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Abstract

This thesis studies contests (also called tournaments) wherein a contest organizer seeks solutions to a

problem from independent agents. The seeker employs a subset of these solutions, and awards the best

solution(s). For example, since 2012, Samsung has organized an innovation contest, called the Smart App

Challenge, that invites independent programmers to develop novel applications for its mobile products.

Samsung awards the best few apps, and uploads a larger number of apps to its on-line store. Three chapters

of this PhD thesis provides managerial insights that can assist organizations in designing an optimal contest.

The first chapter studies an innovation contest in which an organizer seeks solutions to an innovation-

related problem from a number of independent agents. While agents exert efforts to improve their solutions,

their outcomes are unknown a priori due to technical uncertainty and subjective taste of the organizer. I call

an agent whose ex-post output contributes to the organizer’s utility a contributor, and consider a general case

in which the organizer seeks any number of contributors. I show that a winner-takes-all award scheme is

optimal to the contest organizer for a large class (but not all) of distributions for agents’ uncertain outputs.

In this case, when the spread of the output distribution or the number of contributors is sufficiently large,

an open contest that does not restrict entry of participants is optimal. Finally, I compare the organizer’s

payoffs under different compensation rules that award participants based on their relative ranks, absolute

performance or a combination of both.

The second chapter studies the impact of agent heterogeneity in a contest. In a contest in which het-

erogeneous agents make efforts to develop solutions, existing theories predict different outcomes about how

agents will change their effort levels as more participants compete for a prize. Specifically, one theory

prescribes that when agents are heterogeneous in their initial expertise, every agent will reduce effort with

more participants due to a lower probability of winning the contest. In contrast, another theory prescribes

that when agents are heterogeneous in their costs of exerting efforts, high-ability agents raise their efforts

with more participants, while low-ability agents reduce their efforts; but it does not provide an explanation

for such a prescription. Yet, a recent empirical study corroborates the prescription of the second theory.

This paper presents a unifying model that encompasses both types of heterogeneity in agents, and proves

that the result prescribed by the second theory holds in the unifying model, suggesting that the first theory is

problematic. Thus, I present the correct analysis of the first theory, and identify a second (positive) effect of

increased competition on agents’ incentives: More participants in a contest raise the expected performance

of a runner-up, and therefore agents need to make higher efforts in order to win the contest. Due to this

positive effect that has been neglected in prior literature, I find that a free-entry open contest is more likely

to be optimal to a contest organizer than what prior literature asserted.
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The third chapter analyzes time-based crowdsourcing contests. In a crowdsourcing contest, a contest

organizer delegates a large population of agents to solve a certain problem while determining how to com-

pensate agents. Each agent’s solution time depends on the agent’s effort level, heterogeneous expertise

level, and a stochastic shock. I call an agent whose ex-post output contributes to the organizer’s objective

a contributor, and consider a general case in which the organizer minimizes the solution time of any num-

ber of contributors. I establish that although the common practice in time-based contests is to offer fixed

prizes, the seeker can do better by compensating contributing agents based on their solution times. I show

that the compensation may be increasing or decreasing in solution time depending on the observability of

agents’ efforts by the organizer. Finally, I show that it is optimal for the organizer to screen agents with the

highest expertise levels, and compensate only these agents when the agents’ outputs are deterministic, and

compensate a larger group of agents when their outputs are stochastic.
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Chapter 1

Innovation Tournaments with Multiple

Contributors

1.1 Introduction

In an innovation tournament, a tournament organizer seeks solutions to an innovation-related problem from

a number of independent agents. The tournament usually starts with the organizer’s announcement of tour-

nament rules such as an award scheme and an entry requirement – in particular, whether the tournament

is open to the public or not. Then, a subset of agents who are interested in the tournament make efforts

to develop solutions to the problem, and submit their solutions to the tournament. Finally, the organizer

evaluates the submitted solutions, and awards the best solution(s) according to the pre-announced rule.

With an increasing trend of outsourcing research and development (R&D) activities, innovation tourna-

ments are becoming more popular in both private and public sectors. To illustrate how innovation tourna-

ments work, consider the following three examples:

• Since 2012, Samsung has organized several innovation tournaments, called Samsung Smart App Chal-

lenge, soliciting innovative apps for its mobile products and smart TVs. The tournament started with Sam-

sung’s announcement of tournament rules. For example, Samsung Smart App Challenge 2013 for GALAXY

S4 is open to anyone who wishes to participate; however, it requires developers to use Samsung Chord soft-

ware development kit, and only those apps that are certified on Samsung Apps (a marketplace that offers

apps for Samsung smart device users) are eligible for awards (Samsung 2013). In our interview with Sam-

sung, practitioners estimated that about 150 certified apps would contend for awards, and set a total of

$800,000 prizes for top ten apps. The judging criteria were uniqueness, commercial potential, functionality,

usability and design.
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• Since 2008, Bill & Melinda Gates Foundation has held innovation tournaments, called Grand Challenges

Explorations, twice every year (GCGH 2012). In each tournament, Bill & Melinda Gates Foundation solicits

innovative ideas on specific topics such as labor saving strategies and innovations for women smallholder

farmers, and new approaches for detection, treatment, and control of selected neglected tropical diseases.

This grant program is open to anyone from any discipline, and chooses grant recipients based on “Topic

Responsiveness” [relevance to the description of a chosen topic] and “Innovative Approach.” The goal of

this program is to foster innovation in global health research by encouraging scientists worldwide to expand

the pipeline of ideas to fight the greatest health challenges.

• Goldcorp, a Canadian-based gold mining company, launched Goldcorp Challenge in March 2000. The

company posted all available geological data for its Red Lake Mine, and it offered $575,000 in prizes to

participants with the best proposals for identifying potential targets for drilling (Infomine 2014). More than

1,400 participants from 51 countries analyzed the geological data and submitted their proposals, which were

then evaluated by five judges at their complete discretion. The company was impressed with the high-quality,

innovative ideas and the diversity of methodologies presented in the submissions. In the end, the Challenge

either identified or helped confirm 110 geological targets, and out of these targets more than 80% yielded

significant gold reserves, generating more than $6 billion (IdeaConnection 2014).

Through open-innovation processes (also called crowdsourcing), organizations can tap into distributed

knowledge and diverse skills outside their boundaries. Today innovation tournaments have emerged as a

novel approach to find solutions to challenging problems as diverse as health science (e.g., Grand Chal-

lenges Explorations), software development (e.g., Samsung Smart App Challenge), mining solutions (e.g.,

Goldcorp Challenge), high-tech research & development (e.g., DARPA Grand Challenge), design (e.g., Sta-

ples’ Invention Quest, a logo design contest for FIFA World Cup), and marketing (e.g., Frito-Lay’s Do Us

A Flavor contest).

Although the specific problems posed in various innovation tournaments differ widely, they all involve

uncertainty in creating and evaluating innovative solutions. For example, a scientist may not know a priori

whether his/her research on a solution for a tropical disease will be effective and whether s/he will receive

a grant from Grand Challenges Explorations. Due to the uncertainty involved, a tournament organizer may

benefit from a large number of participants because he can collect a diverse set of solutions to his problem.

Despite this benefit of having a large number of participants, the organizer need not pay every participant -

often times, the organizer pays only the agent who has submitted the best solution (called the "winner"), and

under this "winner-takes-all" award scheme, all agents except the winner bear all the costs of their efforts.

When anticipating a low probability of winning the tournament, however, agents may not make their best
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efforts or may not even participate in the tournament. In order to elicit best efforts from many agents,

the organizer thus needs to set the right award scheme and prize, and he may also consider restricting the

number of participants to increase the probability of winning for individual agents. Alternatively, instead

of awarding participants based on their relative ranks, the organizer may employ other compensation rules

such as awarding each participant based on her own performance regardless of her rank among others.

The objective of this paper is to understand how agents behave rationally under different tournament

rules, and to find optimal tournament rules that provide agents with proper incentives to participate and

exert their best efforts. Specifically, we examine the following questions: (Q1) What is the optimal number

and amount of prizes – in particular, when is the winner-takes-all award scheme optimal? (Q2) When

is it optimal for a tournament organizer to conduct an open tournament without restricting entries to the

tournament? Would the participating agents always reduce their efforts when additional agents enter the

tournament? (Q3) How does the organizer’s payoff under the compensation rule which awards participants

based on relative ranks compare with his payoff under other compensation rules?

To answer these questions, we develop a normative model of an innovation tournament that involves a

tournament organizer and a finite number of agents. Our model captures the following features that are ob-

served in many innovation tournaments in practice but have been studied under rather restrictive assumptions

in the literature (see §1.2 for detailed comparison between our paper and the extant literature):

• When an organizer seeks the best K solutions, where K is a positive integer between one and the total

number of participants, we say there are K "contributors" among participants in a tournament. In some

tournaments, an organizer is interested in only the best solution, so K equals one (cf. Taylor 1995). For

example, in a logo design tournament for FIFA World Cup, the organizer is interested in finding the best

logo because only one logo will be adopted eventually. In the other extreme, the organizer cares about

all outputs from tournament participants, so K equals the total number of participants. For example, in a

sales contest in which a firm organizes a tournament for its employees, every sales generated by employees

will count toward the firm’s revenue (even when it is optimal for the firm to give out only one award) (cf.

Kalra and Shi 2001). In most tournaments, however, the organizer seeks several good solutions instead of

only the best solution or all submitted solutions. This is evident from the examples we have mentioned

above. Samsung seeks many useful applications for their products - in Samsung Smart App Challenge

2013 for GALAXY S4, K equals an estimated number of certified apps, since those apps that are available

for consumers’ use will enrich the user experience for Samsung smart phones (although not all such apps

will be awarded in this tournament). Also, Bill & Melinda Gates Foundation seeks multiple innovative

ideas for each of the chosen topics (e.g., new approaches for detection, treatment, and control of selected
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neglected tropical diseases), which will help expand the pipeline of ideas to fight global health challenges.

In Goldcorp Challenge, the company benefited from multiple proposals which identified or helped confirm

new gold reserves.

• Agents face uncertainty in developing and evaluating innovative solutions. From an agent’s perspective,

there are two common sources of uncertainty. The first source of uncertainty is "technical uncertainty" that

is inherent in solving an innovation-related problem. This stochastic element in innovation is often modeled

as a search process for the best solution from a number of trials in the innovation literature (e.g., Dahan

and Mendelson 2001, Terwiesch and Loch 2004). For example, a researcher who develops a new approach

for treatment of a tropical disease in Grand Challenges Explorations will undergo a number of experiments,

and she does not know the results of those experiments a priori. The second source of uncertainty, which

we call "taste uncertainty," is due to the subjective or unknown taste of the organizer or other people who

evaluate agents’ solutions. To agents, it is often unclear what constitutes a good solution to an organizer

(e.g., Terwiesch and Xu 2008, Erat and Krishnan 2012). For example, in Samsung Smart App Challenge,

when submitting their apps, developers do not know how judges will evaluate their apps in subjective criteria

such as uniqueness, commercial potential, functionality, usability and design.

Our model allows the organizer’s utility to be a general function that depends on the best K submitted

solutions, and it further captures both types of uncertainties without imposing a specific probability distri-

bution for the aggregate uncertainty that an agent faces. As discussed in the following summary of main

results, the number of contributors and the uncertainties have significant impacts on agents’ efforts, hence

an organizer’s optimal tournament rules. First, although the previous literature assumes a winner-takes-all

award scheme a priori (e.g., Taylor 1995, Fullerton and McAfee 1999), proves its optimality under logistic

and uniform distributions (Kalra and Shi 2001), or shows that it outperforms the award scheme that awards

the winner and/or the runner-up under Gumbel distribution (Terwiesch and Xu 2008), we prove that this

award scheme is optimal under a broad class of distributions – with log-concave or increasing density – for

aggregate uncertainty in agents’ outputs. However, we demonstrate that this scheme is not always optimal;

e.g., when agents’ solutions bear significant risk of not matching the organizer’s taste due to subjective judg-

ing criteria. This finding may explain why multiple prizes are awarded in some tournaments such as Staples’

Invention Quest in which ordinary people submit innovative ideas for office products. Second, contrary to a

first intuition, the optimal amount of the winner prize may decrease as more participants enter a tournament.

This means that a tournament organizer could hold an open tournament in order to collect many innovative

ideas, but even with lower costs. However, when the organizer seeks multiple good solutions to his problem,

he should increase the prize. Third, the theory of innovation tournaments (e.g., Taylor 1995, Fullerton and
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McAfee 1999, Terwiesch and Xu 2008) has long argued that more participants will always cause agents

to reduce their efforts. In contrast, we find that when agents are confident about positive outcomes, more

participants can induce agents to exert higher efforts. This result provides one explanation for the empirical

observation of Boudreau et al. (2012) in software tournaments. Fourth, whereas Terwiesch and Xu (2008)

assert that an open tournament is not optimal when the organizer’s objective is to maximize the average per-

formance of all solutions, this is not necessarily true when more participants cause agents to increase their

efforts. More generally, we show that an open tournament is optimal when an innovation problem involves

sufficiently large uncertainty for any probability distribution and for any number of contributors. This sug-

gests that even if more participants cause agents to underinvest in efforts, the benefit of having a diverse set

of solutions from more participants can outweigh its negative incentive effect when an innovation problem

is highly uncertain. Finally, when the number of contributors is small or the innovation problem features

low uncertainty, the organizer’s payoff matches closely with that under the compensation rule which elicits

the first best efforts from agents by awarding them based on their ex-post absolute performance.

1.2 Related Literature

This paper is broadly related to prior research in innovation and economics of tournaments, and it is more

closely related to recent studies on innovation tournaments that combine the first two streams of research.

Research in innovation and new product development often describes innovation as a process of creative

problem-solving (e.g., see a comprehensive review by Loch and Kavadias 2008). Due to the substantial un-

certainty involved in this process, selecting the best solution to an innovation problem has been modeled as

a search process (e.g., Dahan and Mendelson 2001, Terwiesch and Loch 2004, Girotra et al. 2010, Kornish

and Ulrich 2011). Our model of agents builds on the parallel search model of Dahan and Mendelson (2001)

by characterizing the distribution of the best outcome from multiple independent trials as Gumbel distribu-

tion. One important observation from this research stream is that the expected value of the best outcome of

independent trials increases with the number of trials. A similar result holds in the context of an innovation

tournament because the expected value of the best solution from independent participants increases with the

number of participants in the tournament. Boudreau et al. (2011) call this property the “parallel path effect.”

Prior research in tournaments has focused on different modeling approaches depending on a type of

the problem solved in a tournament. We can broadly divide this literature into three approaches. The first

approach deals with a tournament problem that features no uncertainty in agents’ outputs. In this approach,

an organizer auctions entry into a tournament by eliciting the best effort from agents who are heterogeneous

in the cost of improvement effort (e.g., Moldovanu and Sela 2001, Che and Gale 2003) or in the base quality
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when no effort is exerted (“expertise-based projects” of Terwiesch and Xu 2008). The second approach

features a search process of agents. Taylor (1995) considers an innovation tournament among a pool of

homogeneous agents, in which each agent conducts random trials until the best output of those trials reaches

a pre-determined quality level. Fullerton and McAfee (1999) analyze an innovation tournament in which an

organizer auctions entry into a tournament similarly to the first approach, and agents determine the number

of random trials instead of a stopping quality level as in Taylor (1995). Similarly, Terwiesch and Xu (2008)

consider the “trial-and-error projects” in which homogeneous agents determine their number of trials when

the random outcome of each trial follows Gumbel distribution. Although the first and second approaches

differ in their models and solution techniques, their conclusions are remarkably similar: Increasing the

number of participants reduces participants’ incentives to exert costly effort by reducing the probability

of winning; therefore, restricting the entry of participants improves the performance of the best output.

Boudreau et al. (2011) call this the “incentive effect.”

Recently, Terwiesch and Xu (2008) have proposed the third approach that combines elements of the first

two approaches: agents exert efforts to improve the quality of their solutions in a deterministic manner as in

the first approach, but the quality of their solutions is still unknown to the agents due to the taste uncertainty.

A similar approach has also been adopted in other types of tournaments such as labor tournaments (e.g.,

Lazear and Rosen 1981, Green and Stokey 1983) and sales tournaments (e.g., Kalra and Shi 2001). However,

Green and Stokey (1983) and Kalra and Shi (2001) consider all-contributor tournaments (i.e., K equals

the total number of participants), and hence they do not explore the parallel path effect of the innovation

literature. According to Boudreau et al. (2011) who examine some of our research questions empirically;

“The results presented in this article suggest that neither order-statistic arguments related to parallel paths [in the in-

novation literature] nor game-theoretic arguments related to strategic incentives [in the tournament literature] should

be ignored in modeling or designing innovation contests. This ... suggests that current traditions of modeling inno-

vation contests (i.e., modeling just one set of mechanisms without the other) may largely ignore key interactions and

trade-offs. To our knowledge, only Terwiesch and Xu (2008) have begun to make progress in integrating these issues

thus far ” (pages 861, 862).

However, Terwiesch and Xu (2008) consider the following “tractable special cases” (on page 1532): (i)

“ideation projects” which feature a deterministic reward for effort and the taste uncertainty, but do not

capture the technical uncertainty inherent in innovation processes; and (ii) “trial-and-error projects” in which

agents determine the number of random trials but do not have a deterministic reward for effort, nor facing

the taste uncertainty. For both special cases, they further make the following assumptions:

“Following the work by Dahan and Mendelson (2001), we consider the specific case in which the random noise ξ is

an independent and identically-distributed Gumbel random variable with mean zero and scale parameter µ. ... We

assume the seeker’s payoff to be a weighted combination of the performance of the best solution and the expected
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average performance of all solutions ... It seems plausible that the seeker might be interested in the best K submitted

solutions. These cases lead to qualitatively similar results, yet are analytically intractable” (pages 1532, 1534).

Following the lead of Terwiesch and Xu (2008), this paper attempts to integrate both order-statistic

and game-theoretic arguments by making the following generalizations. First, our model is the first that

entails a deterministic reward for effort, taste uncertainty, and technical uncertainty. By using a general

distribution for the aggregate uncertainty that an agent faces, our model captures a more variety of agents’

beliefs about the unknown taste of an organizer or other evaluators than the Gumbel distribution. Second,

while the prior literature on tournaments considers two extreme cases in which the organizer cares about only

the best solution or all solutions (or their average), it is evident that a tournament organizer is interested in

obtaining multiple good solutions in most tournaments in practice. Terwiesch and Xu (2008) have attempted

to bridge this gap by considering a weighted combination of the best and the average performance. This

approximates “the best K submitted solutions” because the average performance is computed by averaging

the performance of all solutions including poor solutions. However, in many tournaments including the

examples mentioned in §1.1, the organizer need not be concerned about poor solutions. Thus, instead of this

approximation, we explicitly model the organizer’s utility that depends on “the best K submitted solutions,”

and are still able to obtain tractable results even under a general distribution for aggregate uncertainty. As

we demonstrate later, our model does not always yield qualitatively similar results to Terwiesch and Xu

(2008). The analysis of our general model enables us to provide novel insights and to sharpen the existing

results obtained under special cases. Table 1.1 summarizes our results as compared with the results in the

literature.1

1.3 The Model

Consider an innovation tournament in which a tournament organizer (“he”) solicits innovative solutions to

a specified problem from a set of agents (“she”). A tournament proceeds in the following sequence. The

organizer announces tournament rules regarding: (i) whether the tournament is open to anyone who wishes

to participate, and (ii) how participants of the tournament will be compensated. Then agents decide whether

to participate in the tournament, and if they do, they exert efforts to develop their solutions, and submit them

to the organizer. Finally, the organizer evaluates the submitted solutions and compensates agents according

to the announced rule. Below we first describe our model of agents, and then present our model of the

organizer and his decision problem. At the end of this section, we discuss how our model subsumes the

1We note that there are special types of tournaments which require different tournament structures than the conventional structure

in the literature reviewed above. For example, Erat and Krishnan (2012) study design contests in which each agent chooses one

design approach among a finite number of feasible approaches. They model the two sources of uncertainties we describe earlier

(i.e., technical and taste uncertanties) using two separate binary random variables, and further consider the market uncertainty the

organizer may have even after evaluating submitted solutions.
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Table 1.1: The Comparison of Our Results with Existing Results.

Subject Prior tournament literature Terwiesch and Xu (2008) This paper

Winner-takes-all

award scheme

It is assumed a priori (Taylor

1995, Fullerton and McAfee

1999, Che and Gale 2003). In

all contributor-tournaments, it

is optimal under logistic and

uniform distributions with

risk-neutral agents, but it is not

optimal under logistic

distribution with risk-averse

agents (Kalra and Shi 2001).

It is better than awarding the

winner and/or the runner-up

under Gumbel distribution.

For any number of contributors K , it is

optimal under log-concave or

increasing density, but it is not optimal

under some conditions that depend on

the level and type of uncertainty and

the convexity of a cost function.

Optimal amount

of the prize
N/A

It is independent of the

number of participants under

Gumbel distribution and a

logarithmic function of effort

for a deterministic reward.

It can be constant, increasing or

decreasing (e.g., under a Constant

Relative Risk-Aversion (CRRA)

function of effort for a deterministic

reward) with additional participants.

Agent’s

equilibrium

effort

It is decreasing with the

number of participants (Taylor

1995, Fullerton and McAfee

1999).

It is decreasing with the

number of participants under

Gumbel distribution.

It decreases (e.g., under Gumbel,

normal, exponential or logistic) or

increases (e.g., under an increasing

density) with more participants.

Open

tournament

It is not optimal (Taylor 1995,

Fullerton and McAfee 1999).

Under Gumbel distribution

and a logarithmic function of

effort for a deterministic

reward, it is optimal when

K = 1 or the organizer’s

weight on the best output is

high; whereas it is suboptimal

when the organizer maximizes

average output or his weight

on the best output is low.

Under any general distribution, an

increasing and concave function of

effort for a deterministic reward and

any K , it is optimal under a sufficiently

diffuse location-scale transformation.

Furthermore, it is more likely to be

optimal for larger K . It is also optimal

when the organizer maximizes average

output and the agent’s effort increases

with more participants.

Relative

compensation

rule

It is dominated by optimal

individual contracts in

all-contributor labor

tournaments (Hölmstrom

1982, Green and Stokey 1983).

Under Gumbel distribution

and a logarithmic function of

effort for a deterministic

reward, it is dominated by a

performance-contingent

compensation rule when

K = 1.

Under any general distribution and an

increasing and concave function of

effort for a deterministic reward,

optimal individual contracts (which we

define as the absolute compensation

rule) dominate both the relative and

the performance-contingent

compensation rules. The gap increases

with K and the level of uncertainty.

existing models in the tournament literature.

Agents Let N denote a set of agents who can participate in the tournament, and N = |N | (≥ 2) denote

the number of agents in this set. Each participating agent i (∈ N ) develops a solution to the problem posed

by the organizer, and generates an output yi ∈ Y ⊆ R ∪ {−∞,∞}. The output yi can be interpreted as

the quality of the solution or its monetary benefit to the tournament organizer. The output yi is determined

by three components: (i) agent i’s effort, (ii) outcomes of agent i’s random trials and experiments, and (iii)

taste of the people who evaluate the agent’s solution. We elaborate each of these components next. Table

1.2 summarizes the characteristics, examples, and mathematical properties of the three components.

First, each agent can enhance her output by investing “improvement effort” qi ∈ [0, q]. For example,
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conducting a thorough patent search and literature review, or implementing rigorous quality control systems

with high standards will certainly improve agents’ outputs (Terwiesch and Xu 2008). Effort qi leads to a

deterministic improvement v(qi ) of the output, where v is an increasing and concave function of qi .

Second, to generate innovative solutions, each agent may engage in a trial-and-error process by con-

ducting several experiments. Most innovation processes include a concept testing process in which an agent

generates potential ideas and selects the best of them (e.g., Loch et al. 2001, Dahan and Mendelson 2001).

In this process, each agent i determines the number of trials mi (hereafter “trial effort”). In each trial t

(= 1, 2, ...,mi ), the agent faces uncertainty in the outcome of a trial which is modeled by a trial shock ε̃i t .

For example, a logo designer may draw multiple sketches until she chooses the best one to submit, and a

biochemical scientist may try different formulations to discover a new drug for a tropical disease. Follow-

ing the convention of Terwiesch and Xu (2008), based on Dahan and Mendelson (2001), we consider the

specific case in which trial shocks ε̃i t ’s are independent random variables that follow a Gumbel distribution

with E [̃εi t ] = 0 and scale parameter µ. The Gumbel distribution is the asymptotic distribution for the max-

imum of multiple draws from exponential-tailed distributions such as the normal distribution (Dahan and

Mendelson 2001). Each agent observes the realization of (̃εi1, ..., ε̃imi
) before submitting her solution to the

organizer, and selects the best one as her solution. The main difference between the improvement effort and

the trial effort is that an agent knows the value of her improvement effort a priori, whereas she is uncertain

about the final outcome of the trial effort until the end of the development process.

Third, the output of each agent i is often subject to the taste of its evaluators, which we model by a taste

shock ε̃i . For example, it is difficult for a logo designer to predict the specific design of a logo the organizer

would prefer; and in Samsung Smart App Challenge, a programmer cannot predict perfectly how judges

will evaluate the usability and design of his/her app. Following Terwiesch and Xu (2008) and Erat and

Krishnan (2012), we assume that ε̃i ’s are independent and identically distributed (i.i.d.) random variables

with E [̃εi ] = 0. However, whereas Terwiesch and Xu (2008) and Erat and Krishnan (2012) assume Gumbel

and binary distributions respectively, we do not restrict our interest to a specific distribution. This enables us

to model a variety of the agent’s belief on unknown taste. Unlike trial shocks ε̃i t ’s, each agent i is uncertain

about the taste shock ε̃i even after the development process is over.

Combining the three components discussed above, we represent the output of agent i as a function of

improvement effort qi , trial effort mi , trial shock (̃εi1, ..., ε̃imi
), and taste shock ε̃i , as follows:

y(qi ,mi , ε̃i1, ..., ε̃imi
, ε̃i ) = v(qi )+ max {̃εi t , t = 1, ...,mi } + ε̃i . (1.1)

This output function is rather general because it not only captures a deterministic reward for improvement
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Table 1.2: The Characteristics, Examples, Revelation Time and Mathematical Properties of the Three Components

that Constitute the Agent’s Output.

Component Characteristics and examples When the effect is observed Mathematical properties

Improvement effort (qi )

It models all effort leading to a

deterministic improvement.

Ex: Conduct a literature review.

Agent i knows that qi will lead

to v(qi ) before starting

development.

v is increasing and

concave in qi .

Trial effort (mi ) and

trial shock (̃εi t )

Trial effort models all effort leading to

a stochastic improvement in output;

trial shock is the stochastic effect on

the trial effort.

Ex: Draw alternative logo sketches.

Agent i learns the effect of the

trial effort mi (i.e., observes

the trial shock ε̃i t ) before

submitting her solution to the

organizer.

ε̃i t ’s are independent

and follow a Gumbel

distribution with mean

0 and scale parameter

µ.

Taste shock (̃εi )

It occurs because the agent and the

organizer evaluate the agent’s output

differently.

Ex: Judging criteria such as usability

and design are subjective in Samsung

Smart App Challenge.

Agent i does not observe the

taste shock ε̃i before

submitting her solution to the

organizer.

ε̃i ’s are independent

and identically

distributed with a

general distribution and

mean zero.

effort and a stochastic reward for trial effort, but also captures the subjective taste of evaluators.

The utility of agent i , Ua(qi ,mi , xi ) : R3
+ → R, is defined over her improvement effort qi , her trial

effort mi , and the monetary compensation xi that she receives from the organizer. The utility of the agent

takes the following form: Ua(qi ,mi , xi ) = xi−ψ(c1qi+c2mi ), where c1 > 0, c2 > 0, and ψ is convex and

increasing with ψ(0) = 0. We can interpret this function as follows. When an agent exercises improvement

effort qi and trial effort mi , her total effort is ei = c1qi + c2mi ; for example, if ei represents the total labor

hours an agent spends, c1 and c2 are the time it takes for the agent to make one unit of improvement and trial

effort, respectively. The agent’s disutility or cost associated with the total effort is ψ(ei ) = ψ(c1qi + c2mi ).

The following lemma shows that the output function y given in (1.1) can be simplified to a new output

function that depends only on agent i’s total effort ei and aggregate shock ξ̃ i . All proofs are presented in

Appendix.

Lemma 1 The output function in (1.1) can be simplified to y(ei , ξ̃ i ) = r(ei ) + ξ̃ i in which ei is the total

effort, r is a concave and increasing function, and ξ̃ i is a random shock that is independent of ei . For

example, if v(qi ) = κ log(qi ) for some κ > 0, then r(ei ) = γ + θlog(ei ) where θ (> 0) and γ are

constants.

In the rest of this paper, we will use the simplified output function y(ei , ξ̃ i ) = r(ei )+ ξ̃ i , and refer to ei as

agent i’s “effort” and ξ̃ i as her “output shock.” As is common in the literature (e.g., Taylor 1995, Terwiesch

and Xu 2008), we focus on symmetric equilibria, and denote the agent’s effort in equilibrium by e∗. The

output shock ξ̃ i (∈ 4) follows cumulative distribution H and density h with E [̃ξ i ] = 0 and 4 = [s, s]

where s ∈ R ∪ {−∞} and s ∈ R ∪ {∞}. As shown in the proof of Lemma 1, ξ̃ i is equal to ε̃i + ε̃i , where

“technical shock” ε̃i ≡ max {̃εi t , t = 1, ...,mi } − µ log mi follows a Gumbel distribution with E [̃εi ] = 0
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and scale parameter µ. We will interpret our results in terms of primitive technical shock ε̃i and taste shock

ε̃i as well as aggregate output shock ξ̃ i .

The Organizer The utility of the organizer, Ûo(Y, X) : YN × RN → R, is defined over the output vector

Y and the compensation vector X . We consider the case where the organizer benefits from K (∈ {1, ..., N })

best outputs, and refer to those agents who produce the K best outputs as “contributors.” Formally,

Definition 1 Let Y (K ) = {y(1)[Y ], . . . , y(K )[Y ]} where y( j)[Y ] represents the j-th highest output in Y - for

ease of notation, we use y( j) in short. The organizer’s utility has K contributors if for all Y ∈ YN , X ∈ RN
+,

(i) There exists a continuously differentiable function Uo so that Ûo(Y, X) = Uo(Y
(K ), X);

(ii) For all j = 1, 2, . . . , K ,
∂Uo(Y

(K ),X)
∂y( j)

> 0.

A compensation rule φ : YN → RN maps the output vector Y = (y1, . . . , yN ) to a vector of compen-

sations the organizer pays to the agents, X = (x1, . . . , xN ). In many tournaments in practice, organizers

use the relative compensation rule which compensates each agent based on the rank of her output among

all outputs. For example, if the organizer awards two prizes, then he will compensate two agents who have

submitted the best two solutions. We formally define the relative compensation rule as follows:

Definition 2 A compensation rule is called the relative compensation rule when there exists some constant

A( j) such that φi (y( j)[Y ]) = A( j) for all i ∈ N , j = {1, . . . , N } and Y ∈ YN .

The relative compensation rule consists of a vector of N prizes (awards), denoted by (A(1), ..., A(N )), such

that the agent who produces the j-th best output receives a prize of A( j). With K contributors, the organizer’s

utility function under the relative compensation rule is:

Uo(Y
(K ), (A(1), A(2), ..., A(N ))) =

K∑
j=1

y( j) −
N∑

j=1

A( j), ∀ Y ∈ Y. (1.2)

We now present the organizer’s problem that maximizes Uo given in (1.2). In preparation, we introduce

two terms ξ̃
N

( j) and P N
( j)[ei , e∗]. Let ξ̃

N

( j) be a random variable with cumulative distribution H N
( j) and density

hN
( j) that represents the j-th highest value among N i.i.d. output shocks. Noting that ξ̃

N

( j) is the (N− j+1)-st

order statistic among N random variables (cf. the 1st order statistic is defined as the minimum of N i.i.d.

random variables), we can show that hN
( j)(s) =

N !
( j−1)!(N− j)!

(1− H (s)) j−1 H (s)N− j h (s). Similarly, let

P N
( j)[ei , e∗] be the probability that the output of agent i is the j-th highest output when she exerts effort ei

and all other (N − 1) agents exert the equilibrium effort e∗. We can compute this probability as

P N
( j)[ei , e∗] =

∫
s∈4

(N − 1)!

( j − 1)! (N − j)!
H(s+ r(ei )− r(e∗))N− j (1− H(s+ r(ei )− r(e∗))) j−1h(s)ds, (1.3)
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because (N − j) agents are ranked lower than agent i , ( j − 1) agents are ranked higher than agent i , and

they can be ordered in (N−1)!
( j−1)!(N− j)!

combinations. The organizer solves the following program2:

max
N≥K , (A(1),...,A(N ))

Uo = Kr
(
e∗
)
+ E

[
K∑

j=1

ξ̃
N

( j)

]
−

N∑
j=1

A( j) (1.4)

s.t.
1

N

N∑
j=1

A( j) ≥ ψ(e
∗) (1.5)

e∗ = arg max
e∈R+

N∑
j=1

P N
( j)[e, e∗]A( j) − ψ(e). (1.6)

The objective of the organizer given in (1.4) is to choose N (≥ K ) and (A(1), ..., A(N )) that maximize his

expected utility. Participation constraint (1.5) guarantees the participation of agents in the tournament in

equilibrium. Let N p be the maximum number of agents who wish to participate in the tournament, i.e.,

N p ≡ sup

{
N |

1

N

N∑
j=1

A( j) ≥ ψ(e
∗)

}
. (1.7)

When the organizer allows entry of all agents who wish to participate in the tournament (i.e., chooses

N = N p), a tournament is called an “open tournament” with unrestricted entry. Constraint (1.6) is the

incentive compatibility constraint that incorporates the agent’s utility maximization problem into the or-

ganizer’s problem. In this problem, each agent chooses the effort e that maximizes her expected prize∑N

j=1 P N
( j)[e, e∗]A( j) less her cost of exerting effort e, ψ(e), assuming that every other agent will choose

the effort e∗ in equilibrium. In §A.2.1 of Online Appendix, we present sufficient conditions for the existence

of e∗ that satisfies the participation constraint (5). Throughout the paper, we will assume that at least one of

these sufficient conditions is satisfied for some N ≥ K .

Discussion Before we proceed to our analysis, we discuss how our model generalizes the existing models

in the tournament literature. First, our output function takes two types of innovation projects studied in

Terwiesch and Xu (2008) as special cases: (1) trial-and-error projects which assume fixed improvement

effort (i.e., v(qi ) = γ for some constant γ ) and no taste shock (i.e., ε̃i = 0 with probability 1); and

(2) ideation projects which assume no trial-and-error experiments (i.e., ε̃i t = 0 with probability 1) and

a specific distribution of the taste shock ε̃i (i.e., Gumbel ε̃i ). Second, we consider any general number of

contributors K between 1 (e.g., Taylor 1995, Che and Gale 2003) and N (e.g., Green and Stokey 1983, Kalra

and Shi 2001), including most common cases of K ∈ (1, N ); see §1.1 for various industry examples. As

we have mentioned in §1.2, this is the approach discussed but stated “analytically intractable” by Terwiesch

2We assume that an agent incurs no entry cost. However, we can easily incorporate this entry cost into our model by simply adding

it to the right-hand-side of (1.5). Therefore, this cost affects only the agents’ decisions of whether to participate in a tournament.
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and Xu (2008); instead, they use a weighted combination of the best and the average performance, where

a weight ρ on the best output is given exogenously. As we demonstrate in the next section, increasing K

does not always lead to qualitatively similar results to decreasing ρ.3 Third, the utility function of agents

in our model generalizes the two special cases considered in the literature in which the cost associated with

effort is a linear function of effort (e.g., Terwiesch and Xu 2008, Moldovanu and Sela 2001) or a strictly

convex function of effort (e.g., Che and Gale 2003). Furthermore, in §1.5.1, we extend our model to a

more general form of the organizer’s utility function Uo in which the organizer’s risk averseness and the

complementarity among contributors’ solutions are considered. Finally, while we focus our analysis in §1.4

on the relative compensation rule, in §1.5.2 we consider alternative compensation rules similar in spirit to

Green and Stokey (1983) and Terwiesch and Xu (2008), and compare performance under those rules with

that under the relative compensation rule.

1.4 Optimal Tournament Design

This section is organized as follows. In §1.4.1, we examine the optimal number and amount of prizes that the

organizer should award to agents. In §1.4.2, we first examine agents’ rational behavior as more participants

enter a tournament, and then find the condition under which an open tournament with unrestricted entry is

optimal to the organizer.

