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Abstract

Dynamic, empirical, consumption-based asset pricing and other areas have been a challenge to
existing inference theories. The main contribution of this dissertation is to define and develop an
inference approach to tackle this challenge. We call it the ESP approach, as it is based on the empirical
saddlepoint (ESP) technique. The idea is to provide a moment-based framework that generates point
estimates, confidence regions and tests that rely more on the information in the sample at hand and less
on asymptotic limits. The result is an inference approach that provides a unigue answer to multiple
theoretical and practical concerns faced by existing inference approaches.

Three main steps have been undertaken to reach this objective.

A first step is to put the ESP technique into a general mathematical framework autonomous from
standard classical inference. We prove that there exists an intensity distribution of solutions to the
empirical moments over the parameter space. Then, we use the ESP technique to approximate this
intensity distribution. We call the result the ESP intensity. We prove that it is consistent and asymptoti-
cally normal, that is to say that it converges to a point mass at the population parameter like a Gaussian
distribution with a standard deviation that goes to zero at rate square root of the sample size. These
results are robust to the presence of multiple solutions to the moment conditions (non-identification),
as long as their number is finite.

A second step is the development of a decision-theoretic approach within the ESP inference frame-
work. In other words, we propose to choose a loss function according to an inference purpose, and then
make the inference decision that minimizes the expected loss. Minimization of expected loss is the
optimal answer to the estimated uncertainty that comes from inference, as maximization of expected
utility by a consumer is optimal in microeconomic theory. However, a decision-theoretic approach is
generally impossible or delicate within existing classical inference theory (e.g., p.4-5 in Lehmann and
Casella, 1998), so that only asymptotic optimality results are typically obtained. For a large class of
loss functions, we provide ESP point estimate, confidence region, and prove that they are consistent.
Simulations of a consumption-based asset pricing model suggest that ESP point estimates and confi-
dence regions perform similarly to, or clearly outperform, the best existing moment-based inference
approaches.

A third step develops tests within the ESP framework. In standard classical inference theory, tests
usually correspond to confidence regions. Similar tests can be defined in the ESP framework. As an ex-

ample, we provide a test of over-restricting moment conditions in this spirit. However, we also propose



straightforward decision-theoretic point-hypothesis and set-hypothesis tests, which does not correspond
to confidence regions. Set-hypothesis tests are typically non-trivial in classical inference theory. Un-
like standard classical tests, we prove that ESP decision-theoretic tests do not lead to any asymptotic
error. We study their robustness to the presence of multiple solutions to the moment conditions. Unlike
standard classical tests, multiple hypothesis testing on the same data set does not undermine the the-
oretical validity of confidence-region based and decision-theoretic ESP tests. Simulations explore the

performance of ESP tests in the context of consumption-based asset pricing.
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1. Introduction

One of the fundamental problems in classicalference is the gap between practice which is
necessarily based on bounded sample size, and theory whose main results are about situations where
the sample size can be infinitely increased. This gap has both a qualitative and a quantitative dimension:
it is, respectively, a logical and an accuracy problem. While the qualitative dimension of the problem
is most of the time acute, the quantitative dimension of the problem is more or less acute depending
on the situation. The moment based estimation setting generalized by Hansen (1982) embeds most of
the econometric approaches used; and applications and simulations have revealed that it can often lead
situations where the quantitative gap between standard asymptotic theory and practice in samples of
usual sizes cannot be ignored.

For example, in the original area of application of GMM, consumption-based asset pricing (Hansen
and Singleton, 1982), the literature has found little common ground about the values of the represen-
tative agent’s relative risk aversion (RRA) and elasticity of intertemporal substitution (EIS). Point es-
timates from economically similar moment conditions are generally outside of each other’s confidence
intervals. One possible explanation is the inadequacy of consumption-based asset pricing theories. But
models are not always rejected (e.g., Vissing-Jorgensen and Attanasio, 2003; Savov, 2010), and simu-
lations point to the insufficiency of the standard classical inference theory for consumption-based asset
pricing (e.g., Kocherlakota, 1990a; Hansen, Heaton and Yaron, 1996 and other papers in that issue of

JBES).

There are at least two main ways to try to reduce the gap between econometric asymptotic theory
and practice, which relies on bounded samples. One way, which is often put forward, is to look for
better asymptotic properties with the hope that they will induce a better finite-sample behaviour (e.qg.,
Newey and Smith, 2004). Another way is to develop inference procedures that rely more on the in-
formation contained in the sample at hand and less on asymptotic results. For example, generalizing
Anderson and Rubin (1949), Stock and Wright (2000) derive confidence regions that incorporate infor-
mation from the global shape of the empirical objective function instead of relying on the asymptotic

limit of standard statistics. In this dissertation, we go further in this direction. The main contribution

LIn this dissertation, the word “classical” is used in opposition to “Bayesian”. We characterize as “classical” an approach
that does not treat the population parameter as a random variable. The difference and similarity between the theoretical
approach here, which is a classical approach, and the Bayesian approach is discussed i&. Sdutidieoretical approach
here is also different from the common interpretation of fiducial statistics (e.g., Seidenfeld, 1992).



of the paper is to define and develop a moment-based inference framework that yields point estimates,
confidence regions and tests that rely more on the information in the sample at hand and less on asymp-
totic limits. We call the result th&SP approach as it is based on an empirical saddlepoint (ESP)

approximation.

The only difference between the population parameter and other parameter values is that the former
one solves the moment conditions. Although analytically unknown, the empirical moment conditions
are their finite-sample counterpart. Therefore, the idea of the ESP approach is to approximate the
distribution of the solutions to the empirical moment conditions thanks to the saddlepoint technique.
Different samples imply different empirical moments, and, thus, random solutions to empirical moment
conditions. We call the approximation of their distribution £8P intensity. It summarizes in proba-
bilistic terms the uncertainty about the population parameter due to the finiteness of the sample. Thus,
we propose to use it in the same way as a posterior is used in Bayesian inference to derive estimate
and confidence region. We show that the ESP approach satisfies criteria similar to the ones advanced to
justify existing classical inference theories. In particular, we prove that the ESP intensity is consistent
and asymptotic normal. We also show that these results are robust to the presence of multiple solutions

to the moment conditions (non-identification), as long as their number is finite.

The ESP approach leads to contributions in several strands of literature. We distinguish three of
them.

First, the ESP approach contributes to inference decision theory, which considers inference as a
choice of parameter values in the spirit of microeconomic theory under uncertainty. More precisely,
an inference decision-theoretic approach is an approach in which an econometrician chooses a utility
function (or, equivalently, a loss functighjiccording to an inference purpose, and then makes the
inference decision that maximizes the expected utility (or, equivalently, minimizes the expected loss).
A decision-theoretic approach does not only provides flexibility through the choice of a utility function,
but also provides strong finite-sample foundations. Maximization of expected utility isptimal
answer to the estimated uncertainty that comes from estimation, as maximization of expected utility by
a consumer is optimal in microeconomic theory. However, a decision-theoretic approach is generally

impossible or delicate within existing classical inference theory (e.g., p.4-5 in Lehmann and Casella,

2 We express our decision-theoretic approach in terms of utility functions instead of loss functions because of our em-
phasis on 0-1 utility functions (see secti@n To avoid any confusion in this dissertation between the utility function of a
representative agent and the one chosen by an econometrician, we reserve the term preferences for the former and and utility
for the latter.



1998), so that only asymptotic optimality results are typically obtained. In contrast, the ESP approach
offers a classical inference framework in which the application of decision theory is straightforward.
We prove that for a large class of utility functions the resulting estimates are consistent.

Second, the ESP approach contributes to the saddlepoint literature. The ESP approximation is the
empirical counterpart of the saddlepoint approximation. The ESP approach uses the ESP approxima-
tion technique in a new way that yields novel theoretical results. Following the statistical literature
(e.g., Tingley and Field, 1990; Jensen, 1992; Robinson, Ronchetti and Young, 2003), the saddlepoint
approximation has been used to improve on existing inference approaches in econometrics. Imbens
(1997), Ronchetti and Trojani (2003) and Sowell (2007) propose to derive more accurate confidence
intervals and tests for GMM. Czellar and Ronchetti (2010) propose more accurate tests for indirect
inference. Sowell (2009) proposes an ESP-based estimator to automatically correct the higher-order
bias of generalized empirical likelihood (GEL) estimatorst-Bahalia and Yu (2006) propose a sad-
dlepoint approximation of transition density for likelihood-based inference of continuous-time Markov
processes. In this dissertation, we use the ESP approximation to develop an inference framework
autonomous from the existing classical approaches. This change of perspective removes several theo-
retical hurdles to the use of the saddlepoint approximation for inference. In particular, it removes the
dichotomy between the saddlepoint approximation of the distribution of potentiailiple solutions
to empirical moment conditions and theiquenes®sf point estimates, which is documented in Skov-
gaard (1985; 1990), Jensen and Wood (1998), and Almudevar, Field and Robinson (2000). Our change
of perspective also opens new areas of application to the saddlepoint approximation. For example, it
suggests ways to incorporate uncertainty from estimation into the calibration of models. Furthermore,
this change of perspective leads to show measure-theoretic, analytical and global asymptotic properties
of ESP approximations.

Third, the ESP approach contributes to the identification and weak-identification literatures. Be-
cause, unlike the existing saddlepoint literature, it does not build on approaches that rely on identifica-
tion, the ESP approach is robust to lack of identification. By lack of identification, we designate both
situations in which the moment conditions have multiple solutions (non-identification), and situations
in which the objective function behaves as if the moment conditions had multiple solutions, although
they have only one (weak identification). Lack of identification is a frequent issue in many areas (e.g.,
Pesaran, 1981; Rust, 1994; Mavroeidis, 2005) such as consumption-based asset pricing (e.g., Smith,

1999; Stock and Wright, 2000; Neely, Roy and Whiteman, 2001). The weak-identification literature



(e.g., Dufour, 1997; Stock Wright, 2000; Kleibergen, 2005; Guggenberger and Smith, 2005; Otsu,
2006) has developed confidence regions and tests robust to lack of identification for generalized empir-
ical likelihood (GEL). The idea behind them is to deduce probabilistic statements from the asymptotic
limit of objective functions instead of from quantities that rely on the asymptotic limit of point es-
timates. In a similar way, the robustness of the ESP approach to lack of identification derives from
the deduction of probabilistic statements from the ESP objective function. However, in contrast to the
weak identification literature, the ESP objective function is based on an estimated distribution, the ESP
intensity. This difference provides several advantages to the ESP approach, such as much shorter confi-
dence regions and straightforward construction of confidence regions for subvectors of parameters. The
ESP approach also offers a complementary approach to the identification literature, which has focused
mainly on finding general technical conditions (e.g., Rothenberg, 1971; Komunjer, 2011) such as rank
conditions, or model-specific (e.g., Magnac and Thesmar, 2002) conditions to guarantee identification.
Nonetheless, identification remains often difficult to prove. Thus, the robustness of the ESP approach

to multiple solutions to the moment conditions can be useful.

The dissertation is organized as follow. Section 2 analyzes the problem faced by empirical consumption-
based asset pricing, and provides an overview of the ESP approach. Section 3 presents heuristically
the idea behind the ESP approximation. Section 4 presents the ESP estimands and estimators, section
5 the asymptotic behaviour of ESP estimators. Section 6 provides a discussion of the foundation of
the ESP framework with respect to existing inference theories. Section 7 presents a decision-theoretic
approach within the ESP framework. Section 8 derives ESP tests. S8aidands the ESP frame-
work to deal with over-restricting moment conditions. Sectl@presents simulation results from a

consumption-based asset pricing model. Proofs and supplementary results are in the Appendix.

2. Motivation and overview

2.1. Analysis of the question

The key equilibrium implication of standard consumption-based asset pricing models is zero ex-
pected discounted profit for the representative agent. More precisely, there is an equilib§ium if

invested at datein any assej minus its expected gross return for date 1 discounted for risk and
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time equald i.e.
\V/] S [[1, n]], 1-— Et [Mt+1(90)Rj,t+1] =0 (1)

wherelE,[.] denotes the expectation operator conditional on the information availablerat; the
gross return of asset betweent and¢ + 1, n the number of assets considered avfgl ; (6y) the
stochastic discount factor indexed by the population paranfgteDifferent consumption-based as-
set pricing models correspond to different ways of discounting for time and risk through different
stochastic discount factord/;1(6p). Typically, no distributions are assumed except for tractability
reasons. Therefore, the standard inference approach in consumption-based asset pricing is the gen-
eralized method of moments (GMM). Unlike most alternati¥éts main assumptions are moment
conditions like equationslj.

With the GMM approach (Hansen, 1982), the minimization of a norm of the empirical moment

condition first produces a point estimate 'ﬁgmm minimizes

()

1 T
72 (X,0)
t=1

where||.|| denotes a norfrand wherep(X¢,6) := [(1 1---1) — Myy1(0)(Rit41 Ropi1- - Rupi1)]®
Y; with Y; an element of the representative agent’s information set attdate¢he Kronecker prod-
uct and’ the transpose symbol. Second, considering that-ttatistic based on a&th component
\/Tﬁ%;eok follows a standard normal distributioy'(0, 1),° a confidence set estimate and the

set of point-hypothesis not rejectell, = [egmm,k — ”’“—\/%“ul_a/g, O gmm.k — Uk—\/%ua/g , are deduced.
u, o denotes thev/2 quantile of aV (0, 1). Figuresl and2 show GMM objective functions multi-
plied by T3/4 of consumption-based asset pricing models with constant relative risk aversion (CRRA)
and Epstein-Zin-Weil (EZW) preferences, respectively. In Figuadthough multiplying the objective

function byT3/* magnifies level differencésthere is a clear canyon in the risk aversion dimension,

8 Other moment-based inference approaches, such as the generalized empirical likelihood (GEL) approach, have been
introduced in consumption-based asset pricing. However, without loss of generality, the introduction focuses on GMM for
simplicity. With minor modifications, the analysis applies to these more recent approaches as well.

4 The norm often depends on data, as in two-step GMM, but it does not affect our analysis.

5 When the asymptotic distribution of a statistic is chi-square, the reasoning is the same. A chi-square is an inner product
of Gaussian distributions.

5 Multiplying the GMM objective function by7'~¢ is a technique often used in practice to find the
global minimum (e.g., Hall, 2005). Asymptotically, fod < ¢ < 1 with Wy a positive-definite

11



around a time discount factags, slightly below 1. For the more general Epstein-Zin-Weil preferences,
there are even more canyons, as shown in Figura both cases, there is no clear global minimum.
Small variations of the objective function caused by slight data modifications often yield very different
point estimates. Reported standard deviations often do not account for such variations. Standard GMM
theory summarizes inference as if the uncertainty about the population parameter corresponded to a rel-
atively peaked Gaussian density centered at the global minimBaradoxically, the weak statistical
structure required by standard GMM theory often leads in empirical consumption-based asset pricing to
strong statistical restrictions and thus to overestimation of the inference pretisimmetheless, differ-

ent parameter values can have very different theoretical implications. For example, whereas Guvenen
(2009) argues for an EIS smaller than one, Bansal and Yaron (2004) require an EIS higher than one so
that the intertemporal substitution effect dominates the wealth effect. Progress in consumption-based
asset pricing theory will probably exacerbate this problem. As illustrated by Figuned2, often, the

more advanced a model, the larger the space in which the data information is projected and the more
convoluted the GMM obijective function.

Careful examination of GMM theory explains this unaccounted instability of GMM estimates. Al-
though any sample size is boundédhe theoretical justifications put forward for GMM estimates and
tests assume infinitely increasing sample sizes. This is only the global minimum a$yheptotic
objective function that corresponds to the population parameter value. In a finite sample, the global
minimum is not necessarily even the local minimum closest to the population parameter. Similarly,
only theasymptotic limitof ﬁw is distributed\/(0,1). Moreover, there is no means to
compute a bound for the error implied by the use of these asymptotic results.

The GMM objective functions also suggest an additional problem, lack of identification. Multiplic-
ity of local minima is often the symptom of identification failure. Identification means there is only one

solution to the moment condition$)( i.e., the asset pricing equilibrium cannot correspond to multiple

matrix (p-d.m.)  whose limit is also a p-dm. limr_o T'°° [% >, wt(e)}/WT [% Zlewt(e)] -

{limuw T=VT [ S0, 0n(0)] WrvT [ S0 6u(6)] =0 if 0= 60

h 0) := ¥(Xe,0).
N ife#eowerewt() Y(Xe,0)

"In this dissertation, we maintain the distinction between “uncertain” and “random.” In particular, given a sample, in
standard classical inference theory, confidence regions summarize an uncertainty without randomness, unlike ESP confidence
regions. See the second paragraph of se@ig@r2for more explanations.

8 Sims (p. 3-4, 8, 2007a; section I, 2007b) makes a similar remark to justify the Bayesian approach w.r.t. the classical
approach.

HAlthough in finance, continuous-time processes are often considered for mathematical tractability, in practice, a sample
size is bounded. A computer memory is bounded.

12



Figure 1: GMM objective function multiplied b/ of the consumption-based asset pricing model
with constant relative risk aversion (CRRA) preferences with fixed weighting matrix. Instruments are:
%—1 andcay;. Values of the objective function superior to 5 are set to 5.

EIS and RRA values. Typically, such an assumption is unverifiable because the moment conditions are
unknown analytically (e.g., section 2.2.3 in Newey and McFadden, 1994). Only with an infinite sample

size would the moment conditions be perfectly revealed.

2.2. Informal presentation of the ESP approach

The dissertation aims at addressing the concerns mentioned above. Although there are no ideal
finite-sample justifications, asymptotic arguments are not the only way to theoretically compare esti-
mates. From a finite-sample point of view, an ideal estimate would solve the moment condi}jdus (
then no estimation would be needed. However, some inference approaches have higher finite-sample
justification than others. For instance, any objective function consisting of the sum of the GMM objec-
tive function and a function vanishing asymptotically enjoys the same asymptotic justifications as the
GMM objective function. More precisely, estimates induced by the following objective function have
the same asymptotic properties as GMM estimates :

h(0)

+ Tk )

L I
T ZQ/J(Xt»@)
=1

13



Figure 2: GMM objective function multiplied b3/ of the consumption-based asset pricing model
with Epstein-Zin-Weil preferences fgt = 0.95, and with fixed weighting matrix? v and1/¢6 are
respectively known as the relative risk aversion (RRA) and as the elasticity of intertemporal substitution
(EIS). Instruments are(f—j1 andcay;_1. Values of the objective function superior to 5 are setto 5.

whereh(.) is an arbitrary bounded function arda large enough constant. However, nobody would
accept the objective functioB), h(.) := c||. — || with ¢ a little larger than the largest number that
the computer at use can handle yields a point estimate tdo&dor lot of very different parameter
values,f, chosen in the parameter spa@, The difference between objective functid) énd the
GMM objective function ) is their finite-sample meaning. The GMM point estimate minimizes the
norm of the empirical moment conditions, whereas the estimates from objective furtidmes not
have a clear finite-sample meaning. More generally, one can use the same dewdgdoasréate
an infinite number of estimates with the same asymptotic properties of the best asymptotic estimator
available. Therefore, the idea behind the ESP approach is to find an inference approach with the
strongest possible finite-sample justification so that it yields inference procedures that rely more on the
information contained in the sample at hand and less on asymptotic results. Good asymptotic properties
should follow, as an asymptotic performance is the limit of increasing finite-sample performances.

The only difference betweefy and other elements of the parameter space isghablves the
moment conditions1). But the moment conditiondl) are unknown. Nevertheless, because the em-
pirical moment condition approximates the moment conditidhswe estimate the distribution of the

solutions to the empirical moment conditions. The empirical saddlepoint (ESP) technique allows us to

14



approximate this distribution non-parametrically. Different samples imply different empirical moment
conditions, and thus different solutiolsWe call the ESP approximation tiSP intensity. Despite

its regularity properties, it does not suffer from the curse of dimensionality usually faced by smooth
non-parametric estimates of distributions (Ronchetti and Welsh, 1994). We prove that as the sample
size increases it converges to a point mass at the population parameter (or Dirac distribution at the
population parameter). The ESP intensity summarizes in probabilistic terms the uncertainty coming
from the imperfect knowledge of the moment condition. Consequently a decision-theoretic approach
is possible. The econometrician can choose a utility function (or equivalently a loss funetign),
according to an inference purpose. In practice, the utility function may correspond to the opposite of a
financial loss implied by an inference imprecision. Thanks to this utility function, we define&

point estimate, 6%, as a maximizer of the ESP expected utility i.e.
O := arg max I [u(6, 07)]

whereE [u(fe, 03)] = [g u(0e, 0) fos.sp(0)d0 with fo: () the ESP intensity. By definitior. is
anoptimalpoint estimate for the uncertainty embodied in the ESP intensity. We prove the consistency
of é:% for a large class of utility functions. For researchers, an econometrician utility function corre-
sponding to absolute preference for finite-sample “truth” is pertinent. In this case, after normalization,
utility equals1 if 6. is a solution to the empirical moment conditions @andtherwise. The result-

ing point estimate is the mode of the ESP intensity. In other words, it is a parameter value with the
highest estimated probability weight of being a solution to the empirical moment conditions. Thus,
it is a maximum-probabilitestimate:® Such an estimate aims at taking into account all the possible
samples. In contrast, the GMM point estimate is the solution to the empirical moment condition in the
comparable just-restricted case (or just-identifying cad$@hus, GMM point estimates are backward-
looking, while ESP point estimates are not. Since consumption-based asset pricing models are rational

expectation models, the ESP approach is more appropriate for self-consistency of inference.

12To avoid a too cumbersome terminology, we call “empirical moment conditions” botextenterandom empirical
moment conditions and thex postfixed empirical moment conditions. Context indicates which ones it is about.

13 First, note that it is different from maximum-likelihood estimators (MLE). MLE maximizes the probability weight of
theobserved sampld_oosely speaking, MLE maximizggausibility while maximum ESP aims at maximizing finite-sample
“truth”. Second, note also that this is different from the mode of a Bayesian posterior (see 6qr8dn

¥In the over-restricted case (or over-identified case), GMM is also backward-looking. But, it is not immediately compa-
rable with the ESP approach, because the GMM objective function is not expressed in terms of the dimension of interest,
parameter values; but in terms of the norm of empirical moment conditions.

15



We also define confidence regions to assess the stability of ESP point estimatESPAconfi-
dence regionof level1l — « is a set

~ 1 -
Gup = {ae co: —/ (80, 0) fos op(6)d6 > kaT}
I KT e T )

wherek,, 7 is the highest bound satisfyinﬁbu’T KLT Jo u(ee,a)f%sp(e)dedoe >1—aandKy :=

Jo2 u(be, Q)fg%,sp(e)dedee. We prove that ESP confidence regions converge to their asymptotic coun-
terpart as the sample size increases. All the parameter values in the confidence region provide a higher
weighted utility for the econometrician than the ones outside. Thus, a small variation of the ESP in-
tensity caused by a slight data modification leads to a new point estimate belonging to the original
ESP confidence . If the ESP intensity is multimodal, the ESP confidence can consist of a union of
disjoint sets. This is not the case with the standard GMM approach because the asymptotic Gaussian
distribution is unimodat® Standard confidence intervals often underestimate the uncertainty about
the population parameter. Standard confidence intervals also overestimate the uncertainty in another
dimension. They consider the population parameter to be outside the parameter space with a strictly
positive probability because the support of a Gaussian distribution is the whole real line. For exam-
ple, in consumption-based asset pricing, a time discount factor potentially higher than one is implied,
although a consumption-based asset pricing model is not necessarily defined for sucRévaISes.
confidence regions do not regard values outside the parameter space as possible because the ESP inten-
sity support is included in the parameter space by construction.

In standard classical inference theory, tests usually correspond to confidence intervals, and thus
are subject to the same concerns. Similarly to standard classical inference theory, we define ESP tests
based on confidence regions. However, we also develop ESP decision-theoretic that are not based on
confidence regions. Denotly; andd 4, respectively, as acceptance and rejection of a test hypothesis.

We define arESP testas a mapping such that if

Elu(dz, 07)] > Elu(da, 07)]

15 We write “standardGMM approach” because continuously updated GMM confidence regions for lack of identification
(LCU) share similar advantages with ESP confidence regions (Stock and Wright, 2000). However, LCU confidence regions
do not allow us to handle point estimate instability in terms of decision-making. Moreover, they tend to be huge w.r.t. ESP
confidence regions. See the simulations in sectid@p. 69.

®When the time discount factor is greater than one, the value function of an infinitely-lived representative agent may
explode to infinity. However, Kocherlakota (1990b) provides examples of economy in y#hich is reasonnable.
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then it maps taly; and otherwise td 4. In other words, a hypothesis is accepted if the ESP expected
utility provided by the acceptance hypothesis is higher than the one of the alternative. ESP hypothe-
sis testing is more flexible than classical testing theory. For instance, testing whether the EIS of the
representative agent is greater than one is straightforward in the ESP approach. In classical inference
theory, set-hypothesis tests are usually a challenge (e.g., section 21.D irei@oxrand Monfort,

1989). Point-hypothesis ESP tests are also more satisfactory than classical tests even from an asymp-
totic point of view. By construction, classical tests of lewdlead asymptotically to wrongly rejecting

a right hypothesis with probabilitg. In other words, a perfectly correct consumption-based asset
pricing theory is asymptotically rejected by a classical test with probalaility his is unsatisfactory
because asymptotically the model is perfectly known. Such asymptotic error does not occur with the
ESP approach as the ESP intensity converges to a point mass (or Dirac distribution) at the population
parametet’ In addition, if multiple preference values of the representative agent yield the same asset
pricing equilibrium (non-identification), the standard classical approach is not valid. In contrast, ESP
confidence regions and tests are robust to multiple preference values consistent with the moment con-
ditions (1). We prove that the ESP intensity converges to a sum of point mass (or Dirac distribution),

each centered at a solution to the moment condition.

