policy. Overall, a rise in BH/BL(·) is associated with a higher talent premium, a

tightening of the incentive constraint between low and high talents and higher marginal taxes on

low talents.

Sufficient conditions for the elasticity of substitution E∗ to be constant in response to a shift in

task demand are rather stringent.27 In general, it may rise or fall as a direct effect of the change in

b or the indirect effect of changes in ṽ∗ on 1
∂ log

aH
aL

∂v (ṽ∗)

{ bH(ṽ∗)
BH(ṽ∗)

+ bL(ṽ∗)
BL(ṽ∗)

}
in (2.20). These changes may

reinforce or offset the responses just described. To the extent that E∗ is increased, the government’s

ability to compress wage differentials and relax incentive constraints is reduced. It is correspond-

ingly encouraged to reduce relative taxation of low talents and to permit a further increase in the

talent premium. The reverse is true if E∗ falls.

Turning next to the consequences of variation in a, suppose that log aH(v)
aL(v)

= α1 + α2(v− v) so

that α1 controls the absolute advantage of high talents (in the lowest task) and α2 controls their

comparative advantage in more complex tasks. If ε > 1 and bH(ṽ∗)
BH(ṽ∗)

+ bL(ṽ∗)
BL(ṽ∗)

is locally constant, then

small technologically induced increases in α2 will, from (2.22), both raise the talent premium and

reduce the elasticity of substitution E∗.28 Low talent marginal taxes τ∗L will rise both becauseW∗

27For example, if ε = 1, b is constant and equal to one and the remaining parameters are such that ṽ∗ = 1/2, then E∗
is locally constant.

28In this case the task threshold ṽ∗ falls: the increased productivity of high talents in complex tasks reduces the
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rises and because the wage compression channel is enhanced via the reduction in E∗: as workers

become less substitutable, the government is encouraged to offset the rise in the talent premium

by discouraging low talent effort through taxation. Increases in α1 work in a related way, but

absent any reinforcing adjustment in E∗. As in the case of complexity-biased perturbations in the b

functions, adjustments in the bH(ṽ∗)
BH(ṽ∗)

+ bL(ṽ∗)
BL(ṽ∗)

term (either direct through changes to the bk functions

or indirect through adjustments to ṽ∗) may work to reinforce or dampen these effects.

SUMMARY Technical change that increases the talent wage premium and reduces the substi-

tutability of talents is associated with higher optimal marginal taxes on low talents. Change that

increases both the talent income premium and the substitutability of talents is associated with

lower marginal subsidies on high talents. In general, the technical parameters a and b influence

both talent premia and talent substitutability directly and indirectly through endogenous task as-

signment. The analysis is more complicated in settings with multiple talents. Such settings are,

however, essential for exploring the policy implications of recently documented polarizing shifts

in the pattern of wages and employment across occupations.

2.4.4 Comparison to Rothschild and Scheuer, 2013

We briefly describe the connections between our model and that of Rothschild and Scheuer (2013).

Our model features a continuum of tasks and a finite set of talents, but it is readily reformulated

as one with a continuum of tasks and talents (see Appendix B.3). In both formulations our as-

sumptions ensure that the ordering over talents translates directly into an ordering over wages.

Consequently, the pattern of (local) binding incentive constraints over talents is easily inferred and

consumption and effort allocations can be solved directly as functions of talent. We use our ap-

proach to relate optimal taxes to the indirect production function F, relative wage elasticities and,

hence, properties of the task-talent productivity function a.

In contrast, Rothschild and Scheuer (2013) consider an environment with a finite number of

tasks in which an agent’s type is her productivity in each task and is, thus, multidimensional. In

this case, the structure of binding incentive-compatibility conditions across allocations expressed

as functions of type is complicated. However, such conditions become quite standard if con-

relative shadow price of such tasks and encourages high talents to downgrade their tasks. Despite some erosion of their
comparative advantage, their relative wages rise.
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sumption and effort allocations are reformulated as functions of wages. The cost of this refor-

mulation is a rather complicated joint restriction on allocations and the (endogenous) distribution

over wages. To solve such a problem Rothschild and Scheuer (2013) propose a quite different

inner-outer method than that used here. In the inner step the allocation of labor across tasks and,

hence, the wage distribution is fixed and an optimal incentive-compatible consumption-effort pro-

file (over wages) consistent with this allocation is found. In the outer step, the labor allocation and

the wage distribution are determined. Rothschild and Scheuer (2013) use this approach to relate

optimal taxes to the impact of effort on the wage distribution. Their formula, thus, provides an

alternative perspective on the forces shaping tax policy in an endogenous wage environment to

ours.

Rothschild and Scheuer (2013)’s model permits intra-task wage dispersion and task-specific

wage distributions with overlapping support. It thus allows the implications of these things for

policy to be explored, ours does not. On the other hand, our model connects directly to the tech-

nical change literature in labor economics. It underpins an empirical strategy for quantifying the

effect of technical change on optimal policy described in Sections 2.5 and 2.6. Thus, the models

are complimentary. In Appendix B.7, we present a general formulation that nests our model and

that of Rothschild and Scheuer (2013) and makes transparent the alternative approaches taken. It

then specializes that formulation to one intermediate between our model and theirs. This formu-

lation incorporates intra-task wage dispersion and wage overlap, while preserving our approach

to formalizing the impact of technical change.

2.5 Measuring Technical Change

In this section, we measure the extent of technical change in the US. Our data source is the Current

Population Survey (CPS).29 We proceed as if this data was generated by a (possibly sub-optimal)

tax equilibrium and use parametric assumptions and equilibrium restrictions from our model to

identify and estimate the technological parameters a and b in the 1970’s and 2000’s. In Section 2.6,

we calculate optimal tax equilibria at these estimated parameters.

29Further details of our use and treatment of the data are given in Appendix B.4.1.
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2.5.1 Determining Types and Tasks

MAPPING EMPIRICAL OCCUPATIONS TO ORDERED SETS OF TASKS The CPS categorizes workers

into distinct occupations; our sample contains M = 302 occupations. The CPS also provides in-

formation on worker earnings and hours worked from which a measure of wages can be imputed.

Our model involves an interval of tasks ordered by complexity. We identify tasks with empirical

occupations and use the average wage paid in each occupation to infer its complexity. In so doing,

we utilize the model’s implication that task wages are rising in task complexity. We normalize the

task space to [v, v] = [0, 1] and sub-divide this interval into M sub-intervals of length ∆v = 1
M ,

Vm = [vm−1, vm]. We calculate the imputed average wage in each occupation using 1970’s data and

rank occupations according to this wage. The m-th ranked occupation is then mapped to the m-th

subinterval Vm.30

We use data on the skill content of occupations contained in the O?NET database to (partially)

corroborate our inferred complexity ordering over occupations. The O?NET database provides a

detailed description of the skill (35 distinct skills are considered) and ability (52 distinct abilities are

considered) content of each occupation.31 We recover from the O?NET a single index describing

the importance of each skill and ability for each occupation.32 We then calculate the correlations of

these skill/ability indices with our wage imputed rank. We find that the three most correlated skills

(correlation in parenthesis) are: complex problem solving (0.66); critical thinking (0.62) and judgement

and decision making (0.61). The three most correlated abilities are: deductive reasoning (0.63); inductive

reasoning (0.60) and written comprehension (0.57). The least correlated skill is equipment maintenance

(-0.07), while the least correlated abilities are: stamina (-0.33) and trunk strength (-0.37). These corre-

lations suggest that the average wage paid in an occupation is informative about that occupation’s

complexity.

30We keep this ranking over occupations fixed. In doing so, we follow the precedent of Acemoğlu and Autor (2011).
Fixing the ranking allows us to unambiguously identify an index v with a physical occupation and to interpret variations
in the parameters a and b as occurring in a given physical occupation rather than at a given complexity index whose
physical interpretation is shifting. However, there is some reranking of occupations over time in the data. In Appendix
B.4.3 we describe the implications of using current rather than the 1970’s wage ranking for our estimates of the a and b
functions and for optimal taxes.

31The O?NET database contains 974 occupations. We relate these to the occupations contained in CPS in two steps.
We first map the occupations in our sample to the Standard Occupation Classification of the 2000 census. We then map
these occupations to those in the 19th release of the O?NET. A small number of occupations are recoded manually. We
thank Giovanni Gallipoli for directing us towards the O?NET.

32Specifically, the index is the product of the importance and level measures in O?NET.
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RECOVERING THE EMPIRICAL ASSIGNMENT FUNCTION ṽ The model in Section 2.4 featured a fi-

nite number of talents; this facilitated the derivation of analytical results. However, for the remain-

der of the paper we find it convenient to treat worker talent symmetrically with task complexity

and to assume that workers are distributed uniformly across an interval of talents, k ∈ [k, k].33

Thus, a worker’s talent should now be an interpreted as an index (and a rank), the implications

of which for productivity are captured by the function: a : [k, k]× [v, v] → R+. Although the dis-

tribution over the (ordinal) talent index is uniform, the distribution over (cardinal) productivities

is not: it is induced endogenously by a and by the assignment of talent to tasks. The set [k, k] is

normalized to [0, 1].

The continuous analogue of the task thresholds {ṽk} is a task assignment function: ṽ : [k, k] →

[v, v]. This function is strictly increasing in our model. Denote its inverse by k̃. Under the assump-

tion that workers are distributed uniformly across talent indices, k̃ is the distribution of workers

across tasks. Consequently, we treat the distribution of workers across ordered occupations as the

empirical counterpart of k̃ and ṽ to be the inverse of this.

2.5.2 Estimating b

It is well known that the elasticity of substitution between goods and factor augmenting technical

progress (ε and b in our case) cannot be separately identified from data on outputs, inputs and

marginal products - an observation that goes back to McFadden, Diamond, and Rodriguez (1978).

In our baseline case, we restrict the elasticity of substitution between task outputs, ε, to be one

(so that the final good production function is Cobb-Douglas) and identify b(v) with the share of

total compensation paid to workers in task v.34 Thus, estimates of b may be be calculated from

compensation shares independently of knowledge of the a’s. Specifically, under the Cobb-Douglas

restriction, the firm’s first order conditions from the continuous-talent version of (2.10), imply for

almost all (k, v):

ω(k, v) = Y
a(k, v)b(v)

y(v)
. (2.23)

33The convenience is two fold. First, since occupational (task) data is discrete, assuming a continuous set of talents
avoids having to deal with talent groups that are distributed across adjacent occupations. Second, it allows us to apply
numerical optimal control methods to solve the problem. A formal statement of the continuous talent-continuous task
model can be found in Appendix B.3.

34The quantitative implications of alternative assumptions for ε are considered in Appendix B.4.2.
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In the continuous talent setting, task output is given by y(v) = a(k̃(v), v)e(k̃(v))k̃v(v), with k̃v the

derivative of k̃. Combining this with (2.23) and integrating over Vm gives total labor income in

occupation m in terms of the b-function:

ˆ
Vm

ω(k̃(v), v)e(k̃(v))k̃v(v)dv = Y
ˆ
Vm

b(v)dv.

Average income in occupation m, im, is then obtained by dividing both sides by the mass of workers

in the occupation, Sm:

im :=
1

Sm

ˆ
Vm

ω(k̃(v), v)e(k̃(v), v)k̃v(v)dv =
Y
Sm

ˆ
Vm

b(v)dv.

Thus, the average value of b in occupation m, bm∆v :=
´ vm

vm−1
b(v)dv, is:

bm =
Smim

∆vY
, ∀ m = 1, . . . , M. (2.24)

We identify Y with per capita labor income.35 A smooth estimate of the b-function is obtained by

fitting a LOWESS model to {vm, log bm} data.36 Figure 2.3 displays estimates of b for the 1970’s and

the 2000’s. The figure shows that b rises (slightly) for low and (significantly) for high v-occupations,
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Figure 2.3: Evolution of log(b(v)) across decades.

but falls for intermediate ones. The picture is consistent with the phenomenon of job polarization as
35In 2005 dollars we have Y70 = $36, 998 and Y00 = $45, 260. M is 302. In aggregate data using GDP deflator (table

1.1.9 in NIPA) and total non farm payroll (BLS) we get a value of real compensation per worker equal to Y70 = $37, 114
and Y00 = $53, 304. However deflating using CPI we get values consistent with our sample: Y70 = $37, 966 and
Y00 = $45, 151.

36The LOWESS scatterplot smoothing builds up a smooth curve through a set of date points by fitting simple linear
or quadratic models to localized subsets of data. We use a smoothing parameter of 0.4.
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discussed in Section 2.2. This polarization feature is robust to different sample selection assump-

tions, see Appendix B.4.1 for details.

Figure 2.4 sharpens intuition concerning the relation of different v’s to the data. The figure

overlays the values of b(·) with a bar graph displaying the employment shares of occupations be-

longing to particular sectors. Figure 2.4a does this for services and Figure 2.4b for manufacturing.37

The service sector is associated mostly with extreme and, especially, “low” v occupations (the bar

on the right in Figure 2.4a refers to managers and administrative support), while manufacturing is

mostly middle v occupations (although with a wider range).
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(a) Services.
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Figure 2.4: Occupations and v
Histograms: shares of occupations over v. Plots: smoothed values for log(b(v)) over v and across decades.

2.5.3 Estimating a

The envelope condition from the task choice component of the worker’s equilibrium problem,

w(k) = maxv∈[v,v] ω(k, v), implies that:

d log w
dk

(k) =
∂ log ω(k, ṽ(k))

∂k
=

∂ log a(k, ṽ(k))
∂k

=
∂α

∂k
(k, ṽ(k)), (2.25)

where α(k, v) := log a(k, v). An empirical counterpart for d log w
dk is constructed in three steps. First,

information from the CPS on weeks and usual hours worked in the previous year and self re-

ported yearly labor income is used to impute workers’ average hourly wages. Second, wages

are averaged over occupation to construct empirical counterparts of w(k̃(v)). Third, a LOWESS

37Not shown are occupations that constitute less than 2% of the workforce of each sector.
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smoother is applied to the log of this series and to k̃, derivatives of each function are calculated and
d log w(k̃(v))

dk =
d log w(k̃(v))

dv
∂k̃(v)

∂v

is found. Figure 2.5 displays the empirical values for (smoothed) log w(k) for

the 1970s and the 2000s. From the 20th to the 80th talent percentile, this function is roughly linear in

k in the 1970s and remains so in the 2000s. In the 1970s, it steepens over the top talent decile, while

in the 2000s, it steepens over the top two deciles. In addition, for both decades, but especially for

the 1970’s, the profile is steeper over the bottom two deciles.
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Figure 2.5: LOWESS smoothed log(wages) over talents.

The evolution of log w(k) shown in Figure 2.5 suggests that between the 1970s and the 2000’s

the wages of low-ranked talents caught up with mid-ranked talents, while the wages of mid-

ranked talents fell behind those at the top. These developments are qualitatively consistent with a

fall in the returns to talent in simpler tasks combined with an increase in talent-complexity com-

parative advantage (so that talent premia rise in the most complicated tasks and occupations). This

motivates us to select:
∂α

∂k
(k, v) = α1 + α2 · v. (2.26)

Here, α1 captures the return to pure talent, while α2 captures comparative advantage.38 We recover

estimates of α1 and α2 by regressing d log w(k̃(v))
dk onto a constant and the task index v. The regression

is weighted by the share of workers in each v. Results are reported in Table 2.1.

They show a significant increase in the comparative advantage parameter α2 between the 1970’s

and 2000’s. Loosely, this is driven by the increase in wage growth over high talents occurring

38Appendix B.4.5 considers a case in which comparative advantage is increasing with task complexity.
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between the 1970s and the 2000s.39

Table 2.1: Estimation of Productivity Function.

Decade Parameters

α1 α2

70s 1.07 (0.25) 1.71 (0.28)

00s 0.42 (0.32) 3.01 (0.22)

In Appendix B.4.4, we look outside of the CPS for corroborating evidence of increasing compara-

tive advantage. Specifically, we use data on the change in the skill/ability content of occupations

contained in different editions of the O?NET database. We find evidence that the use and impor-

tance of skills and abilities associated with complex tasks has increased in high wage occupations

relative to low.

Finally, the parameter A is given by the ratio of per capita income to the approximation of the

CES aggregator exp{
´ v

v b(v) log{y(v)}dv}.

2.6 Quantitative Implications for Policy

In this section, we compute optimal policy responses to the technical change estimates derived in

Section 2.5. Calculation of policy requires a specification of worker and societal preferences and

the amount of resources devoted to public spending. We briefly turn to this and then give our

quantitative results.

2.6.1 Selection of Other Parameters and Computational Method

We assume that worker preferences are given by: U(c, e) = log c− e1+γ

1+γ . Note that the choice of U

has no impact on the estimation of b(v) and a(k, v). We follow Chetty, Guren, Manoli, and Weber

39Kaplan and Rauh (2013) emphasize the rise of “superstar” pay across a variety of high income occupations. In our
empirical strategy “superstar” workers belong to (measured) occupations inhabited by much lower paid workers. It is
arguable that these different workers trade in distinct task-markets with distinct shadow prices. The implication of this
is a downward bias in the estimate of comparative advantage (α2). Given the evolution of inequality in the US this bias
is likely to be more significant for the 2000s.
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(2011) and set the Frisch labor supply elasticity to 1/γ = 0.75. We identify the share of output

allocated to public spending with the aggregate tax to income ratio in our CPS sample. On this

basis, (G/Y)70 = 16.2% and (G/Y)00 = 14.0%; we set the G/Y ratio to the intermediate value of

15%.40 Finally, in our benchmark calculations a utilitarian government is assumed: gk = πk for all

talents k.

To calculate optimal policy at our selected and estimated parameters, we first formulate the

government’s optimization as an optimal control problem. Details of this formulation are given in

Appendix B.3. We then solve the problem numerically using the GPOPS-II software.41

2.6.2 Optimal Tax Results

Table 2.2 reports optimal average and marginal tax rates as a function of income percentiles for the

1970s and the 2000s. Over this time period, average rates rise at low incomes and fall at high and,

especially, middle incomes. Transfers to the lowest deciles are reduced. Overall, the reform favors

those in the middle. Marginal rates fall at low to mid incomes and rise at higher incomes. In the

extreme tails they move in the opposite directions: rising in the very lowest and falling in the very

highest (where marginal subsidies are increased ) percentiles.

Table 2.2: Optimal Tax Rates on Real Labor Income.

Decade
Percentiles of Income

10th 25th 50th 75th 90th 99th

Averages
70s -11.9 -7.3 6.9 22.3 26.1 22.2

00s -2.3 -1.1 5.6 19.9 26.1 21.9

Marginals
70s 20.3 34.1 44.3 40.3 23.9 -0.6

00s 15.3 25.4 39.7 42.2 27.4 -2.2

To understand the evolution of optimal tax reported in Table 2.2, we return to the tax formula (2.4)

40NIPA data (Table 1.1.6) gives (G/Y)70 = 23.9% and (G/Y)00 = 19.3%. However, since we are concerned with
spending financed out of income taxation (paid by our subsample of labor income earners) we use the alternative CPS-
generated estimates.

41GPOPS-II is a flexible software for solving optimal control problems, see Patterson and Rao (2013).
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derived earlier.

ACCOUNTING FOR OPTIMAL TAXES

Tax formula (2.4) allows us to decompose optimal tax rates into “Mirrleesian” and “Wage Com-

pression” components. In particular, let τM
k denote the “Mirrleesian” marginal tax rate in the ab-

sence of the wage compression term:42

τM
k =

∆w∗k+1
w∗k+1

1−Πk
πk
H∗k Ψ∗k

1 +
∆w∗k+1
w∗k+1

1−Πk
πk
H∗k Ψ∗k

.

The tax rate τM
k is that which an optimizing government would apply if wages were fixed at their

optimal levels {w∗k}. Define the wage compression component of taxes to be the residual τWC
k =

τ∗k − τM
k . In Figure 2.6, we plot the Mirrleesian tax rate τM

k and the overall optimal marginal rate τ∗k

at each income percentile k and for each decade. Figure 2.6 shows that technical change deforms

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

k

M
ar
gi
n
al

R
a
te

 

 

τ
M

τ
∗

(a) 1970’s.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

k

M
ar
gi
n
al

R
a
te

 

 

τ
M

τ
∗

(b) 2000’s.

Figure 2.6: Decomposing taxes. Solid curve: Mirrleesian tax, τM. Dashed
curve: overall tax, τ∗.

the Mirrleesian tax rate pushing it to the right except at the lowest and highest talent. In addition,

it raises the wage compression component at lower incomes and reduces it at higher ones. Overall

the wage compression component becomes quantitatively more important.

42That is set the wage compression term to zero in (2.4) and rearrange. For convenience, we continue to state tax
formulas and their components in their discrete, rather than continuous forms.
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EVOLUTION OF THE MIRRLEES TERM We further decompose the Mirrlees term into its redistribu-

tive Ψ and wage growth parts in Figure 2.7.43 The main impact of technical change is upon wage

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

k

Ψ
∗

 

 

70s
00s

(a) Ψ∗.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

k

∆
w

∗

w
∗

 

 

70s
00s

(b) Wage Growth, ∆w∗
w∗ .

Figure 2.7: Mirrlees term decomposition.

growth (with some slight reinforcement from the redistributive term Ψ∗). This is largely driven

by shifts to the a function. As noted previously, our estimates suggest that the productivities of

low talents catch up with high in less complicated tasks and fall behind in more complex ones.

At any effort profile and, in particular, at the optimal one, this shift compresses wage differentials

at the bottom and expands them at the top. Shifts in the b function and in task demand from the

middle to the extremes slightly reinforce the effect. The impact of the latter is, however, surpris-

ingly small. This is largely because, in relevant areas of the task space, modest adjustments in the

tasks of workers ṽ∗ are consistent with quite large variations in the density of workers across tasks

k̃∗v. Consequently, increases in the demand for low and high tasks are met with increases in the

number of workers performing these tasks, but relatively little adjustment in task assignment and,

hence, relative productivities and wages. For more details see Appendix B.5. The overall effect of

these a and b changes is to relax incentive constraints and reduce marginal taxes at the bottom, but

to tighten them and raise marginal taxes at the top.

EVOLUTION OF THE WAGE COMPRESSION TERM Adjustment of the wage compression terms is

in the opposite direction to the adjustment of the Mirrlees term previously described. Figure 2.8

displays this adjustment.

43The other components are constant over time under our assumptions.
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It shows that the wage compression term rises at low incomes and falls, becoming more neg-

ative, at higher ones. These changes are largely attributable to adjustments in the relative wage
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Figure 2.8: Evolution of the wage compression term.

elasticities φ∗k,j. The k-th talent’s wage compression term is given by: Φ∗k = ∑K−1
j=1 Mk,jφ

∗
k,j. This

equation expresses Φ∗k as a weighted sum of relative wage elasticities, with the weights depending

upon the marginal incentive benefit of adjusting each pair of relative wages. Mechanically, φ∗k,j is

positive if j ≥ k and negative otherwise, so that all φ∗k,j are positive if k = 1 and all are negative

if k = K. For some intermediate k, positive and negative terms cancel and the wage compression

term is zero. An increase in the lowest talent’s effort pushes all higher talents upwards through

the task spectrum, raising the relative wages of all adjacent talents. This tightens all incentive con-

straints and is undesirable. Consequently, the lowest talent has the highest wage compression term

and that talent’s effort should be deterred at the margin. For the highest talent, this argument is

reversed. An increase in the highest talent’s effort pushes all lower talents downwards through the

task set, compressing relative wages. This relaxes incentive constraints and should be encouraged

at the margin with lower marginal taxes on high talent incomes. For intermediate talents these

effects wholly or partially offset, leading to wage compression terms that are smaller in absolute

value. Figure 2.9 shows the impact of technical change on relative wage elasticities (normalized

by population shares) φ∗k,j/πk, j = 1, . . . , K for low, mid and high talents (labelled L, M and H).44

It indicates that almost all φ∗k,j rise in absolute value. This is largely a consequence of the rise in

the comparative adjustment parameter α2 which, although it dampens the assignment response

to adjustments in effort, raises the sensitivity of relative wages to any reassignment that occurs.