1.4.1 Optimal Award Scheme

We first examine the optimal number of prizes that a tournament organizer should award. Let A =
∑N

j=1 A( j)

be the total amount of prizes awarded. By substituting A into the organizer’s utility Uo in (1.4), we have

Uo(A) = Kr
(
e∗
)
+ E

[
K∑

j=1

ξ̃
N

( j)

]
− A. (1.8)

For any given A and N , an award scheme (A(1), ..., A(N )) maximizes the organizer’s utility Uo when it

maximizes the first term in (1.8) by inducing agents to make their best efforts in equilibrium, because the

second and third terms in (1.8) are constant. Note from the agent’s problem given in (1.6) that the marginal

benefit of additional effort e,
∑N

j=1(P
N
( j)[e, e∗])′A( j), depends on the award scheme (A(1), ..., A(N )), while

its marginal cost ψ ′(e) is independent of the award scheme. Thus, the award scheme that maximizes agents’

marginal benefit of additional effort induces agents to make their best efforts in equilibrium. The following

lemma provides a necessary and sufficient condition under which it is optimal for the organizer to award

3Note that our model takes K given exogenously. In practice, the organizer should have an estimated value of K (e.g., K=150

in Samsung Smart App Challenge described in §1) before conducting a tournament because K affects his optimal decision on

tournament rules. Our model thus allows us to isolate the impact of K on the organizer’s and agents’ decisions. In §1.6, we also

discuss alternative models in which the organizer determines K endogenously ex-ante or ex-post.
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Figure 1.1: Weibull density with mean 0, scale parameter µ = 1, and shape parameter β.

only the agent who has submitted the best output; i.e., the winner-takes-all scheme is optimal.

Lemma 2 Suppose there are N (≥ 2) participants in a tournament. Then, for any given A, it is optimal for

the organizer to grant the entire prize to the agent with the highest output, i.e., A(1) = A and A( j) = 0 for

all j ∈ {2, ..., N } if and only if (1.5) holds and

∂P N
(1)[e, e∗]

∂e

∣∣∣∣∣
e=e∗

≥
∂P N

( j)[e, e∗]

∂e

∣∣∣∣∣
e=e∗

for all j > 1. (1.9)

Lemma 2 states that the winner-takes-all award scheme maximizes the agent’s marginal benefit of effort un-

der condition (1.9). This condition is satisfied when a marginal increase of her effort raises her probability of

becoming the winner (P N
(1)[e, e∗]) more than her probability of attaining any other rank j (> 1) (P N

( j)[e, e∗]).

If condition (1.9) is violated, then the increased effort of an agent raises the probability of attaining rank

j (> 1) more than the probability of becoming the winner; and thus the organizer is better off by choosing

an award scheme with A( j) > 0 rather than the winner-takes-all scheme.

It is important to note that condition (1.9), hence the optimality of the winner-takes-all scheme, depends

crucially on the characteristics of the output shock ξ̃ i . This can be seen from the definition of P N
( j) given

in (1.3) that shows its dependence on the density h of ξ̃ i . In the following proposition, we derive sufficient

conditions for the output shock ξ̃ i to satisfy condition (1.9) under which the winner-takes-all scheme is

optimal.

Proposition 1 Suppose there are N (≥ 2) participants in a tournament and (1.5) holds under the winner-

takes-all award scheme. Then, for any fixed A, the winner-takes-all award scheme is optimal when the

density h(s) of the output shock ξ̃ i is log-concave (i.e., d2 log h(s)/ds2 ≤ 0 ∀s) or increasing in s.

Proposition 1 establishes the optimality of the winner-takes-all award scheme under a broad class of distri-

butions for agents’ uncertain outputs. To satisfy log-concavity, a density should not be highly convex at any

portion of its support (because log(h(s)) is a concave transformation). Many of the commonly-used distri-

butions are log-concave, including Gumbel, exponential, normal, uniform, and logistic distributions. The
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Weibull distribution can be strictly log-concave, log-linear or strictly log-convex (i.e., d2 log h(s)/ds2 <

0,= 0 or > 0 ∀s, respectively), depending on its shape parameter as depicted in Figure 1.1. However, when

the Weibull distribution is not log-concave, it is increasing, and hence satisfies condition (1.9). These con-

ditions can also be interpreted in terms of the primitive technical shock ε̃i and taste shock ε̃i . Since ε̃i has

a log-concave density and the convolution of two log-concave distributions is log-concave (e.g., Ibragimov

1956, Hoggar 1974), when the taste shock ε̃i has a log-concave density, the aggregate shock ξ̃ i also has a

log-concave density. For example, when the taste shock ε̃i follows a uniform or normal distribution, the

density h of the aggregate shock ξ̃ i is log-concave as illustrated in Figure 1.2. Uniform and normal dis-

tributions are two popular distributions in modeling symmetric prior beliefs about an unknown value (e.g.,

Gelman et al. 2003), and thus they are reasonable when agents have roughly equal beliefs about the chances

of getting more positive or negative evaluations than they deserve for their submitted solutions. In practice,

a number of Ideation Challenges (each of which asks a broad question formulated to obtain access to new

ideas such as new applications for Polyamides or for far infrared technology) at InnoCentive (a company

which intermediates hundreds of innovation tournaments every year for various organizations) adopt the

winner-takes-all scheme.4

A couple of remarks on Proposition 1 are as follows. First, even if the taste shock ε̃i does not have a log-

concave density, the density of the aggregate shock ξ̃ i can still be log-concave – in other words, when one

distribution is log-concave and the other is not, their convolution can still be log-concave (see Example A2

in Online Appendix). This suggests that Proposition 1 is more likely to hold in the presence of both technical

and taste uncertainties than in the special case of having only taste uncertainty (e.g., a generalized version

of the ideation projects considered by Terwiesch and Xu 2008). Second, our result provides the conditions

under which the winner-takes-all scheme dominates all other award schemes (i.e., any combinations of

(A(1), ..., A(N ))). In contrast, Terwiesch and Xu (2008) show that when h is a Gumbel density, the winner-

takes-all scheme gives higher utility to the organizer than awarding the winner and/or the runner-up. We

illustrate in Example A3 in Online Appendix that even if the winner-takes-all scheme gives higher utility

to the organizer than awarding the winner and/or the runner-up, it does not necessarily dominate all other

award schemes under a general density h.

Although the winner-takes-all scheme is optimal in many practical situations that satisfy the conditions

in Proposition 1, it is not always optimal. Specifically, the winner-takes-all scheme is suboptimal when: (i)

the density h of ξ̃ i violates condition (1.9) in Lemma 2, or (ii) there are no participants in a tournament under

this award scheme. The following proposition provides sufficient conditions for each of these situations.

4See https://www.innocentive.com/ar/challenge/9933288 and https://www.innocentive.com/ar/challenge/9933289.
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Figure 1.2: (a) Uniform density with parameters −3 and 3; (b) Normal density with mean 0 and variance 1; (c)

Gumbel density with mean 0 and µ = 1; (d) The density h of the aggregate output shock ξ̃ i as the convolution of the

distribution in (a) (for the taste shock ε̃i ) and the distribution in (c) (for the technical shock ε̃i ); (e) The density h as

the convolution of the distributions in (b) and (c).

Proposition 2 For any given A and N, the winner-takes-all award scheme is suboptimal when one of the

following conditions is satisfied:

(i) lims→s h(s) = 0, lims→s

∣∣∣ h′(s)
h(s)

∣∣∣ <∞, and∫
s∈4

[H N
( j)(s)− H N

(1)(s)]

(
h′(s)

h(s)

)′
ds > 0, (1.10)

where (1.10) holds if h(s) is strictly log-convex (i.e., d2 log h(s)/ds2 > 0 ∀s).

(ii) A

N
− ψ

((
ψ ′

r ′

)−1 (
A
∫

s∈4 (N − 1) H(s)N−2h(s)2ds
))
< 0.

We first discuss condition (i) using an example in Figure 1.3. Observe that the density h shown in Figure

1.3(a) or Figure 1.3(c) features a large region that is highly convex (which guarantees (1.10)) and decreasing

(c)
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Figure 1.3: (a) Frechet density with mean 0, shape parameter β = 1.2, and scale parameter µ = 1.5; (b) Gumbel

density with mean 0 and scale parameter µ = 1; and (c) The convolution of the distributions in (a) and (b), where s( j)

satisfies h(s( j)) = E[h(̃ξ
N−1

( j) )].
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between its peak point and its fat right tail (which ensures lims→s h(s) = 0 and lims→s

∣∣h′(s)/h(s)
∣∣ <∞).5

The output shock ξ̃ i can have the density h shown in Figure 1.3(a) when the taste shock ε̃i has the density

shown in Figure 1.3(a) and the technical shock ε̃i = 0 with probability 1 in ideation projects; or it can have

the density h shown in Figure 1.3(c) when the taste shock ε̃i has the density shown in Figure 1.3(a) and the

technical shock ε̃i features the Gumbel density shown in Figure 1.3(b). In these examples, due to the large,

highly convex, and decreasing region of h(s), a marginal increase of an agent’s effort could increase her

probability of attaining some rank j (> 1) more than that of becoming the winner.6 In practice, this may

represent a situation wherein agents’ taste uncertainty contains a decreasing fat right tail, which signals a

“herd behavior” or “mega-hits potential” as described by Dahan and Mendelson (2001).7 For example, such

a taste uncertainty may exist in tournaments like Frito Lay’s Do Us A Flavor contest (in which agents create

potato chip ideas), wherein popularity among consumers is a dominating criterion in evaluating the winning

idea.

Condition (ii) specifies when agents’ participation becomes an issue in a tournament under the winner-

takes-all scheme. In this case, there will be no equilibrium and the winner-takes-all scheme cannot be

optimal to the organizer. This happens when the solution to the agent’s problem in (1.6) does not satisfy

the participation constraint (1.5). In this case, the organizer may award multiple prizes in order to induce

agents to participate in a tournament, albeit exerting a lower effort than the maximum effort level under

the winner-takes-all scheme. In §A.2.1 of Online Appendix, we show that condition (ii) may hold when

agents face a sufficiently low level of uncertainty and/or when the cost function ψ of agents is not highly

convex. This suggests that, ceteris paribus, the winner-takes-all scheme is less likely to be optimal in a

tournament which adopts more objective evaluation criteria (e.g., DARPA Grand Challenge which evaluates

autonomous robotic vehicles for their range and speed) while demanding less substantial increase in agents’

marginal costs of efforts (e.g., Frito Lay’s Do Us A Flavor contest).

5lims→s h(s) = 0 when the density h of ξ̃ i is decreasing and s = ∞. lims→s

∣∣h′(s)/h(s)
∣∣ < ∞ for gamma, lognormal and

Frechet distributions. Likewise, lims→s

∣∣h′(s)/h(s)
∣∣ <∞ for Pareto distribution, and all other fat-tailed distributions because they

satisfy h(s) ∼ s−(1+γ ) and h′(s) ∼ −(1+ γ )s−(2+γ ) for some γ > 0 as s →∞.

6Let s( j) be such that h(s( j)) = E[h(̃ξ
N−1
( j) )] (i.e., s( j) represents the certainty equivalent of ξ̃

N−1
( j) under the density h). In

the proof of Proposition 1, we show that
∂P N

(1)[e
∗,e∗]

∂e
= r ′(e∗)h(s(1)) and

∂P N
(2)[e

∗,e∗]

∂e
= r ′(e∗)

{
h(s(2))− h(s(1))

}
. Figure 1.3(c)

illustrates that in this example,
∂P N

(1)[e
∗,e∗]

∂e
= r ′(e∗)h(s(1)) = 0.065r ′(e∗) and

∂P N
(2)[e

∗,e∗]

∂e
= r ′(e∗){h(s(2))−h(s(1))} = (0.133−

0.065)r ′(e∗) = 0.068r ′(e∗). Therefore, the highly convex and decreasing region of h(s) leads to
∂P N

(1)[e
∗,e∗]

∂e
<

∂P N
(2)[e

∗,e∗]

∂e
.

7The presence of a decreasing fat-tailed distribution due to herd behavior is not limited to tournaments. For example, Cha et al.

(2007) empirically show that the popularity distribution of YouTube videos is fat-tailed. In this case, herd behavior exists because

viewers influence each other to view certain videos, so a small number of videos become extremely popular whereas the majority

of the videos are relatively less popular.
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To summarize our results so far, although the winner-takes-all scheme is not always optimal, it is optimal

under fairly weak conditions. In the rest of this paper, as is common in the tournament literature reviewed

in §1.2, we will focus on winner-takes-all tournaments by assuming that h is log-concave or increasing and

that the participation constraint is satisfied.

We next examine the optimal winner prize denoted by A∗ in a winner-takes-all tournament. Since the

second term (E[
∑K

j=1 ξ̃
N

( j)]) in (1.8) is independent of A and the third term (‘−A’) in (1.8) decreases with

A, we need to understand how the agent’s effort e∗ changes with the winner prize A in order to characterize

the optimal winner prize A∗. Under the winner-takes-all scheme, the agent’s problem in (1.6) becomes

max
e∈R+

AP N
(1)[e, e∗]− ψ(e) = max

e∈R+
A

∫
s∈4

H
(
r (e)− r(e∗)+ s

)N−1
h (s) ds − ψ(e). (1.11)

Substituting e = e∗ into the first order condition of (1.11) yields

ψ ′(e∗)

r ′(e∗)
= A

∫
s∈4

(N − 1) H (s)N−2 h (s)2 ds. (1.12)

The left-hand side of (1.12) is increasing in e∗ because
(
ψ ′(e∗)/r ′(e∗)

)′
= ψ ′′(e∗)

r ′(e∗)
− ψ ′(e∗)r ′′(e∗)

(r ′(e∗))2
≥ 0 when ψ

is increasing and convex (ψ ′ > 0 and ψ ′′ ≥ 0) and r is increasing and concave (r ′ > 0 and r ′′ ≤ 0). Thus,

as expected, the effort e∗ is increasing in the winner prize A for any given H(s) and N . Consequently, the

organizer faces a trade-off in choosing a value of A: a larger prize motivates agents to exert higher efforts,

but it costs more to the organizer. In the next lemma, we present a condition under which a unique optimal

winner prize A∗ exists, and show that A∗ increases with the number of contributors K .

Lemma 3 Let g(e) = r ′(e)/ψ ′(e). Suppose that r(·) and ψ(·) satisfy
g(e)g′′(e)

(g′(e))2
≤ 2 for all e ∈ R+. Then, for

any fixed N, a unique optimal winner prize A∗ exists, and furthermore it is increasing in K .

The condition on g given in Lemma 3 is a sufficient condition for Uo to be concave in A; a necessary

and sufficient condition is also presented in the proof. The implication of Lemma 3 is as follows. When

the organizer is interested in obtaining multiple good solutions from a tournament (i.e., a tournament with

multiple contributors), one may wonder whether the organizer should award one large prize only to the

winner or multiple small prizes to top performers. In conjunction with Proposition 1, Lemma 3 suggests

that the former option outperforms the latter one under a broad class of distributions for the output shock ξ̃ i .

While the optimal award A∗ is increasing in the number of contributors K , interestingly, A∗ can be

increasing, decreasing or constant with the number of participants N . To illustrate, consider the following

example:

Example 1 Suppose that the effort function r(e) = γ +θ e1−a−1
1−a

(which is a Constant Relative Risk Aversion
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(CRRA) function) and the cost function ψ(e) = ceb, where θ, a, c > 0, b ≥ 1 and γ ∈ R. Then, the optimal

award is A∗ =
(

K

a+b−1

) a+b−1
2a+b−2 θ

b
2a+b−2

(
IN

cb

) 1−a
2a+b−2 , where IN =

∫
(N − 1) H(s)N−2h(s)ds (see §A.2.3 in

Online Appendix). For instance, when b = 1, a > 0.5, and the output shock ξ̃ i follows a Gumbel distribution

with mean 0 and scale parameter µ, the optimal award becomes A∗ =
(

K

a

) a
2a−1 θ

1
2a−1

(
N−1

cµN 2

) 1−a
2a−1

. Therefore,

A∗ is increasing in N when a > 1, constant in N when a = 1, and decreasing in N when a < 1. Note that

lima→1 r(e) = γ + θ log e, so A∗ is constant in N when the effort function r(e) takes a logarithmic form.

Example 1 includes the special case considered in Terwiesch and Xu (2008) in which a = 1 and b = 1,

hence A∗ is constant in N . Alternatively, one might expect that as more participants enter the tournament, the

organizer should increase the prize A so as to provide an additional incentive for an agent to increase effort

e∗. However, Example 1 demonstrates that this is not necessarily true. The reason is as follows. When more

participants reduce the marginal contribution of the prize A to the organizer’s utility, which happens when

increasing N reduces ∂r(e∗)
∂A
= r ′(e∗) ∂e∗

∂A
, the organizer should reduce the prize A. Suppose agents reduce

their efforts with more participants.8 Then more participants will increase the marginal contribution of effort

to the output r (i.e., r ′(e∗)), while decreasing the marginal increase of effort with the increased prize (i.e.,

∂e∗

∂A
).9 When the marginal contribution of effort to output is inelastic to a change in effort (i.e.,

∣∣∣ d log(r ′(e))
d log(e)

∣∣∣ =
− r ′′(e)e

r ′(e)
= a < 1), more participants increase r ′(e∗) less than they decrease ∂e∗

∂A
. Thus, increasing N reduces

∂r(e∗)
∂A

. In practice, this may correspond to situations in which the organizer seeks solutions to a large-scale

technical project (e.g., creating a new drug for a neglected tropical disease) rather than a simple ideation

project (e.g., creating a new flavor for potato chips) because solving a large-scale technical problem usually

requires consistent and significant effort, whereas generating an average-quality idea on a simple problem

requires relatively low effort, yet additional effort does not improve the quality of the idea much. In this

case, it is optimal for the organizer to reduce the prize A with more participants.

1.4.2 Optimal Decision on Restricted or Open Entry

In this section, we examine when the organizer should allow the entry of all agents who wish to participate in

the tournament or restrict the entry of participants. To answer this question, we examine how the number of

participants (N ) affects the organizer’s utility given in (1.8): Uo = Kr (e∗)+E[
∑K

j=1 ξ̃
N

( j)]−A. Note that the

first term in Uo, Kr (e∗), increases (resp., decreases) with N if the agent’s equilibrium effort e∗ increases

(resp., decreases) with N , since K is fixed and r(·) is increasing. The second term in Uo, E[
∑K

j=1 ξ̃
N

( j)],

8We will show in the next section that agents may reduce or increase their efforts with more participants. In either case, A∗ can

be increasing or decreasing with N .
9More participants increase r ′(e∗) because r ′ is a decreasing function and e∗ is reduced. In §1.4.2, we show that when e∗ decreases

with N , IN defined in Example 1 decreases. In this case, under the setting of Example 1, ∂e∗

∂A
= 1

a+b−1

(
θ IN
cb

) 1
a+b−1

A
2−a−b
a+b−1 which

is increasing in IN , so more participants decrease ∂e∗

∂A
.
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represents the expected value of the best K outcomes from N i.i.d. random numbers. It is easy to see that

this term increases with N (≥ K ) for any K ; in other words, a more diverse set of solutions increases the

expected value of the best K outputs. Therefore, for a given award A, depending on how e∗ changes with N ,

Uo can be increasing or decreasing with N . When Uo is increasing with N , it is optimal for the organizer to

choose an open tournament. In the remainder of this section, we examine: [1] how the agent’s equilibrium

effort e∗ changes with N , and then [2] when the organizer should choose an open tournament.

[1] Agent’s Equilibrium Effort e∗ against N As the number of participants N increases,10 one may expect

that agents would decrease their effort e∗ because their individual chance of becoming the winner decreases.

In fact, Terwiesch and Xu (2008) show that e∗ decreases with N , and they explain this result as follows:

“For a given award A, the more solvers participate in the open innovation contest, the less effort each solver exerts

in equilibrium. The intuition behind this negative externality reflecting an underinvestment in solver effort is that the

more solvers participate in the contest, the lower the probability of winning for a particular solver. With lower winning

probabilities, solvers’ expected profit decrease, leading to weaker incentives for them to exert higher efforts.” (page

1536)

We next show, counter-intuitively, that more participants do not always induce lower efforts from agents

under a general distribution for the output shock ξ̃ i . For ease of exposition, we consider a fixed award A as

in Terwiesch and Xu (2008) although our main result in this section (Proposition 3) is proved in Appendix

without making this assumption. As shown in §1.4.1, the agent’s equilibrium effort e∗ satisfies condition

(1.12) given by ψ ′(e∗)/r ′(e∗) = AIN , where

IN ≡

∫
s∈4

(N − 1) H (s)N−2 h (s)2 ds. (1.13)

Because ψ ′(e∗)/r ′(e∗) is increasing in e∗ (see §1.4.1), if IN is increasing (resp., decreasing) in N , then e∗

is increasing (resp., decreasing) in N . For illustration, we show in Example 2 (resp., Example 3) that e∗ as

well as IN is increasing (resp., decreasing) in N ; see Figure 1.4.

Example 2 Suppose that ξ̃ i follows a Gumbel distribution with mean 0 and scale parameter µ; i.e., h (s) =

1
µ

exp
(
− s+µς

µ
− e
− s+µς

µ

)
where ς is the Euler-Mascheroni constant (ς ≈ 0.5772). This is the ideation

project considered in Terwiesch and Xu (2008). In this case, IN =
N−1

µN 2 is decreasing in N, so is e∗.

Example 3 Suppose that ξ̃ i follows a Weibull distribution with mean 0, shape parameter β = 1, and scale

parameter µ; i.e., h(s) = 1
µ

exp
{
−(µ−s

µ
)
}

. In this case, IN =
N−1
µN

is increasing in N, so is e∗.

The reason why more participants can induce higher efforts from agents is more subtle than Ter-

wiesch and Xu (2008) posit above. Since IN determines whether e∗ is increasing or decreasing with

10We consider increasing N up to N p where N p is defined in (1.7), because there exists no equilibrium with N > N p .

34



−2 0 3
0

0.4

s2(1)s
4
(1)s

6
(1)

s

I2

I4

I6

(a) Gumbel density with mean 0 and µ = 1.
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Figure 1.4: (a) Example where IN is decreasing with N , and (b) Example where IN is increasing with N .

N , we examine IN closely. From (1.11)-(1.13), the agent’s marginal benefit of increasing her effort is

A(P N
(1)[e

∗])′ = Ar ′(e∗)IN . For any given award A, this term increases with (P N
(1)[e

∗])′ = r ′(e∗)IN , which

represents a marginal change of the winning probability with additional effort. Thus, IN is related to the

marginal change of the winning probability with additional effort rather than to the winning probability

itself. When IN+1 > IN (i.e., IN increases with N ), (P N+1
(1) [e∗])′ > (P N

(1)[e
∗])′ for any e∗, implying that one

unit of effort will increase the winning probability more when there are (N+1) participants than when there

are N participants; consequently, agents will make higher efforts with (N +1) participants than with N par-

ticipants. This explains that, although more participants always lower the probability of winning for agents

for any distribution of the output shock ξ̃ i , more participants do not always lead to agents’ underinvestment

in effort.

To build intuition about when IN is increasing or decreasing with N , it is useful to rewrite IN in (1.13) as

IN =
∫

s∈4 h (s) hN−1
(1) (s)ds = E[h(̃ξ

N−1

(1) )]. Recall from §1.3 that hN−1
(1) (·) is the density of a random variable

ξ̃
N−1

(1) that represents the highest value among (N−1) i.i.d. output shocks; thus, ξ̃
N−1

(1) stochastically increases

with N . As discussed above, IN is related to an agent’s marginal change of the winning probability with

additional effort, and the expression for IN = E[h(̃ξ
N−1

(1) )] implies that IN can be computed by assessing the

best output shock among all other agents (̃ξ
N−1

(1) ) through the density of her own shock (h). Let s N
(1) represents

the certainty equivalent of ξ̃
N−1

(1) under the density h, so that h(s N
(1)) = E[h(̃ξ

N−1

(1) )] = IN . In Example 2, IN

decreases because IN = h(s N
(1)) > h(s N+1

(1) ) = IN+1 (see Figure 1.4(a)), whereas in Example 3, IN increases

because IN = h(s N
(1)) < h(s N+1

(1) ) = IN+1 (see Figure 1.4(b)).

Building on this observation, Lemma 4(a) presents a necessary and sufficient condition on the the output

shock ξ̃ i under which more participants induce (weakly) lower efforts, and Lemma 4(b) presents sufficient

conditions under which more participants induce higher efforts from agents.

Lemma 4 (a) The equilibrium effort e∗ is non-increasing for any N ≥ 2 if and only if the density h(s) of
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(a) The density h(s) of ξ̃ i when µ =1.
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Figure 1.5: (a) The density h(s) as the convolution of a Gumbel density with mean 0 and µ = 1 (for ε̃i ) and a Weibull

density with mean 0, scale parameter 5, and shape parameter 1 (for ε̃i ); and (b) Agent’s equilibrium effort e∗ when

r(e) = log e, ψ(e) = 0.1e, A = 1, and h(s) given in (a) with µ = 1, 0.1, and 0.01, respectively.

the output shock ξ̃ i satisfies ∫
s∈4
(1− H(s))H(s)h′(s)ds ≤ 0. (1.14)

(b) If the density h(s) of ξ̃ i is increasing with s, then e∗ is strictly increasing for any N ≥ 2. Moreover, when

ε̃i has an increasing density and ε̃i has a Gumbel density with a scale parameter µ > 0, there exist µ̄ (> 0)

and N ∗ (> 2) such that if µ ≤ µ̄, e∗ is increasing in N ≤ N ∗.

Condition (1.14) in Lemma 4(a) ensures that the density h(s N
(1)) is non-increasing in N as in Example 2. This

condition is satisfied by any symmetric log-concave distribution (e.g., normal, logistic) as well as Gumbel

and exponential distributions (see the remark in the proof of Lemma 4). On the other hand, this condition

is violated for a Weibull distribution in Example 3. Since (1.14) is a necessary and sufficient condition,

whenever it is violated, the equilibrium effort e∗ is increasing for some N . More specifically, Lemma 4(b)

shows that when the output shock ξ̃ i has an increasing density h(s) (e.g., the taste shock ε̃i has an increasing

density and the technical shock ε̃i = 0 with probability 1 in ideation projects), e∗ is strictly increasing for

all N . Even if h(s) is not increasing, as long as the taste shock ε̃i has an increasing density, the effort e∗ is

increasing in N up to some N ∗. For example, Figure 1.5(a) depicts the density obtained as the convolution

of the distributions shown in Figures 1.4(a)-(b). It shows that IN = h(s N
(1)) < h(s N+1

(1) ) = IN+1 for N < 4

and that IN = h(s N
(1)) > h(s N+1

(1) ) = IN+1 for N ≥ 4. Thus, following the discussion above, e∗ increases

with N ≤ N ∗ = 4, and then decreases afterwards. Figure 1.5(b) illustrates that N ∗ is decreasing with µ,

suggesting that as a tournament features a lower level of technical uncertainty, it is more likely to observe

agents increase their efforts with more participants.

In practice, an increasing density for ξ̃ i or ε̃i may represent a situation in which an agent is confident

about the chances that the organizer will appreciate her solution positively. In this case, according to Lemma
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4(b), more participants induce higher efforts from agents. This result is analogous to the empirical finding

of Boudreau et al. (2012) who study an algorithm contest with different types of agents such as “superstar

agents” with high prior ability and “non-superstar agents” with lower prior ability. They observe that su-

perstar agents increase their efforts when other agents enter the tournament (cf. Figure 6 in Boudreau et al.

2012). Our result provides one explanation for this empirical observation by showing that more participants

may induce higher efforts from confident agents.

[2] The Organizer’s Decision on Restricted or Open Entry Having characterized how the agent’s equi-

librium effort e∗ changes with the number of participants N , we now return to our main question of this

section: When the organizer should allow the entry of all agents who wish to participate in the tournament

(i.e., choose N = N p, where N p is defined in (1.7)) or restrict entry of participants (i.e., choose N < N p).

Let us first consider the case when e∗ is increasing in N . In this case, more participants to the tournament

will not only provide a more diverse set of solutions to the organizer (see our discussion at the beginning of

this section), but also induce higher efforts from participants. Therefore, it is optimal for the organizer to

allow unrestricted entry of agents. This happens, for example, when the condition given in Lemma 4(b) is

satisfied with N p ≤ N ∗.

In the second case when the equilibrium effort e∗ is decreasing in N , it is not clear whether the benefit of

having a diverse set of solutions will outweigh the agents’ underinvestment in effort. To quantify the benefit

from diversity for a general distribution H(s), we introduce the notion of a location-scale transformation

(e.g., Rothschild and Stiglitz 1970, Meyer 1987).

Definition 3 Two distribution functions H1(·) and H2(·) differ by a location-scale transformation if there

exist parameters α0 and α1 such that H1(s) = H2(α0 + α1s) for all s ∈ 4. When α0 = 0, a location-scale

transformation is simply a scale transformation .

Example 4 Suppose ξ̃ i follows a generalized extreme value (GEV) distribution with location, scale, and

shape parameters (λ, µ, β); i.e., H(s) = exp{−[1 + ( s−λ
βµ
)]−β}. This distribution includes Gumbel (β =

+∞), Weibull (β < 0) and Frechet (β > 0) distributions. The location-scale transformation ξ̂ i = α0+α1̃ξ i

of H also follows a GEV distribution with location, scale, and shape parameters (α0+α1λ, α1µ, β). Figure

1.6 depicts how the GEV density shifts under a scale transformation of α1 = 2 with ĥ(s) = 1
α1

h( s

α1
).

The scale transformation of the output shock ξ̃ i with scale parameter α1 preserves the mean of 0 while

multiplying its variance by α2
1. When α1 > 1, the transformed output shock (i.e., ξ̂ i = α1ξ̃ i ) has a larger

variance and its density is more spread out than the initial one. The following proposition shows that
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Figure 1.6: Scale transformations (α1 = 2) of GEV distribution with mean 0 and scale parameter µ = 0.5.
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Figure 1.7: Minimum scale parameter α1 for an open tournament. Parameters used: ξ̃ i v Gumbel with mean 0 and

µ = 0.5; ξ̂ i = α1ξ̃ i ; N = 10; r(e) = log(e) and ψ(e) = eb.

when the output shock density h(s) is sufficiently diffuse (so that its variance is sufficiently large), an open

tournament with unrestricted entry is optimal.11

Proposition 3 For any distribution H of output shock ξ̃ i , there exist α1 such that under a scale trans-

formation of ξ̃ i with α1 ≥ α1, an open tournament with unrestricted entry is optimal for any number of

contributors K .

We illustrate Proposition 3 using the following example.

Example 5 The effort function r(e) = γ + θ log(e) with γ ∈ R and θ > 0; the cost function of an agent

ψ(e) = ceb with c > 0 and b ≥ 1; and the output shock ξ̃ i follows a general distribution with mean 0.

We show in §A.2.3 of Online Appendix that the optimal winner prize A∗ = K θ/b which is independent

of the number of participants N . Thus, in the organizer’s utility Uo = Kr (e∗) + E[
∑K

j=1 ξ̃
N

( j)] − A∗, N

affects only the first two terms. When K = 1, Figure 1.7(a) illustrates how the increments of these two

terms with an additional participant (i.e., |Kr(e∗,N+1) − Kr(e∗,N )| and (
∑K

j=1 E [̃ξ
N+1

( j) ] −
∑K

j=1 E [̃ξ
N

( j)]),

where e∗,N denotes e∗ when there are N participants) change as the outputs of agents exhibit higher va-

riety with increasing scale parameter α1 in their output shocks. As the output variety (α1) increases,

11The same result also holds for a scale transformation of the taste shock ε̃i or the technical shock ε̃i .
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(
∑K

j=1 E [̃ξ
N+1

( j) ] −
∑K

j=1 E [̃ξ
N

( j)]), which captures the contribution of an additional participant to the ben-

efit of having a diverse set of solutions, increases. This is intuitive. On the other hand, as α1 increases,

|Kr(e∗,N+1) − Kr(e∗,N )| remains constant, implying that a change in agents’ equilibrium effort with an

additional participant is independent of the output variety. Although the latter result might also appear intu-

itive, it is not true for a general effort function r . Nevertheless, we show in Proposition 3 that the positive

effect of increasing the output variety on (
∑K

j=1 E [̃ξ
N+1

( j) ] −
∑K

j=1 E [̃ξ
N

( j)]) outweighs its (potentially nega-

tive) effect on |Kr(e∗,N+1)− Kr(e∗,N )| when the output variety is sufficiently large (i.e., α1 ≥ α1) for any

general distribution; see Figure 1.7(a).

Figures 1.7(b)-(c) illustrate how the scale parameter α1, which is the minimum α1 required for unre-

stricted entry to be optimal, changes with the number of contributors K and with the degree of convexity

captured by b in the cost function ψ , respectively (see Lemma A4 in Online Appendix for analytical results

for a general distribution of ξ̃ i ). First, Figure 1.7(b) shows that α1 decreases with K . This suggests that if an

open tournament with unrestricted entry is optimal for some K , then it is also optimal for any larger number

of contributors, K ′ (> K ). This is intuitive because an open tournament would be more preferable to the

organizer when he is interested in obtaining a larger number of solutions. Second, Figure 1.7(c) shows that

as the cost function ψ becomes more convex with higher b, α1 decreases; i.e., an open tournament is more

likely to be optimal. To understand this result, we examine the increments of the first two terms in Uo with

an additional participant (mentioned above). Although (
∑K

j=1 E [̃ξ
N+1

( j) ] −
∑K

j=1 E [̃ξ
N

( j)]) is independent of

b, we find that |Kr(e∗,N+1) − Kr(e∗,N )| =
∣∣ K θ

b
log(IN+1/IN )

∣∣ decreases with b (see §A.2.3 in Online Ap-

pendix). This suggests that as the marginal cost of effort increases with b, agents will lower their efforts less

with the entry of an additional participant. Therefore, the diversity benefit of having many participants will

be more likely to outweigh its potentially negative impact on strategic incentives of agents.

These results are corroborated by the industry practice. For example, Samsung Smart App Challenge

and Goldcorp Challenge involve a high level of uncertainty in creating and evaluating solutions, expect

a large number of contributors, and require increasing marginal costs for agents to develop high-quality

solutions. As a result, these tournaments are conducted as open tournaments. On the other hand, in a

design contest for the official emblem of the 2014 FIFA World Cup, only 25 agencies of Brazil were asked

to participate (James 2014). Although this tournament also involves uncertainty, it is a single-contributor

tournament and it might not require as substantial increase in the marginal cost of agents’ efforts as the other

two tournaments (which are more technically-challenging).

Finally, we discuss how our results above complement and sharpen the existing results in the literature.

First, Proposition 3 complements the prior result of Terwiesch and Xu (2008) (obtained under a Gumbel
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distribution for ξ̃ i , a logarithmic return function r , a linear effort cost ψ, and a single contributor with

K = 1) by generalizing it to a setting with a general distribution for ξ̃ i , increasing and concave r , increasing

and convex ψ , and an arbitrary number of contributors K . It is worth pointing out that special care is

taken to prove this result under our general setting because the optimal award A∗ can change with the

number of participants (see §1.4.1). Second, we can apply our results to a special case when the organizer

is interested in the average quality of all solutions. In this case, the organizer’s utility Uo given in (1.8)

becomes: Uo = r (e∗) − A, where the term E[
∑N

j=1 ξ̃
N

( j)] in (1.8) is zero because the sum of all output

shocks are averaged out to zero; i.e., having a more diverse set of solutions no longer benefits the organizer.

Hence, our results for the agent’s equilibrium effort e∗ in this section (as well as the optimality of the

winner-takes-all scheme in §1.4.1) still apply to this case. Therefore, whereas Terwiesch and Xu (2008)

have shown that unrestricted entry is not optimal when the output shock ξ̃ i follows a Gumbel distribution,

unrestricted entry is optimal when e∗ increases under a general distribution of ξ̃ i (see, e.g., Lemma 4(b)).

Third, our result demonstrates that an open tournament is more preferable as the organizer is interested

in obtaining a larger number of solutions (i.e., larger K ). On the other hand, Terwiesch and Xu (2008)

show that an open tournament is less likely to be optimal when the organizer’s weight on the best output

decreases, or equivalently when his weight on the average output increases. A primary reason for these

seemingly contrasting results is that the benefit of an additional participant (i.e., increasing N ) on the term

E[
∑N

j=1 ξ̃
N

( j)] in Uo is zero for the average output in the model of Terwiesch and Xu (2008), whereas in our

case, it is positive (i.e., E[
∑K

j=1 ξ̃
N+1

( j) ]− E[
∑K

j=1 ξ̃
N

( j)] > 0) and increasing with any K (see Lemma A1 in

Appendix). Lastly, we add novel insight into how the agent’s cost function affects the optimality of an open

tournament.

1.5 Extensions

In §1.5.1, we extend our results to a case with a general utility function for the organizer. In §1.5.2, we

compare the performance under the relative compensation rule with that under alternative compensation

rules.