3. Heuristic derivation of ESP intensity

ESP intensity is the ESP approximation of the distribution of the solutions to empirical moment
conditions. First, we derive heuristically the saddlepoint (SP) intensity under the assumption that the
data follow a distribution from a known parametric family. Second, we plug in the empirical distribution
and deduce the ESP intensity. For clarity, we consider a one dimensional parameter space=(ilg.,

in this section.

7 In the standard classical approach, a typical acceptance region of a test of tevels

I, = [égmm,k—&’“—\/*Tl“ul,a/z,égmm,kf"’“—\/%ua/g], and the justificaton for such an accep-

tance region is the following: limr_eo P{égmm,k - %ul_ap < 0ok < Ogmm — &’“—\/%"uap} =

limT_,ooIP’{ua/Q < ﬁw < ul,a/z} = 1 — a. In the ESP approach, confidence regions and tests
are disentangled.
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3.1. The saddlepoint intensity

Denotef} a solution to the empirical moment conditionjh,zgil Y(Xy,0) = 0 where{ X},
are univariate i.i.d. data. The probability distribution function (p.d.f.) of datéig, (.) with 6, the

population parameter. Denote
Zr =T (0% — 6p)

The Edgeworth expansion of the finite-sample distributiod-pfis

fro() = —n (2) {1 + =2+ () ot () + oy (ﬁ)}

wherefz,.(.) denotes the distribution dfz, n(.) is the standard normal density? := [E%} -
V (X, 6p)] [EW] _1, j is the order of the approximation;(.) is a polynomial without con-
stant term, and;(.) are other polynomials. In accordance with the central limit theorem (CLT), the
Edgeworth expansion shows that&s— oo the distribution ofZr, fz,.(.), converges to the Gaussian
densityln (=) .

The quantity of interest is ndir, butf}. By the change of variablg}. := T3 Zr + 6y, we obtain

the Edgeworth expansion of the distributiongf,

for(0) = VTfz, (ﬁ(ﬁ - 90))

fo(8) = gn (ﬁe _0_90) {1 + %rl (ﬁ(a - 90)) + %7’2 (ﬁ(e - 90)) Yo

+#rj (VT(6—60)) +o, <#) } (4)

Note that for § = 6y, the first term of the expansion,‘/TTn (0) , provides an accurate approxi-

mation of fy: (.), because all non constant monomials equal 0, and even the first polynentigl,
cancels out. The crux of the SP approximation is to make this be the case for each € ©. For
eachd € O, fo: (.) is recentered atf in a reversible way, and then only the first term of the ex-
pansion is retained.We recenter via a change of measure in the spirit of the Cameron-Martin-Girsanov

theorem (e.g., Karatzas and Shreve, 1988, p. 191), termed exponentialtfiltingpther words, the

8 In finance, the physical distribution is recentered to obtain the risk-adjusted distribution under which there is null
expected profit. With the SP approximation, the distribution of data is recentered fof ea@ to better approximate the
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SP approximation replaces the standard global Gaussian approximation (i.e., CLT) with a continuum

of point-wise Gaussian approximations. As a consequence, the error is “squeezed.”

-10 —05 0.5 10

Figure 3: Tilting of fx(.) == 1_1 4 (.) for £ 3> (X4,0) := %31, (X; — 0) andT = 1. Forg
equals 0, .2, .4, .6, .8 and .950), respectively, equals 0, 1.34, 2.4, 5 and 20.

The result is the SP intensity

fs.5p(6) = exp {Tln [EJ“’WX "ﬂ } (%) v [02(0)] 2 (5)
where
20 = [[ 200 @] [ [ vwotame] @
255 o]
Txao(@ = o {Tlnffﬁee%w(x,e)]} %

fxo(x)
RN R — -

dr =0 8)

The approximatiori5) was found by Field (1982), who extended the work of Daniels (1954) for means
to Z-estimators (orM -estimators by an abuse of terminology). The first term of the SP intensity is

the exponential tilting term. It comes from recentering. The two other terms correspond to the first

probability weight off satisfying the moment condition. Exponential tilting corresponds to the Radon-Nikodyn derivative
aPr9)y _  1(0)X
—ap —°© .
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term of the Edgeworth expansiod)(for § = 6. Note thatn(0) = JLQ? The variancer?(9) now
depends o because it is computed under the new exponentially tilted distribufign g (.), for
eachd € ©. Equation 7) defines for each € © the exponentially tilted distribution under whiétis

a solution to the moment condition. The exponentially tilted distributjgn, )(.), is indexed by the
tilting parametery(0). The line @) defines the tilting parameter. It indicates how to tilt the physical
p.d.f. fx(.) to obtain the tilted p.d.ffx ;4)(.). In the case of the estimation of the mean of a uniform
distribution over{—1, 1], tilted distributions are displayed on Figuddor 7' = 1. The higher ig, the

higher is7(6), the more tilted is the distribution.

3.2. The ESP intensity

The SP approximation assumes a known parametric family of distribution for the data. But, a finan-
cial economic model typically does not imply a distribution, except for tractability reasons. The ESP
approximation does not need parametric assumptions about the distribution of data.

In the SP intensityH), substitution offx 4(.) for the empirical distribution yields the following

ESP intensity

N

1 T
- Z eTT(0)9:(0) 9)

t=1

fgasp(ﬁ) 1= exp {Tln

) mor

whereyy(.) := ¢(X,.) and

T “Lrr T -1
20 = [Z (6 >] [Eww ”Z a«ﬁt ] |

Wy = exp [TT( ) (0)] y l
’ LT explrr(0)yi(9)] T

T
P exp [rr(0)y:(0)] 1 _o
T( ) t ; TEZ 1 €Xp [TT( )Uh(e)] : ’

]

The approximatior(9) was first studied by Ronchetti and Welsh (1994), who extended the work of
Feuerverger (1989) for meansAeestimators.

The SP and ESP approximations have been used to refine existing inference approaches in the same
spirit as bootstrap (more precise confidence intervals and bias corrections). In this dissertation, we use

the ESP approximation to develop a novel theoretical framework for inference.
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4. The ESP estimand and estimator

This section defines the theoretical framework of the ESP approach.

4.1. The ESP estimand

The ESP estimand is the distribution of the solutions to the empirical moment conditions. We require

the following assumptions to define the estimand.

Assumption 1. (a){X;}{2, is a sequence of random vectors of dimension p on the complete probabil-
ity sample spacéQ, £, P) ; (b) Let the measurable spa¢®, B(©)) such that® C R™ is compact

and B(©®) denotes the Boret-algebra on® ; (c) The moment functiog : R? x ® — R™ is

& ® B(®)/B(R™)-measurable, wheré ® B(©®) denotes the produet-algebra; (d) For the sample

size at handl’, the expectation of the number of solutions to the empirical moment conditions is finite,
i.e., > 2 npp T < oo Wherep, r is the probability of having: solutions to the empirical moment

conditions.

Assumptionsl(a)(b) are weak and standard. Completeness of the probability space is essential
to manipulate negligeable sets. Compactness of the parameter space is a convenient mathematical as-
sumption that is relevant in practice. A computer can only handle a bounded parameter space. Assump-
tion 1(c) is the first departure from the GMM literature. It requires equality between the dimension of
the parameter space and number of moment conditions. The reason is simple. In general, if the number
of restrictions (moment conditions) is higher than the degrees of freedom (dimension of the parameter
space), there is no solution to a system of equations, thus, the probability weighttl@ts a solution
to the empirical moment conditions is zero. Then, an approximation of the finite-sample distribution
of the solutions to over-restricting (or over-identifying) empirical moment conditions is generally not
useful. Sectior® shows how one can extend the parameter space to deal with over-restricting moment
conditions and perform tests of over-restricting moment conditions. Assump@nthe other de-
partures from the GMM literature, means that the tails of the probability distribution of the number of
solutions to the empirical moment conditions are not too thick. It is a mild departure from the GMM
literature. Under standard assumptions, Corollafy. 91) shows the number of solutions to empirical
moment conditions to be finitB-a.s. forT big enough. Moreover, Almudevar, Field and Robinson
(2000) prove that Assumptidin(d) is implied by conditions in the spirit of the implicit function theorem

combined with conditions on the distribution of the empirical moment conditions normalized by the
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derivative of the latter ones. From a technical point of view, Assumiti@/) allows us to use the stan-

dard point random-field theory, which is necessary to handle multiple solutions to non-linear moment
conditions. Skovgaard (1985; 1990) introduces this notion in the SP literature. However, the existing
SP literature has usually attempted narrow multiplicity to unicity, and thus evacuate point random-field
theory at the end. To the knowledge of the author, Sowell (2007) is the only dissertation that considers
the ability of the ESP approximation to account for multiple solutions an advantage, although he does
not formalize it. His reliance on two-step GMM, a framework which requires a unique solution to the
moment conditions, limits the possibility of a such theoretical development. In this dissertation, we
take advantage of point random-field theory to develop an inference framework that allows to exploit
the ability of the ESP approximation to account for multiple solutions to moment conditions.

We specialize the general definition of point random-fields for our purpose.

Definition 4.1 (Point random-field) DenoteNg the space of finite simple counting measure868),
i.e., the space consisting of integer-valued measu¥essuch that for alld € ®, N ({0}) € {0,1}.
DenoteB(Ng) the Borelo-algebra onNg generated by the Prohorov metric. A point random-field

(or point process) is a measurable mapping frafh £, P) to (Ne, B(Ng)) .1

In this dissertation, a point random-field is an application that maps each sémmle)}le to the
corresponding set of solutions to the empirical moment conditions. More precisely, for a given sample
sizeT, it maps each realizatiom € Q to a counting measuréyr(w,.). For all subsetsA of ©,
the counting measurd'r(w, .) indicates the number of solutions to the empirical moment conditions
contained inA. The following proposition proves that it is actually the c&sa.s. This is the main

result of this sectiod.1

Proposition 4.1. Denote# A the number of elements in the se{or cardinal). Under Assumption 1,

there exist®- a.s. a point random-fiel&vr (., .) such that for allw € Q and A € B(©),

T
Np(w, A) = # {9 cA: %Zw(Xt(w),H) _ 0} .
t=1

Proof. See AppendiA.1 (p. 81). O

Hereafter, for simplificity, we drop the dependence of the point random-field erf2.

19 |n the mathematical literature, the definition is typically more general. A point random-field is defined as a measurable
mapping to the space of integer-valued measures finite on bounded sets (e.g., Matthes, Kerstan and Mecke, 1974; Kallenberg,
1975; Daley and Vere-Jones 1988).
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The distribution of the solutions to the empirical moment conditions corresponds to the intensity
measure associated with the point random-fléjd.). If there can be only one solution to the empirical
moment conditions, the intensity measure is the probability distribution of the solution. But in the case

of multiple solutions, we should generalize probability measures into intensity measures.

Definition 4.2 (Intensity measure)Denote7 := {7}, a dissecting system @, i.e., a nested
sequence of finite partitiors, := {A,; : i = 1,..., k,} of Borel sets4,, ; that separate all points of
©® asn — 00.2° The intensity measure of a finite point random fié¥@,, is defined for all4 € B(©)

by

Fr(4) = lim > P{Np(4ni) =1} (10)
i:An,iEﬁL(A)

whereT,(A) :={A,;NA:i=1,...,kyandA,; € T,} .

The idea behind Definitiod.2is the following. A singletor{#} can only contain a unique solution
to the empirical moment conditions. Thus, an intensity measure of a sub4et & can be defined as
the sum of the probability weights that each of its elements contains a solution. There being an infinite
amount of elements, a sequence of increasingly thinner partitions should be introduced to formalize
the idea. Definitiomt.2 of intensity measure is an adaptation of the general mathematical definition of
intensity measures (e.g., Daley and Vere-Jones, 1988) in line with our Defiditiaf point random-
field.

LemmaA.2 in AppendixA.2 (p. 82) collects results from point random-field theory that ensure the
relevance of Definitiod.2 Namely, the existence of dissecting systems, stability of dissecting systems
under restriction to subsets, finiteness and countable additivi-pfind invariance of the intensity
measure w.r.t. dissecting systems are shown.

The following proposition clarifies the relation between intensity measures and probability mea-

sures. It adapts a result from point random-field theory.

?*More precisely, a sequen@e := {7}, -, of setsT, := {An,i : i € [1,kn]} consisting of a finite number of Borel
setsA,, ; is a dissecting system @ if

i) (partition propertiesy, ; N An,; =@ fori # jandA, 1 U...UA,k, = O;
ii) (nesting property,_1,; N A, ; = A, ; or&; and
iii) (point-separating propertyy(81,62) € ©%s.t.6; # 02, In € Ns.t.0; € A, ; impliesfs ¢ A, ;.
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Proposition 4.2. Under Assumptions 1, fér € O,

Fr(An(0)) = P{Np(A,(0)) =1} (1+¢,)  Fr-ae.

wheree,, | 0 and A,,(#) denotes the element 8 := {4, ;}1<i<, that containg.

Proof. See AppendiA.3 (p. 83). O

In accordance with the idea behind Definitidr2, the intensity measure of a small set is approxi-
matively the probability that it contains one solution.

Propositiond.2 can be regarded as the counterpart of Theorem 1 (iii) from Almudevar, Field and
Robinson (2000) in our setup. Almudevar, Field and Robinson (2000) also formalize the point random-
field introduced by Skovgaard (p.95, 1985), and thus our sedtibis close to their section 2. The
main differences between their setup and ours are the following. They grant the existence of the point
random-fields that they define, while we prove the existence of the point random-field that we define
(see Propositiod.1). Because they construct a point process that discards continuum or accumulation
of solutions to estimating equations, their setup do not need to forbid them, while we immediately rule
them outP- a.s. thanks to Assumptidi{d). They need additional assumptions (Assumption A2 in Al-
mudevar, Field and Robinson, 2000) and results (Theorem 1 in Almudevar, Field and Robinson, 2000)
to define their setup, while we can adapt point random-field theory without additional assumption. For
example, if the support of the distribution of the vector of dafajs discreet, their setup does not hold

in contrast to ours.

4.2. The ESP estimator

The ESP estimator is the intensity measure induced by the ESP intensity. More precisely, the
estimator of the intensity measure of a subset of the parameter space is the integral of the ESP intensity
over this subset. In this section, we first study the properties of ESP intensity given by the approxima-
tion (9) (p. 20). We call it the rough ESP intensity. Although the rough ESP intensity seems appropriate
in practice, for mathematical reasons we cannot use it directly to develop a theory. Thus, second, we
show how we can define (or smooth) ESP intensity by arbitrarily slightly modifying the rough ESP
intensity. As in the previous subsectidghremains fixed to the size of the sample at hand.

The use of the approximatio®)(p. 20) to define the rough ESP intensity requires the following

assumption.
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Assumption 2. There exists > 0 such that for alle € R?, § — 1 (z, 9) is continuously differentiable

in{0 € R™: |0 — O <&} where||§ — ©| = inf;_¢ |0 — O]

Assumption2 means that)(., .) is continuously differentiable with respect to its second argument
in ane-neighborhood 0®. This is a mild and convenient variant of the more standard assumption that
requires continuous differentiability af(.) in ®. Assumption2 allows to apply the implicit function
theorem on the boundary @ when necessary.

Simplification and generalization ta dimensions of the approximatio®)((p. 20) yields the

following definition.

Definition 4.3 (Rough ESP intensity)The rough ESP intensity is

} <%>m/2 S0l (1)

where|.|4.; denotes the determinant functiafy(.) := ¥ (X, .) and

fg;,sp(ﬁ) = exp {Tln

1 I
- Z eTr(0)'¢4(0)
t=1

L onoy] [ JI& . ono]
Yr(0) = Zwt,e 0 Zwt,0¢t(0)wt<9) Zwt,a BY ] )
t=1 t=1 t=1

exp [tr(0)'1:(0)]

0T ST exp [ (0) i (0)]
T
mr(0) st Zd}t(@) €xp [TT(Q)Il/}t(e)] = Omx1 , (12)
t=1

wherever it exists.

We call it the rough ESP intensity to distinguish it from the (smooth) ESP intensity below. Despite
its name, the rough ESP intensity is unique and continuous wherever it exists. Moreover, its domain of

definition isB(©®)-measurable.

Proposition 4.3. Define the se®; c © where the rough ESP intensity exists

T
Or = {9 €O :3mpr(f) e R st Zl/}t(ﬁ)eTT(a),d’t(e) = Omx1 and |S7(0)] 4., # 0} .

t=1
Under Assumptions 1 and 2,
i) ©r is an open ofd;
ii) the rough ESP intensityfe*vsp(.), is continuous and unique.

25



Proof. See AppendiA.4 (p. 85). O

The continuity of the rough ESP intensity is remarkable for a non-parametric estimate of a distri-
bution obtained without smoothing. Nevertheless, the rough ESP intensity can have two undesirable
properties. First, it is not defined férsuch thaf>r(6)|,., = 0. Moreover, in the neighborhood of
such pointﬁZT(G)Ej goes tooo, and thus swamps any information contained in the other term of the

ESP intensity. The following assumption rules out such a possibility.

Assumption 3. For any setA C ©, denoteA™" := {a € A: |ja — dAN (0O)¢|| = n} withn > 0

where A€ and9 A, respectively, denote the complementldh ® and its boundary. Define the set

(':)T = le®:

-1
0 (0 B
TZ 06’ ] =0

det

O (0
TZ 7

TZT,/% e (6

For the sample at hand, for al} > 0 small enough, the se®; and (3);77 do not have any common

elements, i.e©7 N (3);77 = () wheref) denotes the empty set.

Assumptior8 means tha> (6 )|d5 cannot go tax in an arbitrarily slightly reduced domain of the
rough ESP intensitf-);”. Note that®r N {f € O : tilting equation (2) has a solutioh = {f € © :
|X7(0)|,4; = 0}, as exponential tilting does not alter the support of the initial distribution. Proposition
A.lin AppendixA.5 (p. 86) shows the assumption to be satisfied Lebesgue almost everywhere under
reasonnable assumptions. Assump8asnot, in practice, stronger than assumptions used in the GMM
literature (e.g., Assumption D in Stock and Wright, 2000).

The ignorance of the information provided by the absence of a solution to the tilting equRjon (
is a second undesirable property of the rough ESP intensity, which does not exist when the tilting
equation {2) does not have a solution. Nonetheless, the absence of a solution for a parameier
means that even by reweighting the data, the empirical moment conditions cannot be set to zero for this
parameter value. To put it differently, the sample at hand does not provide support for this parameter
value being a solution to the empirical moment conditions. Thus, we set the ESP intensity to zero for
these parameter values. Nevertheless, we also want the ESP intensity to be continuous. This leads to

the following definition.

Definition 4.4 (ESP intensity and intensity measur&nder Assumptions-3, for» > 0 small enough,
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i) the ESP intensity (or smooth ESP intensity) is the funcfp;@T(gp :0® — R, st

fos.sp(0) if g € ©"

f (0) ' min [SUPée[aé;”m(ag)c] f9%75p(é), f9;75p(¢9) % if @ € é‘)T N <@;77)
0%.,sp = ;

X min [7), inféeécT (0, 0)]

0 if 0 € O

i) the ESP intensity measure is the set funcfigns.t. for all A € B(©)

The idea behind the definition of ESP intensity is the following. In the slightly reduced domain of
definition of the rough ESP intensity (i.e., é}”), the ESP intensity equals the rough ESP intensity.
Where the tilting equationl@) does not have a solution (i.e., é%), the ESP intensity equals zero.

In between@% and (:);", the values of the ESP intensity are the result of an extension by continuity
of the ESP intensity. We extend by continuity@oy N (é;”)c so that extremal values on the latter
set are reached on the common boundar@efin (é);")c with ©5 and®..". Other regularizatioft
techniques are possible.

Regularization of the rough ESP intensity is questionable. However, first note that it occurs on
an arbitrarily small set. Second, implicit or explicit regularizations are frequent in inference. Even
when observations are drawn from an absolutely continuous distribution, the application of the standard
maximum likelihood approach implicitly requires a smooth version of a likelihood. For example,
different members of an equivalent class of Gaussian densities produces completely different inference
results (e.g., section 7.A.2.a. in Gaenoux and Monfort, 1989). Finally, regularization has not been
necessary in practice. To the knowledge of the author, the need for regularization has never been
reported in the SP literature. Nor our simulations, in secti@rdo regularizations appear necessary.

The following properties of the ESP intensity follow immediately Definitiba
Proposition 4.4. Under Assumption$-3,

i) the ESP intensityfg;,sp(.), isa& ® B(®)/B(R)-measurable positive function continuous with

ZINote that the term regularization has a different meaning here from the meaning in ill-posed problems.
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respect to (w.r.t.p;
i) the ESP intensity measure is a finite positive measure on the measurable(@pasE)).

Proof. See AppendirA.6 (p.86).
The value of the ESP intensity indicates the estimated intensity of parameter values. The following
proposition clarifies the relationship between the intensity of a parameteréval@ and its estimated

probability weight of being a solution to the empirical moment conditions.

Proposition 4.5. Define a point random-fielﬂf(.) and a probability measur® as respective estimates
of Nr(.) andP consistent wittf(.) s.t. N(.), P andF(.) satisfy the equatiorilQ) in the Definition

4.2 of intensity measures. Assume that © is a Lebesgue point, i.e., there exists> 0 such that

for all » > 0 small enoughA(B,(0)) > £A(B,(6)) where B,.(0) denotes the closed ball IR with

radiusr > 0 and cented, B, (d) := B,(§) N ©, and where\(.) denotes the Lebesgue measure. Then,

under Assumptions-3, for all § € © Lebesgue

o B{Nr(B,(6) =1}
f@},sp(e) = 111% -
0 A(B())

Proof. See AppendiA.7 (p. 86). O

Propositiord.5means that the estimated intensityyof ® generally corresponds to the estimated
probability weight off of being solution to the empirical moment conditions. Under a mild assump-
tion, LemmaA.6 in AppendixA.7 (p. 86) ensures the existence of a point random—fil&fl(j) and a
probability measur@ such thatV (.), P andFr(.) satisfy the equationl() in the Definition4.2 of in-
tensity measures. Then, Propositibbis an immediate consequence of the Lebesgue’s differentiation
theorem and Propositioh2 Usually, in applications, all points of the parameter space are Lebesgue
points. A point of® is Lebesgue if the volume of the intersection®fwith a shrinking ball centered
at the point does not decrease more quickly than proportionally to the volume of the shrinking ball.
Therefore, interior points of the parameter space are necessarily Lebesgue, and points on the boundary

are usually Lebesgue because boundaries are typically defined by linear constraints.
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5. Asymptotic behavior of the ESP estimator
5.1. Consistency and asymptotic normality

Whereas in the previous sectidiisemains fixed to the size of the sample at hand, in this subsection

T goes to infinity. In this section, we study the asymptotic behaviour of the ESP intensity measure.
More precisely, we establish the consistency and asymptotic normality of the ESP intensity measure.
By consistency, we mean convergence of the ESP intensity measure to a Dirac at the population pa-
rameter. By asymptotic normality, we mean convergence of the standardized ESP intensity measure to
a standard normal distribution. The underlying phenomenon behind these results is the one revealed by
Laplace’s approximation (Laplace, 1774) and revived in inference by Le Cam (1953). For simplicity,
our approach relies on basic assumptions.

To study the asymptotic behaviour of the estimator, the asymptotic behavior of the estimand should

first be fixed. The following assumptions set the asymptotic behavior of the estimand.

Assumption 4. (a){X;},>, are i.i.d. ; (b) In the parameter spac®, there exists a unique solution
6y € int (®) to the moment conditiori8 [¢)(X, 6)] = Opmxi1- ; (€) E [supgee ||¥(X, 8)||] < oo ; (d)

= o 252 < i 01 [252], #o.

Assumptiongl are basic and standard. Assumptiga) ensures the basic requirement for inference,
that is, accumulation of different pieces of information (independence) about the same phenomenon
(identically distributed). The conditions “independence and identically distributed” are much stronger
than needed, and can be relaxed to allow time dependence along the lines of Kitamura and Stutzer
(1997). We require such an assumption for simplicity. Assumpti®) ensures global identification.
It will be relaxed in sectiorb.2. Assumptiond(c) ensures convergence of the solution to the empirical
moment conditions to the population parameter. Assumptigdys and (e) ensure the existence of
solutions to the empirical moment conditions.

The remaining assumptions of this section set the asymptotic behavior of the estimator. The follow-
ing assumptions ensure the asymptotic existence of ESP intensity in a set that includes a neighborhood

of the population parameter.
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Assumption 5. Define the set

Ir >0, V7 € B, (1o0(0)), E [er’w(x,e)} <o
o [eervxngar]

< o0
Oy =100 :31,(0) e R s.t.

[Boo(8)]ger # 0
E [$(X, 0)em= OV X0] — 0,1

(O av(X,0)" 1 o [ (0Y o (8) ap(x0)] "
Wheress () s [Eer=( VNN BT g or V(X 0 (X, ) | [er= VX 250
(a) There existg > 0 such that there exist§ € N, so that for allT > T, Bx(6;) C ©r. Define
a fixedn €]0,7]; (b) For all § € ©, there exists, 7, > 0 such that for allr € B,, (750(6))

E [supge,, ) [£(X,0)e” 50| < oo,

The set®,, corresponds to the parameter values where the limit of rough ESP intensity exists.
In particular, the first two conditions ensure that. (0)|,,, < oo by a standard result on Laplace
transforms. AssumptioB(a) ensures that ESP intensity is asymptotically well-defined in a fixed neigh-
borhood of the population parameter. Assump&d) allows us to obtain continuity @f — 7.,(0) by
an implicit function theorem.