44Note the global impact of relative wages to an effort adjustment, an example of the ripple effect described previ-
ously.
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Figure 2.9: Effort elasticity of tasks.

Changes in the b function have only moderate effects on these elasticities, see Appendix B.7.

COMBINING TERMS The Mirrlees and wage compression terms evolve in opposite directions. Of

the two, it is the adjustment to the Mirrlees term that is largest over most incomes. Consequently,

marginal tax rates fall at low (but not the lowest) and rise at high (but not the highest) incomes.

These adjustments are significantly muted by changes to the wage compression term and at the

extremes of the wage distribution changes in this term predominate.

2.7 Extension: INTRA-TASK WAGE DISPERSION

This paper’s appendices contain various robustness checks, extensions and optimal tax calcula-

tions under alternative parameterizations. In the remainder of this section we focus on a specfic

extension that can accommodate intra-occupational wage dispersion. Recall that in the equilibrium

of our (benchmark) model, differently talented workers partition the task space and all workers

within a task receive the same wage: there is no intra-task wage dispersion. Our empirical strategy

identifies tasks with occupations and uses dispersion in occupational average wages to determine

the a function. It makes no use of measured intra-occupational wage dispersion.

Simple regressions suggest that between one third and one half of wage dispersion can be at-

tributed to occupation. Mouw and Kalleberg (2010) impute wages using income and hours data in

the CPS and regress this on three digit occupation dummies. They obtain an R2 of 39% in the 1980s

rising to 43% in 2010. Lane, Salmon, and Spletzer (2007) using OES microdata from 1996-1997 find
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that one digit occupational dummies account for 28% of wage variation rising to 54% when three

digit occupational data is used. Overall, although occupations account for an important part of

wage variation, significant residual wage variation remains. However, the identification of this

residual variation with intra-task wage dispersion must be qualified in two ways. First, the resid-

ual absorbs measurement error in incomes and hours (from which wages are imputed).45 Second,

it absorbs occupational misclassifications and, more generally, unmeasured variation in task com-

plexity. Several occupational categories within the CPS have fairly expansive definitions (e.g. some

managerial occupations include managers of small, simple organizations, as well as managers of

large complex ones) and it is likely that different workers sharing such occupational classifications

perform different complexity-ranked activities.46 It is notable that when Lane et al. (2007) intro-

duce establishment dummies on top of occupational ones and interact these dummies the R2 in

their regressions rises to 88%. While establishment dummies may capture many things, it is plau-

sible that they help further refine the task performed by a worker (especially when interacted with

occupation). To address this issue requires further unbundling of measured occupations.47

Notwithstanding the preceding concerns, intra-task wage variation is present and does con-

tribute to measured intra-occupational wage dispersion. We consider the extent to which it quali-

fies our results in Appendix B.7. We do so by extending the model and numerically parameterizing

it to enhance intra-task wage dispersion. Our goal is to provide a lower bound for the responsive-

ness of policy to technical change. In the extended model, there are two aspects of talent: one

captures comparative advantage in complex tasks, the other the ability to do all things well. Simi-

lar to our baseline model in the main text, comparative advantage types partition the ordered space

of tasks amongst themselves. Wage variation within these partitions (and, hence, within tasks) is

created by dispersion in the second (absolute advantage) component of talent. Such dispersion

weakens the link between wages and tasks. It diffuses the impact of technical change and of taxes

targeted at a particular income across the wage distribution. Thus, it dampens the responsiveness

45Bound and Krueger (1991) find that measurement error accounts for 27.6% of total variance of CPS earnings, while
Bound, Brown, Duncan, and Rodgers (1994) find that it is more severe for hours and wages.

46Relatedly, “superstar” workers belong to (measured) occupations inhabited by much lower paid workers. It is
arguable that these different workers trade in distinct task-markets with distinct shadow prices.

47We use the O?NET to provide some very preliminary results in this direction in Appendix B.8. There we report
summaries of survey results that indicate disagreement as to the knowledge requirements of occupations (amongst
workers employed in or firms employing workers in these occupations). These disagreements are greatest in occupa-
tions paying higher wages.
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of policy to technical change. In taking the model to the data, we assume a coarse set of compar-

ative advantage types and attribute all measured residual wage variation (about 75% of the total

in our CPS sample) to variations in absolute advantage. Since the set of comparative advantage

types is coarse, the partitions of the occupation space are large. Hence, we (deliberately) attribute

some measured inter-occupational wage variation to absolute advantage (and as discussed above

measured inter-occupational wage variation may understate inter-task wage variation and the con-

tribution to overall wage dispersion created by the interaction of talents and tasks). As expected,

the impact of technical change on marginal taxes is smaller than in our baseline case: the largest

adjustment is about 2.5 points as compared to about 8.5 points before. Again, this adjustment is the

net effect of countervailing changes to the Mirrlees and wage compression terms. We interpret this

number as a lower bound on the responsiveness of policy to technical change. Moreover, while

the quantitative response is more muted than in the benchmark case, the broad policy prescription

of modest marginal tax reductions over a band of low to mid level incomes combined with an

increase over higher incomes is robust.

2.8 Conclusion

We relate the positive literature on technical change to normative work on optimal taxation by

embedding an assignment model into an optimal tax framework. The assignment component in-

duces an indirect production function over worker efforts enabling us to map technical parameters

determining the productivity of task-talent matches and the demand for tasks to the variables and

elasticities relevant for optimal tax analysis. We investigate the implications of changes in these

parameters for optimal taxes, measure the extent of this change in US data and evaluate its impli-

cations for optimal policy.

The impacts of technical change on wage growth across talents and the substitutability of tal-

ents across tasks emerge as key drivers of policy. The twisting of the task-talent productivity

function with low talents catching up in simple tasks and falling behind in more complex ones

compresses wage differentials at the bottom, while expanding them at the top. It is a force for less

redistribution and lower marginal taxes from the middle to the bottom and more redistribution

and higher marginal taxes from the top to the middle. On the other hand, increased complemen-
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tarity between talent and task complexity reduces the substitutability of talents. In particular, the

highest talents become increasingly locked into the highest tasks. Migration to lower ranked tasks

to avoid lower task shadow prices entails greater erosion of productivity. This gives the govern-

ment more tax leverage over the wage distribution. It is a force for higher marginal tax rates at

the bottom. A key message of this paper is that policy depends upon the balance of these forces.

Models that treat wages (or even the elasticity of substitution between talents) as exogenous omit

the latter. We find its impact to be moderate, but non-negligible.

Our paper takes a first step in integrating a task-based model of technical change into a nor-

mative public economics framework. We conclude by describing four extensions that we leave for

future research. First, our model focuses on the intensive margin of labor supply.48 It abstracts

from indivisibilities in labor supply. If working at a given task requires a minimal (task specific)

effort, then some workers may choose inactivity under the optimal tax code. As Saez (2002) shows

such modeling of the worker extensive margin can significantly affect optimal tax results at the

bottom. However, its implications for the impact of technical change on tax design are less clear.

Second, our model assumes that the matching of talents to tasks is frictionless. Thus, our quanti-

tative work is best viewed as capturing the long run policy response to technical change after the

(possibly slow) reassignment of workers to tasks following such change. The role of income taxa-

tion in supplementing other sources of insurance during transitions is omitted. Third, our model

omits accumulation of experience or skill within tasks that can impede or promote transitions to

other tasks. Fourth, we abstract from the endogenous nature of technical change. Relaxing these

restrictions remain important topics for further research.

48However, our model admits an alternative interpretation in which workers exert effort in skill accumulation rather
than market work. Our theoretical insights are applicable to this interpretation.
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Chapter 3

Discriminatory Auctions with Resale

3.1 Introduction

The discriminatory or “pay-your-bid” auction is a popular mechanism to sell many important

goods, including treasury bills or bonds, electricity, foreign exchange, airport landing slots, and

more recently carbon emissions. In this type of auction, each bidder submits a demand curve

for multiple units of a good and the auctioneer acts as a perfectly discriminating monopolist by

charging each bidder his or her winning bid.

In many of these applications, the bidders can freely engage in post-auction resale. That is,

they can resell some or all of the items they receive to other bidders after the auction is over.

Of course, when bidders anticipate a resale market, their bidding behavior in the auction might

change. Nevertheless, the vast majority of the single-item or multi-item auction theory literature

has neglected the effect of post-auction resale on the allocation of given auction formats.

In this paper, we consider multi-unit auctions: items sold in the discriminatory auction are

identical to each other. Moreover, bidders have single-unit demands, i.e. they value only one item

and their valuation for any more items is 0, and bidders’ valuation for the first item is indepen-

dently and identically distributed. In other words, we consider a symmetric single-unit demand

environment. We model the resale stage as a game in which the sellers–winners of the auction

stage, which we call resellers –sell their (excess) objects optimally. If there is only one reseller, she

would use the optimal auction. If there is more than one reseller, then they may compete or coop-
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erate with each other in the resale stage, and our results are not affected by either kind of behavior.

In a model with symmetric single-unit demand, it is well known that discriminatory auctions

have a symmetric and monotone equilibrium that results in an efficient allocation (see Krishna

(2002), section 13.5.2). Therefore, one might think that adding a resale stage to this setup should

not alter the equilibrium behavior: in this equilibrium all winners have higher valuations than all

losers, so there would be no incentive for resale. We show that this intuition is wrong: it turns out

that when sellers in the resale market have all the bargaining power and can design any mechanism

to sell the items, then the symmetric, monotone and efficient “no resale equilibrium” is no longer

an equilibrium when resale is allowed (Proposition 4). The reason for this is that auction prices

may be too low to attract “speculative behavior,” i.e. buying and selling in the resale market.

In our main model, we consider an auctioneer who sells the items via discriminatory price

auctions with no reserve prices. In the resale stage we assume that resellers can use optimal mech-

anisms. Hence they can use reserve prices. Our main results are the following. When there are two

units for sale, we find an equilibrium in which resellers make zero profit (Theorem 1). When more

than two units are for sale, surprisingly, it turns out that there may not be a symmetric and mono-

tone equilibrium (Theorem 2). The main reason for this is that when two (or more) items could

be sold in the resale stage, selling one or two items results in different expected revenues, which

results in contradicting requirements for the bid for the first unit. To the best of our knowledge,

Theorem 2 is the first result that shows non-existence of a symmetric and monotone equilibrium

in a standard auction setup (with independent private values, risk-neutrality, and single-unit de-

mands.)

We then consider some variations of the model. When the resale market has to be efficient,

and hence resellers cannot use reserve prices in the resale stage (like the original seller who does

not use a reserve price), “no resale equilibrium” remains an equilibrium with resale (Proposition

5). Yet there exists another “resale equilibrium” in which one bidder buys all the items and sells

all but one of them in the resale market (Proposition 6). Moreover, resale equilibrium is revenue

equivalent to no resale equilibrium (Proposition 7). Furthermore, as a corollary to this result, we

note that when there are two units for sale and resellers can use reserve prices in the resale market,
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banning the resale market strictly decreases the expected revenue in a discriminatory price auction

(Corollary 1). Finally, when reserve prices can be used both in the auction stage and resale stage,

no resale equilibrium remains an equilibrium (Proposition 8).

The balance of this section discusses the related literature. Section 3.2 formally introduces

the model and ends with a motivating example (Example 1). In Section 3.3, we establish our main

results. Section 3.4 considers the variations. Section 3.5 concludes. The Appendix contains omitted

proofs.

Related Literature Research on the theory of multi-unit or multi-item auctions is not as large

and advanced as the research on single-item auctions. Noussair (1995) and Engelbrecht-Wiggans

and Kahn (1998a) work on the derivation of equilibrium bidding behavior in private value uniform-

price auctions. Engelbrecht-Wiggans and Kahn (1998b) analyzes equilibrium strategies in discrim-

inatory auctions. In another important paper, Reny (1999) shows the existence of pure strategy

equilibrium for discriminatory auctions with independent private values. Ausubel, Cramton, Py-

cia, Rostek, and Weretka (2014) study the issue of demand reduction in multi-unit auctions.

There is now quite a large literature on single-unit auctions with resale. Most of this literature

studied environments where resale takes place due to inefficient allocation (such as in asymmetric

first price auctions) in the bidding stage. Gupta and Lebrun (1999), Haile (2000), Haile (2001),

Haile (2003), Garratt and Troger (2006), Pagnozzi (2007), Hafalir and Krishna (2008) are earlier

notable examples of this literature.1 However, in this paper we look at an environment in which the

equilibrium without resale is efficient, yet resale may take place. This phenomenon also occurs in

the online supplement to Garratt and Troger (2006). When there is one speculator (who values the

item at 0) and n symmetric bidders in a first-price auction, they show that–under some conditions–

the speculator may play an active role (buy in the auction stage and resell in the resale stage) 2,3.

In our setup, it turns out that no resale equilibrium always gives rise to speculative behavior.

1This literature has grown more in the recent years. See, for instance, Hafalir and Krishna (2009), Lebrun (2010),
Pagnozzi (2010), Cheng and Tan (2010), Cheng (2011), Xu, Levin, and Ye (2013), Virag (2013), and Zheng (2014).

2These conditions depend on number of regular bidders and value distribution. For instance, when value distribu-
tion is uniform, speculators do not play an active role.

3Garratt and Troger (2006) also show that speculators play an active role in second-price or English auctions. In
English auctions, since there are many equilibria (some of which are inefficient), resale may affect equilibrium behavior
more easily. See also Garratt, Troger, and Zheng (2009).
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Finally, we discuss theoretical literature on multi-unit auctions with resale. In an earlier work,

Bukhchandani and Huang (1989) analyze a multi-item (discriminatory or uniform price) auction

with common values. In the resale market, bidders receive information about the bids submitted

in the auction. They examine the information linkage between auction and resale stage and com-

pare expected revenues in two auction formats. Recently, Filiz-Ozbay, Lopez-Vargas, and Ozbay

(2015) have studied multi-unit auctions with resale where bidders have either single or multi-unit

demand. More specifically, they consider environments in which there are k local markets, k local

bidders, and 1 global bidder. They analyze the equilibrium of Vickrey auctions and simultane-

ous second-price auctions. In another recent work, Pagnozzi and Saral (2013) analyze different

bargaining mechanisms at the resale stage following a uniform price auction when bidders are ex-

ante asymmetric. In contrast, in our model, all bidders are ex-ante symmetric with private values,

demand only one item, and participate in the same discriminatory price auction.

3.2 Model

There are n bidders and k items for sale. We assume that each bidder has single-unit demand,

i.e. , the values of all items except the first are zero. Bidders are risk neutral, and bidder i’s value

for the first item is vi, which is independently and identically distributed from a continuously

differentiable and regular (in Myerson’s sense) function F over [0, 1].

The rule of the discriminatory auction is simple: the highest k bids are awarded the objects, and

winners have to pay their bids to the auctioneer (pay-your-bid auction). Ties are broken randomly.

No information is revealed after the auction stage. Moreover, there is no discounting between

auction and resale stage. After the auction stage, bidders are allowed to sell item(s) in the resale

stage. As discussed in the introduction, we assume that resellers sell their (excess) objects optimally.

If there is only one reseller, she would use the optimal auction (in Section 4, we consider the case

in which resellers cannot use reserve prices; hence they use optimal “efficient” auctions). If there

is more than one reseller, then they may compete or cooperate with each other while selling items

to the buyers at the resale stage.

We study the weak perfect Bayesian Nash equilibrium (WPBNE) of this game. That is, we
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assume players are sequentially rational and they update their beliefs according to Bayes’ rule

and equilibrium behavior whenever possible. We restrict our attention to the symmetric and

monotone WPBNE. Hence, we consider an equilibrium such that each bidder with value v bids

(β1(v), β2(v), ..., βk(v)) such that β1(v) ≥ β2(v) ≥ ... ≥ βk(v) where βl denotes the lth highest bid

of a bidder with value x. We assume that βl is a nondecreasing and continuously differentiable

function for each l = 1, ..., k. It is important to note that we only require βl to be nondecreasing

(not strictly increasing) and hence allow βl (v) to be zero. That is, bidders do not have to make

more than one positive bid.

The behavior in the resale stage is straightforward. In equilibrium, any bidder who wins j

items in the bidding stage sells only j− 1 items in the resale stage. This is because his value for the

first item is greater than the expected return of selling that item, since bidders follow the symmetric

nondecreasing equilibrium. When a bidder is the only reseller, she would use the optimal auction–

a uniform-price auction with the optimal reserve price–and buyers in the resale stage would bid

their valuations. We do not need to specify what happens if there is more than one reseller, since

in the equilibria we will find, there will always be one reseller.4

3.2.1 Motivating Example

In this subsection, we give an example that illustrates allowing resale changes equilibrium behav-

ior of bidders.

Example 1. Consider an auctioneer who sells two identical objects to three bidders whose values (are single-

unit demand and) are uniformly distributed over [0, 1] . From Section 13.5.2 of Krishna (2002), bidder with

value x bidding
(

3x−2x2

6−3x , 0
)

is an equilibrium when bidders cannot engage in post-auction resale.

When bidders can engage in resale, and reserve prices can be used in resale stage, bidding
(

3x−2x2

6−3x , 0
)

is not an equilibrium. To see this, consider a bidder with value 1, and compare her utility when she bids( 1
3 , 1

3

)
with when she bids

( 1
3 , 0
)

(her equilibrium bid). In the latter case, her utility is 2
3 . In the former

case, she wins both items with probability 1. She would use one of the items for consumption. When she

4The main contribution of this paper is to solve for an equilibrium when there are two items and show that there
may not be a symmetric and monotone equilibrium when there are three items. Under both cases, in a symmetric and
monotone equilibrium there can be at most one reseller in the resale market.
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sells the second item by a second-price auction with the optimal reserve price 1
2 , we can quickly check that

the revenue is 5
12 , which is strictly higher than 1

3 . The expected utility from bidding
( 1

3 , 1
3

)
and setting the

reserve price to 1
2 in the resale stage results in an expected utility of 2

3 +
5

12 −
1
3 = 0.75, which is higher than

0.66. Therefore bidding
( 1

3 , 1
3

)
is a profitable deviation.

So, a natural question is what the equilibrium in this game is? We claim that a bidder with a value x

bidding
( 5

12 x, 5
12 x
)

is an equilibrium of this game. To see this, first note that if a bidder wins the second item

at a bid of 5
12 z, this means that both of the other bidders must have values between 0 and z. By running an

optimal auction for selling the second item, the expected revenue can be shown to be exactly 5
12 z.5 Therefore,

the expected utility from winning the second item is 0 no matter what they bid for it, and hence bidders

cannot benefit from deviating in the bid for the second item. Then we just need to check that deviating for

the first item is not profitable. Consider a bidder whose value is x and her bid is 5
12 z (for the first item, her

bid for the second item will always bring 0 expected utility.) Her expected utility is given by

Π(x, z) = (x− 5
12

z)z2 + 2
ˆ min{1,2x}

z

(ˆ y1
2

0

(
x− y1

2

)
dy2 +

ˆ min{y1,x}

y1
2

(x− y2) dy2

)
dy1

where the second summand represents the expected utility from buying in the resale stage. To see this, note

that for this bidder to win the item in the resale stage, the highest value among two competitors should be

greater than z (so that she would win the auction) but not more than 2x (so that the reserve price he would

charge is not more than x). Moreover, the price she would pay in the resale market is the maximum of the

reserve price y1
2 or the second-highest value in the resale market y2.

Then the profit of deviation is:

Π(x, z)−Π(x, x) =

(x− 5
12

z)z2 − (x− 5
12

x)x2 + 2
ˆ x

z

(ˆ y1
2

0

(
x− y1

2

)
dy2 +

ˆ min{y1,x}

y1
2

(x− y2) dy2

)
dy1

=


0 if z ≤ x

− 1
3 (z− x)3 if z ≥ x

5The optimal auction is to run a second-price auction with a reserve price z
2 . Then, with probability 1

2 , the object
will be sold at the reserve price, and when the object is sold higher than reserve price (with probability 1

4 ) the expected
selling price is 2

3 z (expectation of second highest of two random variables uniformly distributed between z
2 and z).

Hence the optimal revenue is 1
2 ×

z
2 + 1

4 ×
2z
3 = 5

12 z.
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which is ≤ 0 for each case. Hence,
( 5

12 x, 5
12 x
)

is an equilibrium.

We introduce some notations before we move on to our main results. Let the random variable

Y(n)
k represent the kth highest random value among n random variable independently distributed

according to F, and let F(n)
k denote the distribution function for Y(n)

k . Let ψ (x) denote Myerson’s

virtual valuation:

ψ (x) = x− 1− F (x)
f (x)

.

We assume ψ (x) to be increasing. Let F (· | x) denote the conditional distribution: for y ∈ [0, x]

F (y | x) =
F (y)
F (x)

and let f (· | x) denote density, and ψx (·) denote virtual valuation of F (· | x) . We also assume that

ψx (y) is increasing in y for all x. 6 Finally, let us denote

t (x) =


y if x < ψ−1 (0), where ψ−1

y (0) = x or 0 = ψy (x)

1 if x ≥ ψ−1 (0)

The relevance of this definition can be seen by noting that any bidder with value greater than t (x)

would charge the optimal reserve price greater than x in the resale market (so a bidder with value

x will not be able to buy from that bidder).

3.3 Main Results

Let us first formally define “no resale equilibrium.” From Section 13.5.2 of Krishna (2002), we know

that

E
[
Y(n−1)

k | Y(n−1)
k < x

]
≡ βN

1 (x) , β2 (x) = ... = βk (x) = 0

is an equilibrium of discriminatory auction without resale when bidders have single-unit demand

and their valuations are i.i.d. We call βN (x) =
(

βN
1 (x) , 0, ..., 0

)
the no resale equilibrium strategy.

E
[
Y(n−1)

k | Y(n−1)
k < x

]
is obviously increasing. Hence, in this equilibrium, k bidders with highest

6Myerson’s regularity assumption is satisfied by many distributions and it is commonly made in auction theory and
mechanism design literature.
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valuations will be awarded the items and all losers would have valuations smaller than all winners.

Therefore, if this was the equilibrium of the auction stage, there would be no transactions in the

resale stage. Yet, as Example 1 illustrates, no resale equilibrium bid functions do not constitute an

equilibrium when n = 3, k = 2 and F is uniform. We first generalize this for arbitrary n, k, and F.

Proposition 4. The bidding strategy of the game with no resale is not part of an equilibrium of discrimina-

tory auctions with resale when resellers can use optimal auction in the resale market.

The proof follows from an argument similar to that in Example 1 and is relegated to the Ap-

pendix.

Next, we focus on the case k = 2 (and any n ≥ 3) and find an equilibrium of this game.