1.5.1 General Utility Function Form

The organizer’s utility function introduced in §1.3 subsumes the single and all-contributor cases studied in

the prior literature, and enables us to provide an insight into how the number of contributors affects the

organizer’s utility. One may then wonder whether the form of the organizer’s utility function plays a sig-

nificant role in the optimal tournament design. In this section, we consider the following general utility

function for the organizer: Uo = uo

(
Y (K )

)
− ψo(

∑N

j=1 A( j)), where Y (K ) = (y(1), ..., y(K )), ψo is an in-
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creasing, continuously differentiable, and convex (including linear) function, and uo is a non-decreasing,

continuous, and almost everywhere differentiable function that satisfies ∂uo(Y
(K ))

∂y( j)
> 0 when y( j) > 0 for

j = 1, 2, . . . , K .12 This utility function not only generalizes the utility function defined in §1.3, but also

includes the following three interesting and commonly-used forms. First, product complementarity mod-

els in economics (e.g., Constant Elasticity of Substitution (CES) form uo(Y
(K )) = (

∑K

j=1 ω( j)y
ρ
( j))

1
ρ for

ω( j), ρ > 0 in Acemoglu 2009) and marketing/operations (e.g., CES form with ρ = 1 in Desai et al. 2001)

are useful when the outputs of contributors complement each other; for example, innovative ideas on how

to produce, ship, and store vaccines for neglected tropical diseases in Grand Challenges Explorations. Sec-

ond, additively separable risk-averse models in economics (e.g., CRRA form uo

(
Y (K )

)
=
∑K

j=1 ω( j)
y

1−a
( j)

1−a

for ω( j) > 0, a ∈ (0, 1) in Acemoglu 2009) can be used when the organizer is risk-averse and the outputs

of contributors are non-monetary and non-complementary. Third, portfolio management models in finance

(e.g., uo

(
Y (K )

)
=
(∑K

j=1 ω( j)y( j)

)a

for ω( j) > 0, a ∈ (0, 1] in Müller and Stoyan 2002) may be appropriate

for the situation in which the organizer maximizes total value from the outputs of contributors having dif-

ferent weight ω( j) for different rank j = 1, 2, ..., K ; for example, top rankers may receive better marketing

and financial support in commercializing innovative product ideas from Staples Invention Quest.

We first discuss the results in §1.4.1 under this general utility function. The organizer’s utility in equi-

librium can be written as uo(r(e
∗)+ ξ̃

N

(1), ..., r(e
∗)+ ξ̃

N

(K ))−ψo(A). Thus, for any given A and N , the award

scheme (A(1), ..., A(N )) maximizes the organizer’s utility when it induces agents to make their best effort e∗

in equilibrium, because ξ̃
N

( j) ∀ j is invariant to (A(1), ..., A(N )). Note from (1.6) that given (A(1), ..., A(N )) and

N , the agent’s equilibrium effort e∗ does not depend on a specific form of the organizer’s utility function

Uo. Thus, Lemma 2 and Propositions 1 and 2 about the optimal award scheme continue to hold under the

general utility function Uo.

Next, we extend the results in §1.4.2 to the general utility function Uo. As discussed above, for any

given A and N , the agent’s equilibrium effort e∗ does not depend on a specific form of Uo, nor does whether

e∗ increases or decreases with N . Thus, Lemma 4 holds under the organizer’s general utility function Uo. In

the remainder of this section, we focus on extending Proposition 3 to the general utility function Uo. To this

end, we need to make the following two assumptions:

Assumption 1 uo is homogenous of degree d; i.e., for any Y (K ) and α > 0, αduo

(
Y (K )

)
= uo

(
αY (K )

)
.

Assumption 2 For any σ > 0, the effort and cost functions satisfy limα→∞ r

((
r ′

ψ ′

)−1

(σα)

)
/α = r0 ∈ R.

12In case when the organizer cares only about agents’ outputs that contribute positive utility to her, one may use a utility function

that is defined over RK
+ and let uo(Y

K ) = uo

(
max{y(1), 0}, ...,max

{
y(K ), 0

})
. As long as uo satisfies the same assumptions as

mentioned in this section (such as non-decreasing, continuous, and so on), the results continue to hold.
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Assumption 1 is on the organizer’s utility function Uo, and it is satisfied by all of the special cases of Uo

discussed at the beginning of this section. Assumption 2 is on the agent’s effort function r and cost function

ψ , and it requires that r((r ′/ψ ′)−1) does not diverge to negative infinity faster than linearly. The assumption

is trivially satisfied when r is bounded from below. It is also satisfied by the example we have used in §1.4.2

in which r(e) = γ + θ log e for γ ∈ R and θ > 0 and ψ (e) = ceb for c > 0 and b ≥ 1.

Corollary 1 Under Assumptions 1 and 2, for any fixed prize A, Proposition 3 holds for the general utility

function Uo.

1.5.2 Alternative Compensation Rules

So far, we have analyzed an innovation tournament in which an organizer uses the relative compensation

rule which awards participants based on their relative ranks. Although this compensation rule is commonly

used in practice, one may wonder whether the organizer can do better by adopting an alternative compen-

sation rule. In particular, we will compare the organizer’s utility under the relative compensation rule with

that under an absolute compensation rule which awards each participant based on her own output. For

convenience, we will use the acronyms RCR and ACR for the relative and absolute compensation rules,

respectively. The formal definition an optimal ACR is as follows.

Definition 4 A compensation rule φ∗ : Y → R is the optimal ACR (in short, “the ACR”) when it solves the

following program:

max
φ, N≥K

Kr
(
e∗
)
+

K∑
j=1

E [̃ξ
N

( j)]−
N∑

j=1

E[φ(r(e∗)+ ξ̃
N

( j))] = Kr
(
e∗
)
+

K∑
j=1

E [̃ξ
N

( j)]− N · E[φ(r(e∗)+ ξ̃ i )] (1.15)

s.t. E[φ
(
r(e∗)+ ξ̃ i

)
] ≥ ψ(e∗) (1.16)

e∗ = arg max
ei∈R+

E[φ
(
r(ei )+ ξ̃ i

)
]− ψ(ei ). (1.17)

The objective in (1.15) maximizes the organizer’s utility in which the last term, N · E[φ(r(e∗) + ξ̃ i )],

represents the total compensation paid to agents. Although the total prize is fixed ex-ante as A =
∑N

j=1 A( j)

under the RCR, the total compensation under the ACR depends on agents’ ex-post outputs. Participation

constraint (1.16) ensures that each agent’s expected payment covers her cost of effort in equilibrium, and

incentive compatibility constraint (1.17) incorporates the agent’s problem of optimizing her effort level into

the organizer’s problem.

The following lemma characterizes the ACR, and it shows that the ACR implements the agent’s first-best

effort that maximizes the total welfare of the organizer and agents. 13

13Corollary A1 in Online Appendix extends Lemma 5 to the case where a compensation rule φ has lower and upper bounds; i.e.,

φ ≤ φ ≤ φ. The lower bound φ is appropriate for the situation when there is limited liability, and the upper bound φ is appropriate
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Lemma 5 The compensation rule φ∗ (y) = K

N
y + ψ(e∗)− K

N
r(e∗) is the ACR, and it implements the first-

best effort e∗ =
(
ψ ′

r ′

)−1 (
K

N

)
. Furthermore, the ACR yields a (weakly) higher utility to the organizer than

any other compensation rules.

Because the ACR φ∗ makes use of agents’ ex-post outputs (which contain richer information than the relative

ranks used by the RCR), it can induce agents to make the first-best effort e∗. Moreover, unlike the RCR,

e∗ under the ACR always decreases with the number of participants N (because
(
ψ ′/r ′

)−1
is an increasing

function as discused in §1.4.1). The reason is as follows. While implementing the first-best effort, the

organizer compensates agents at their expected cost of effort (i.e., E[φ∗(r(e∗)+ ξ̃ i )] = ψ(e
∗)). Thus, when

determining how much effort to elicit from agents, the organizer equates the marginal benefit of effort on

the organizer’s utility (i.e., Kr ′ (e∗)) with the marginal cost of effort (i.e., Nψ ′(e∗)). When the tournament

has more participants (i.e., larger N ), the marginal benefit of effort is unchanged, whereas the marginal cost

of effort increases; consequently, the organizer lowers the effort elicited from agents.

We next present the main result of this subsection that compares the organizer’s utility under the RCR

with that under the ACR.

Proposition 4 Let U RC R,N
o [K ] and U AC R,N

o [K ] be the organizer’s utility when there are N participants and

K contributors under the RCR and the ACR, respectively. Let r(e) = γ +θ log e and ψ(e) = ceb for γ ∈ R,

θ, c > 0 and b ≥ 1. Consider any general distribution H of ξ̃ i and its scale transformation of ξ̂ i = α1̃ξ i

with α1 > 1. Then, U AC R,N
o [K ]−U RC R,N

o [K ] is non-negative, and it is increasing in K and α1.

Proposition 4 suggests that when the number of contributors is small or the innovation problem features low

uncertainty, the organizer’s payoff under the RCR matches closely with that under the ACR. The difference

between the organizer’s utility under the RCR and that under the ACR (i.e., U AC R,N
o [K ]−U RC R,N

o [K ]) grows

with the number of contributors K as well as the spread of the output shock captured by α1; see Figure 1.8

for illustration. To understand the underlying factors that drive these results, we compare each term of the

organizer’s utility U AC R,N
o [K ] in (1.15) with the corresponding term of U AC R,N

o [K ] in (1.8). For any given

N , we show in the proof of Proposition 4 that under the ACR, e∗ =
(

K θ
Ncb

)1/b
and N E[φ∗

(
r(e∗)+ ξ̃ i

)
] =

Nψ(e∗) = K θ
b

; whereas under the RCR, e∗ =
(

K θ2 IN

α1cb2

)1/b

and A∗ = K θ
b

. Thus, for any N , only the first

term Kr(e∗) of U AC R,N
o [K ] differs from that of U RC R,N

o [K ], while the second and third terms are the same.

The expressions for e∗ under the two rules further reveal that the effort e∗ (hence Kr(e∗) and Uo) is larger

and increasing faster in K under the ACR than that under the RCR because θ IN/b ≤ 1/N by participation

constraint (1.5) and α1 > 1. This suggests that the ACR elicits higher efforts from agents than the RCR with

when the organizer has limited budget.
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Figure 1.8: Comparison of the organizer’s utility Uo under the RCR with that under the ACR or the PCR. Parameters

used: ξ̃ i v Gumbel with mean zero and µ = 1; ξ̂ i = α1ξ̃ i ; N = 25; r(e) = 1+ log(e) and ψ(e) = 0.1e.

the same total payment. Furthermore, as agents face larger uncertainty, the ACR performs better than the

RCR (i.e., (U AC R,N
o [K ]−U RC R,N

o [K ]) increases with α1). The reason is as follows. Under the RCR, when

facing larger uncertainty, agents reduce their efforts in equilibrium because the winner is determined by luck

rather than by their efforts. However, under the ACR, the expected payment of an agent depends solely on

her output, and there is no competition among agents to become the winner; hence, larger uncertainty does

not affect agents’ efforts in equilibrium.

Although the RCR does not always perform as well as the ACR, the RCR remains a popular tool to

elicit innovative solutions in practice. There are several plausible explanations. First, the RCR is easier to

implement because the RCR requires only relative ranks among agents’ solutions, whereas the ACR needs

the assessment of absolute performance for every solution. Thus, it may be less costly for the organizer to

evaluate solutions under the RCR. If we take into account this cost difference, then our result in Proposition

4 can be revised as follows: the ACR performs better than the RCR only when such cost difference is lower

than a certain threshold. Second, the ACR stipulates that the absolute performance of agents’ solutions

should be verifiable in a court (cf. Bolton and Dewatripont 2004), but such verification may not be possible

in some tournaments (e.g., Malcomson 1984). For instance, in Samsung Smart App Challenge 2013, judges

evaluate submitted applications based on subjective criteria such as creativity and originality. In such a case,

agents cannot observe their actual outputs, and the organizer has an incentive under the ACR to devalue

agents’ outputs ex-post to reduce payment to agents. This incentive problem disappears under the RCR

because the organizer commits to a fixed prize ex-ante. In addition, the prior literature has identified different

environments under which the RCR may perform better than the ACR in the all-contributor case (i.e., K =

N ), including perfect competition among multiple organizers (Lazear and Rosen 1981) and correlation

among agents’ outputs (Hölmstrom 1982 and Green and Stokey 1983).
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Besides the two compensation rules studied so far, Terwiesch and Xu (2008) consider a performance-

contingent compensation rule (in short, PCR). This rule gives the entire award to the winner based on

relative ranks of outputs as in the RCR, but the winner is awarded a proportion ω of her output similarly to

the ACR. Thus the expected award under this rule is E[ω(r(e∗)+ ξ̃
N

(1))]. When there is a single contributor

(i.e., K = 1), Terwiesch and Xu (2008) have shown that the PCR provides a higher utility to the organizer

than the RCR. Figure 1.8(a) demonstrates that this result continues to hold for K < 13, but no longer

holds for K ≥ 13. This is expected because the maximum award under the PCR is limited to the best

output r(e∗) + ξ̃
N

(1) when ω = 1 is chosen, whereas the optimal award A∗ = K θ under the RCR keeps

increasing with the number of contributors K . More importantly, Figure 1.8 illustrates that our main result

in this section continues to hold for the PCR: the ACR outperforms the PCR especially when the number of

contributors K and/or the spread of the output shock is large.

1.6 Conclusion

In this paper, we have studied an innovation tournament in which an organizer seeks single or multiple solu-

tions to an innovation-related problem from a number of independent agents. Due to substantial uncertainty

in innovation processes, the organizer may benefit from a large number of participants, but the increased

competition among participants may induce agents to underinvest in effort. In order to provide agents with

proper incentives to exert costly effort, the organizer should design his tournament rules carefully. This paper

provides useful guidance for the organizer to select the number and amount of awards, determine whether

or not to conduct an open tournament, and choose among the relative, absolute and performance-contingent

compensation rules.

Finding optimal decisions on these tournament rules is a challenging task. The organizer should take into

account different types and degrees of uncertainties in creating and evaluating innovative solutions, as well

as the estimated number of solutions he wants to obtain from the tournament. Furthermore, the organizer

should trade off the diversity benefit of having many participants against its potentially negative impact on

strategic incentives of agents. As Boudreau et al. (2011) point out, the prior literature on innovations and

tournaments tend to focus on specific features of innovation tournaments, sometimes leading to conflicting

results. One main contribution of this paper is to develop and analyze a unified model that integrates the

parallel path effect in innovations with the strategic incentive effect in tournaments. In addition, our paper

is the first to characterize the impact of the number of contributors on the optimal tournament design. By

analyzing this unified model, we obtain the following managerial insights that could not have been obtained

otherwise (also see Table 1.1 in §1.2):
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• It is optimal in many practical situations (especially when agents have symmetric beliefs about the orga-

nizer’s taste) for the organizer to offer one large prize to the winner than multiple small prizes.

•Multiple prizes may be optimal when a tournament involves consumer evaluation, and it does not require

substantial increase in agents’ marginal costs of efforts to develop high-quality solutions.

• The organizer does not always need to increase the winner prize as more participants enter the tournament.

Moreover, the increased competition among participants does not always lead to underinvestment in effort.

• An open tournament with unrestricted entry is likely to be optimal when an innovation problem is highly

uncertain and requires increasing marginal costs for agents to develop high-quality solutions, or when an

organizer is interested in obtaining many diverse solutions.

• The organizer should consider compensating agents based on their own performance irrespective of their

relative ranks in innovation tournaments with many contributors and highly uncertain problems.

There are several interesting future research avenues. First, while our model allows flexibility in the

number of contributors K , one may consider a different case in which K is determined endogenously. There

are two plausible approaches to analyze this case. In one approach, an organizer determines the optimal

number of contributors ex-ante before conducting a tournament. This approach can be handled by extending

our current model: from the organizer’s utility over different values of K (as in Figure 1.8(a)), he can

choose an ex-ante optimal value of K that results in the highest expected utility. In the other approach,

an organizer may choose the number of contributors ex-post after collecting all solutions from participants.

In this case, the organizer needs to choose a rule about how to select contributors before conducting a

tournament (so as to determine other tournament rules optimally as discussed in this paper). Note that this

model of endogenous K does not isolate the impact of K on the optimal tournament design, nor does it take

K = 1 or K = N as special cases as we do in this paper. Therefore, both models are complementary to each

other. Second, we model technical and taste uncertainties using i.i.d. random shocks to an agent’s output.

One possible future research direction is to add dependencies between two types of shocks or between

idiosyncratic shocks of agents. For example, taste shocks may be interdependent as they are related to the

organizer. This may be modeled by adding a common random shock to the output function of agents. Our

results are robust to this addition. However, the analysis of more complex dependencies with possibly new

levels of information asymmetry may be an interesting direction to follow. Finally, as noted by Terwiesch

and Xu (2008), “no model in the Economics literature includes both heterogeneity in solver expertise and a

stochastically relationship between effort and performance.” Unfortunately, our paper as well as Terwiesch

and Xu (2008) inherits this limitation. The addition of heterogeneity to a general stochastic model will be

an important research to pursue.
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Chapter 2

Incentives in Contests with Heterogeneous

Solvers

2.1 Introduction

The last decade has seen a substantial change in the landscape of the classical research and development

(R&D). With the advancement in information technology and global access to skilled individuals, estab-

lished companies such as HP and P&G started to turn away from classical in-house R&D towards out-

sourcing R&D activities (Eppinger and Chitkara 2006). One popular and cost-effective approach to R&D

outsourcing is using a contest (also called a tournament). A contest is a mechanism wherein a seeker poses a

problem to a population of independent solvers, and awards the solver(s) that creates the best solution(s). A

contest has been employed to solve problems in various areas, including design (e.g., a logo design contest

for FIFA World Cup), health science (e.g., Grand Challenges Explorations of Bill & Melinda Gates Foun-

dation), and software development (e.g., TopCoder Challenges). The total amount of awards in contests has

reached $1 to 2 billion in 2009 with a growth rate exceeding 18% (McKinsey & Company 2009).

Due to the growing popularity of contests, several companies such as TopCoder and InnoCentive in-

termediate contests on behalf of their clients. TopCoder is a contest platform in which software developers

participate in regularly held competitions to create novel software algorithms. Since it is established in 2001,

TopCoder creates outsourced software solutions for its clients by encouraging independent solvers around

the world to compete in various free-entry (i.e., open to public) software development contests. For ex-

ample, in Cisco Interactive Experience Content Page Designer Developer Challenge, solvers create content

page designer web-based applications (TopCoder 2014a). Over the years, TopCoder has organized contests

on behalf of a large client base including Best Buy, Comcast, GEICO, HP, and IBM (TopCoder 2014b).
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Winners of contests are awarded predetermined cash prizes around $10,000 for their contributions and the

performance of all participants is converted into a continually updated TopCoder rating as a proxy for their

ability levels. InnoCentive is another contest platform that crowdsources innovation from its extensive pool

of solvers all over the world. Since 2001, InnoCentive has served a diverse group of clients such as AARP

Foundation, Booz Allen Hamilton, Eli Lilly, NASA, and P&G (InnoCentive 2015). InnoCentive organizes

ideation, theoretical, and reduction-to-practice (RTP) challenges (in which solvers develop ideas, theoreti-

cal solutions, and prototypes, respectively) in specialty areas including chemistry, information technology,

and life sciences. Solvers with various levels of expertise and ability compete in these free-entry “open”

innovation contests for awards ranging from $5,000 to $1 million.

A primary benefit of these contests is that a seeker can tap into a large number of experts outside of its

firm boundary, and can select the most promising solution from many submitted solutions. However, merely

collecting a large number of solutions does not necessarily guarantee the highest quality solution to a seeker.

With many contest participants, solvers expect their individual chance of winning a contest to be low, and

hence may not have sufficient incentives to exert their best efforts. Therefore, a long-standing question

within the contest literature has been “How does increased competition in a contest (i.e., more participants

in a contest) affect solvers’ incentives to exert effort?”.

For contests in which solvers with different ability levels compete, there are two competing theories

for this question. When solvers are heterogeneous in their initial expertise, Terwiesch and Xu (2008) have

proven analytically that having more solvers in a contest will lead to a lower effort for every solver in equi-

librium. The intuition behind this negative externality is explained by Terwiesch and Xu (2008) as follows:

“the more solvers participate in the contest, the lower the probability of winning for a particular solver. With

lower winning probabilities, the solvers’ expected profits decrease, leading to weaker incentives for them to

exert higher efforts. This underinvestment in effort leads to an inefficiency in an open innovation system”

(page 1536). In contrast, when solvers are heterogeneous in their costs of exerting efforts, Moldovanu and

Sela (2006) have shown a contradictory result in which solvers of different ability levels tend to react to

increased competition differently: high-ability solvers raise their efforts with more participants, while low-

ability solvers reduce their efforts. Yet, Moldovanu and Sela (2006) do not explain why solvers behave in

this manner. Therefore, the reason behind these conflicting results has been an unsolved puzzle.

Our objective in this paper is to solve the puzzle arising from the above conflicting results in the theory

of contests and to offer clear managerial insights into the effect of increased competition on the solvers’

incentives. To this end, we consider three models of a contest with heterogeneous solvers. The first model,

which we refer to as “cost-based projects,” is used by Moldovanu and Sela (2006). In this model, solvers

48



are heterogeneous with respect to their cost of exerting effort. Moldovanu and Sela (2006) use this model to

show the result mentioned above. The second model, referred to as “expertise-based projects,” is proposed

by Terwiesch and Xu (2008). In this model, solvers are heterogeneous in their initial expertise levels, while

each unit of additional effort contributes to the output of their respective solutions equally for all solvers.

Thus, although high-expertise solvers start with an advantage, the benefit and cost of additional effort is

the same for all solvers. Terwiesch and Xu (2008) characterize the equilibrium effort of a solver, and show

that it always decreases with the number of solvers in the contest. Then, they use this result to investigate

when it is optimal for a seeker to choose a free-entry open contest that allows the entry of any solver who

wishes to participate in the contest. When the seeker is only interested in the best solution, the authors

derive a condition under which an open contest is optimal. Furthermore, they show that an open contest is

never optimal when a seeker is interested in the average performance of all solutions. In order to address the

discrepancy in the results between these two papers, we propose a third model, which we call “productivity-

based projects.” In this model, solvers are heterogeneous in their productivity levels so that one unit of effort

from a high-productivity solver creates higher value than that from a low-productivity solver. We show that

cost-based projects of Moldovanu and Sela (2006) and expertise-based projects of Terwiesch and Xu (2008)

can be represented as special cases of our model with productivity-based projects.1

The analysis of productivity-based projects yields the following novel results. First, we prove that the

result of Moldovanu and Sela (2006) mentioned above can be generalized to productivity-based projects. In

other words, their result is robust to a type of solvers’ heterogeneity in a contest (i.e., heterogeneous cost,

expertise or productivity). Unfortunately, this finding suggests that there are technical errors in Terwiesch

and Xu (2008) which consequently affect their results. In §2.4, we present the correct analysis of expertise-

based projects, and discuss new results. Second, we offer a precise explanation as to why solvers with

different ability levels react differently to increased competition in a contest. Terwiesch and Xu (2008) have

argued that every solver, irrespective of her ability, will underinvest in her effort when facing increased

competition in a contest because increased competition would reduce her chance of winning. We find that

this negative externality is not the only driver that influences solvers’ effort decisions. We analytically

identify a second driver that incentivizes solvers to exert higher efforts: more participants in a contest raise

the expected performance of a runner-up, and therefore solvers need to make higher efforts in order to win

the contest. This seemingly intuitive, yet overlooked by prior literature, driver provides opposing force to

the negative externality created by increased competition. As a result, it turns out that depending on which

1We use “ability” as a general term for cost, expertise or productivity level. So, a “high-ability” solver means a solver with

low cost in a cost-based project, a solver with high expertise in an expertise-based project, or a solver with high productivity in a

productivity-based project.
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driver dominates the other, solvers react to increased competition differently. In particular, we prove that

when facing increased competition, high-ability solvers, whose chances of winning are relatively higher than

low-ability solvers, always increase their effort levels, while low-ability solvers reduce their effort levels.

We also point out that our results are corroborated empirically by Boudreau et al. (2012). Finally, from a

seeker’s perspective, higher efforts from high-ability solvers caused by increased competition are helpful to

obtain better solutions from a contest. When taking into account such positive externality from increased

competition, we find that a free-entry open contest is more likely to be optimal than what the prior literature

asserted. This finding justifies the increased popularity of an open innovation system, including the contest

examples mentioned above.

Related Literature: The literature on contests or tournaments can be broadly classified into three streams

based on their modeling approaches and problem contexts.

The first stream of research on contests studies contests in which heterogeneous solvers compete.

Moldovanu and Sela (2001) consider heterogeneity in solvers’ costs of exerting effort, and investigate the

optimal number of awards a seeker should distribute. Moldovanu and Sela (2006) use the same framework

as Moldovanu and Sela (2001), and examine when it is optimal for a seeker to conduct two sequential con-

tests instead of a single contest. In deriving their results, as mentioned earlier, they show that solvers with

different costs of exerting efforts (i.e., in cost-based projects) respond differently to increased competition.

Terwiesch and Xu (2008) analyze expertise-based projects in which solvers are heterogeneous in their initial

expertise, and show that all solvers, regardless of their expertise, reduce their efforts with more participants.

Although prior economics literature has argued that it is optimal to restrict the number of participants, Ter-

wiesch and Xu (2008) show that an open contest can be optimal under certain conditions. We contribute

to this stream of research by: (i) proposing productivity-based projects as a unifying model of cost-based

and expertise-based projects, (ii) proving the robustness of the result of Moldovanu and Sela (2006) in the

general model, (iii) offering a precise explanation to the result by detailing two opposing drivers, (iv) re-

solving the conflicting theories in the prior literature by correcting the theory proposed by Terwiesch and

Xu (2008), and finally (v) strengthening Terwiesch and Xu (2008)’s result by showing that an open contest

is more likely to be optimal than what they asserted.

The second stream focuses primarily on contests in which identical solvers exert effort or conduct

random trials when their outcomes are uncertain. Taylor (1995) considers a contest among a pool of identical

solvers, in which each solver conducts random trials until the best output of those trials reaches a pre-

determined quality level. Fullerton and McAfee (1999) analyze a contest in which a seeker auctions entry

into a contest, and solvers determine the number of random trials instead of a stopping quality level as in
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Taylor (1995). Both of these papers prove that more solvers in a contest will lead to lower effort for every

solver in equilibrium. Terwiesch and Xu (2008) reach the same conclusion under two types of projects:

trial-and-error projects in which identical solvers determine their number of trials when the outcome of

each trial follows a Gumbel distribution, and ideation projects in which identical solvers determine their

effort levels when the seeker’s taste is unknown. Ales et al. (2014) consider a general model that subsumes

trial-and-error and ideation projects, and show that more solvers may lead to increased or decreased efforts

from identical solvers, depending on a probability distribution that characterizes random outputs. Our paper

further shows that solvers with heterogeneous abilities react to increased competition differently.2

Besides the two streams of research reviewed above, there are a number of special types of tournaments

and tournament-like mechanisms. These include labor or sales tournaments in which a seeker’s objective

is to maximize the total performance of participants (Lazear and Rosen 1981, Green and Stokey 1983,

Kalra and Shi 2001), auction-based mechanisms in which two heterogeneous solvers with different costs

bid for quality and prize (Che and Gale 2003), and design contests in which each solver selects one design

approach among a finite set of approaches (Erat and Krishnan 2012). Recently, Bimpikis et al. (2014) study

information extraction and disclosure strategies that keep solvers active in dynamic contests wherein solvers

compete to reach a certain performance level at the earliest time. However, these papers do not examine

the impact of increased competition on solvers’ incentives and its consequence on a seeker’s incentive to

conduct an open contest.

2.2 Model

In this section, we describe a generalized framework that encompasses cost-based, expertise-based, and

productivity-based projects. Consider a contest in which a seeker (“he”) elicits solutions to a specified

problem from a set of n solvers (“she”). The performance of a solution is a one-dimensional measure that

may reflect the quality of the solution or its monetary benefit to the seeker. The performance v is determined

based on three components: solver’s effort, expertise, and productivity. We next elaborate on each of these

components, and present how these components together determine v.

First, each solver i can enhance her performance by investing in effort ei . For example, conducting a

thorough patent search and literature review, or implementing rigorous quality control systems with high

standards improves solvers’ performance levels. When solver i exerts effort ei , she incurs a cost of k + ci ei ,

where k (≥ 0) is the fixed cost of participating in the contest, and ci (> 0) is the unit cost of effort for solver

2As Terwiesch and Xu (2008) put it, “no model in the Economics literature includes both heterogeneity in solver expertise and

a stochastic relationship between effort and performance.” Due to tractability, Terwiesch and Xu (2008) as well as our paper also

focuses on either heterogeneity in solver expertise or stochastic relationship between effort and performance.
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i . Second, each solver i is endowed with expertise β i , which measures prior knowledge and experience that

will help the solver develop a solution to the problem posed by the seeker. High-expertise solvers start with

an advantage compared to low-expertise solvers. Third, each solver i is endowed with productivity level ai .

Given the same level of effort, a solver with a higher productivity level achieves better performance than

a solver with a lower productivity level. Relevant education or better access to capital or technology may

result in a higher productivity (cf. Acemoglu 2009). Given her effort ei , expertise level β i , and productivity

level ai , solver i’s performance is of the following form:

vi (β i , ai , ei ) = β i + r(ai ei ), (2.1)

where r is an increasing and concave reward function.

Based on the performance vector (v1, ..., vn) of submitted solutions from n solvers, the seeker’s pay-

off V is determined as a weighted combination of the performance of the best solution and the average

performance of all solutions:

V = ρ max
i=1,...,n

vi + (1− ρ)

∑n

i=1 vi

n
, (2.2)

where ρ ∈ [0, 1]. This formulation subsumes two interesting special cases in which the seeker is interested

in only the best solution (ρ = 1; e.g., a logo design contest for FIFA World Cup) or in the overall quality of

solutions (ρ = 0; e.g., a sales contest of an insurance company).3 The seeker’s profit 5 is his payoff V less

the total amount of awards paid to solvers A; i.e., 5 = V − A.

The seeker makes two decisions. First, the seeker determines whether to have a free-entry open inno-

vation contest (hereinafter, open contest), in which all solvers who wish to participate in the contest are

allowed to do so. Most contests conducted by TopCoder and InnoCentive are open contests. If the seeker

chooses to restrict entry to the contest, we can think of n as the number of solvers that are allowed to enter.

For example, in the logo design contest for the 2014 FIFA World Cup, only 25 design firms are allowed

to participate (James 2014). Second, the seeker determines how to compensate solvers. In particular, the

seeker decides on a vector of awards (A1, A2, ..., An) called the “award scheme,” where A j is the award

given to the solver with the j-th highest performance (A1 ≥ A2 ≥ · · · ≥ An) and A =
∑n

j=1 A j is the

total amount of awards. The solver with the best performance is referred to as the “winner,” and a contest in

which only the winner is awarded (i.e., A1 = A) is called a “winner-takes-all” contest.

An open contest proceeds in the following sequence. First, the seeker announces the award scheme

3We utilize the payoff structure in (2.2) that is proposed by Terwiesch and Xu (2008) in order to compare our results with theirs.

Moldovanu and Sela (2006) consider a special case of (2.2) where ρ = 1 and another case where the seeker’s payoff consists of the

total performance of all solutions. Our model subsumes the former case and our results continue to hold in the latter case.
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(A1, A2, ..., An). Then, each solver i ∈ {1, 2, ..., n} privately learns her ability level (cost ci , expertise β i ,

and productivity ai ), and she determines whether to participate in the contest and her effort level ei . If

solver i chooses not to participate, then she receives reservation utility 0. If she chooses to participate in the

contest, she incurs the fixed cost k and the cost of her effort ci ei , while creating a solution with performance

vi . The seeker collects the solutions of all participating solvers, and he gives awards to solvers based on

the award scheme (A1, A2, ..., An). As is common in the contest literature, we assume that all parameters

except ability levels (ci , β i , ai ) are common knowledge to both solvers and the seeker, and we focus on a

symmetric Bayesian Nash equilibrium.

In a symmetric equilibrium, a solver with ability level (ci , β i , ai ) chooses her effort level according to

the equilibrium effort function e∗(ci , β i , ai ), and creates a solution with performance v∗(ci , β i , ai ). Because

solver i does not know other solvers’ ability levels, the equilibrium performance of any other solver is

uncertain with ṽ∗ = v∗(̃c, β̃, ã), where c̃, β̃, and ã are random variables that represent a solver’s cost,

expertise, and productivity level, respectively. (As a convention throughout the paper, we will use “~” to

represent random variables.) Let Pn
( j)[vi , v

∗] be the probability that solver i’s performance vi is the j-th

highest performance when all other (n − 1) solvers have performance v∗. We compute this probability as

Pn
( j)[vi , v

∗] =
(n − 1)!

( j − 1)! (n − j)!
P(vi > ṽ∗)n− j P(vi ≤ ṽ

∗) j−1, (2.3)

where (n− j) solvers are ranked lower than solver i , ( j−1) solvers are ranked higher than solver i , and they

can be ordered in (n−1)!
( j−1)!(n− j)!

combinations. Each solver i is risk-neutral, and maximizes her utility from the

contest by solving the following problem:

max
vi

n∑
j=1

A j Pn
( j)[vi , v

∗]− cir
−1(vi − β i )/ai − k. (2.4)

Note that choosing a performance level vi is equivalent to exerting effort ei = r−1(vi − β i )/ai because

vi = β i + r(ai ei ). In equilibrium, vi = v∗
(
ci , β i , ai

)
. In order for solver i to participate, her utility from

the contest should be non-negative; i.e.,

n∑
j=1

A j Pn
( j)[v

∗(ci , β i , ai ), v
∗]− cir

−1(v∗(ci , β i , ai )− β i )/ai − k ≥ 0. (2.5)

The general performance function vi (β i , ai , ei ) in (2.1) together with the cost parameter ci provides a

unifying model that captures all three types of solvers’ heterogeneity. Unfortunately, the analytical tractabil-

ity of such a general model is quite limited. For this reason, we consider the following three interesting and

tractable special cases based on which of the three heterogeneity types dominates.

Cost-based projects (ai = 1, β i = 0, r(ei ) = θei ): In a cost-based project that is analyzed by Moldovanu
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and Sela (2006), solvers are heterogeneous in their cost of effort ci , yet they have identical expertise and

productivity levels. Thus, a solver i with an effort level ei has a performance vC
i (ei ) ≡ vi (0, 1, ei ) = θei .

Cost level ci is drawn from a continuous distribution G with density g and support
[
c, c

]
∈ R+. Let c̃n

( j),

Gn
( j), and gn

( j) represent the random variable, the distribution function, and the density function of the j-

th highest cost level among n solvers, respectively. Note that c̃n
( j) corresponds to the (n − j + 1)-st order

statistics, hence gn
( j)(ci ) =

n!
( j−1)!(n− j)!

(1− G (ci ))
j−1 G (ci )

n− j g (ci ).

Expertise-based projects (ai = 1, ci = c): In an expertise-based project that is proposed by Terwiesch

and Xu (2008), solvers are heterogeneous in their expertise levels, while they are identical in their pro-

ductivity levels and cost of effort. Thus, a solver i with an effort level ei has a performance vE
i (ei , β i ) ≡

vi (β i , 1, ei ) = β i + r(ei ). Expertise level β i is drawn from a continuous distribution F over a support

[β, β] ∈ R with density f . In addition, let β̃
n

( j), Fn
( j), and f n

( j) represent the random variable, the distribution

function, and the density function of the j-th highest expertise among n solvers, respectively.

Productivity-based projects (β i = 0, ci = c): In a productivity-based project, solvers are heterogeneous

in their productivity levels, and the performance of solver i who exerts effort ei is of the following form:

vP
i (ai , ei ) ≡ vi (0, ai , ei ) = r(ai ei ), where solver i is endowed with productivity level ai (> 0). The multi-

plicative productivity model has not been studied in the contest literature, but it is used in the moral hazard

and contract literatures (see, e.g., Diamond 1998, Saez 2001, Bolton and Dewatripont 2004). Productivity

level ai is drawn from a distribution H with density h and support
[
a, a

]
∈ R+. Let ãn

( j), H n
( j), and hn

( j) repre-

sent the random variable, the distribution function, and the density function of the j-th highest productivity

level among n solvers, respectively.

The rest of the paper proceeds as follows. In §2.3, we show that cost-based and expertise-based projects

can be represented as special cases of productivity-based projects. Then, for productivity-based projects,

we characterize the solver’s equilibrium effort e∗ and performance v∗, and analyze how they change with

additional solvers in the contest. In §2.4, we show a problem in the derivation of an equilibrium effort in

Terwiesch and Xu (2008), provide the correct derivation of the equilibrium effort, and compare our results

with those in Terwiesch and Xu (2008). In §2.5, we conclude our paper. In the rest of the paper, we use

superscripts C, E, and P for notation corresponding to cost-based, expertise-based, and productivity-based

projects, respectively. For example, we denote the equilibrium effort in cost-based, expertise-based, and

productivity-based projects by e∗,C(ci ) = e∗(ci , 0, 1), e∗,E(β i ) = e∗(c, β i , 1), and e∗,P(ai ) = e∗(c, 0, ai ),

respectively. Similarly, we will let v∗,C , v∗,E , and v∗,P denote the equilibrium performance under cost-based,

expertise-based, and productivity-based projects, respectively.
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2.3 Analysis of Productivity-Based Projects

In this section, we discuss productivity-based projects and compare them with cost-based and expertise-

based projects. As discussed in §2.1, Moldovanu and Sela (2006) and Terwiesch and Xu (2008) have con-

flicting results about how solvers’ effort and performance change with more solvers in the contest. Because

cost-based projects and expertise-based projects cannot be represented in terms of each other, it is unclear

whether the discrepancy between the results arises from the modeling difference. Furthermore, Moldovanu

and Sela (2006) do not provide any intuition for their result, so it is not possible to compare their intuition

with Terwiesch and Xu (2008) to explain the discrepancy. To address these issues, in this section, we use

productivity-based projects as a unifying model that encompasses cost-based and expertise-based projects,

and explain the intuition behind why solvers’ performance may increase or decrease with more solvers in

productivity-based projects.