The following assumptions ensure the validity of the Laplace’s approximation in a fixed neighbor-
hood of the population parameter, and thus in a fixed neighborhood of any solution to the empirical

moment conditions fof” big enough by consistency.

Assumption 6. (a)For all z € RP?, the functiord — (X, ) is four times continuously differentiable
in a neighborhood oy P-a.s.; (b) Forall k € [1, 2], there exists > 0, E [supgeBr(eo) | D¥4 (X, G)H <
oo where D* denotes the differential operator w.rd. of orderk ; (c) For all k € [1, 4], there exists

D+ {Iz2 0124
(d) For all & € [1,4], there existsM > 0 such that there exisl’ ¢ N andr > 0, so that for
DF {ln {% ST eTT(")'wf(Q)} }H < M ; (e) There exists: > 0,

M > 0 such that there exisf € N andr > 0, so that for all§ € B,(6) < M,

all T > T and @ € B,(b),

HE [SUPQGBT(QO) P(X, 0)(X, 9)/}

‘<oo.

Assumptions(a)-(d), adapted from Kass, Tierney and Kadane (1990), essentially ensure the exis-
tence and boundedness of the derivatives of ESP intensity terms up to the 4th order in a neighborhood
of the population parameter. Assumptid@) ensures the validity of the implicit function theorem for

the tilting parameter;r(0), at any solution to the empirical moment conditionsfobig enough.
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The following assumptions ensure the convergence of ESP intensity to zero outside a neighborhood

of the population parameter.

Assumption 7. Letn > 0 be defined as in Assumptiéa). (a) For all ¢ > 0, there existd” € N and
. A _1 . A
M > 0 such thatl’ > T implies for alld € ©.), e~¢T 12r(0)|,2 < M; (b) Forall § € @), there

X,0)

existry, ro > 0 such thafl SUD (7 0)e B, (rae () < By (0) o ¥ < oo0.

Assumptions? correspond to assumption (iii) in Kass, Tierney and Kadane (1990). Assumption
7(a) rules out more than exponential divergence of the Jacobian of the ESP intensity. This is a mild
assumption. Assumptiof(b) is a convenient variant of Assumption 4 in Kitamura and Stutzer (1997).

This is a common type of assumption in entropy-based inference.

Under the assumptions above, we obtain the main result of the dissertation.

Theorem 5.1(Consistency) Under Assumption$-7, asT — oo, the ESP smooth intensi'gf@asp(.),

converges in distribution (or narrowly converges) to the Dirac distributigy{.) P-a.s., i.e.,

Vo € Cy, /@ ©(0) for. sp(0)dO — /@ ©(0)dg,(0)d0 P-as.

whereC), denotes the space of continuous bounded functions.

Proof. See AppendiA.9 (p. 108).00

Theorenb.1 means the ESP intensity measure converges to a point mass at the population parame-
ter as the sample size increases. Thus, uncertainty about the solution to the moment conditions vanishes
as accumulation of data makes the empirical moment conditions a more precise approximation of the
moment conditions. TheoreB 1 also means that the estimator, the ESP intensity measure, and the
estimand, the intensity measure, converge towards each other as sample size increases. This theorem
also shows that asymptotically the ESP integrates to one, although ESP intensity does not typically
integrate to one for any'. All other consistency results of this dissertation follow from this theorem.

The counterpart of TheoreB1in Bayesian inference is the consistency of posterior distributions
(or Doob’s theorem). However, despite their similarities, their theoretical foundations are different, as
explained in sectiol®. A second standard convergence result for posterior distributions is asymptotic

normality (or Bernstein-von Mises’ theorem). We also provide its counterpart in our framework.
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Theorem 5.2(Asymptotic Normality) Leta,b € © such thata < b where “a < b” means that every

component ob — a is non-negative. Then, under Assumpti@ng as7T — oo

- 1 ,
/ f%,szo(g)dg — —m/ e_%z *ds P-a.s.
Dy (a,05.,b) (2m)2 JD(ab)
1

where Dy (a, 03, b) = {9 L0+ T3 [D7(05)])2 a < 0 < 05+ T3 [Sp(05)]2 b} with 6. any so-
/
lution to the empirical moment conditions, a{ﬁ’jT(QT)]% s.t. Xp(0F) = ([ET(H})]%> [ZT(Q})]%
* o (6:)171 * " o (6*) 11 .
and [Sr(6%)] = [% r wg(e,T)} [ ST (020 (6%) ’} [ r wta(eT)} ; and where
D(a,b) :={z:a < z < b}.

Proof. See AppendiA.9 (p. 108).00

Theoremb.2 indicates that ESP intensity converges asymptotically to a point mass at the popula-
tion parameter like a Gaussian distribution with standard deviation that goes to zero at thie Tate
Theoremb.2is in line with the well-known asymptotic normality of a solution to empirical moment
conditions. Theorerb.2is close to Theorem 5 in Sowell (2007), although the latter does not provide
the asymptotic normality of the ESP intensity. Theorgdalso suggests that confidence regions can
be derived along the line of Chernozhukov and Hong (2683 lowever, we do not follow this way

because we want to preserve robustness to lack of identification.

5.2. Robustness to lack of identification

In moment-based inference, identification characterizes a situation in which if we knew the mo-
ment conditions as a function of the parameter of interest, we could deduce the population parameter
value. In practice, moment conditions as a function of the parameter of interest are unknown. Only
if we could increase the sample size infinitely would we know them. In addition, robustness to mul-
tiple solutions to the moment conditions a fortiori implies robustness to situations where the objective
functions behaves as if the moment conditions had multiple solutions, although they have only one
(weak-identification). Therefore, robustness to multiple solutions to moment conditions is an impor-
tant and desirable property.

In finite sample, our inference framework is robust to multiple solutions to moment conditions by

construction. In this section, we show that it is also true asymptotically. More precisely, we establish

22The author has a work in progress in which he introduces intensity and other ideas presented in this dissertation to the
generalized Bayesian framework provided in Chernozhukov and Hong (2003).
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multi-consistency and multi-asymptotic normality of the ESP intensity measure. By multi-consistency,
we mean convergence of the ESP intensity measure to a sum of Dirac distribution each centered at
one of the solutions to the moment conditions. By multi-asymptotic normality, we mean that the ESP
intensity measure converges to a sum of Dirac like a sum of Gaussian distributions with standard
deviation that goes to zero at the rite .

We adapt assumptions of the previous section to allow for multiple solutions to the moment condi-

tions. Assumptiond(b) and (e) become the following.

Assumption 8. Denote[1, n] the integers if1, n|. (b”) In the parameter spad®, there exist multiple

solutions,{e((f)}é_1 with 7 the number of solution® to the moment conditiori® [W(X,0)] = Omx1

£0.

. (i)
such that for alki € [1, 7], 9(()’) €int (@) ; (e") Foralli € [1,7], 'IE [%]
det

Asumption5(a) becomes the following.

Assumption 9. (a’)For all i € [1,7], there exists(® > 0 such that there existE() € N, so that for
all T > 70, B, (6) c &r.

Assumption6 becomes the following.

Assumption 10. For all 06“ with i € [1,7m], Assumption§(a)-(e) are satisfied witld, replaced by

o).

Thanks to the above madifications of the assumptions, multi-consistency of the ESP intensity mea-

sure follows.

Theorem 5.3(Multi-consistency) Under Assumption&-7 modified according to AssumptioBsL0,
asT — oo, the ESP smooth intensitﬁgasp(.), converges in distribution (or narrowly converges) to

the sum of Dirac distributiony_""_, 6,0 (.) P-as., ie.,
0

Voo [ o000 [ o000 Pas
=1

whereC;, denotes the space of continuous bounded functions.

Proof. See AppendiA.9 (p. 108.0

Theoremb.2becomes the following.

ZIn accordance with Assumptidk{d), the number of solutions is unbounded but finite.
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Theorem 5.4 (Multi-asymptotic normality) Leta,b € © such thata < b where “a < b” means
that every component éf— a is non-negative. Then, under Assumptidns modified according to

Assumption8-10, asT — oo

n

Z/ 0, foT,sp( d0—> 7 / e 27%ds P-as.
(a,07 17 D(a

2
1=

, , L4l . NS
where Dr(a, 03 b) := {0 05 72 [ET(G;@)} Pa<0<0 472 [ET(G;(’))} ? b} with
{9;@}%1 a sequence of solutions to the empirical moment conditions converg'ﬁﬁa B-a.s. and

n € [1,7].

Proof. See AppendipA.9 (p. 108.0
Theoremss.3and5.4 have no counterparts in the standard Bayesian framework because the latter

deals only with probability measures.

6. Discussion

In this section, we discuss differences and similarities between the ESP framework and existing

inference theories.

6.1. Comparison with the Bayesian framework

The main output of both the ESP and Bayesian frameworks is a distribution that summarizes
uncertainty about the population parameter. However, the theoretical foundations of ESP and Bayesian
frameworks are different. In this section, we explain these differences and their practical implications.

Takenliterally, Bayesian theory regards inference as a two-stage game between nature and an
econometrician. In the first stage, nature draws the population parafgtaccording to a prior
distribution 7y, (.), and then draws a samp{e’(t}tT:1 in accordance with a conditional probability
distribution (p.d.f.)lx, .. x.6,(-]-)- Inthe second stage, the econometrican tries to infer the population
parameter valué, given the sample at hand. As usual in game theory, the gg.f. x,4,(.|.) and

7p, () are common knowledge. Thus, the econometrician updates this prior informagjén, thanks
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to data according to Bayes’ formula

Touxsnp (Ol 7 = Ix,,.. X700 (T1, - - -, x7]0) 700 (0) 7

Jo lxi,... xrl00 (21, - - ., x7|0) 70, (0)dO
to obtain the posterior distributiany, x, . x..(-|.). Therefore, as in our framework, Bayesian inference
summarizes the uncertainty about the population parameter by means of a distribution.

This similarity between Bayesian and ESP inferences should not eclipse their fundamental differ-
ence. Bayesian inference produces a distribution that summarizes uncertainty about the population
parameter because the population paramégetis treated as a random variable. This randomness is
necessary to use the Bayes' formula. In other words, Bayesian theory requires an “axiomatic” trans-
formation of the unknowrf, into a probabilizable uncertain through a prigy (.) (p. 508 in Robert,

1994). In contrast, in our framework, the randomness that is approximated by ESP intensity comes
from data. Different samples imply different empirical moment conditions, and thus different solutions

to those empirical moment conditions. However, the solution to the moment conditions, the population
parameter, is not regarded as a random variable. In other words, in our framework, randomness comes
from the use of random empirical moment conditions to approximate deterministic moment conditions.

The difference between sources of randomness has practical implications. Typically, the param-
eters of an economic model of interest are not random. For instance, in consumption-based asset
pricing, the RRA and EIS of the representative agent are not random. Bayesian inference transforms
the unknown population parameter into a probabilizable uncertain through two main extra statistical
restrictions. First, it needs to specify a prior distribution. An economic model does not imply a specific
prior distribution, and the use of non-informative prior distributions is not exempt from criticisms (e.g.,
section 3.5 in Robert, 1994). Second, it needs to specify the conditionalig:g, (.|.). Typically an
economic model does not imply a such family of distributions, except for tractability reasons. From a
statistical point of view, these extra-statistical restrictions may not matter, and even have been proved
useful in many practical situations. But from a structural point of view, they make it difficult to dis-
entangle the part of the inference results due to the empirical relevance of the economic model from

the part due to statistical restrictioffs.Non-parametric Bayesian analysis also does not avoid extra

Zpssuming a distributions corresponds to imposing an infinite number of extra moment restrictions. A characteristic
function uniquely determines probability distribution; and if the characteristic function of a random vatiablenalytic in
the neighborhood of zero, then it can expanded at zero into an infinite Taylor Beigs®) = 5% | (2 E (X7) wherei
denotes here the imaginary unit.
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statistical assumptions (e.g., Ghosh and Ramamoorthi, 2003). ESP inference does not require such
extra statistical assumptions because source of randomness in the ESP econometric model is the same
as in the corresponding economic model, and the distribution of the solutions to the empirical moment

conditions is estimated non-parametrically.

6.2. ESP and the foundation of probability

In probability?® there is relative consensus about the rules that should be used to compute new
probabilities from already defined probabilities. Following Kolmogorov (1933), the rules are those
of mathematical measure thedfy.However, there is no consensus about the way to construct prob-
abilities from a practical situation and interpret them. In this section, we explain why our inference
framework is as compatible with the two main conceptions typically advanced to justify existing clas-
sical and Bayesian theory as the latter ones. For brevity, we only focus on these two main conceptions
of probability, although there exist lot of other ones (e.g., de Finetti, 1968).

A frequentist conception of probability is typically advanced to justify existing classical theory. It
defines a probability as a limit of a frequency. The probability of an event is the limit of the ratio of
the number of occurences of the event over the number of experiments (e.g., von Mises, 1928). Ac-
cording to this view, asymptotic classical theory should induce valid probabilistic statements for tests
and confidence intervals because, if the Gaussian approximation is accurate and if we could draw an
infinite number of samples, the limit of the proportiontestatistics in a set would approximatively
correspond to the standard Gaussian distribidioBimilarly, if the ESP approximation is accurate and
if we could draw an infinite number of samples, the limit of the proportion of solutions to the empirical
moment conditions in a set would approximatively correspond to the ESP intensity. Therefore, our in-
ference framework appears as compatible with the frequentist conception of probability as the existing
asymptotic classical theory. Note, however, that this type of compatibility is achieved through different
ways. In asymptotic classical theory, the same Gaussian approximation yields probabilistic statements

for all sample sizes. In the ESP framework, an approximation of a finite-sample distribution, which by

Bn this section, by probability we mean probability and its derivative including “intensity”.

%There are some variants of the Kolmogorov’s axiomatic (e.g., finite additivity by de Finetti,1970; infinite probability by
Hartigan, 1983).

Z'Note that standard frequentist conceptions of probability does not justify asymptotic theory. Standard frequentist con-
ceptions of probability involve an infinite number of samples, but they do not necessarily involve samples with an infinite
number of observations.
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construction is different for each sample size, yields probabilistic statements.

A subjective conception of probability is typically advanced to justify Bayesian inference (e.g., p.
74-77 in Berger, 1980). It defines a probability as an individual degree of belief in a proposition. It thus
abolishes the distinction between unknown and random, and it allows us to treat the population parame-
ter as a random variable and then apply Bayes'’s theorem. However, this conception does not restrict the
source of the belief. Therefore, a degree of belief can also stem from ESP intensity. As a consequence,

our inference framework does not contradict the typical Bayesian conception of probability.

6.3. Aninterpretation of the ESP approach

Mathematically, the ESP intensity is an approximation of the distribution of the solutions to the
empirical moment conditions. The ESP intensity summarizes the uncertainty about the population
parameter on condition that the empirical moment conditions are proxies for the moment conditions,
or more precisely, on condition that the solutions to the empirical moment conditions are proxies for
the solution to the moment conditions, the population parameter. From a mathematical point of view,
the ESP intensity is not an approximation of the distribution of the population parameter.

However, one camterpretthe ESP intensity divided by its integral over the parameter space as the
distribution of the population parameter, if he considers that (i) the distinction between random and un-
known is irrelevant; (ii) probability should express in the language of mathematical measure theory to
which extent a proposition is possible with respect to alternative propositions given the evidence avail-
able; (iii) the evidence available fére © being the solution to the moment conditions corresponds to
the ESP estimated probability weight tifais a solution to the empirical moment conditiciisErom
this point view, the ESP approach offers a way to obtain an output similar to standard Bayesian in-
ference without assuming a prior over the parameter space and a parametric family of distribution for
the data. However, this interpretation does not erase fundamental differences between the ESP and
Bayesian approach. In particular, this interpretation of the ESP approach transforms the ufiknown
into a probabilizable uncertain through the ESP intensity that is induced by the sample at hand, while
the Bayesian theory transforms the unkno¥y),into a probabilizable uncertain through exogenous
prior 7, (.)-

Although the ESP approach would remain coherent if the ESP intensity was regarded as a dis-

ZThis way of interpreting the ESP intensity was inspired by Maher (2010), who criticises the subjective conception of
probability typically advanced to justify Bayesian inference (See se6ét@n
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tribution of the population parameter, we do not follow this interpretation in this dissertation for two
reasons. First, our point of view in this dissertation has the advantage to keep transparent the underlying
mechanism of moment-based inference procedures. Moment-based inference is necessarily based on a
finite-sample counterparts of the population parameter that serves as proxies for the population param-
eter. Thus, the best we can realistically hope for is an accurate knowledge of these proxies. Second,
our point of view does not forbid a user of the ESP approactuttsequentland explicitly interpret

the normalized ESP intensity as a distribution of the population parameter for the reasons indicated in

the previous paragraph.

7. A decision-theoretic approach

In this section7, we present a decision-theoretic approach within the inference framework of
the previous sections. In other words, we regard inference as a choice of parameter values by an
econometrician in the spirit of microeconomic theory under uncertainty. The econometrician chooses
a utility function (i.e., opposite of a loss function),: (d., 67) — u(d., 8) whered, is an inference
decision and wheré € O is a potential value of the solution to the empirical moment conditions.
The inference decision is typically a parameter value (point estimation) or a subset of the parameter
space (hypothesis testing). The utility function indicates the utility provided by decisido the
econometrician when a solution to the empirical moment conditigh i€he econometrician makes
an inference decisioni,, that maximizes his ESP expected utility functigi, u(de,o)fg,},sp(o)de.

ESP expected utility is a generalization of expected utility defined in microeconomic theory, in the
sense that utility functions are integrated w.r.t. an intensity measure that is not necessarily a probability
measure? Without loss of utility, the econometrician does not randomize his inference decision (mixed
strategy). For the same reason as in Bayesian inference (e.g., Theorem 3.12 on p.147 in Schervish,
1995), randomization cannot improve an optimal non-randomized inference decision (pure strategy).
Arandomized decision is a weighted average of non-randomized decisions; and the average of elements
of a set cannot be bigger than the maximum of the set.

A decision-theoretic approach provides several advantages. First, it provides flexibility through

the choice of a utility function. Second, it opens a way to move from statistical statements to eco-

ZNote that this extension is mathematically straightforward. Normalizing the ESP intensity to make the ESP intensity a

. Foz, on() —_— .- . .
densny% does not affect the definitions below. However, the sets of decision-theoretic axioms used should be
© 1oL, sp

modified. This is left for future research.
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nomic statement thanks to a utility function that maps inference precision to its economic benefit (e.g.,
Wald, 1939; McCloskey, 1985). Finally, it provides strong finite-sample foundations. Maximization of
expected utility is theptimalanswer to the estimated uncertainty that comes from inference, as max-
imization of expected utility by a consumer is optimal in microeconomic theory. In standard classical
inference theory, only some asymptotic optimality is typically obtained

A decision theoretic approach is generally delicate within the standard classical inference theory.
Often, it is not possible, as in standard moment-based inference, in which case the objective function
is not expressed in terms of the dimension of interest, the parameter values. For example, the objective
functions of GMM, empirical likelihood (EL) and exponential tilting (ET), are expressed, respectively,
in terms of a norm of the empirical moment conditions, the probability weight of the observed sample,
and the informational content (defined as entropy) of the sample. When a decision-theoretic approach
is possible, it typically does not produce a complete ranking of inference decisions. Given two decision
rulesd,, (.) andd,,(.), the risk function®) — Eg [u(d.(X), 8)] andd — Ey [u(d.(X), )] typically
cross each others (e.g., section 2.D in Gexoiix and Monfort, 1989). In Bayesian theory, integration
of the classical risk functions w.r.t. the posterior makes a decision-theoretic approach possible. In the
ESP approach integration of the utility function w.r.t. the ESP intensity makes a decision-theoretic
approach possible. The ESP decision-theoretic approach presented in this dissertation is close to the
one for Bayesian inference. However, the fundamental differences analyzed in $a@ioain.

In the next section, an inference decision by the econometrician is a subset of the parameter space
(hypothesis-testing). In this section, we focus on the case in which an inference decision by the econo-
metrician is an element of the parameter space (point estimation). In the remaining of the present
section, we treat separately continuous utility functions and 0-1 utility functions for clarity. However,
combination of the two are possible and relevant as shown in the case of over-restricting moment con-

ditions in sectiorD.2.2

7.1. Continuous utility functions

In this section, we consider the case in which the utility function chosen by the econometrician is

continuous. In this case, we require the following assumptions.

Assumption 11. (a)u(.,.) is continuous (b) Forall € ® andd € ® \ {6}, u(6,6) < u(6,6) ; (c)
Forall 9,6 € ©2, u(0,6) = u(d,6). ; (d) Forall 6,0 € ©,0 < u(b,6).
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Assumptionll(a) is standard in decision theory (e.g., Definition 3.C.1 and Proposition 3.C.1 on
pp.46-47 in Mas-Collel, Whinston and Green, 1995). See setthelow for a relevant case where
the utility function is not continuous. Since the parameter sgads compact, continuity implies
boundedness, and thus rules out Saint-Petersburg type paradoxes (e.g., p.185 in Mas-Collel, Whin-
ston and Green, 1995). Boundedness also ensures that the ESP estimated expected utility is always
well-defined, i.e.,[g u(0e, 0) for. p(0)dd < oo for all 6. € ©. Assumptionll(b) formalizes the
econometrician preference for accuracy. This means the econometrician is strictly better off when his
point estimate equals a solution to the empirical moment conditions than otherwise. Assubifitjon
means the econometrician’s preference for accuracy is independent of the actual values of the solutions
to the empirical moment conditions. Assumptibi(d) is the opposite of the standard convention in
decision theory for inference. Usually decision-theory for inference is expressed in terms of loss func-
tions (i.e., opposite of utility functions) instead of utility functions (e.g., p.52,60 in Robert, 1994). In
this dissertation, we use the latter ones because of our emphasis on 0-1 utility functions. 0-1 utility
functions do not have a formal counterpart in terms of loss functions when integrated with respect to
continuous distributions (e.g., p.166 in Robert, 1994) because 0-1 utility functions are not mathemat-
ical functions in this case (see sectiér®). To avoid any confusion in this dissertation between the
utility function of a representative agent and the one chosen by the econometrician, we reserve the term

preferences for the first one and and utility for the second one.

Point estimate

Once we have characterized the utility function, the definition of corresponding point estimates

follows.

Definition 7.1 (ESP point estimate)Given a utility functionu(.,.), an ESP point estimatdy, is a

& /B(©®)-measurable maximizer of the ESP expected utility, i.e.,

0 := arg max Blu(0c, 07)

whereE[u(fe, 05)] := [g u(fe,0) foz5p(6)d0.%°

The following proposition presents finite-sample properties of maximization of ESP expected util-

%0Note that this notation corresponds the usual notation only if there can be only one solution to the empirical moment
conditions.
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ity.

Proposition 7.1. Under Assumption$-3;11,
) O — /@u(ee,e)fg;ﬁp(e)dﬁ is continuous ove®;
ii) there exists an ESP point estimaig.

Proof. See AppendipA.9 (p.108). O

Proposition7.1) means the preference relation generated by maximization of the ESP expected
utility is continuous?, i.e., if for two converging sequences of parameter val{uﬁ,&,}n>1 {07(12) }n>1,
07(11) is always preferred tﬂﬁf), then preference cannot be reversed at the limit. /(e.g., p.46/in Mas-
Collel, Whinston and Green, 1995). Propositiaidii) is a consequence of Propositi@rili) and of the
compactness of the parameter space.

The following proposition presents asymptotic properties of maximization of ESP expected utility.
Proposition 7.2. Under Assumption$-7;11, asT — oo,

) sup H/eu(ee,e)f%,sp(e)de — u(be,00)|| = 0 P-a.s.;

ASC]

i) an ESP point estimate convergésa.s. to the population parameter, i.e.,

Jim 0% =0, P-as.
Proof. See AppendiA.10 (p.109). O
Proposition7.2i) means the preference relation corresponding to the ESP expected utility is consis-
tent, i.e., the preference relation corresponding to the ESP expected utility converges to the preference
relation corresponding to the utility function with knowledge of the population parameter. Proposition

7.2i) is an immediate consequence of Proposifiof).

Confidence regions

Point estimates are not necessarily stable. The typical symptom of instability is the absence of a
unique well separated maximum of the objective function. Confidence regions provide an indication of
the stability of point estimates.

We define ESP confidence region as follows.

31Continuity of the utility function is different from continuity of the expected utility.
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Definition 7.2 (ESP confidence regionGiven a utility functionu(., .), an ESP confidence region of
levell — a with a € [0, 1] is a B(®)-measurable set

~ 1 ~
S = {96 cO: —/ u(Oe, 0) fos.p(0)dO > kaT}
K¥ o T !

wherek, 7 is the highest bound satisfying% Ki% Jo u(@e,G)fg},sp(Q)deHG >1-—aand K} =

f@2 U(eea e)fé)},sp(e)dedee-

By definition, all the elements of the parameter space containé@c iprovide a higher ESP ex-
pected utility than any elements of the parameter space Olﬁ’sﬁden other words, ESP confidence
regions correspond to the parameter values which are the closest to maximize the ESP expected utility.
Thus itis the smallest set satisfying a constraint of ESP expected utilityllevel. A small connected
ESP confidence region indicates well-separated maximizer of the ESP expected utility, and thus a reli-
able ESP point estimate. For the opposite reason, a large ESP confidence region or a ESP confidence
region that consists of the union of disjoint sets indicates an unreliable point estimate. Although Defi-
nition 7.2 correspond to joint confidence regions, marginal and conditional ESP confidence regions can
also be defined. Note also that two-sided symmetric confidence regions and two-sided equal-tailed ESP
confidence regions can also be defined. For brevity, we focus only on short ESP confidence region.