3.3.1 When there are 2 units for sale

Before establishing equilibrium characterization for k = 2, we introduce some convenient notation

and prove some lemmas that are necessary for the main result. Let γ (x) denote the expected

revenue of the optimal auction when there are n − 1 buyers who all have values smaller than x.

We know that the optimal auction allocates the object to the bidder with the highest virtual value

if this highest virtual value is greater than zero. Since our setup is symmetric and virtual values

are assumed to be increasing, the optimal auction will allocate the item to highest valued bidder if

his virtual value is greater than 0. Moreover, the contribution to the revenue is exactly equal to the

virtual value. Hence,

γ (x) =
ˆ x

ψ−1
x (0)

ψx(z)dF(n−1)
1 (z | x)

We first establish the following lemma regarding γ and γ′, which will be useful for our results.

Lemma 4. We have

γ (x) =
1

F (x)n−1

ˆ x

ψ−1
x (0)

(
z− F(x)− F(z)

f (z)

)
dF (z)n−1 (3.1)

and

γ′ (x) = (n− 1)

[
f (x)
F(x)

(x− γ(x))− f (x)
F(x)n−1

ˆ x

ψ−1
x (0)

F(y)n−1dy

]
(3.2)
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Now, we establish one of our main results.

Theorem 1. Bidding β1(x) = β2 (x) = γ(x) is an equilibrium.

Proof. Let us consider a bidder with value x. First of all, as in the above example, the expected

utility from winning the second item is 0 no matter what she bids for the second item. This is

because, when she wins the item with a bid of b, then she knows that all n− 1 bidders have values

smaller than γ−1 (b). By running an optimal auction to sell the second item her expected revenue

is γ
(
γ−1 (b)

)
= b. Hence this bidder cannot benefit from deviating in the bid for the second item.

Then we just need to check that deviating for the first item is not profitable.

Let us denote the interim expected utility of a bidder with value x and a bid γ (z) for the first

item (and an arbitrary bid for the second item that is not greater than γ (z)) by Π (x, z). We have

Π (x, z) = F (z)n−1 (x− γ (z))

+

ˆ t(x)

z

ˆ min{x,y1}

0

ˆ y2

0
...
ˆ yn−2

0

(
x−max{ψ−1

y1
(0) , y2}

)
f (y1, ..., yn−1) dyn−1dyn−2...dy1

The first summand equals to the expected utility of winning two items. The bidder wins two

items with probability F (z)n−1, and her utility of winning two items is x − γ (z) . The second

summation represents her expected utility from resale when she is a buyer: the highest value

among competitors, y1, has to be between z and t (x) so that she will be a buyer in the resale stage

and the reserve price in the resale market is not greater than her value; the second highest value

among competitors, y2, should be smaller than her value so that she would win the item in the

resale market; finally, she would pay max{ψ−1
y1

(0) , y2} when she receives the item in the resale

stage (since winner of the auction would be using the optimal auction: a second price auction with

a reserve price). Note that we have

f (y1, ..., yn−1) = (n− 1)∏n−1
l=1 f (yl)
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Hence, we can rewrite Π (x, z) as

Π (x, z) = F (z)n−1 (x− γ (z)) +
ˆ t(x)

z

(ˆ min{x,y1}

0

(
x−max{ψ−1

y1
(0) , y2}

)
dF (y2)

n−1

)
f (y1) dy1

= F (z)n−1 (x− γ (z)) +
ˆ t(x)

z

(ˆ ψ−1
y1

(0)

0

(
x− ψ−1

y1
(0)
)

dF (y2)
n−1

)
f (y1) dy1︸ ︷︷ ︸

:=Ω1

+

ˆ t(x)

z

(ˆ min{x,y1}

ψ−1
y1 (0)

(x− y2) dF (y2)
n−1

)
f (y1) dy1︸ ︷︷ ︸

:=Ω2

.

Note that

Ω1 =

ˆ t(x)

z

(
x− ψ−1

y1
(0)
)

F
(

ψ−1
y1

(0)
)n−1

f (y1) dy1

and

Ω2 =

ˆ t(x)

z
x
(

F (min{x, y1})n−1 − F
(

ψ−1
y1

(0)
)n−1

)
f (y1) dy1

−
ˆ t(x)

z

(
uF (u)n−1 − ψ−1

y1
(0) F

(
ψ−1

y1
(0)
)n−1

−
ˆ u

ψ−1
y1 (0)

F (y2)
n−1 dy2

)
f (y1) dy1

where w := min{x, y1}.

Hence, we can simplify Π (x, z) as

Π (x, z) = F (z)n−1 (x− γ (z)) +
ˆ t(x)

z

(
F (w)n−1 (x− w) +

ˆ w

ψ−1
y1 (0)

F (y2)
n−1 dy2

)
f (y1) dy1.

Now, let us consider the difference Π (x, z)−Π (x, x) = D (x, z) . We will show that D (x, z) ≤ 0

to complete the proof. We have

D (x, z) = F (z)n−1 (x− γ (z))− F (x)n−1 (x− γ (x))

+

ˆ t(x)

z

(
F (w)n−1 (x− w) +

ˆ w

ψ−1
y1 (0)

F (y2)
n−1 dy2

)
f (y1) dy1.
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By definition, we have D (x, x) = 0. Hence the following is sufficient to finish proof:

∂

∂z
D (x, z)


≤ 0 if z > x

≥ 0 if z < x

First, consider the case where z > x. We have

∂

∂z
D (x, z) = (n− 1) F (z)n−2 f (z) (x− γ (z))− F (z)n−1 γ′ (z)−

(ˆ x

ψ−1
z (0)

F (y2)
n−1 dy2

)
f (z)

= f (z)

(
(n− 1) F (z)n−2 (x− γ (z))−

ˆ x

ψ−1
z (0)

F (y2)
n−1 dy2

)
− F (z)n−1 γ′ (z)

< f (z)

(
(n− 1) F (z)n−2 (z− γ (z))−

ˆ z

ψ−1
z (0)

F (y2)
n−1 dy2

)
− F (z)n−1 γ′ (z)

where the third line is obtained by noting that (n− 1) F (z)n−2 (x− γ (z))−
´ x

ψ−1
y1 (0) F (y2)

n−1 dy2 is

increasing in x for all x ≤ z.

Now, let us substitute Equation 3.2 in Lemma 4 for γ′. We have

∂

∂z
D (x, z) < f (z)

(
(n− 1) F (z)n−2 (z− γ (z))−

ˆ z

ψ−1
z (0)

F (y2)
n−1 dy2

)

− F (z)n−1

(
(n− 1)

[
f (z)
F(z)

(z− γ(z))− f (z)
F(z)n−1

ˆ z

ψ−1
z (0)

F(y)n−1dy

])

= 0

Next, we consider the latter case z < x. The marginal benefit is:

∂

∂z
D (x, z) = (n− 1) F (z)n−2 f (z) (x− γ (z))− F (z)n−1 γ′ (z)

−
(

F (z)n−1 (x− z) +
ˆ z

ψ−1
z (0)

F (y2)
n−1 dy2

)
f (z)

Use Equation 3.2 in Lemma 4 for γ′ and some algebra:

∂

∂z
D (x, z) = f (z)

(
(n− 1) F (z)n−2 (x− z)− F (z)n−1 (x− z)

)
= f (z)

(
(x− z) F (z)n−2 (n− 1− F (z))

)
≥ 0
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Thus, bidding β1(x) = β2 (x) = γ(x) is an equilibrium.

3.3.2 When there are 3 or more units for sale

In this subsection, we show that, interestingly, when there are 3 or more units for sale, there may

not be a symmetric and monotone equilibrium. We show this by considering a specific example

with 3 units and 4 bidders and showing that there is no symmetric and monotone equilibrium for

that case.

Theorem 2. When there are 3 or more units for sale, there may not be any symmetric and monotone

equilibrium.

Proof. Consider 3 items for sale and 4 bidders who have single-unit demands that are distributed

according to a uniform distribution on unit interval. We consider a symmetric and monotone equi-

librium. That is, each bidder with value x submits three bids, β (x) , δ (x) , θ (x), where β, δ, θ are

nondecreasing, continuously differentiable and satisfy β (x) ≥ δ (x) ≥ θ (x) ≥ 0. First of all, it is

not difficult to see that β (0) = δ (0) = θ (0) and β (·) is strictly increasing. We first establish the

following two lemmas (all proofs of the lemmas are relegated to the Appendix).

Lemma 5. Consider a bidder with value x. If he receives three items in the auction, his optimal revenue

from resale is 23
32 β−1 (θ (x)).

Lemma 6. Consider a bidder with value x and δ (x) = θ (x) , if he receives two items in the auction, his

optimal revenue from resale is 5
12 β−1 (δ (x)).

Next, suppose that we have an equilibrium in which θ (1) > 0. Let us denote β−1 (θ (1)) by c.

The following four lemmas provide us the conditions to prove that we cannot have an equilibrium

of this kind.

Lemma 7. For all x ∈ [0, c] , we have β (x) ≤ 23
64 x.

Lemma 8. (i) For all t ∈ [0, θ (1)] , if
(

β−1 (t)
)′

> 32
23 , then δ−1 (t) = θ−1 (t) , and (ii) there exists

d ∈ (0, 1] such that for all x ∈ [0, d] , then we have β (x) ∈
[
0, 23

64 x
]

and δ (x) = θ (x) .

88



Lemma 9. There exists e ∈ (0, 1] such that for all x ∈ [0, e] , we have β (x) ∈
[
0, 23

64 x
]

and β (x) =

δ (x) = θ (x) .

Lemma 10. Suppose that we have an equilibrium such that β (x) = δ (x) = θ (x) for all x ∈ [0, e] for

some e ∈ (0, 1]. Then, we have to have β (x) = 3
8 x for all x ∈ [0, e)

Finally, since 3
8 > 23

64 , Lemma 9 and Lemma 10 give us a contradiction. There cannot be an

equilibrium in which θ (1) > 0.

Next, we check the case where θ (x) = 0 for all x ∈ [0, 1] .

Let us consider an equilibrium in which θ (x) = 0, but δ (1) > 0. Similar to the above lemmas,

we can first argue that we have to have

β (x) ≤ 5
12

x.

Then we can argue that β (x) = δ (x) for a neighborhood around zero (with arguments similar

to Lemma 9).

Hence, let us consider an equilibrium that satisfies β (x) ∈
[
0, 5

12 x
]

and β (x) = δ (x) for all

x ∈ [0, e] . We can then get a contradiction by arguments similar to Lemma 10 as follows.

Consider a bidder with value x ∈ (0, e) who bids as if his value is z very close to x. His expected

utility is given by

u (x, z) = z3
(

x− 2β (z) +
5
12

z
)
+ 3z2 (1− z) (x− β (z)) + R (x, z)

where R (x, z) is his expected utility from the resale stage when he is a buyer and is given by: 7

R (x, z) = 6
ˆ max{1,2x}

z

ˆ max{1,2x}

l

ˆ x

k
2

(x−m) dmdkdl + 6
ˆ max{1,2x}

z

ˆ max{1,2x}

l

ˆ k
2

0

(
x− k

2

)
dmdkdl.

A necessary condition (β(x), γ(x)) to be an equilibrium is

∂u (x, z)
∂z

∣∣∣∣
z=x

= 0.

7The variables in integrals k, l, m denote the realizations for highest, the second highest, and the third highest values
among the competitors, the first term in the summation represents the case in which the bidder with value x pays the
third highest value, and the last term represents the case in which the bidder with value x pays the reserve price.
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The partial of the expected utility from the resale stage is:

∂R (x, z)
∂z

∣∣∣∣
z=x

= −6

(ˆ max{1,2x}

z

ˆ x

k
2

(x−m) dmdk +
ˆ max{1,2x}

z

ˆ k
2

0

(
x− k

2

)
dmdk

)

=
1
4

max{1, 2x}3 − 3 max{1, 2x}x2 +
11
4

x3

=


− 5

4 x3 if 0 ≤ x ≤ 1
2

1
4 − 3x2 + 11

4 x3 if 1
2 ≤ x ≤ 1

Hence, for x ≤ 1
2 we have to have

∂u (x, z)
∂z

∣∣∣∣
z=x

=
∂

∂z

(
z3
(

x− 2β (z) +
5
12

z
)
+ 3z2 (1− z) (x− β (z))

)∣∣∣∣
z=x

=
5
4

x3

with the boundary condition β (x) = 0. The solution to this differential equation is given by

β (x) =
35x2 − 64x
32x− 96

which is greater than 5
12 x for all x ∈

[
0, 1

2

]
.8

Hence, there cannot be any equilibrium in which β (x) ∈
[
0, 5

12 x
]

and β (x) = δ (x) for all

x ∈ [0, e] for some e ∈ [0, 1] .

To finish proof, we need to show that we cannot have an equilibrium where δ (1) = 0. In this

case, a bidder with value x mimicking a bidder with value z receives a payoff of

u (x, z) =
(

1− (1− z)3
)
(x− β (z)) = z

(
z2 − 3z + 3

)
(x− β (z)) .

After solving for the necessary first-order conditions, the optimal bidding function can be found

as:

β (x) =
3
4 x4 − 2x3 + 3

2 x2

x3 − 3x2 + 3x
.

But this solution cannot be an equilibrium since it is less than 5
12 x for x > 0.41:

8The difference is x 72−65x
96(3−x) .
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12x− β(x)

The bidders with values greater than 0.41 can

benefit by bidding 0.17 or more for the second item and can make a positive profit from resale.

Hence, there is no monotone equilibrium for this example .

We now recap the reasons behind the interesting finding of there is no symmetric and mono-

tone equilibrium in this setup. This nonexistence result follows from the following observations:

(i) consider a seller in a resale market in which all buyers’ values are smaller than v; if this seller

sells two items, per unit optimal revenue is 23
64 v, whereas if the seller sells one item, per unit op-

timal revenue is 5
12 v, (ii) since 5

12 > 23
64 , in a neighborhood around 0 bid for the third item has to

be the same as the bid for the second item. (iii) We can then argue that we have β (x) ≤ 23
64 x (be-

cause otherwise the seller makes a loss from the resale market), and when that is the case bids for

all three items have to be the same. Finally, (iv) when all three bids are the same, the differential

equation around 0 gives us β (x) = 3
8 x, and since 3

8 > 23
64 , we have a contradiction.

Next, we discuss why the “monotone equilibrium existence results” of Athey (2001), McAdams

(2003), and Reny (2011) do not contradict our “no symmetric monotone equilibrium finding.” First

of all, while these three papers consider simultaneous move games, our game is a two stage game.

Yet, since our equilibrium concept is WPBE, we can incorporate resale stage payoffs into auction

stage and consider our game as a simultaneous move Bayesian game. Hence, their results may

be applicable in our setup. However, the results in Athey (2001) and McAdams (2003) only con-

cern the existence of a monotone equilibrium, not a symmetric monotone equilibrium. The only
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papers that give existence results for a symmetric equilibrium in a symmetric game are those of

Reny (1999) and Reny (2011). Reny (2011) has shown that (i) if the game satisfies 6 assumptions,

G.1-G.6, then a monotone equilibrium exists, and (ii) if, in addition, the game is symmetric, then a

symmetric monotone equilibrium exists. In our game, the assumptions G.1-G.5 are satisfied, but

G.6–the continuity assumption–is not. Hence, the main result in Reny (2011) does not directly ap-

ply to our setup. In its applications section, Reny (2011) also shows that some Bayesian games that

are not continuous (most relevantly discriminatory multi-unit auctions with CARA bidders) also

have a monotone equilibrium. However, Reny (2011) does not establish existence of a symmetric

monotone equilibrium in these applications.9 Hence these methods are not applicable to our setup.

Next, we consider some variations of the model.

3.4 Variations

In this section, we consider some variations of the model where we allow for arbitrary k and n

with n > k. First of all, we consider a case in which the sellers in the resale market cannot use

reserve prices (for instance, because of commitment problems). In this variation, if there is one

seller in the resale market he would use the “optimal efficient mechanism” which is a uniform

price auction with no reserve price. For this case, we find two equilibria. One of them is the “no

resale equilibrium” (βN(x), 0, 0, ..., 0) where βN(x) = E[Y(n−1)
k | Y(n−1)

k < x]. The second one is an

equilibrium in which all bidders bid the same amount. In particular, a bidder with value x bids

(βR(x), βR(x), ..., βR(x)) where

βR(x) = E[Y(n−1)
k | Y(n−1)

1 < x] (3.3)

9The proof in Reny (2011) is done by appealing to Remark 3.1 in Reny (1999) and showing that this game is “better-
reply secure.” From Reny (2011)’s extensions, one may conjecture that if a game (i) is symmetric, (ii) is better-reply
secure, and (iii) satisfies G.1-G.5, then there exists a symmetric monotone equilibrium. However, this conjecture is
wrong as our game can be shown to be better-reply secure.
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Proposition 5. When sellers in the resale stage cannot use reserve prices, no resale equilibrium (βN(x), 0, 0, ..., 0)

remains an equilibrium of the discriminatory auction with resale.

The proof is relegated to the Appendix. The idea is straightforward. Consider a bidder who

wins one additional unit for a bid b, then (in a second-price auction with no reserve price) expects

to sell it for E
[
Y(n−1)

k | Y(n−1)
k−1 < β−1 (b)

]
. It is easy to see that we have E

[
Y(n−1)

k | Y(n−1)
k−1 < β−1 (b)

]
<

E
[
Y(n−1)

k | Y(n−1)
k < β−1 (b)

]
= b. The same logic applies for winning more than one extra unit.

In the second equilibrium, bidders bid the same for each item. In this equilibrium there will

be one bidder (with the highest value) who will win all k items, and he will sell k− 1 items in the

resale stage using a uniform-price auction.

Proposition 6. When sellers in the resale stage cannot use reserve prices, the k-tuple (βR(x), βR(x), ..., βR(x))

is an equilibrium of the discriminatory auction with resale where βR(x) is given by Equation 3.3.

The proof is relegated to the Appendix. In the proof, we carefully check for each deviation and

show that no deviation can make a bidder better off. Note that the above two equilibria results in

very different allocations after the auction stage. In the first equilibrium, k bidders with the highest

values obtain the units, whereas in the second equilibrium the highest-valued bidder obtains all

the units. Yet, after the resale stage they result in the same allocation: k bidders with the highest

values obtain the units. The auctioneer’s revenues in these two equilibria also seem quite different.

In the first equilibrium, the revenue is given by

E

[
k

∑
l=1

βN
[
Y(n−1)

l

]]

whereas in the second one, it is given by

k×E
[

βR
(

Y(n−1)
1

)]

However, they are equal to each other. We establish that in the following Proposition.
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Proposition 7. The two equilibria ((βN(x), 0, 0, ..., 0) and (βR(x), βR(x), ..., βR(x))) are revenue equiva-

lent.

The proof is relegated to the Appendix. In the proof, we directly show that two revenue ex-

pressions turn out to be identical to each other. We also would like to note that this result can be

also obtained by appealing to the revenue equivalence principle. This can be argued by noting

that (i) the two equilibria result in the same (efficient allocation), (ii) the expected payment of the

bidder with value 0 is 0 under both equilibria, and (iii) the transfers between the bidders in the

resale stage aggregate to 0.

As a corollary to Proposition 7, we establish the following result.

Corollary 1. When there are two units for sale and resellers can use reserve prices in the resale market,

banning the resale market strictly decreases the expected revenue in a discriminatory price auction.10

This corollary can be simply obtained by the following observations: (i) if there is no resale

market, the revenue is equal to the revenue from the symmetric strategies
(

βR (x) , βR (x)
)

(Propo-

sition 7 and the fact that
(

βN (x) , 0
)

is an equilibrium of discriminatory auctions with no resale); (ii)

with the resale market, the revenue is equal to the revenue from symmetric strategies (γ (x) , γ (x))

(Theorem 1); and (iii) we have γ (x) > βR (x) for all x ∈ (0, 1] since γ (x) is the revenue from the

optimal auction and βR (x) is the revenue from a second-price auction (when there are k− 1 buyers

who have values smaller than x).

Next, we consider the case where reserve prices are allowed for both the auction stage and

the resale stage. More specifically, consider a discriminatory price auction with a reserve price

r∗1 ≡ ψ−1 (0) and where a seller in the resale market uses an optimal auction (and hence can use

reserve prices). We show the following.

Proposition 8. The standard equilibrium
(

βRR(x), 0, ..., 0
)

where βRR(x) = E[max{Yn−1
k , r∗1} | Y

n−1
k <

x], is also the equilibrium of the bidding stage of a game where a reserve price is allowed in both the bidding

and resale stage.
10More specifically, the revenue in the symmetric and monotone equilibria we have found in the model with resale

is higher than that of in the model without resale.
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The proof is relegated to the Appendix. Also, it turns out that we cannot have an equilibrium

in which bidders bid the same for all items (as in Proposition 6).

3.5 Conclusion

In this paper, we consider an environment where ex-ante symmetric bidders who have private

single-unit demands can engage in post-auction resale after participating in a discriminatory (pay-

your-bid) auction. This environment without resale opportunities result in an efficient allocation

of items. Hence one might expect that adding resale opportunities will not change the equilibrium

behavior. We prove this intuition wrong by observing that this auction results in low prices to

attract speculative behavior (buying and then selling in the resale stage). We find an equilibrium

when there are 2 units for sale, and show that there may be no symmetric and monotone equilib-

rium when there are 3 or more units for sale. We then consider some variations of the model. If

reserve prices cannot be used in the resale market, then there are two revenue equivalent equilib-

ria. If the auction also includes a reserve price, then no resale equilibrium is an equilibrium of the

game.

Overall, we establish that the possibility of resale–even when the equilibrium without resale

is efficient–may have significant effects on the auction outcome: equilibrium without resale is not

an equilibrium, and for some cases there may not be any symmetric and monotone equilibrium.

Finding a (non symmetric monotone, or arbitrary non monotone) equilibrium when there is no

symmetric and monotone equilibrium is left as an open question.

95



96



Appendix A

Appendix for Chapter 1

A.0.1 Mechanism Design: Two-Dimensional Private Information

In this section, I show the implementability conditions for a two-dimensional private information

problem. I approach it similarly to Jacquet et al. (2013) and Kleven et al. (2009). I differ from these

works in two ways. First, both of these papers consider two groups of households. Yet, the families

can have an arbitrary number of children in my paper. So I have a more general model. Second,

the previous works do not consider the time effect of secondary shock. However, in this work, any

existing child requires parental time, which is perfectly substitutable with market labor.

Let γ = (β, θ) ∈ B × Θ = Γ be the private information of a family. If the family reports γ

as their type, the government chooses optimal c(γ), n(γ), z(γ). This mechanism should satisfy

the revelation principle, by which any government mechanism can be decentralized by a truthful

mechanism (z(γ), n(γ), c(γ))γ∈Γ such that

U(γ, γ) ≥ U(γ, γ′).

In this setup, a strategy has two dimensions, and hence a possible mimicking strategy has

two dimensions. However, the possibility of double deviation in the mimicking strategy can be

eliminated and double deviation can be reduced to single deviation by two constraints: indirect

utility of n child families (1.4) and threshold tastes for children (1.5) for each n.

From the classical mechanism design problem to a pseudo-mechanism design problem, I first

show that the solution to the classical problem can be replaced by a pseudo-problem solution in
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the next Lemma.