First, the following proposition shows that cost-based projects of Moldovanu and Sela (2006) and

expertise-based projects of Terwiesch and Xu (2008) can be represented as special cases of productivity-

based projects. All proofs are provided in Appendix.

Proposition 5

(a) When the reward function r(ei ) = θei , the equilibrium performance satisfies v∗,P(ai ) = v∗,C(c/(θai ))

for any ai ∈
[
a, a

]
. Thus, a cost-based project in which the cost level ci is drawn from a general

distribution G is a productivity-based project in which productivity level ai = c/(θci ) is drawn from

distribution H(ai ) = 1− G(c/(θai )) and the unit cost of effort is c.

(b) When the reward function r(ei ) = θ log ei (θ > 0), the equilibrium performance satisfies v∗,P(ai ) =

v∗,E(θ log(ai )) for any ai ∈
[
a, a

]
. Thus, an expertise-based project in which the expertise level

β i is drawn from a general distribution F is a productivity-based project in which productivity level

ai = exp(β i/θ) is drawn from distribution H(ai ) = F(θ log(ai )).

Proposition 5 implies that cost-based projects and expertise-based projects can be represented as special

cases of productivity-based projects under the linear reward function (i.e., r(ei ) = θei ) used by Moldovanu

and Sela (2006) and logarithmic reward function (i.e., r(ei ) = θ log ei ) used by Terwiesch and Xu (2008),

respectively. Thus, by analyzing productivity-based projects for general reward function r and productivity

distribution G, we can also characterize the cost-based and expertise-based projects. Example 6 below

demonstrates how cost-based projects or expertise-based projects can be represented as productivity-based

projects. The example also exhibits how a cost distribution G or an expertise distribution F can be converted

to a productivity distribution H .
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Example 6 The following projects can be represented as productivity-based projects in which ã ∈ [0, a]

follows a generalized beta distribution with parameters d (> 0), 1, and a (i.e., H (ai ) = (ai/a)
d):

(a) Cost-based projects in which c̃ follows a Pareto distribution with scale parameter c/(θa) and shape

parameter d (i.e., G(ci ) = 1− (c/(θaci ))
d), and r(e) = θe;

(b) Expertise-based projects in which β̃ follows a Weibull distribution with shape parameter 1, scale

parameter λ = 1/d, and location parameter log a (i.e., F(β i ) = exp{−d(log a − β i )}), and r(e) =

θ log(e).

Next, for productivity-based projects, we derive the solver’s equilibrium effort e∗,P and performance

v∗,P , and explain how v∗,P changes with the number of solvers n. For ease of notation, we will drop the

superscript “P” for productivity-based projects for the remainder of the section. Following the literature

(e.g., Taylor 1995, Fullerton and McAfee 1999, Che and Gale 2003), we focus on winner-takes-all contests,

and assume that the fixed cost k = 0 for simplicity.4 When the seeker awards a winner prize A, his profit5

is

5 = V − A =

∫ a

a

v∗(ai )
[
ρhn

(1)(ai )+ (1− ρ)h(ai )
]

dai − A, (2.6)

where V is given in (2.2) and v∗(ai ) is the equilibrium performance for solver i with productivity level ai .

From (2.3), solver i’s probability of winning the contest is Pn
(1)[vi , v

∗] = P(vi > ṽ∗)n−1 = H n−1
(1)

(
(v∗)−1(vi )

)
in a productivity-based project. Thus, given the winner prize A, solver i takes other solvers’ best-response

performance function v∗ as given, and determines her equilibrium performance level v∗(ai ) by solving the

following problem which is modified from (2.4):

max
vi

AH n−1
(1)

(
(v∗)−1(vi )

)
− cr−1 (vi ) /ai . (2.7)

Proposition 6 characterizes the solver’s equilibrium performance v∗ and equilibrium effort e∗.

Proposition 6 In a productivity-based project with a general productivity distribution H and a general

reward function r , a solver with productivity ai has equilibrium effort e∗ (ai ) =
A

cai

∫ ai

a
ahn−1

(1) (a) da and

equilibrium performance v∗ (ai ) = r

(
A

c

∫ ai

a
ahn−1

(1) (a) da

)
.

Using Proposition 6, we now discuss how the solver’s equilibrium performance v∗(ai ) and effort e∗(ai )

change with the solver’s productivity level ai and the number of solvers in a contest, n. First, we show in

the proof of Proposition 6 that the equilibrium performance v∗(ai ) is increasing with the productivity level

4We derive the equilibrium effort with multiple awards and a positive fixed cost in the proof of Proposition 6. We also prove in

§B.2.1 of Appendix that the winner-takes-all scheme is optimal when the reward function r is not too concave (e.g., r(e) = θ log(e)).
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Figure 2.1: The impact of an additional solver on the solver’s performance: (a) empirical observation in Boudreau

et al. (2012), and (b) our theoretical prediction of v∗,n+1 − v∗,n when H ∼Beta with parameters 1 and 0.7; n = 10,

r(e) = e0.9

0.9 , A = 1, and c = 0.1.

ai , indicating that a solver with a higher productivity level has a higher chance of winning the contest. On

the other hand, we show in Corollary A2 of Appendix that the equilibrium effort e∗(ai ) is not necessarily

increasing in productivity level ai . This means that higher-productivity solvers do not necessarily exert

higher efforts than lower-productivity solvers. This is somewhat intuitive: if a solver knows that she has a

relatively higher productivity than most other solvers, then she may not exert as high effort in equilibrium

as others do by anticipating that she can still win the contest.

Second, we discuss how the solver’s performance v∗ changes with the number of solvers n. Let v∗,n and

e∗,n denote the solver’s performance and effort, respectively, when there are n solvers in the contest. Figure

2.1(a), adapted from Figure 7 of Boudreau et al. (2012), depicts how the solver’s performance changes with

an additional high-ability “superstar” (dotted curve) or an additional lower-ability “non-superstar” (normal

curve) in software development contests organized by TopCoder.5 For both cases, an additional solver has a

minimal effect on low-ability solvers with TopCoder rating less that 2000, whereas it has a negative effect on

moderate-ability solvers with TopCoder rating between 2000 and 2400, and it has a positive effect on high-

ability solvers with TopCoder rating over 2400. To compare such empirical observation with our theoretical

prediction, we solve Example 6, and illustrate the impact of an additional solver on the performance of

solvers with different productivity levels in Figure 2.1(b) by plotting v∗,n+1(ai )− v∗,n(ai ) over ai . One can

clearly see that the patterns in Figure 2.1(a) are strikingly similar to those in Figure 2.1(b).

In order to identify the factors that drive the patterns in Figures 2.1(a) and 2.1(b), we examine how the

5Boudreau et al. (2012) build a linear regression model in which they regress the solver performance on the number of superstars

and non-superstars in a contest. Regression coefficients associated with the number of superstars (resp., the number of non-

superstars) measure the impact of an additional superstar (resp., non-superstar) on the solver’s performance. Figure 2.1(a) depicts

the coefficient values for solvers of different ability levels (i.e., TopCoder rating). Following Moldovanu and Sela (2001, 2006) and

Terwiesch and Xu (2008), we assume that a solver’s ability level is private information, so we do not distinguish the effect of an

additional superstar from that of an additional non-superstar. Nevertheless, this does not impact our conclusion because the change

in solvers’ performance with additional superstars has almost the same pattern as that with additional non-superstars.
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Figure 2.2: The impact of an additional solver on (a) effort, (b) solver i’s probability of winning, and (c) the expected

productivity of the runner-up given that solver i wins. Setting: ã ∼ Beta(0.7, 1), n = 10, r(e) = e0.9

0.9 , A = 1, and

c1 = 0.1.

equilibrium effort e∗,n changes with the number of solvers n. Figure 2.2(a) shows that the change in effort

with an additional solver (i.e., e∗,n+1(ai )−e∗,n(ai )) displays the same pattern as in Figures 2.1(a) and 2.1(b).

To understand why the effort e∗,n behaves as shown in Figure 2.2(a), we rewrite e∗,n given in Proposition 6

as:

e∗,n (ai ) =
A

cai

H n−1
(1) (ai )

∫ ai

a

ahn−1
(1) (a) /H n−1

(1) (a) da =
A

cai

H n−1
(1) (ai ) E [̃an−1

(1) |̃a
n−1
(1) < ai ]. (2.8)

From (2.8), we identify two opposing forces that influence solver i’s effort decision in equilibrium with an

increase of n. First, a higher n reduces solver i’s probability of winning the contest, which corresponds to

her probability of having a higher productivity than all other solvers; i.e., P (̃an−1
(1) < ai ) = H n−1

(1) (ai ). As

illustrated in Figure 2.2(b), H n
(1)(ai ) − H n−1

(1) (ai ) < 0 for all ai , suggesting that H n
(1)(ai ) decreases with n.

This is intuitive because increased competition reduces an individual’s chance of winning the contest. This

negative externality is the explanation offered by Terwiesch and Xu (2008) who argue that the equilibrium

effort in an expertise-based project is decreasing with the number of solvers n. Second, a larger n raises

the expected productivity of the runner-up, given that solver i is the winner, E [̃an−1
(1) |̃a

n−1
(1) < ai ]. Figure

2.2(c) depicts that E [̃an
(1) |̃a

n
(1) < ai ]− E [̃an−1

(1) |̃a
n−1
(1) < ai ] > 0 for all ai , indicating that E [̃an−1

(1) |̃a
n−1
(1) < ai ]

increases with n (which is formally stated in Proposition 7(a) below). This second force, which has been

neglected by the existing literature, is also intuitive to some extent. Because of an additional entrant to the

contest, one would expect that the performance as well as the productivity of a runner-up will be higher. This

creates positive incentives for some solvers to exert higher effort in order to win the contest. Depending

on which of these two opposing forces dominates, solver i may increase or decrease her effort e∗,n(ai ).

Increased competition will have a minimal impact on low-ability solvers because it is unlikely that they

would win. On the other hand, for moderate-ability solvers, the impact of increased competition on the

winning probability (i.e., H n
(1)(ai )) is dominant, so they reduce their effort levels in equilibrium; whereas for

high-ability superstars, who have higher winning probabilities, the incentives for exerting higher efforts to
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win the contest are stronger (i.e., an increase of E [̃an−1
(1) |̃a

n−1
(1) < ai ] outweighs a decrease of H n

(1)(ai )), and

hence they increase their effort levels in equilibrium. The following proposition formally proves that the

equilibrium effort e∗,n(ai ) and performance v∗,n(ai ) are increasing in n for high-ability superstars.

Proposition 7 In a productivity-based project with a general productivity distribution H and a general

reward function r , the following results hold for any number of solvers n:

(a) H n
(1)(ai )− H n−1

(1) (ai ) < 0 and E [̃an
(1) |̃a

n
(1) < ai ]− E [̃an−1

(1) |̃a
n−1
(1) < ai ] > 0 for all ai ∈ (a, a);

(b) There exists â ∈ [a, a) such that for all ai ∈ (̂a, a), e∗,n+1(ai ) − e∗,n(ai ) > 0 and v∗,n+1(ai ) −

v∗,n(ai ) > 0.

Proposition 7(b) has an important implication for expertise-based projects. From Proposition 5(b), we

know that when r(ei ) = θ log ei , v
∗,P(ai ) = v∗,E(θ log(ai )). For solver i with ai > â, v∗,P(ai ) is increasing

in n, implying that v∗,E(θ log(ai )) is also increasing in n. Thus, when the expertise level β i = θ log(ai ) > â,

the equilibrium performance v∗,E(β i ) under expertise-based projects should be increasing in n. This result

conflicts with the one in Terwiesch and Xu (2008), and this discrepancy signals a problem in their derivation

of equilibrium effort.

2.4 Analysis of Expertise-Based Projects

This section is organized as follows. In §2.4.1, we show that the effort derived in Terwiesch and Xu (2008)

cannot be an equilibrium effort. In §2.4.2, we present the correct version of the solver’s equilibrium effort

which is consistent with Proposition 7(b), and discuss its implications. We use superscript “T ” for the

equilibrium derived by Terwiesch and Xu (2008) and “*” for the correct equilibrium. Since we only consider

expertise-based projects in this section, we drop the superscript “E” for notational convenience.

2.4.1 Results of Expertise-Based Projects in Literature

This subsection proceeds as follows. First, we summarize three main results of Terwiesch and Xu (2008)

for expertise-based projects. Second, we briefly describe how they derive the solver’s equilibrium effort,

and point out why their derivation does not lead to an equilibrium effort. Finally, we provide numerical

examples to demonstrate how the effort derived is different from the true best-response effort.

Let us first summarize Theorems 1A, 1B, and 1C of Terwiesch and Xu (2008). We focus on the results

concerning expertise-based projects in Theorems 1A, 1B, and 1C, while these theorems also contain the

results concerning ideation and trial-and-error projects (cf. §2.1). In Theorem 1A, they discuss when the

winner-takes-all scheme is optimal. To this end, they derive the solver’s equilibrium effort eT in the proof

of Theorem 1A (shown in (2.11) below). Under the winner-takes-all scheme, Theorem 1B characterizes the
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effort eT and the expected number of solvers that will participate in the contest, nT . Furthermore, under the

specific reward function r(e) = θ log e (where θ > 0), Theorem 1B derives the optimal winner-prize AT and

the seeker’s profit 5T . Lastly, Theorem 1C presents the condition under which an open contest is optimal

when the reward function is r(e) = θ log e, and the expertise level β i is drawn from a Gumbel distribution

with scale parameter λ (i.e., F
(
β i

)
= exp

{
− exp

{
−βi+λς−µ

λ

}}
, where µ is the mean of the distribution

and ς (≈ 0.5772) is the Euler-Mascheroni constant). Using the results in Theorem 1B, they show that when

the seeker’s weight on the best solution ρ = 1, an open contest is optimal if λ ≥ θ/2. They also show that

when ρ is close to 0, an open contest is never optimal.

Terwiesch and Xu (2008) consider a contest in which the seeker offers two prizes, A1 to the winner and

A2 to the runner-up with A1 ≥ A2. To derive the equilibrium effort of a solver, they take the perspective of

solver i with expertise level β i , and assume that all other solvers make efforts based on the best-response

function eT (β i ), which is continuously differentiable and increasing in β i . They also let y
(
β i

)
= β i +

r(eT (β i )) be the best-response performance of solvers, and assume that the fixed cost k = 0. With an effort

ei , the probability that solver i will receive A1 is P
{
vi ≥ y(β̃)

}n−1
= F(y−1(vi ))

n−1, and the probability

that she will receive A2 is (n−1)P
{
vi < y(β̃)

}
P
{
vi ≥ y(β̃)

}n−2
= (n−1)(1−F(y−1(vi )))F(y

−1(vi ))
n−2.

Then, solver i solves the following problem given that all other solvers’ performance function is y(β i ) (cf.

page 3 in e-companion of Terwiesch and Xu 2008, where the notation “g” is used instead of “y”):

max
vi

A1 Fn−1
(1)

(
y−1 (vi )

)
+ A2 (n − 1)

{
Fn−2
(1)

(
y−1 (vi )

)
− Fn−1

(1)

(
y−1 (vi )

)}
− cr−1(vi − β i ). (2.9)

The first derivative with respect to vi is:[
A1 f n−1

(1)

(
y−1 (vi )

)
+ A2 (n − 1)

{
f n−2
(1)

(
y−1 (vi )

)
− f n−1

(1)

(
y−1 (vi )

)}] 1

y′
(
y−1(vi )

) − c

r ′(r−1(vi − β i ))
.

Evaluating this derivative at vi = y(β i ) = β i+r(eT (β i )) yields the following after simplifications (cf. page

4 in e-companion of Terwiesch and Xu 2008):

y′(β i )c = r ′
(
r−1(y(β i )− β i )

) [
A1 f n−1

(1) (β i )+ A2 (n − 1)
(

f n−2
(1) (β i )− f n−1

(1) (β i )
)]

. (2.10)

Terwiesch and Xu (2008) solve (2.10) using separation of variables (also known as the Fourier method)

under the boundary condition yT (β) = β, and they obtain the equilibrium effort eT of a solver with expertise

β i under fixed cost k = 0 (cf. equation (1) in their e-companion). Then they use the equilibrium effort under

k = 0 to obtain the following equilibrium effort eT of a solver with expertise β i under fixed cost k > 0 (cf.

equation (3) in their e-companion):

eT (β i ) =
A1 F(β i )

n−1 + A2(n − 1)
[
F(β i )

n−2 − F(β i )
n−1
]
− k

c
. (2.11)
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There are three reasons why eT in (2.11) cannot be an equilibrium effort. First, the differential equation

in (2.10) does not satisfy the necessary conditions for the Fourier method, and hence (2.11) does not solve

(2.10). To show this, we substitute y′(β i ) = 1 + r ′(eT (β i ))(e
T )′(β i ) and (eT )′(β i ) from (2.11) (where

F(β i )
n−1 = Fn−1

(1) (β i )) into the left hand side of (2.10), and show that it is not equal to the right hand side

of (2.10):

y′(β i )c = [1+ r ′(eT (β i ))(e
T )′(β i )]c

= c + r ′(eT (β i ))
[
A1 f n−1

(1) (β i )+ A2(n − 1)
(

f n−2
(1) (β i )− f n−1

(1) (β i )
)]

= c + r ′(r−1(y(β i )− β i ))
[
A1 f n−1

(1) (β i )+ A2(n − 1)
(

f n−2
(1) (β i )− f n−1

(1) (β i )
)]

6= r ′(r−1(y(β i )− β i ))
[
A1 f n−1

(1) (β i )+ A2(n − 1)
(

f n−2
(1) (β i )− f n−1

(1) (β i )
)]

,

because the unit cost of effort c is positive. Thus, eT in (2.11) does not satisfy (2.10), so it cannot be an

equilibrium effort. Here, the expression y′(β i ) = 1 + r ′(eT (β i ))(e
T )′(β i ) prevents the use of the Fourier

method; if we had y′(β i ) = r ′(eT (β i ))(e
T )′(β i ) instead, the Fourier method could have been used to solve

the differential equation in (2.10). Second, Terwiesch and Xu (2008) use the boundary condition of yT (β) =

β, which does not always hold. It is true that the solver with expertise level β will exert no effort (i.e.,

eT (β) = 0). However, this does not necessarily lead to yT (β) = β for any general distribution F . For

instance, they use the reward function r (e) = θ log(e) in Theorems 1B and 1C, and this reward function

yields limβi→β yT (β i ) = limβi→β

(
β i + θ log eT (β i )

)
= −∞ (because eT (β) = 0). Thus, when β 6= −∞

(e.g., F follows a uniform, beta or gamma distribution), this boundary condition is invalid. Third, they start

the proof by assuming that eT (β i ) is increasing with expertise level β i , but the equilibrium effort is not

necessarily increasing with β i , as we show in §2.4.2.

In the following example, we numerically demonstrate that the solver’s equilibrium effort eT in (2.11)

is different from the true best response e∗.

Example 7 Suppose that c = 0.1, k = 0, A1 = 1, A2 = 0, n = 10, and r (e) = log e. Then, from (2.11),

the best-response effort eT (β i ) = 10(F(β i )
9), so the best-response performance y(β i ) = β i + log(10) +

9 log F(β i ). Given that all other solvers use eT (β i ) to determine their efforts, solver i with expertise β i

solves the following problem to determine her effort (see (2.9)):

max
vi

A1 Fn−1
(1)

(
y−1 (vi )

)
− cr−1(vi − β i ) = max

ei

A1 F
(
y−1(β i + r(ei ))

)n−1
− cei

= max
ei

F
(
y−1(β i + log(ei ))

)9
− 0.1ei .

Then, when F~Uniform(0, 4) and β i = 3, we have eT (β i ) = 10(3/4)9 = 0.75. However, as Figure
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(b) F ∼ Gumbel.

Figure 2.3: Solver i’s utility as a function of her effort ei when all other solvers make efforts based on eT : (a)

F v Uniform(0, 4) and (b) F~ Gumbel with mean µ = 2 and scale parameter λ = 1.

2.3(a) shows, solver i’s utility is maximized at e∗ = 0.25 instead of eT (β i ) = 0.75. Similarly, sup-

pose β̃ follows a Gumbel distribution with mean µ = 2 and scale parameter λ = 1; i.e., F
(
β i

)
=

exp
{
− exp

{
−βi+λς−µ

λ

}}
, where ς ≈ 0.5772. Then, for β i = 3, we have eT (β i ) = 10(exp−{exp{−(3 +

0.5772− 2)}})9 = 1.56. However, Figure 2.3(b) depicts that solver i’s utility is maximized at e∗ = 0.55.

We discuss the impact of this problem on Theorems 1A, 1B, and 1C of Terwiesch and Xu (2008), after

we present the correct equilibrium effort e∗ in §2.4.2.

2.4.2 New Findings in Expertise-Based Projects

In this section, we derive the true equilibrium effort e∗ in two steps. First, we derive e∗ when the fixed cost

of a solver entering a contest k = 0. Second, we derive the impact of positive k on e∗ considering solvers’

participation in equilibrium. This is a common approach used in the related literature (e.g., Moldovanu and

Sela 2001).

First, suppose that the fixed cost k = 0, and that the performance of all solvers except solver i is based

on the best-response performance function y(β i ), which is continuously differentiable and increasing in the

expertise level β i . At the end of the derivation, we verify these assumptions on y(β i ). Note that we use

a continuously differentiable and increasing best-response performance function y(β i ), whereas Terwiesch

and Xu (2008) use such a function for eT (β i ) (see §2.4.1). Increasing eT (β i ) implies increasing y(β i ), but

not vice versa because of the term β i in y(β i ) = β i + r(eT (β i )). Solver i with expertise β i solves (2.9)

by determining vi . To obtain a closed-form solution to the first-order condition (2.10), we restrict attention

to the logarithmic reward function r(e) = θ log(e) as Terwiesch and Xu (2008) do in Theorems 1B and

1C. Letting the equilibrium effort e∗(β i ) = r−1(y(β i )− β i ), we have r ′(r−1(y(β i )− β i )) = θ/e
∗(β i ) and

y′(β i ) = 1 + r ′(e∗(β i ))(e
∗)′
(
β i

)
= 1 + θ(e∗)′(β i )/e

∗(β i ). Substituting these into (2.10), we obtain the
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following equation that e∗(β i ) satisfies:(
1+

θ(e∗)′(β i )

e∗(β i )

)
c =

θ

e∗(β i )

[
A1 f n−1

(1) (β i )+ A2 (n − 1)
(

f n−2
(1) (β i )− f n−1

(1) (β i )
)]

. (2.12)

By multiplying both sides of (2.12) with
e∗(βi )

cθ
exp

{
βi

θ

}
, we obtain

exp

{
β i

θ

}
e∗(β i )

θ
+ exp

{
β i

θ

}
(e∗)′(β i ) = exp

{
β i

θ

}[
A1

c
f

n−1
(1) (β i )+

A2(n − 1)

c
( f

n−2
(1) (β i )− f

n−1
(1) (β i ))

]
. (2.13)

Note that the left hand side of (2.13) is the derivative of exp{β i/θ}e
∗(β i ) with respect to β i . Furthermore,

as discussed in §2.4.1, a solver with expertise level β has no chance of winning the contest, so her effort

e∗(β) = 0. Thus, by integrating both sides of (2.13), and then by multiplying both sides with exp{−β i/θ},

we obtain the following e∗:

e∗(β i ) = exp

{
−
β i

θ

}∫ βi

β

exp

{
β

θ

}[
A1

c
f n−1
(1) (β)+

A2

c
(n − 1)

(
f n−2
(1) (β)− f n−1

(1) (β)
)]

dβ.

Then, the equilibrium performance of solver i is obtained by substituting e∗(β i ) into y(β i ) = β i+r(e∗(β i )):

y(β i ) = θ log

(∫ βi

β

exp

{
β

θ

}[
A1

c
f n−1
(1) (β)+

A2

c
(n − 1)

(
f n−2
(1) (β)− f n−1

(1) (β)
)]

dβ

)
.

Finally, we need to verify that y(β i ) is indeed continuously differentiable and increasing. Since all of the

terms above are continuously differentiable, so is y(β i ). Differentiating y(β i ) with respect to β i , we can

also verify y′(β i ) > 0 (see the remark in the proof of Proposition 8). Therefore, e∗(β i ) is the equilibrium

effort when k = 0.

Second, when there is a fixed cost k ≥ 0, only solvers with expertise level β i ∈ [β f , β] will participate

in the contest, where β f satisfies e∗(β f ) = 0 and the zero-utility condition (see (2.5)):

A1 Fn−1
(1) (β

f )+ A2 (n − 1)
[
Fn−2
(1) (β

f )− Fn−1
(1) (β

f )
]
− k = 0. (2.14)

Solving (2.12) with the new boundary condition e∗(β f ) = 0, we obtain the following correct version of

(2.11) when r(e) = θ log(e):

e∗(β i ) =
1

c

∫ βi

β f

exp

{
β − β i

θ

} [
A1 f n−1

(1) (β)+ A2 (n − 1)
(

f n−2
(1) (β)− f n−1

(1) (β)
)]

dβ. (2.15)

Using the analysis above, we next present the revised version of Theorem 1B in Terwiesch and Xu

(2008) that concerns expertise-based projects. (We note that Theorem 1B also includes the results of ideation

and trial-and-error projects.) As in Theorem 1B, we consider the winner-takes-all scheme in which A1 = A

and A2 = 0.
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Figure 2.4: The true equilibrium effort e∗ in an expertise-based project when β follows a Gumbel distribution with

mean µ = 0 and scale parameter λ, r(e) = θ log e, A = θ = 1, and c = 0.1. The same parameter values are used in

Figure 2 of Terwiesch and Xu (2008).

Proposition 8 In an expertise-based project with reward function r(e) = θ log(e), only solvers with ex-

pertise level higher than β f = F−1((k/A∗)1/(n−1)) will participate, where A∗ is the optimal prize. The

effort of a participating solver with expertise β i ∈ [β f , β] is e∗(β i ) =
1
c

∫ βi

β f exp
{
β−βi

θ

}
A∗ f n−1

(1) (β)dβ. The

expected number of participating solvers in an open contest is n∗ = n
(
1− (k/A∗)1/(n−1)

)
. If k = 0, the

optimal prize A∗ = θ and the expected profit of the seeker is

5 =

∫ β

β

θ log

(∫ βi

β

exp {β/θ}
θ

c
f n−1
(1) (β)dβ

)
[ρ f n

(1)(β i )+ (1− ρ) f (β i )]dβ i . (2.16)

We now discuss the impact of the incorrectly derived effort eT in Terwiesch and Xu (2008) on their

Theorems 1A, 1B, and 1C. Theorem 1A states that the winner-takes-all scheme “may or may not be optimal,”

and this statement holds under the true equilibrium effort e∗. Theorem 1B presents the following eT under

the winner-takes-all scheme (which is obtained by substituting A1 = A∗ and A2 = 0 into (2.11))

eT (β i ) =
A∗F(β i )

n−1 − k

c
. (2.17)

The discrepancy between eT (β i ) in (2.17) and e∗(β i ) in Proposition 8 bears the following important implica-

tions. First, although eT (β i ) in (2.17) is increasing in β i , the true equilibrium effort e∗(β i ) is not necessarily

increasing in expertise level β i . For example, when β i follows a Gumbel distribution as in Terwiesch and

Xu (2008), Figure 2.4(a) shows that the effort e∗(β i ) decreases with β i when β i is high (e.g., β i > 5). The

intuition is the same as that under productivity-based projects (see §2.3). Second, and more importantly, al-

though eT in (2.17) is decreasing in n, the true equilibrium effort e∗ is not always decreasing in n; see Figure

2.4(b). As discussed in §2.3, this is because the solver’s effort is influenced by the two opposing forces such

as the probability of winning the contest H n−1
(1) (ai ) and the expected productivity of the runner-up, given

that solver i is the winner, E [̃an−1
(1) |̃a

n−1
(1) < ai ], but the second potentially positive force is neglected in Ter-

wiesch and Xu (2008). As shown earlier in Figure 2.1(a), the empirical evidence of Boudreau et al. (2012)
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(a) F ∼ Gumbel. (b) F ∼Weibull.

Figure 2.5: A set of parameters (λ, ρ) under which an open contest is optimal, where region A indicates that an open

contest is optimal under both e∗ and eT , region B indicates that an open contest is optimal under e∗ but not under

eT , and region C indicates that an open contest is optimal under neither e∗ nor eT : (a) F~ Gumbel with mean 0 and

scale parameter λ and (b) F v Weibull with mean 0, shape parameter 1, and scale parameter λ. Other parameters:

r(e) = log e, A = 1, and c = 0.1.

from TopCoder contests corroborates our result that e∗ is not always decreasing in n. Third, as a result of

the difference between eT (β i ) and e∗(β i ), the seeker’s expected profit 5 given in (2.16) is different from

that of Terwiesch and Xu (2008). Consequently, unlike their Theorem 1C, when the expertise distribution

F follows a Gumbel distribution with scale parameter λ and the seeker is interested in only the best solution

(i.e., ρ = 1), even if λ < θ/2, the seeker’s profit 5 can be increasing in n for all n, thereby making an

open contest optimal; see Figure 2.4(c) for example.6 Furthermore, Figure 2.5 demonstrates that for a large

set of (λ, ρ) pairs, an open contest is optimal under the true equilibrium effort e∗(β i ) but not optimal under

eT (β i ) in (2.17); see region B of Figure 2.5(a)-(b). Interestingly, as Figure 2.5(b) depicts, when the seeker’s

weight on the best solution ρ = 1 and the expertise distribution F follows a Weibull distribution, an open

contest may not be optimal under eT (β i ) although it is always optimal under e∗(β i ) (see Proposition 14 in

Appendix for the analytical result). In addition, while an open contest is never optimal when ρ = 0 under

eT (β i ) in (2.17), we show in §B.2.2 of Appendix that an open contest can be optimal under e∗(β i ). This is

because eT (β i ) in (2.17) decreases with the number of solvers n for any expertise level β i so the average

performance of solvers (i.e.,
∫ β
β
β i f (β i )dβ i +

∫ β
β

r
(
eT (β i )

)
f (β i )dβ i ) decreases with n; whereas the true

equilibrium effort e∗(β i ) increases with n for high-ability solvers, and hence the true average performance

of solvers can increase with n under certain expertise distributions. Taken in sum, in general, an open contest

is more likely to be optimal than what Terwiesch and Xu (2008) asserted because of the positive incentive

6In Figure 2(g) of Terwiesch and Xu (2008), when λ = 0.3θ , the seeker’s profit 5T is first decreasing and then increasing in n.

However, as Figure 2.4(c) depicts, the correct version of the seeker’s profit 5 is monotonically increasing in n.
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effect of increased competition on high-ability solvers.

2.5 Conclusion

In this paper, we have studied a contest wherein a seeker elicits solutions to a problem from a number of

independent solvers who are endowed with heterogeneous ability (cost, expertise or productivity) levels.

Using a free-entry open contest, a seeker can tap into a large number of experts outside of its firm boundary,

and can select the most promising solution from many submitted solutions. However, with many contest

participants, solvers expect their individual chance of winning a contest to be low, and hence may not have

sufficient incentives to exert their best efforts. Thus, it is essential for the seeker to understand how solvers

may react to increased competition (i.e., additional participants) in the contest. Yet, the existing literature

provides conflicting theories for the answer to this question.

Our main contribution is to build a unifying model that encompasses the previous models in the litera-

ture, and to show that solvers with heterogeneous ability levels, regardless of the type their heterogeneity,

react to increased competition differently. This is because with increased competition, solvers face a trade-

off between a lower chance of winning and a higher expected performance of a runner-up. The latter effect

induces high-ability solvers to increase their effort levels when facing increased competition. When taking

into account such positive externalities, we find that a free-entry open contest is more likely to be optimal

than what the prior literature asserted. This result provides an explanation to the widespread use of open

contests in platforms like InnoCentive as well as other individually organized innovation contests.
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Chapter 3

Time-based Crowdsourcing Contests

3.1 Introduction

In a time-based crowdsourcing contest, a contest organizer delegates a large population of agents to solve

a certain problem at the earliest time. The time it takes for each agent to solve the problem (henceforth

“solution time”) depends on the agent’s effort level, heterogeneous expertise level, and possibly, a stochastic

shock. The contest usually starts when the organizer announces a compensation rule that determines how

agents will be compensated. Then, a subset of agents who are interested in the contest make efforts to solve

the problem at the earliest time, and submit their solutions to the organizer when they solve the problem.

Finally, the organizer compensates agents based on the announced compensation rule.

Time-based crowdsourcing contests have been applied for centuries to find solutions to the problems

such as finding a method for measuring longitude at sea, proving Fermat’s theorems, or solving difficult

mathematical problems. In recent years, these contests have been organized in a more structured way by

governments (cf. challenges.gov for the contests organized by the United States government which tackles

various public problems), non-profit organizations (e.g., Advance Market Commitment project by Bill &

Melinda Gates Foundation which incentivizes vaccine development in poor countries, cf. AMC 2009),

private organizations (e.g., Google Lunar X prize which incentivizes private companies to land a vehicle in

the moon), and several intermediary companies such as TopCoder. TopCoder is a contest platform in which

software developers participate in regularly held competitions to create novel software algorithms. Since

it is established in 2001, TopCoder creates outsourced software solutions for its clients by encouraging

independent agents from around the world to compete in a variety of software development contests. Over

the years, TopCoder has organized contests on behalf of a large client base including Best Buy, Comcast,

GEICO, HP, and IBM (TopCoder 2014b). The performance of all participants in each contest is converted
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into a continually updated TopCoder rating as a proxy for their ability levels.

For some of these crowdsourcing contests, the organizer requires that multiple agents solve the posed

problem. For instance, in Advance Market Commitment projects, the organizer needs multiple firms to

develop vaccines to sustain a competitive market after the project (cf. AMC 2010). We call an agent

whose ex-post output contributes to the organizer’s objective a contributor, and consider a general case in

which the organizer minimizes the solution of any number of contributors. Furthermore, for many of these

contests, agents tend to exhibit different ability levels for specific problems. For example, experienced

agents with high TopCoder ratings are more likely to produce solutions faster than inexperienced agents

with low TopCoder ratings. To incorporate this heterogeneity, we build a model in which agents have

heterogenous expertise levels so that a higher expertise agent has a better chance of solving the problem at

an earlier time given the same level of effort. The agent heterogeneity as well as the requirement for multiple

solutions create a complex incentive problem for the organizer to solve. Thus, in this paper, we analyze how

the organizer should compensate agents in order the minimize the total time it takes for the contributors to

solve the posed problem.

We provide the following novel results. When each agent’s solution time is a deterministic function

of her effort (i.e., there is no stochastic shock), it is optimal for the organizer to choose a compensation

rule that screens agents with the highest expertise levels, and compensates only these agents. Furthermore,

depending on whether the organizer can observe agents’ effort levels, agents’ optimal compensation may

be increasing or decreasing in their solution times. This shows that the organizer can improve his payoff

by offering time-contingent compensation rather than a fixed compensation. Finally, when each agent’s

solution time is a stochastic function of her effort, it may no longer be optimal for the organizer to screen

the highest-expertise agents, and compensate only them.

Related Literature: There are three streams of related literature: Time-based competition, new prod-

uct development, and contests (also called tournaments). In time-based competition applications, time is

considered as a tool for competitive advantage. One applications of time based competition is lead-time

quotation problems. In such problems, the quoted lead time for the product directly affects the consumer

demand and firms (as agents) set the lead time so as to maximize their profit in a competitive environment.

Another application is the first mover advantage problems in which firms achieve advantage from being the

first firm to develop or adopt a technological solution or enter a market (e.g., Loury 1979, Reinganum 1984,

Datar et al. 1997, Harter et al. 2000 and Shang and Liu 2011). In time-based competition, time is considered

as a means for competitive advantage. There is no organizer that designs the parameters of the competition

among firms or no direct prize for developing a solution first. On technology tournaments, however, firms
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are awarded a direct prize once the firms is a winner.

Another stream of related research is about new product development. Although contests are a form

of outsourcing new product development, we will discuss them separately. In new product development

problems, mainly internal decisions of a innovating firms is considered (e.g., Chao et al. 2009 and Bhaskaran

and Krishnan 2009). For example, project portfolio management in which a firm optimally chooses the

projects she will conduct is an application of new product development. Extensive discussion about the

details and literature of new product development literature can be found in the survey papers by Krishnan

and Ulrich (2001) and Brown and Eisenhardt (1995).