In Definition 7.2 of ESP confidence region, we do not require the ESP expected ultility level to be
exactly equall — « in order to ensure their existence. If the ESP intensity is locally perfectly flat, the
ESP expected utility level over the ESP confidence cannot dquat.

To the knowledge of the author, such confidence regions have not been studied in Bayesian theory
except in the case of 0-1 utility function. Usual Bayesian and classical confidence regions consider
parameter values only from a probabilistic point of view. ESP confidence regions takes into account an
additional dimension through the utility function.

Since the integralg u(f., ) fg;,sp(e)dedee can take an arbitraty positive value, we normalize
the ESP expected utility to define ESP confidence regions. The following assumption ensures the

possibility to normalize, i.e K7 # 0.
Assumption 12. The domain of definition of the rough ESP intensity is not empty@e.# () .

Assumption12is mild. If @ is empty either there is not support for the model of interest or the
sample size is too small. Fat big enough@®1 is not empty. By Corollan on p91in appendix, for

T big enough there exists a consistent solution to the empirical moment conditions. Thiishifpr
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enough® contains a neighborhood of a solution to the empirical moment conditions by Assumption
6(e).

To study the consistency of ESP confidence regions, we introduce a notion of convergence.

Definition 7.3 (Convergence of sets) et int(A) denote the interior of a sedl. A sequence of sets
{Ar}p., converges to a set if and only if for alla; € int(A) anday € int(A°) there existd” € N

s.t.T > T impliesa; € int(Ar) anday € int(A$). Itis denotedAr ~ A.

Definition 7.3 means that a sequence of sets converges to a limiting sets if the interior of the sets
matches asymptotically. Using this definition, we can prove that ESP confidence regions converge
to their asymptotic counterpart. The following proposition ensures existence and consistency of ESP

confidence regions.

Proposition 7.3. Define an asymptotic ESP confidence region of lévelx as a measurable set

. 1
Su = {9e €0 : —u(l,00) > ka,oo}

[e.o]

wherek,,  is the highest bound satisfyiryé; fg% u(0e,0p)db. > 1 —aand K, := f® u(0e, 0p)do..
Forall o € [0, 1],

i) under Assumption%-3;11-12 there exist an ESP confidence regi@t%,, and an asymptotic ESP

confidence region of levél— «;

i) under Assumption%-7;11-12, asT — oo,
S~ S P-as.

Proof. See AppendiA.11 (p.110). O

Asymptotic ESP confidence regions correspond to the parameter values that provide the most
weighted utility. Asymptotic ESP confidence does not only include the population parameter with
continuous utility functions. Parameter values different from the population parameter also provide

utility to the econometrician. Propositiah3is a consequence of Propositidriii)
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7.2. 0-1 utility functions

A 0-1 utility function equals one by normalization when the inference decision is ight{hen
0. is a solution to the empirical moment conditions) and zero otherwise. In other words, the use of a
0-1 utility function yields maximization of the expected finite-sample “truth.” By finite-sample “truth”
we mean solution to the empirical moment conditions, while in the existing literature the word “truth”

is reserved for solution to the moment condition (i.e., population parameter).

Point estimate

In point inference, the 0-1 utility function is not a usual function. On the one hand, Assumption
1(d) rules out situations with a continuum of solutions to the empirical moment conditions. On the
other hand, by construction, the ESP intensity measure is absolutely continuous w.r.t. the Lebesgue

measure, which ignores points. Therefore, in point inference, the 0-1 utility function is a “generalized”

function which corresponds to a family of Dirac distributions indexedby{ds, ()} ce->

Definition 7.4 (Maximum ESP point estimateA maximum ESP point estimatk;, is an ESP estimate

that maximizes the ESP expected 0-1 utility function, i.e.,

O := arg max K[y, (07)]

wheredy, (.) is the Dirac distribution at,.
The following immediate proposition clarifies the meaning of Definifiof

Proposition 7.4. Under Assumptiong-3, the Definition7.4 is equivalent to each of the following

properties
i) ifthere exists a uniquér € int(®), for small enought > 0, 7 = arg (5naé/ 15, (0.)(0) foz.,sp(6)d0;
e € ®

i) O = arg g?é% fg;vsp(Ge).

32 See section 1 on pp.13-20 in chap.1 in Schwartz (1950-1951) for a discussion about the differences between a (Schwartz)
distributions and functions. We still use the word function for 0-1 utility function to avoid a too cumbersome terminology.
This misuse of language is already well-spread in the Bayesian decision theory. Note also that the meaning of Dirac distribu-
tions in this section is different from the one in Theorefrtsand5.3. Here Dirac distributions formalize absolute preference
of the econometrician for finite-sample “truth”, while in Theorem 5.1 and 5.2 they formalize probabilistic distributions.
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Proof. See AppendiA.12 (p.116). [

Proposition7.4i) provides an alternative, but equivalent formalization of absolute preference for
finite-sample “truth.” This formalization is adapted from Robert (p.166, 1994). Propogi#dnpro-
vides an alternative interpretation of maximum ESP point estimates. A maximum ESP point estimate
is the parameter value with the highest estimated probability weight of being a solution to the empir-
ical moment conditions. In this sense, it is a maximum-probability estimate. A maximum-probability
estimate is different from a maximum-likelihood estimator. See foottdten p. 15. Proposition
7.4ii) also shows that our maximum ESP point estimate corresponds to the point estimate introduced
in Sowell (2009) to correct the higher-order bias of exponential tilting estimates (ET). Sowell (2009)
shows the logarithm of ESP intensity divided by the sample size to correspond to the exponential tilting
objective function plus two terms that vanish asymptotically. He deduces that maximum ESP estimates
share the same first-order asymptotic properties as ET estimates, but are higher-order bias corrected
thanks to the extra two terms of the objective function.

In accordance with Sowell (2009), the following proposition states that maximum ESP estimates

are consistent.
Proposition 7.5. Under Assumption$-3,
i) there exists a maximum E$R;
i) under additional Assumption&7 and 12, a maximum ESP point estimates convergess. to

the population parameter, i.e.,

lim éT =6y P-as.
T—o0

Proof. See AppendirA.13 (p.116) O

Proposition7.5i) follows from Lemma 2 in Jennrich (1969) and the continuity of the ESP intensity.
We deduce Propositiod.5ii) from the consistency of the ESP intensity, unlike Sowell (2009) who
deduces it from the consistency of ET estimates.

Confidence regions

As for continuous utility functions, we define confidence regions.
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Definition 7.5 (Maximum ESP confidence regionA maximum ESP confidence region of level o

with « € [0, 1] is a B(®)-measurable set

- 1 =
St = {06 €0O: K—Tfea‘,,sp(ee) = ka,T}

wherek, 7 is the highest bound satisfying- [5 foz s(0)d0 > 1 — a and K7 := [g for, «p(6)do.

Since [g dp. (H)fg},sp(e)de = fg;}’sp(ee), Definition7.5is in line with Definition7.2, and thus the
same interpretation still holds. By Propositids, all elements in the maximum ESP confidence region
have a higher probability weight of being a solution to the empirical moment conditions than the ones
outside. In this sense, they are maximum-probability based. As for continuous utility functions, we do
not require the ESP confidence region level to be exactly equakHa in order to ensure existence.

As for continuous utility functions, marginal, conditional, two-sided symmetric confidence regions and
two-sided equal-tailed ESP confidence regions can also be defined. In particular, De€ir8tam

p.65 provides an example of marginal ESP confidence region in the case of over-restricting moment
conditions.

To the knowledge of the author, Sowell (2007) is the only one to use this type of confidence region
in the saddlepoint literature. The main differences between the confidence regions in Sowell (2007) and
the ones in Definitior7.5are the following. He uses the ESP technique to approximate the distribution
of the local minima of the second step GMM objective function, while we use it approximate the
distribution of the solutions to the empirical moment conditions. He proposes to use the obtained
confidence region for the GMM estimate, while we use it for the maximum-ESP estimate.

The Bayesian counterpart of maximum ESP confidence regions are typically called “highest pos-
terior density” (HPD) regions (e.g., p.327 in Schervish, 1995). However, HPD regions involve the
population parameter unlike maximum ESP confidence region. Because in the ESP approach random-
ness comes from data and not from treating the population parameter as a random variable (see section
6), ESP confidence regions do rfotmally involves the population parametés,

The formal absence of the population parameter in Definitidiis also one of the differences w.r.t.
standard classical confidence regions. By definition, a usual classical confidence region bHevel
should contain the population parameter with probability o before observation of the sample. But,
given a sample at hand, a usual classical confidence region does not provide a probabilistic statement

about the population parameter. Given a sample at hand, a classical confidence region is fixed, and
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thus it has probability one or zero to contain the population parameter. In contrast, ESP confidence re-
gionsformally involve only the finite sample counterpart of population parameter, as the ESP approach
acknowledges that practice relies on finite samples. Moreover, the induced probabilistic statements
about the final counterpart of the population parameter does not disappear once the ESP confidence
region is computed. Another difference between maximum ESP confidence regions and usual classical
confidence regions is that the latter ones only requires to report standard errors. In standard classical
inference, whatever is the sample size, the same Gaussian approximation is used, whereas in the ESP
approach an approximation of a finite-sample distribution, which by construction is different for each
sample size, yields probabilistic statements.

Despite all these differences, under standard assumptions, CLT , Bernstein-von Mises’ theorem and
Theorem5.2 indicate that standard classical confidence regions, Bayesian HPD region and maximum
ESP confidence regions behave similarly asymptotically.

The following proposition ensures existence and consistency of maximum ESP confidence regions.
Proposition 7.6. For all « €]0, 1],
i) under Assumption%-3,12, there exists a maximum ESP confidence reg%n,

i) under Assumption$-7,12, asT — oo,

St~ {6y} P-as.

Proof. See AppendiA.14 (p.116). O

Proposition7.6) follows from the same arguments as Proposifiadi).

7.3. Robustness to lack of identification

In this section, we present how the multiplicity of solutions to the moment conditions affects the
decision-theoretic approach of sectioh& and8. For clarity, the structure of the section is similar to
sections7.1and8. For brevity, we try to only indicate the necessary changes w.r.t sectiGrasd8.

Proofs are adaptation of the proofs in the case of identification.
By definition, point estimation is not relevant in the case of multiple solutions to the moment
conditions. Therefore, like existing point estimates, in this case, ESP point estimates are only locally

consistenti.e. they are consistent when the parameter space is restricted to a subset containing a unique

47



solution. However, ESP confidence sets reflect the lack of reliability of ESP point estimates. We show
that ESP confidence sets are globally consistent in the presence of multiple solutions to the moment
conditions. In contrast, standard classical confidence sets are not consistent. By construction, they
consider the uncertainty about the population parameter corresponds to a Gaussian density centered at

the point estimate. Thus, standard point estimates contaminate standard confidence sets.

7.3.1 Continuous utility functions
Point estimate

Definition 7.1 becomes.

Definition 7.6. DenoteP(®) := {®;}"_, a partition of ® such that for alli € [1,7], ©; contains a
unique solution to the moment conditio@f)@ € int(@®;). Given a utility functionu(.,.) and a subset
©®;, a local ESP point estimaté;i’(i), is a&/B(®)-measurable maximizer of the ESP expected utility

over®; i.e

Aua(i) *
67" := arg max Efu(f., 03)]

whereE[u(fe, 05)] = [g u(be,0) fg* p(0)d6.

Note we still integrate the utility function over the whole parameter space. Proposilioemains

valid for local ESP point estimates after obvious change. Propositiioecomes the following.

Proposition 7.7. Under Assumption$-3,8-10,11, for all i € [1,7], asT — oo,

/@ (Ge,e)fg* sp Z 0670(1))

ii) alocal ESP point estimate converges locdlha.s. to its corresponding solution to the moment

i) sup —0 P-as,;

0.€cO

conditions i.e.

lim 9 w(i) 9((;) P-a.s..

T—o0

Proof. Adapt proof of Propositiof7.2 [J

Proposition7.7 shows that multiplicity of solutions to moment conditions implies multimodal ESP

intensity. Similarly, multiplicity of local minima in a GMM objective function may be a symptom of
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multiple solution to the moment conditions. Theorem 4.1.2 in Amemiya (1985) has a spirit similar to
Proposition7.7.
Confidence region

Definitions7.2, 7.3 and Propositior?.3) remain valid. Propositio7.3i) becomes the following.

Proposition 7.8. Define an asymptotic ESP confidence set of levelr as a measurable set
Su .= = zn: (6,6
oo T K gt e /

wherek, . is the highest bound satlsfylryé— ST fsu 96,9(’))d96 >1-candKy =Y o, f@ (6e, 6, ’) de..
For all « € [0, 1], under Assumptiont-3,8-10,11-12, asT — oo,

S% s SY P-as.

Proof. Adapt proof of Propositiof7.3. [

The definition of an asymptotic ESP confidence set is in line with the definition in Proposi8on

by Proposition7. 7).

7.3.2  0-1 utility functions
Point estimate

Definition 7.4 becomes the following.
Definition 7.7. A local maximum ESP point estimatér, is an ESP estimate that maximizes the ESP

expected 0-1 utility function ové®; i.e.

O = arg uax B[o, (07)

wheredy, (.) is the Dirac distribution at,.

After obvious modifications, Propositiofis4 and7.5) remain valid for local maximum ESP point

estimate. Propositior.5i) becomes the following.
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Proposition 7.9. Under Assumptions-3,8-10, a local maximum ESP point estimates converges locally

P-a.s. to its corresponding solution to the moment conditions i.e. farall1, 7]

o pd) _ p(d) :
Th_r)réo 0y =0, P-as.

Proof. Adapt proof of Propaositio7.5. [

Confidence region

Definition 7.2 and Propositiory.6) remain valid for the same reason, but Proposiffosi) be-

comes the following.

Proposition 7.10. Under Assumption$-3,8-10,11-12, for all « €]0, 1[, asT — oo,

Sr~| | {95”} P-a.s.
i=1
where| | denotes a union of disjoint sets.

Proof. Adapt proof of Propositiof7.5. [

8. ESP hypothesis testing

In classical inference theory, there is usually a duality between tests and confidence regions, in the
sense that, the set of point-hypothesis that would not be rejected corresponds to a confidence region.
We can also define ESP tests that are based on this duality. For brevity, we do not present them formally
in this section. We only present two examples of them, later, in the se&i#op in the case of over-
restricting moment conditions.

In this section, we present formally a decision-theoretic approach to derive ESP tests, which are
not based on confidence regions. A such approach is not possible in standard classical inference frame-

works.

8.1. Notations and definitions

The following definition sets the notations for tests.
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Definition 8.1 (Test) Define the subse®y € ® and® 4 C © suchtha®;N® 4 = & . Define the
measurable decision spa¢B, D) whereD := {dy,d4}, withdy andd 4 and whereD is the power
set ofD. The decisiongy andd 4 respectively correspond to acceptancénf and rejection 0@ 5.

Given a sample siZ€, a test is a€ /D-measurable functiodr(.) .

As in point estimation, the decision which maximizes the ESP expected utility is retained. Thus,

we define an ESP test as follows.

Definition 8.2 (ESP decision-theoretic testliven a utility functionu(.,.), an ESP hypothesis test is

a & /D-measurable functionjz, such that for allw € € if

Elu(dn,07)] > Elu(da, 07)]

thendr(w) = dg; and otherwiselr (w) = da4.

ESP tests solve two problems faced by classical tests. First, standard classical tests often imply
that the population parameter can be outside the parameter space with a strictly positive probability,
although the economic model is typically not defined for these parameter values. For example, in
consumption-based asset pricing, standard confidence intervals and tests for the time discount factor
consider it can take values higher than one. The support of the Gaussian distribution is the whole real
line. However, for values higher than one, the consumption-based asset pricing is typically not defined.
The value function of a dynastic representative agent explodes to infinity for time discount factor higher
than one. In contrast, like ESP confidence regions, ESP tests do not regard values outside the parameter
space as possible because the ESP intensity is not defined outside the parameter space by construction.

The second problem is about the asymptotic properties of standard classical tests. In the standard
classical theory, a test is consistent if the probability of rejection of the alternative goes to ongéwhen
© 4 as the sample size increases to infinity (e.g., p.553 in @oauk and Monfort, 1989). However,

a consistent test typically leads to asymptotically reject the hypothesis of the testybe® ; with
a probability equal to the level of the test, although asymptotically a model is perfectly known. As
shown below, such asymptotic mistake does not occur with decision-theoretic ESP tests. We introduce

the notion of double-consistency to characterize this property.
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Definition 8.3 (Double consistency)A testdr(.) is doubly-consisterit-a.s. if and only if

dy iffye Oy
lim dp = P-a.s.

T—o0 i
da iflype®y

In a test, there are two possible inference decisions (acceptance and rejection of the test hypothesis)
and two possible right propositions (the hypothesis is correct and the alternative is correct). Therefore,
in hypothesis testing, a utility function takes at most four different values. Consequently, instead of
distinguishing between continuous and 0-1 utility functions as for point estimation, we distinguish
between set and point hypothesis for purpose of clarity. However, combinations of the two are possible

as shown, later, in sectidh2.1in the case of the test of over-restricting conditions.

8.2. Set hypothesis

The following assumption sets notations for the utility function.

Assumption 13. For all (d,0) € D x ©, u : (d,0) — cqle, (0) + bile , (0) with ¢4, > ¢4, and

bdA > de.

The strict inequality conditions on the values of the utility function ensure that a right inference
decision provide a strictly higher expected utility to the econometrician strictly than the wrong ones.
The maximum ESP (or maximum expected “truth”) approach corresponeg,te= b;, = 1 and
cd, = bay = 0.

The following proposition reformulates conveniently ESP tests in the case of set hypothesis.

Proposition 8.1. Under Assumptiont-3 and 13, the ESP hypothesis test in Definiti®2is equivalent

to the testdr, such that for allv € Q if
CFT(@H) 2 FT((")A) (13)

with ¢ := zjjjlfj; , thendr(w) = dg; and otherwiselr(w) = da.

Proof. See AppendipA.15 (p.117). O
Propositior8.1is the immediate counterpart of standard result in Bayesian inference (e.g., p.218 in

Schervish, 1995). In the case of a maximum ESP approach(k¢l), the meaning is clear. We accept
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the hypothesis if the estimated intensity measure that solutions to the empirical moment conditions are
in ®g is higher than it is i 4. If there can only be one solution to the empirical moment conditions,
we accept the most probable hypothesis. Despite this appealing meaning, Pro@sititso shows
that the hypothesis with the biggest volume is favoured.
The following proposition ensures the existence and the double-consistency of an ESP set-hypothesis

test.
Proposition 8.2. Given a utility functionu(., .),
i) under Assumption$-3 and13, there exists an ESP set-hypothesis test;
i) under Assumption%-7 and13, an ESP set-hypothesis is doubly consisieats.

Proof. See AppendiA.16 (p.117). O
Proposition8.2) is immediate. PropositioB.2i) is a consequence of the convergence of the ESP
intensity measure to a Dirac distribution centered at the population parameter. Unlike in the standard

classical approach, there is no uncertainty asymptotically; and thus no mistake occurs.

8.3. Point hypothesis

In the case of point-hypothesis (i.®@y := {0y}), we derive results similar to set-hypothesis

tests. The counterpart of Assumptib8is the following assumption.
Assumption 14. For all (d,0) € D x ©, u : (d,0) — cqdp,, (0) + bale ,(8) with ¢4, > cq, and
bdA > de.

Since®y is a parameter value, the utility function is expressed in terms of Dirac distribution for
same reason as in secti@r?. A maximum ESP approach also corresponds;tp = b4, = 1 and
cd, = bay = 0.

The counterpart of Propositidhlis the following proposition.

Proposition 8.3. Under Assumptions-3 and14, the ESP hypothesis test in Definiti®i2is equivalent

to the testdy, such that for alkv € Q if

C]EG},SP(HH) > INFT(@A) (14)

with ¢ := ZZ’:I;; , thendr(w) = dg; and otherwiselr(w) = dj.
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Proof. See AppendiA.17 (p.117). O

In the case of a maximum ESP approach (tes, 1), an ESP test does not have the same straight-
forward meaning as in Propositi@l. The LHS of equation1(4) is in terms of intensity weight, while
the RHS is in terms of intensity measure. The test hypothesis is accepted when the estimated intensity
(or probability by Proposition 4.5) weight éf; being a solution to the empirical moment conditions
is higher than the intensity measure®f;. In a maximum ESP approach, PropositiB also shows
some similarity with Jeffreys’ Bayes factors (e.g., section 4.2.2 in Schervish, 1995). However, Jeffrey’s
approach requires to choose a prior o&@x given thatdy # 0.

The following proposition is the point-hypothesis counterpart of Proposgtian
Proposition 8.4. Given a utility functionu(., .),
i) under Assumption$-3 and 14, there exists an ESP point-hypothesis test;
i) under Assumption%-7 and 14, an ESP point-hypothesis is doubly-consisiat.s.

Proof. See AppendipA.18 (p.117). O

8.4. Robustness to lack of identification

Standard classical tests correspond to standard classical confidence intervals. Thus they are not
robust to the presence of multiple solutions the moment conditions. ESP tests presents some robustness
to this situation. They take into account the uncertainty due to the multiplicity of solutions.

Definitions8.1and8.2remain relevant unlike Definitio8.3.

8.4.1 Set hypothesis

Proposition8.1 and 8.2) remain valid for the same reasons, but Proposi8idii) becomes the

following.

Proposition 8.5. Given a utility functionu(., .), under Assumptiorts3,8-10and13, asT' — oo, P-a.s.

di e {0f) i e (L] andof) € ©n | > # {600 i e [1,7] andd’ € ©4}
lim dpy =

T—o0 .
d4 otherwise
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Proof. Adapt proof of PropositioB.2i) . [
In other words, if the number of solutions to the moment conditior® jnweighted bye is higher

that the one ir® 4, the hypothesis is accepted. In the case of a maximum ESP appeoach,

8.4.2 Point hypothesis

Propositions$8.3and8.4i) remain valid for the same reasons, but Proposi8@aii) becomes

Proposition 8.6. Given a utility functionu(., .), under Assumptiors3,8-10and13, asT" — oo, P-a.s.

lim dpy = di 110 € {eéi)}jzl

T— o0 .
d4 otherwise

Proof. Adapt proof of Propositio.4ii) . [
According to PropositioB.6, if the hypothesis corresponds to a solution to the moment conditions,
the hypothesis is accepted. Thus, the solution to the moment conditions which corresponds to the

point-hypothesis is favoured.

9. Over-restricting moment conditions

In previous sections, we assume that the number of moment conditions equals the dimension of
the parameter space (just-restricting moment conditions). See Assurbf@jan p21. In this section,
we consider the case in which the number of moment conditions is strictly greater than the dimension
of the parameter space (over-restricting moment conditions). Then, thanks to the additional moment
conditions, we propose tests of goodness-of-fit or, more precisely, tests of over-restricting moment
conditions.

For at least three reasons, the case with over-restricting moment conditions is an important case
to deal with. First, an economic model often implies a number of moment conditions greater than the
dimension of the parameter space (e.g., Carrasco and Florens, 2000). In rational expectation models,
one can derive as many moment conditions as he wants from the orthogonality between the error of
prediction concerning the next period and the present information. For example, in the general asset
pricing framework of sectio.1, under the assumption th&t{[1 — M;;1(60)R;j:11]*} < oo, if we

denoteY; an element of the information set at date¢he asset pricing equatiod)(on pl1 implies
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E{[1 — M;11(60)R;s41]h(Yz)} = 0 for all functionsh(.) measurable such that [h(Y;)?] < oc.

Second, the more moment conditions, the more information from economic theory is incorporated
into inference so that its results are typically sharper. In inference, information comes either from the
structure imposed by the econometric model or from data. Third, over-restricting moment conditions
allow the derivation of tests of goodness-of-fit, which aim at assessing the agreement between an whole
econometric model and data. Tests previously presented in sé&ction at assessing the agreement
between a restriction on the parameter space and data.

In standard classical theory, tests of goodness-of-fit, such as the so-called test of over-identifying
restrictions (Hansen, 1982), are widely developed and used. In contrast, testing goodness-of-fit is
theoretically delicate in Bayesian inference (e.g., Robert, 1994, p.374), although successful practice
of Bayesian inference often resorts to indirect measures of goodness-of-fit (e.g., Rubin, 1984; Gelman
and Shalizi, 2011). As explained in sectiér, takenliterally, Bayesian theory regards inference as a
game between nature and an econometrician, in which the prior over the parameterrggacend
the probability distribution of data conditional on population parameier,  x,.e,(-|.), are common
knowledge. In other words, Bayesian theory considers that the econometrician knows the true prior and
the true conditional p.d.f. according to which data are generated. Therefore, from a literal Bayesian
perspective, the econometric model fits the data by construction so that an econometrician can only
learn about parameter values. This is one of the consequences of the fundamental differences between

Bayesian and ESP inference.