Lemma 11. Any truthful mechanism (z(γ), n(γ), c(γ))γ∈Γ can be replaced by a new mechanism (cn(θ), zn(θ))n∈{0,1,...,N},θ∈Θ,

such that

• for each θ and for each n, there is a βn(θ) such that if β ∈ (βn(θ), βn+1(θ)),1 then U(zn(θ), n, cn(θ), γ) ≥

maxγ′ U(γ, γ′), and

• the new mechanism is truthful and provides as much as taxes collected by the original mechanism.

Proof. For each θ, partition the set B into N + 1 sets such that if β ∈ Bj then n(β, θ) = j for

j = {0, 1, . . . , N}. If the family is indifferent between having k children and k + 1 children I assume

that n(β, θ) = k + 1.

For a given θ and β, β′ ∈ Bj, the truthfulness of the original mechanism implies:

u(c(β, θ))− h
(

z(β, θ)

θ
+ bj

)
θ + m((j, β) ≥ u(c(β′, θ))− h

(
z(β′, θ)

θ
+ bj

)
θ + m(j, β)

u(c(β′, θ))− h
(

z(β′, θ)

θ
+ bj

)
θ + m(j, β′) ≥ u(c(β, θ))− h

(
z(β, θ)

θ
+ bj

)
θ + m(j, β′).

The first inequality is U((β, θ), (β, θ)) ≥ U((β, θ), (β′, θ)) and the second inequality is U((β′, θ), (β′, θ)) ≥

U((β′, θ), (β, θ)). It is easy to see U((β, θ), (β, θ)) = U((β′, θ), (β′, θ)), which implies u(c(β, θ))−

h
(

z(β,θ)
θ + bj

)
θ is constant for all β ∈ Bj, and let Vj(θ) be its value.

Note that at least as much taxes should be collected with the new mechanism. Let Zj(θ) =

{z(β, θ)|β ∈ Bj(θ)}. Define t = supz∈Zj(θ)
z−u−1 (V0(θ) + h

( z
θ + bj

)
θ
)
. Note that z−u−1 (Vj(θ) + h

( z
θ + bj

)
θ
)

is a weakly concave function in z and reaches maximum for a z̃ value and goes to −∞ when

z → ∞. So there is a zj(θ) ∈ Zj(θ) such that t = zj(θ) − u−1
(

Vj(θ) + h
(

zj(θ)
θ + bj

)
θ
)

.2 Define

cj(θ) := u−1
(

Vj(θ)− h
(

zj(θ)
θ + bj

))
. Note that (cj(θ), zj(θ)) maximizes the taxes over the closure

of the set (c(β, θ), z(β, θ))β∈Bj(θ). These procedures can be followed for all j = 0, 1, . . . , N.

Finally, I define βn(θ) := M−1(Vn(θ) − Vn+1(θ)) where M(β) := m(n + 1, β) − m(n, β) for

all n = 0, 1, . . . , N.3 βn(θ) are the threshold tastes for children for each θ and for each n. Note

that truthfulness of original mechanism implies: for all β ∈ Bj(θ) the family chooses n = j and

1I let β0 = β and βN+1 = β.
2Zj(θ) is the closure of the Zj(θ)
3Let β0 = β and βN+1 = β.
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(zj(θ), cj(θ)), i.e. Vj(θ) + m(j, β) ≥ Vj′(θ) − m(j′, β) for all j′ = 0, 1, . . . , N. Pick j′ = j − 1 and

j′ = j + 1. Then it is easy to see that M(Vj(θ)−Vj+1(θ))︸ ︷︷ ︸
β j(θ)

≥ β ≥ M(Vj−1(θ)−Vj(θ))︸ ︷︷ ︸
β j−1(θ)

.4 Therefore

Bj(θ) = (β j−1(θ), β j)(θ).

All is left to show the new mechanism (cn(θ), zn(θ))n∈{0,1,...,N},θ∈Θ is truthful. First I show it is

truthful within families with the same number of children: For all θ, θ′, β ∈ Bj(θ), β′ ∈ Bj(θ
′):

U(cj(θ), zj(θ), (β, θ)) = Vj(θ) + m(j, β) ≥ u(c(β′, θ′))− h
(

z(β′, θ′)

θ

)
−m(j, β)

where the inequality is from the truthfulness of the initial mechanism.5 As a result,

U(cj(θ), zj(θ), (β, θ)) ≥ U(cj(θ
′), zj(θ

′), (β, θ)).

I also show the mechanism is truthful cross-sectionally: for all θ, θ′, β ∈ Bj(θ), β′ ∈ Bj′(θ
′):

U(cj(θ), zj(θ), (β, θ)) = Vj(θ) + m(j, β) ≥ Vj′(θ) + m(j′, β)

≥ u(c(β′, θ′))− h
(

z(β′, θ′)

θ

)
+ m(j′, β)

where the first inequality comes from the definition of βn and the second inequality is satisfied by

the truthfulness of the original truthful mechanism. Hence:

U(cj(θ), zj(θ), (β, θ)) ≥ U(cj′(θ
′), zj′(θ

′), (β, θ)).

This procedure can be followed for any j = 0, 1, . . . , N. As a result, the proof is completed.

This lemma reduces the two-dimensional schedule to a one-dimensional schedule, from c(β, θ), c(β, θ), z(β, θ)

to {cn(θ), zn(θ)}n=0,1,...,N . As a result, I can directly use the one-dimensional implementation re-

quirement as long as the single-crossing condition is satisfied.

Definition 1. zn(θ)n∈{0,1,...,N} is implementable if and only if there exist transfer functions cn(θ)n∈{0,1,...,N}

such that (cn(θ), zn(θ))n∈{0,1,...,N},θ∈Θ is a truthful mechanism.

4Note that I let m to be concave in its first dimension and therefore β j−1(θ) < β j(θ).
5Note that (cj(θ

′), zj(θ
′)) is in the closure of the set (c(β, θ), z(β, θ))β∈Bj(θ).
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In the following lemma, I prove that a one-dimensional requirement is sufficient for the two-

dimensional problem in this framework:

Lemma 12. The income profile zn(θ)n∈{0,1,...,N} for all θ ∈ Θ is implementable if and only if żn ≥ 0.

Proof. Note that u(c)− h
( z

θ + bn
)

θ satisfies the classic single crossing condition. The one-dimensional

implementability condition is that: ż ≥ 0 if and only if there is c(θ) such that u(c(θ′))− h
( z

θ + bn
)

θ ≥

u(c(θ′))− h
(

z(θ′)
θ + bn

)
θ for all θ, θ′.

For the ”if” side of the lemma, I directly apply the one-dimensional implementability condition:

for all n = 0, 1, . . . , N, let zn(θ)n∈{0,1,...,N} is implementable. Then for a particular n, truthfulness

implies u(cn(θ)) − h
(

zn(θ)
θ + bn

)
≥ u(cn(θ′)) − h

(
zn(θ′)

θ + bn

)
for all θ, θ′. As a result, the one-

dimensional result suggests that for each n = 0, 1, . . . , N income is non-decreasing: żn ≥ 0.

Now let żn ≥ 0. Similarly, using the one-dimensional result, there is cn(θ) such that u(cn(θ))−

h
(

zn(θ)
θ + bn

)
≥ u(cn(θ′))− h

(
zn(θ′)

θ + bn

)
for all θ, θ′.

Within sections, the one-dimensional condition is directly applicable, as shown above. All that

is need to be shown is that cross-sectional truth-telling is satisfied. Note that the steps are similar

in the proof of previous lemma where I show that cross-sectional deviation is not profitable. Hence

I skip it here.

A.0.2 Proof of Proposition 1

Proof. The Hamiltonian of the problem is:

H =
n=N

∑
n=0

ˆ βn+1(θ)

βn(θ)

(
Ψ(Vn(θ) + m(n, β)) + λ[zn(θ)− cn(θ)]

)
p(β|θ) f (θ)dβ

+
n=N

∑
n=0

µn(θ)
(
−h
( zn

θ
+ bn

)
+ h′

( zn

θ
+ bn

) zn

θ

)
(Hamiltonian)

where µn(θ) = µn(θ) = 0 and β0 = β, and βN+1 = β. I assume that the inequality of Equation (1.7)

never binds for no bunching. Therefore the implementability condition holds, żn ≥ 0.6

The first-order conditions for zn are:7

6Numeric exercises show that there is no bunching.
7I assume that the implementability constraint does not bind and show ex-post is the case.
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zn(θ) : λ

(
1− ∂cn

∂zn

)
(P(βn+1|θ)− P(βn|θ)) f (θ) = −µn

θ
h′′
(

zn(θ)

θ
+ bn

)
zn(θ)

θ

for all n = 0, 1, . . . , N. Also, the co-states of the system are:8

−µ̇n

λ f (θ)
=

ˆ βn+1

βn

(
Ψ′(Vn −m((N − n), β))

λ
− ∂cn

∂Vn

)
p(β|θ)dβ

+ ∆Tn−1(θ)p(βn|θ)
∂βn

∂Vn
+ ∆Tn(θ)p(βn+1|θ)

∂βn+1

∂Vn

for n = 0, . . . , N, where Tn(θ) = zn(θ)− cn(θ) are the optimal income taxes collected from the θ−

ability families with n children and for n = 0, . . . , N− 1, ∆Tn(θ) = Tn(θ)− Tn+1(θ) is the tax credit

for an extra child for θ−ability families.9

Using the terminal conditions, I derive the co-states:

−µn(θ)

λ
=

ˆ θ

θ

[
(1− gn(θ′))

u′(cn(θ′))
(P(βn+1|θ′)− P(βn|θ′))

+∆Tn−1(θ)p(βn|θ)
∂βn

∂Vn
+ ∆Tn(θ)p(βn+1|θ)

∂βn+1

∂Vn

]
f (θ′)dθ′

where

gn(θ) = Eβ

[
Ψ′(Vn −m((N − n), β))u′(cn)

λ
|βn < β < βn+1

]

=

´ βn+1
βn

Ψ′(Vn − (N − n)β)u′(cn)p(β|θ) f (θ)dβ

λ(P(βn+1|θ)− P(βn|θ)) f (θ)
(A.1)

is the marginal weight associated by the government to the family θ with n children, which is the

cost of giving an extra dollar of consumption to the family in terms of public goods. Note that

gn(θ) is shaped by the government preference. If, for example, the government is a Benthamite

government, i.e. Ψ(x) = x then the government weighs can be further simplified: gn(θ) =
u′(cn)

λ .

If the government is Rawlasian, i.e. Ψ(Vn(θ)) = 0 for all θ > θ and Ψ(Vn(θL)) > 0, then the

8I derive co-state for V0(θ) and VN(θ) separately.
9When n = 0, let ∆T−1(θ) = 0 and similarly when n = N, let ∆Tn(θ) = 0.
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government only values the lowest-ability families’ consumption and income, hence gn(θ) = 0 for

all θ > θ.

Combining the of previous terms shows that the optimal tax function should satisfy:

T′n
1− T′n

=
1
εn
× 1

θ f (θ)(P(βn+1|θ)− P(βn|θ))
×

ˆ θ

θ

[
(1− gn(θ′))

u′(cn(θ′))
(P(βn+1|θ′)− P(βn|θ′)))

+ ∆Tn−1(θ)p(βn|θ)
∂βn

∂Vn
+ ∆Tn(θ)p(βn+1|θ)

∂βn+1

∂Vn

]
u′(cn(θ)) f (θ′)dθ′ (A.2)

for n = 0, 1, . . . , N.10

A.0.3 Family Income Elasticity

Let εm := ∂ log zm
∂ log(1−τ)

be the elasticity of male income with respect to net marginal tax rates. Similarly,

let ε f represents the female income elasticity. In this work, I focus on married households who file

tax returns jointly. According to the US tax code, the next dollar earned by a family member

is marginally taxed unconditional on gender. So if the family income is the sum of earnings of

couples, i.e. z = zm + z f , the family income elasticity is:

ε :=
∂ log z

∂ log(1− τ)
=

(1− τ)

z
∂z

∂(1− τ)
=

(1− τ)

z f + zm

∂(z f + zm)

∂(1− τ)
=

z f

z f + zm
ε f +

zm

z f + zm
εm.

This means that the family elasticity is a convex combination of elasticities.

To figure out family income elasticity, I need to find ε f , εm, and the share of female earnings of

family income. Note that the utility function is quasi-linear in consumption and hence elasticity

of income with respect to net marginal tax rates is equal to the Frisch elasticity of labor supply.

Therefore I look at the literature on Frisch elasticity.

There is a voluminous literature on elasticity of labor supply. Pencavel (1986) and Keane (2011)

give an excellent survey of labor responses and taxes. They state that the median value is 0.2 for

Frisch elasticity of men although the former gives a range from zero to 0.5 and the latter gives a

range from zero to 0.7. Some of the works in these surveys use non-US data. Hence, I look partic-

ularly at French (2005) and Ziliak and Kniesner (2005) who use Panel Study of Income Dynamics

10I let ∆T−1(θ) = 0 when n = 0 and ∆TN(θ) = 0 when n = N.

102



(PSID) data. The former estimates the Frisch elasticity of men at 0.3 and the latter estimates around

0.5. I take the average value εm = 0.4 in my setup.11

The research on Frisch elasticity of females is not as large as on male elasticities. Blundell et al.

(2012) estimate that the elasticity of married women lies between 0.8 to 1.1. When the utility is

additive separable, the estimate is 0.8, and I pick ε f = 0.8. Note that they use dummies for existing

children, and hence I can use these values immediately.

Note the convex combination coefficient is the fraction of female (male) earnings. In my sample,

females earn around 39% of the family income (see Figure A.1). Hence, ε = 0.61× 0.4 + 0.39×

0.8 ' 0.56.
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Figure A.1: Evolution of the ratio of female income for different income groups

The ratio is very close to 0.39. Note that this graph suggests that the gender gap for this sample is 0.64, which is quite

close to the actual gender gap in the US (0.7).

A.0.4 Evolution of bn

bn is the ratio of time devoted child care to the total time devoted to market and child care. I use

ATUS 2003 to find bn for different income groups. The data set contains individual time devoted

to many different catagories.12 The data set also contains weekly earnings of individuals. Hence, I

am able to derive bn for different income groups:

11Blundell et al. (2012) finds that the Frisch elasticity of married men is 0.4. For different models the value goes up
to 0.6.

12Refer to Aguiar and Hurst (2007) for further details.
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Figure A.2: Evolution of bn for different income groups

The numbers represent the individual levels. If the sample contains only males (females), the fraction equals 0.06 (0.12)

and 0.10 (0.18) for 1-child and 2-children families, respectively. As a result, since the time endowment is normalized, I

use the average values.
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Figure A.3: Current Tax System

Left (right) panel is for families with less (more) than $50,000. The first row shows the actual taxes paid by families.

The second row shows how much tax credits they get. Note that k1 (k2) represents the tax credits for one (two) child

families. The last row shows the federal marginal tax rates of families.
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Figure A.4: Optimal Tax System

Left (right) panel is for families with less (more) than $50,000. The first row shows the actual taxes paid by families.

The second row shows how much tax credits they get. Note that k1 (k2) represents the tax credits for two (one) child

families. The last row shows the federal marginal tax rates of families.
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Figure A.5: Proposed Tax Credits

Left and right panel show the credits for the first child and the second child, respectively. The amounts are 1,000 in

2014$. kn is the optimal tax credits and k̂n is the proposed tax credit for n = 1, 2.
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Figure A.6: Tax Credits: Age Analysis

Left and right panel show the credits for the first child and the second child, respectively. The amounts are 1,000 in

2014$. kn is the optimal tax credits for n = 1, 2.
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Figure A.7: Tax Credits: Costs Analysis

Left and right panel show the credits for the first child and the second child, respectively. The amounts are 1,000 in

2014$. kn is the optimal tax credits for n = 1, 2.

0 100 200 300
8

10

12

14

16

18

20

C
r
e
d

it
 F

o
r
 F

ir
s
t 

C
h

il
d

 i
n

 0
0
0
s

Income in 000s of 2014$

 

 
k1

0 100 200 300
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

C
r
e
d

it
 F

o
r
 S

e
c
o

n
d

 C
h

il
d

 i
n

 0
0
0
s

Income in 000s of 2014$

 

 
k2

Figure A.8: Tax Credits: Marital Status Analysis

Left and right panel show the credits for the first child and the second child, respectively. The amounts are 1,000 in

2014$. kn is the optimal tax credits for n = 1, 2.
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# of children earnings ≤ credit rate max credit phase-out begins phase-out rate

0 6,480 0.08 496 13,540 0.08

1 9,720 0.34 3,305 23,260 0.16

2 13,650 0.40 5,460 23,260 0.21

3 13,650 0.45 6,143 23,260 0.21

Table A.1: Earned Income Tax Credit Phase in and Phase out regions for 2014

Credits are in terms of $. The numbers in cells present values for married couples who fill taxes jointly. First column is

for number of children. Second column shows maximum earnings to be eligible for the credit.
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Appendix B

Appendix for Chapter 2

B.1 Mechanism Design Formulation

It is straightforward to verify that any allocation that solves the mechanism design problem (MDP)

is implementable as part of a tax equilibrium. On the other hand, the allocation from a tax equilib-

rium is feasible for (MDP). Consequently, an optimal tax equilibrium may be constructed from a

solution to (MDP) {c∗k , e∗k}K
k=1 by associating with it the wages and taxes needed to implement this

solution.

We make two preliminary observations on solutions to (MDP). First, given a solution {c∗k , e∗k}K
k=1,

worker types may be ordered according to their optimal shadow wages {w∗k}K
k=1. Types whose

wages are tied may be further ordered by their pre-tax incomes q∗k = w∗k e∗k . Types may then be

relabeled accordingly (with ties between both wage and income ordered arbitrarily). Thus, the

k-th worker type has a wage that is weakly greater than the wages of types 1 to k − 1 and if the

k-th type’s wage ties with the k − 1-th type, then its income is weakly greater. We impose this

labeling below. Second, only a subset of incentive constraints (2.2) bind. Recall that a (k, j)-th in-

centive constraint is local if j ∈ {k− 1, k + 1} ∩ {1, . . . , K}; otherwise it is non-local. A well known

consequence of the Spence-Mirrlees single crossing property and the structure of the incentive con-

straints in settings with exogenous wages is that non-local incentive constraints do not bind at an

optimum. This result continues to hold in the present setting under our ordering.1 We record this

1We omit the proof. It follows from a slight modification of Theorems 3 and 4 in Milgrom and Shannon (1994). In
our setting it is possible for two worker types k and k + 1 to have the same wage, but different efforts, incomes and
consumptions at the optimum. If the k-th type has a higher income than the k + 1-th type, then it is possible that the
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fact in Lemma A.

Lemma 13. Let {c∗k , e∗k}K
k=1 denote a solution to (MDP) with corresponding shadow wages {w∗k}K

k=1, w∗k =

Fk(e∗1π1, . . . , e∗KπK) and incomes q∗k = w∗k e∗k and types labeled consistently with their ranking in the wage

(and when wages are tied income) distribution, then (i) c∗k+1 ≥ c∗k and q∗k+1 ≥ q∗k , and (ii) non-local

incentive constraints do not bind.

As in the main text, we gather the constraint functions from the incentive and resource con-

straints into the single function G : R2K
+ → R

K(K−1)+1 and say that {ck, ek}K
k=1 ∈ R2K

++ satisfies the

constraint qualification if there is an x ∈ R2K such that ∇G({ck, ek}K
k=1)x < 0.

Proposition 9. Let T∗ and {c∗k , e∗k , w∗k}K
k=1 denote an optimal tax equilibrium with worker types indexed

so that w∗k = Fk(e∗1π1, . . . , e∗KπK) is non-decreasing in k. Assume that {c∗k , e∗k , w∗k}K
k=1 is interior (i.e. in

R
2K
++) and that G satisfies the constraint qualification at {c∗k , e∗k , w∗k}K

k=1, then optimal tax rates satisfy:

τ∗k
1− τ∗k

=
1−Πk

πk

{
∆w∗k+1

w∗k+1
Ψ∗k,k+1H∗k,k+1 −

∆w∗k
w∗k−1

Ψ∗k,k−1H∗k,k−1

}
︸ ︷︷ ︸

Mirrlees

+
K−1

∑
j=1
M∗

k,jφ
∗
k,j︸ ︷︷ ︸

Wage compression

, (B.1)

where ∆w∗k := w∗k − w∗k−1, Ψ∗k,k+1 := Uc(c∗k ,e∗k )
1−Πk

η∗k+1,k
χ∗ and Ψ∗k,k−1 := Uc(c∗k ,e∗k )

1−Πk

η∗k−1,k
χ∗ are normalized optimal

multipliers on the (k + 1, k)-th and (k− 1, k)-th incentive constraints,

H∗k,j := −
∆eUc(c∗k , e∗k ; q∗k /w∗j − e∗k )

Uc(c∗k , e∗k )
e∗k +

∆eUe(c∗k , e∗k ; q∗k /w∗j − e∗k )

Ue(c∗k , e∗k )
w∗k
w∗j

e∗k + 1,

with q∗k = w∗k e∗k ,

M∗
k,j :=

Uc(c∗k , e∗k )
Ue(c∗k , e∗k )e

∗
k

[
η∗j+1,j

χ∗
Ue

(
c∗j ,

q∗j
w∗j+1

)
q∗j

w∗j+1
−

η∗j,j+1

χ∗
Ue

(
c∗j+1,

q∗j+1

w∗j

)
q∗j+1

w∗j

]
1

πk
,

and φ∗k,j =
e∗k

w∗j+1/w∗j

∂w∗j+1/w∗j
∂ek

(e∗1 , . . . , e∗K).

Proof of Proposition 9. By the preceding discussion if {T∗, {c∗k , e∗k , w∗k}K
k=1} is an optimal tax equi-

librium, then {c∗k , e∗k}K
k=1 solves (MDP). Since G satisfies the constraint qualification at {c∗k , e∗k}K

k=1

and {c∗k , e∗k}K
k=1 is interior to R2K

++, then {c∗k , e∗k}K
k=1 satisfies Karush-Kuhn-Tucker conditions with

multipliers χ∗ and η∗k,j on the resource and incentive constraints (and zero multipliers on the non-

(non-local) (k− 1, k + 1) and (k, k + 2) incentive constraints bind. Thus, ordering of worker types with tied wages by
income is necessary to ensure only local incentive constraints bind.
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negativity conditions c∗k , e∗k ≥ 0). Also, since worker types are indexed so that shadow wages

w∗k = Fk(e∗1π1, . . . , e∗KπK) are non-decreasing in k and if wages of different types are tied so that

incomes are non-decreasing in k, then by Lemma A, only local incentive constraints are potentially

binding and, hence, only the η∗k,k−1 and η∗k,k+1 multipliers are potentially non-zero. The first order

condition for e∗k reduces to:

−Ue(c∗k , e∗k ) =
χ∗w∗k πk

D∗k
,

where: D∗k := gk + η∗k,k−1 − η∗k+1,k
Ue(c∗k ,q∗k /w∗k+1)

Ue(c∗k ,e∗k )
w∗k

w∗k+1
+ η∗k,k+1 − η∗k−1,k

Ue(c∗k ,q∗k /w∗k−1)

Ue(c∗k ,e∗k )
w∗k

w∗k−1
+ χ∗πk

Uc(c∗k ,e∗k )
Φ∗k +

χ∗πk
Uc(c∗k ,e∗k )

Υ∗k and

Φ∗k :=
Uc(c∗k , e∗k )

πk

K−1

∑
j=1

η∗j+1,j

χ∗

Ue(c∗j , q∗j /w∗j+1)

Ue(c∗k , e∗k )

w∗j e∗j
w∗j+1e∗k

φ∗k,j,

and

Υ∗k :=
Uc(c∗k , e∗k )

πk

K−1

∑
j=1

η∗j−1,j

χ∗

Ue(c∗j , q∗j /w∗j−1)

Ue(c∗k , e∗k )

w∗j e∗j
w∗j+1e∗k

φ∗k,j−1.