The third stream of related literature is on contests (also called tournaments). Our paper falls into

the category of contests in which heterogeneous agents compete. Moldovanu and Sela (2001) consider

heterogeneity in agents’ costs of exerting effort, and investigate the optimal number of awards a seeker

should distribute. Yet, they do not provide a complete characterization when the organizer offers multiple

prizes. Moldovanu and Sela (2006) use the same framework as Moldovanu and Sela (2001), and examine

when it is optimal for a seeker to conduct two sequential contests instead of a single contest. In deriving their

results, as mentioned earlier, they show that agents with different costs of exerting efforts (i.e., in cost-based

projects) respond differently to increased competition. Terwiesch and Xu (2008) analyze expertise-based

projects in which agents are heterogeneous in their initial expertise, and show that all agents, regardless of

their expertise, reduce their efforts with more participants. Korpeoglu and Cho (2015) provides a unifying

model that encompasses different sources of heterogeneity. Apart from contests with heterogeneous agents,

there are other types of contests. These include labor or sales tournaments in which a seeker’s objective is to

maximize the total performance of participants (Lazear and Rosen 1981, Green and Stokey 1983, Kalra and

Shi 2001), auction-based mechanisms in which two heterogeneous agents with different costs bid for quality

and prize (Che and Gale 2003), and design contests in which each agent selects one design approach among

a finite set of approaches (Erat and Krishnan 2012). Recently, Bimpikis et al. (2014) study information

extraction and disclosure strategies that keep agents active in dynamic contests wherein agents compete to

reach a certain performance level at the earliest time. Our paper contributes to this literature by providing

the complete characterization of optimal compensation of agents when agent’s outputs are deterministic.

Furthermore, unlike prior literature which assume that agents outputs are deterministic, we also provide

characteristics of compensation of heterogenous agents when their outputs are stochastic.
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3.2 The Model

We consider a time-based crowdsourcing contest in which a contest organizer (“he”) elicits solution to a

posted problem from a continuum of agents (“she”).1 The organizer aims to induce the agents to solve the

posed problem at minimal time. For example, in a math contest in which agents are expected to prove one

of Fermat’s theorems, agents are expected to propose a proof in the shortest time. An agent solves the posed

problem when her solution performance (hereafter output) y is above a certain threshold y. Next, we present

our model of agents and organizer.

Agents. The output of an agent depends on three key characteristics: (i) The expertise level of the agent, (ii)

the effort of the agent, and (iii) development time. First, each agent is endowed with an initial expertise level

β ∈ [β, β] (β < y), which represents the expertise and knowledge of the agent with respect to the posed

problem. An agent with a higher expertise level is more likely to solve the problem earlier. The expertise

level of each agent is private information, but its distribution G is public knowledge. We assume that the

density function g for expertise level takes positive value within its support, and it has an increasing failure

rate.

Secondly, each agent exercises an effort e ∈ E ⊆ R+ to expedite development process. The effort can

represent the manpower or money that an agent invests on the development process. For instance, if the

agent is an R&D firm, effort may reflect the number of employees that the firm allocates to the development

project. To exert an effort of e, an agent incurs a cost of ψ(e) where the function ψ is convex, increasing in

e with ψ(0) = 0.

Third, each agent devotes a certain time t ∈ R+ for developing a solution to the posed problem. The

output of the agent is directly proportional to the time she spends on creating a solution. Given the effort

e, expertise level β and time t , the output of an agent, v : [β, β] × E × R+ → Y , is assumed to be of the

following form:

v(β, e, t) = β + e · t.

This model accounts for two essential components of a contest: Agents can have different ability levels,

agents can exert effort to expedite development. In a contest in which the organizer maximizes output

of agents in a certain time horizon, this model boils down to an “expertise-based project” that is used by

Terwiesch and Xu (2008) and Korpeoglu and Cho (2015).

The organizer is interested in the time it takes for the agents to solve the posed problem. For an agent

1This assumption is common in contract theory for multiple agents (e.g., Swinney 2011) and reasonable considering the large

number of participants in crowdsourcing contests. The total measure of agents is normalized to 1.
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with expertise level β, the time it takes to solve the problem (hereafter, solution time) is:

τ(β, e) =
y − β

e
.

Each agent’s utility Ua(e, φ) : R2
+ → R is defined over her effort and the monetary compensation φ

that she will receive from the organizer. The agent’s utility is of the form Ua(e, φ) = φ − ψ(e).

The Organizer. The organizer is risk neutral, and he minimizes the total time it takes for α percent of the

agents to solve the posed problem. For example, in a math contest, α is small because only a few, if not

only one, alternative solutions would be of value to the organizer. On the other hand, α is large in a sales

contest in which the agents are expected to achieve their sales quota as soon as possible. We refer to the

agents that are among the α percent that influence organizer’s objective as “contributors.” Let x(β) denote

the probability that an agent with expertise level β is a contributor. Given that agents with expertise level β

exerts effort e(β), the organizer’s objective is to minimize the time in which the contributors find a solution

to the posed problem (i.e., total solution time for the contributors)∫ β

β

x(β)τ (β, e(β))g(β)dβ. (3.1)

In what follows, we will describe and analyze two cases in which agents’ effort levels is observable and

unobservable to the organizer.

3.3 Observable Effort

In this section, we consider the case in which the organizer can monitor agents’ effort levels. In §3.3.1, we

build the principal agent mechanism that the organizer uses and in §3.3.2, we characterize the solution to

this mechanism.

3.3.1 Principal Agent Mechanism

The organizer designs a direct incentive compatible mechanism to extract and use agents’ private infor-

mation. To this end, the organizer segments all decisions according to reported initial expertise levels

β ′ ∈ [β, β]. Specifically, the organizer decides on three variables for an agent that reports an expertise

level of β ′ ∈ [β, β]: (i) The effort e(β ′) that agent should exert, (ii) the time d(β ′) until the agent should

solve the posed problem (hereafter, “deadline”) and (iii) the compensation φ(β ′) that she will receive if she

solves the problem at the designated time.

The sequence of events is as follows. First, the organizer assigns a deadline and an effort level according

to agents’ revealed expertise levels. In particular, when an agent reveals an expertise level β ′, she has a time

window of d(β ′) for solving the problem by exerting effort e(β ′). If she can solve the problem by the time
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allowed with the designated effort level, she is regarded as a winner. Once an agent that reveals her type as

β ′ becomes a winner, she is awarded a compensation of φ(β ′). The organizer has a total budget of M thus

total compensation cannot exceed M .

In the principal agent problem, an agent first decides whether to enter the mechanism or not, and if she

decides to participate, she decides what type to reveal. The type that an agent reveals, β ′, determines her

effort level e(β ′), deadline d(β ′), and her compensation φ(β ′) so the agent reveals the type that maximizes

her utility Ua . Then, in the organizer’s principal-agent problem, named as PMO, the organizer determines

{x(β), d(β), φ(β), e(β) : β ∈ [β, β]} so as to

minimize

∫ β

β

x(β)d(β)g(β)dβ

subject to

∀β, β ′ ∈ [β, β], φ(β)− ψ(e(β)) ≥ φ(β ′)− ψ(e(β ′)) (3.2)

∀β ∈ [β, β], φ(β)− ψ(e(β)) ≥ 0, (3.3)

∀β ∈ [β, β], y − β ≤ d(β)e(β), (3.4)∫ β

β

x(β)g(β)dβ = α, (3.5)

∫ β

β

φ(β)g(β)dβ ≤ M, (3.6)

∀β ∈ [β, β], 0 ≤ x(β) ≤ 1, e(β), φ(β), d(β) ≥ 0. (3.7)

The objective of the problem is to minimize the total solution time of the contributors. Constraint (3.2)

is the incentive compatibility constraint that guarantees truthful revelation of agents’ expertise levels by

guaranteeing that each agent receives the maximum utility by revealing her own type. Constraint (3.3) is

the individual rationality constraint that makes sure that entering the mechanism is beneficial for each agent.

Constraint (3.4) is the development constraint which states that the time it takes for an agent to solve the

problem cannot exceed her deadline. Constraint (3.5) guarantees that the total measure of contributors is α.

Finally, constraint (3.6) is the compensation constraint that ensures that the total payments to agents cannot

exceed the budget level M , and constraint (3.7) guarantees feasibility of winning probabilities, effort levels,

compensation amounts, and deadlines.

3.3.2 Characterization

In this section, we characterize the optimal mechanism when the organizer can observe each agent’s effort

level. The section proceeds as follows. We first derive some necessary conditions for the optimal mecha-
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nism. Then, we will relax the incentive compatibility constraint (3.2) in PMO, and characterize the resulting

first-best solution. Finally, we verify that there exists compensation function φ such that the first-best so-

lution satisfies the incentive compatibility constraint (3.2). At the end of the section, we describe how this

mechanism can be implemented.

We start with a lemma that allows us to eliminate the deadline decision and constraint (3.4) from the

organizer’s problem. All proofs are provided in Appendix.

Lemma 6 In an optimal solution to the organizer’s problem PMO, constraint (3.4) binds for almost every

β ∈ [β, β]. 2

Suppose that agents reveal their types truthfully, i.e. the incentive compatibility constraint is relaxed.

The following Lemma provides some necessary conditions used in characterization of the first best solution.

The proof of the lemma is provided in Appendix.

Lemma 7 In an optimal solution to PMO where constraint (3.2) is relaxed, constraints (3.3) and (3.6) binds

for almost every β ∈ [β, β].

Using Lemmas 6 and 7, and using the resulting equalities to eliminate deadline decisions and payments,

the formulation PMO reduces to formulation PMR in which the organizer determines {x(β), e(β) : β ∈

[β, β]} so as to

minimize

∫ β

β

x(β)
y − β

e(β)
g(β)dβ

subject to (3.5), (3.6), (3.7)∫ β

β

ψ(e(β))g(β)dβ = M .

The formulation PMR has only the contribution probability x and compensation φ as decision variables.

The following proposition characterizes the optimal contribution probabilities by offering a threshold policy.

Proposition 9 Let {x∗(β), e∗(β) : β ∈ [β, β]} be an optimal solution to the formulation PMR. Then, there

is a cutoff point β0 = G−1(1− α) such that

x∗(β) =

 1 if β ≥ β0

0 if β < β0

.

2We use the term "almost every" since there may be some pointwise exceptions to the hypothesis, but for all measurable subsets

of [0, β], the claim follows.

73



for almost every β ∈ [0, 1].

Finally, using Proposition 9, Proposition 10 characterizes the optimal solution to the organizer’s problem

PMO.

Proposition 10 Let {x∗(β), e∗(β) : β ∈ [β, β]} be an optimal solution to the formulation PMR. Then this

solution named as the first-best solution, satisfies e∗(β) = 0 and for β ∈
[
0, β0

]
, and

e∗(β) =

√
y − β

λψ ′(e∗(β))
,

for β ∈
[
β0, β

]
where e′(β) < 0 and∫ β

β0

ψ

(√
y − β

λψ ′(e∗(β))

)
g(β)dβ = M.

Furthermore, the first-best solution along with compensation φ∗(β) = ψ(e∗(β)) and deadline d∗(β) =

y−β
e∗(β)

satisfies (3.2), and hence solves PMO.

Proposition 10 provides useful characterization of the solution to PMO that would enable numerical

calculation of the first best given input values. Moreover, it states that it optimal to award a higher com-

pensation to agents that finish solving the problem later; i.e., compensate agents with lower expertise levels

more. Unfortunately, it is not possible to obtain a closed form expression for the first best for general cost

function ψ . However, the following corollary provides a closed form expression for the first-best for the

special case with ψ(e(β)) = e(β).

Corollary 2 Let {x∗(β), φ∗(β), e∗(β), d∗(β) : β ∈ [β, β]} be a solution to PMO. Suppose that ψ(e) = ce;

i.e., cost of effort is linear. Then,

e(β) =

√
y − β

λc

d(β) =
y − β

e(β)
=
√
λ(y − β)

where

λ =

∫ ββ0

√
y − βg(β)dβ
√

cM

2

.

Proposition 10 shows that the first-best solution is implementable when the organizer can observe each

agent’s effort. The implementation and timing of the contest is as follows. At time zero, the organizer

announces a menu of contracts consisting of deadline d∗, effort e∗, and compensation φ∗ as derived in
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Proposition 10. Each agent then select a contract that maximizes her utility, and they exert effort based on e∗

to solve the posed problem. In particular, since the menu of contracts derived in Proposition 10 is incentive

compatible, each agent with expertise level β will choose the contract consisting of deadline d∗(β), effort

e∗(β), and compensation φ∗(β). The contest stops when the organizer receives α measure of solutions. The

organizer compensates each agent with φ∗ that she has initially chosen.

3.4 Unobservable Effort

In this section, we consider the case in which the organizer cannot monitor agents’ effort levels. In §3.4.1,

we build the principal agent mechanism that the organizer uses and in §3.4.2, we characterize the solution

to this mechanism.

3.4.1 Principal Agent Model

The organizer designs a direct incentive compatible mechanism to extract and use agents’ private infor-

mation. To this end, the organizer segments all decisions according to reported initial expertise levels

β ′ ∈ [β, β]. Specifically, the organizer decides on two variables for an agent that reports an initial ex-

pertise level of β ′ ∈ [β, β]: (i) The deadline d(β ′) and (ii) the compensation φ(β ′). Note that in this case,

the organizer cannot observe agents’ effort levels so effort is no longer a decision of the organizer. The

sequence of the events is as follows. First, the organizer assigns a deadline according to agents’ revealed

expertise levels. When an agent reveals an expertise level β ′, she has a time window of d(β ′) for solving

the problem. If she can solve the problem by the time allowed, she is regarded as a winner. Once an agent

that reveals her type as β ′ becomes a winner, she is awarded a compensation of φ(β ′). As in the observable

case, total compensation cannot exceed M .

In the principal agent problem, an agent first decides whether to enter the mechanism or not and should

she decide to participate, she has two decisions: (i) What type to reveal and (ii) what effort to make. Let

e(β, β ′) denote an agent’s effort when she has an expertise level β and she reveals her expertise level as β ′.

Although each agent decides on the effort level e(β, β ′), this effort decision is constrained by the agent’s

deadline and expertise level. In particular, the agent should solve the problem on time; i.e.,

y − β

e(β, β ′)
= d(β ′). (3.8)

Once e(β, β ′) is substituted by
y−β
d(β ′)

using (3.8), the principal agent problem, named as PMU, becomes

minimize

∫ β

β

x(β)d(β)g(β)dr

subject to
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∀β, β ′ ∈ [β, β], φ(β)− ψ

(
y − β

d(β)

)
≥ φ(β ′)− ψ

(
y − β

d(β ′)

)
, (3.9)

∀β ∈ [β, β], φ(β)− ψ

(
y − β

d(β)

)
≥ 0, (3.10)

(3.5), (3.6), (3.7).

It is important to note that the incentive compatibility constraint (3.9) cannot be obtained by simply

plugging in
y−β
d(β)

to the constraint (3.2) instead of e(β). In §3.3.2, when an agent misrepresents her expertise

level as β ′, the effort that she needs to abide by is
y−β ′

d(β ′)
. In formulation PMU however, an agent that

misrepresents expertise level as β ′ just needs to abide by the deadline d(β ′) (since the effort is unobservable)

but in the mean time, the gap between agent’s expertise level and the desired solution quality remains y− β

instead of y − β ′. Hence, the effort required from an agent that misrepresents expertise level as β ′ becomes

y−β
d(β ′)

. This constitutes the main distinction between PMO and PMU.

3.4.2 Characterization

In this case, it is easy to verify that the first best solution derived in §3.3.2 is not incentive compatible when

the organizer cannot observe agents’ effort levels. Therefore, in this case, the solution has to be characterized

with a different approach. In order to proceed, we define the surplus function of an agent with expertise level

β ∈ [β, β] as

v(β) = φ(β)− ψ

(
y − β

d(β)

)
.

The following lemma provides a first-order condition for the surplus function. The proof of the lemma

is standard in mechanism design literature so is skipped.

Lemma 8 The incentive compatibility constraint (3.9) is satisfied if and only if

(a) v′(β) = ψ ′
(

y−β
d(β)

)
1

d(β)
,

(b) ψ ′
(

y−β
d(β)

)
1

d(β)
is non-decreasing in β.

Lemma 8 establishes that as expertise level of an agent increases, the surplus of the agent increases as

well. Moreover this lemma is useful in characterization of the solution for unobservable case. The following

theorem characterizes the solution to the organizer’s problem in PMU.

Theorem 5 Let {x∗(β), φ∗(β), d∗(β) : β ∈ [β, β]} be an optimum solution to the formulation PMU named

as the second-best solution. Then, the following properties are satisfied:

(a) (d∗)′(β) ≤ 0,
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(b) There is a cutoff point β0 = G−1(1− α) such that

x∗(β) =

 1 if β ≥ β0

0 if β < β0

,

(c) For β ∈ [β0, β], (φ∗)′(β) > 0,

(d) For β ∈ [β0, β], the deadlines d∗(β) satisfy

λ

[
ψ ′
(

y − β

d∗(β)

)
y − β

d∗(β)2
+

(
1

d∗(β)2
ψ ′
(

y − β

d∗(β)

)
+

y − β

d∗(β)3
ψ
′′
(

y − β

d∗(β)

))
[1− G(β)]

g(β)

]
= 1,

where ∫ β

β0

ψ

(
y − β

d∗(β)

)
g(β)dr +

∫ β

β0

(
1

d∗(β)
ψ ′
(

y − β

d∗(β)

))
[1− G(β)]dr = M.

Theorem 5 characterizes the solution to the organizer’s problem when he cannot observe agents’ effort

levels. Theorem 5 shows that agents with higher expertise levels are expected to solve the problem earlier

but are compensated more. Both results are intuitive but the latter result is different than that when the

organizer can observe agents’ effort levels. In particular, when the organizer can observe the agents’ effort

levels, it is optimal to provide a higher compensation to agents with lower expertise levels to help them catch

up with the agents with higher expertise levels. When the organizer cannot observe agents effort levels, this

is no longer feasible because agents with high expertise levels can pretend as if they have lower expertise

levels. As a result, the organizer needs to compensate agents with higher expertise levels more than agents

with lower expertise levels.

In the following corollary, we provide a more in-depth characterization of the solution to the principle-

agent mechanism under the special case with linear cost of effort.

Corollary 3 Let {x∗(β), φ∗(β), d∗(β) : β ∈ [β, β]} be an optimum solution to the formulation PMU.

Suppose that ψ(e) = ce; i.e., cost of effort is linear. Then,

d∗(β) =

√
λc

[
y − β +

[1− G(β)]

g(β)

]
,

where λ is a positive valued constant. Furthermore, φ∗(β) = ψ
(

y−β
d∗(β)

)
.

The implementation and timing of the contest is as follows. At time zero, the organizer announces the

deadline schemes d and corresponding compensation φ. Agents then decide whether to participate in the

contest, and if they do, they exert efforts to solve the posed problem by the given deadline. The contest stops

when the organizer receives α measure of solutions. The organizer compensates agents based on φ.
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Finally, we will compare the solution of the principle-agent mechanisms characterized in Theorem 5

with that in a contest with fixed awards. The following corollary shows that the solution in Theorem 5 is

strictly better than offering fixed compensation to the winners.

Corollary 4 The organizer’s objective function value in (3.1) under the proposed mechanism is lower than

that under fixed compensation to winners.

3.5 The Stochastic Version

In this section, we analyze a time-based crowdsourcing contest in which agents’ outputs are stochastic. First,

we describe the additional components of the stochastic model and the resulting principal-agent model.

Then, we provide the main result of this section.

In the stochastic version of the problem, the solution time of an agent, denoted by τ , is the time to

reach y, and it is driven by three factors: (i) expertise level β, (ii) effort e and (iii) a technology shock

ξ̂ . As in the deterministic case, an agent inherits expertise level β at the beginning of the contest as her

type. She exerts effort e and at the end of the contest, her solution time is subject a random shock ξ̂ with

density h (·) and distribution H (·) on the support [s, s]. We assume that an agent’s technology shock is

independent of her expertise level β and other agents’ technology shocks. We further assume that H (·) is

twice continuously differentiable over [s, s]. Let ξ denote a realization of ξ̂ . Given expertise level β, effort

e, and shock realization ξ , the solution time τ is assumed to have the following form:

τ (β, e, ξ) = ξ
y − β

e
.

Next, we present the principal agent model of the organizer. The organizer designs a direct incentive

compatible mechanism to extract and use agents’ private information. In order to do so, the organizer

segments all decisions according to reported expertise levels β ′ ∈ [β, β]. Specifically, the organizer decides

on two variables for an agent that reports an expertise level of β ′ ∈ [β, β]: (i) The deadline d
(
β ′
)

that the

agent must abide by and (ii) the compensation φ
(
β ′
)

that she will receive if she abides by her deadline.

The time line is as follows. The organizer signs contracts with the agents at time 0 assigning them a

deadline according to their revealed types. Hence, when an agent reveals an expertise level of β ′, she has

a time window of d
(
β ′
)

to solve the posed problem. If she can solve the problem by the time allowed,

she is regarded as a winner. If an agent that reveals her type as β ′ becomes a winner, she is awarded a

compensation of φ
(
β ′
)
. As a part of the compensation constraint of the organizer, the total funds that are

distributed to winner agents cannot exceed the total compensation M .
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In the principal agent problem, an agent first decides whether to enter the mechanism or not and should

she decide to participate, she has two decisions: (i) What type to reveal and (ii) what effort to make. Before

going into participation, we explain agents’ decisions because agents will participate in the mechanism only

if they have non-negative utility from the contest when they make their decisions optimally. The type that an

agent reveals, β ′, determines her deadline d
(
β ′
)

and her compensation φ
(
β ′
)

so the agent reveals the type

that maximizes her profit. To maximize her profit, however, she also needs to determine her optimal effort

level so we examine agent’s optimal effort first. Suppose an agent has an expertise level β, i.e. she has type

β and she reveals her type as β ′. Then her optimal effort e
(
β, β ′

)
is:3

e
(
β, β ′

)
= arg max

e∈[0,∞)
φ
(
β ′
)

H

(
e · d

(
β ′
)

y − β

)
− ψ (e) . (3.11)

In the optimization problem illustrated above, the agent maximizes her expected utility by choosing her

optimal effort. Her expected compensation is the multiplication of the probability of finishing on time by

the compensation she will receive when she does because she receives no compensation if her development

time exceeds her deadline. Given the optimal effort decision e
(
β, β ′

)
for real type β and revealed type β ′,

the agent chooses the best type to reveal, β∗, as

β∗ = arg max
β ′
φ
(
β ′
)

H

(
e
(
β, β ′

)
d
(
β ′
)

y − β

)
− ψ

(
e
(
β, β ′

))
. (3.12)

In a direct incentive compatible mechanism, the organizer should offer deadline-compensation pairs so

that each agent reveals her type correctly, i.e. φ
(
β ′
)

and d
(
β ′
)

should be offered such that β∗ = β. To do so,

the organizer should incorporate the optimization problems given above into his principal agent mechanism.

Finally, to guarantee participation, the mechanism should provide non-negative utility to the agents; i.e.,

satisfy the following individual rationality constraint:

∀β ∈ [β, β], φ (β) H

(
e (β, β) d (β)

y − β

)
− ψ (e (β, β)) ≥ 0. (3.13)

The following proposition provides an equivalent set of conditions to the conditions given above.

Proposition 11 Let β ∈ [β, β] be an agent’s type. Suppose organizer has an objective which improves

as e (β, β) increases and individual rationality constraints 3.13 hold. Then, the conditions 3.11, 3.12 and

β = β∗ are satisfied if and only if the following two conditions are satisfied for all β ′ ∈ [β, β]

φ (β) H

(
e (β, β) d (β)

y − β

)
− ψ (e (β, β)) ≥ φ

(
β ′
)

H

(
e
(
β, β ′

)
d
(
β ′
)

y − β

)
− ψ

(
e
(
β, β ′

))
, (3.14)

3Note that an agent will never have an effort such that
e·d(β ′)

y−β ≥ s because increasing her effort beyond
y−β

d(β ′)s
will not increase

her chance of abiding by her deadline yet will increase her cost of effort.
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φ
(
β ′
) (
φ
(
β ′
)

h

(
e
(
β, β ′

)
d
(
β ′
)

y − β

)
d
(
β ′
)

y − β
− ψ ′

(
e
(
β, β ′

)))
= 0. (3.15)

Proposition 11 guarantees incentive compatibility of the principal agent model when the conditions

given in the proposition are incorporated as constraints. This also allows the organizer to incorporate

e
(
β, β ′

)
into the principal agent model under these constraints even though e

(
β, β ′

)
is not directly ob-

servable by the organizer. Then, in the principal agent model that we name as PMS, the organizer decides

on d (β) , φ (β) , e
(
β, β ′

)
above so as to

minimize
e(β,β ′),φ(β),d(β),x(β,ξ)

∫ β

β

∫ s

s

x(β, ξ)

(
ξ

y − β

e (β, β)

)
h(ξ)g(β)dξdβ

subject to (3.13), (3.14), (3.15)∫ β

β

∫ s

s

x(β, ξ)h(ξ)g (β) dξdβ = α, (3.16)

∫ β

β

φ (β) H

(
e (β, β) d (β)

y − β

)
g (β) dβ ≤ M, (3.17)

∀β ∈ [β, β], ξ ∈ [s, s], d (β) , φ (β) ≥ 0, x(β, ξ) ∈ [0, 1] (3.18)

The objective of the formulation is to minimize the solution time of the contributors. The first incentive

compatibility constraint (3.14) guarantees that agents reveal their expertise levels correctly. The second

incentive compatibility constraint (3.15) incorporates the optimal effort condition of agents into the planner’s

problem. Since agents decide to enter the mechanism by determining their effort levels ex-ante, there is only

an ex-ante individual rationality constraint (3.13) that guarantees non-negative expected surplus for agents

that enter the mechanism. The constraint (3.16) guarantees that α measure of the agents are contributors and

the constraint (3.17) is the compensation constraint. Finally, (3.18) gives the non-negativity and feasibility

constraints.

Finally, in the following proposition, we show how agents’ deadlines and their compensation changes

with their expertise level.

Proposition 12 In an optimal solution to PMS, the agent’s deadline d∗(β) is decreasing and compensation

φ∗(β) is increasing in agents’ expertise level β. Furthermore, there exists a threshold βs
0 such that φ∗(β) >

0 for all β > βs
0 and φ∗(β) = 0 for all β ≤ βs

0.

Proposition 12 shows that the properties of the agent’s deadline and compensation under deterministic

case carries over to the stochastic case. The following proposition, on the other hand, shows that although
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the threshold in Theorem 5 β0 = F−1(α), we may have that the threshold in Proposition 12 βs
0 < F−1(α).

Proposition 13 Suppose that βs
0 is defined as in 12. There exists γ such that when s > sγ , βs

0 < F−1(α).

Proposition 13 indicates that when the agents’ outputs are stochastic, it may be optimal for the organizer

to contract with more than α measure of agents as opposed to the deterministic case, in which the organizer

contracts with only α measure of agents.

3.6 Conclusion

In this paper, we study a crowdsourcing contest in which a contest organizer delegates a large population of

agents to solve a certain problem while determining how to compensate agents. Each Agent’s solution time

depends on the agent’s effort level, heterogeneous expertise level, and possibly a stochastic shock. We call

an agent whose ex-post output contributes to the organizer’s objective a contributor, and consider a general

case in which the organizer minimizes the solution of any number of contributors.

We show that when each agent’s solution time is a deterministic function of her effort (i.e., there is

no stochastic shock), it is optimal for the organizer to choose a compensation rule that screens agents with

the highest expertise levels, and compensates only these agents. Furthermore, depending on whether the

organizer can observe agents’ effort levels, agents’ optimal compensation may be increasing or decreasing

in their solution times. This shows that the organizer can improve his payoff by offering time-contingent

compensation rather than a fixed compensation. Finally, when each agent’s solution time is a stochastic

function of her effort, it may no longer be optimal for the organizer to screen the highest-expertise agents,

and compensate only them. This implies that the organizer may choose a strategy that does not maximize

agents’ effort levels when their outputs are stochastic.
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Appendix A

Supplement to Chapter 1

A.1 Proofs and Additional Results

Proof of Lemma 1. Let ε̃mi

i,(1) = max {̃εi t , t = 1, 2, ...,mi }. Then, the output function y in (1.1) can be

written as y(qi ,mi , ε̃
mi

i,(1), ε̃i ) = v(qi ) + ε̃
mi

i,(1) + ε̃i . Since ε̃i t follows Gumbel distribution with mean zero

and scale parameter µ, by the property given in Dahan and Mendelson (2001) (pg 115, Appendix B), ε̃mi

i,(1)

follows a Gumbel distribution with meanµ log mi and scale parameterµ. Furthermore, ε̃i = ε̃
mi

i,(1)−µ log mi

follows a Gumbel distribution with mean 0, scale parameter µ. Thus, the output function simplifies to

y(qi ,mi , ε̃i , ε̃i ) = v(qi )+ µ log mi + ε̃i + ε̃i .

Given an optimal decision of how much total effort ei to exert, the agent will always choose an optimal split

between mi and qi . Thus, given ei , she will choose qi and mi to maximize her output by solving:

r(ei ) = max
qi ,mi

v(qi )+ µ log mi s.t. c1qi + c2mi = ei . (A.1)

It is not difficult to verify that r(ei ) is concave and increasing in ei . Therefore, an agent’s output function

simplifies to y(ei , ξ̃ i ) = r(ei )+ ξ̃ i , where ξ̃ i = ε̃i + ε̃i .

Suppose that v(qi ) = κ log qi . Then, (A.1) yields q∗i =
κei

c1(κ+µ)
and m∗i =

µei

c2(κ+µ)
. Thus, r(ei ) =

κ log q∗i + µ log m∗i = γ + θ log ei , where θ = κ + µ and γ = κ log κ
c1(κ+µ)

+ µ log κ
c2(κ+µ)

.

Proof of Lemma 2. Suppose that (1.9) is satisfied, but the winner-takes-all scheme is not optimal. Then,

there exists l (> 1) such that A(l) > 0 in an optimal award scheme. Let e be the equilibrium effort cor-

responding to this award scheme. Consider the following perturbation where a portion of the l-th prize is

shifted to the winner prize; i.e., let Â(l) = A(l)− δ and Â(1) = A(1)+ δ with δ > 0 and small, while all other

A( j)’s remain unchanged. Denote with ê the corresponding equilibrium effort. Since the sum of prizes, A,
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remains the same, the organizer’s utility will not be altered by this reallocation of prizes. The perturbation

will strictly improve the organizer’s utility if agents exercise strictly higher efforts under this new award

scheme (i.e., ê > e). By condition (1.9),
∂P N

(1)

∂ei
[e, e] ≥

∂P N
( j)

∂ei
[e, e] for all j > 1. Thus,

N∑
j=1

∂P N
( j)

∂ei

[e, e] Â( j) >
N∑

j=1

∂P N
( j)

∂ei

[e, e]A( j) = ψ
′(e), (A.2)

where the last equation follows from the fact that e satisfies the first order condition of (1.6). The inequality

in (A.2) implies that after the perturbation, an agent is better off by increasing her effort, which contradicts

with the optimality of the initial award scheme.

Next, suppose that the winner-takes-all scheme is optimal. Let e be the corresponding effort in equi-

librium. Suppose to the contrary that e violates (1.9). Then, there exists l (> 1) such that
∂P N

(1)

∂ei
[e, e] <

∂P N
(l)

∂ei
[e, e]. Similar to the perturbation above, define Â(l) = δ and Â1 = A1 − δ with δ > 0 and small.

This perturbation improves agents’ efforts, and hence contradicts with the optimality of the winner-takes-all

scheme.

Proof of Proposition 1. To simplify the notation, let P N
( j)[e] ≡ P N

( j)[e, e∗]. We will show that when h is

log-concave,
∂P N

(1)

∂e
[e∗] ≥

∂P N
( j)

∂e
[e∗] for all j ∈ {2, ..., N }. We can verify from (1.3) that

P N
( j)[e] =

∫ s

s

W N
( j)(s + r(e)− r(e∗))h(s)ds, where W N

( j)(s) =
(N − 1)!

( j − 1)! (N − j)!
H(s)N− j (1− H(s)) j−1 =

hN
( j)(s)

Nh(s)
.

Taking the derivative of P N
( j)[e] with respect to e, evaluating it at e∗, and using integration by parts,

∂P N
( j)

∂e
[e∗] = r ′(e∗)

∫ s

s

(
W N
( j)

)′
(s)h(s)ds = r ′(e∗) lim

s→s
W N
( j)(s)h(s)− r ′(e∗)

∫ s

s

W N
( j)(s)h

′(s)ds.

Note that lims→s W N
( j)(s)h(s) = lims→s

hN
( j)(s)

N
. Since hN

( j)(s) =
N !

( j−1)!(N− j)!
H (s)N− j (1− H (s)) j−1 h (s)

(see §1.3), lims→s hN
( j)(s)/N = 0 for any j ∈ {2, ..., N } and lims→s hN

(1)(s)/N = w1 ≥ 0. Thus,

∂P N
(1)

∂e
[e∗]−

∂P N
( j)

∂e
[e∗] = w1+r ′(e∗)

∫ s

s

[W N
( j)(s)−W N

(1)(s)]h
′(s)ds = w1+

r ′(e∗)

N

∫ s

s

[hN
( j)(s)−hN

(1)(s)]
h′(s)

h(s)
ds,

for any j ∈ {2, ..., N }. Using integration by parts, the expression above boils down to

∂P N
(1)

∂e
[e∗]−

∂P N
( j)

∂e
[e∗] = w1 +

r ′(e∗)

N

(
lim
s→s

[H N
( j)(s)− H N

(1)(s)]
h′(s)

h(s)
+

∫ s

s

[H N
( j)(s)− H N

(1)(s)]

(
h′(s)

h(s)

)′
ds

)
.

(A.3)

When h is log-concave, lims→s[H N
( j)(s) − H N

(1)(s)]
h′(s)
h(s)
= 0 (except maybe for very special and awkward

distributions). The term H N
( j)(s)− H N

(1)(s) ≥ 0 for all s (> 0 for a measurable subset of 4) since the highest

output shock first-order stochastically dominates the j-th highest output shock. Therefore, a sufficient
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condition for (A.3) to be positive is that
(

h′(s)
h(s)

)′
≤ 0 for all s. This is indeed the case when h is log-concave.

Next, suppose that h is increasing. We will show that
∂P N

(1)

∂e
[e∗] ≥

∂P N
( j)

∂e
[e∗] for any j > 1. Observe that

∂P N
( j)

∂e
[e∗] = r ′(e∗)

∫ s

s

(
W N
( j)

)′
(s)h(s)ds, where

(
W N
(1)

)′
= hN−1

(1) (s),
(
W N
(N )

)′
= −hN−1

(N−1)(s), and

(
W N
( j)

)′
(s) =

(N − 1)!

( j − 1)!(N − j)!

[
(N − j) H(s)N− j−1(1− H(s)) j−1 − ( j − 1) H(s)N− j (1− H(s)) j−2

]
h(s),

for j ∈ {2, ..., N − 1} (also,
(

W N
( j)

)′
(s) = hN−1

( j) (s)−hN−1
( j−1)(s)).As a result,

∂P N
(1)

∂e
[e∗] = r ′(e∗)E

[
h(̃ξ

N−1

(1) )
]
,

∂P N
( j)

∂e
[e∗] = r ′(e∗)

∫ s

s

[
hN−1
( j) (s)− hN−1

( j−1)(s)
]

h(s)ds = r ′(e∗)
(

E

[
h(̃ξ

N−1

( j) )
]
− E

[
h(̃ξ

N−1

( j−1))
])

,

for j ∈ {2, ..., N − 1}, and
∂P N

(N )

∂e
[e∗] = −r ′(e∗)E[h(̃ξ

N−1

(N−1))]. When h is increasing, E[h(̃ξ
N−1

(1) )] ≥

E[h(̃ξ
N−1

( j) )] for any j > 1 because ξ̃
N−1

(1) first-order stochastically dominates ξ̃
N−1

( j) . Moreover, E[h(̃ξ
N−1

( j) )] ≥

0 for any j because h is non-negative. Therefore,
∂P N

(1)

∂e
[e∗] ≥

∂P N
( j)

∂e
[e∗] for any j ∈ {2, ..., N }.

Proof of Proposition 2. Suppose that h satisfies condition (i). Then in (A.3),w1 = 0 since lims→s h(s) = 0,

and also lims→s[H N
( j)(s) − H N

(1)(s)]
h′(s)
h(s)
= 0 because lims→s

∣∣∣ h′(s)
h(s)

∣∣∣ < ∞. Thus, by (1.10),
∂P N

(1)

∂e
[e∗] −

∂P N
( j)

∂e
[e∗] < 0, and hence the winner-takes-all scheme is not optimal. When h is log-convex,

(
h′(s)
h(s)

)′
> 0 for

all s so (1.10) is satisfied, noting that H N
( j)(s)− H N

(1)(s) ≥ 0 for all s (> 0 for a measurable subset of 4).

Next, suppose that condition (ii) is satisfied. Noting that e∗ =
(
ψ ′

r ′

)−1 (
A
∫

s∈4 (N − 1) H(s)N−2h(s)2ds
)

is the solution to (1.4) under the winner-takes-all scheme (see §1.4.2), e∗ violates (1.5) because A

N
−ψ(e∗) <

0. Thus, the winner-takes-all scheme is not feasible for the organizer’s problem, and hence it is not optimal.

Proof of Lemma 3. We first derive a necessary and sufficient condition for the organizer’s utility Uo to be

concave in the winner prize A, and then show that the assumption in Lemma 3 is sufficient for concavity.