9.1. From over-restricting to just-restricting moment conditions

On the one hand, identification requires that the number of moment conditions is greater than, or
equal to, the dimension of the parameter space. On the other hand, as explained in the justification
of Assumptionl(c) on p21, if the number of moment conditions is greater than the dimension of the
parameter space, there is generically no solution to empirical moment conditions, so that the intensity
distribution is zero. Therefore, the idea of this section is to reduce the over-restricted case to the
just-restricted case of the previous sections by increasing the dimension of the parameter space. We
simultaneously undertake two tasks to implement this idea. We adapt the setup of skédtidrisand
5.1to the case with over-restricting moment conditions, and we show that this modified setup satisfies

the assumptions of sectiodsl, 4.2 and5.1so that their results still hold. For clarity, the structure of
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this section is similar to the one of sectiohg, 4.2and5.1

9.1.1 ESP estimand

In the setup with over-restricting moment conditions, Assumpti@) remains unchanged, while

Assumptionsl(b)(c) and (d) become Assumptid®(b*)(c*) and (d*).

Assumption 15. (b*)Let the measurable spa¢@, B(®)) such that® C R? is compact and3(P)
denotes the Boret-algebra on® (c*) The moment function: R? x ® — R™ isE R B(®)/B(R™)-
measurable, wheré ® B(®) denotes the produet-algebra andg < m ; (d*) For the sample size

at handT, there existy() : R? x & — R?andg® : R? x & — R™ 7 such thatg(.) =:
(¢M() ¢@()) and the expectation of the number of solutions to the empirical moment conditions
based ory(!)(.), is finite, i.e.y 2, np, T < oo Wherep,, r is the probability of having: solutions to

the empirical moment conditionge*) sup, 4)exxa 9@ (z, ¢)|| < oo whereX denotes the support

of the distribution of the dataX .

Assumptionl5(e*) is the only completely new assumption. It guarantees the parameter space to
remain compact, while we expand it to obtain just-restricting moment conditions. From a mathematical
point of view, AssumptiorLl5(e*) is strong, but it is innocuous in practice because a computer can only
handle bounded quantities.

Thanks to the notations introduced in Assumptidi we transform the over-restricting moment
function,g : RP x & — R'™, into the just-restricting moment functiogh, : R? x @ — R™ with
® := & x =, such that

W(x,
w0 | 00 (15)

92 (X,¢) — ¢
wheref := (¢ ¢'). Our transformation is the same as the one used by Newey and McFadden
(p.2232, 1994) for a different purpose. Other transformations of over-restricting moment conditions
into just-restricting systems have been introduced to the GMM and saddlepoint literature. Newey and
McFadden (1994), Imbens (1997), and Ronchetti and Trojani (2003) use a transformation based on an
extended FOC of the GMM objective function. Following Sowell (1996), Sowell (2007, 2009) pro-
poses a transformation based on an orthonormalized extended FOC of the second-step GMM objective

function. Czellar and Ronchetti (2010) and Holcblat (2009) use Sowell’s transformation respectively to
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apply saddlepoint approximation to indirect inference tests and to apply bootstrap to GMM. The three
main differences between these transformations and ours are the following. First, our transformation
requires the econometrician to split the moment conditions into two groups, while the other transfor-
mations automatically selegtdimensions of the empirical moment conditions through the derivatives

of the latter ones. Second, the asymptotic variance of the square root of the sample size multiplied
by the difference between a solution to the empirical moment conditions and the population parameter
will be greater with our transformation than with the alternatives. This asymptotic advantage of the
alternative transformation has been shown to be often a disadvantage in finite sample. One of the main
conclusions of the July 1996 issue of the Journal of Business and Economic Statistics is that the iden-
tity weighting matrix generally outperforms the optimal weighting matrix for GMM in finite samples.
Third, our transformation captures the solutions to empirical moment conditions that correspond to
gM(.,.), while the existing transformations capture all the local extrema of the GMM objective func-
tion so that, in the presence of non-linear moment conditions, indicator functions should be added to
discard local maxima (e.g., Sowell, 2007). However, the inclusion of indicator functions breaks the
regularity properties of the moment function that we require to define the ESP approxirftatione-

over, it does not also discard local minima that do not converge to a global minimum so that conditions
for identification are difficult to characterize.

Our transformationi5) combined with Assumptio5 yield Assumptionl to hold.

Proposition 9.1. Under Assumptiod modified according to Assumptid®, Assumptiorl is satisfied
for the just-restricting moment function defined in equatid).( In particular, there exists a convex
compact setZ, that includes{ g (z, ¢) : (z,¢) € X x ®} sothatfor allt € N, ¢ € ®, andw € Q,

we can finc € int(E) such thatk 3°7 ; ¢ (X¢(w), ®) — € = 0(m_g)x1-

Proof. See AppendipA.19 (p. 117). O

Proposition9.1 mainly means that all the results of secti:i hold for over-restricting moment
conditions after transformatiori®). In particular, the ESP estimand is well-defined. Without loss of
generality, we require a large enough compacEséir mathematical convenience.

Hereafter, for simplicity,we drop reference to transformatid).( The context indicates whether
we refer to an original just-restricting moment functipq, .), or to a just-restricting moment function

Y(.,.) built from an over-restricting moment functiog., .), according to transformatiori ).

33A solution to maintain regularity properties would be to introduce mollifiers, but it would create theoretical and practical
complications.
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9.1.2 ESP estimator

To have the results of sectigh2 to hold, we modify its assumption as follow. Assumpti®n

becomes

Assumption 16. There exists > 0 such that for allz € X, 8 — g(z, ¢) is continuously differentiable

in{p e RY: [|¢p — @ <e}.
Assumption3 becomes the following.

Assumption 17. Define the sets

ST g (@)emr@'a’6) = 0,4

b = {pe®:Irp(p) € RIst. [% 1 89%2@/} . #0
et
[+ 2 a@)alo)]| 40
3 T P Q)¢ 4yr T
&y = {¢ €d: %Z gta—f’)] =0and %th(@gt(@'l = }
t=1 det t=1 det

For the sample at hand, for alj > 0 small enough, the seég,T and <I>g_’% do not have any common

elements, i.edr N &7 = ().

The second and third restriction gne ® in the definition of®; corresponds to the restriction
|X7(0)|4e; # 0 in the definition of®r in Proposition4.3 on p25. Similarly, the two restrictions on
¢ € & in the definition of&+ correspond to the restrictigiz(6)|,., = 0 in the definition of@1 in
Assumption3 on p26.

Under the above adapted assumptions we obtain the following.

Proposition 9.2. Let = be the compact set introduced in Propositi@i. Define the seEp ¢ R™ 4

such that

[

Sy g (@)er o ; o0 ()"
= — : P m t. - gt(¢) _ ‘
T { 23:1 eT/gt(¢) (¢7 7—) S T X R™ st ; gt (d))e 0q><1

Under Assumption$-3 modified according to AssumptiohS§-17,
i) there existss > 0 such that for allx € RP, § — (x,6) is continuously differentiable in

{6 e R™ :inf(6,0) < e};
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I) =7 C _and<i>T X ET = O,

II) i)T X 8= C':')T.
Then, under the latter assumptions, AssumptiBsold

Proof. See AppendipA.20 (p.118). O
Proposition9.2 means that all the results of sectidr® hold for over-restricting moment condi-
tions after transformatiornlf). In particular, the ESP estimator is well-defined. Now, we turn to its

asymptotic behaviour

9.1.3 Asymptotic behavior
Assumptiord(b)-(e) becomes the following
2] <

Assumption 18. (b*)In the parameter spac®, there exists a unique solutiefy € int (®) to the mo-
ment condltlonﬁ[ )(X, ¢)] = 0gx1; (¢*) E [supyes |9(X, @)|l] < co; (d*) E [sup¢e.1, H

g X¢>] ) 0
det ?é '
Assumptionl8 means that in terms of identification the assumption is the same as the one to apply
In terms of boundedness, the assumption is the

5

the ESP approach to the firgtmoment conditions

oo ; (e*) |E

N

same as the one for a just-restricting moment function

Assumptions becomes the following
Jr>0,Vr € B.(7), E [eT’g(X¢)] < o0

Assumption 19. Define the set

(

det

HE{W X,¢) 99 (,¢>) ’<OO
8¢ (X4) £0

£0

‘E |:eTg(X,¢)89( ( a¢)
B [e"aX 09X, 0)g(X, 0Y]|
B [g0)(X, )9V 0] = 0,04

(¢, ) € P x R™ s.tE |:g(1)(X ¢) T'9(X.8) | — Oux1
T1 BF(¢O) C 'i’T,

7

b, = {pcd:IrcR™st
\
A E [g®)(X, g)er'sX0)]
Seo = E [e79X0)]

(X, ¢0)]. Define a fixed) €]0,7[ ; (b*) For all ¢ € @, for

(a*) There existg > 0 such that there exist§ € N, so that for allT

Er where¢ := E |
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7€ R™andé € R™ ¥s.t.£ =K |¢g? (X, é)e*'g(X"i’)} /E [e*'g(Xv‘f")} andE [g(l)(X, dS)e*'g(Xv‘i;)} =

04x1, there exists, 7, > 0 so that for allT € B, (7), E [SuP¢€BT2(¢B) (X, (b)ef’g(x,aﬁ)ﬂ < 0.
Assumption6(a)(b) becomes the following.

Assumption 20. (a*)For all x € RP, the functiony — ¢g(X,¢) is four times continuously dif-
ferentiable in a neighborhood afy P-a.s. ; (b*) For all £ € [1,2], there exists > 0, such that
E [Sup¢€BT(¢O) | D*g(X, gb)H] < oo where D* denotes the differential operator w.r4 of orderk ;

(e*) There existg > 0 such thatHIE [SqubeBr(qso) 9(X, 9)g9(X, qb)’] < 00.

Assumption7 becomes the following.

Assumption 21. Letn > 0 be defined as in Assumptid®(a*). (b*) For all ¢ € &5, for + € R™
andé € R™ st =E [gm (X, ¢>e+'g<X«i>>] JE [eT"g(m] andE [gm(X, ¢>e+'g<xﬂ<i>>] = Og1,

there existry, 7 > 0 so thatE [sup( T’g(X,qb)} < 00.

7,$)EBy, (7) X Bry () ©

Under the modified assumptions, the original assumptions still hold.

Proposition 9.3. Under Assumption$-7 modified according to Assumptiof§-21, Assumptions-7
hold.

Proof. See AppendiA.21 (p. 119. O
Proposition9.3 means that consistency and asymptotic normality of the ESP intensity (i.e., Theo-
rems5.1and5.2) hold for over-restricting moment conditions after extension of the parameter space.

Robustness to lack of identification can also be derived along the lines of se@ion

9.2. Tests of over-restricting moment conditions

In this section, we presents test of over-restricting moment conditions. The idea is to reduce
tests of over-restricting moment conditions to tests of a restriction on the parameter space, which are
introduced in sectioB. More precisely, the idea is to define a test of over-restricting moment conditions
as a test of the hypothesis = 0(,,_4)x1, Wheregy := E [¢) (X, ¢)]. First, we implement the idea
in the case of decision-theoretic tests . Second, we implement the idea in the case of confidence-region
based tests. In this section, we follow the notations and definitions of s&cfion

We want to define tests of over-restricting moment conditions as tests of the hypdihesis

O(m—q)x1- BUt, if the moment conditions are not consistent with data, the auxiliary parameter Epace,
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which is defined in Propositiod. 1, may not contaif,,,_4) .1 S0 that the hypothesis is not well-defined.

Thus the following assumption is needed.
Assumption 22. There exists > 0 such tha3,.(0(,,—¢)x1) C E.

Assumption22 does not entail any loss of generality because we can always eaadhat the

assumption is satisfied.

9.2.1 Decision-theoretic tests

In this section, we derive tests of over-restricting moment conditions following the ESP testing
decision-theoretic framework of secti8nThe test of over-restricting moment conditions corresponds
t0Og = @ X {0(n_g)x1} aNdO4 = & x {&\ {0(n_g)x1} }- Thus, a utility functions for a test of

over-restricting moment conditions has the following form.

Assumption 23. For all (d,€) € D x E, u : (d,6) [cda{o(m)xl}(g) +bd15A(g)] 1s($) with

Cdy > Cdyrba, > bay, andE,4 := {E\ {O(qu)xl}}'

Assumption23 is the adaptation of Assumptidi# to tests of over-restricting moment conditions.
In Assumption23, a utility function does not depend @nbecause the test hypothesis put a constraint
only oné.

Under Assumptior23, the following proposition reformulates conveniently decision-theoretic ESP

tests of over-restricting moment conditions.

Proposition 9.4(Decision-theoretic ESP test of over-restricting moment conditidhemotef%sp(g) =
fq, ‘]Zg%ﬁp(e)dgf). Under Assumption&-3 modified according to Assumptiot§-17 and Assumptions
22-23, the ESP hypothesis test in Definiti8r2 is equivalent to the test

Cfé},sp(olx(m—q)) = / .f()*T,sp(e)dQ (16)

PxXE,

with ¢ := %;”:—ﬁﬁ thendr(w) = dg; and otherwiselr(w) = dy.

Proof. See AppendiA.22 (p.122).0

The meaning of Propositidh4is similar to the one of Propositio®s3in section8. The maximum-

ESP approach correspondscte- 1.
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The following proposition ensures the existence and the double-consistency of decision-theoretic

ESP test of over-restricting moment conditions.
Proposition 9.5. Given a utility functioru(., .),

i) under Assumption$-3 modified according to Assumptiofh§-17 and Assumptiong2-23, there

exists a decision-theoretic ESP test of over-restricting moment conditions;

i) under Assumptiond-7 modified according to Assumptiod$-21 and Assumption22-23, a

decision-theoretic ESP test of over-restricting moment conditions is doubly-con$isdaent

Proof. See AppendiA.23 (p.122). [
Propositior9.5is the counterpart of Propositiéh4 for the marginal ESP intensity @f, fg%sp(.).
Following the arguments of Propositi8r6, robustness of decision-theoretic ESP tests of over-restricting

moment conditions to lack of identification can be established.

9.2.2 Confidence-region based tests

For ESP decision-theoretic tests, each hypothesis requires a specific utility function, which is
different from the one used for point estimation. In contrast, ESP confidence-region based tests relies
on a unique utility function that correspond to the one used for point estimation. In a ESP confidence-
region based test, a point-hypothesis is rejected, if it is far from being the econometrician optimal
point estimate. More precisely, in a ESP confidence-region based tests, a point-hypothesis is rejected,
if it is outside the corresponding confidence region. In the case of tests of over-restricting moment
conditions, which is presented in this section, the hypottggsis 0(,,_)x1 IS rejected, if the marginal
ESP confidence region gf. does not contaif,;, _1yx1-

In basic standard classical inference, the point-hypotheses outside a confidence region are also the
ones rejected. However, standard classical tests are fundamentally different from ESP confidence-
region based tests. First, unlike with ESP, the relation between tests and confidence regions is es-
sentially a mathematical coincidence in standard classical inference. The rationale behind standard
classical confidence region and tests are different. An ideal standard classical confidence region is a
random set that has approximatively a probability « to contain the population parameter before
collection of the sample, while the hypothesis of a standard classical test is accepted if its fixed region

of acceptance contains the corresponding random statistic. Second, in standard classical inference,
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tests rely on probabilistic statements that hold only before collection of the sample, while ESP tests
rely on probabilistic statements that hold before and after collection of a sample. In particular, unlike
in standard classical inference, multiple hypothesis testing on the same date set does not undermine the
theoretical validity of ESP tests.

For clarity, the structure of this section is similar to the one of sedtjavhich considers separately

continuous utility functions and 0-1 utility function.

Continuous utility functions

By definition confidence-region based tests of over-restricting moment conditions rely on con-
fidence regions, which in turn rely the utility function used used for point estimation. If the utility
function is continuous with respect to both the parameter of intergsand the auxiliary parameter,

&, then the ESP confidence region for test of over-restricting moment conditions is the marginal of the
confidence region in Definitiod.2 on p42. However, the choice of a continuous utility function for

the inference precision & can be delicateé measures the goodness-of-fit of the model, but it does
not come from the economic model under study. Thus, we focus on a utility function that is continuous
w.r.t the parameter of interest, and 0-1 w.r.t. the auxiliary parametgrin other words, we consider

in this section the composite utility functian. (0, 0) := u(¢e, ¢)d¢. (&) for all (6.,0) € ©2. Based

on this utility function, we define the following marginal confidence region.

Definition 9.1 (ESP confidence-region for test of over-restricting moment conditidBB)en a utility
functionu(., .), define an ESP confidence region of leivel « for over-restricting moment conditions

with o € [0, 1] as aB(®)-measurable set

S(;“,Cf = {ge €&: Kuc f sp(ge) > ka,T,f}

wherek,, 7¢ is the highest bound satisfyiRg fS;fC& feg sp(8e)dée = 1—an, Kty 1= = fes sp(€e)dée,
T B ’ ) = 5
and fg () = [z u(de, 0) oy sp(9, ) ddde.

f“T &p(-) corresponds to the the utility-weighted marginal ESP intensit;ofDefinition of ESP
confidence regions for over-restricting moment conditions is in line with Definitidand Definition

7.50f ESP confidence regions for continuous and 0-1 utility functions beg@yisép., ¢)de, (g)fg%sp(e)de =
fq> ¢ea fGT,SP(QS ‘fe) d)
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Proposition 9.6. For all « €]0, 1],

i) under Assumption&-3 modified according to Assumptiods-17, and Assumption$l- 12,22,

there exists an ESP confidence region for over-restricting moment condiﬁp@s,

i) under Assumption&-7 modified according to Assumptiofs-21, and Assumption$l1- 12,22,

asT — oo,
Spee ~ {&} P-as.

Proof. See AppendiA.24 (p.122). O

Propositior9.6is the counterpart of Propositiah6.

Definition 9.2 (Confidence-region based test of over-restricting moment conditidhsjer Assump-
tions1-3 modified according to AssumptiohS-17 and Assumption$1- 12, a confidence-region based

ESP test of over-restricting moment conditions is thedest) such that for alkw € €2 if

O(m—g)x1 € g;“,cg

thendr(w) = dgy, and otherwiselr (w) = d4.

Definition means that, given a utility function, that a model is rejected at leydlthe marginal
ESP confidence region gfof level o does not contaif,,,_1).;. In other words, there is rejection,
if considering that the over-restricting moment conditions are satisfied is far from being an optimal

answer to the uncertainty summarized by the ESP intensity.

0-1 utility functions

Confidence-based ESP tests of over-restricting moment conditions are simpler when the utility
function for the parameter of interest is a 0-1 utility function. The counterpart of Defirfitibis the

following.

Definition 9.3 (Maximum ESP confidence region for test of over-restricting moment conditigns)

maximum ESP confidence region of level a with o € [0, 1] is a B(®)-measurable set

- _ 1 -
ST,g = {fe €= K_Mfg}’SP(é.e) > ka,T}
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wherek,, 7 is the highest bound satisfyin;g;? fST,g f};’sp(g)dg >1—o, Kre = [ fg,},sp(g)df,
andf{},sp(ge) = f@ f@},sp(qbvge)d(b-

The counterpart of Propositidh6is the following.
Proposition 9.7. For all « €]0, 1],

i) under Assumption&-3 modified according to Assumptio@s-17, and Assumptionl- 12,22,

there exists an ESP confidence region for over-restricting moment condiﬁg@s,

ii) under Assumption&-7 modified according to Assumptiohs-21, and Assumptiongl- 12,22,

asT — oo,
Ste~{&} P-as.

Proof. See AppendiA.25 (p.123). O

The counterpart of Definitiof.2 for 0-1 utility function is the following.

Definition 9.4 (Maximum ESP confidence-region based test of over-restricting moment conditions)
Under Assumptiont-3 modified according to Assumptiobs-17 and Assumptionl- 12, a confidence-
region based ESP test of over-restricting moment conditions is thétéstsuch that for allw € Q

if
Om—q)x1 € ST

thendr(w) = dg, and otherwiselr (w) = d 4.

Definition 9.4 means that there is rejection if the ESP probability weight that over-restricting mo-

ment conditions are satisfied is low.

10. Simulation and inference of a consumption-based asset pricing model

In this section, we illustrate the benefits provided by the ESP approach with respect to existing
inference approaches in the case of a stylized consumption-based asset pricing model.
As explained in sectiof, the classical inference theory used in consumption-based asset pricing

is logically irrelevant in practice. Asymptotic classical inference theory is about situations in which
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the sample size can be infinitely increased, although practice relies on bounded sénslesESP
approach is alstogically irrelevant in practice. An approximation of the distribution of the solutions to
the empirical moment conditionslisgically irrelevant for an actual solution to the moment conditions,
the population parameter.

However, asymptotic classical inference theory has been proved helpful in many practical situa-
tions. The previous sections suggest that we can expect the same from the ESP approach. Consequently,
the appropriate question is to determine whether the ESP appropdicitcally more relevant than
the classical inference theory. The simulations in this section suggest that it is the case, although the

comparison is based on the criteria of standard classical inference theory.

10.1. Model

We consider a standard consumption-based asset pricing model. An infinitely-lived agent represents

the economy. He is endowed with CRRA preferences. Thus, he maximizes

Cl 7}
max E [Z gt (17)

whereg €]0, 1] denotes in this section his time discount facfas his RRA and’; is his consumption
in periodt. At each period, the representative agent can consume and invedtifferent assets

according to his wealth. More precisely, he faces the following budget constraint

n

Ci + Z P Qjt < Z it + D) Qjt—1 (18)

j=1 j=1

where Q;; is the quantity of asset held at the end of datg and P;; and D;; are, respectively,
the price and dividend of assgiat datet. Under the usual technical conditions (e.g., Radner, 1972;
Lucas, 1978), the solution to the maximization program of the representative age(ii) satisfies

the following Euler equations

V] S [[I,TL]], Et C
t

—0
5 (Ct+1> Rip1 — 1] =0 (19)

34van der Vaart (p. 3, 1998) makes a similar remark. He writes “In fact, strictly speaking, most asymptotic results that are
currently available are logically useless. This is because most asymptotic results are limit results, rather than approximations
consisting of an approximating formula plus an accurate error bound.”
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whereR; ;11 := 5}%1 is the gross return of assg¢tetween date andt + 1. Euler equations1(9)
J»

mean that the expected gross return of every asset discounted for time and risk&quiais relation

-0
corresponds to the moment conditiod} (p. 11) with M;,1(6) = 8 <Cg ) . This model has been
used extensively in the empirical consumption-based asset pricing literature since the seminal paper by

Hansen and Singleton (1982).

10.2. Specifications

We want to simulate simple specifications of the mod&){18) so that the moment conditions

(19) can be solved in closed-form. This is hecessary in order to know whether the model is identified.
We also want our moment conditions to correspond to moment conditions already used in the literature
to assess inference approaches. The resulting specifications, albeit not necessarily realistic, allow a
transparent illustration of the abilities of the ESP approach.

We assume the logarithm of gross growth consumption to be independent and identically distributed
(i.i.d.) according to a centered Gaussian distribution with variarfgé.e., In (Cto—f) — N(0,02).
We assume the gross return of only one asset (asset 1) to be observed. We assume the logarithm of
the gross return of the asset to be i.i.d. according to a centered Gaussian distribution with variance
902, i.e.,In(Ry 1) — N(0,90%). Gross growth consumption and the gross return of the asset are
independent. We sef® = .2. We also set the RRA and time discount factor of the representative agent,
respectively, t@ ande*@, i.e.,6p =3 andg = e*% ~ .83.

We assume the econometrician knows the value of the time discount factor. The econometrician

wants to estimate the RRA of the representative agent. We distinguish two cases, a case with lack of

identification, and a well-identified case.

Well-identified case

We assume that the econometrician only observes the logarithm of gross growth consumption
with a noise equal to the logarithm of the gross return of the asset divid8d We also assume that

the econometrician uses, as an instrument, a variable equal to the noise. In other words, although the
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econometrician thinks his moment condition18)with j = 1, his actual moment condition is

— —6
C
E ﬂo( (121) Riy1—1|Y, =0

wherelog (th—:l) := log (Cé—:l) + %log (R¢y1) andy; := [%log (Rtﬂ)}. Despite the noise, the
population parameter (i.e., the RRA of the representative agent) is the only solution to the moment
condition3® This moment condition has also been used extensively in the econometric literature (e.g.,

Hall and Horowitz, 1996; Gregory, Lamarche and Smith, 2002).

Case with lack of identification

We keep the same specification as in the case with identification, except there is no instrument. In
other words, although the econometrician thinks his moment conditidi®jsafth j = 1, his actual

moment condition is

-6
E | Bo (CHl) Riy1 -1 =0 (20)

with log (Cé—tl> := log (%—:1) +§ log (R1++1). The population parameter is a solution to the moment
condition Q0); however, there is another solutieh= 0.36 The existence of two solutions to the
moment conditions is necessary to produce a GMM objective function with multiple local minima in
a simple model. The moment conditioR0f has been used extensively in the econometric literature

(e.g., Hall and Horowitz, 1996; Gregory, Lamarche and Smith, 2002).

10.3. Simulations results

In each case, we draw, 000 samples. For each sample, we apply standard GMM (see Hansen,
1982), standard continuously updated GMM (see Hansen, Heaton and Yaron, 1996), which we denote
CU, continuously updated GMM for lack of identification (see Stock and Wright, 2000), which we
denote LCU (low continuously updated), and ESP. The regularization of the ESP intengity=for

3 This can be shown thanks to Laplace transforms of Gaussian distributions.

%6See footnot@6 on p. 69.
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Orn (é);”)c does not appear necessary (see Defindigron p. 26). We use the same fixed grid for
each approach with incremerftl. The bounds of the grid are determined such that ESP intensity is

negligeable beyond.

Well-identified case

The grid goes from -15 to 20. We report the average of the #iasf, and the average of

the square erroff — 6)2. We also consider confidence intervals of level 10% and 5%. We report
their average length and the proportion of those that do not contain the population parameter. These
are standard criteria of assessment of classical inference approaches (e.g., Hall and Horowitz, 1996;
Gregory, Lamarche and Smith, 2002). For LCU, we can only report a lower bound of the average
length because, by construction, the maximum length is the distance between the two bounds of the
grid.