The first order condition for c∗k reduces to:

Uc(c∗k , e∗k ) =
χ∗πk

gk + η∗k,k−1 − η∗k+1,k
Uc(c∗k ,q∗k /w∗k+1)

Uc(c∗k ,e∗k )
+ η∗k,k+1 − η∗k−1,k

Uc(c∗k ,q∗k /w∗k−1)

Uc(c∗k ,e∗k )

.

Define the consumption-effort wedge: τ∗k
1−τ∗k

= −w∗k Uc(c∗k ,e∗k )
Ue(c∗k ,e∗k )

− 1. Combining expressions gives:

τ∗k
1− τ∗k

=
Uc(c∗k , e∗k )

πk

{
η∗k+1,k

χ∗

{
Uc(c∗k , q∗k /w∗k+1)

Uc(c∗k , e∗k )
−

Ue(c∗k , q∗k /w∗k+1)

Ue(c∗k , e∗k )
w∗k

w∗k+1

}

+
η∗k−1,k

χ∗

{
Uc(c∗k , q∗k /w∗k−1)

Uc(c∗k , e∗k )
−

Ue(c∗k , q∗k /w∗k−1)

Ue(c∗k , e∗k )
w∗k

w∗k−1

}}
+ Φ∗k + Υ∗k .

The formulas in Proposition 9 then follow immediately from the definitions of Ψ∗k,k+1, Ψ∗k,k−1, H∗k,j,

M∗
k,j and φ∗k,j after substitution into and rearrangement of the preceding expression.

The terms on the right hand side of the optimal tax formula (B.1) are generalizations of the

“Mirrlees” and “Wage Compression” terms obtained in the main text. These terms incorporate

the impact of binding (local) upwards constraints as well as downwards constraints. In standard
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models upwards constraints bind when it is optimal to pool agents with distinct wages at a common

consumption-effort allocation. In the more general problem (MDP), they may also bind when it is

optimal to pool distinct types with distinct allocations at a common wage. Rothschild and Chen

(2014) provide an example in which such wage pooling occurs.2 Our later assignment model

micro-founds the production function F. In that setting, the induced production function does

not feature wage pooling. This motivates us to consider situations in which the local upwards

incentive constraints (k, k + 1) are strictly non-binding at the optimum:3

U(c∗k , e∗k ) > U(c∗k+1, q∗k+1/w∗k ). (NUIC)

In such cases, the optimal tax formula (B.1) reduces to that given in Proposition 2. The latter is

obtained as a simple corollary of Proposition 9.

Proof of Proposition 2. The optimal tax formula (2.4) in Proposition 2 follows directly from that in

Proposition 9 after setting all η∗k−1,k equal to 0, using the modified definitions in Proposition 2 and

expanding the recursion for η∗k+1,k implied by the first order condition for c∗k+1:

η∗k+1,k

χ∗
=

(
1−

gk+1Uc(c∗k+1, e∗k+1)

χ∗πk+1

)
πk+1

Uc(c∗k+1, e∗k+1)
+

η∗k+2,k+1

χ∗
Uc(c∗k+1, q∗k+1/w∗k+2)

Uc(c∗k+1, e∗k+1)
,

with η∗K+1,K = 0.

B.2 Proofs from Section 2.4

Proof of Proposition 3. Let {T, l, {ck, ek, λk}K
k=1} and {ωk}K

k=1 denote a tax equilibrium at spending

level G. Since workers of a given type select the highest possible wage, it follows that for each

k there is a wk < ∞ such that for every v ∈ Supp Λk, ω(v)ak(v) = wk and for v /∈ Supp Λk,

ω(v)ak(v) ≤ wk. Firm optimality implies that for almost every v ∈ [v, v]: ω(v) = b(v)
(

Y
l(v)

) 1
ε
.

If v ∈ [v, v]\∪k
k=1 Supp(Λk), then in equilibrium l(v) = ∑K

k=1 λk(v)aK(v)ek = 0. Since ω is finite,

almost all tasks must be performed. Without loss of generality, we select versions of tax equilibria

2The effort of two worker types k and k′ sharing a common wage may interact differently with that of a third worker
type k̂. Thus, it may be desirable to give k and k′ distinct allocations (lying upon the same indifference curve).

3Standard pooling of consumption-effort allocations across types with distinct wages is still, in principle, possible.
Inequality (NUIC) excludes this.
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in which all tasks are performed. For all v and v′ in Supp Λk with v > v′,

1 =
ω(v)ak(v)

ω(v′)ak(v′)
=

b(v)
(

Y
l(v)

) 1
ε ak(v)

b(v′)
(

Y
l(v′)

) 1
ε ak(v′)

<
b(v)

(
Y

l(v)

) 1
ε ak+j(v)

b(v′)
(

Y
l(v′)

) 1
ε ak+j(v′)

<
ω(v)ak+j(v)

ω(v′)ak+j(v′)
.

It follows that v′ /∈ Λk+j and so sup Λk ≤ inf Λk+j. Since the supports Λk cover [v, v], it follows

that they partition [v, v] into sub-intervals [ṽ0, ṽ1], [ṽ1, ṽ2], . . ., ṽK−1, ṽK], with ṽ0 = v, ṽK = v and

cl Λk = [ṽk−1, ṽk]. By assumption each Λk has a density λk (concentrated on [ṽk−1, ṽk]). Since

wk = ω(v)ak(v), v ∈ (ṽk−1, ṽk), we have for all such v:

wk = b(v)
(

Y
ak(v)ekλk(v)

) 1
ε

ak(v). (B.2)

Hence, from the labor market clearing condition:

πk =

ˆ ṽk

ṽk−1

λk(v)dv =
Y

wε
kek

ˆ vk

vk−1

b(v)εak(v)ε−1

And so:

wk = Bk(ṽk−1, ṽk)

(
Y

πkek

) 1
ε

, (B.3)

where Bk(ṽk−1, ṽk) :=
[´ vk

vk−1
b(v)εak(v)ε−1dv

] 1
ε
. Substituting (B.2) into (B.3) gives for v ∈ (ṽk−1, ṽk),

λk(v) = b(v)εak(v)ε−1

Bk(ṽk−1,ṽk)ε πk. In addition, for v < ṽk−1 and v > ṽk, λk(v) = 0. Now for v ∈ (ṽk−1, ṽk),

wk+1 > ω(v)ak+1(v) = b(v)
(

Y
l(v)

) 1
ε ak+1(v) and wk = ω(v)ak(v) = b(v)

(
Y

y(v)

) 1
ε ak(v). Hence:

wk+1
wk

> ak+1(v)
ak(v)

. Conversely, for v ∈ (ṽk, ṽk+1), wk+1 = ω(v)ak+1(v) = b(v)
(

Y
y(v)

) 1
ε ak+1(v) and

wk > ω(v)ak(v) = b(v)
(

Y
y(v)

) 1
ε ak(v). Consequently, wk+1

wk
< ak+1(v)

ak(v)
. Then, by continuity of ak and

ak+1, wk+1
wk

= ak+1(ṽk)
ak(ṽk)

. Combining the last equality with (B.3) gives the desired expression in the

proposition.

Finally, given the effort allocation {ek}K
k=1 consider assigning workers so as to maximize output,

i.e. solving:

max
{λk}

[ˆ v

v
b(v) {λk(v)ekak(v)}

ε−1
ε dv

] ε
ε−1

.

subject to for each k, πk =
´ v

v λk(v)dv. This is a strictly concave maximization whose unique solu-
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tion is determined by the first order conditions. Straightforward manipulation of these conditions

establishes that the λk solved for above attains the solution to this problem.

Proof of Lemma 3. Totally differentiating: aj+1
aj

(ṽj) =
Bj+1(ṽj,ṽj+1)

Bj(ṽj−1,ṽj)

(
ejπj

ej+1πj+1

) 1
ε
, with respect to ṽj−1 and

ṽj holding ej/ej+1 fixed gives:

∂ log ṽj

∂ log ṽj−1
=

− ∂ log Bj
∂ log ṽj−1

∂ log
aj+1

aj
∂ log ṽj

− ∂ log Bj+1
∂ log ṽj

+
∂ log Bj
∂ log ṽj

− ∂ log Bj+1
∂ log ṽj+1

∂ log ṽj+1
∂ log ṽj

.

Let Lj−1 = − ∂ log Bj
∂ log ṽj−1

− ∂ log Bj
∂ log ṽj

∂ log ṽj
∂ log ṽj−1

. It follows that:

Lj−1 = −
∂ log Bj

∂ log ṽj−1

1−
∂ log Bj
∂ log ṽj

∂ log
aj+1

aj
∂ log ṽj

+
∂ log Bj
∂ log ṽj

+ Lj

 .

Thus, if Lj > 0, then Lj−1 > 0. For j = K − 1, ṽj+1 = ṽK = v and ∂ log ṽj+1
∂ log ṽj

= ∂ log ṽK
∂ log ṽK−1

= 0. Hence,

LK−1 = − ∂ log BK
∂ log ṽK−1

> 0. It follows by induction that for all j ∈ {k, . . . , K− 2}, Lj > 0 and, hence,

∂ log ṽj

∂ log ṽj−1
=

− ∂ log Bj
∂ log ṽj−1

∂ log
aj+1

aj
∂ log ṽj

+
∂ log Bj
∂ log ṽj

+ Lj

> 0.

Similarly, for all j ∈ {1, . . . , k− 1},

∂ log ṽj

∂ log ṽj+1
=

∂ log Bj+1
∂ log ṽj+1

∂ log
aj+1

aj
∂ log ṽj

− ∂ log Bj+1
∂ log ṽj

+
∂ log Bj
∂ log ṽj

− ∂ log Bj
∂ log ṽj−1

∂ log ṽj−1
∂ log ṽj

.

Let Mj+1 =
∂ log Bj+1
∂ log ṽj+1

− ∂ log Bj+1
∂ log ṽj

∂ log ṽj
∂ log ṽj+1

. It follows that:

Mj+1 =
∂ log Bj+1

∂ log ṽj+1

1−
∂ log Bj+1

∂ log ṽj

∂ log
aj+1

aj
∂ log ṽj

− ∂ log Bj+1
∂ log ṽj

+ Mj

 .

Thus, if Mj > 0, then Mj+1 > 0. For j = 1, ṽj−1 = ṽ0 = v and ∂ log ṽj−1
∂ log ṽj

= ∂ log ṽ0
∂ log ṽ1

= 0. Hence,
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M1 = ∂ log B1
∂ log ṽ1

> 0. It follows by induction that for all j ∈ {1, . . . , k− 1}, Mj > 0 and, hence,

∂ log ṽj

∂ log ṽj+1
=

∂ log Bj+1
∂ log ṽj+1

∂ log
aj+1

aj
∂ log ṽj

− ∂ log Bj+1
∂ log ṽj

+ Mj

> 0.

Next, taking logs and totally differentiating ak+1
ak

(ṽk) =
Bk+1(ṽk ,ṽk+1)

Bj(ṽk−1,ṽk)

(
ekπk

ek+1πk+1

) 1
ε

with respect to log ek

gives:

∂ log ṽk

∂ log ek
=

1
ε

 1
∂ log

ak+1
ak

∂ log ṽk
+ Mk + Lk

 > 0.

Similarly, taking logs and totally differentiating ak
ak−1

(ṽk−1) =
Bk(ṽk−1,ṽk)

Bj(ṽk−2,ṽk−1)

(
ek−1πk−1

ekπk

) 1
ε

with respect to

log ek gives:

∂ log ṽk−1

∂ log ek
= −1

ε

 1
∂ log ak

ak−1
∂ log ṽk−1

+ Mk−1 + Lk−1

 < 0.

The implications for the elasticities φk,j described in the lemma then follow immediately from

(2.17).

Complete characterization of the sensitivity of task thresholds to the perturbation of a given

talent’s effort is provided in the next lemma.

Lemma 14. The threshold sensitivities satisfy:

∂ log ṽj

∂ log ek
= (δj,k−1 − δj,k)

1
ε

,

where:

δj,k =


(−1)j+k ∏k−1

l=j

(
− ṽl

Bl

∂Bl
∂ṽl

)
nj−1mk+1/nK−1 1 ≤ j ≤ k ≤ K− 1

(−1)j+k ∏
j−1
l=k

(
ṽl

Bl+1

∂Bl+1
∂ṽl

)
nk−1mj+1/nK−1 K− 1 ≥ j > k ≥ 1,

for j = 1, . . . , K− 1, δj,K = δj,0 = 0, the ni satisfy the recursion, i = 2, . . . , K− 1,

ni =

{
ṽi

ai+1/ai

∂(ai+1/ai)

∂ṽi
− ṽi

Bi+1

∂Bi+1

∂ṽi
+

ṽi

Bi

∂Bi

∂ṽi

}
ni−1 +

(
ṽi

Bi

∂Bi

∂ṽi

)(
ṽi−1

Bi

∂Bi

∂ṽi−1

)
ni−2
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with n0 = 1 and n1 = ṽ1
a2/a1

∂(a2/a1)
∂ṽ1

− ṽ1
B2

∂B2
∂ṽ1

+ ṽ1
B1

∂B1
∂ṽ1

and the mi satisfy the recursion, i = K− 2, . . . , 1, :

mi =

{
ṽi

ai+1/ai

∂(ai+1/ai)

∂ṽi
− ṽi

Bi+1

∂Bi+1

∂ṽi
+

ṽi

Bi

∂Bi

∂ṽi

}
mi+1 +

(
ṽi+1

Bi+1

∂Bi+1

∂ṽi+1

)(
ṽi

Bi+1

∂Bi+1

∂ṽi

)
mi+2.

with mK−1 = ṽK−1
aK/aK−1

∂(aK/aK−1)
∂ṽK−1

− ṽK−1
BK

∂BK
∂ṽK−1

+ ṽK−1
BK−1

∂BK−1
∂ṽK−1

and mK = 1.

Proof of Lemma 14. Given an (equilibrium) effort profile {ek}K
k=1, (equilibrium) production maxi-

mizing task thresholds {ṽk} are determined by the conditions, k = 1, . . . , K− 1,

Bk(ṽk−1, ṽk)

{πkek}
1
ε

=
Bk+1(ṽk, ṽk+1)

{πk+1ek+1}
1
ε

ak(ṽk)

ak+1(ṽk)
.

with ṽ0 = v and ṽK = v. Hence, there are K − 1 unknowns (and K − 1 equations). The threshold

sensitivities may be computed by taking logs in the preceding equations and totally differentiating

with respect to log ek. This leads to the equations:

Γ∆vk = Ek,

where:

Γ :=



α1ṽ1 − ṽ1
B2

∂B2
∂ṽ1

+ ṽ1
B1

∂B1
∂ṽ1

− ṽ2
B2

∂B2
∂ṽ2

0 0 . . . 0

ṽ1
B2

∂B2
∂ṽ1

α2ṽ2 − ṽ2
B3

∂B3
∂ṽ2

+ ṽ2
B2

∂B2
∂ṽ2

− ṽ3
B3

∂B3
∂ṽ3

0 . . . 0

0 ṽ2
B3

∂B3
∂ṽ2

α3ṽ3 − ṽ3
B4

∂B4
∂ṽ3
− ṽ3

B3

∂B3
∂ṽ3

− ṽ4
B4

∂B4
∂ṽ4

. . . 0

...
...

...
...

...
...


∆vk = ( ∂ log v1

∂ log ek
. . . ∂ log vk

∂ log ek
. . . ∂ log vK−1

∂ log ek
)′ and Ek = (0 . . . − 1

ε
1
ε . . . 0)′ with non-zero elements in the

k− 1 and k-th rows. Thus,

∆vk = Γ−1
k Ek.

and in fact:
∂ log vj

∂ log ek
= (δj,k−1 − δj,k)

1
ε

,

where δj,k is the (j, k)-th element of Γ−1
k . Since Γk is a tridiagonal matrix, explicit formulas for its

inverse are available. Applying these formulas gives the expression in the text.
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B.3 Continuous Talent-Continuous Task Model

In this appendix, we briefly describe the continuous talent (and continuous task) assignment

model and its optimal control formulation. In our quantitative work, we treat the data as a dis-

crete approximation to this model and solve it using the open-source numerical optimal control

software GPOPS-II. Code is available on request. Workers are now distributed across an inter-

val of talents k ∈ [k, k] according to a distribution function Π : [k, k] → [0, 1] with strictly pos-

itive and continuously differentiable density π. As before there is a continuum of tasks ranked

by complexity v ∈ [v, v]. The productivity of talent-task combinations is given by a function

a : [k, k]× [v, v]→ R++ satisfying the following assumption.

Assumption 2. (i) a is twice continuously differentiable on the interior of [k, k]× [v, v] with first deriva-

tives ai, i ∈ {k, v} and second derivatives aij, i, j ∈ {k, v}. (ii) (strict absolute advantage) ak > 0, (iii)

(strict comparative advantage, log supermodularity) ∂2 log a
∂k∂v > 0.

Otherwise technologies and preferences are as in the main text. An allocation is a triple of

measurable functions c : [k, k] → R+, ν : [k, k] → [v, v] and e : [k, k] → R+ describing the

consumption, task and effort assignments of each talent type.4 As before, task output is linear in

labor input. The task output density y : [v, v]→ R+ satisfies for all k,

ˆ ν(k)

v
y(v)dv =

ˆ k

k
a[k′, ν(k′)]e(k′)π(k′)dk′. (B.4)

If ν is differentiable with derivative νk, then (B.4) can be re-expressed as, for all k:

y(ν(k)) = a[k, ν(k)]e(k)
π(k)
νk(k)

, (B.5)

Heuristically, the numerator is total output of type k, while the denominator gives the tasks over

which the type k workers are ”spread”. The shadow wage is given by:

w[k, v] = b(v)
(

y(v)
Y

)− 1
ε

a[k, v].

4The implicit assumption that all talents are assigned to a specific consumption, task and effort is without loss of
generality. It may be shown, along the lines of Proposition 3, that assignment of talents to tasks is strictly increasing in
talent given strict comparative advantage.
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We restrict planners and policymakers to smooth allocations and mechanisms. This permits the

application of optimal control techniques.

OPTIMAL CONTROL FORMULATION OF GOVERNMENT’S PROBLEM We formulate the govern-

ment’s problem as a mechanism design problem and recover optimal taxes from this. Mechanisms

are analogous to those considered previously. Each worker reports its talent k and, conditional on

this, is assigned a consumption c, task ν and effort e. The combination of mechanism and truthfully

reported talent imply utility and normalized shadow wage and income levels for each type:

ψ(k) = U(c(k), e(k))

ϕ(k) = w[k, ν(k)]/Y
1
ε

ρ(k) = ϕ(k)e(k).

In addition, let ω(k, v) = w[k, v]/Yε. A worker claiming to be type k′ must reproduce the observ-

able income level ρ(k′). Incentive-compatibility thus requires for all k, k′ and v′:

U(c(k), e(k)) ≥ U
(

c(k′),
ρ(k′)

ω(k, v′)

)
. (B.6)

Let U = {(u, e) ∈ R× [0, e] : u = U(c, e) for some c ∈ R+} and let C : U → R+ be defined accord-

ing to u = U(C[u, e], e). The next proposition gives simpler necessary and sufficient conditions for

incentive-compatibility.

Proposition 10. Let (ν, e, c) be a smooth mechanism that induces a smooth task output function y. The

mechanism is incentive-compatible if and only if: (i) (Monotonicity) vk ≥ 0 and ρk ≥ 0 hold and (ii)

(Envelope) the envelope conditions for utility and shadow wages hold:

ψk(k) = −Ue (C[ψ(k), e(k)], e(k)) e(k)
ak[k, ν(k)]
a[k, ν(k)]

(B.7)

ϕk(k) = ϕ(k)
ak[k, ν(k)]
a[k, ν(k)]

. (B.8)

Proof. (Necessity). Let (ν, e, c) be a smooth incentive-compatible mechanism. Incentive compatibil-

ity implies that w[k, ν(k)] ≥ w[k, ν(k′)] and w[k′, ν(k′)] ≥ w[k′, ν(k)]. Since w[k, v] = b(v) ( y(v)
Y )−

1
ε
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a[k, v] and a is strictly log supermodular, it follows that if k > k′, then ν(k′) > ν(k). Hence, ν is

increasing. To verify (B.8), we apply (envelope) Theorem 4.3 of Bonnans and Shapiro (2000) to:

max[v,v] U
(

c(k′), ρ(k′)
ω(k,v′)

)
. This requires U to be continuously differentiable, ω(·, v) to be continu-

ously differentiable and ω(k, ·) to be continuous. The first two properties hold by assumption (and

the definition of ω and w, see B.3), the latter holds if y is continuous. Suppose that y is discontin-

uous at v and, without loss of generality assume y(v) > y(vn) for some sequence vn → v. Let

kn = ν−1(vn), then for n large enough, w[kn, vn] < w[kn, v], which is a contradiction. Then Theo-

rem 4.3 and Remark 4.14, p.273-4 in Bonnans and Shapiro (2000) and the definition of w imply that

the function ϕ, ϕ(k) = maxv∈[v,v] w[k, v], is differentiable with ϕk = ϕ ak
a > 0.

Let ρ(k) = ϕ(k)e(k) and:

Υ[k, k′] = U
(

c(k′),
ρ(k′)
ϕ(k)

)
.

Incentive-compatibility requires that: Υ[k, k] ≥ Υ[k, k′] and Υ[k′, k′] ≥ Υ[k′, k]. Hence, U
(

c(k), ρ(k)
ϕ(k)

)
−

U
(

c(k′), ρ(k′)
ϕ(k)

)
≥ U

(
c(k), ρ(k)

ϕ(k′)

)
−U

(
c(k′), ρ(k′)

ϕ(k′)

)
. The assumed Spence-Mirrlees condition and

the increasingness of ϕ, then imply that ρ and c are increasing also. Additionally, since (ν, e, c) is

continuous by assumption and w is continuous, Theorem 4.3 in Bonnans and Shapiro (2000) can

again by applied to show that: ψ(k) = maxk′∈[k,k] Υ(k, k′) is differentiable with:

ψk(k) = −Ue (C[ψ(k), e(k)], e(k)) e(k)
ϕk(k)
ϕ(k)

= −Ue (C[ψ(k), e(k)], e(k)) e(k)
ak[k, v(k)]
a[k, v(k)]

.

Sufficiency. Let (ν, e, c) be a smooth mechanism satisfying the conditions in the proposition.

The definition of ϕ, the envelope condition for wages (B.8) and the smoothness of ν imply the first

order condition: wv[k, ν(k)]νk = 0. The smoothness of the various functions also implies that wv

exists and is given by:

wv[k, v] =
{

bv(v)
b(v)

− 1
ε

yv(v)
y(v)

+
av[k, v]
a[k, v′]

}
w[k, v] (B.9)

An worker’s optimization over v and k′ is separable: regardless of the report choice of k′, it

is optimal for the worker to select a task v that maximizes its wage w[k, v]. Let k∗ denote a non-

decreasing measurable selection from v−1. Then, using (B.9), the first order condition wv[k, ν(k)]νk =
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0 and log supermodularity, for v̂ > v(k),

w[k, v]− w[k, ν(k)] =
ˆ v

ν(k)
wv[k, v′]dv′

=

ˆ v̂

ν(k)

{
bv(v′)
b(v′)

− 1
ε

yv(v′)
y(v′)

+
av[k, v′]
a[k, v′]

}
w[k, v′]dv′

=

ˆ v̂

ν(k)

{
− av[k∗(v′), v′]

a[k∗(v′), v′]
+

av[k, v′]
a[k, v′]

}
w[k, v′]dv′ < 0.

and similarly for v̂ < v(k). Consequently, the mechanism induces a k-worker to choose the task

assignment v(k).