From (1.8), ∂
2Uo

∂A2 = Kr ′′(e∗)
(
∂e∗

∂A

)2
+ Kr ′(e∗) ∂

2e∗

∂A2 . From (1.12), the equilibrium effort is e∗ = g−1(1/AIN ),

where g = r ′

ψ ′
. This implies that ∂e∗

∂A
= − 1

g′(e∗)
1

A2 IN
= − g(e∗)

Ag′(e∗)
, and hence ∂2e∗

∂A2 =
1
A

∂e∗

∂A

[
−2+ g(e∗)g′′(e∗)

(g′(e∗))2

]
.

Thus, Uo is concave in A if and only if

∂2Uo

∂A2
=

1

A

∂e∗

∂A

[
r ′(e∗)

(
−2+

g(e∗)g′′(e∗)

(g′(e∗))2

)
− r ′′(e∗)

g(e∗)

Ag′(e∗)

]
≤ 0. (A.4)

Since r is concave and increasing in e, and ψ is convex and increasing in e, we have r ′ > 0, r ′′ ≤ 0, g > 0,

and g′ ≤ 0. Furthermore, by assumption, −2+ g(e∗)g′′(e∗)

(g′(e∗))2
≤ 0. Therefore, ∂

2Uo

∂A2 ≤ 0.

Due to concavity of Uo with respect to A, the optimal prize A∗[K ] when there are K contributors
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satisfies the first order condition of the organizer’s problem with respect to A, i.e.,

∂Uo(A
∗[K ])

∂A
= K r ′(e∗)

∂e∗

∂A

∣∣∣∣
A=A∗[K ]

− 1 = 0. (A.5)

Suppose that K increases to K + 1. Suppose to the contrary that A∗[K + 1] ≤ A∗[K ] (i.e., A∗ is non-

increasing in K ). Observe from (1.8) that Uo is concave in A if and only if r(e∗) is concave in A, which

implies that r ′(e∗) ∂e∗

∂A
is non-increasing in A. Then, r ′(e∗) ∂e∗

∂A

∣∣
A=A∗[K+1]

≥ r ′(e∗) ∂e∗

∂A

∣∣
A=A∗[K ]

since A∗[K +

1] ≤ A∗[K ]. However, in this case, (K + 1) r ′(e∗) ∂e∗

∂A

∣∣
A=A∗[K+1]

> K r ′(e∗) ∂e∗

∂A

∣∣
A=A∗[K ]

= 1, which implies

that A∗[K + 1] violates (A.5). Therefore, A∗[K + 1] > A∗[K ].

Proof of Lemma 4. Recall from §1.4.2 that e∗ satisfies
ψ ′(e∗)
r ′(e∗)

= AIN , and that e∗ is decreasing (resp.,

increasing) in N if IN is decreasing (resp., increasing) in N . We will prove (a) and (b), respectively.

(a) Suppose that (1.14) holds. We will show that IN+1 ≤ IN for any N ≥ 2. Integration by parts yields

IN+1 − IN =

∫ s

s

(1− H (s)) H (s)N−1 h′ (s) ds, ∀N ≥ 2. (A.6)

Since both H(s) and 1−H(s) are positive, (A.6) implies that when h(s) is decreasing, constant or increasing,

IN is decreasing, constant or increasing in N , respectively. (This also proves the first statement of (b).) Thus,

we will prove (a) when h is non-monotonic and log-concave, which implies that there exists s0 ∈ (s, s), such

that h′ ≥ 0 for s < s0, and h′ ≤ 0 for s > s0 (i.e., h is unimodal; e.g., Cule et al. 2010). When N ≥ 2,

IN+1 − IN =

∫ s0

s

(1− H (s)) H (s)N−1 h′ (s) ds +

∫ s

s0

(1− H (s)) H (s)N−1 h′ (s) ds

≤

∫ s0

s

(1− H (s)) H(s)H (s0)
N−2 h′ (s) ds +

∫ s

s0

(1− H (s)) H(s)H (s0)
N−2 h′ (s) ds

= H (s0)
N−2

∫ s

s

(1− H (s)) H(s)h′ (s) ds ≤ 0,

where the first inequality holds since h is unimodal and non-monotonic, and the last one holds from (1.14).

Suppose that the equilibrium effort e∗ is non-increasing for any N ≥ 2. Then, (A.6) is non-positive for

all N ≥ 2. Since the right hand side of (A.6) is the same as the left hand side of (1.14) for N = 2, (1.14)

holds.

(b) Suppose that the taste shock ε̃i has an increasing density function. Let h0(s) and H0(s) be the density and

distribution functions of the aggregate output shock ξ̃ i over support40 when the technical shock ε̃i = 0 with

probability 1. Let hµ(s) and Hµ(s) the density and distribution functions of ξ̃ i over support 4µ when ε̃i fol-

lows a Gumbel distribution with mean 0 and scale parameter µ. Let I 0
N ≡

∫
40
(N − 1) H0 (s)

N−2 h0 (s)
2 ds

and I
µ
N ≡

∫
4µ
(N − 1) Hµ (s)

N−2 hµ (s)
2 ds. Noting that h0(s) is increasing (̃εi has an increasing density

and ε̃i = 0 w.p. 1), we have I 0
N+1 > I 0

N for all N by part (a). Let δN = I 0
N+1 − I 0

N > 0. By Lemma A7 of
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Appendix, we have that limµ→0 I
µ
N = I 0

N and limµ→0 I
µ
N+1 = I 0

N+1. Then, there exists µN such that for all

µ < µN , |IµN − I 0
N | < δN/2 and |IµN+1 − I 0

N+1| < δN/2. Thus, I
µ
N+1 − I

µ
N > δN/2 − δN/2 = 0. Then, for

any N ∗, when µ < minN≤N∗{µN }, the effort e∗ is increasing in N ≤ N ∗.

Remark. When h is symmetric around 0, (1 − H(s)) = H(−s), H(s)(1 − H(s)) = H(−s)(1 − H(−s))

and h′(s) = −h′(s). So, H(s)(1 − H(s))h′(s) + H(−s)(1 − H(−s))h′(−s) = 0 for any s ∈ 4. Thus,

condition (1.14) is satisfied as an equality. For Gumbel with mean 0 and scale parameter µ, and exponential

with parameter λ, the left-hand side of (1.14) is −1/36µ and −λ/6, respectively. Thus, they both satisfy

(1.14).

We will next present three lemmas that we use for the proof of Proposition 3. Then, we will present the

main proof of Proposition 3. The proofs of the lemmas are presented in Appendix.

Lemma A1 If h is log-concave, then E [̃ξ
N+1

( j) ]− E [̃ξ
N

( j)] < E [̃ξ
N+1

( j+1)]− E [̃ξ
N

( j+1)] for all j ∈ {1, ..., N −1}.

Lemma A2 If h is log-concave, then N IN = N E

[
h(̃ξ

N−1

(1) )
]

is increasing in N.

Lemma A3 Suppose that (A.4) holds and that the output shock ξ̃ i is transformed to ξ̂ i = α1̃ξ i via a scale

transformation with α1 > 0. Then, limα1→+∞
A∗

α1
= 0.

Proof of Proposition 3. To prove that an open tournament with unrestricted entry is optimal, we will show

that for any finite N and D (> N ), there exists a scale transformation such that the organizer’s utility with

D participants is higher than that with N participants. Thus, we want to show

U D−N
o ≡

(
Kr(e∗,D)+

K∑
j=1

E [̃ξ
D

( j)]− A∗,D

)
−

(
Kr(e∗,N )+

K∑
j=1

E [̃ξ
N

( j)]− A∗,N

)
≥ 0, (A.7)

where e∗,N is the equilibrium effort when there are N participants and the winner prize is optimally chosen

as A∗,N . Notice from (1.12) that when there are D participants, and the organizer pays IN A∗,N

ID
to the winner,

the equilibrium effort e∗,D is the same as e∗,N . Also, due to optimality of (e∗,D, A∗,D), when there are D

participants, (e∗,D, A∗,D) will yield a weakly greater utility to the organizer than (e∗,N , IN A∗,N

ID
). Thus,

U D−N
o ≥

K∑
j=1

E [̃ξ
D

( j) − ξ̃
N

( j)]−
IN A∗,N

ID

+ A∗,N ≥ K E [̃ξ
D

(1) − ξ̃
N

(1)]+ A∗,N
ID − IN

ID

, (A.8)

where the last inequality follows from Lemma A1. As a final step, consider a scale transformation of the

output shock to ξ̂ i = α1̃ξ i , which implies E [̂ξ
N

(1)] = α1 E [̃ξ
N

(1)]. From Lemma A2, we have DID ≥ N IN , so

U D−N
o ≥ Kα1 E [̃ξ

D

(1) − ξ̃
N

(1)]+ A∗,N [α1]
N − D

N
. (A.9)

Since E [̃ξ
D

(1) − ξ̃
N

(1)] > 0 for all N < D, and limα1→+∞
A∗,N [α1]

α1
= 0 by Lemma A3, as α1 increases,

(A.9) becomes positive. Thus, for any D and N , there exists a sufficiently large α1 such that U D−N
o > 0.

Therefore, there exists α such that an open tournament with unrestricted entry is optimal for any α1 > α.
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Proof of Corollary 1. Let yN
( j) = r(e∗,N ) + ξ̃

N

( j), where e∗,N is the equilibrium effort when there are N

participants and the winner prize is A. To prove that an open tournament with unrestricted entry is optimal,

we will show that for any finite N and D (> N ), there exists a scale transformation such that the organizer’s

utility with D participants is higher than that with N participants. Thus, we want to show

U D−N
o ≡ E

[
uo

(
yD
(1), . . . , yD

(K )

)
− ψo(A)

]
− E

[
uo

(
yN
(1), . . . , yN

(K )

)
− ψo(A)

]
≥ 0. (A.10)

We will show that there exists a scale transformation of the output shock to ξ̂ i = α1̃ξ i (α1 > 1) under which

condition (A.10) is satisfied. After the scale transformation and simplifications, (A.10) becomes

U D−N
o (α1) ≡ E

[
uo

(
r(e∗,D)+ α1ξ̃

D

(1), ..., r(e
∗,D)+ α1ξ̃

D

(K )

)]
−E

[
uo

(
r(e∗,N )+ α1ξ̃

N

(1), ..., r(e
∗,N )+ α1ξ̃

N

(K )

)]
.

If we divide both sides by αd
1 , use Assumption 1, take the limit as α1 approaches infinity, and note that

limα1→∞ r(e∗,N )/α1 = limα1→∞ r

((
r ′

ψ ′

)−1 (
α1

AIN

))
/α1 = r0 ∈ R for all N by Assumption 2, we have

lim
α1→∞

U D−N
o (α1) /α

d
1 = E

[
uo

(
r0 + ξ̃

D

(1), ..., r0 + ξ̃
D

(K )

)]
− E

[
uo

(
r0 + ξ̃

N

(1), ..., r0 + ξ̃
N

(K )

)]
. (A.11)

Let ≤st denote the first order stochastic dominance. By definition of order statistics, we have

ξ̃
N

( j) ≤st ξ̃
D

( j) H⇒ ξ̃
N

( j) + r0 ≤st ξ̃
D

( j) + r0.

Since the output shock has a continuos density function and uo is non-decreasing (and increasing for y( j) >

0), (A.11) is positive by Theorem 6.B.19 of Shaked and Shanthikumar (2007) (assuming that E[uo(r0 +

ξ̃
N

(1), ..., r0 + ξ̃
N

(K ))] ∈ R for all N ). By continuity of uo, there exists α such that U D−N
o (α1)/α

d
1 > 0 for all

α1 > α. Therefore, an open tournament with unrestricted entry is optimal for any α1 > α.

Proof of Lemma 5. We will characterize the first-best effort e∗ and show that the ACR implements it. e∗

is the solution to the following problem which maximizes the total utility of the organizer and the agents:

max
N ,e∗

Uo + NUa = Kr
(
e∗
)
+

K∑
j=1

E [̃ξ
N

( j)]− Nψ(e∗). (A.12)

The first order conditions with respect to e∗ yields Kr ′ (e∗) = Nψ ′(e∗). Thus, e∗ =
(
ψ ′

r ′

)−1 (
K

N

)
is the

first-best effort. To verify that the proposed ACR, φ∗ (y) = K

N
y +ψ(e∗)− K

N
r(e∗), implements e∗, we need

to verify that e∗ satisfies the constraints (1.16) and (1.17) given φ∗. If we plug φ∗ in (1.16), we obtain

E[φ
(
r(e∗)+ ξ̃ i

)
] = E

[
K

N

(
r(e∗)+ ξ̃ i

)
+ ψ(e∗)−

K

N
r(e∗)

]
= ψ(e∗).

Thus, (1.16) is satisfied. If we substitute φ∗ into (1.17), we get

arg max
ei∈R+

E

[
K

N

(
r(ei )+ ξ̃ i

)
+ ψ(e∗)−

K

N
r(e∗)

]
− ψ(ei ) = arg max

ei∈R+

K

N
r(ei )− ψ(ei ) = e∗,
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where the third equality follows because e∗ =
(
ψ ′

r ′

)−1 (
K

N

)
satisfies the first order conditions K

N
r ′ (e∗) =

ψ ′(e∗). Therefore, φ∗ (y) = K

N
y + ψ(e∗)− K

N
r(e∗) implements the first-best effort e∗. To show that φ∗ (y)

is the ACR, we will establish an upper bound to the organizer’s utility from the ACR. Note that due to (1.16),

the minimum payment that an organizer can make to agents given an effort level e∗ is E[φ
(
r(e∗)+ ξ̃ i

)
] =

ψ(e∗). Plugging this minimum payment in the organizer’s objective function (1.15), we obtain the right

hand side of (A.12), which is maximized by the first-best effort e∗ =
(
ψ ′

r ′

)−1 (
K

N

)
. Thus φ∗ (y) = K

N
y +

ψ(e∗)− K

N
r(e∗) provides an upper bound for (1.15). Since it also satisfies (1.16) and (1.17), it is the ACR.

Proof of Proposition 4. Let U RC R,N
o [K ] and U AC R,N

o [K ] be the organizer’s utility when there are N

participants and K contributors under the RCR and the ACR, respectively. We will show that (U AC R,N
o [K ]−

U RC R,N
o [K ]) is increasing with the output uncertainty by taking a scale transformation as ξ̂ i = α1̃ξ i , where

α1 > 1. Since participation constraint (1.16) binds by Lemma 5, the organizer’s utility under the ACR is

U AC R,N
o [K ] = Kr(eAC R,∗)+

K∑
j=1

E [̃ξ
N

( j)]− Nψ(eAC R,∗),

where eAC R,∗ is the optimal effort under the ACR. The organizer’s utility under the RCR is

U RC R,N
o [K ] = Kr(eRC R,∗)+ E

K∑
j=1

[̃ξ
N

( j)]− A∗,

where eRC R,∗ is the optimal effort under the RCR when the prize is optimally chosen as A∗. The difference

in the organizer’s utility is U RC R,N
o [K ] − U AC R,N

o [K ] = K [r(eRC R,∗) − r(eAC R,∗)] + Nψ(eAC R,∗) − A∗.

In §A.2.3 of Appendix, we derive eRC R,∗ =
(

K θ2 IN

α1cb2

)1/b

and A∗ = K θ
b

. Furthermore, plugging r(e) =

γ + θ log e and ψ(e) = ceb in Lemma 5, we get eAC R,∗ =
(
θK

cbN

)1/b
and Nψ(eAC R,∗) = K θ

b
. Thus,

U AC R,N
o [K ]−U RC R,N

o [K ] = K

[
θ log

((
θK

cbN

)1/b
)
− θ log

((
K θ2 IN

α1cb2

)1/b
)]
=

K θ

b
log

(
α1b

Nθ IN

)
> 0,

because participation constraint (1.5) requires A∗

N
−
(
θ A∗ IN

α1b

)
> A∗

N
−
(
θ A∗ IN

b

)
≥ 0, and hence α1b

Nθ IN
> 1.

Since log
(

α1b

Nθ IN

)
> 0, U AC R,N

o [K ]−U RC R,N
o [K ] is increasing in K and its derivative with respect to α1 is

∂

∂α1

(
U AC R,N

o [K ]−U RC R,N
o [K ]

)
= −

K θ

b

(
Nθ IN

α1b

)−1 ∂

∂α1

(
Nθ IN

α1b

)
> 0.

A.2 Conditions and Examples

A.2.1 Existence of Equilibrium and Agent’s Participation

A symmetric pure strategy Nash equilibrium exists if there is a feasible solution to constraints (1.5)-(1.6).

That is, for some N ≥ K and (A(1), ..., A(N )), there exists an effort level e∗ that satisfies both (1.5) and
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(1.6). In the following discussion, we will present sufficient conditions for the existence of e∗ under the

winner-takes-all award scheme for any number of participants N and winner prize A. At the end of the

section, we discuss how these conditions extend to other award schemes.

Constraint (1.6). According to Fudenberg and Tirole (1991), pure strategy Nash equilibrium exists if the

utility of agent i , Ua , is quasi-concave in her effort ei . Recall that Ua(ei ) = AP N
(1)[ei , e∗] − ψ(ei ). We

will show three sufficient conditions for concavity of Ua(ei ) (which will also imply quasi-concavity) using

its second derivative, U ′′a (ei ) = A
∂2 P N

(1)[ei ,e
∗]

∂e2
i

− ψ ′′(ei ). In particular, we will suggest conditions on effort

function r, cost function ψ , and on the output shock ξ̃ i . To measure the diffusion of the output shock, we

will use a scale transformation of the output shock to ξ̂ i = α1̃ξ i with α1. After the scale transformation,

P N
(1)[ei , e∗] =

∫
s∈4 H

(
s +

r(ei )−r(e∗)
α1

)N−1

h(s)ds = E

[
H N−1
(1)

(̃
ξ i +

r(ei )−r(e∗)
α1

)]
. The first derivative of

P N
( j)[ei , e∗] with respect to ei is

∂P N
(1)[ei , e∗]

∂ei

=
r ′(ei )

α1

E

[
hN−1
(1)

(̃
ξ i +

r(ei )− r (e∗)

α1

)]
.

Then, the second derivative of P N
(1)[ei , e∗] with respect to ei is (where r∗ = r (e∗))

∂2 P N
(1)[ei , e∗]

∂e2
i

=

(
r ′(ei )

α1

)2

E

[(
hN−1
(1)

)′ (̃
ξ i +

r(ei )− r∗

α1

)]
+

r ′′(ei )

α1

E

[
hN−1
(1)

(̃
ξ i +

r(ei )− r∗

α1

)]
.

(A.13)

Noting that U ′′a (ei ) = A
∂2 P N

(1)[ei ,e
∗]

∂e2
i

− ψ ′′(ei ), where ψ ′′(ei ) ≥ 0 due to convexity of ψ , there are three

sufficient conditions that make U ′′a < 0. First, as α1 approaches infinity, both expectation terms in (A.13)

converge, and E

[
hN−1
(1)

(̃
ξ i +

r(ei )−r∗

α1

)]
converges to a positive constant. Furthermore, when r is strictly

concave,
(
r ′(ei )/α1

)2
(> 0) approaches 0 faster than r ′′(ei )/α1 (< 0). Thus, for sufficiently large α1, U ′′a as

well as ∂2 P N
(1)[ei , e∗]/∂e2

i becomes negative, and hence Ua becomes concave. Second, P N
(1)[ei , e∗] is concave

when r ′′/
(
r ′
)2

is sufficiently large. Third, regardless of ∂2 P N
(1)[ei , e∗]/∂e2

i , Ua is concave for sufficiently

convex ψ(ei ), i.e., when ψ ′′(ei ) is sufficiently large. A combination of these three conditions can guarantee

the existence of a solution e∗ to (1.6).

Constraint (1.5). Let e∗ be a solution to (1.6). As we demonstrate in §1.4.2, the solution of (1.6) satisfies

ψ ′(e∗)
r ′(e∗)

= AIN where IN =
∫
(N − 1) H(s)N−2h(s)ds. We will discuss two sufficient conditions for the par-

ticipation constraint (1.5) to be satisfied. First, we will show that when the output uncertainty is sufficiently

large, the participation constraint is satisfied. The output uncertainty increases when a new source of un-

certainty (e.g., addition of the taste shock ε̃i on top of the technical shock ε̃i ) is added to the tournament or

when the variance of the output shock increases (e.g., through a scale transformation). When a new type of

uncertainty is added, Lemma A6 in §A.2.4 shows that IN as well as e∗ decreases. Thus, ceteris paribus, (1.5)

is more likely to be satisfied when both primitive shocks ε̃i and ε̃i are present compared to the case in which
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only one of them is present. When the output shock is transformed via a scale transformation ξ̂ i = α1̃ξ i

with any α1, (1.5) becomes

ψ(e∗) = ψ

[(
ψ ′

r ′

)−1 (
A

IN

α1

)]
≤

A

N
,

whereψ

[(
ψ ′

r ′

)−1

(·)

]
is increasing because both

ψ ′

r ′
andψ are increasing, When α1 ≥ α p = AIN

r ′

ψ ′

(
ψ−1

(
A

N

))
,

we have

ψ(e∗) = ψ

[(
ψ ′

r ′

)−1 (
A

IN

α1

)]
≤ ψ

[(
ψ ′

r ′

)−1 (
A

IN

α p

)]
= ψ

[(
ψ ′

r ′

)−1
(

A
IN

AIN
r ′

ψ ′

(
ψ−1

(
A

N

)))] = A

N
.

Therefore, if the agents’ output is sufficiently uncertain, then participation constraint (1.5) is satisfied.

Second, we will show that when the cost of effort ψ is sufficiently convex, participation constraint (1.5)

is satisfied. To illustrate, we will use the special case in which the effort function r(e) = γ + θ log e and

the cost function of effort ψ(e) = ceb for θ, c > 0 and b ≥ 1. We show in §A.2.3 that the optimal effort

e∗ =
(
θ AIN

cb

) 1
b , and hence the participation constraint becomes

A∗

N
− ψ

(
e∗
)
=

A∗

N
−
θ A∗ IN

α1b
=

1

N
−
θ IN

α1b
≥ 0. (A.14)

If the cost of effort is sufficiently convex with b ≥ θN IN

α1
, the participation constraint is satisfied.

Finally, we will discuss how the results in this section extend to other award schemes. To have a solution

to (1.6), the agent’s utility Ua may need to be concave, and this concavity depends on the award scheme.

Thus, it is possible that Ua is concave under the winner-takes-all scheme but not for other award schemes (or

vice versa). While the concavity of Ua may be essential for the existence of a solution to (1.6), it does not

affect whether the participation constraint (1.5) is satisfied. Yet, the award scheme is a determining factor

in the participation of agents: When the organizer offers an award scheme that yields a lower equilibrium

effort e∗ than that under the winner-takes-all scheme, (1.5) is more likely to be satisfied. That being said,

the sufficient conditions presented above are not restricted to the winner-takes-all award scheme, although

different award schemes may have different thresholds for the curvature of effort function r (over which

the existence of a solution to (1.6) is guaranteed), the level of output uncertainty or the convexity of cost

function ψ (over which both (1.5) and (1.6) are satisfied).

A.2.2 Examples for Section 1.4.1

In this section, we will present three examples that demonstrate three cases in which (i) the winner-takes-all

scheme is not optimal, (ii) it is optimal even when the taste shock is not log-concave, and (iii) it is better

than awarding the winner and/or runner-up but not optimal. First, the following example demonstrates that
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when condition (1.9) is violated, the winner-takes-all scheme is not optimal.

Example A1 Suppose that the number of participants N = 4. Suppose that the output shock ε̃i follows

a Frechet distribution with mean 0, shape parameter β = 1.2, and scale parameter µ = 1.5 as in Figure

1.3(a) (i.e., h(s) = β
µ
( s−λ
µ
)−β−1 exp

{
−( s−λ

µ
)−β

}
, where λ = −8.35 to make the mean 0) and the technical

shock ε̃i follows a Gumbel distribution with mean 0 and scale parameter µ = 1 as in Figure 1.3(b). In

this case, the density h(s) of the output shock is as in Figure 1.3(c), and hence
∂P N

(1)

∂ei
[e∗, e∗] = 0.065r ′(e∗),

∂P N
(2)

∂ei
[e∗, e∗] = 0.068r ′(e∗),

∂P N
(3)

∂ei
[e∗, e∗] = 0.013r ′(e∗) and

∂P N
(4)

∂ei
[e∗, e∗] = −0.146r ′(e∗). From (1.6), the

equilibrium effort e∗ satisfies
∑N

j=1

∂P N
( j)

∂ei
[e∗, e∗]A( j) = ψ ′(e∗), hence

ψ ′(e∗)
r ′(e∗)

= 0.065A(1) + 0.068A(2) +

0.013A(3) − 0.146A(4). Since ψ ′ is increasing in e∗ and r ′ is decreasing in e∗, the effort e∗ is maximized

when A(1) = A(3) = A(4) = 0, and A(2) = A. Thus, the organizer is better off by choosing an award scheme

with A(2) > 0 rather than the winner-takes-all scheme..

Second, we illustrate that even when the taste shock ε̃i is not log-concave, the output shock ξ̃ i may be

log-concave (hence the winner-takes-all scheme may be optimal) if the scale parameter µ of the technical

shock ε̃i is sufficiently large.

Example A2 Suppose that the number of participants N = 4. Suppose that the taste shock ε̃i follows a

Frechet distribution with mean 0, shape parameter β = 1.2, and scale parameter µ = 1.5 as in Figure

1.3(a) (i.e., h(s) = β
µ
( s−λ
µ
)−β−1 exp

{
−( s−λ

µ
)−β

}
, where λ = −8.35 to make the mean 0) and the technical

shock ε̃i follows a Gumbel distribution with mean 0 and scale parameter µ = 4 (The resulting density h

of ξ̃ i is illustrated in Figure A.1(a)). In this case,
∂P N

(1)

∂ei
[e∗, e∗] = 0.032r ′(e∗),

∂P N
(2)

∂ei
[e∗, e∗] = 0.024r ′(e∗),

∂P N
(3)

∂ei
[e∗, e∗] = −0.002r ′(e∗) and

∂P N
(4)

∂ei
[e∗, e∗] = −0.054r ′(e∗). From (1.6), the equilibrium effort e∗ satisfies∑N

j=1

∂P N
( j)

∂ei
[e∗, e∗]A( j) = ψ ′(e∗), hence

ψ ′(e∗)
r ′(e∗)

= 0.032A(1) + 0.024A(2) − 0.002A(3) − 0.054A(4). Since ψ ′

is increasing in e∗ and r ′ is decreasing in e∗, the effort e∗ is maximized when A(2) = A(3) = A(4) = 0, and

A(1) = A. Thus, the winner-takes-all scheme is optimal even though the taste shock ε̃i is not log-concave

because the aggregate output shock ξ̃ i is log-concave as depicted in Figure A.1(b).

Finally, we show in the next example that the winner-takes-all award scheme may not be optimal even

if it yields a higher utility to the organizer than awarding the winner and/or the runner up.

Example A3 Suppose that the output shock ξ̃ i follows a shifted beta distribution with parameters (α, β) =

(0.6, 1) and mean 0 as in Figure A.1(c) (i.e., h(s) =

(
s+ α

α+β

)α−1(
1−s− α

α+β

)β−1

B(α,β)
, where B is the Beta func-

tion, and B(0.6, 1) = 1.67). For N = 4, we have
∂P N

(1)

∂ei
[e∗, e∗] = 0.77r ′(e∗),

∂P N
(2)

∂ei
[e∗, e∗] = 0.39r ′(e∗),
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(a) h(s) in Example A2.
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(b) log(h(s)) in Example A2.
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0

0.77
1.16

2

3.47
4

s(1)s(2)s(3)

s

(c) h(s) in Example A3.

Figure A.1: (a) The density h of the output shock ξ̃ i in Example A2; (b) The logarithmic transformation log(h(s)) of

the density in (a); (c) The density h of the output shock ξ̃ i in Example A3, where s( j) is such that h(s( j)) = h(̃ξ
N−1

( j) ).

∂P N
(3)

∂ei
[e∗, e∗] = 2.31r ′(e∗), and

∂P N
(4)

∂ei
[e∗, e∗] = −3.47r ′(e∗). If the organizer shares a prize of A between

the winner and the runner-up, then the organizer is better off by setting A(1) = A and A(2) = 0 since

∂P N
(1)

∂ei
[e∗, e∗] >

∂P N
(2)

∂ei
[e∗, e∗]. On the other hand, when an agent increases her effort marginally, her proba-

bility of becoming the third increases three times more than her probability of becoming the winner. Thus,

the optimal award scheme is A(1) = A(2) = A(4) = 0 and A(3) = A. Therefore, the winner-takes-all scheme

is better than awarding the winner and/or the runner-up although it is not the optimal award scheme.

To understand the intuition behind Example A3, let s( j) be such that h(s( j)) = E[h(̃ξ
N−1

( j) )] (i.e., s( j)

represents the certainty equivalent of ξ̃
N−1

( j) under the density h). In the proof of Proposition 1, we show that

∂P N
(1)[e

∗,e∗]

∂e
= r ′(e∗)h(s(1)) and

∂P N
( j)[e

∗,e∗]

∂e
= r ′(e∗)

{
h(s( j))− h(s( j−1))

}
for any j ∈ {2, ..., N − 1}, and that

∂P N
(N )[e

∗,e∗]

∂e
= −r ′(e∗)h(s(N−1)). Figure A.1(c) illustrates that in this example,

∂P N
(1)[e

∗,e∗]

∂e
∝ h(s(1)) = 0.77,

∂P N
(2)[e

∗,e∗]

∂e
∝
(
h(s(2))− h(s(1))

)
= 1.16 − 0.77 = 0.39, and

∂P N
(3)[e

∗,e∗]

∂e
∝
(
h(s(3))− h(s(2))

)
= 3.47 −

1.16 = 2.31. Thus, the large, highly convex and decreasing region of h(s) leads to
∂P N

(1)[e
∗,e∗]

∂e
<

∂P N
(3)[e

∗,e∗]

∂e
.

Therefore, it is suboptimal to award only the winner.

A.2.3 Derivation of Example 1

We derive the equilibrium effort e∗ and the optimal winner prize A∗. Suppose that r(e) = γ + θ e1−a−1
1−a

,

ψ(e) = ceb with θ, a, c > 0 and b ≥ 1. Then, r ′(e) = θe−a, r ′′(e) = −aθe−a−1, r ′′′ (e) = a(a +

1)θe−a−2, ψ ′(e) = cbeb−1, and ψ ′′(e) = cb (b − 1) eb−2. The equilibrium effort is

e∗ =

(
ψ ′

r ′

)−1

(AIN ) =

(
θ AIN

cb

) 1
a+b−1

, where IN =

∫
(N − 1) H(s)N−2h(s)2ds.

Given the number of participants N , the organizer will solve the following problem to determine A∗:

max
A

Kr
(
e∗
)
+

K∑
j=1

ξ̃
N

( j) − A = max
A

Kγ + K θ

(
θ A

cb
IN

) 1−a
a+b−1 − 1

1− a
+

K∑
j=1

ξ̃
N

( j) − A.

93



The objective function is concave in A if 2 < 2a + b. The first order condition yields:

K
θ2

cb
IN

(
θ A

cb
IN

) 1−a
a+b−1

−1

a + b − 1
− 1 = 0 H⇒

K θ

a + b − 1

(
θ

cb
IN

) 1−a
2a+b−2

= A1− 1−a
a+b−1 .

Hence, the optimal winner prize A∗ is

A∗ =

(
K

a + b − 1

) a+b−1
2a+b−2

θ
b

2a+b−2

(
IN

cb

) 1−a
2a+b−2

.

For example, when a = 1 (i.e., r(e) = γ + θ log e), A∗ = K θ
b

because e∗ =
(
θ AIN

cb

) 1
b .

A.2.4 Additional Proofs and Results

Proof of Lemma A1. Let δN
( j) ≡ E [̃ξ

N

( j)] − E [̃ξ
N

( j+1)]. We want to show that δN
( j) > δN+1

( j) for all j. From

Galton (1902),

δN
( j) =

 N

j

∫ s

s

H(s)N− j (1− H(s)) j ds.

Rewriting this equation in terms of density of the j-th output shock, hN
( j)(s), and integrating it by parts,

δN
( j) =

1

j

∫ s

s

hN
( j)(s)

(1− H(s))

h(s)
ds =

1

j
H N
( j)(s)

(1− H(s))

h(s)
|ss −

1

j

∫ s

s

H N
( j)(s)

(
(1− H(s))

h(s)

)′
ds.

Using the equation above, we can derive δN+1
( j) − δ

N
( j) as

δN+1
( j) −δ

N
( j) = E [̃ξ

N+1

( j) ]−E [̃ξ
N

( j)]−(E [̃ξ
N+1

( j+1)]−E [̃ξ
N

( j+1)]) =

∫ s

s

[H N
( j)(s)−H N+1

( j) (s)]

(
(1− H(s))

h(s)

)′
ds < 0;

because H N+1
( j) (s) ≤ H N

( j)(s) for all s (and < for a measurable subset of 4), and log-concavity implies that(
(1−H(s))

h(s)

)′
< 0 for all s (see Bergstrom and Bagnoli 2005, Theorem 4).

Proof of Lemma A2. We will prove a stronger result that (N + 1) E

[
h(̃ξ

N

( j))
]
> N E

[
h(̃ξ

N−1

( j) )
]

for all N

and j . First, we have

(N + 1) E

[
h(̃ξ

N

( j))
]
=

∫ s

s

(N + 1)!

( j − 1)! (N − j)!
(1− H (s)) j H (s)N− j h(s)2

1− H(s)
ds =

1

j

∫ s

s

hN+1
( j+1)(s)λ(s)ds,

where λ(s) = h(s)
1−H(s)

. Using integration by parts, after simplifications,

(N + 1) E

[
h(̃ξ

N

( j))
]
− N E

[
h(̃ξ

N−1

( j) )
]
= −

1

j

∫ s

s

(H N+1
( j+1)(s)− H N

( j+1)(s))λ
′(s)ds. (A.15)

Note that H N+1
( j+1)(s) − H N

( j+1)(s) ≤ 0 for all s (and < for a measurable subset of 4) because ξ̃
N+1

( j+1) first-

order stochastically dominates ξ̃
N

( j+1). Moreover, log-concavity implies that λ′(s) > 0 for all s. Thus,

(N + 1) E

[
h(̃ξ

N

( j))
]
> N E

[
h(̃ξ

N−1

( j) )
]
. Since IN = E

[
h(̃ξ

N−1

(1) )
]
, we have (N + 1)IN+1 > N IN .

Proof of Lemma A3. Let g = r ′

ψ ′
. From the proof of Lemma 3, e∗ = g−1(1/(AIN )) and ∂e∗

∂A
= − 1

g′(e∗)
1

A2 IN
.
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Under a scale transformation of ξ̂ i = α1̃ξ i , IN is converted to ÎN = IN/α1. Note that the optimal winner

prize A∗[α1] as a function of the scale parameter α1 satisfies (A.5), i.e., ∂Uo(A
∗[α1])

∂A
= 0. Then, plugging the

expressions for r ′(e∗) and ∂e∗

∂A
in (A.5), and letting �(A) ≡ −K

r ′(g−1(1/(AIN )))

g′(g−1(1/(AIN )))
1

A2 IN
, we get

∂Uo(A
∗[α1])

∂A
= −K

r ′(g−1(α1/(A
∗[α1]IN )))

g′(g−1(α1/(A∗[α1]IN )))

α1

(A∗[α1])2 IN

− 1

= −K
r ′(g−1(α1/(A

∗[α1]IN )))

g′(g−1(α1/(A∗[α1]IN )))

α2
1

(A∗[α1])2 IN

1

α1

− 1 = �(A∗[α1]/α1)
1

α1

− 1 = 0.(A.16)

Noting that �′(A) is the expression on the left hand side of (A.4), �′(A) ≤ 0, and hence �(A) is de-

creasing in A. As a result, �(A∗[α1]/α1) is decreasing in A∗[α1]/α1. When α1 increases, from (A.16),

�(A∗[α1]/α1) = α1 increases. Thus, from the fact that �(A∗[α1]/α1) is decreasing in A∗[α1]/α1, we

can deduce that A∗[α1]/α1 decreases with α1. Since A∗[α1]/α1 is decreasing in α1, and A∗ is bounded

below by zero, A∗[α1]/α1 converges. Suppose to the contrary that limα1→∞ A∗[α1]/α1 = ς > 0. Then,

limα1→∞�(A
∗[α1]/α1) = �(ς) which is finite and constant with respect to α1. On the other hand, 1/α1

converges to 0 which means that limα1→∞�(A
∗[α1]/α1)

1
α1
= 0. Hence, for sufficiently large α1, from

(A.16), ∂Uo(A
∗[α1])

∂A
< 0. This contradicts with the optimality of A∗[α1]. Therefore, limα1→∞ A∗[α1]/α1 = 0.

Lemma A4 Suppose that r(e) = γ + θlog(e), and ψ(e) = ceb for c, θ > 0 and b ≥ 1. The minimum scale

parameter α1 that guarantees an open tournament with unrestricted entry decreases with K and b.