The results are reported in Talde The different approaches perform similarly, except for LCU.
The average length of LCU is significantly larger than that of any other approaches for a comparable
empirical level. As documented in the literature (e.g., Hansen, Heaton and Yaron, 1996), CU objective

functions tend to be flat and low in the tail. The LCU confidence intervals are

{9 €EO: TQTch(Q) < Ca}

wherec,, is thea quantile of a chi-square of degré@ndQr cv (.) is the continuously updated GMM
-1

objective function, i.e.Qr.cu(0) = [% ST wt(e)]'[% ST wt(e)wt(o)'] [% ST (0)

Therefore, the LCU confidence intervals are usually huge.

a=10 a=5b

T Method Bias MSE Level Length LevellLength

50 GMM 0.089  0.303 122 1618 7.5 1.928
cu 0.111  0.620 122 1711 75 2.039
LCU - - 920 16,562 4.2 22.123
ESP -0.060 0.189 11.7 1.603 6.2  2.008

100 GMM 0.038 0.127 104 1.095 6.2 1.30%
cu 0.046  0.701 105 1212 6.3 1.444
LCU - - 9.3 11928 34  17.064
ESP -0.042  0.097 10.% 1.100 5.2 1.348

Table 1: Monte Carlo evaluation in the well-identified case. The symbaihlights the best perform-
ing method. Lengths in italics are lower bounds. Levels are in percentage.
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Case with lack of identification

a=10 a=5

T Method Level Length Level Length

50 GMM 511 141309 48.1 168.380
Cu 52.7 29.391 49.7 35.022
LCU 11.5 20.026 5.9 27.183
ESP 9.2 4932 52 50993

100 GMM  53.25 17.686 51.25 21.074
Cu 52.95 9.453 51.15 11.263
LCU 925 11.993 5.65 17.009
ESP 8.4 3.567 4.85 4.292

Table 2: Monte Carlo evaluation in the case with lack of identification. The syinhahlights the
best performing method. Lengths in italics are lower bounds. Levels are in percentage.

The grid goes from -17 to 22. Given the presence of two solutions to the moment conditions,
we do not report performance criteria for point estimates. We report confidence intervals é%evel
and10%.

The large average lengths reported for GMM confidence intervals are due to infrequent draws with
large estimated variance. The estimated variance is large when the objective function is locally almost
flat. This phenomenon also occurs with CU confidence intervals to a lesser extent. Even if we ignore
these problems, standard GMM and CU confidence intervals perform poorly. They do not contain
the population RRA with a much higher probability than the nominal level. In contrast, the empirical
levels of LCU and ESP confidence intervals remain close to the nominal levels. However, as in the
well-identified case, the ESP confidence intervals clearly outperform the LCU confidence intervals in

terms of length.

11. Conclusion

Several areas such as empirical consumption-based asset pricing have been a challenge to stan-
dard moment-based inference approaches. This dissertation proposes the ESP approach to tackle this
challenge.

The starting point of the ESP framework is the acknowledgement that inference practice relies on
samples with bounded size. More precisely, the starting point is the acknowledgement that moment-
based inference is based on the use of a finite-sample counterpart of the population parameter as a proxy

for the latter one. Then, the idea of the ESP approach is to approximate the distribution of the finite
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sample counterpart of the population parameter thanks to the saddlepoint technique. The result of this
approximation, the ESP intensity, summarizes in probabilistic terms the estimated uncertainty about the
population parameter due to the finiteness of the sample. Thus, an econometrician can choose a utility
function (or, equivalently, a loss function) according to the inference purpose, and make inference
decisions that maximize the ESP expected utility.

The ESP approach combines strengths of the Bayesian and standard classical approaches. The ESP
framework is the result of a search for stronger finite-sample foundations for inference. Nevertheless,
we prove that the ESP framework enjoys good asymptotic properties. In addition, we prove the inher-
ent robustness of the ESP approach to lack of identification. We also explain why the ESP approach
provides a unigue answer to multiple theoretical concerns, such as asymptotic testing error, and practi-
cal concerns, such as confidence region outside the domain of definition of a model, that are faced by
standard classical inference. Simulations confirm the practical relevance of the theoretical properties
of the ESP approach. All this contributes to the literature in several directions.

Nevertheless, more can be achieved. From an empirical point of view, it would be interesting to
apply the ESP approach to real data in consumption-based asset pricing and other areas. There is a
work in progress in which consumption-based asset pricing models are estimated. From a theoretical
point of view, the flexibility of the ESP framework opens several possibilities. In particular, the author
has a work in progress in which he shows how to introduce exogenous information and robustness
considerations into inference with a view to portfolio choice. The ESP framework and the ideas behind

it seem to be promising avenues for further research.
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A. Supplementary results and proofs
A.1l. Proof of Proposition4.1

Denotev(.) the counting measur& ;. := {X;};_, and¥r (X, (w),0) := £ 37| (X (w), 0).

By a standard result about random measures (e.g. Proposition 9.1.VIll in Daley and Vere-Jones, 2008)
it is sufficient to prove that there exists a function— Np(w,.) such that for any givenl € B(®),
w +— Np(w, A) is £/B(N)-measurable andr(w,A) = v{f € A: ¥ (Xr(w),0) =0} P-a.s. Fix
A€ B(®).

By the LemmaA.1 below, if a setP € B(RPT)®B(0) , thenzy — v(Py,,NA)is B (RP)T) /B(N)-
measurableP,, := {f € © : (zy,0) € P} andN := N U {oo}. Then, puttingP := 1 ({0}) we
havew — v ({0 € A : Up(X (w),0) = 0}) £/B(N)-measurable, since the composition of measur-
able functions is a measurable function. Now Assumplfi@) implies that the number of solutions
to the empirical moment conditions is finifta.e. and Assumptiofi(a) presents thatf2, £, P) is

complete. Thus, there exist£dB3(N)-measurable functiow — Nr(w, A) such that

N, A) = v({feA:Up(Xp(w),0) =0}) ifweQ\E

0 ifwek

whereE = {weQ:v({fc A:Vp(Xy(w),0) =0}) =00} andP{E} = 0 (e.g. Kallenberg,
2002, Lemma 1.25).

Lemma A.1. Forall A € B(®),VP € B(R") ® B(®) , z1 — v(P,,. N A)is B((RP)T) /B(N)-

measurable.

Proof . Let A € B(®). Define

h(.) is bounded
Ha = qh(): h(.) is B(R*T) @ B(®)/B(R)-measurable
zp - [, h(zr,0)v(do) is B(RPT)/B(R)-measurabl

Obviously,H 4 is aR-vector space, and it contains the constant functiodoreover,{h,(.)},>1 is a
sequence of non-negative functionstity such thath,(.) 1 h(.) whereh(.) is a bounded function on
RPT x ©, thenh(.) € H 4 by the preservation of measurability under limit and the Lebesgue monotone

convergence Theorem. In additidi 4 contains the indicator function of every set in thaystem con-
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sisting of measurable rectanglés,= {R : R := Rg,r x Re With Rg,r € B(R?T) A Rg € B(©)}

(an intersection of two measurable rectangles is a measurable rectangle) ; because

g (ETv 9) = lRRpT (ET)IRO (9)
/lR(gT,H)V(dH) = IRRPT@T)/IR@(H)I/(dH)
A A

V(Rep) = lRg,r(z7)v(Re NA)

and because(Z) = B(R*T) ® B(®) (e.g., paragraph 11.11 in Rogers and Williams, 2000) . Conse-
quently, by the monotone class Theorem 3.1 from Rogers and Williams (200®),3(R*1) @ B(0©),
1p(.) € Ha, which in turn implies that ;- — v(P,,. N A) is B ((RF)") /B(N)-measurablel]

A.2. LemmaA.2

Lemma A.2. Under Assumptions 1,
i) there exists a dissecting systemg@®f, 3(®)) ;

i) if 7 := {Ta},>, a dissecting system @, then, for any bounded Borel set§ 7(A) :=
{7;1(14)}@1 with 7,(A) :={A,;,NA:i=1,...,k,and A, ; € T,} is a dissecting system;

i) Fr(.)isP-a.s. afinite measure of®, B(®)) that does not depend on the dissecting system.

Proof. i) Take partitions consisting of hypercubes whose corners or faces have been removed when
necessary to make intersections empty.

ii) Itis definition-chasing.

iii) It is a consequence of Assumptidfd) and Khinchin’s existence Theorem (e.g. Proposition
9.3.1X in Daley and Vere-Jones, 2008). For completeness, we provide a proof adapted to our frame-
work.

By Definition 8.3 of an intensity measure,

Fr(4) = Tm > P(Nr(Ae) =1} =lim > E|lny(a,-n
i:An i €Tn(A) i:An i €Tn(A)
= Bl Y L= |-
i: Ay i €Tn(A)
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where the last equality comes from Fubini-Tonelli theorem. Now, foAahd B in 5(®),

LNy au)=1y < Y wvp(ay=13 + Ynp(m)=13- (21)

Thus, apply Lebesgue monotone convergence theorem to deduce

IFT(A) = E nh_{gO Z I{NT(An,i):l} :E[NT(A)]v (22)

1:Ap i €Tn(A)

where the last equality comes from LemmAza below. Obviously,Fr(.) does not depend on the
dissecting system chosen. Sin¥e(.) is a measurefi;-(0) = E0 = 0. Moreover, by ther-additivity
of Np(.), and Fubini-Tonelli theoren¥(.) is o-additive. ThusFr(.) is a measure. By Assumption

1(d), Fr(.) is also finitePa.s

Lemma A.3. Under Assumptions A € B(®), limno0 D ;4,7 (4) YiNr(a,.)=13 = Nr(4)

P-a.s.

Proof . W.l.o.g., for alln > 1, change the numbering ¢f,, ; w.r.t. ¢ so that

Nt (A
D i AnsieTn(A) YN (4, =1} = S Ny Y1

Any1i C Ang, Vi€ [1,Np(A)], Vn > 1.

Thus,Vi € [1, Np(A)], An; | {6;} whered; € A and = ST ¥:(8;) = 0. Then, by the separating
property of dissecting systems; € [1, N7(A)], In; € N such that'n > n;, Lin,(a, )=1y = 1 =
NT(Qz) It means that/i [[1, NT(A)]], l{NT(An,i):l} — I{NT(ai):l} = NT(GZ) asn — oo. Now, by

Assumptionl(d), N7-(A) is finite P-a.s. The result follows immediately]

A.3. Proof of Proposition4.2

Itis a consequence of equation (9.3.24) p.48 in Daley and Vere-Jones (2008). For completeness, a
similar proof is given. Iff7(®) = 0, the result is immediate by Lemn#a4 below. If Fr(®) > 0, the
idea is to prove the existence of the limitBf Nr(A4,,(8)) = 1} /Fr(A,(0)) asn — oo by Doob’s
martingale convergence theorem, and then to show the limit can only qual

Define for this proof the probability spa¢®, 5(®),IP) with IP := Fr(.) /Fr(®) and the follow-
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ing sequence of random variables on it

P{N(An;) =1}

Ya(0) =) 1a,,(0)

i€ln

wherel, := {j € [1,k,] : Fr(A,;) > 0}. Denote{F, },>: the filtrationF,, := o{Y}, : k € [1,n]}.

Next show that({Y,,}n>1, {Fn}n>1,IP) is an L1-bounded submartingale. By constructifyi, }
is {F, }-adapted. It remains to show th&tY,|F,] > Y,, IP-a.s.. For ali € I,,, denotey,,; :=
P{N(A,;) =1}/Fr(A,;) . Foralld € ©

EY,|Ya)(0) = ) > Y1, P{Yn41,5 = Ynt1,5

i€l, jefn+1tAn+1,jCAn’i

Yn = yn’]}]'An,z (0)

Fr(An+t1,)
= > > yn+1,jm1An,i (0)

i€l j61n+1:An+1,jCAn7i

¢ P{Y, =y, NY 5 =yn. i
because f0f € 1.t Ant1j C Ani P{Yni15 = Yni15[Yn = pnj} = B Sy wal =
P{Yni1,=Ynt1,5t _ Fr(dnii,5) .

P{Vicy ] = FrlAn) . Now, for alli € I,,,

> Fr(Ani1i) 3 P{N(Ant1,5) = 1} Fr(Ant1,5)

Yn+1,5
o FT(An’i) J€Int1:Ant1,;CAn; FT(AnJrl’j) FT(An’i)

P{N(An,i) = 1}
Fr(An,:)

j€Iny1:Any1,jCAn;

by LemmaA.4 below.

Sum overi € I, to deducek[Y,,+1|F,] > Y, . Now, by LemmaA.4 below, for alln > 1, |Y,| < 1.
Therefore{Y,} is anL!-bounded submartingale.

Apply Doob’s martingale convergence theorem (e.g. Theorem 7.18 in Kallenberg, 2001) to deduce
lim,,_, Y, existsIP-a.s., and thu&r-a.e. Since for alh > 1, |Y,| < 1, by Lebesgue dominated
convergence theorem

Fr(©) = lim [ Y,Fr(d) = /@ lim Y, Fr(df) < /@ 1F7(df) = Fp(©)

n—oo ® n—oo

where the first equality comes from the Definiti®rB of the intensity measure. It follows tha}, — 1

Fr a.e. as1 — oo, Which in turn implies the result by Lemn#a4 below.

Lemma A.4. LetF(.) an intensity measure associated with the point random-figld over®. Then

VA € B(®), Fr(A) > P{N(A) = 1}.
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Proof . Use equationZ1) and Definition8.3 of an intensity measuré.l

A.4. Proof of Proposition4.3

AL ST py(0)e™ Ve (®) , . .
i) Note b ZH?T( o) = LT i(0)(0) e V). Thus by Assumptiog, the implicit

function theorem is valid i®7. Letd € @ . By the implicit function theorem, there exists > 0 so
thatrr : By, (f) — R™is aC! mapping s.t3 L 1:(8)e™@¥:®) = 0,,.,, whereB,, (§) denotes
an open ball of radius; centered a8 in ©. Now, by the stability of continuity under composition,
there also existd3,, (f) with 7o > 0 s.t. V0 € B,,(8) |25 v (0)1:(6)'e TT(")WQ) _ # 0. Thus
Bmin(rl,rz)(é) C O, which in turn implies that tha® is open in®.

i) First, any7r(.) is aC* function, by the implicit function theorem and Assumptian Thus,
for..sp(.) is continuous.

Second, prove uniqueness by contradiction. Assume there éxist®, with 71, () ¢ R™

such that-™") £ 72 and forj = 1,2

Et RACHE TD(0) — 0,51

S e (0)ge(8) e @) 0,

det

Then, by LemmaA.5 below, 7(!) and+(?) are two strict local minima of the convex function of—
Zle exp [7'1+(0)]. Now, there is contradiction since a convex function cannot have two distinct strict

local minima (e.g. Theorem A p.123 in Roberts and Varberg, 1973B) .

Lemma A.5. Under Assumption-2, 7r(6) is a minimum of the convex function— 3", exp [7/1(0)).

Proof. By Assumptior2, it is sufficient to show thaliZi= 1;3: N} _ =L e(0)1e(0) e Ve 0)
is a positive semi-definite symmetric matrix (p.s.m).

Forallt € [1,T7], forally € R™, y'¢(0)v:(0)"y is a scalar squared. Thug,(0)y.(6)" is ap.s.m.
Now a weighted sum of p.s.m with positive weight is a p.s.m. T@ﬁ,l Ui (0)1:(0) e () are also

p.s.m.]
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A.5. PropositionA.1

Proposition A.1. Define respectively the set where the rough ESP intery%i»Ttysp(.), exists, and the

set where the empirical moment conditions can be recedter

T
67“ = {9 €0O: HTT’() e R™s.t. Zwt(e)eﬁ’(g)/iﬁt(e) — 0} .

t=1

Under Assumptions 1 and 2, if for #le ©7 the rank of then x 2m matrix

0[S, vr(0)er )]
o0, 1)

(23)

r=rr(6)
0=0

equalsm , then\(®7 \ @7) = 0, where\(.) denotes the Lebesgue measure.

Proof. Apply transversality theorem (e.g. Theorem 26 p.151 in Villanacci, Carosi, Benevieri and
Battinelli, 2002).]
A square matrix is generically non-singular. Here the additiemablumns, makes the singularity

of the matrix €3) even more difficult.

A.6. Proof of Proposition4.4

i) To prove measurability Writg?g%sp(.) with the help of indicator functions. Continuity is ob-
tained by construction.
ii) Continuity offg;,sp(.) over the compact spa@® implies finiteness of the set functidiy(.) :=

[ fo:.,sp(9)d6. Fubini-Tonelli theorem implies-additivity of F(.).

A.7. Proof of Proposition4.5and LemmaA.6

Lemma A.6. DenoteT := {7y}, a dissecting system @. LetF7(.) be a finite positive measure.
Under Assumption$-3, if there exists a random variabl&;, from the probability spac€f?, £, P) to
(N, B(N)) with expectationE(Y) = F7(®), then there exists a point random-fieldiz(.), and a
probability measureP, such that for all4 € B(©)

Fr(A):= lim >~ P{Np(4n:) =1} , (24)

n—oo

1Ay i €Tn(A)
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whereT,(A) :={A,; NA:i=1,...,k,andA4,; € T,}.

Proof. Follow the idea of the proof of Theorem 4.2 i®1¢1970). For alw € €, for all A € B(Q2),

is a point random-field that satisfies equati@d)(by equality 2) p.83.C]

The existence of a random variab}é on the probability spacg?, £, P) with expectatiorE(Y) =
Fr(©) is a reasonable assumption. For example, the existence of a random variable distributed accord-
ing to a uniform distribution on the unit intervdl, 1] is a sufficient condition for this assumption (e.g.

Lemma 3.22 p.56 in Kallenberg, 1997).

Proof of Proposition4.5. By Lebesgue’s differentiation theorem (e.g., Theorem 3.21 in Folland, 1984),

>
N

) _ yy Fr(B:0))
f@;,sp(e) - }—>0 (B (0)

P{Nr(B,(#) = 1} [1 +&(r)

~—

-5 A\B.0)
) hmP{NT(Brw»:l}
T AG©)

wheree(.) is a positive function such théiin,_,¢ e(r) = 0 by Propositiord.2p.23. O

A.8. Proof of Theorems
A.8.1 Preliminary results
This subsection contains some results needed for Thedrdrand5.2. Most of them are variants
of results already known, but not necessarily easy to find in the literature.
Measurability and convergence results

LemmaA.7. Let{Ar}7r>1 a sequence of square matrices convergingitas? — oo. Then
i) if A is an invertible matrix, then there existse N such thatl’ > T' implies Ar is invertible;

i) if {Ar}r>1 is a sequence of symmetric matrices afids a negative-definite matrix (n-d.m),
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then there existd’ € N such thatl’ > T impliesAr is n-d.m.

Proof . i) By Assumption|A|z: > 0. The determinant functioh|s; is a multilinear function, and
thus a continuous function. Thusnr_, ., A7 = A implies the result.

i) On the one hand4 is a n-d.m. if and only if all its eigenvalues are strictly negative. On the
other handmax spAr = max.,| .= 2’ A7z wheresp Ar denotes the set of eigenvalueshfThus, it
is sufficient to prove thaimr ;o max..|.|=1 2’ Arz = max,,| ;=1 2’ Az, which in turn implies that

it is sufficient to prove thatup,,. =1 |2’ A1z — 2’ Az| — 0, asT — oco. We prove this last result by

ll=

contradiction.
Assume thaup.,| =1 |2’ ATz —2'Az| does not converge wasT' — oo. Then, there exists > 0

and an increasing functiom; : N — IN defining a subsequence of vectors of ndrn'{zal(T)}Dl,

and a subsequence of matrides,, (1) } ... ,» such that

Zgl(T) Aay (T)Zon (1) ~ Z;1(T)Aza1(T)’

(k1) D] k) @)
Zéq(T) (Aoq(T) —4) ZCYI(T)‘ < E : ’ |:aa1(T) — (b 201 (T) a1 (T)
(k,)€e1,m]?

(k1) (kD)
ar(1) ~ @ ‘

e <

2
<m” X max

(k,)e[1,m]?

a

wherem is the size of the matrixl anda(*") denotes the component of the matexin the kth row

andlth column. Now, by Assumptionnax i ;yc[1,m]> o (T)

a®l a(’“vl)‘ — 0 asT — oo. Thus, there

is a contradictior.]

We introduce a set of assumptions and new notations to derive generic results which are used several

times.

Assumption 24. (a)X . := {X:}2, is a sequence of i.i.d. random vectors of dimension p on the
complete probability sample spaf®, £, P) ; (b) Let the measurable spa¢B, B(B)) such thatB C

R™ is compact and3(B) is the Borelo-algebra. ; (c) Leth : R? x B — R? withgq € N be a
function such that'xz € R?, 8 +— h(z, 3) is continuous, ands € B, x — h(x, ) is B(R?)/B(RY)-
measurable.(d) E [supgep [|[2(X, 8)[|] < oo.; (€) In the parameter spacB, there exists a unique

Bo € int(B) such thatE [A(X, By)] = Omx1; (f) For all z € R?, 8 — h(x,3) is continuously
differentiable (g) ‘E [%ﬁ’;@o)} LA

Proposition A.2 (Uniform-strong LLN) Under Assumption24(a)-(d) % Zle h(X:, 3) converges
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P-a.s. toE [h(X, B)] uniformly w.r.t 5 asT — oo i.e. there exist& € £ such that? {E} = 0 and

T
Vwe Q\ E, sup TZ (X4, [h(X, ﬁ)]H—>0 asT — oo. (25)

Proof . This is a standard result (e.g., Theorem 1.3.3 pp. 24-25 in Ghosh and Ramamoorthi[2003).
Hereafter, we do not mention negligeable sets associated with properties that holds a.s., because

they result from the application of a countable number of properties that hold a.s.

Proposition A.3 (Existence of solutions to empirical moment conditiongnder the Assumptions

24(a)-(c)(e)-(9), if

() asT — oo, sup

WXy, B8) — E[h(X, g)]H 0 P-as.
BeB || T4

el
M=

1

Oh(XB) {amx ﬂ
LA op’

then for allr > 0 there existd" € N so thatT’ > T implies

el
M=

(b) asT — oo, sup
geB || T “

H—>0 P-a.s.

i) there existd-a.s. a solution to the empirical moment conditions i.e. there egissuch that

1

T
T Zh X4, B7) = Omx1;
=1

ii) all solutions to the empirical moment conditions areBn(5).

Proof . i) By Assumption24(e) and the continuity of uniform limits of continuous functions for 0

small enough there exists> 0 such that’g € B \ B,.(5),

& 2 < [E[n(X,H)]]]

1 d

& 2e < Tzh X, B Z th@)H
1 t;]. ;

& 2 — [(Xﬁ)]—TZhXt, Z Xt,ﬂ)'l
t=1 t=1

where the second inequality comes from the triangle inequality. Now, by Assumption (a), there ex-
ists7 € N such that?’ > 7 implies thatvg € B |[E[h(X,0)] — =~ S h(Xs,B)| < € P-
a.s. which implies-¢ < —||E[h(X,3)] — %Zle h(Xy,B)||. Therefore, on the one handg <

B\ B,(), ¢ < ||% le h(X:, B)]|| P-a.s.; and on the other hand, by Assumption (a) For
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VB € B, (Bo), |l h(Xt, B)|| < e . Now, the function3 — |+ thl h(X¢, B)]| has a mini-
mum, since it is continuous over a compact Beby Assumption24(b)(c). Thus, forT" big enough,
Br = argmingep |+ ST h(X:,8)| € B.(B) P-a.s. Now, the smaller is, the smaller isr,

since by the continuity of uniform limits of continuous functions, Assumption (b) and Leima

T tT 1 M is invertible in a neighborhood gf, P-a.s. Thus foe small enoughP-a.s. that for
T>T 2+, W%} [ S lh(Xt,ﬂT)] = Opmx1 With [l I Mﬂﬁﬂ/] invertible.

ThusT t 1 h(Xt,ﬂT) = 0mx1 P-a.s. which implies the result by puttirtt}. := Br.

i) Immediate from the proof @j. [

The next Proposition ensur@sa.s. the measurability of all the solutions to the empirical mo-
ment conditions. By regarding solutions to the empirical moment conditions as minimga+ef
||% Zthl h(X¢, B)|, the Jennrich’s measurability result (Lemma 2 in Jennrich, 1969) ensures the mea-

surability of only one of them.

Proposition A.4 (Measurability of solutions to empirical moment conditianshder the assumptions

of PropositionA.3, there existd’ € N so thatT' > T implies
i) the number of solutions to the empirical moment conditions is finite;

ii) all solutions to the empirical moment conditions are measurdbks. i.e. if3} is such that

z I h(Xy, 85) = 0, thengs(.) is £/B(B)-measurablé?-a.s.