Let k2 > k1, then by the envelope condition for wages, for k′ ∈ [k1, k2], ϕ(k′) = w[k′, ν(k′)] ≥

w[k1, ν(k1)] = ϕ(k1). Combined with the monotonicity and concavity of U, this implies−Ue (c(k′), e(k′)) e(k′)

+ Ue

(
c(k′), ϕ(k′)

ϕ(k1)
e(k′)

)
ϕ(k′)
ϕ(k1)

e(k′) < 0. The envelope condition for reports and the smoothness of

the mechanisms imply:

Υk̂[k, k]k̂k =

{
Uc(c(k), e(k))ck(k) + Ue(c(k), e(k))e(k)

ρk(k)
ρ(k)

}
k̂k = 0.

The definitions of Υ and ρ and the preceding discussion then imply:

Υ[k1, k2]− Υ[k1, k1] =

ˆ k2

k1

Υk̂[k1, k′]dk′

=

ˆ k2

k1

{
Uc(c(k′), e(k′))ck(k′) + Ue

(
c(k′),

ρ(k′)
ϕ(k1)

)
ρk(k′)
ϕ(k1)

}
dk′

=

ˆ k2

k1

{
−Ue

(
c(k′), e(k′)

)
e(k′) + Ue

(
c(k′),

ρ(k′)
ϕ(k1)

)
w[k′, ν(k′)]
w[k1, ν(k1)]

e(k′)
}ρk(k)

ρ(k)
dk′ ≤ 0.

A similar inequality obtains for k1 > k2 and so the mechanism induces a k-worker to make a

truthful report k.

It is convenient to define:

ξ(k) :=
ˆ k

k

(
π(k′)a[k′, ν(k′)]e(k′)

νk(k′)

) ε−1
ε

b(ν(k′))νk(k′)dk′ (B.10)

and

ζ(k) =
ˆ k

k
C[ψ(k′), e(k′)]π(k′)dk′. (B.11)
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Together ψ, ϕ, ξ and ζ along with ν form a set of state variables for the optimal control formulation

of the planning problem with private information. The envelope conditions (B.7) and (B.8) supply

laws of motion for ψ and ϕ. Equations (B.12) and (B.13) give laws of motion for ξ and ζ:

ξk(k) = e(k)ϕ(k)π(k) (B.12)

ζk(k) = C[ψ(k), e(k)]π(k). (B.13)

Finally, the definition of ϕ(k) implies a law of motion for ν:

νk(k) =
(

ϕ(k)
b(ν(k))a[k, ν(k)]

)ε

π(k)a[k, ν(k)]e(k), (B.14)

The monotonicity conditions on mechanisms needed to ensure incentive-compatibility are omitted

and checked ex post. The effort function e is the control. The government’s problem becomes:

max
ψ,ϕ,ζ,ξ,ν,e

ˆ k

k
ψ(k)g(k)dk (B.15)

subject to the laws of motion (B.7), (B.8) and (B.12) to (B.14) and the boundary constraints:

ζ(k) ≤ ξ(k)
ε

ε−1

0 = ξ(k) 0 = ζ(k) v = v(k) v(k) = v̄.

In this problem there is one control (e) and five states (ψ, ϕ, ζ, ξ, ν). Routine manipulation of the

first order and co-state equations yields the following expression for the optimal effort-consumption

wedge:

−w[k,ν∗(k)]
U∗c (k)
U∗e (k)

− 1 =

H∗(k)1−Π(k)
π(k)

ϕ∗k (k)
ϕ∗(k)

ˆ ∞

k

(
1− g(t)U∗c (t)

pζ∗π(t)

)
U∗c (k)
U∗c (t)

N ∗(k, t)
π(t)

1−Π(k)
dt︸ ︷︷ ︸

Mirrlees

− I∗(k)
[

pϕ∗
k (k)

pϕ∗(k)
+

ak[k, ν∗(k)
a[k, ν∗(k)]

]
pϕ∗(k)

pζ∗π(k)

(
−U∗c (k)

U∗e (k)

)
︸ ︷︷ ︸

Wage Compression

, (B.16)
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where U∗x (k) := Ux(c∗(k), e∗(k)) x ∈ {c, e} and similarly for U∗xz(k), I∗(k) := − 1
ε

w[k,ν∗(k)]
e∗(k) is the

elasticity of the k-talent wage with respect to effort holding the task allocation fixed,H∗ := {−U∗ec
U∗e

+

U∗ee
U∗e
}e∗ + 1 is (1 + Eu)/Ec, where Eu and Ec are, respectively, the uncompensated and compensated

labor supply elasticities, N ∗(k, t) = exp
{
−
´ t

k
e∗(s)U∗ce(s)
ϕ∗(s)U∗c (s)

}
, pζ∗ = E

[´ k
k

1
U∗c (t′′)

π(t′′)dt′′
]−1

is the

optimal shadow resource multiplier and pϕ∗ is the optimal co-state on the shadow wage ϕ. The

Mirrlees and wage compression components are labeled.

B.4 Empirical Implementation

In this appendix, we discuss details of the empirical implementation. We describe the data set used

and illustrate robustness of our estimated parameters to alternative sample selection criteria. We

discuss the issues raised by dropping the Cobb-Douglas production assumption used in the main

text and show how our results are modified by alternative values for the elasticity of final output

with respect to occupational output. We show that our empirical results are robust to reordering

occupations in different decades according to the average wage within the decade and provide

supporting evidence for our functional form restrictions on a.

B.4.1 Data Set and Sample Selection

Our main data source is the Current Population Survey (CPS) administered by the US Census Bu-

reau and the US Bureau of Labor Statistics. We focus on the March release of the survey.5 Data

is available continuously from 1968 to 2012. On average each year of data contains about 150,000

observations, from 2001 the sample size has increased to approximately 200,000. The CPS contains

detailed information on the demographic and work characteristics of each individual. For addi-

tional details on the CPS refer to Heathcote, Perri, and Violante (2010a) and Acemoğlu and Autor

(2011). The CPS data includes a self-reported estimate of hours worked from 1976 onwards. This

question as well as questions on income are for the previous calendar year. Hence our sample

covers the years 1975 to 2011 (interviews from 1976 to 2012). In the body of the paper we group

observations in two groups. We call “the 70s” observations relating to years 1975-1979 (i.e inter-

5Data is taken from: Miriam King, Steven Ruggles, J. Trent Alexander, Sarah Flood, Katie Genadek, Matthew B.
Schroeder, Brandon Trampe, and Rebecca Vick. Integrated Public Use Microdata Series, Current Population Survey:
Version 3.0. [Machine-readable database]. Minneapolis: University of Minnesota, 2010.
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viewed in years 1976-1980), we call the “00s” observation relating to years 2000-2011 (interviews

in 2001-2012).

The model analyzed is highly stylized. In order to make data and model compatible (and to

reduce the likelihood of measurement error) we further restrict our sample. We drop individuals

for whom income, age, sex, education, sector, occupation is not reported. We consider individuals

of working age, i.e. between the ages of 25 and 65. We drop individuals with no formal education

and the unemployed. Following Heathcote et al. (2010a), we also drop underemployed individ-

uals: those working less than 250 hours per year or earning less than $100 per year (dropping an

additional 196,684 observations). Our final sample comprises of 2,039,123 individual/year obser-

vations. All variables are weighted with the provided weights and dollar denominated variables

are deflated using CPI to 2005 dollars.6 In Figure B.1a we display the evolution of the distribu-

tion of log labor income between the “70s” and the “00s”. The main feature that emerges is the

widening of the distribution in the “00s” relative to the “70s”.
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Figure B.1: Estimates on entire sample.

We briefly explore the impact of our sample selection on the estimated values of b. Figure B.1b

shows b estimates for both decades obtained from the CPS sample before applying our sample

selection (but after removal of individuals with missing information or an unclassifiable occupa-

tion). As can be seen polarization is still apparent. However for low v occupations we observe

6CPI for all urban consumers, all goods.
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little change between the two decades. Note that a similar result would appear using the sample

selection of Acemoğlu and Autor (2011). This is because the authors only remove individuals who

worked less than one week in the previous year or are less than 16 years of age.

B.4.2 Beyond Cobb-Douglas

In this section we extend our empirical strategy beyond the Cobb-Douglas assumption (ε = 1)

adopted in the main body. In this direction, it is important to recognize that the estimation of a

is independent of ε and b(·). Estimation of b(·) does, however, depend on ε and, outside of the

Cobb-Douglas case, a as well. The firm’s first order condition is:

ω(k(v), v) = b(v)A
ε−1

ε

(
Y

y(v)

) 1
ε

a(k(v), v). (B.17)

Let b∗(v) denote the share of output paid to occupation v and, hence, the estimate of b(v) in the

Cobb-Douglas case. Then from (B.17):

b(v) = A
ε−1

ε

(
ω(k(v), v)
a(k(v), v)

) ε−1
ε

b∗(v)
1
ε . (B.18)

Thus, to determine b outside of the Cobb-Douglas case values for a(·) and ε are needed. Given

values for these (B.18) determines b(·) up to the constant A. The latter is pinned down by the

restriction:
´ 1

0 b(v)dv = 1.

It is well known that the elasticity of substitution between goods and factor augmenting techni-

cal progress cannot be separately identified from data on outputs, inputs and marginal products -

an observation that goes back to McFadden et al. (1978). The same logic implies that ε and b are not

separately identified from this data. A typical response is to restrict the elasticity of substitution or

the bias of factor augmenting technical change. In the main text, we proceed similarly by allowing

the b parameter to be arbitrary and the production function to be Cobb-Douglas in occupational

output. To assess the implications of this identifying assumption, we perform sensitivity analysis

with respect to ε: we consider a range of values for ε and then re-compute b’s (and taxes) for each

value.

Figure B.2 displays the b function for ε = 0.8 and ε = 1.3 (thicker lines show estimated b’s,
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Figure B.2: Estimates of b(v) for different ε values.

thinner lines quadratic approximations to these estimates). The slope of the b function estimate

is significantly impacted by variations in ε. However, polarization remains a consistent feature:

between the 1970s and the 2000s, the b function rose in high v occupations, fell in mid ones and

rose or only very marginally fell in low ones. We confirm and re-express this observation by taking

a quadratic approximation to the b function (overlaid in Figure B.2 with thinner lines) for a variety

of values of ε and plotting the quadratic coefficient across decade and ε value in Figure B.3a. The

figure shows that over all the ε values considered the quadratic coefficient increases between the

1970s and the 2000s and over most it changes sign (as in the benchmark environment considered

in the body of the paper).
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Figure B.3: Impact of changes in ε on b estimates and optimal taxes.

We recompute the optimal tax functions for different values of ε. A summary of the impact of

these values on optimal taxes is provided in Figure B.3b. Key patterns found in our benchmark
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case in the main text re-emerge. In particular, optimal marginal tax rates fall at low to mid incomes

between the 1970s and 2000s and rise at higher ones with this effect becoming more pronounced as

ε rises. Roughly speaking as ε rises occupational outputs and, hence, workers become more substi-

tutable. This diminishes the government’s ability to influence and, hence, redistribute via relative

wages. Consequently, the “wage compression” force is weakened relative to the “Mirrleesian”: the

government is less motivated to compress wage differentials by moderating marginal tax reduc-

tions at the bottom and marginal tax increases at the top.

B.4.3 Occupational Ordering

In the main body of the paper, we restrict attention to 302 occupations present in both 1970s and

2000s data and order them using wage information from the 1970s. In doing so we follow the

approach of Acemoğlu and Autor (2011). This approach supposes that the complexity ordering of

occupations is time invariant (and is captured by the 1970’s wage ordering). To the extent that the

occupational wage ordering changes and these changes reflect changes to the relative complexity

of occupations estimates of the a and b functions are modified. Figure B.4 provides a scatterplot
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Figure B.4: Rank order over decade.

of occupations by their average wage rankings in the 1970s and 2000s. The plot shows that while

these rankings are not time invariant, they do exhibit stability especially at the bottom and the top.

The overall correlation of these rankings over time is 0.8623.

Re-estimating the parameters of the a function for the 2000s using the 2000s wage ordering

gives values of: α1 = 0.64 and α2 = 2.90 (compared to our previous estimates of α1 = 0.42 and α2 =
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3.01.) Thus, the critical comparative advantage parameter α2 is only moderately changed under

this alternative ordering and the overall pattern of increasing competitive advantage is preserved.

New estimates of the b function using the 2000s ordering are also only moderately changed and,

in particular, they preserve the increase in weights on complex (high wage) occupations found

previously.

We recompute optimal taxes using the estimates of a and b function parameters after reordering

and recoding. Although marginal taxes for the 2000’s are slightly higher under this alternative

parameterization, the overall impact of technical change upon them is little altered. As before,

these taxes fall on low (but not the lowest) and rise on high (but not the highest) incomes. The

numerical results are available on request.

B.4.4 The demand for complex skills across occupations

In the main text we assume a functional form for a that attributes the steepening of the profile

of average wages across ranked occupations to increases in the comparative advantage of high

talents in more complex tasks. However, an alternative scenario is also possible. Under this alter-

native, highly talented workers accumulated large stocks of general skills between the 1970s and

the 2000s. This minority concentrates in high wage occupations where they have a slight com-

parative advantage, but talent-complexity comparative advantage has not greatly increased. Our

account and this second one are difficult to distinguish using CPS data which, of course, does not

give (imputed) wages for occupations other than those chosen by a worker. Greater acquisition of

general skills by top talents could, in principal, be detected by adding non-linear terms in k (e.g.

k2) to our empirical specification of the log a function. This, however, is problematic as these terms

are highly collinear with the comparative advantage term kv in this function. Consequently, we

look outside of the CPS for evidence of increasing talent-complexity comparative advantage. In

particular, we use the O?NET database to assess whether the intensity of complex skills and abili-

ties has increased in high wage occupations relative to low. We treat such evidence as suggestive

of increasing comparative advantage: increasing returns to talent in complex occupations.

Our empirical approach is similar to that in Autor et al. (2003), though our focus is distinct.7

7This paper documents the mix of routine and non routine tasks performed across occupations and its evolution. It
uses the predecessor of the O?NET database, the Dictionary of Occupational Titles.
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We pair two editions of the O?NET database with the CPS, merging by occupation. For each of

the Census-defined occupations we record the level and the importance of each of the 52 abilities

and 35 skills reported by O?NET. This enables us to create two snapshots of the ability and skill

requirement of occupations across time. We use the first (beta) release of the O?NET database from

1998 and the latest available release (version number 19.0) from July 2014.8 We multiply the two

reported dimensions of skill/ability within an occupation (importance and level) to create a single

skill/ability “intensity” index. The numerical range over which these dimensions are measured

has not changed across the editions of O?NET. However, the meaning associated with each score

has. To overcome this limitation and allow for a consistent time comparison we follow Autor et al.

(2003) and look at the percentile-rank of each occupation by each skill/ability index. In Figure B.5

we display the (smoothed) change of the intensity index across occupations (ranked as in the paper

by v) for three distinct skill/abilities: complex problem solving, deductive reasoning and mathematical

reasoning. The first of these is the skill and the second the ability that most correlate with the
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Figure B.5: Rank evolution of selected skills and abilities intensity across occupations. LOWESS smoothed.

task rank v. Thus, these intensity indices provide measures of task complexity that are consistent

with the model. The third index (mathematical reasoning) is an ability that is commonly used to

describe the complexity of an occupation. From the figure, each of these intensity index changes

is negative for lower ranked occupations (v ≤ 0.5) and positive for higher ranked ones (v ≥ 0.8).

The former is especially marked for complex problems solving and the latter for mathematical

8Admittedly the time span covered by these two datasets is much shorter than the one covered by our two bench-
mark time periods in the body of the paper. However we conjecture that the patterns uncovered in our comparison of
these two dataset would be amplified with a longer timespan.
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reasoning. Thus, consistent with our specification of a, skills and abilities that are particularly

associated with occupational complexity have grown only in more complex occupations.

Table B.1 displays coefficients from regressions of changes in various skill/ability intensity

indices on v. A positive estimate denotes a relative increase in the intensity of a skill or ability in

more complex occupations. All of the point estimates in Table B.1 are positive. The majority of

Skill/Ability Coefficient
Complex problem solving 12.51*** (2.34)
Critical Thinking 3.51** (1.91)
Deductive reasoning 4.70*** (2.15)
Inductive reasoning 9.10*** (2.14)
Mathematical Reasoning 4.02* (2.52)

Table B.1: Slope of the change of skill/ability intensity index over occupation
Slope of the change of skill/ability intensity index over occupation. Standard Errors in Parenthesis. ***= 95% confi-
dence, **= 90% confidence, *= 85% confidence.

them are so with a high degree of confidence.

We conclude this section by taking a broader look at all 87 skills and abilities. To do this we

perform a principal component analysis of the change in intensity indices across occupations. In

Figure B.6a we display the first two principal components. The second principal component dis-

plays an increasing pattern of variation similar to the profiles plotted in Figure B.5. In Figure B.6b

we display the loading factors. We label each skill/ability as being either associated with a high

degree of complexity (the ones associated with information processing, problem solving, analyti-

cal thinking, managerial abilities) or not (mostly physical and interpersonal abilities).9 We see that

high complexity skill/abilities (in red in the graph) are on average associated with high loading

on the second principal component and in some instances with a low loading on the first principal

component. This implies that overall the high complexity skill/abilities display a positive sloping

profile over the space of occupations. The opposite is true for low complexity skill/abilities.

9Detailed listing available is upon request.
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Figure B.6: Principal component analysis of the rank evolution of skill and ability intensity
across occupations.

Overall, we view data on the evolution of the skill and ability composition of tasks as broadly

consistent with increasing talent-task complexity comparative advantage and the functional form

restrictions that we place on the a function in our analysis.

B.4.5 Alternative Productivity Function

As discussed in Subsection 2.5.3, in our benchmark estimation the increase in the growth rate for

log wages at higher talents leads to the identification of a growing comparative advantage over

time. In this section we explore an alternative formulation of the productivity function aimed at

fitting more closely the high and increasing growth rate of wages for high talents. Specifically,

we set ∂a
∂k (k, v) = α3 · v2. Proceeding as in Subsection 2.5.3 we find a value of α3 = 0.79 (0.03)

for the 1970’s and a value of α3 = 0.91 (0.04) for the 2000’s.10 As in our benchmark, there is an

increase in the degree of comparative advantage over time. Given the quadratic nature of the

productivity function the change in overall top to bottom talent inequality in wages is greater than

in our benchmark setting. In Table B.2 we display the resulting optimal behavior of average and

marginal tax rates over percentiles of the income distribution.

10In addition, to emphasize the behavior of wages for higher talents we estimate α3 without weighting by the shares
of talent in each occupation.
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Table B.2: Optimal Tax Rates on Real Labor Income, Alternate Case

Decade
Percentiles of Income

10th 25th 50th 75th 90th 99th

Averages
70s -3.3 0.9 7.8 20.3 24.7 20.8

00s -12.5 -8.7 4.0 21.6 28.3 23.7

Marginals
70s 17.2 28.8 40.0 38.9 24.3 -1.8

00s 20.0 32.5 44.5 44.8 29.5 -1.5

Note: Estimates of tax rates determined using ∂a
∂k = α3 · v2 .

Relative to the benchmark, the striking difference is the sharp fall in average and increase in

marginal rates over the time period. Now, the rise in comparative advantage dominates. It

strengthens the wage compression channel and increases wage growth across talents. This in-

creases the motive for redistribution towards the bottom.

B.5 Counterfactuals

In this appendix we separately evaluate the impact of change in the a and b functions on optimal

policy. To do so, we first hold the parameters of a fixed at their 1970s values, while allowing those

of b to change to their 2000s values; we compute the corresponding optimal tax equilibrium. We

then repeat the exercise holding the parameters of b fixed, while allowing those of a to change. We

compare the resulting tax equilibria to those in which both functions are at their 1970s or 2000s

levels.

ASSIGNMENT Figure B.7 shows the impact of the empirical a and b changes together and in iso-

lation on the density of workers across tasks. Changes in b alone lead to quite large changes in

the relative “number” of workers performing tasks. In particular, the polarizing adjustments in

task demand (growth at the extremes relative to the middle) occurring between the 1970s and the

2000s induce growth in the density of workers at the extremes and, hence, job polarization in the

associated optimal tax equilibrium. Changes in a alone have an opposite (if more modest) effect:

the number of workers performing mid-level tasks grows relative to the extremes. This reflects
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productivity growth in low tasks by low talents and in high tasks by high talents inducing reduc-

tions in shadow task prices at the top and the bottom and movements of some lower and higher

talents into mid-level tasks. However, when changes in the b and a parameters are combined, it is

the former that dominates.
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Figure B.7: Relative changes in k̃∗v from the 1970s to the 2000s

Allowing b to change, a to change and both a and b to change.

Although, the b parameter change induces quite large changes in the numbers of workers per-

forming particular tasks, this is achieved with only modest occupational reassignments of given

workers. As shown in Figure B.10, low-mid level talents reduce their task assignment, but by no

more than 2%, high-mid level talents increase their task assignment, but by no more than 3%.

0 0.2 0.4 0.6 0.8 1
0.98

0.99

1

1.01

1.02

1.03

1.04

k

ṽ
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WAGE CHANGES An implication of the modest change in task assignment induced by the shift

in the b function is that equilibrium wage growth over talents is also only modestly altered by this

shift. As shown in Figure B.9, b changes alone induce very slight compression in wage differentials

across low-to-mid talents and very slight expansion across mid-to-high talents. Changes in the a

function also depress wage growth across talents at the bottom and raise it at the top, but the effect

is much more pronounced.
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Figure B.9: Equilibrium wage growth ∆w∗/w∗ for the parameter combinations
(a70, b70), (a70, b00), (a00, b70) and (a00, b00).

MARGINAL TAX CHANGES The shift in the b function alone has limited impact on the relative

wage-effort elasticities and on the wage compression term. Combined with its small impact on

wage growth over talents, it has a correspondingly modest effect on marginal taxes, see Fig-

ure B.10a. In contrast, the shift in the a function has a much more significant impact on wage

growth and on the relative wage-effort elasticities. It has a much more significant effect on optimal

marginal taxes and accounts for most of the adjustment between the 1970s and the 2000s.
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Figure B.10: Marginal tax effects.

B.6 Optimal policy under a Rawlsian objective

In this subsection, we recompute optimal taxes under a Rawlsian societal objective that attaches

positive weight only to the utility of the lowest talent. The results are given in Table B.3. Relative to

the benchmark case, the government’s enhanced concern for redistribution translates into higher

marginal income tax rates at nearly all income levels, larger subsidies to low and middle income

earners and larger average taxes on those in the top quartile. However, the impact of technical

change remains unaltered. Marginal taxes fall on low to middle income quantiles (but not at the

very lowest), rise on high income quantiles (but not the very highest). Average taxes rise sharply

at the bottom of the income distribution and fall at mid to higher incomes. The largest beneficiary

are those at the 75 income percentile who see the largest reduction in average taxes (from 34% to

28.2%).
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Table B.3: Optimal Tax Rates on Real Labor Income: Rawlsian Case.