Proof. We want to show that for any N and D (> N ), the minimum scale parameter α1 will be decreasing in

K and b. To do so, we will show that whenever unrestricted entry is optimal for K (< N ) contributors, it is

also optimal for larger b or K +1 contributors. Suppose that unrestricted entry is optimal for K contributors

and for some scale transformation of the output shock to ξ̂ i = α1̃ξ i . Then, from (A.7), and noting that

assumptions on r and ψ yield A∗,D = A∗,N = K θ
b

and e∗,N =
(

K θ2 IN

cb2

) 1
b

(see §A.2.3), we obtain

U D−N
o [K ] =

K θ

b
log

(
ID

IN

)
+

K∑
j=1

E [̂ξ
D

( j) − ξ̂
N

( j)] ≥ 0, (A.17)

where U D−N
o [K ] is the difference in the organizer’s utility with K contributors when the number of partic-

ipants increase from N to D (see (A.7)). Note that U D−N
o [K ] in (A.17) is increasing in b when ID < IN .

Thus, (A.17) holds strictly for larger b. Furthermore, for K + 1 contributors,

U D−N
o [K+1] =

(K + 1) θ

b
log

(
ID

IN

)
+

K+1∑
j=1

E [̂ξ
D

( j)−ξ̂
N

( j)] =
θ

b
log

(
ID

IN

)
+E [̂ξ

D

(K+1)−ξ̂
N

(K+1)]+U D−N
o [K ].
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By Lemma A1, E [̂ξ
D

(K+1) − ξ̂
N

(K+1)] > E [̂ξ
D

( j) − ξ̂
N

( j)] for any j < K + 1. Hence,

E [̂ξ
D

(K+1) − ξ̂
N

(K+1)] >
1

K

K∑
j=1

E [̂ξ
D

( j) − ξ̂
N

( j)] ≥ −
θ

b
log

(
ID

IN

)
, (A.18)

where the last inequality follows from (A.17). The combination of (A.17) and (A.18) yields U D−N
o [K+1] >

0.

Lemma A5 Let X̃ and Z̃ be two continuous random variables with distribution functions HX (s), HZ (s),

density functions hX (s), hZ (s) and supports 4X and 4Z , respectively. Suppose that X̃ ≤disp Z̃ and that

Z̃ �disp X̃ where ≤disprepresents dispersion order. Then for N ≥ 2,∫
s∈4Z

(N − 1) HZ (s)
N−2 hZ (s)

2 ds <

∫
s∈4X

(N − 1) HX (s)
N−2 hX (s)

2 ds

Proof. Suppose that X̃ ≤disp Z̃ and Z̃ �disp X̃ . Then by Theorem 1.7.2 of Müller and Stoyan (2002) and

by definition of dispersive ordering,

h(H−1
Z (w)) ≤ hX (H

−1
X (w)) for any w ∈ [0, 1] and (< 0) for a measurable subset of [0, 1] . (A.19)

Then making the change of variables w = HZ (s) (s = H−1
Z (w) and ds = 1

hZ

(
H
−1
Z
(w)

)dw ),∫
s∈4Z

(N − 1) HZ (s)
N−2 hZ (s)

2 ds2ds

=

∫ 1

0

(N − 1) wN−2hZ (H
−1
Z (w))dw

<

∫ 1

0

(N − 1) wN−2hX (H
−1
X (w))dw

=

∫
s∈4X

(N − 1) HX (s)
N−2 hX (s)

2 ds

where the inequality follows by (A.19), and the last equality is achieved by making a change of variables as

s = H−1
X (w).

Lemma A6 Suppose that the density of the taste shock ε̃i is log-concave. Ceteris paribus, the equilibrium

effort e∗ when both taste and technical shocks are present is smaller than that with only one of these shocks.

Proof. As we discuss in §1.4.2, the effort e∗ =
(
ψ ′

r ′

)−1

(AIN ) where IN =
∫

s∈4 (N − 1) H (s)N−2 h (s)2 ds.

We will show that ceteris paribus, IN when both taste and technical shocks are present is smaller than that

when there is only one of these shocks are present. This will yield the desired result because
(
ψ ′

r ′

)−1

is

increasing.

The technical shock ε̃i follows a Gumbel distribution with mean 0 and scale parameter µ as discuss

in the proof of Lemma 1. Since Gumbel distribution is log-concave, by Theorem 3.B.7 of Shaked and
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Shanthikumar (2007), ε̃i ≤disp ε̃i + ε̃i = ξ̃ i (and ξ̃ i �disp ε̃i unless ε̃i = 0 with probability 1) where

≤disprepresents dispersion order. Similarly, since the taste shock ε̃i is log-concave by assumption, ε̃i ≤disp

ε̃i + ε̃i = ξ̃ i (and ξ̃ i �disp ε̃i unless ε̃i = 0 with probability 1). Then, the result follows by Lemma A5.

Lemma A7 Let I
µ
N and I 0

N be defined as in the proof of Lemma 4. Then for any N ≥ 2, I
µ
N → I 0

N as µ→ 0.

Proof. Let Hε(s) be the distribution function and hε(s) be the corresponding density function for the tech-

nical shock ε̃i that follows a Gumbel distribution with mean 0 and scale parameter µ. Let h0(s) and H0(s)

be the density and distribution functions of the output shock ξ̃ i over support 40 when the technical shock

ε̃i = 0 with probability 1, and the taste shock ε̃i has increasing density function. (Note that h0 and H0, in

this case, are also the density and distribution functions for the taste shock ε̃i .) Let hµ(s) and Hµ(s) the

density and distribution functions of ξ̃ i over support 4µ when ε̃i follows a Gumbel distribution with mean

0 and scale parameter µ, and ε̃i has increasing density function. Let I 0
N ≡

∫
40
(N − 1) H0 (s)

N−2 h0 (s)
2 ds

and I
µ
N ≡

∫
4µ
(N − 1) Hµ (s)

N−2 hµ (s)
2 ds as in the proof of Lemma 4. We will show that I

µ
N → I 0

N as

µ→ 0 when hε is log-concave.

Since ξ̃ i = ε̃i + ε̃i , and ε̃i and ε̃i are independent, hµ(s) = h0 ∗ hε and Hµ(s) = H0 ∗ hε , where ∗ de-

notes the convolution operator. Noting that hε ≥ 0 and
∫ +∞
−∞ hε(s)d(s) = 1, we have limµ→0 hµ(s) =

limµ→0 (h0 ∗ hε) (s) = h0(s) and limµ→0 Hµ(s) = limµ→0 (H0 ∗ hε) (s) = H0(s) almost everywhere

(cf. Theorem (9.6) of Wheeden and Zygmung 1977). Furthermore, since hε is log-concave, from Theo-

rems 3.B.4 and 3.B.8, and Equation 3.B.11 of Shaked and Shanthikumar (2007), we have hµ(H
−1
µ (w)) ≤

h0(H
−1
0 (w)) for all w ∈ [0, 1]. By letting w = Hµ (s) , we can rewrite I

µ
N as

I
µ
N =

∫ 1

0

(N − 1) wN−2hµ(H
−1
µ (w))dw.

Since hµ(H
−1
µ (w)) ≤ h0(H

−1
0 (w)), we have (N − 1) wN−2hµ(H

−1
µ (w)) ≤ (N − 1) wN−2h0(H

−1
0 (w))

for allw ∈ [0, 1]. Making the change of variables s = H−1
0 (w), we have

∫
(N − 1) wN−2h0(H

−1
0 (w))dw =

I 0
N . Thus, we can apply Lebesgue’s Dominated Convergence Theorem to obtain

lim
µ→0

I
µ
N =

∫ 1

0

(N − 1) wN−2 lim
µ→0

hµ(H
−1
µ (w))dw =

∫ 1

0

(N − 1) wN−2h0(H
−1
0 (w))dw = I 0

N .

Corollary A1 Suppose that in addition to (1.16) and (1.17), the organizer is subject to the following limi-

tations for agents’ compensation:

−∞ ≤ φ ≤ φ∗ (y) ≤ φ <∞ for all y ∈ Y . (A.20)
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Let e∗ =
(
ψ ′

r ′

)−1 (
K

N

)
and a, b, y, y be the solution to the set of equations

a =
K

N

[
H (y − r(e∗))− H

(
y − r(e∗)

)] , (A.21)

b = ψ(e∗)−
K

(
y −

∫ y−r(e∗)

y−r(e∗)
H(s)ds

)
N

[
H(y − r(e∗))− H(y − r(e∗))

] , (A.22)

y =
φ − b

a
, y =

φ − b

a
. (A.23)

Then, the compensation rule

φ∗ (y) =


φ y < y

ay + b y ≤ y ≤ y

φ y < y

is the ACR which also satisfies (A.20) and implements the first-best effort e∗.

Proof. Recall from Lemma 5 that e∗ =
(
ψ ′

r ′

)−1 (
K

N

)
is the first-best effort level that the organizer elicits

from the agents. Let a, b, y, y be a solution to the set of equations (A.21)-(A.23). To verify φ∗ imple-

ments the first-best effort e∗, we need to verify that e∗ satisfies participation constraint (1.16) and incentive

compatibility constraint (1.17) given φ∗. If we plug φ∗ in (1.16), we obtain

E[φ
(
r(e∗)+ ξ̃ i

)
]

=

∫ y−r(e∗)

s

φh(s)ds +

∫ y−r(e∗)

y−r(e∗)

[
a
(
r(e∗)+ s

)
+ b

]
h(s)ds +

∫ s

y−r(e∗)

φh(s)ds

= b + a

[∫ y−r(e∗)

s

yh(s)ds +

∫ y−r(e∗)

y−r(e∗)

(
r(e∗)+ s

)
h(s)ds +

∫ s

y−r(e∗)

yh(s)ds

]

= b + a

[
y H(y − r(e∗))+

(
r(e∗)+ s

)
H(s)

∣∣y−r(e∗)

y−r(e∗)
ds −

∫ y−r(e∗)

y−r(e∗)

H(s)ds + y
(
1− H(y − r(e∗))

)]

= b +
K

(
y −

∫ y−r(e∗)

y−r(e∗)
H(s)ds

)
N

[
H(y − r(e∗))− H(y − r(e∗))

]
= ψ(e∗)−

K

(
y −

∫ y−r(e∗)

y−r(e∗)
H(s)ds

)
N

[
H(y − r(e∗))− H(y − r(e∗))

] + K

(
y −

∫ y−r(e∗)

y−r(e∗)
H(s)ds

)
N

[
H(y − r(e∗))− H(y − r(e∗))

] = ψ(e∗)
Thus, (1.16) is satisfied. If we substitute φ∗ in the incentive compatibility constraint, we get

arg max
ei∈R+

E[φ
(
r(ei )+ ξ̃ i

)
]− ψ(ei )

= arg max
ei∈R+

∫ y−r(ei )

s

φh(s)ds +

∫ y−r(ei )

y−r(ei )

[a (r(ei )+ s)+ b] h(s)ds +

∫ s

y−r(ei )

φh(s)ds − ψ(ei )
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= arg max
ei∈R+

a

[∫ y−r(ei )

s

yh(s)ds +

∫ y−r(ei )

y−r(ei )

(r(ei )+ s) h(s)ds +

∫ s

y−r(ei )

yh(s)ds

]
− ψ(ei )

= arg max
ei∈R+

a

[
y H(y − r(ei ))ds + (r(ei )+ s) H(s)|y−r(ei )

y−r(ei )
ds −

∫ y−r(ei )

y−r(ei )

H(s)ds + y (1− H(s))

]
− ψ(ei )

= arg max
ei∈R+

ay − a

∫ y−r(ei )

y−r(ei )

H(s)ds − ψ(ei ).

The first order condition for this maximization problem yields

ar ′
(
e∗
) [

H(y − r(e∗))− H(y − r(e∗))
]
− ψ ′(e∗) = 0,

which leads to (substituting the expression for a)

K

N
r ′
(
e∗
)
− ψ ′(ei ) = 0.

Thus, the proposed compensation rule φ∗ implements the first-best effort e∗. The fact that φ∗ is the ACR

can be proved with the same technique in the proof of Lemma 5.
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Appendix B

Supplement to Chapter 2

B.1 Proofs

Proof of Proposition 5. In a productivity-based project, from solver i’s perspective, another solver’s

performance is a random variable ṽ∗,P ≡ v∗,P (̃a). Thus, plugging Pn
( j)[vi , v

∗] expression of (2.3) into (2.4),

and simplifying it for productivity-based projects, we obtain solver i’s problem as follows:

max
vi

n∑
j=1

A j

(n − 1)!

( j − 1)! (n − j)!
P(vi > ṽ∗,P)n− j P(vi ≤ ṽ

∗,P) j−1 − c
r−1(vi )

ai

− k. (B.1)

(a) In a cost-based project, all solvers except solver i have performance based on the performance function

v∗,C(ci ). We will construct a bijective mapping η : R+→ R+ from a solver’s cost level ci to a productivity-

level ai (i.e., η(ci ) = ai ) such that given that all other solvers have performance based on v∗,P(ai ) =

v∗,C(ci ), solver i will have the same best-response performance. Define solver i’s productivity level as

ai = η(ci ) = c/(θci ). Given v∗,P(ai ) = v∗,C(ci ), we have another solver’s performance as the following

random variable:

ṽ∗,C ≡ v∗,C (̃c) = v∗,P (̃a) = ṽ∗,P . (B.2)

Then, under r(e) = θe, solver i’s problem (2.4) in a cost-based project becomes

max
vi

n∑
j=1

A j

(n − 1)!

( j − 1)! (n − j)!
P(vi > ṽ∗,C)n− j P(vi ≤ ṽ

∗,C) j−1 − ci

vi

θ
− k (B.3)

= max
vi

n∑
j=1

A j

(n − 1)!

( j − 1)! (n − j)!
P(vi > ṽ∗,P)n− j P(vi ≤ ṽ

∗,P) j−1 − c
vi

aiθ
− k, (B.4)

where the equality follows because of (B.2) and ci = η−1(ai ) = c/(θai ). Thus, under r(e) = θe, the

solver’s problem (B.3) in a cost-based project is equivalent to the solver’s problem (B.4) in a productivity-

based project. As a result, given that all other solvers have performance based on v∗,P(ai ) = v∗,C(ci ), by
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using the mapping η, we obtain the same best-response for solver i under a cost-based project as that under a

productivity-based project. This shows that the equilibrium performance under cost-based and productivity-

based projects satisfies v∗,P(ai ) = v∗,P(η(ci )) = v∗,C(ci ) = v∗,C(c/(θai )). Finally, using the mapping

ã = η(̃c) = c/(θ c̃), we obtain

H(ai ) = P (̃a ≤ ai ) = P(c/(θ c̃) ≤ ai ) = P(c/(θai ) ≤ c̃) = 1− G(c/(θai )).

(b) In an expertise-based project, all solvers except solver i have performance based on the performance

function v∗,E(β i ). We will construct a bijective mapping ω : R+ → R+ from a solver’s expertise level β i

to a productivity-level ai (i.e., ω(β i ) = ai ) such that given that all other solvers have performance based on

v∗,P(ai ) = v∗,E(β i ), solver i will have the same best-response performance. Let ω(β i ) = exp(β i/θ). Then

we can define solver i’s productivity level as ai = exp(β i/θ). Given v∗,P(ai ) = v∗,E(β i ), we have another

solver’s performance as the following random variable:

ṽ∗,E ≡ v∗,E(β̃) = v∗,P (̃a) = ṽ∗,P . (B.5)

As a result, under r(e) = θ log e, solver i’s problem (2.4) in an expertise-based project becomes

max
vi

n∑
j=1

A j

(n − 1)!

( j − 1)! (n − j)!
P(vi > ṽ∗,E)n− j P(vi ≤ ṽ

∗,E) j−1 − c exp((vi − β i )/θ)− k (B.6)

= max
vi

n∑
j=1

A j

(n − 1)!

( j − 1)! (n − j)!
P(vi > ṽ∗,P)n− j P(vi ≤ ṽ

∗,P) j−1 − c
exp(vi/θ)

ai

− k, (B.7)

where the equality follows because of (B.5) and β i = ω−1(ai ) = θ log(ai ). Thus, under r(e) = θ log e,

the solver’s problem (B.6) in an expertise-based project is equivalent to the solver’s problem (B.7) in a

productivity-based project. As a result, given that all other solvers have performance based on v∗,P(ai ) =

v∗,E(β i ), by using the the mapping ω, we obtain the same best-response for solver i under an expertise-

based project as that under a productivity-based project. This shows that the equilibrium performance

under expertise-based and productivity-based projects satisfies v∗,P(ai ) = v∗,P(ω(β i )) = v∗,E(β i ) =

v∗,E(θ log(ai )). Finally, using the mapping ã = ω(β̃) = exp(β̃/θ), we get

H(ai ) = P (̃a ≤ ai ) = P(exp(β̃/θ) ≤ ai ) = P(β̃ ≤ θ log(ai )) = F(θ log(ai )).

Proof of Proposition 6. We will derive the equilibrium effort e∗ for a more general case in which the fixed

cost k ≥ 0 and the seeker awards two prizes A1 and A2. Our analysis can be easily extended to the case

with more than two prizes. The proof proceeds as follows. We first derive the equilibrium effort assuming

that the fixed cost k = 0. Based on the effort under k = 0, we then derive the impact of k to obtain solvers’

participation and effort in equilibrium. As mentioned in the main body, a similar approach is frequently used
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in literature (e.g., Moldovanu and Sela 2001, Terwiesch and Xu 2008).

First, suppose that all solvers except solver i have performance based on the best-response performance

function v∗ (ai ), which is assumed to be continuously differentiable and increasing in the productivity level

ai . We can write the best-response effort as e∗ (ai ) = r−1 (v∗ (ai )) /ai . With performance vi , the probability

that solver i will receive A1 is P {vi ≥ v∗(̃a)}
n−1 = H

(
(v∗)−1(vi )

)n−1
and the probability that she will

receive A2 is (n − 1)P {vi < v∗(̃a)} P {vi ≥ v∗(̃a)}
n−2 = (n − 1)

(
1− H

(
(v∗)−1(vi )

))
H
(
(v∗)−1(vi )

)n−2
.

Then, solver i with productivity level ai will solve the following problem to determine her performance vi :

max
vi

A1 H n−1
(1)

(
(v∗)−1(vi )

)
+ A2 (n − 1)

[
H n−2
(1)

(
(v∗)−1(vi )

)
− H n−1

(1)

(
(v∗)−1(vi )

)]
− cr−1 (vi ) /ai .

The first-order condition of this problem evaluated at vi = v∗(ai ) gives (note that v∗ (ai ) = r (ai e
∗ (ai )))[

A1hn−1
(1) (ai )+ A2 (n − 1)

(
hn−2
(1) (ai )− hn−1

(1) (ai )
)] 1

(v∗)′(ai )
−

c

air
′(r−1(v∗(ai ))

=

[
A1hn−1

(1) (ai )+ A2 (n − 1)
(
hn−2
(1) (ai )− hn−1

(1) (ai )
)]

r ′(ai e
∗ (ai )) [ai (e∗)′ (ai )+ e∗ (ai )]

−
c

air
′(ai e

∗ (ai ))
= 0. (B.8)

Multiplying both sides of (B.8) with air
′(ai e

∗ (ai ))
[
ai (e

∗)′ (ai )+ e∗ (ai )
]
/c, we obtain

ai

c

[
A1hn−1

(1) (ai )+ A2 (n − 1)
(
hn−2
(1) (ai )− hn−1

(1) (ai )
)]
−
[
ai (e

∗)′ (ai )+ e∗ (ai )
]
= 0. (B.9)

Since v∗(ai ) is increasing, in a contest with n > 2, the least productive solver has no chance of winning A1

or A2, so she will exert zero effort (i.e., e∗(a) = 0). Thus, the solution of the differential equation (B.9) is

e∗ (ai ) =
1

ai

∫ ai

a

a

c

[
A1hn−1

(1) (a)+ A2 (n − 1)
(
hn−2
(1) (a)− hn−1

(1) (a)
)]

da.

Therefore, the equilibrium performance function v∗(ai ) is

v∗ (ai ) = r

(∫ ai

a

a

c

[
A1hn−1

(1) (a)+ A2 (n − 1)
(
hn−2
(1) (a)− hn−1

(1) (a)
)]

da

)
. (B.10)

Finally, we will verify that the equilibrium performance function v∗ (ai ) is continuously differentiable and

increasing in ai . Since all of the terms inside the integral in (B.10) are continuously differentiable in ai , and

r is continuously differentiable, so is v∗. If we take the derivative of v∗ (ai ) with respect to ai , we obtain

(v∗)′ (ai ) = r ′
(∫ ai

a
φ(a)da

)
×φ(ai ), where φ(ai ) ≡

ai

c
[A1hn−1

(1) (ai )+A2(n−1)(hn−2
(1) (ai )−hn−1

(1) (ai ))].Thus,

v∗ is increasing because r ′ > 0, and A1 ≥ A2 implies

φ(ai ) ≥
ai

c

[
A2hn−1

(1) (ai )+ A2 (n − 1)
(
hn−2
(1) (ai )− hn−1

(1) (ai )
)]

=
ai A2

c

[
−(n − 2)hn−1

(1) (ai )+ (n − 1) hn−2
(1) (ai )

]
=

ai A2

c

[
− (n − 2) (n − 1) H (ai )

n−2 h (ai )+ (n − 1) (n − 2)
(
H (ai )

n−3 h (ai )
)]

=
ai A2

c
(n − 2) (n − 1) H (ai )

n−3 h (ai ) [1− H (ai )] > 0.
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Second, when there is a fixed cost k ≥ 0, let e∗(ai ) be the equilibrium effort. In this case, only solvers with

productivity levels ai ∈
[
a f , a

]
will participate, where a f satisfies e∗(a f ) = 0, and zero utility condition

A1 H n−1
(1)

(
a f
)
+ A2 (n − 1)

[
H n−2
(1)

(
a f
)
− H n−1

(1)

(
a f
)]
− k = 0.

Solving (B.9) with the new boundary condition e∗(a f ) = 0 yields the equilibrium effort:

e∗ (ai ) =
1

ai

∫ ai

a f

a

c

[
A1hn−1

(1) (a)+ A2 (n − 1)
(
hn−2
(1) (a)− hn−1

(1) (a)
)]

da. (B.11)

When the seeker adopts the winner-takes-all award scheme (i.e., A1 = A, A2 = 0) and the fixed cost k = 0

(i.e., a f = a), (B.11) boils down to the solver’s equilibrium effort e∗(ai ) given in the proposition. Then,

v∗(ai ) = r(ai e
∗(ai )) is the solver’s equilibrium performance given in the proposition.

A corollary of Proposition 6 is that the equilibrium effort e∗ (ai ) is not necessarily increasing in ai .

Corollary A2 Suppose that the seeker adopts the winner-takes-all award scheme and that a = +∞, k = 0,

and E [̃an−1
(1) ] < +∞. Then, there exist a2 > a1 such that e∗(a2) < e∗(a1).

Proof. Since E [̃an−1
(1) ] < +∞ and a = +∞, we have

lim
a→a

e∗ (ai ) = lim
a→a

A∗

cai

∫ a

a

ahn−1
(1) (a) da = lim

a→a

A∗

cai

E [̃an−1
(1) ] = 0.

For any a1 ∈ (a, a), e∗
(
a1
)
= A∗

ca1

∫ a1

a
ahn−1

(1) (a) da > 0 because hn−1
(1) (ai ) > 0 for all ai ∈ (a, a1). Since

e∗(ai ) is continuous in ai , by Intermediate Value Theorem, there exists a2 ∈ (a1, a) such that e∗(a1) >

e∗(a2) > 0.

Proof of Proposition 7. (a) For any ai < a, we have

H n
(1)(ai )− H n−1

(1) (ai ) = H(ai )
n − H(ai )

n−1 = (H(ai )− 1)H(ai )
n−1 < 0.

Furthermore, by Corollary 1.C.38 of Shaked and Shanthikumar (2007), ãn
(1) dominates ãn−1

(1) in the likelihood

ratio order. Thus, by Theorem 1.4.6 of Müller and Stoyan (2002), [̃an
(1) |̃a

n
(1) < ai ] first-order stochastically

dominates [̃an−1
(1) |̃a

n−1
(1) < ai ] (and the reverse is not true for ai > a). As a result, for any ai > a, we have

E [̃an
(1) |̃a

n
(1) < ai ]− E [̃an−1

(1) |̃a
n−1
(1) < ai ] > 0.

(b) For the solver with the highest productivity level a, the equilibrium effort is e∗,n (a) = 1
a

∫ a

a
A∗a

c
hn−1
(1) (a)da =

A∗

ca
E [̃an−1

(1) ]. Since ãn
(1) first-order stochastically dominates ãn−1

(1) (and the reverse is not true), δ ≡ E [̃an
(1)] −

E [̃an−1
(1) ] > 0. For any ai , we can rewrite e∗,n+1 (ai )− e∗,n (ai ) as

e∗,n+1 (ai )−e∗,n (ai ) =
A∗

cai

∫ ai

a

a[hn
(1)(a)−hn−1

(1) (a)]da =
A∗

cai

(E [̃an
(1)]−E [̃an−1

(1) ]−

∫ a

ai

a[hn
(1)(a)−hn−1

(1) (a)]da).

As ai approaches a, the term
∫ a

ai
a[hn

(1)(a)− hn−1
(1) (a)]da approaches 0, so there exists â1 ∈ [a, a) such that
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for ai > â1, we have
∫ a

ai
a[hn

(1)(a)− hn−1
(1) (a)] < δ. Then, for any ai ∈ (̂a1, a), we have

e∗,n+1 (ai )− e∗,n (ai ) =
A∗

cai

(δ −

∫ a

ai

a[hn
(1)(a)− hn−1

(1) (a)]da) > 0.

Similarly, noting that the reward function r is increasing, the equilibrium performance v∗ satisfies

v∗,n+1 (a) = r

(
A∗

c
E [̃an

(1)]

)
> r

(
A∗

c
E [̃an−1

(1) ]

)
= v∗,n (a) .

v∗,n+1 (ai )− v∗,n (ai ) is continuous because v∗,n (ai ) is continuous. Thus, there exists â2 ∈ [a, a) such that

v∗,n+1 (ai )− v∗,n (ai ) > 0 for all ai ∈ (̂a2, a). Then, letting â = max{̂a1, â2} yields the proposed result.

Proof of Proposition 8. From (2.14) with A1 = A∗ and A2 = 0, we obtain β f = F−1((k/A∗)1/(n−1)). A

solver with expertise level β f has zero utility from the contest and her equilibrium effort e∗(β f ) = 0. Then,

for any solver with expertise level β i < β f , the participation constraint (2.5) is violated because

A∗Pn
(1)[v

∗(β i ), v
∗]− cir

−1(v∗(β i )− β i )− k = A∗F(β i )
n−1 − cir

−1(v∗(β i )− β i )− k

< A∗F(β f )
n−1 − k = 0,

where the first equality follows from (2.3), and the inequality follows from e∗(β i ) = r−1(v∗(β i )− β i ) ≥ 0

and F(β i ) < F(β f ). Thus, only solvers with expertise level β i ≥ β
f will participate in the contest and exert

effort e∗(β i ) =
1
c

∫ βi

β f exp
{
β−βi

θ

}
A∗ f n−1

(1) (β)dβ, where e∗ is obtained by substituting A1 = A∗ and A2 = 0

into (2.15). The probability that a solver will participate is P(β̃ ≥ β f ) = 1− F(β f ) = 1− (k/A∗)1/(n−1).

As a result, the expected number of participating solvers in an open contest is n∗ = n
(
1− (k/A∗)1/(n−1)

)
.

If k = 0, then β f = F−1(0) = β. Thus, from (2.2), the seeker’s profit 5 = V − A∗ is

5 =

∫ β

β

θ log

(∫ βi

β

exp {β/θ}
A∗

c
f n−1
(1) (β)dβ

)
[ρ f n

(1)(β i )+ (1− ρ) f (β i )]dβ i − A∗.

The optimal prize should satisfy the following first-order condition:∫ β

β

θ
1

A∗
[ρ f n

(1)(β i )+ (1− ρ) f (β i )]dβ i − 1 = θ
1

A∗
− 1 = 0.

Thus, the optimal prize A∗ = θ , and the expected profit of the seeker is

5 =

∫ β

β

θ log

(∫ βi

β

exp {β/θ}
θ

c
f n−1
(1) (β)dβ

)
[ρ f n

(1)(β i )+ (1− ρ) f (β i )]dβ i .

Remark. Note that the derivative of the best-response performance y satisfies

y′(β i ) = θ
exp

{
β i/θ

} [
A1 f n−1

(1) (β i )+ A2 (n − 1)
(

f n−2
(1) (β i )− f n−1

(1) (β i )
)]∫ βi

β
exp {β/θ}

[
A1 f n−1

(1) (β)+ A2 (n − 1)
(

f n−2
(1) (β)− f n−1

(1) (β)
)]

dβ
> 0,

because [
A1 f n−1

(1) (β i )+ A2(n − 1)
(

f n−2
(1) (β i )− f n−1

(1) (β i )
)]
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≥ A2

[
f n−1
(1) (β i )+ (n − 1)

(
f n−2
(1) (β i )− f n−1

(1) (β i )
)]

= A2

[
(n − 1) f n−2

(1) (β i )− (n − 2) f n−1
(1) (β i )

]
= A2

[
(n − 1)(n − 2)F(β i )

n−3 f (β i )− (n − 2)(n − 1)F(β i )
n−2 f (β i )

]
> 0.

Thus, y(β i ) is increasing.

B.2 Additional Results on Productivity-based Projects in Chapter 2

This section proceeds as follows. In §B.2.1, we discuss when the winner-takes-all award scheme is optimal.

In §B.2.2, we investigate when an open contest is optimal. Since we consider only productivity-based

projects in this section, we drop the superscript “P” for notational convenience.

B.2.1 Optimal award scheme

In this section, we delineate when the winner-takes-all award scheme is optimal. Suppose that the seeker

distributes two prizes to the winner and the runner-up with a total prize of A and that the fixed cost k = 0.1

Let α ∈ [0, 0.5] be the ratio of total prize that is awarded to the runner up; i.e., the winner prize A1 =

(1− α)A and the runner-up prize A2 = αA. Given the total prize of A, the seeker’s profit 5 = V − A will

increase when his payoff V increases. We will derive how the seeker’s payoff changes with α to show when

the winner-takes-all scheme (i.e., α = 0) is optimal. Given e∗ (ai ), the seeker’s payoff is:

V = ρ

∫ a

a

r
(
ai e
∗ (ai )

)
hn
(1) (ai ) dai + (1− ρ)

∫ a

a

r
(
ai e
∗ (ai )

)
h (ai ) dai .

The derivative of V with respect to the ratio of the runner-up prize, α, is

∂V

∂α
= ρ

∫ a

a

air
′
(
ai e
∗ (ai )

) ∂e∗ (ai )

∂α
hn
(1) (ai ) dai + (1− ρ)

∫ a

a

air
′
(
ai e
∗ (ai )

) ∂e∗ (ai )

∂α
h (ai ) dai . (B.12)

To evaluate the derivative in (B.12), we need the equilibrium effort e∗ (ai ) and its derivative with respect to

α. When we substitute A1 = (1− α)A, A2 = αA, and a f = a into (B.11), we obtain solver i’s equilibrium

effort

e∗ (ai ) =
A

ai

∫ ai

a

a

c

[
(1− α)hn−1

(1) (a)+ α (n − 1)
(
hn−2
(1) (a)− hn−1

(1) (a)
)]

da.

The derivative of e∗ (ai ) with respect to α is

∂e∗ (ai )

∂α
=

A

ai

∫ ai

a

a

c

[
(n − 1) hn−2

(1) (a)− nhn−1
(1) (a)

]
da.

Next, we will link the optimality of the winner-takes-all award scheme with the concavity of the reward

function r . For this purpose, we will use a specific functional form for the reward function r (e) = θ e1−b−1
1−b

(where b ≥ 0), which is a Constant Relative Risk Aversion (CRRA) function. CRRA function has two nice

1A similar approach with two prizes is common in the literature (e.g., Moldovanu and Sela 2001). The analysis can easily be

generalized to multiple prizes.
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properties. First, it boils down to the linear reward function of Moldovanu and Sela (2006) when b = 0

(i.e., limb→0 θ
e1−b−1

1−b
= θe), and to the logarithmic reward function of Terwiesch and Xu (2008) when b = 1

(i.e., limb→1 θ
e1−b−1

1−b
= θ log e). Second, b determines the concavity of the reward function: As b increases,

so does the concavity of the reward function r . Under CRRA function, noting that r ′ (e) = θe−b, (B.12)

becomes

∂V

∂α
= θ

∫ a

a

ai

(
ai e
∗(ai )

)−b ∂e∗ (ai )

∂α

[
ρhn

(1) (ai )+ (1− ρ)h (ai )
]

dai . (B.13)

We will first analyze the case in which b = 0, and then use this analysis to discuss the case in which b > 0.

When b = 0 (i.e., r (e) = θe as in Moldovanu and Sela 2006), (B.13) becomes

∂V

∂α
=

∫ a

a

∫ ai

a

Aθa

c

[
(n − 1) hn−2

(1) (a)− nhn−1
(1) (a)

] [
ρhn

(1) (ai )+ (1− ρ)h (ai )
]

dadai

=

∫ a

a

∫ a

a

Aθa

c

[
(n − 1) hn−2

(1) (a)− nhn−1
(1) (a)

] [
ρhn

(1) (ai )+ (1− ρ)h (ai )
]

dai da

=

∫ a

a

Aθa

c

[
(n − 1) hn−2

(1) (a)− nhn−1
(1) (a)

] (
1−

[
ρH n

(1) (a)+ (1− ρ)H (a)
])

da

=

∫ a

a

Aθa

c

[
hn−1
(2) (a)− hn

(2) (a)
] (1− [ρH n

(1) (a)+ (1− ρ)H (a)
])

1− H (a)
da, (B.14)

because nhn−1
(1) (a) = n(n−1)H(a)n−2h (a) = n(n−1)(1−H(a))H(a)n−2h(a)

(1−H(a))
=

hn
(2)(a)

(1−H(a))
. Then simplifying (B.14),

∂V

∂α
=

∫ a

a

Aθa

c

[
hn−1
(2) (a)− hn

(2) (a)
] [
ρ

(
1− H (a)n

)
1− H (a)

+ (1− ρ)

]
da

=

∫ a

a

Aθ

c

[
hn−1
(2) (a)− hn

(2) (a)
] [
ρa

(∑n−1

j=0
H(a) j

)
+ (1− ρ) a

]
da

=
Aθ

c
(E[ρãn−1

(2) (
n−1∑
j=1

H (̃an−1
(2) )

j )+ (1− ρ) ãn−1
(2) ]− E[ρãn

(2)(
n−1∑
j=1

H (̃an
(2))

j )+ (1− ρ) ãn
(2))]) < 0,

where the last inequality follows because
[
aρ
(∑n−1

j=0 H(a) j
)
+ a (1− ρ)

]
is an increasing function of a,

and ãn
(2) is larger than ãn−1

(2) in the sense of first-order stochastic dominance (cf. Theorem 1.A.8 of Shaked

and Shanthikumar 2007). As a result, it is optimal for the seeker to set the ratio of the runner-up prize,

α = 0; i.e., the winner-takes-all scheme is optimal when b = 0.

When b > 0, it is not difficult to verify that ∂V

∂α
is continuous in b because all of the terms in (B.13)

are continuous in b. Then for sufficiently small b, we must have ∂V

∂α
< 0. Therefore, there exists b0 > 0

such that for all b < b0, it is optimal for the seeker to set A1 = A and A2 = 0. For example, when b = 1

(i.e., r(e) = limb→1 θ
e1−b−1

1−b
= θ log(e) as in Terwiesch and Xu 2008), Figure B.1(b) illustrates that V is

decreasing with α, and hence the winner-takes-all award scheme is optimal.
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Figure B.1: The seeker’s payoff V as a function of the ratio of total prize that is awarded to the runner up, α, when

ã ∼ Uniform(0, 1), n = 10, r(e) = e1−b

1−b
, A = 1, c f = 0, and c = 0.1.
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Figure B.2: The density h(a) for (a) beta distribution with parameters d and 1 as in Example 3, (b) beta distribution

with parameters 1.5 and 1.5, and (c) log-normal distribution with log-scale parameter 0 and shape parameter 1.

B.2.2 Open Contest

In this section, we discuss when an open contest is optimal. An open contest is optimal when the seeker’s

profit increases with additional solvers in the contest. Due to solvers’ heterogeneous response to additional

solvers in the contest, the seeker faces a trade-off when determining whether to allow additional solvers

in the contest. On one hand, more solvers induce higher efforts from high-productivity solvers; on the

other hand, more solvers reduce efforts of moderate-productivity solvers. Because the seeker knows only

a distribution of productivity levels of solvers but does not know their exact productivity levels a priori

(for example, it is possible that all solvers have moderate productivity), it is not clear whether the seeker

should allow an open contest. Thus, we next examine when an open contest is optimal to the seeker. For

tractability, we consider the reward function r(e) = θ e1−b−1
1−b

(where b ∈ [0, 1]) that subsumes logarithmic

and linear reward functions as discussed in §B.2.1, and the generalized beta distribution in Example 3 that

encompasses beta distribution (when a = 1) with parameters d and 1 including uniform as shown in Figure

B.2(a).

Proposition 14 shows that an open contest is optimal when the seeker maximizes the performance of the

best solution (i.e., ρ = 1), and it can also be optimal when the seeker maximizes the average performance
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of all solutions (i.e., ρ = 0).