Proof . i) According to the proof of PropositioA.3, for » > 0 small enough there exis® € N so

that for allT" > T all solutions to the empirical moment conditior{s@éf’)}vev, liesin B,(6y) with

T 'f 1 ‘%(M’ﬁ) invertibleV( € B,(0y) P-a.s. Thus by the inverse function theorem applied for all
veViox T t 1 h( X, (”)) = 0,nx1 by Assumptior24c), there exists, > 0 such thatBél’) is the
unique solution to the empirical moment conditionsAp, (B%’)). Thus,J,cy B, (B%’)) is an open
covering of the compastetm. Now, any open cover of a compact set contains a finite open cover.

oy K - )
Thus, there exist{ﬁ(Tk)} € B.(Bo)¥ and{sk}szl positive suclthat B,.(5y) C Uszl B, (B(Tk)),

whereB(Tk) is the unique solution to the empirical moment conditionsBin (ﬁl}k)). Therefore, the
number of solutions to the empirical moment conditions is finite.

i) Assumptions24(a)-(c),(h) correspond to Assumptidn Thus by Propositiort.1, there ex-
ists a finite (simple) point random-fiel?yz(.,.) such thatvw € Q \ E, Np(w,.) = #{0 € . :

%Zthl h(X:,3) = 0} whereP{E} = 0. Now, for any point random-fieldV(.,.) on a complete
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separable metric spage, there exists a sequence of measurable random elemr@éftsy 3 such

that

VB eB(Y), N(w,B)=) by (B
k

(e.g. Lemma 9.1.XIll p.16 in Daley and Vere-Jones, 2008). The result follaivs.

The following proposition is a standard result.

Proposition A.5 (Consistency of solutions to empirical moment conditiotdder the assumptions of
PropositionsA.3, every sequence of solutions to the empirical moment condiiéhig ... , , converges

P-a.s. to the population parametes,, i.e
lim g7 =p[y P-as.
T—o0

Proof . PropositionA.4 ensures th& /B(B)-measurability of3;. for T' big enough. For alt > 0, we
can choose small enough in the proof of Propositign3i) to make solutions to empirical moment

conditions inB,.(5y) P-a.s. forT big enough]

Corollary 1. Under the Assumptioriga)-(c) and5(a)-(b),(e), Proposition#\.3, A.4andA.5apply to

solutions to the empirical moment conditions

MHﬂ

PY(Xt,0) = 01
T4

Proof . Check the assumptions of Propositién3 are satisfied. Assumptiori§a) and4(a) pro-
vide Assumptior24(a). AssumptiorL(b)(c)4(b), 2 and4(e) respectively provide AssumptioBd(b)

(©)(e)()(9).

Application of PropositionA.2 to L 7 4(X;,6) and L Y7 | 24X68) provides respectively

assumptions (a) and (b) of Propositiar8. In both cases, Assumptiodéa) and4(a) provide Assump-

tion 24(a);and Assumptiong(b)(c)A4(c) respectively provide Assumptior&l(b)(c)(d). In the case

of %Zle ¥(Xy,0), Assumptiond(c) provides Assumptio24(d). In the case off ZT awa)gf,e)’

Assumptiord(d) provides Assumptio4(d). O

%7Since the number of solutions to the empirical moment conditions is rites. (Assumptiori(d)), there existgo such
thatk > ko Vw € Q\ E, Y (w) = 0 withP{E} = 0.
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Lemma A.8. Under Assumption$(a)-(c), 2,5(a)(b),
i) forall 0 € int(©5), there exists a uniqué, (A) such thatf |4 (X, 9)e*°°(9)'¢(X’9)] =0
i) 7o : @7 — R™ is continuous.

Proof . i) By definition of ©5 and a standard result on Laplace’s transform (e.g. Theorem 3 p183
in Monfort, 1996)E [w(X, e)eT"ﬁ(X:")} = 0 is the FOC of the convex function — E [e™%(X:0)].
In addition, for alld € ©3, E [zp(X,H)zp(X,H)’eTWXﬂ)} is a symmetric p-d.m by the definition of
é)go". Thus,7 (@) is unique as the solution to the FOC of a strictly convex function.

i) By the Assumption2,5(b) and the Lebesgue dominated convergence theérenE [e/)(X, G)eT'WXv")}
is continuous. As a convex function — E [1[)(X, 0)e7'¢(xve)} is continuous (e.g., Theorem 3.1.2
p.174 in Hiriart-Urruty and Lema&chal, 1996). Thus, bi) and a version of the implicit function

theorem (Kumagai, 1980j(.) is continuoud.]

Lemma A.9. Under the assumptions of Lemma, define the compact set
C‘go" = Too (@&") .

Under the assumptions of Lemmi&@and Assumptio(a), for all € @, asT — oo

T
1 / / T
sup || E TV {eT YOI 50 Pas.
reCy) t=1 .
T
1 ’ / T
sup || E Y( Xy, 0)e” VX0 _ | [w(X,H)eT v 50 P-as.
I l
T7€Cs0 t=1
T
1 ’ / T
sup || Y (X, 0)(Xy, 0)e” V) — R [w(x,aw(x, 0)e" VO 50 P-as.
Teé;" t=1 h

Proof . First, noteCy" is well-defined.7(.) can be extended by continuity ®-; and the image

of a compact by a continuous function is compact. Second, prove the claims. By definitg/of

and a standard result about Laplace transforms (e.g. Theorem 3 p183 in Monfort, 1996), the expec-
tations thereg [ele(Xﬁ")}, E [w(X,H)eT'w(X’G)] andE [z/}(X,G)w(X,G)’eTWXv") are finite. Thus,

by Assumptiond(a) and the LLN, there is point-wise convergence. Sinces 1+ S°7 | e7¢(Xe0),

T AT (X, 0)e Y0 andr — & ST (X, 0)9( Xy, 0)'e”(X09) are convex, the result

follows (e.g., Theorem 3.1.5. p.177 in Hiriart-Urruty and Leéwral, 1996)0
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Lemma A.10. Under the assumptions of LemrA&0, for all § € int (é;ﬁ), asT — oo, 7r(0) —

Too(6) P-a.s.

Proof . Check the assumptions of PropositiarB8 are satisfied. Assumptioriga) and4(a) provide
to Assumption24(a). Assumptioril(b)(c) respectively provide Assumptid#(b)(c). LemmaA.8i),
whose assumptions are the same as Lerm®a provides Assumptior4(e). Assumption24(f) is
immediate. Definition o®5 ensures Assumptio®4(g). The second and third results of Lemk®
corresponds to assumptions (a)(b) of Proposi#o® Then, apply PropositioA.3 to the empirical
moment conditiond"7_, ¢(X;,0)e” (X0 = 0, to ensure the existenceof (6) for T big enough
for all # € ®L. PropositionA.4, whose assumptions are the same as Propositi®n ensures the
£ /B(R™)-measurability ofr(0).38 Then, the result follows from Propositi@n5, whose assumptions

are the same as Propositiér3.[]

Laplace’s approximation

Laplace’s approximation is a well-known method originally presented by Laplace (Laplace, 1774).
Here, we adapt the version presented in Chen (1985) and Kass, Tierney and Kadane (1990) for our
purpose®®

o0

Assumption 25(Laplace’s regularity) (a) Let {éT} 3

 with Or € ©® VT > 1 a sequence converging
in the interior of®. (b) Let{hr(.)};-, a sequence of real-valued functions. There exists 0 and

T}, € N such that
) VT > Ty, hr() € C* (B, (0r) )

ii) there existsM), > 0 so thatvT > Ty, Vk € [1,4], V0 € B,, (0r), || D*hr(0)|| < My, where

D* denotes the differential operator of ordiey
iiiy VT > Ty, hr(fr) = 0 and 22 — o,

(c) The sequence of symmetric matru{@s% }T>T converges to a negative-definite matri¢d)
=1h

%Here, we can also use Lemma 2 from Jennrich (1969).

%Kass, Tierney and Kadane (1990) explicit the Laplace’s approximation used in Chen (1985). The differences between
Kass, Tierney and Kadane’s theorem and our propostion are the following. In oubgégedepends off". Their assump-

tions do not seem to ensure the convergence of the Heg;jl@;@ Their assumptions are stronger, because they provide
a higher order expansion.
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Let{br(.)}r~, a sequence of real-valued functions such that there exjsts0, M, > 0 andT, € N

so that
) VT > Ty, br() € C* (B, (6r) );
i) VT > T, Vk € [1,3],V0 € By, (07), || D*br(0)|| < Ms.

Proposition A.6. Under Assumption$(b) and?25, there exists: > 0 so that for any neighborhood of

07, V. (07), included inB, (1), we have

T ., 0%hp(O7) . , 1
b Qe[ThT(G)]dt?:/ wod Lo goy@holor) o s | [b 0 +0<_)]
/Vr(éT) @ Vi (61) P 001 555 (0~ 0r) 7(0r) T

Proof . In the proof, we implicitly always assume thBte N is big enough and > 0 small enough
so that all written quantities are well-defined by the Assumptions. For clarity, all Taylor expansions are
written form = 1.

By Assumption25(b)i), using obvious notations, a Taylor with a mean-value form of the remainder

of hr(.) atdr yields

hr(0)
— hr(6r) + B (6r)(0 — br) + %hg? (67)(0 — 67)° + éhgz” (6)(8 — 1) + T 0(0)(6 — )"

1 . . 1 . . _ .
_ §h§?) (6r)(0 — 67)% + Ehgi”) (O1)(0 — 67)® + hy 7 (0)(0 — 67)*.

where hgﬂ)(.) denotes thekth derivative, hy r(.) is a continuous function and where Assumption

25(b)iii) is used. Plugging the expansion into the exponential function, we obtain

exp [Thr(0)]
— exp {%hﬁ’ (67)(0 — éT)2} exp {%hg:”’) (61)(0 — 67)% + Thy (0)(6 — éT)4} . (26)

Now, we compute in detailsxp {%h(;’)(éT)(G —07) + Thy7(0)(0 — éT)4} br(#). A Taylor
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with a mean-value form of the remainder expansiom e e* yields

exp {%hg(@w — 607)® + Thy.r(0)(0 — éﬁ*}

T . ) _ ) _ T ) ) _ ) 2
- 1+ ghg")(eT)(e — 07)® + Thyr(0)(0 — 61)* + ho.r(6) [Ehg@ (61)(0 — 67)3 + Thy.1(0)(0 — 67)*

T . . _ . _ T2 . .
= 14+ h Or)(0 — 0r)° + Thyr(0)(6 — 6r)" + o (9) 5 by (6r)*(0 — Or)°

+EQ,T(9)2%h§§>(éT)(9 — 67T (0)(8 — 62)* + ho. () T%hy 1(6)*(6 — 61)°.
Moreover, by Assumptio25(c)i), a Taylor with a mean-value form of the remaindebgf.) yields
br(0) = br(61) + b2 (61)(6 — 6) + br(6)(6 — b7)>.
Therefore, multiplying the two expansions we get

exp {%hg?’ (2)(0 — 67)* + TR0 (6)(6 9T>4} bz (6)

= br(0r) + b (0r)(0 = Or) + br(6)(0 — br)?
gD )0 — )b (Br) + P G0 — 0 WD (6) (0 — )
+EW )6 — 071 06 — br)?

TRy 2(0)(0 — 7)o () + Ty 2(0)(0 — b)) (0r)(0 — )

+Thy(0)(0 — 07)*br(0)(0 — 1)

T~ )4 \2rn 46 (4L T )4 200 461D 4 g
+35 hor(0)hy’ (07)°(0 — O7)°b7 (07) + 36 hor(0)hy” (07)°(0 — 07)°by" (07)(0 — O1)
+§—6252,T(9)h§?> (67)2(0 — 67)507(0)(6 — 67)2
+2%EQ,T(9)h§?>(9'T)(e ) R (0)(60 — 67) by (6r)

+2%EQ,T(9)h5§)(éT)(9 — 67)%h1.7(6) (6 — 67)*0™M (67)(6 — 67)
+2%52,T(9)h§5’”(9';p)(0 — 07)3hy 7 (0)(0 — 07)*Br(0) (6 — b7)?

%1 (0)h1, 0 (0)(0 — 61)%br(Br) + TR 1 (6P 0(6)%(6 — 6r)°{2) (6r) (6 — br)
+ho,r(0)T?h11(0)%(0 — 67)%br(0) (0 — 1)

= bp(0r) + Ip(0,07) + Rp(6,0r)

wherelr (6, 6r) == b3 (67)(6 — br) + TSP (67)br(67) (6 — 67)3 + TSP (6763 (67)(6 — br)*.
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Now, by equationZ6),

/  bp(0)eh Tl dp = / exp {Zhg?%éT)w — éT)Q} {bT(éT) + Ip(6,67) + Ry (6, e'T)} do
Vi, (6) Vi (67) 2

where the integral is well-defined as an integral of continuous functions (Assun2Xa)i) and (b)i))

over a compact set. In addition, by Lemmya. 1 below, we have

. ~1/2
1 IPINE 20\ | *hr(dr)
/V ; exp{QhT (07) [\/T(Q 19T)] }d@ i <T> 00006’
- (67) det

where given two functiong(.) andg(.) whose domain i, f(z) ~ g(z) with a € D means that

there exists a function(.) defined onD such thatf(.) = g(.)¢(.) andlim,_,, ¢(z) = 1. Thus, by

Assumption25(c), it is sufficient to show that

/Vr(éT) exp {€h§?>(9’T)(9 - éT)2} {IT(H, 07) + Ry (0, éT)} 40 ~ O(T—l).

m
o) T2

Deal with the integrals of (9, 67) and R (6, 07) separately. The integral d@-(9, 67) yields

/VT(éT) exp {lhg) (07) [\/T(G — éT)} 2} I7(6, 67)do

2
1 ) .12 ) )
— / . exp{§h§?>(9T) VT (6 — )] }{T—éb(T”(eT) VT(6 — )]
Vi (67)
1
T3 . . . 13 71 . . . 14
+=—hi (0r)br(0r) [\/T(e - eT)] + b )by (0r) [\/T(e - 9T)} } do
1
a 1 . . T 3 . . T-1 . . d
@ / exp{§h§?>(eT)u2} T*%bgp(eT)wTzhﬁ’)(aT)bT(eT)uMThﬁ(@ﬂb&”(@ﬂﬁ v
Vyr, (0) T
1
b 1 . 1 . Tz . . T-1 . . d
g / exp{ihrg)(ﬁgp)uQ} 720 (67 )u + ; h§?>(9T)bT(0T)u3+Thg:‘”)(eT)b(T”(eT)u‘* T%
(c) o(r1)

(a) Apply change of variablé — v'T'(§—6r) := u; and denotd’,  (0) := {u ER™:T 2u+bre€ W(GT)}.
(b) Assumptior2x(b)ii); (c)ii) allows to dominate by absolute moment of Gaussian distribution scaled
by a constant and then to apply the Lebesgue dominated convergence theorem. (c) The odd moments

of a normal distribution are zero.
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The integral ofR7(6, 07) yields

/ . exp {

VT(QT)

< / exp {
Vi (07

B BB () [ﬁw ~ip)’

AT B (O)br(Or) [V — b7)] + 3R 2 06 6r) VIO — b))

ir) [VT(0 - eT]Q} (6, 67)d6
br) [VI(

R
) [VT(0 - HT]Q}{T_l [ﬁ(e—éT)]Q

M\oa ~

TR (0)6r(0) [VI(0 — 0r)] ‘

+T—_152 1(0)B) (61) b1 (67) [ﬁ(e - 9T)} - 7;6

3
2

E2,T(9)h§§) (éT)Qb'_('[})(éT) [\/T(Q — GT)] !

+EQ,T<9>T3—;h$’><éT>25T<e> V(0 —0r)]

o (O () O O) V(0 — )]
3

Tior ()0 (67T (06 (67) [\/T(e—éT)]S

—ha,r (O (Or) e (0)br(8) [VT (0 — )] ’
T2y, (6)Pa,0(6)0r (Or) [VT(6 - 9T>]8 + T3k, (6)r,r ()64 (6r) [VT(6 — )] ’

+T 3Ry 7(0)h1,7(0)*br(6) [\/:7(0 - e'T)} 10}’ do

NE

1 .
M exp {—hg,?)(HT)uQ} {T_lu2 FT A T8 lul® + T~ u* + T3 |ul®
vor,© 2

d
T2+ TR+ T+ Tl + T2+ TRl + T} S
2

—
=
=

1 )
M exp {Ehgg)(GT)zﬁ} {T_lu2 + T Wt + T3 ]u|5 + T Nt + T3 |u|5
Rm

82

d
AT 28 + T3 [u)” + T30 + T2 + T 28 + T2 |uf + T_3u10} T_Z
2

—
O
~

o(T1)
T2

(a) By Assumption25(b)ii);(c)ii), h1.7(.), ho,r(.) andbr(.) are bounded o, (47). (b) All the mo-
ments of a Gaussian distribution are finite, thus we can apply the Lebesgue dominated convergence

Theorem.(c) Finiteness of the moments of a Gaussian distribufion.
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Lemma A.11. Under Assumption$(b) and25,

T . ,8%hp(br) : 27\ /2
/vr(éT>eXp{2(9_9T) T I

Proof . We have

—-1/2

%y (07)
9000

det

m | 92hp(br)) L3
2 —=—=T
W 1 (2m) ( 9000 ) det/ exp lu/a hr(07) J
™ (2 )ﬂ ( 02hr(6r)\ 2 v, 7 (0) 2 090’
) 2 — 7
0000 dot

3=
N

=l
N——

(a) Change of variablé — +/T'(6—6r) := u, and denot&’ -, (0) := {u ER™: T su+0pc Ve(éT)}
(b) By Assumption25(c), recognising the density of a normal distribution, we can apply the Lebesgue

dominated convergence theorem

. —171
lim ! / exp —lu’ —82hT—(9,T) wpdu=1 (27)
T—o0 m 82hT(éT) -1 VT’I‘(O) 2 06000
(2m)> (‘ 50067 )

N

det

O
Proposition A.7. Under Assumption$(b) and?25, there existd3 andr > 0 such that for allT’ > T}

(it T ortin o ()]

/wa br(0) exp [Thr(6)] 8 = (@W

det

and the RHS and the LHS are well-defined.

Proof . Combine Propositiod.6 and LemmaA.11. (I
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A.8.2 Proof of Theorens.1and5.2
Aroundd7.: application of Laplace’s approximation

Proposition A.8. Under Assumptiong-6, Laplace’s approximations corresponding to Propositions

A.6andA.7 can be applied-a.s. to [, (02) fg},sp(e)de with r» > 0 small enough by putting
r\Yr

éT = Qi}
1 T
hr(0) = I [TZeTTWwi(e)]
t=1
_1
br(0) = [37(0)]4;

where the RHS are well-defined fbrbig enough.

Proof . First, noteP-a.s. forT" big enough the RHS exist i, (07.) by Assumptiorb(a) and Corollaryl.

Second, check the assumptions of Laplace’s approximation. Lemma 3 in Jennrich (1969) ensures that
the Taylor expansions with a mean-value form of the remainder used to prove Laplace’s approximation
applies to random functions. Thus, it is now sufficient to show the above quantities satisfy Assumption
25. Corollary 1 and Assumptior8(b) provide Assumptior25(a). Assumptior6(a) with Corollaryl
providey(.) € C*(B,(0)) with r > 0 for T' big enough. By the implicit function theorem and
Assumptions(a), 7r(.) € C* (B,(64)) for T big enough. Thus, Assumpti@¥(b)i) (d)i) are satisfied.
Assumptiong(c)(d) provide that Assumptior(b)ii) (d)ii). By LemmaA.13 and the definition o,
Assumptior25(b)iii) is satisfied. By Lemma.14, the Assumptior25(c) is also satisfied.]

Lemma A.12. Under Assumption$(a)-(c), 2, 5 and6(e), forT' big enoughP-a.s.

T -1

Z (07)3(67)

ot (0)
oo’

1 i O (6
=0 r= o

where the LHS and RHS are well-defined.

Proof . To apply the implicit function theorem to the tilting equation defining.), first show that the
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derivative w.r.t.7 is full rank.

lim | =7 | < Jim —ZeTT” Oy (07) e (07)'

/
T—o0 or T:TT(G}) T—o0

0=07  ldet

det

T
- Tlg%o T ;wt(HT)l/)t(eT)/ »

= |E [$(X, 00)%:(X,00)]| 1o, > 0

(a) By Assumption2, differentiate. (b) By definition of 77 (.), 7r(6}) = 0, sincef;. denotes a so-
lution to the empirical moment condition¢c) By Assumptionl-2, 5(b),6(e) and Corollaryl, apply
PropositionA.2 with B a closed ball centered 8. Then use Assumptiof(a) and the definition of

0.

Therefore, by Lemma.7i) for T" big enough

0 [F S, e Oy (0)]
or'!

T=T17(0%)
0=07 det

Consequently, by Assumptidhand the implicit function theorem in a neighborhoodgffor T

big enough
orr(0)
Iol
_ [o[FZhie Ou ) } - r 3 ST e Oy (0)] ]
- o v r=rr(6)
- - —%ief’wmwmwy _ %iw (20 1 oy 6%,9))]
- = r=rp(0)

T

1 T 77 (0) 4y T ¢ 8'¢z() 5¢z(9)
= _[fze OOy (0) 1)y (0) Ze (1o ( o0’ + $i(6)rr(8) o0’ )]

t=1

'ﬂ»—t

Puté = 63 and note thatr(07) = 0y, x1,

O0; (0
o)

T
LS sonneny|
t=1
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Lemma A.13. Under the assumptions of Lemmdl2 for T" big enoughP-a.s.

ol | LT ew(@)'wt(e)}

90 = Om><1
0=03
where the LHS is well-defined.
Proof . Differentiate w.r.t. thésth component
dln % Z?:l eTT(0)"14(0) 1 Z e (0) ¥ (6) [L(eldjt( ) %;L T(a)
= . 28
00, T thl e (0)1:(6) (28)
Thus, for = 67,
T r
Oln [% Zt:1 e T(9)¢'t(9):| 87’T(9})/ l zT:w (0*) B 87—T(9;‘)/ 0
a0y, Cae, |TETT T a6y mxl
0=03 =
= 0.

Stack rows to obtain the resulil
Lemma A.14. Under the assumptions of Lemdl2and AssumptioB(a), for T' big enoughP-a.s.
T *\/

1 < (05
TZ o0

t=1

| LT, eTTw)'wtw)}
d0dY’

0Y; (0
- T Z 06’ ]

1 T
LS sonneny|
t=1

=03,

where the RHS and the LHS are well-defined. Thus, the RHS converges to a n-d.m.
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Proof . From equationZ8),

821n [% ST eTTw)'zm(e)]

00,00,
_ 1 T . orr(0) O (0) o7 (0)
= |: Z orr (6 wt(e)} {{ Z: 0) i |: g@ wt(a)‘i‘a—elTT(G)] |:§—0k7/]t(0)
t=1 =

9 (6) *rr(6) 0u(8) Orr(6)] | [O*un(6)’ O (6) 9v4(0)
VT ] i P O] [y P00

T , 1 & , drr ()’ 0Y(0)’
o B o e )

t=1 t=1

T /
> {%Z 71 (0) ¢ (0) |:a7—T( ) wt(e)_}_ adgéle) TT(Q):| }}

t=1

00
_ 1 1 T "y orr(6) o (0) o7 (0
- e R [ s ] [

(0’ 92rr(6) O (8) Orr(8)]  [0%(0) 71 (6) 9n(6)
00, TT(Q)] + [ 55,00 O+ 55, 0, %[ 366, O g0 o8, ]}

T
! | o [0 (0) Dn(0)
_ - E Tr(8)' e (0) | CTTVT)
1 T ’ 2 {T ¢ |: 89k ¢t(9) + 89k TT(G)
[T E 1 etr(9) Tﬁt(@)} t=1

d : orr(6) Ay (0)
X {% ZeTT(g) v:(0) [—59(1 ) P (0) + dgél ) TT(H)] } )

t=1

Thus,forf = 6% andr = 7p(0}) = Opx1

a?m[ ST (@) v(® >]
96,00,

0
T T * )/ T *\/ 27_ * )/ ’ *\N Or *
+ 3 | won)| [T o) + | i o + 2or) o)

T
[} - e S ]

orr(6%) orr(6%) O (03 O (6%) Orr(0%) Oy (6%)
gelT wt(gT)] { jf;ekT ‘bt(eﬂ] +[ aelT gakT} +[ gelT aekT}

el
N
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Stack rows and columns and use the LenfiE2. The first term becomes

(35 o] [ ]

t=1 (k7l)€[[17m]]2
_ 1 orr(07) ¥ « 010 (07)
= T; —8€ wt(eT)) (wt(aT) o0’ >
a6y |1 o openr| OT(07)
= 20 T ; T/)t (HT)¢t (OT) ] o0’
T a ; o ! ! B
_ % ¢6(0,T) % > e (05) 6 (05) % > i (07)(67) % > ¢t(9?)¢t(9})/]
=1 t=1 t=1 =t
1 & o (07)
T 2~ o0
~1
_ w0 - L~ 9vi(0f)
— T tz:; Z:: GT 1/’15 9T T tz:; o6’

Similarly, the sum of the two other terms becomes

L 5~ 0v0r) e ) 4 (L5 2mln) 0uey)
T 06, 00, T 00, 00y,
(k,0)e[1,m]? (k,)el1,m]?

t=1 t=1
1 oui(03)] 0rr(05) [ [1 & 0wi03)' ] omr(03)
T2 a0 s T\ |72 o 90’

t=1 =
T
1 Oi(05) i (0%
-2 T; a0 TZ a0 |-

T
LS senny|
t=1

where the last equality comes from the symmetry of each term. Add all the terms to obtain thElresult.

Outside a neighborhood &f;

Proposition A.9. Under the assumptions of Lema@8andA.15and Assumption§(a)-(c).2, 4(a),7(b)

for all » > 0 small enough there exists> 0 and7 € N such that
VT > T,V0 € ©,"\ B,(bo), ZeTT(O vl <1-¢ P-as.