Decade
Percentiles of Income

10th 25th 50th 75th 90th 99th

Averages
70s -144.1 -79.4 - 6.1 34.0 41.3 34.5

00s -54.1 -39.4 -6.3 28.2 39.6 32.4

Marginals
70s 80.6 78.9 74.4 62.2 38.0 -0.4

00s 70.3 71.1 70.3 63.0 41.4 -3.9

B.7 A Model with Intra-occupational Wage Dispersion and a Heavy-

tailed Talent Distribution

In the main text, we consider a baseline model in which worker talent and task complexity are

compressed to single dimensional variables. This formulation simplifies the theoretical analysis,

facilitates empirical identification and connects models of technical change, assignment and tax-

ation in a very direct way. However, the model’s equilibrium does not permit intra-task wage

variation. In this appendix we explore the extent to which our baseline results are qualified by

its omission. In particular, to the extent that such wage variation is underpinned by variation in

talent that is unrelated to tasks, the link between wages and tasks is weakened. A natural conjec-

ture is that the responsiveness of policy to (task-level) technical change is similarly weakened. As

described in Section 2.7, we enhance the contribution of talent unrelated to tasks and seek a lower

bound for the responsiveness of policy to technical change.

In the remainder of the appendix, we proceed as follows. First, we detail a general frame-

work that accommodates high dimensional talent and high dimensional tasks. We show how this

framework can be specialized to yield the model of Rothschild and Scheuer (2013) and our (base-

line) model in the main text and, in so doing, relate the two. We then develop a specialization that

is intermediate between these cases. In this specialization, there are two aspects of worker talent:

one captures comparative advantage in complex tasks, the other the ability to do all things well.

The latter creates intra-task wage variation. Similar to our baseline model, comparative advan-

137



tage types partition the ordered space of occupations amongst themselves. We attribute all wage

variation within these partitions to variations in absolute advantage uncorrelated with task. Such

variation diffuses the effect of task-based technological change across the wage distribution and

the impact of changes in taxes directed at a particular income across the set of tasks, task shadow

prices and wages. These effects dampen the impact of technical change on policy design. In tak-

ing the model to the data we assume a coarse set of comparative advantage types and attribute all

residual wage variation within the comparative advantage partitions (about 75% of total wage dis-

persion in our CPS sample) to variations in absolute advantage. We attribute none to measurement

error in incomes, hours or tasks and absorb some measured inter-occupational wage variation into

the residual by keeping the set of comparative advantage types and number of partitions small.

These assumptions enlarge the dampening effect of absolute advantage variation. We find that the

impact of technical change on policy is smaller, but the direction is unchanged. The qualitative

conclusion that marginal taxes should be reduced on low to middle incomes, but raised on higher

ones (with opposite adjustments in the extreme tails) remains intact. We interpret these results as

lower bounds for the responsiveness of policy to technical change.

B.7.1 A general framework

We first develop a general framework in which, as in Section 2.3, (consumption and effort) alloca-

tions are defined as functions of workers’ types and the domain of the production function is the

space of effort allocations. Subsequently, we introduce assignment. Relative to the main text the

generality lies in our treatment of the talent space.

Assume that the workers are partitioned across talents according to a probability space (Θ, F , P),

where, to begin with, Θ is an arbitrary set. Let A = C × E denote a set of allocations with each

allocation a pair of measurable functions c ∈ C, c : Θ → R+, and e ∈ E , e : Θ → R+, describing

the consumption and effort of differently talented workers. The set E is further restricted to be a

Banach space. Let F : E → R+ denote a production function defined directly on the space of effort

allocation functions, with F concave and (Fréchet) differentiable. The government’s problem is:

sup
A

ˆ
U(c(θ), e(θ))P(dθ) (B.19)
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subject to ∀θ, θ′,

U(c(θ), e(θ)) ≥ U
(

c(θ′),
ω(θ′, e)e(θ′)

ω(θ, e)

)
(B.20)

and ˆ
{ω(θ, e)e(θ)− c(θ)}P(dθ) ≥ G, (B.21)

where (B.20) and (B.21) are, respectively, the incentive-compatibility and resource constraints and

wages ω are given by the Fréchet derivative of F.11 G ∈ R+ is government spending.

This framework can interpreted as the reduced form of an economy with assignment. Let

(V, V ) denote a measurable space of tasks andM the set of finite measures on V. Interpret such

measures as allocations of effective labor across tasks. Let H :M→ R+ be a production function

(now defined on the space of effective labor allocations) and µ : Θ×V → R+ a (measurable) pro-

ductivity kernel giving the productivity of each talent in each task. As in Section 2.4, assignment

is efficient in the competitive equilibria and planner’s problems that we consider. Thus, as there,

an indirect production function over effort allocations is recoverable from an assignment problem:

F(e) = sup
m,Λ

H(m) :

∀B ∈ V ,
´

B m(dv) =
´

B

´
Θ µ(θ, v)e(θ)Λ(dθ, dv)

∀B ∈ F ,
´

B P(dθ) =
´

V

´
B Λ(dθ, dv)

 , (B.22)

where m is a distribution of effective labor across tasks and Λ is a distribution of workers across

tasks and talents. The constraints in (B.22) ensure that these distributions are consistent with one

another, the effort allocation and the underlying distribution of talent. It follows that, as in the

main text, the planner’s problem with assignment can be decomposed into an outer step (B.19) in

which (c, e) are chosen and an inner step (B.22) in which (m, Λ) are chosen (to determine F at e).

B.7.2 Reformulation of the general framework

Enlarging the dimension of talent to allow for multiple attributes that interact differently across

tasks greatly complicates the pattern of binding incentive constraints. Rothschild and Scheuer

(2013) observe that if Θ is uncountable, then (almost all) talents earning the same wage receive the

same consumption and effort. Consequently, allocations can be re-expressed as functions of (one

11We continue to exclude externalities which is a focus of Rothschild and Scheuer (2014) and Lockwood et al. (2014).
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dimensional) wages and in this form only local incentive constraints bind. This is an important

simplifying insight that we utilize below. However, it is not costless as it requires the introduc-

tion of rather complicated constraints that relate the (endogenous) wage distribution to allocations

(as functions of wages). In the remainder of this section, we make one simplification: in the in-

ner assignment problem, we restrict attention to effective labor allocations described by (density)

functions l : V → R+ rather than measures. Thus, we exclude atoms of effective labor in tasks. As

before, let H denote the production function, but defined now on the domain of such densities . In

addition, assume that H is (Fréchet) differentiable with derivative ∂H. The shadow price of task v

output is ∂H(l; v) and the wage of a worker of talent θ in task v is: ∂H(l, v)µ(θ, v). Workers choose

their tasks to maximize their wages:

v∗(θ; l) ∈ argmax
V

∂H(l; v)µ(θ, v). (B.23)

Let w∗(θ; l) = ∂H(l; v∗(θ; l))µ(θ, v∗(θ, l)) denote the (maximized) wage of a worker of talent θ

given the labor allocation l. By (B.23), l implies a distribution of workers over wages and tasks:

R(l)(w, v) :=
ˆ

Θ
1(w∗(θ; l) ≤ w, v∗(θ; l) ≤ v)P(dθ). (B.24)

In this setting, define an allocation to be a triple (l, c̃, ẽ) with c̃ : R+ → R+ and ẽ : R+ → R+ map-

ping wages rather than talents to consumption and effort choices. Note that from (B.23), given l,

any worker receiving wage w in task v has productivity w
∂H(l;v) and an effective labor of w

∂H(l;v) ẽ(w).

Consistency of l with ẽ thus requires:

∀v : l(v) =
ˆ ∞

0

wẽ(w)

∂H(l; v)
R(l)(dw, v). (B.25)

In addition, the wage distribution Q must equal the wage marginal of R(l):

∀w : Q(w) =

ˆ w

0

ˆ
V

R(l)(dw,′ dv′). (B.26)
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Hence, the government’s problem can be re-expressed as:

sup
c̃,ẽ,l,Q

ˆ ∞

0
U(c̃(w), ẽ(w)Q(dw) (B.27)

subject to (B.25) and (B.26), ∀w, w′,

U(c̃(w), ẽ(w)) ≥ U
(

c̃(w′),
w′ ẽ(w′)

w

)
, (B.28)

and ˆ ∞

0
{wẽ(w)− c̃(w)}Q(dw) ≥ G. (B.29)

The main difficulties in (B.27) are the constraints (B.25) and (B.26) relating Q to l and ẽ, absent

which everything would reduce to a standard Mirrlees problem.

ROTHSCHILD AND SCHEUER’S SPECIALIZATION Rothschild and Scheuer (2013) make progress

by assuming that: (i) V = {1, 2}, (ii) Θ = R
2 with θ = (θ1, θ2) and µ(θ, v) = θv and (iii) P has a

density p. These restrictions make (B.25) and (B.26) manageable. H is now a function of only two

variables (l1, l2) and R is given by:

R(l)(w, 1) =
ˆ w

∂H(l;1)

θ

ˆ θ1
∂H(l;1)
∂H(l;2)

θ
p(θ1, θ2)dθ2dθ1 (E.6’a)

R(l)(w, 2) =
ˆ θ2

∂H(l;2)
∂H(l;1)

θ

ˆ w
∂H(l;2)

θ
p(θ1, θ2)dθ2dθ1. (E.6’b)

The low dimensionality of V (and, hence, l) suggests an inner-outer approach to solving (B.27)

quite distinct from that described in the main text. The inner component maximizes (B.27) over

(c̃, ẽ) subject to (B.25), (B.28) and (B.29) with l fixed and Q set to Q(·) = ∑v=1,2 R(l)(·, v). This

problem is a standard Mirrlees problem augmented by (B.25). The outer component maximizes

the resulting value function over l. Note that here assignment of effective labor across tasks l is

solved for in the outer step, in contrast to the formulation in the main text where this is done in the

inner step.
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AN ALTERNATIVE SPECIALIZATION We now present a version of the general formulation given

above in which workers are distributed across two talent attributes. The first interacts with tasks

and affects comparative advantage, the second influences the ability to do all things and absolute

advantage. Let V := [0, 1] and Θ := {1, . . . , K} ×R+. Denote elements of Θ by θ := (k, ψ) and

assume that µ has the form µ(θ, v) := ψak(v) where the function a is log super-modular in (k, v).

Workers of a given k type have the same profile of relative wages and the same preference ordering

over tasks; variations in ψ cause workers to be more or less good at all things and underpin intra-

task wage dispersion. Let {πk}K
k=1 denote the distribution of workers across k and { fk}K

k=1 the

densities of workers over ψ conditional on k. The latter are assumed to satisfy Ek[ψ] = 1. Also

let H(l) = [
´ 1

0 b(v)l(v)
ε−1

ε dv]
ε

ε−1 . As in the main text, k-types (i.e. workers with a common k,

but potentially different values of ψ) sort themselves across tasks with those of a given type k

distributing themselves over a sub-interval [ṽk−1, ṽk] so as to ensure a common value for wk :=

∂H(l, v)ak(v). The wage received by a (k, ψ)-type is w = ψwk and, since Ek[ψ] = 1, wk is the

average wage per unit of effort received by k-types. In this setting, it is useful to define the ψ-

weighted average effort (“effective labor supply”) of the k-th type:

`k =

ˆ ∞

0
ψe(k, ψ) fk(ψ)dψ =

ˆ ∞

0

w
wk

ẽ(w) fk

(
w
wk

)
dw
wk

, (B.31)

where the second term expresses effort as a function of (k, ψ) and the third re-expresses it as a

function of the wage and uses w = ψwk to change variables from ψ to w. The vector of effective

labor supplies ` = {`k} (rather than the full allocation of effective labor over tasks l) is sufficient

to determine the average wages {wk} and, hence, the complete wage distribution. Similar to the

main text it can be shown that given ` = {`k}, final output is:

Y(`) := max
{ṽk}

[ K

∑
k=1

Bk(ṽk−1, ṽk)`
ε−1

ε

k

] ε
ε−1

, (B.32)

with Bk(ṽk−1, ṽk) = (
´ ṽk

ṽk−1
b(v)εak(v)ε−1dv)

1
ε . In addition, the wage terms {wk} are given by:

wk(`) =

(
Y(`)
`k

) 1
ε

B̃k(`), (B.33)
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where B̃k(`) is the value of Bk(ṽk−1, ṽk) at the optimized task thresholds from (B.32) and the nota-

tion makes the dependence of wk on ` explicit. Combining (B.31) and (B.33) gives an analogue of

(B.25):

`k =

ˆ ∞

0

w
wk(`)

ẽ(w) fk

(
w

wk(`)

)
dw

wk(`)
. (E.7′′)

Variations in absolute advantage ψ create variations in the wages paid to members of a given

k-type group. Thus, they create wage variation within each partition of the occupational space

[ṽk, ṽk+1]. The overall wage distribution Q satisfies an analogue of (B.26):

Q(w) =

ˆ w

0

K

∑
k=1

fk

(
w′

wk(`)

)
πk

wk(`)
dw′. (E.8′′)

The government’s problem can then be expressed as:

sup
c̃,ẽ,`,Q

ˆ
U(c̃(w), ẽ(w))Q(dw) (B.34)

subject to (E.7′′), (E.8′′) and (B.28), and the resource constraint:

ˆ
{wẽ(w)− c̃(w)}Q(dw) ≥ G.

Assuming that the first order approach is valid (i.e. that the workers’ envelope condition is suf-

ficient for incentive compatibility), the implied optimal marginal tax paid by a worker earning w

is:

τ(w) =

1−Q(w)
wq(w)

Ψ(w)H(w)

1 + 1−Q(w)
wq(w)

Ψ(w)H(w)
+

N (w)

1 + 1−Q(w)
wq(w)

Ψ(w)H(w)
, (B.35)

where q(w) is the wage density, Ψ(w) is the normalized multiplier on the incentive constraint,

H(w) = 1+E u

E c , with E u the uncompensated and E c the compensated labor supply elasticities. The

first right hand side component of (B.35) is the conventional Mirrlees tax term; the second is the

wage compression term. A tax induced effort perturbation at w impacts the effective labor of each

k-type population (since each includes some workers receiving wage w). This, in turn, after task

migration of k types, affects the wk terms and, hence, the entire wage distribution. These effects
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are seen by decomposing the wage compression term numerator N as:

N (w) = N · L(w),

where L(w) is a column vector giving the impact of a perturbation in ẽ(w) on the vector of effective

labor supplies ` = {`k} and N is a row vector giving the shadow value of a perturbation in ` on

the distribution of wages. Specifically, the k-th element of N is:

Nk :=
1
`k

ˆ ∞

0
λ(w′)

K

∑
κ=1

(
wκ(`)

qκ (w′; wκ(`))

∂qκ(w′; wκ(`))

∂wκ

)(
`k

wκ(`)

∂wκ(`)

∂`k

)
qκ

(
w′; wκ(`)

)
dw′,

where `k
wκ(`)

∂wκ(`)
∂`k

is the elasticity of the κ-th comparative advantage type’s average wage with

respect to the k-th type’s effective labor (and an analogue of the relative wage-effort elasticities

from the main text), wκ(`)
qκ(w′;wκ(`))

∂qκ(w′;wκ(`))
∂wκ

is the elasticity of the κ-th type’s conditional wage density

at w′ with respect to wκ and λ(w′) = V(w′) + χ{w′ ẽ(w′) − c̃(w′)} is the societal value of the

allocation given to workers earning w′ (i.e. the utility plus the shadow value of the resource surplus

these workers generate). As in the main text, technical change impacts the wage functions wκ and

the wage elasticities `κ

wκ(`)
∂wκ(`)

∂`κ
directly and via the reallocation of k-types across tasks. The affect

of these changes on the wage distribution and tax policy’s ability to shape this distribution is now

diffused through the densities qk. They modify the hazard term 1−Q(w)
q(w)w (the analogue of ∆w∗k+1

w∗k+1

1−Πk
πk

in the main text) and, hence, the Mirrlees term in (B.35). They also change the numerator of the

wage compression term which incorporates the elasticities `k
wk(`)

∂wk(`)
∂`k

.

BRINGING THE FORMULATION TO DATA Via the introduction of the additional talent attribute ψ,

the above formulation permits intra-task wage variation and an unbounded wage distribution. In

these dimensions it advances the baseline model in the main text. However, numerically solving

(B.34) becomes challenging as K becomes large. Thus, in contrast to the simpler baseline model in

which the set of k values is uncountable, K is restricted to equal four in the calculations below.12

The above formulation inherits many of its parameters from the baseline model. In our calculations

below, we retain earlier values for these parameters. In particular, utility parameters are reused, the

final goods production function is assumed to be Cobb-Douglas and our earlier estimates of b and

12These calculations use the non-linear optimizer SNOPT. The code is available on request.
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a retained. Values for the conditional densities { fk}, the new parameters in (B.34), are required.

To derive estimates of these, and following the approach in the main text, we use a worker’s

occupation to infer his or her k-type. Specifically, we order occupations by average wage, use

this ordering and a worker’s occupation to rank workers and then recombine workers into K = 4

ranked and equally sized k groups. Thus, a worker is of type k = 1 if she belongs to the first

1
K of workers by (ordered) occupation, she is of type k = 2 if she belongs to the next 1

K workers

by (ordered) occupation and so on. To capture ψ dispersion, we fit Burr Type XII distributions

to each demeaned k-group. The density of a Burr Type XII distribution converges asymptotically

to a Pareto density in the right tail, but admits a non-Paretian form that better accounts for wage

data over the remainder of its domain.13 The Burr XII is estimated by maximum likelihood; the

estimation procedure accounts for top coded observations. For the k = 4 group, our estimated

Pareto tail parameter is 3.07. The fitted Burr XII distributions account for about 75% of the overall

wage dispersion in our sample.

RESULTS Table B.4 gives the resulting optimal marginal tax rates. Relative to the benchmark case

considered in the main text, this exercise generates similar values for marginal tax rates on middle

incomes, but, as expected, quite different values for marginal rates on incomes in the tails of the

distribution. The latter are shaped by the tails of the Burr XII distributions.

Table B.4: Optimal Tax Rates on Real Labor Income.

Decade
Percentiles of Income

10th 50th 90th 99th

Marginals
70s 41.8 48.2 42.9 44.5

00s 43.2 45.7 43.7 43.4

The response of optimal marginal tax rates to technological change, while dampened, is quali-

tatively similar to before: marginal rates rise over the lowest two income deciles, fall over low-mid

income deciles (between the second and seventh decile), rise over higher income deciles (seventh

13The Burr Type XII distribution has density g(x) = cdxc−1

(1+xc)d+1 and hazard 1−G(x)
g(x)x = 1+xc

cdxc , where c and d are param-
eters. It was proposed as flexible description of income distributions by Singh and Maddala (1976). McDonald (1984)
concludes that the Burr XII outperforms many other heavy-tailed distributions in describing the distribution of income.
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to ninth) and fall at the very top, see Figure B.11 which gives changes in rates. The dampening

of the response, marginal tax rates change by at most 2.5 points at a given income compared to a

maximum of 8.5 points in the baseline case, stems from the introduction of variation in absolute

advantage that diffuses the impact of both technical change and taxes on wages. However, by as-

suming only K = 4 comparative advantage groups and by attributing all residual measured wage

variation to absolute advantage, we make this dampening force very large. We interpret these

numerical results as lower bounds on responsiveness of optimal policy to technical change.

After decomposition, the Mirrlees and Wage Compression terms display similar movements to

those in the main text: changes in the Mirrleesian term prevail over most of the income quantile

domain, but are dampened by offsetting movements in the wage compression term. For example,

at the fourth income decile, the Mirrlees term falls by more than 4 points, while the wage com-

pression term rises by about 2 points. The logic behind changes to the Mirrlees and compression

terms is essentially that in the main text. Expressed in terms of changes to the wage distribution

rather than the structure of binding incentive constraints, technical change has compressed wage

differentials at the bottom, but increased them at the top. This has thinned out the wage distribu-

tion in the tails, but fattened it in the middle. Since, other things equal, it is desirable to impose

higher marginal taxes in areas of the distribution where the wage density is low and few will be

distorted, the Mirrlees component falls on the low-middle incomes, but rises on high incomes (and

on very low incomes in the extreme lower tail). The wage compression effect is enhanced by tech-

nical change as reduced substitutability of workers across tasks gives the government, through

tax policy, more leverage over task shadow prices and wages. This creates a wage compression

motive for raising taxes at the bottom and lowering them at the top. Overall change in the tax code

depends on the balance of these forces, with the wage compression force only predominating in

the extreme tails.

146



0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

I ncome Quanti l e

M
a
rg

in
a
l
R
a
te

C
h
a
n
g
e

Figure B.11: Change in Marginal Taxes.

Overall, while quantitative responses are more muted than in the benchmark case, the broad

policy prescription of modest marginal tax reductions over a broad band of lower-middle income

quantiles combined with an increase over higher quantiles emerges as a robust finding.

B.8 Intra-occupational task variation

The O?NET database collects information on the content of occupations from two sources - occupa-

tional analysts and a direct survey of US workers and establishments. The latter permits some un-

bundling of occupations since those surveyed are asked to assess the knowledge (educational and

training) requirements of the occupations with which they are associated. Variation in responses

gives an indication of the variety of tasks that might be performed by different workers within the

same occupation.14 The O?NET reports statistics summarizing the distribution of these responses.

From the statistics contained within the latest release of the O?NET we construct Leik’s ordinal

variation indices (see, Weisberg (1992));15 we then average the indices associated with every oc-

cupation to create a single index for each. We interpret this index as a measure of disagreement

14Variations in assessments of the skill and ability content of occupations would be preferable, but these assessments
are obtained form analysts and are not requested in the establishment survey. At issue is whether the higher levels of
training and education thought necessary by some respondents are indicative of higher productivities within a task or
whether they are indicative of the performance of more complex tasks within a set of tasks defining the occupation. Our
stance is that they are at least partly the latter.

15This index provides a measure of variation for ranked, categorial variables. The index is equal to zero for a degen-
erate distribution and assumes the maximum value of one for a polarized distribution with equal weight on the two
extremal categories.
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Figure B.12: Average Leik’s ordinal variation (LOV) index concerning the knowledge requirements
of occupations.

amongst workers and establishments as to the knowledge content of an occupation (with a value

of zero indicating complete agreement and a value of one maximal disagreement) and as a proxy

for the variety of (complexity-ranked) tasks within an occupation. In Figure B.12, we plot this

(Lowess-smoothed) ‘disagreement’ index across all ranked occupations v. As the figure indicates,

this index is greater than zero across all v’s. This suggests a degree of dispersion and disagree-

ment in the survey answers. In addition, the value is increasing in v - the regression coefficient

on non-smoothed data is statistically significant with value is .092 (.013). Overall, these results are

consistent with intra-occupational, complexity-ranked task variety that is increasing in the occu-

pation’s average wage. This, in turn, suggests that variation in average occupational wages is a

lower bound for wage variation across (complexity-ranked) tasks, especially at the upper end of

the wage distribution.
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Appendix C

Appendix for Chapter 3

C.1 Appendix

Proof of Proposition 4. The proof follows from an argument similar to that in Example 1. Suppose

every bidder other than bidder 1 uses no resale equilibrium strategy. Consider bidder 1 with value

1 and the alternative strategy
(

βN
1 (1) , βN

1 (1) , 0, ..., 0
)

(similar strategies can be found for other

values in (0, 1)). With this strategy, this bidder will receive two items. She can sell the second item

by using a second-price auction with a reserve price 1
2 , which gives her an expected revenue that

is strictly higher than E
[
Y(n−1)

k

]
. This is because E

[
Y(n−1)

k

]
is the expected revenue of the second

price auction with no reserve price, and the expected revenue of a second price auction with optimal

reserve price is strictly higher than that. Since this bidder has paid E
[
Y(n−1)

k

]
for the second item

and gets strictly more than E
[
Y(n−1)

k

]
in the resale stage, this deviation strictly increases her utility.