Proposition 14 Suppose that r(e) = θ e1−b−1
1−b

, and that ã ∈ [0, a] follows H (ai ) = ad
i /a

d , where b ∈ [0, 1]

and d > 0. In a productivity-based project with n solvers, an open contest is optimal when

(i) the seeker’s weight on the best solution ρ = 1 or

(ii) the seeker’s weight on the best solution ρ = 0, and the parameters b and d are sufficiently small.

Proof. Substituting v∗(ai ) = r (ai e
∗ (ai )) into (2.6), we can rewrite the seeker’s profit as

5 =

∫ a

a

r
(
ai e
∗ (ai )

) [
ρhn

(1)(ai )+ (1− ρ)h(ai )
]

dai − A. (B.15)

When ã ∈ [0, a] follows H (ai ) = ad
i /a

d , and hence h (ai ) = dad−1
i /ad , the equilibrium effort is

e∗ (ai ) =
Ad (n − 1)

c (d (n − 1)+ 1)

(ai

a

)d(n−1)

.

Substituting e∗(ai ) and r(e) = θ e1−b−1
1−b

into v∗(ai ) = r (ai e
∗ (ai )), we obtain

v∗(ai ) =
θ
(

ai Ad(n−1)
c(d(n−1)+1)

(
ai

a

)d(n−1)
)1−b

− 1

1− b
=
w(n)

(
ai

a

)[d(n−1)+1](1−b)
− 1

1− b
,

wherew(n) =
[

a Ad(n−1)
c(d(n−1)+1)

]1−b

. Noting that hn
(1)(ai ) = nH(ai )

n−1h(ai ) =
nd

a

(
ai

a

)d(n−1)+d−1
, we can rewrite

the seeker’s profit in (B.15) as

5 =

∫ a

0

w(n)
(

ai

a

)[d(n−1)+1](1−b)
− 1

1− b

[
ρ

nd

a

(ai

a

)d(n−1)+d−1

+ (1− ρ)

(
dad−1

i

ad

)]
dai − A

=

∫ a

0

w(n)d

a(1− b)

[
ρn

(ai

a

)[d(n−1)+1](1−b)+dn−1

+ (1− ρ)
(ai

a

)[d(n−1)+1](1−b)+d−1
]

dai −
1

1− b
− A

=
w(n)d

(1− b)

[
ρn

[d(n−1)+1](1−b)+nd
+

(1− ρ)

[d (n − 1)+ 1] (1− b)+ d

]
−

1

1− b
− A.

Let

W (n) =
ad (n − 1)

c (d (n − 1)+ 1)

([
dρn

[d(n−1)+1](1−b)+nd
+

d(1− ρ)

[d (n − 1)+ 1] (1− b)+ d

]) 1
1−b

.

Noting that 5 = A1−bW (n)1−b

1−b
− 1

1−b
− A is concave in A, we obtain the optimal winner prize A∗ = W (n)

1−b
b

from the following first-order condition of 5:

A−bW (n)1−b − 1 = 0.

Substituting the optimal winner prize A∗ back to the seeker’s profit 5, we get

5 =
W (n)(1−b)( 1−b

b
+1)

1− b
−

1

1− b
−W (n)

1−b
b = W (n)

1−b
b

[
1

1− b
− 1

]
−

1

1− b
=

W (n)
1−b

b

1− b
b −

1

1− b
.
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Thus, if W (n) is increasing with n, so is 5. When ρ = 1,

W (n) =
a (n − 1)

c ((n − 1)+ 1/d)

(
n

[(n−1)+1/d](1−b)+n

) 1
1−b

which is increasing in n for any d and b. When ρ = 0,

W (n) =
a (n − 1)

c ((n − 1)+ 1/d)

(
1[

n − 1+ 1/d
]
(1− b)+ 1

) 1
1−b

. (B.16)

Finally we will show that W (n) in (B.16) is increasing in n with sufficiently low b and d . As b approaches

0,

W (n) =
a (n − 1)

c ((n − 1)+ 1/d)

1

n + 1/d
=

a (n − 1)

c
(
n2 − n + (2n − 1)/d + 1/d2

) . (B.17)

Then, the derivative of W (n) in (B.17) with respect to n is

W ′(n) =
a
[(

n2 − n + (2n − 1)/d + 1/d2
)
− (n − 1) (2n − 1+ 2/d)

]
c[
(
n2 − n + (2n − 1)/d + 1/d2

)
]2

=
a
[(

n2 − n + (2n − 1)/d + 1/d2
)
− (2n2 − 2n − n + 1+ (2n − 2)/d)

]
c[
(
n2 − n + (2n − 1)/d + 1/d2

)
]2

=
a
(
−n2d2 + 2nd2 + d + 1− d2

)
c[
(
n2d − nd + (2n − 1)+ 1/d

)
]2
> 0,

when d > 0 is sufficiently small.

To build intuition for Proposition 14, we rewrite the seeker’s profit 5 in (2.6) as follows:

5 =

∫ a

a

v∗,n(ai )
[
ρhn

(1)(ai )+ (1− ρ)h(ai )
]

dai− A = ρE[r (̃an
(1)e
∗,n (̃an

(1)))]+(1−ρ)E[r (̃ae∗,n (̃a))]− A. (B.18)

When the seeker’s goal is to maximize the best solution (i.e., ρ = 1), the number of solvers n has three

effects on the seeker’s profit 5. First, an increase in n reduces the equilibrium effort e∗,n of moderate-

productivity solvers (i.e., e∗,n(ai ) is decreasing in n for moderate values of ai ). Second, a higher n raises e∗,n

for high-productivity solvers. Third, the productivity level of the highest-productivity solver in the contest,

ãn
(1), stochastically increases with n (i.e., ãn+1

(1) first-order stochastically dominates ãn
(1)). Proposition 14

indicates that the second and third effects outweigh the decreased effort from moderate-productivity solvers.

Thus, the seeker’s profit increases with the number of solvers n, and hence an open contest is optimal.

Although Proposition 14 proves the optimality of open contests for the generalized beta distribution given

in Example 6, we can numerically verify that this is also true for various distributions. For example, when

the productivity ã follows a symmetric beta distribution (see Figure B.2(b)) or a log-normal distribution (see

Figure B.2(c)), the seeker’s profit 5 increases with the number of solvers n as depicted in Figure B.3.2

2Since productivity a needs to be non-negative, many other symmetric distributions such as normal or logistic distributions are

unsuitable to model a productivity distribution. We can numerically verify that Proposition 14 holds under other symmetric beta
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(b) ã ∼ log N (0, 1).

Figure B.3: The seeker’s profit5 as a function of the number of solvers n when the seeker’s weight on the best solution

ρ = 1; r(e) = log e, A = 1, and c = 0.1.
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Figure B.4: The seeker’s profit5 as a function of the number of solvers n when the seeker’s weight on the best solution

ρ = 0. Setting: ã ∼ Beta(d, 1), r(e) = e0.9

0.9 , A = 1, and c = 0.1.

When the seeker is interested in the average performance of all solutions (i.e., ρ = 0), the fact that

ãn
(1) stochastically increases with n has no impact on the seeker’s profit 5 because E[r (̃an

(1)e
∗(̃an

(1)))] disap-

pears in (B.18). Thus, the seeker faces a trade-off between increased effort from high-productivity solvers

and decreased effort from moderate-productivity solvers. In this case, an open contest is optimal when the

exponent b of the reward function r and the shape parameter d of beta distribution are sufficiently small.

First, when b is small, the solver’s marginal returns to effort (i.e., r ′(e) = θe−b) diminishes slowly. In

practice, this may correspond to situations in which the seeker’s problem requires a large-scale technical

project (e.g., creating a new drug for a neglected tropical disease in Grand Challenges Explorations) rather

than a simple ideation challenge (e.g., developing novel strategies for increasing TV Everywhere use in In-

noCentive). This is because solving a large-scale technical problem often requires consistent and significant

effort, whereas generating an idea on a simple problem requires relatively low effort, yet additional effort

may have little impact on the quality of the idea. Second, when d is small, the productivity distribution is

highly skewed and the majority of its density h is amassed around low productivity levels. In this case, the

seeker’s profit5 increases with n as shown in Figure B.4. In practice, this may occur when the seeker poses

a highly technical problem, but he is interested in the performance of a large number of solvers.

distributions.
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Appendix C

Supplement to Chapter 3

Proof of Lemma 6. Follows because d(β) appears only in constraint (3.4) and decreasing d(β) improves

the objective.

Proof of Lemma 7. Suppose to the contrary that there exists an optimal solution for which (3.3) does not

bind for a positive measure of β values. Then due to the strictly increasing structure of ψ, it is possible

to increase e(β) values for a positive measure of agents, which will immediately decrease d(β) values and

thus improve the objective of the organizer, causing a contradiction.

Suppose to the contrary that there exists an optimal solution for which (3.6) does not bind for a positive

measure of β values where (3.3) binds. Then it is possible to increase φ(β) for a positive measure of β

values with x(β) > 0 without violating constraint (3.6) and without changing x(β) values. This will result

in an increase of ψ(e(β)) since constraint (3.3) binds. Again, due to the strictly increasing structure of

ψ, e(β) also increases for a positive measure of agents, which will immediately decrease d(β) and thus

improve the organizer’s objective without violating any constraints. Contradiction.

Suppose now to the contrary that there exists an optimal solution for which (3.5) does not bind for a

positive measure of β values bind where (3.3) and (3.6) bind. Then it is possible to decrease x(β) for some

β values where x(β) > 0 and at the same time increase corresponding φ(β) values so that x(β)φ(β) stays

the same. Thus, all constraints are still satisfied but objective improves due to decreased x(β) which is a

contradiction.

Proof of Proposition 9. In this case, it suffices to show that x∗(β) = 0 for almost every β ∈ [0, β0].

Suppose to the contrary that there exists a measurable set S ∈ [0, β0] such that x∗(β) > 0 for all β ∈ S.

Then we need to have a measurable set T ∈ [β0, β] such that x∗(β) < 1 for all β ∈ T . If φ∗(β) = 0 for a

positive measure of β ∈ S ∪ T, Then it is possible to improve the solution by setting x∗(β) = 0 for β values
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for which φ∗(β) = 0 which contradicts optimality. Then φ∗(β) > 0 for almost every β ∈ S ∪ T . Suppose

we set x∗(β) = 0 and φ∗(β) = 0 for β ∈ S and x∗(β) = 1 for β ∈ T . Moreover, we increase φ∗(β), β ∈ T

so that constraint (3.6) is satisfied. In this case, the objective function value improves since y − β ′ > y − β

for all β ∈ T and β ′ ∈ S. Thus, this contradicts the optimality of the solution in the first place.

Proof of Proposition10. Applying Proposition 9 to the Formulation PMR, we obtain the formulation

minimize

∫ β

β0

y − β

e(β)
g(β)dr

subject to ∫ β

β0

ψ(e(β))g(β)dr = M,

e(β) ≥ 0.

From first-order conditions with respect to e(β) and evaluating it at the optimal effort e∗, we have the

following necessary conditions:

−
y − β

e∗(β)2
+ λψ ′(e∗(β)) = 0,∫ β

β0

ψ(e∗(β))g(β)dr = M.

These equations lead to the conditions given in the proposition. Moreover, taking the derivative of e∗(β)

with respect to β results in the differential equation

√
λe′(β) =

1

2

√
y−β

ψ ′(e(β))

(−
1

ψ ′(e(β))
−

y − β

[ψ ′(e(β))]2ψ ′′(e(β))e′(β)
).

Since ψ ′ > 0 and ψ ′′ > 0, the equation can be solved only if (e∗)′(β) < 0.

Finally, this solution also satisfies incentive compatibility constraints for PMO since

∀β ∈ [β, β], φ(β)x(β)− ψ(e(β)) = 0.

Thus, the first-best along with φ∗(β) = ψ(e∗(β)) is a solution to PMO. Since φ∗(β) = ψ(e∗(β)), and

(e∗)′(β) < 0, we have φ′(β) < 0 as well.

Proof of Theorem 5. (a) We first prove that d∗(β + s) ≤ d∗(β) for almost every β ∈ [0, β) and

s ∈ [0, β − β]. Suppose to the contrary that d∗(β + s) > d∗(β). Incentive compatibility constraint require

that and agent with expertise β should not benefit from revealing her expertise as β + s,

φ∗(β)− ψ

(
y − β

d∗(β)

)
≥ φ∗(β + s)− ψ

(
y − β

d∗(β + s)

)
, (C.1)
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and and agent with expertise β + s should not gain from revealing her expertise as β:

φ∗(β + s)− ψ

(
y − β − s

d∗(β + s)

)
≥ φ∗(β)− ψ

(
y − β − s

d∗(β)

)
. (C.2)

adding (C.1) and (C.2), and adding ψ
(

y−β
d∗(β+s)

)
+ ψ

(
y−β

d∗(β)

)
to both sides yields:

ψ

(
y − β − s

d∗(β + s)
+

s

d∗(β + s)

)
−ψ

(
y − β − s

d∗(β + s)

)
≥ ψ

(
y − β − s

d∗(β)
+

s

d∗(β)

)
−ψ

(
y − β − s

d∗(β)

)
. (C.3)

Since d∗(β + s) > d∗(β), we have

s

d∗(β + s)
<

s

d∗(β)
and

y − β − s

d∗(β + s)
<

y − β − s

d∗(β)
.

Thus, from strictly increasing and convex structure of ψ , we have

ψ

(
y − β − s

d∗(β + s)
+

s

d∗(β + s)

)
− ψ

(
y − β − s

d∗(β + s)

)
< ψ

(
y − β − s

d∗(β + s)
+

s

d∗(β)

)
− ψ

(
y − β − s

d∗(β + s)

)
≤ ψ

(
y − β − s

d∗(β)
+

s

d∗(β)

)
− ψ

(
y − β − s

d∗(β)

)
,

which contradicts (C.3). Thus d∗(β + s) ≤ d∗(β) for every β ∈ [0, β) and s ∈ [0, β − β], which implies

(d∗)′(β) ≤ 0.

(b) From the definition of v(β), we have

v(β) = φ(β)− ψ

(
y − β

d(β)

)
.

Plugging this to the equation (3.6), we obtain∫ β

β

[
v(β)+ ψ

(
y − β

d(β)

)]
g(β)dr = M.

Using integration by parts and plugging in the value of v′(β) given in Lemma 8, the equation becomes∫ β

β

ψ

(
y − β

d(β)

)
g(β)dr +

∫ β

β

(
1

d(β)
ψ ′
(

y − β

d(β)

))
[1− G(β)]dr = M. (C.4)

Using (C.4), the formulation PMU reduces to PMUR which is given as

minimize

∫ β

β

x(β)d(β)g(β)dr

subject to (C.4), (3.5), (3.7)

Next, we will show that there is a cutoff point such that for the optimal solution to the formulation PMUR

satisfies:

x∗(β) =

 1 if β ≥ β0

0 if β < β0

.

for almost every β ∈ [β, β]. Let β0 = G−1(1−α). Suppose to the contrary that there is a positive measurable
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set S ∈ [0, β0) in which x∗(β) > 0 for all β ∈ S. Then, there is a positive measurable set T ∈ [β0, β] such

that x∗(β) < 1 for all β ∈ T . In the previous part of the proof, we have shown that (d∗)′(β) ≤ 0. If there

are measurable sets S′ ⊂ S and T ′ ⊂ T such that d∗(β) > d∗(β ′) for β ∈ S′ and β ′ ∈ T ′, then it is possible

to improve the solution by decreasing x(β), β ∈ S and increasing x(β ′), β ′ ∈ T which contradicts the

optimality. Then, we need d∗(β) = d∗(β ′) for all β ∈ S and β ′ ∈ T . However, in such a case, it is possible

to improve the solution by increasing d∗(β ′), β ′ ∈ T and decreasing d∗(β), β ∈ S. Hence in the optimal

solution,

x∗(β) =

 1 if β ≥ β0

0 if β < β0

.

(c) For β ∈ [β0, β], x(β) = 1 so from the definition of v(β), we have

φ∗(β) = v(β)+ ψ

(
y − β

d∗(β)

)
Differentiating both sides with respect to β, and plugging the expression of v′(β) from Lemma 8, we get

(φ∗)′(β) =
1

d∗(β)
ψ ′
(

y − β

d∗(β)

)
−

[
1

d∗(β)
+

y − β

d∗(β)2(d∗)′(β)

]
ψ ′
(

y − β

d∗(β)

)
= −

y − β

d∗(β)2(d∗)′(β)
ψ ′
(

y − β

d∗(β)

)
> 0 since (d∗)′(β) ≤ 0 and d∗(β) <∞.

(d) Applying the second result in the proposition to the formulation PMUR, we get

minimize

∫ β

β0

d(β)g(β)dr

subject to ∫ β

β0

ψ

(
y − β

d(β)

)
g(β)dr +

∫ β

β0

(
1

d(β)
ψ ′
(

y − β

d(β)

))
[1− G(β)]dr = M,

∀β ∈ [β, β], d(β) ≥ 0.

From first order conditions, we have

g(β)− λ

[
ψ ′
(

y − β

d∗(β)

)
g(β)

y − β

d∗(β)2
+

(
1

d∗(β)2
ψ ′
(

y − β

d∗(β)

)
+

y − β

d∗(β)3
ψ
′′
(

y − β

d∗(β)

))
[1− G(β)]

]
= 0

which leads to the condition given in the theorem.

Proof of Corrolary 4.

The solution to the organizer’s problem under fixed compensation is weakly worse than the one gives

in Theorem 5 by optimality of the solution in Theorem 5. Furthermore, Theorem 5 states that an optimal

solution to PMU should satisfy φ′(β) > 0 for β ′ ≥ β0 which is not the case under fixed awards. Hence, the

solution under fixed awards is strictly worse than the solution to the formulation PMU.
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Proof of Proposition 11.

The first part of the proof is equivalent because

φ (β) H

(
e (β, β) d (β)

β − β

)
− ψ (e (β, β)) ≥ φ

(
β ′
)

H

(
e
(
β, β ′

)
d
(
β ′
)

β − β

)
− ψ

(
e
(
β, β ′

))
,

if and only if

β = arg max
β ′
φ
(
β ′
)

H

(
e
(
β, β ′

)
d
(
β ′
)

β − β

)
− ψ

(
e
(
β, β ′

))
by definition of maximum.

Now suppose conditions 3.11, 3.12 and β = β∗ are satisfied.

let 5(e) = φ
(
β ′
)

H

(
cd
(
β ′
)

β − β

)
− ψ (e)

To see the existence of e
(
β, β ′

)
, note that φ

(
β ′
)

H

(
cd(β ′)
β−β

)
< φ

(
β ′
)
< ∞ for all possible e by definition

of distribution function. Moreover, lim
e→∞

ψ (e) = ∞ by assumption so there exists a point ē ∈ [0,∞) such

that 5(e) < 0 for all e > ē. Since, 5(0) = 0, we can restrict the constraint space to e ∈ [0, ē] without

loss of optimality. Now that we have a continuous objective on a compact constraint set, e
(
β, β ′

)
exists by

Weierstrass Theorem.

H (·) is monotonically increasing so quasi-concave and since h (·) > 0, H (·) is pseudo-concave as

well. Thus,5(e) is pseudoconcave since H and−ψ are. Thus, the Kuhn Tucker conditions for the problem

given in 3.11 are sufficient, i.e. the solution of Kuhn Tucker conditions is the global optimum. Moreover,

Firstly, note that Note that if φ
(
β ′
)
= 0 or d

(
β ′
)
= 0, then e

(
β, β ′

)
= 0 and if e

(
β, β ′

)
= 0,

φ
(
β ′
)
= 0. The latter follows from the fact that φ (·) can be made arbitrarily large for a positive but

small measure of firms in which case increasing the φ for such agents will improve e (·) and the objective.

Therefore, for the rest of the proof assume φ
(
β ′
)
> 0 and it takes values so that the problem has a interior

solution. Then, the first order condition

5′ (e) = φ
(
β ′
)

h

(
e · d

(
β ′
)

β − β

)
d
(
β ′
)

β − β
− ψ ′ (e) = 0

is sufficient for global optimality. Hence, if e
(
β, β ′

)
satisfies

φ
(
β ′
) (
φ
(
β ′
)

h

(
e · d

(
β ′
)

β − β

)
d
(
β ′
)

β − β
− ψ ′ (e)

)
= 0

then either φ
(
β ′
)
= 0 and e

(
β, β ′

)
= 0 in order to satisfy individual rationality constraints and if φ

(
β ′
)
>

0, the first order conditions are satisfied and hence e
(
β, β ′

)
satisfies conditions 3.11. Reversely, if e

(
β, β ′

)
satisfies 3.11, then either first order conditions are satisfied, or e

(
β, β ′

)
= 0 in which case φ

(
β ′
)
= 0.
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Proposition 12. We characterize the second best solution, which is the solution to the formulation PMS.

In order for the incentive compatibility constraints (3.14) to be satisfied, the true type of an agent should

maximize her payoff, i.e.

β = arg max
β ′
φ
(
β ′
)

H

(
e
(
β, β ′

)
d
(
β ′
)

y − β

)
− ψ

(
e
(
β, β ′

))
Thus, β satisfies the following first-order conditions:

φ′
(
β ′
)

H

(
e
(
β, β ′

)
d
(
β ′
)

y − β

)
+ φ

(
β ′
)

h

(
e
(
β, β ′

)
d
(
β ′
)

y − β

)e
(
β, β ′

)
d ′
(
β ′
)

y − β
+

∂e(βi ,β
′)

∂β ′
d
(
β ′
)

y − β


−ψ ′

(
e
(
β i , β

′
)) ∂e

(
β, β ′

)
∂β ′

∣∣∣∣∣
β ′=β

= 0

Suppose φ (β) > 0. Then plugging in the expression for ψ ′ in the second incentive compatibility constraint

3.15, we obtain

φ′
(
β ′
)

H

(
e
(
β, β ′

)
d
(
β ′
)

y − β

)
+ φ

(
β ′
)

h

(
e
(
β, β ′

)
d
(
β ′
)

y − β

)
e
(
β, β ′

)
d ′
(
β ′
)

(y − β)

∣∣∣∣∣
β ′=β

= 0

which leads to

φ′ (β) H

(
e (β, β) d (β)

y − β

)
+ φ (β) h

(
e (β, β) d (β)

y − β

)
e (β, β) d ′ (β)

(y − β)
= 0

φ′ (β)

φ (β)
= −

h

(
e(β,β)d(β)

y−β

)
H

(
e(β,β)d(β)

y−β

) e (β, β) d ′ (β)

(y − β)

The solution of this differential equation is

φ (β) = exp

−
∫ β

β0

h

(
e(β,β)d(β)

y−β

)
H

(
e(β,β)d(β)

y−β

) e (β, β) d ′ (β)

(y − β)
dr

 .

This leads to φ′ (β) > 0 because it is easy to verify from the organizer’s objective that in an optimal solution

d ′ (β) ≤ 0 (because otherwise the solution could be improved by decreasing the deadline of agents with high

expertise level and increasing the deadline of low ability agents). Since φ′ (β) > 0 whenever φ (β) > 0, and

in an optimal solution the organizer’s budget constraint (3.17) should bind, there should exist a threshold βs
0

such that φ∗(β) > 0 for all β > βs
0 and φ∗(β) = 0 for all β ≤ βs

0.

Proposition 13. Suppose to the contrary that in the optimal solution to PMS, βs
0 = F−1(α) for any γ .

Then, clearly x(β, ξ) = 0 for all β < βs
0. Let ε > 0 and δ > 0 be such that∫ βs

0+δ

βs
0

∫ s+δ

s

h(ξ)g (β) dξdβ =

∫ βs
0

βs
0−ε

∫ s

s−ε
h(ξ)g (β) dξdβ.

Define Sε1 ≡ [βs
0 − ε, β

s
0]× [s, s + ε] and Sδ2 ≡ [βs

0, β
s
0 + δ]× [s − δ, s]. Consider the perturbation where
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x̂(β, ξ) = 1 for (β, ξ) ∈ Sε1 , x̂(β, ξ) = 0 for (β, ξ) ∈ Sδ2, x̂(β, ξ) = x(β, ξ) otherwise. Also let φ1 > 0 and

φ̂(β) = φ(β) − φ1 for all β ∈ [βs
0, β

s
0 + δ]. Define d̂ such that (3.13), (3.14) are satisfied and ê such that

(3.15) is satisfied (under sufficiently small ε > 0 and δ > 0) when φ̂(β) = φ2 > 0 for all β ∈ [βs
0 − ε, β

s
0],

where ∫ βs
0

βs
0−ε
φ1 H

(
ê (β, β) d̂ (β)

y − β

)
g (β) dβ =

∫ βs
0

βs
0−ε
φ2 H

(
ê (β, β) d̂ (β)

y − β

)
g (β) dβ

Under this perturbation, the change in the organizer’s objective is 1 = 11 +12, where

11 =

∫ βs
0

βs
0−ε

∫ s+ε

s

(
ξ

y − β

ê (β, β)

)
h(ξ)g (β) dξdβ −

∫ βs
0+δ

βs
0

∫ s

s−δ

(
ξ

y − β

ê (β, β)

)
h(ξ)g (β) dξdβ

12 =

∫ βs
0+δ

βs
0

∫ s−δ

s

(
ξ

y − β

ê (β, β)

)
h(ξ)g (β) dξdβ −

∫ βs
0+δ

βs
0

∫ s−δ

s

(
ξ

y − β

e (β, β)

)
h(ξ)g (β) dξdβ.

Clearly, 12 has to be positive, finite and increasing in φ1. Furthermore

11 ≤

∫ βs
0

βs
0−ε

(
s + ε

) ∫ s+ε

s

(
y − β

ê (β, β)

)
h(ξ)g (β) dξdβ − (s − δ)

∫ βs
0+δ

βs
0

∫ s

s−δ

(
y − β

ê (β, β)

)
h(ξ)g (β) dξdβ.

Thus, when γ is arbitrarily large 11 is negative and arbitrarily small. As a result, 1 < 0, which leads to

contradiction.

117



Bibliography

Acemoglu, D. 2009. Introduction to Modern Economic Growth. Princeton University Press, Princeton, NJ.

Ales, L., S. Cho, E. Korpeoglu. 2014. Innovation tournaments with multiple contributors. Working Paper,

Carnegie Mellon University.

AMC. 2009. Amc process sheet. URL http://www.gavialliance.org/library/gavi-documents/amc/.

AMC. 2010. Amc factsheet. URL http://www.gavialliance.org/library/gavi-documents/amc/.

Bergstrom, T., M. Bagnoli. 2005. Log-concave probability and its applications. Econ. theory 26 445–469.

Bhaskaran, S.R., V. Krishnan. 2009. Effort, revenue, and cost sharing mechanisms for collaborative new

product development. Management Sci. 55(7) 1152–1169.

Bimpikis, K., S. Ehsani, M. Mostagir. 2014. Designing dynamic contests. Working Paper, Stanford Univer-

sity.

Bolton, P., M. Dewatripont. 2004. Contract Theory. The MIT Press, Cambridge, MA.

Boudreau, K. J., C. E. Helfat, K. R. Lakhani, M. Menietti. 2012. Field evidence on individual behavior and

performance in rank-order tournaments. Working Paper .

Boudreau, K. J., N. Lacetera, K. R. Lakhani. 2011. Incentives and problem uncertainty in innovation con-

tests: An empirical analysis. Management Sci. 57(5) 843–863.

Brown, S. L., K. M. Eisenhardt. 1995. Product development: Past research, present findings, and future

directions. Acad. Management Rev. 20(2) 343–378.

Cha, M., M. Kwak, P. Rodriguez, Y.-Y. Ahn, S. Moon. 2007. I tube, you tube, everybody tubes: Analyzing

the world’s largest user generated content video system. Proc. of the 7th ACM SIGCOMM Conference on

Internet Measurement (IMC 07), San Diego, CA.

118

http://www.gavialliance.org/library/gavi-documents/amc/
http://www.gavialliance.org/library/gavi-documents/amc/


Chao, R. O., S. Kavadias, C. Gaimon. 2009. Revenue driven resource allocation: Funding authority, incen-

tives, and new product development portfolio management. Management Sci. 55(9) 1556–1569.

Che, Y. K., I. Gale. 2003. Optimal design of research contests. Amer. Econ. Rev. 93(3) 646–671.

Cule, M., R. Samworth, M. Stewart. 2010. Maximum likelihood estimation of a multi-dimensional log-

concave density. J. Roy. Stat. Soc. 72 1–32.

Dahan, E., H. Mendelson. 2001. An extreme-value model of concept testing. Management Sci. 47(1) 102 –

116.

Datar, S., C. C. Jordan, S. Kekre, S. Rajiv, K. Srinivasan. 1997. Advantages of time-based new product

development in a fast-cycle industry. J. Market. Res. 34(1) 36–49.

Desai, P., S. Kekre, S. Radhakrishnan, K. Srinivasan. 2001. Differentiation and commonality in design:

Balancing revenue and cost drivers. Management Sci. 47(1) 37–51.

Diamond, P. A. 1998. Optimal income taxation: An example with a u-shaped pattern of optimal marginal

tax rates. Amer. Econ. Rev. 88(1) 83–95.

Eppinger, S. D., A. R. Chitkara. 2006. The new practice of global product development. MIT Sloan Man-

agement Rev. 47 22 – 30.

Erat, S., V. Krishnan. 2012. Managing delegated search over design spaces. Management Sci. 58(3) 606–

623.

Fudenberg, D., J. Tirole. 1991. Game Theory. MIT Press, Cambridge, MA.

Fullerton, R. L., R. P. McAfee. 1999. Auctioning entry into tournaments. J. Polit. Econ. 107(3) 573–605.

Galton, F. F. R. S. 1902. The most suitable proportion between the value of first and second prizes. Bio-

metrika 1(4) 385 – 399.

GCGH. 2012. Grand challenges in global health. URL http://www.grandchallenges.org/Pages/

BrowseByGoal.aspx.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Rubin. 2003. Bayesian Data Analysis. Chapman & Hall / CRC,

Boca Raton, FL.

Girotra, K., C. Terwiesch, K. T. Ulrich. 2010. Idea generation and the quality of the best idea. Management

Sci. 56(4) 591–605.

119

http://www.grandchallenges.org/Pages/BrowseByGoal.aspx
http://www.grandchallenges.org/Pages/BrowseByGoal.aspx


Green, J. R., N. L. Stokey. 1983. A comparison of tournaments and contracts. J. Polit. Econ. 91(3) 349–364.

Harter, D. E., M. S. Krishnan, S. A. Slaughter. 2000. Effects of process maturity on quality, cycle time, and

effort in software product. Management Sci. 46(4) 451 – 466.

Hoggar, S. G. 1974. Chromatic polynomials and logarithmic concavity. J. Comb. Theor. Ser. B 16 248–254.

Hölmstrom, B. 1982. Moral hazard in teams. Bell J. Econ. 13 324–340.

Ibragimov, I. A. 1956. On the composition of unimodal distributions. Theor. Probab. Appl. 1 255–260.

IdeaConnection. 2014. Open innovation: Goldcorp challenge. URL http://www.ideaconnection.com/

open-innovation-success/Open-Innovation-Goldcorp-Challenge-00031.html.

Infomine. 2014. $575,000 goldcorp challenge awards world’s first 6 million ounce internet gold rush yields

high grade results. URL http://www.infomine.com/index/pr/Pa065434.PDF.

InnoCentive. 2015. Corporate info. http://www.innocentive.com/about-innocentive/corporate-info. Ac-

cessed on March 7, 2015.

James, H. 2014. Cultural representation in fifa logos: 1990 - 2014. URL http://www.logocontestreviews.

com/cultural-representation-in-fifa-logos/.

Kalra, A., M. Shi. 2001. Designing optimal sales contests: a theoretical perspective. Market. Sci. 20(2)

170–193.

Kornish, L. J., K. T. Ulrich. 2011. Opportunity spaces in innovation: Empirical analysis of large samples of

ideas. Management Sci. 57(1) 107–128.

Korpeoglu, E., S. Cho. 2015. Incentives in contests with heterogeneous solvers. Working Paper, Carnegie

Mellon University.

Krishnan, V., K. T. Ulrich. 2001. Product development decisions: a review of the literature. Management

Sci. 47(1) 1–21.

Lazear, E. P., S. Rosen. 1981. Rank order tournaments as optimum labor contracts. J. Polit. Econ. 89(5)

841–864.

Loch, C. H., S. Kavadias. 2008. Handbook of New Product Development Management. Butterworth

Heinemann-Elsevier, Burlington, MA.

120

http://www.ideaconnection.com/open-innovation-success/Open-Innovation-Goldcorp-Challenge-00031.html
http://www.ideaconnection.com/open-innovation-success/Open-Innovation-Goldcorp-Challenge-00031.html
http://www.infomine.com/index/pr/Pa065434.PDF
http://www.innocentive.com/about-innocentive/corporate-info
http://www.logocontestreviews.com/cultural-representation-in-fifa-logos/
http://www.logocontestreviews.com/cultural-representation-in-fifa-logos/


Loch, C. H., C. Terwiesch, S. Thomke. 2001. Parallel and sequential testing of design alternatives. Man-

agement Sci. 45(5) 663–678.

Loury, G. C. 1979. Market structure and innovation. Q. J. Econ. 93(3) 395–410.

Malcomson, J. M. 1984. Work incentives, hierarchy, and internal labor markets. J. Polit. Econ. 92 486–507.

McKinsey & Company. 2009. And the winner is: Capturing the power of philanthropic prizes. http:

//www.mckinseyonsociety.com/downloads/reports/Social-Innovation/And_the_winner_is.pdf. Accessed

on March 7, 2015.

Meyer, J. 1987. Two-moment decision models and expected utility maximization. Amer. Econ. Rev. 421–

430.

Moldovanu, B., A. Sela. 2001. The optimal allocation of prizes in contests. Amer. Econ. Rev. 91(3) 542–558.

Moldovanu, B., A. Sela. 2006. Contest architecture. J. Econ. Theory 126 70–96.

Müller, A., D. Stoyan. 2002. Comparison Methods for Stochastic Models and Risks. John Wiley & Sons,

Chichester, UK.

Reinganum, J. F. 1984. Practical implications of game theoretic models of r&d. Amer. Econ. Rev. 74(2)

61–66.

Rothschild, M., J.E. Stiglitz. 1970. Increasing risk: I. a definition. J. Econ. theory 2(3) 225–243.

Saez, E. 2001. Using elasticities to derive optimal income tax rates. Rev. Econ. Stud. 68 205–229.

Samsung. 2013. Samsung smart app challenge. URL http://www.smartappchallenge.com.

Shaked, M., J. G. Shanthikumar. 2007. Stochastic Orders. Springer, New York.

Shang, W, L. Liu. 2011. Promised delivery time and capacity games in time-based competition. Management

Sci. 57(3) 599–610.

Swinney, R. 2011. Selling to strategic consumers when product value is uncertain: the value of matching

supply and demand. Management Sci. 57(10) 1737–1751.

Taylor, C. R. 1995. Digging for golden carrots: an analysis of research tournaments. Amer. Econ. Rev. 85(4)

872–890.

121

http://www.mckinseyonsociety.com/downloads/reports/Social-Innovation/And_the_winner_is.pdf
http://www.mckinseyonsociety.com/downloads/reports/Social-Innovation/And_the_winner_is.pdf
http://www.smartappchallenge.com


Terwiesch, C., C. H. Loch. 2004. Collaborative prototyping and the pricing of custom-designed products.

Management Sci. 50(2) 145–158.

Terwiesch, C., Y. Xu. 2008. Innovation contests, open innovation and multiagent problem solving. Man-

agement Sci. 54(9) 1529–1543.

TopCoder. 2014a. Cisco interactive experience content page designer developer challenge. http://www.

topcoder.com/challenge-details/30044119/?type=develop. Accessed on March 7, 2015.

TopCoder. 2014b. Press releases. http://www.topcoder.com/press/. Accessed on March 7, 2015.

Wheeden, R. L., A. Zygmung. 1977. Measure and Integral: An Introduction to Real Analysis. Marcel

Dekker, New York.

122

http://www.topcoder.com/challenge-details/30044119/?type=develop
http://www.topcoder.com/challenge-details/30044119/?type=develop
http://www.topcoder.com/press/

	Innovation Tournaments with Multiple Contributors
	Introduction
	Related Literature 
	The Model
	Optimal Tournament Design
	Optimal Award Scheme
	Optimal Decision on Restricted or Open Entry

	Extensions
	General Utility Function Form 
	Alternative Compensation Rules

	Conclusion 
	Incentives in Contests with Heterogeneous Solvers
	Introduction
	Model
	Analysis of Productivity-Based Projects
	Analysis of Expertise-Based Projects
	Results of Expertise-Based Projects in Literature
	New Findings in Expertise-Based Projects 

	Conclusion
	Time-based Crowdsourcing Contests
	Introduction
	The Model 
	Observable Effort
	Principal Agent Mechanism
	Characterization
	Unobservable Effort 
	Principal Agent Model 
	Characterization
	The Stochastic Version
	Conclusion
	Supplement to Chapter 1
	Proofs and Additional Results
	Conditions and Examples 
	Existence of Equilibrium and Agent's Participation
	Examples for Section 1.4.1
	Derivation of Example 1 
	Additional Proofs and Results

	Supplement to Chapter 2
	Proofs 
	Additional Results on Productivity-based Projects in Chapter 2
	Optimal award scheme
	Open Contest


	Supplement to Chapter 3


