βN (x) is not an equilibrium of discriminatory auctions with resale.

Proof of Lemma 4. The first equation follows from noting that ψx(z) =
(

z− F(x)−F(z)
f (z)

)
and F(n−1)

1 (z |

x) =
(

F(z)
F(x)

)n−1
. Denote H(x, z) := n−1

F(x)n−1

(
z− F(x)−F(z)

f (z)

)
F(z)n−2 f (z). Then, we have

γ (x) =
ˆ x

ψ−1
x (0)

H (x, z) dz

and

γ′(x) =

(ˆ x

ψ−1
x (0)

∂

∂x
H(x, z)dz + H(x, x)− H(x, ψ−1

x (0))

)
.
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Note that H(x, x) = (n− 1) x f (x)
F(x) and H(x, ψ−1

x (0)) = 0 . Hence,

γ′(x) =

(ˆ x

ψ−1
x (0)

∂

∂x
H(x, z)dz + (n− 1)

x f (x)
F(x)

)
.

Moreover,

∂

∂x
H(x, z) = (n− 1) F(z)n−2 f (z)

− (n− 1)
F (x)n f (x)

(
z− F(x)− F(z)

f (z)

)
+ (n− 1) F(z)n−2 f (z)

1

F (x)n−1

(
− f (x)

f (z)

)
= −H (x, z)

(n− 1) f (x)
F (x)

+ (n− 1) F(z)n−2 f (z)
1

F (x)n−1

(
− f (x)

f (z)

)

Thus,

ˆ x

ψ−1
x (0)

∂

∂x
H(x, z)dz =

ˆ x

ψ−1
x (0)

(
−H (x, z)

(n− 1) f (x)
F (x)

+ (n− 1) F(z)n−2 f (z)
1

F (x)n−1

(
− f (x)

f (z)

))
dz

= − (n− 1) f (x)
F (x)

ˆ x

ψ−1
x (0)

H (x, z) dz− (n− 1) f (x)

F (x)n−1

ˆ x

ψ−1
x (0)

F(z)n−2dz

= − (n− 1) f (x)
F (x)

γ (x)− (n− 1) f (x)

F (x)n−1

ˆ x

ψ−1
x (0)

F(z)n−2dz

Hence, we have

γ′(x) =

(ˆ x

ψ−1
x (0)

∂

∂x
H(x, z)dz + (n− 1)

x f (x)
F(x)

)

= (n− 1)

(
f (x)
F (x)

(x− γ (x))− f (x)

F (x)n−1

ˆ x

ψ−1
x (0)

F(y)n−2dy

)

Proof of Lemma 5. Consider optimally selling two items to three bidders whose valuations are uni-

formly distributed in [0, y] . The optimal mechanism is a uniform price auction with reserve price
y
2 and revenue given by

3
8
× y

2
+

3
8
× 2× y

2
+

1
8
× 2× 5y

8
=

23
32

y
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If a bidder with value x wins three items, his prior belief is that three remaining bidders all

have values smaller than β−1 (θ (x)) . Hence the conclusion follows.

Proof of Lemma 6. Consider optimally selling one item to two bidders whose valuations are uni-

formly distributed in [0, y] . The optimal mechanism is a second price auction with reserve price y
2

and revenue given by

2× 1
2
× 1

2
× y

2
+

1
2
× 1

2
× 2y

3
=

5
12

y

When a bidder with value x bids δ (x) = θ (x) he wins two items. This means that highest valued

bidder among the competitor has a value greater than β−1 (δ (x)) and each of the two lowest value

bidders has values smaller than β−1 (θ (x)) = β−1 (δ (x)) . Since the two lowest valued bidders are

potential buyers in the resale market, the conclusion follows.

Proof of Lemma 7. First, by method of contradiction, suppose that β (x) > 23
64 x for some x ∈ [0, c] .

Consider a bidder with value θ−1 (β (x)) ≡ y. When this bidder receives three items from the

auctioneer, his total payment for second and third object is δ (y)+ θ (y) ≥ 2θ (y) = 2× β (x) > 23
32 x,

whereas his expected revenue from resale for this case is only 23
32 x. Therefore he makes a loss when

he receives 3 items. So, he is better off by deviating to (β (y) , δ (y) , 0) from (β (y) , δ (y) , θ (y)) .

Proof of Lemma 8. For (i), by method of contradiction, suppose that there exist t ∈ [0, θ (1)] such

that
(

β−1 (t)
)′
> 32

23 and δ−1 (t) < θ−1 (t) . Then we can argue that type θ−1 (t) ≡ y strictly benefits

by deviating to (β (y) , δ (y) , t + ε) for small enough ε. This is because, by deviating to t + ε from t

for his third bid (and this is feasible since δ−1 (t) < θ−1 (t)), this bidder (i) increases the probability

of getting three items, and (ii) increases his net utility when he sells two items to unassigned

bidders (his payment is increases by ε, and his expected revenue increases by strictly more than

23
32 ×

32
23 × ε = ε.)

Next, since β (0) = 0 and β (x) ≤ 23
64 x for all x ∈ [0, c] , we have β′ (0) ≤ 23

64 or
(

β−1 (0)
)′ ≥ 64

23 >

32
23 . Since β is continuously differentiable, there exists d ≤ c such that β (x)′ > 23

32 for all x ∈ [0, d]

and part (i) implies that δ (x) = θ (x) for all x ∈ [0, d] .
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Proof of Lemma 9. By Lemma 8, we know that for all x ∈ [0, d] , we have β (x) ∈
[
0, 23

64 x
]

and

δ (x) = θ (x) . Let us first calculate the net utility of a buyer with value x ∈ [0, d] when he is a seller

in the resale stage. Appealing to Lemmas 5 and 6, this is given by

r (x) ≡ β−1 (θ (x))3
(

23
32

β−1 (θ (x))− 2θ (x)
)
+ 3β−1 (θ (x))2

(
x− β−1 (θ (x))

)( 5
12

β−1 (θ (x))− θ (x)
)

.

First of all, if r′ (x) > 0 then we have θ (x) = β (x) . This is because whenever r′ (x) is positive, a

bidder with value x becomes strictly better off by increasing his second and third bids by ε, and

doing this would be feasible if β (x) > θ (x) .

Next, by method of contradiction, suppose that there exists no e ∈ (0, 1] such that for all x ∈

[0, e] , β (x) = δ (x) = θ (x) . This means there exists f > 0 such that we have β (x) > θ (x) for all

x ∈ (0, f ]. Now, we argue that for all x ∈ (0, f ], we have r (x) > 0. This is because for all x ∈ (0, f ],

(i) x > β−1 (θ (x)) , (ii) β−1 (θ (x)) ≥ 64
23 θ (x) , hence

r (x) > β−1 (θ (x))3
(

23
32

64
23

θ (x)− 2θ (x)
)
+ 3β−1 (θ (x))2

(
x− β−1 (θ (x))

)( 5
12

β−1 (θ (x))− θ (x)
)

≥ 3β−1 (θ (x))2
(

x− β−1 (θ (x))
)( 5

12
64
23

θ (x)− θ (x)
)

> 0

since 5
12

64
23
∼= 1.159 > 1. Since r (0) = 0 and r (x) > 0 for all x ∈ (0, f ], there exists y ∈ (0, f ] such

that r′ (y) > 0, which implies θ (y) = β (y) , a contradiction.

Proof of Lemma 10. Consider a bidder with value x ∈ (0, e) who bids as if his value is z (which is

very close to x.) His expected utility is given by

u (x, z) = z3
(

x− 3β (z) +
23
32

z
)
+ R (x, z)
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where R (x, z) is his expected utility from resale stage when he is a buyer and is given by

R (x, z) = 6
ˆ max{1,2x}

z

ˆ x

k
2

ˆ l

k
2

(x−m) dmdldk + 6
ˆ max{1,2x}

z

ˆ k

x

ˆ x

k
2

(x−m) dmdldk

+ 6
ˆ max{1,2x}

z

ˆ k

k
2

ˆ k
2

0

(
x− k

2

)
dmdldk + 6

ˆ max{1,2x}

z

ˆ k
2

0

ˆ l

0

(
x− k

2

)
dmdldk

(where k, l, m denote the realizations for highest, the second highest, and the third highest values

among the competitors, the first two terms in the summation represent the cases in which the

bidder with value x pays the third highest value, and the last two terms in the summation represent

the cases in which the bidder with value x pays the reserve price).

A necessary condition for this to be an equilibrium is ∂u(x,z)
∂z

∣∣∣
z=x

= 0. Note that ∂R(x,z)
∂z =

−6
(´ x

z
2

´ l
z
2
(x−m) dmdl +

´ z
x

´ x
z
2
(x−m) dmdl +

´ z
z
2

´ z
2

0

(
x− z

2

)
dmdl +

´ z
2

0

´ l
0

(
x− z

2

)
dmdl

)
which equals

to x3 + 5
8 z3 − 3x2z.

Hence, optimality requires:

∂

∂z

(
z3
(

x− 3β (z) +
23
32

z
))
− (x3 +

5
8

z3 − 3x2z)
∣∣∣∣
z=x

= 0

This differential equation will have a unique solution which is β (x) = 3
8 x.

Proof of Proposition 5. We show that the no-resale equilibrium, which is bidding only one positive

bid with

βN (x) = E
[
Y(n−1)

k | Y(n−1)
k < x

]
,

remains an equilibrium with resale.

Suppose that all bidders but bidder 1 are bidding according to above strategy.

If bidder 1 wins one additional unit for a bid b, he expects to sell it for

E
[
Y(n−1)

k | Y(n−1)
k−1 < β−1 (b)

]
.

This is because, when bidder 1 wins two units, he knows that the highest losing value is k− 1 out

of n− 1 opponents, and in a second price auction, he could sell to this person at the k− th highest

of n− 1.
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Now we claim that this is less than b:

E
[
Y(n−1)

k | Y(n−1)
k−1 < β−1 (b)

]
< E

[
Y(n−1)

k | Y(n−1)
k < β−1 (b)

]
= b

First, consider the deviation of the form (b, 0, .., 0) . For this deviation the expected selling price

is

E
[
Y(n−1)

k | Y(n−1)
k < β−1 (b)

]
= b.

Hence, resale cannot be profitable. Now consider the deviation (b1, b2, .., bl , 0, .., 0). Expected sell-

ing price per unit is going to be

E
[
Y(n−1)

k | Y(n−1)
k−l < β−1 (bl)

]
< E

[
Y(n−1)

k | Y(n−1)
k < β−1 (bl)

]
= bl .

Hence, again, resale is not profitable (assuming all l is won, otherwise, change to l′ < l).

So for all deviation cases, deviations are not profitable.

Proof of Proposition 6. We first look at the deviation where a bidder deviates for the first bid. Sup-

pose the bidder with value x deviates to (βR(z), βR(x), ..., βR(x)) where z > x. Note that if z > x >

Y(n−1)
1 then since he just increases the expected payment to the auctioneer such a deviation is not

profitable. Thus that deviation may increase the payoff only if z > Y(n−1)
1 > x > Y(n−1)

k . In this

case, if he did not deviate, his expected utility would be

Π(x, x) = Pr(Y(n−1)
k < x < Y(n−1)

1 )(x−E[Y(n−1)
k | Y(n−1)

k < x < Y(n−1)
1 ]). (C.1)

After deviation his expected utility becomes

Π(x, z) = Pr(Y(n−1)
1 < z)(x− βR(z)).

Since Pr(Y(n−1)
1 < z) = F(n−1)

1 (z) the deviation expected utility becomes

Π(x, z) = F(n−1)
1 (z)

(
x− 1

F(n−1)
1 (z)

ˆ z

0
t f (n−1)

k (t)dt

)
= F(n−1)

1 (z)x− F(n−1)
k (z)z +

ˆ z

0
F(n−1)

k (t)dt

(C.2)
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For equation (C.1) we know that

F(n−1)
k (t | Y(n−1)

k < x < Y(n−1)
1 ) = Pr(Y(n−1)

k < t | Y(n−1)
k < x < Y(n−1)

1 )

=
Pr(Y(n−1)

k < t)

Pr(Y(n−1)
k < x < Y(n−1)

1 )
=

F(n−1)
k (t)

Pr(Y(n−1)
k < x < Y(n−1)

1 )

and the expectation term is

E[Y(n−1)
k | Y(n−1)

k < x < Y(n−1)
1 ] =

ˆ x

0
t f (n−1)

k (t | Y(n−1)
k < x < Y(n−1)

1 )dt.

After some tedious algebra (C.1) can be stated as:

Π(x, x) = x(Pr(Y(n−1)
k < x < Y(n−1)

1 )− F(n−1)
k (x)) +

ˆ x

0
F(n−1)

k (t)dt.

Then the profit of deviation becomes

Π(x, z)−Π(x, x) = F(n−1)
1 (z)x− F(n−1)

1 (z)z +
ˆ z

0
F(n−1)

k (t)dt−
ˆ x

0
F(n−1)

k (t)dt

= F(n−1)
1 (z)(x− z) +

ˆ z

x
F(n−1)

k (t)dt

= F(n−1)
k (z)(x− z) +

ˆ z

x
F(n−1)

k (t)dt < 0.

Therefore such a deviation is not profitable.

In the previous deviation we increased the first bid while keeping the other bids the same.

Now we do reverse: (βR(z1), βR(z2), ..., βR(zk)) where x > z1 > z2 > ... > zk. The first row of the

following expected utility is for the case where zk > Y(n−1)
1 . He wins k items in the bidding stage

and sells k− 1 items with a price E[Y(n−1)
k | Y(n−1)

1 < zk] = βR(zk). It is similar for the second row.

The utility is the case for zk < Y(n−1)
1 < zk−1. k− 1 items are won in the bidding stage and k− 2

items will be sold in the resale stage with a price of E[Y(n−1)
k |Y(n−1)

1 < zk−1] = βR(zk−1). Note that

−F(n−1)
1 (zk)

[
x−

k−1

∑
j=1

βR(zj) + (k− 2)βR(zk−1)

]
+ F(n−1)

1 (zk)

[
x−

k

∑
j=1

βR(zj) + (k− 1)βR(zk)

]
≤ 0.
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Let x = [x, x, ..., x] and z = [z1, z2, ..., zk].1 The expected utility of deviation is

Π(z, x) = F(n−1)
1 (zk)

[
x−

k

∑
j=1

βR(zj) + (k− 1)βR(zk)

]

+
(

F(n−1)
1 (zk−1)− F(n−1)

1 (zk)
) [

x−
k−1

∑
j=1

βR(zj) + (k− 2)βR(zk−1)

]
+...

+
(

F(n−1)
1 (z1)− F(n−1)

1 (z2)
) [

x− βR(z1)
]

+
(

Pr(Y(n−1)
k < x < Y(n−1)

1 )(x−E[Y(n−1)
k | Y(n−1)

k < x < Y(n−1)
1 ])

)
≤ F(n−1)

1 (z1)
[

x− βR(z1)
]
+ Pr(Y(n−1)

k < x < Y(n−1)
1 )(x−E[Y(n−1)

k | Y(n−1)
k < x < Y(n−1)

1 ])

≤ F(n−1)
1 (x)

[
x− βR(x)

]
+ Pr(Y(n−1)

k < x < Y(n−1)
1 )(x−E[Y(n−1)

k | Y(n−1)
k < x < Y(n−1)

1 ])

= Π(x, x)

So such a deviation is not profitable. Therefore the k-tuple (βR(x), βR(x), ..., βR(x)) is an equi-

librium.

Proof of Proposition 7. We will compare the expected payments of a bidder with value x in each

equilibrium. If they are the same, the revenues will also be the same. The expected payment for a

bidder for the first equilibrium is

mN(x) = Pr(Y(n−1)
k < x)E[Y(n−1)

k | Y(n−1)
k < x] = F(n−1)

k (x)
1

F(n−1)
k (x)

ˆ x

0
t f (n−1)

k (t)dt

=

ˆ x

0
t f (n−1)

k (t)dt = F(n−1)
k (x)x−

ˆ x

0
F(n−1)

k (t)dt

= x

(
k−1

∑
j=0

(
n− 1

j

)
F(x)n−1−j(1− F(x))j

)
−
ˆ x

0

(
k−1

∑
j=0

(
n− 1

j

)
F(z)n−1−j(1− F(z))j

)
dz

The next equation is the expected payment of the bidder if bidders follow the second equilib-

rium. The first summand is when the bidder wins the bidding stage and the second summand is

1Each j-th component represents the deviation value.
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when the bidder loses but gets one item in the resale stage. So it becomes

mR(x) =Pr(Y(n−1)
1 < x)(kβR(x)− (k− 1)E[Y(n−1)

k | Y(n−1)
1 < x)])

+ Pr(Y(n−1)
k < x < Y(n−1)

1 )E[Y(n−1)
k | Y(n−1)

k < x < Y(n−1)
1

=Pr(Y(n−1)
1 < x)βR(x) + Pr(Y(n−1)

k < x < Y(n−1)
1 )E[Y(n−1)

k | Y(n−1)
k < x < Y(n−1)

1 ]. (C.3)

The cumulative distribution of Y(n−1)
k under the condition Y(n−1)

1 < x is:

F(n−1)
k (z | Y(n−1)

1 < x) =
k−1

∑
j=0

(
n− 1

j

)(
F(z)
F(x)

)n−1−j (
1− (

F(z)
F(x)

)

)j

=
1

F(x)n−1

k−1

∑
j=0

(
n− 1

j

)
F(z)n−1−j(F(x)− F(z))j.

Note βR(x) = E[Y(n−1)
k | Y(n−1)

1 < x] =
´ x

0 z f (n−1)
k (z | Y(n−1)

1 < x)dz = x− 1
F(x)n−1

´ x
0

(
∑k−1

j=0 (
n−1

j )F(z)n−1−j(F(x)− F(z))j
)

dz.

Now the first summand of (C.3) becomes

Pr(Y(n−1)
1 < x)βR(x) = F(x)n−1x−

ˆ x

0

(
k−1

∑
j=0

(
n− 1

j

)
F(z)n−1−j(F(x)− F(z))j

)
dz.

The second summand of (C.3) is:

(
k−1

∑
j=1

(
n− 1

j

)
F(x)n−1−j(1− F(x))j

)
x−
ˆ x

0

(
k−1

∑
j=1

(
n− 1

j

)
F(z)n−1−j

(
(1− F(z))j − (F(x)− F(z))j

))
dz.

As a result, it is easy to see that mR(x) = mN(x). Hence, the equilibria are revenue equivalent.

Proof of Proposition 8. Consider a deviation (β(z), 0, ..., 0). For a bidder with value x ≥ r∗1 the ex-

pected utility is

Π(x, z) = (x− βRR(z))Pr(z > Y(n−1)
k ) = (x− βRR(z))F(n−1)

k (z).
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This should attain the maximum at z = x so

∂Π(x, z)
∂z

|z=x = x f (n−1)
k (x)−

(
βRR(x)F(n−1)

k (x)
)′

= 0.

Then

x f (n−1)
k (x) =

(
βRR(x)F(n−1)

k (x)
)′

.

If we take integral: ˆ x

r∗
y f (n−1)

k (y)dy =

ˆ x

r∗

(
βRR(y)F(n−1)

k (y)
)′

dy

then we can see that

βRR(x) = E[max{Y(n−1)
k , r∗1} | Y

(n−1)
k < x].

This is the unique candidate for an equilibrium under the condition that bidders bid only for

the first item. Note that it is the standard equilibrium of a discriminatory auction without resale

opportunity where the auctioneer is allowed to set a reserve price. Now consider a deviation(
βRR(x), b, 0, ..., 0

)
. In this deviation the bidder gets an additional unit. He will sell the item to

the k− 1 highest value bidder with the price max{r∗2 , Y(n−1)
k }. So the expected return from resale

is E[max{r∗2 , Y(n−1)
k } | Y(n−1)

k−1 <
(

βRR)−1
(b)]. But the expected payment is E[max{r∗1 , Y(n−1)

k } |

Y(n−1)
k <

(
βRR)−1

(b)] = b. And since r∗2 ≤ r∗1
2 and the event Y(n−1)

k−1 <
(

βRR)−1
(b) is less likely

than to Y(n−1)
k <

(
βRR)−1

(b) so

E[max{r∗2 , Y(n−1)
k } | Y(n−1)

k−1 <
(

βRR
)−1

(b)] ≤ E[max{r∗1 , Y(n−1)
k } | Y(n−1)

k <
(

βRR
)−1

(b)] = b.

Consider a general deviation (b1, b2, ..., bl , 0, ..., 0). He wins l items sells l − 1 items. The expected

2In the bidding stage, the auctioneer choses the optimal reserve price from the interval [0, 1] for n bidders. In the
resale stage, the auctioneer (or the winner of the bidding stage whose value is x) choses the optimal reserve price from
the interval [0, x] for n− k + 1 bidders. Since 1 ≥ x, it is easy to see r∗1 ≥ r∗2 .
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return from resale is :

R =



r∗2 Pr(
(

βRR)−1
(bl) > Y(n−1)

k−l+1 > r∗2 > Y(n−1)
k−l+2)

+2r∗2 Pr(
(

βRR)−1
(bl) > Y(n−1)

k−l+1 > Y(n−1)
k−l+2 > r∗2 > Y(n−1)

k−l+3)

+... + (l − 1)r∗2 Pr(
(

βRR)−1
(bl) > Y(n−1)

k−l+1 > ... > Y(n−1)
k−1 > r∗2 > Y(n−1)

k )

+
(
(l − 1)E[Y(n−1)

k |
(

βRR)−1
(bl) > Y(n−1)

k > r∗2 ]
)


.

Note that R ≤ (l − 1)E[max{r∗2 , Y(n−1)
k } | r∗2 < Y(n−1)

k <
(

βRR)−1
(bl)]. On the other hand,

the expected payment for l − 1 items is: (l − 1)E[max{r∗1 , Y(n−1)
k } | Y(n−1)

k <
(

βRR)−1
(bl)]. Since

r∗2 ≤ r∗1 and the event
(

βRR)−1
(bl) > Y(n−1)

k > r∗2 is less likely comparing to Y(n−1)
k <

(
βRR)−1

(bl)

we have

E[max{r∗2 , Y(n−1)
k } | r∗2 < Y(n−1)

k <
(

βRR
)−1

(bl)] ≤ E[max{r∗1 , Y(n−1)
k } | Y(n−1)

k <
(

βRR
)−1

(bl)].

HenceR ≤ (l − 1)E[max{r∗1 , Y(n−1)
k } | Y(n−1)

k <
(

βRR)−1
(bl)]. So such deviation is not profitable.

Therefore
(

βRR(x), 0, ..., 0
)

is an equilibrium.
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