Proof. Check assumptions of Propositién2 for application to 3>/, e™©@%() in B, (9) with

ri > 0andd € ©5. Assumptionsl(a)4(a) provide Assumptio4(a). Assumptiond(b) provides
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Assumption24(b). By Assumption® and LemmaA.8ii), for all § € © 6 — L 37 | em=(®)¥2(0)
is continuous. Then combined with Assumptitie) it provides Assumptio24(c). Assumptiong(b)
provides Assumptio@4(d). Thus, by PropositioA.2 there exists; > 0 such that for alf € @57, as

T — o0,

sup

9€B,, (0)

%figawmeF%@wwm}
t=1

‘%O.

Now, since®." is compact, there exist@, }1_, such tha® = |5, B,,(6x) andry < 7. Thus,

asT — oo,
L T
2 Too (0)1:(0) _ [m@wxﬂ
esggn T Ze E |e ‘ —0
€0, t=1
Thus, fore > 0 small enough, there exisissuch that for all’ > T'
| T
sup ||= Z e (0)v:(0) _ | [eTOO(a)/w(X’Q)} < é€3.
00 t=1

Moreover, by Lemma.15, for e > 0 small enough, there exists, > 0 such that/d € @\ B,, (),
E [e%o(")'lﬁ(x"’)} < 1— 2, sinced — E {e%(@)“ﬁ(xﬂ")} is continuous by as a uniform limit of

continuous function§ — L 377, e7=(@)+(¥) | Consequently, for all' > 7'V € © \ By, (6o)

T

1 Too(0)9:(8) _ o [ oo (0)/(X.0) @90 — LS 0/
= e E |e +E e = — e
iy emersccn] g femorsecn] - L3

1 T
=3 =)

t=1

1—¢

WV

WV

1;
- Z eTr(0) ¢4 (0)
t=1

. 1 T ’ . 1 T /
sinced 3o/, e @Vt = min, cgm £ 37 e Ve,

Lemma A.15. Under Assumption$(a)-(c), 4(b) and5, for all § € @3 \ {6}
EF%@WXﬂ<L
Proof. By definition of ®57 and a standard result on Laplace’s transform (e.g. Theorem 3 p.183
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Monfort, 1980),7..(6) is the minimum of a strictly convex functiobe. for all # € @57, for all
T # 7oo(6), E [eroow)'w(wﬁ)} <E [ef’wxw]. Thus, for all7s(6) # Opmxi, E [eee@¥(X0] <
E [eo;nxlw(x,e)} = 1. Now, by Assumptior(b), for alld € @\ {6}, Too(0) # Omx1. Therefore,
the result followd.]
Conclusion of the proofs
Corollary 2. Under Assumption$-5, for all » > 0 small enough,
) asT — oo, / for sp(0)d0 — 1 P-as.;
Br(07)

i) for T" big enough, there exist® > 0 ande > 0 s.t. forall§ € ® \ B, (67.),

fe*T,sp(9) <exp{-Te} M P-as.

Proof. i) By PropositionA.8, apply PropositioA.7 with LemmaA.14 so thatP-a.s.

U eorweon | (1™ -3
= D e / o 1S7(0)| 2 do

t=1

/ f9%75p(9)d9 = / exp{Tln
Br(67) - (07)

m
2

or\ 2 wn_ 11— (T o =L
v (F) el (57) T e
~ 1
o0

* O (0% -1 " * O (6% -1
whereXr(64) = {% T waé,T)} {% Sy ¢t(9T)¢t(0T)/] [% 1 a(eT) :
i) By PropositionA.9 and Assumptiong(a) for all» > 0 small enough there exists> 0 M > 0

andT € N such that/T > T we have for alh € ©," \ B,(6)

fb’},szﬂ(e) < exp {-Te} (%) N M P-as. (29)

By Definition 4.4 of the ESP intensity, it also holds for &llc ® \ B,.(6y). O
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Conclusion of the proof of Theorens.1. For all ¢ € Cy, and for allr > 0,

‘/ fé’},sp da - 90(00)

/ (00) Fos.op(0)d0 — 5(00) + / 0(0) — 9(60)) fis.op(0)d8
By (07) Br(07)

4 / o(6) s (6)d0
®\B:(671)

/ ©(00) foz,.sp(0)d0 — ©(60) | +
Br(67)

/ o (6) s (6)d0
O\B.(071)

Therefore, by the lemmas below for> 0 small enough, for alt > 0, VT' > max(T4, T, T3),

<

| 16(0) ~ o(60)) oy (010
B (07)

_l’_

e P-a.s.

‘/ f@;,sp de 90(00)

which is the result needed]

Lemma A.16. For all € > 0, there existd; € N such that for- > 0 small enough

VT > T, g P-a.s.

[ 16l0) — o(00)) (00 <
B(6%)

Proof .

[ 10(0) ~ o(60)) oy )0
By (0%)

< / 10(60) — 9(60)] fos..op (00
By (07)

< sup |o(60) — ¢(bo)] for,sp(0)dO
9 B, (63 B (03)

< sup  [p(0) — (o) M
9€ B, (6%)

whereM is a constant which bounds the integral by Coroll2i)y
By continuity of ¢(.), there existgs > 0 such thatvt) € Be,(6o), [¢(0) — ©(6o)| < 35;. More-

over, sinced}. — 6y by Corollaryl, Ve, > 0 there existsdy € N s.t. T > T} ||0} — 6p|| < €4. Thus,
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if r andey are such thal < r < e3 — ey, forallT > Ty, 0 € B,.(67) implies

160 = 6ol = 116 =67 + 67 — 6ol

N

16 = 67| + 1167 — 6ol

< r+e<eg

which in turn implies the result by puttirif, := T, O

Lemma A.17. For all € > 0, there existds > 0 such that

VT > T, / () fosop(0)d0| < = P-as.
©\B,(0%) 3
Proof. Sincey(.) is bounded, there exisfel > 0 such that
/ @(Q)fe;,sp(e)dQ < M fe;,spw)d@
O\B,(07) O\B:(07)
Thus, the result follows by Corollagii). [
Lemma A.18. For all € > 0, there existd3 > 0 such that
~ e
VT > T, / @(90)f9%75p(9)d9 — (p(eo) < - P-as
B, (6% 3
r(07)

Proof.

| o0 ogapl)d8 — p(60)| = (60 x| [ FapplO)d8 1
B.(6%) B, (0%

'r(eT

Thus the result follows by Corollargi). O
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Conclusion of the proof of Theorem 2By PropositionA.6,

/ foz.sp(0)dO
DT(ll,G;”b)
T * * | — * T * -3
v [ ea{-Ge-omene-om} (5) menld o
% JDr(ab;.b) m
1 T % -1 1
e 277 () |Sp(05) |2 | T2 (05)2
[ (55) " ol [,
~ Lm/ e_%/SdS
o (2m)2 JD(a)

(@) 2 = VTS (63) 2 (0 — 03) O

m
2

—
S}
~

ds

et

82

A.8.3 Proof of Theorents.3and5.4

It follows immediately from the proof of Theorefland5.2 Choose a partition of the parameter
space such that each element of the partition contains only one solution to the moment conditions. Then,

apply Theorenb.1land5.2to each element of the partition.

A.9. Proof of Proposition7.1

i) By Propositiord.4and Assumptiori1(a) respectivelyfg;ysp(.) andu(., .) are continuous over
the compact se® and®2. Thus, for all(6., ) € ©2, [[u(be, 0) fo: sp(0) || < supjeg |u(6,0) foz (0]
with [ sup, g | w(6, Q)fg* sp(0)]|df < oco. Thus, by the Lebesgue dominated convergence theorem,
e = [ou 06,0)f9* sp(0)db is continuous ove®.

i) By i) and LemmaA.19, apply Lemma 2 from Jennrich (1969).

Lemma A.19. Under Assumptior8;11(a), (w,6) — [gu Qe,e)fg* sp(0)dl is € ® B(®)/B(R)-

measurable.

Proof. By Assumption3, f%sp(.) is £ ® B(®)/B(R,)-measurable. By Assumptiatil(a), u(.,.)

is continuous. Thusu(.,.)f%sp(.) is € ® B(O)® B(O)/B(Ry) . Thus apply a standard pre-
liminary result to the Fubini theorem (e.g. Lemma 1.26 p.14 in Kallenberg, 2001) to deduce that
Jo u(fe,0) fg* sp(0)dl is & @ B(®)/B(R)-measurablel]
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A.10. Proof of Proposition7.2

i) By the LemmaA.20 below, for alle > 0 there exists an open cover &, | ;g B:,(#), such

that

7’0'>0

supeeeBré(é) er u(Oe, 0) for. sp(0)d0 — u(Oe, HO)H < ¢ for T big enough.

Now, any open cover of a compact set contains a finite open cover. Therefore, by Assuibfiptjon

) ¢
there emsts{ 0 }k

€ OF (T}, € NX and{r;}1, €]0, 00X such that

© = Us; Br(0r)

SWPg,e 5 (3y) ‘f@ (B, 0) for..op(0)d0 — (8, OO)H <eforT>Tj,.

Thus forT > maxke[[l’K]] Tk, SUPg.c® er u(Ge, G)fg}’sp(e)de — u(@e, 90)” < E.

ii) Since by Assumption$1(b)(c) u (6o, 6y) > u(b, 6p) for all 6. € O, it follows from iii). OJ
Lemma A.20. Under Assumptioris7,11(a), for all ée € O and for alle > 0, there exist > 0 and

T e N such that for alld, € B,(.) and for all T > T,

<e.

Héuwm@ﬁ%WWM9—M%ﬁw

Proof. For a fixedd, € ®, by the triangle inequalityyr > 0, V0, € B, (6.)

H/@ u(Oe, e)fé‘;,sp(e)d‘g — (0, 6o)

< | 00021000 — [ 00070108 + | [ 400001 0100 — w00
® ® e

+ @, 00) — (o, 00)|

It remains to prove that for al > 0, by choosing: small enough and’ big enough each of the three
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terms can made smaller thgnFor alle > 0, for » small enough

| [ 00170100 [ G0Vt p@s| = | [ [u60.0) = )] s (0100

(a)
< [ folo)as
®

(®)
< eMwithM eR

where(a) comes from the uniform continuity of(.,.) implied by Assumptioril(a) and the Heine-
Cantor Theorem; an(b) comes from Theorerb.1 Thus, foré = 35;, the first term is smaller than
5. ForT big enough the second term is smaller thaby Theorenb.1. Forr small enough, the third

term is smaller tha@. O

A.11. Proof of Proposition7.3

Notations for this proof.

1 _
V€O, h(0) = o /@ u(00,0) s p(0)d6 (30)

h(ge) = u(9€7 90)

i) Existence of,, 7 follows from LemmaA.21 andA.23iii) . Measurability of the ESP confidence
set,{0c : hr(0e) = ko 1}, follows from thef ® B(®)/B(R)-measurability ohvr (.) — ko, 7 by Lemma
A.23iv) and LemmaA.19. Thus there exists an ESP confidence set. Existence of an asymptotic ESP
confidence set follows from the same arguments as in LeAu2iii).

ii) Proof by contradiction. Assume that, r does not converge tb, -, asT — oo. Then there

existse > 0 and a subsequendg, s, (r such that|k,, g, (1) — ka,co| > €. By LemmaA.22

)}T>1
and the Bolzano-Weierstrass theorem, there exists a converging subsegh@@g@l (T)}T>1 of the

sequence{kaﬁl(T)}Dl. Distinguish two cases.
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First caselimy o0 k8,08, (1) > Ka,co- LEtE > 0 St M7 00 kg gy08, (1) > Ka,co + €. Then,

—

a) )
l-a < Tll_{gosup/l{oee(a:h@oﬁl(T)(oe)>ka,52051(T)}(ee)hﬁaoﬁl(T)(ee)dee

NS

T—o0

lim Sup/l{oeeezhﬁzoﬁl(T)(08)>ka,oo}(95)h52°51(T)(06)d06

—
g}
~

S /Tli—r};osupl{9e€®:h,ezoﬁ1(T)(0e)>ka,<x>}(ee)hﬁzoﬁl(T)(ee)dee

—
S
=

< /@ 6,6y s} h(0c)dOe. (31)

(a) Definition of k,, . (b) By assumptionlimr ., ko, g,08, (1) > Ka,00- Thus'l{eeeezh@ogl(T)(ee)>ka,[,2051m}

l{oee@:hﬂzo,@1<T>(05)>ka,oo}(')' (c) Fatou’s lemma.(d) LemmaA.26 and for any positive sequences
{uT}T>1 and{vT}T21 limy oo supugpvy < limp_ oo supur X limp_,. supvy. Lebesgue domi-
nated convergence theorem.

The inequality 81) is in contradiction with the definition df, . sincelimz_; ko, Br08,(T) > Kayoo +

E.

Second cask, oo > im0 ko gy08,(T)- LELE > 08t kg oo — € > limp 00 ko gy08,(1)- ThEN,

(a)
l-a < /@l{oe;h(ee)>ka,w}h(9e)d9e
(®) L
< /eTlgléomfI{Oe:h52ogl(T)(Ge)>ka,ooE}hﬁZoﬁl(T)(ee)dae
o
< Th_?;omf/el{9e:hﬁ2051m(9e)>ka,oo—€}h/82°ﬂ1(T)(ee)dee' (32)

(a) Definition of ka0 . (b) LemmaA.26 and for any positive sequencéar}r., and{vr}ys,
lim7_, oo inf up X limp_,o inf vp < limp_,, inf upvpr. Lebesgue dominated convergence theorem.
(c) Fatou’s lemma.

The inequality 82) is in contradiction with the definition 6f, g,.3, (1), SINCka,00—€ > UMT 00 ko, gy08, (T)-

O

Lemma A.21. Under Assumption$-3;11- 12, for n > 0 small enough,

Ky — / w(0c, 0) fos. 5p(0) A0, # 0.
®2

Proof. By AssumptionlL1, for all§ € ©, there exists, > 0 suchthatforalb,, 0, € Bré(é)u(el, 02) >

0. Moreover, by Propositiod.3), © is an open such th{ﬁg;,sp(.) > 0. Therefore there exists an open
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in ®2 such thatu(.,.)f(.) > 0. Since by Propositiod.4) u(.,.)fg: s»(.) > 0 on @2, the result

follows. [
Lemma A.22. Under Assumption$-3;11-12, P-a.s.
i) hr(.) = 0;
ii) 8. — hp(6.) is continuous;
i) [g hr(0e)dbe = 1.

Proof. i) By Assumptionl1(d) and Assumptiol (., ) and fgé;,sp(.) are respectively positives.
i) u(.,) and fg%,sp(.) are bounded as continuous functions over a compact set. Apply Lebesgue
dominated convergence theorem.

iii) Note K7 := [g2 u(fe,0) fos. sp(0)dOd6.. O
Lemma A.23. For a fixedT' € N, definelP on the probabilizable spad@®, B(®)) such that
VB € B(@), P(B):= / hor (6.) 6.
B

Under Assumption%-3;11-12, P-a.s.
i) IP is a probability measure;
i) Vk >0,k — TP ({0, € ©: hp(6.) > k}) is left-continuous decreasing function;
i) ko exists;
V) w— ko r(w)is E/B(R)-measurable.

Proof. i) By LemmaA.22i) and ii), IP(.) > 0 andIP(®) = 1 respectively. By Fubini-Tonelli theorem,
IP(.) is countably additive.

i) Let{k,},~, be an increasing sequence converdmg Thus,

P({0.€®:hp(f)>k}) = P (ﬂ {6, € © : hp(6,) > kn})

n>1

2 lim P ({0 € © : hr(0e) = kn})

n—oo
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where (a) comes from a standard continuity property of measures (e.g. Lemma 1.14 p.8 in Kallenberg,
2001).
iif) Define

k:=sup {k:P ({. € © : hy(hs) > k}) >1—a}
keR

By LemmaA.22ii) hr(.) is bounded, thus by Lemmy¥a 22iii) k < oo exists. Therefore, by defini-
tion of a supremum, there exists an increasing sequélck, ., converging tok such thatvn > 1,

IP ({6, : hr(63) = kn}) = 1 — . Thus, by ii)

P ({9 €O :hr(d) > k}) — lim P ({0 € ©: hr(6.) > k)

n—oo

> 1—a.
iv) For the same fixe" used to defind?, define for this proof
Yw € Q,Vk > 0, g(w, k) =P ({0. € ® : hp(be) > k})

By LemmaA.19 and a standard preliminary result to the Fubini theorem (e.g. Lemma 1.26 p.14 in
Kallenberg, 2001Yk > 0. g(., k) is £/B(]0, 1])-measurable.
Follow the same idea as in Lemma 2 in Jennrich (1969) to finish the pRopis separable. Thus,

there exists an increasing sequence of finite subsdis, of{ R ,, } whose limit, R ., is dense

n>1’

in Ry. W.lo.g. defineR ,, such that for aln > 1,0 € R, ,,. Denote{ki, ks,...,ky,} == Ry
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with k; := 0. For alln > 1, define the functiotk,, r(.) such that for allb € €2,

(

ki ifl—a> g(w,kj), Vj e [[Q,HH

gw,ke) 21—«
ko if

g(w, k2) = g(w, kj), Vj € [3,n]

;

9w, k3) > 1—«

ks if g(wa k3) Z g(wakj)a vj € [[4an]]

9(w, k3) > g(w, k), Vi € [1,2]
knr(w) ==
9w, kg) 21—«

kg 13 glw, k) = glw, ky), Vi € [q+1,7]

g(w, kg) > g(w, k), Vi€ [1,¢ — 1]

9w, kp) =21 -«

g(w, kp) > g(w, ke), Vi € [1,n — 1]

By construction of,, r(.),

9w, kpr(w)) = (ax g(w, k).

Let B € B(R4). Then
k;lT(B) = {weQ:k,r(w) € B}

= U {weQ:kyr(w) =k}
q€[1,n]:kq€eB
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Now, Vg € [1,n], {w € Q : ky, r(w) = kq} € &, since

{we Q:kyr(w) =k}
Ncang (& € Q51— a > glw, ky)}

(weQ:gw k) >1—a} [mje[[gmﬂ (weQ: g(w k) >

= Y{weQ:g(w,ky) >

9(w, k;)}]
L=aif] [ﬂjeﬂqﬂ,n]] {we:glw k) 2

N Nieng1y {w € 2 g(w, kg) > g(w, ke)}]

(weQ:gwky) >1-a} [ﬂieﬁl,nfl}] (weQ: gw k) > g(w, kt)}]

9(w, k;)3]

ifg=1
if g=2
if g€ [3,n—1]
ifg=n

Thus,k;lT(B) € £, which means that,, 7(.) is £/B(R4)-measurable.

By the Bolzano-Weierstrass theorem, there exists a converging subsee{w:gm;g )}n>1. As-

sume thatim,, o kgn),r(w) # ka,r(w). Then, by the left-continuity of(
S.t.Vk € [k:a;p(w)

w,.) there existg > 0
—¢&,kor(W)] Vn € NVq € [1,n] g(w, kq) < g(w, k), which means thaR |  is
not dense iR .. Therefore, by contradictioim,, k‘ﬁ(n),T(w) = kqr(w). Consequentlyk, 7(.)

is £/B(R)-measurable, as a limit ¢f/B(R ;. )-measurable functions]

Lemma A.24. Under Assumption$-7;11-12, asT — oo

sup ||hr(0:) — h(be)|| — 0 P-a.s.
0.cO®
Proof . Denote for this proofr (6 f® u(be, 0) f()* sp(0)df andg(8.) = u(0.,bp). By the triangle

inequality and then the subadditivity of supremum,

1 1
sup ||—gr(0 —q(0,
el |77 - Koog( )
< sup | ——gr(6) — — 5 H— L 6.)
5 up gr - gT up gT - g\Ue
o.co | KT K 0669 K
1 1
— sup ||| == — ] gl + sup |- 19700 o)l
s [KT KOO]QT( >H sup [ 2 1920 - o )]‘

The first term of the last line can be made arbitrary small’'as> oo P-a.s., sincekr — K, by
Proposition7.1iii) and gr(.) is uniformly bounded w.r.t.T" also by PropositiorY.liii). The second

term of the last line can be made arbitrary smallas> oo P-a.s. by Propositio. liii). (O
Lemma A.25. Under Assumption$-7;11-12, {ka, 1}, is bounded’-a.s.
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Proof. Proof by contradiction. Assume th@ka,t}T;1 is unbounded. Now, any real-valued sequence
has a monotone subsequefiteThen there exists a subsequerges () — +oo. If kq g1y — o0,
then forT" big enough/g 1{0ee@:hT(9)>ka,T}hT(96)d96 =0 < 1—q, sincehr(.) is bounded over the
compact se® by LemmaA.22ii). If k, 57y — —oo, then forT" big enoughk,, 57) is not the highest

bound S't'f(-) 1{966@:hT(9)>ka,T}hT(ee)dae >1—a.

Lemma A.26. Under Assumption$-7;11-12, for all « > 0, for all ¢ > 0, for T' big enough, for all
6. € ©,

Lo, cohp(0.)>ate} (0e) < Lo, con(o.)>a) (0c)

Proof. Letd, € {6. € O : hp(f,) >a+c}ie a+e < hp(f.). Now, by LemmaA.24, there
existsT € N such thatl' > T impliesVd. € O, ||hr(6.) — h(6.)| < e which in turn implies
—h(8.) < € — hy(6.). Thus,a < h(b.) i.e. b, € {f. € © : h(0.) > a}. In other words, fofl" > T,
{0 € ©® :hp(0) >a+e} C {0 € ®:h(b)>a}.O
A.12. Proof of Proposition7.4
i) Proof by contradiction immediate.
i) Apply the definition of Dirac distributions.
A.13. Proof of Proposition7.5
i) By Propositiord.4i), apply Lemma 2 from Jennrich (1969).
ii) It follows from Corollary?2.

A.14. Proof of Proposition7.6

i) Adapt proof of Propositio7.3).

ii) By Corollary2, a proof by contradiction is immediate.

“Let {un},, be areal-valued sequence. Deflle= {n € N : Vg > n,uq > un}. If #E = oo, any infinite subset of
E corresponds to an increasing subsequencg:Af < co, In; € N s.t. Vn > ny, 3¢ > n with uq < u,. Thus, we can
recursively define a strictly decreasing subsequence. Consequently, in both cases the result holds.
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A.15. Proof of Proposition8.1
It is definition-chasing. By Assumptiol,
Elu(dn,67)] > Elu(da, 67)]
& cayFr(®f) 4+ ba, Fr(©4) = cq,Fr(Of) + by, Fr(© 4)
& %FT(@)H) > Fr(©,).
da — Vdy
A.16. Proof of Proposition8.2
i) Write dr(.) with the help of indicator functions.
ii) By Corollary2, a proof by contradiction is immediate.

A.17. Proof of Proposition8.3

Adapt proof of Propositio. 1

A.18. Proof of Proposition8.4

Adapt proof of Propositios.2

A.19. Proof of Proposition9.1

Prove the existence &. Denoteco A the convex hull of a sel. By Assumptionsl5(e*) and tri-

angle inequalitysup(,, . ¢)ex7x & H% Zthl g (zy, qS)H < SUD(; g)enx® 9@ (z, $)|| < oo. Thus, for

e > 0,theset{¢ e R™7: | - GP)| < e} withG®) := {% ST 9P (24, ¢) 1z € Randg € <I>},

is closed by continuity of the functigh — G(?)|| and bounded by triangle inequality. Now, the convex

hull of a compact is compact (e.g., Theorem 1.4.3 on p.100 in Hiriart-Urruty and ey 1993).

Thus,co {¢ € R™7: ||¢ — G?)|| < ¢} is aconvex compact s&, thatinclude ¢ (z, ¢) : (z,¢) € X x &}

so that for allt € N, ¢ € ®, andw € €2, we can find € int(Z) such thatl, 7, ¢ (X (w), ¢) —

§= 0(m—q)><1'
It remains to prove Assumptidi(b)-(d)

(b) By Assumptioril5(b*), ® is compact. Thus, by the previous paragraphy = is compact.
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(c) Use Assumptiond5(c*)(d*) and note that a function is measurable if and only if each of its
component is measurable (e.g., Lemma 1.8 in Kallenberg, 1997).
(d) Use Assumption$5(d*) and note thad is solution to% Zle g (x4, ¢) = 041 is @ necessary

condition forf := (¢' ¢’)is solution to% Zthl (x4, 0) = 01 O

A.20. Proof of Proposition9.2

i) Forall(z,0) € Xx ©,¢(z,0) = g(xz,¢) + (01xq &) witho := (¢ ). Thus Assumption
16implies the result because the sum of continuously differentiable functions is continuously differen-
tiable.

ii) By construction2r C co ({gém(@}il) C E, which is the first result. For the second result,
it is sufficient to prove®, = &1 x = by Le_mmaA.28.

By definition of 2, the first restriction o in the definition of&; and LemmaA.27iii) is equiv-
alent to the first restriction ofi in the definition of®,. Because a product of square matrices is
invertible iff each matrix of the product is invertible, and because exponential tilting does not alter the
support of the initial distribution, the second and third restrictionsdn the definition of@®; with
LemmaA.27i) is equivalent to the first restriction ahin the definition of@ .

iiiy Because a product of square matrices is invertible iff each matrix of the product is invertible,
the first restriction oy € ® in & combined with Lemma\.27i) and second restriction ap € ® in

the definition of® are equivalent to the restriction éne © in the definition of® . O

Lemma A.27. Under Assumption$-2 modified according to Assumptiots-16, for all 6 € ©, for

all probability measurdP,

agM (X,
O (X, 0)} e [ Oexna)
00’

29®(X0)
g m—q

i) Ep [
i) Vp [¢(X,0)] full rank iff Vi [g(X, ¢)] full rank;

iii) forafixedr € R™, 0 := (¢' ¢')is solution toEp [¢(X, 9)e7'¢(X79)} = Oy 1 iff ¢ is solution

toE | g (X, ¢)ef’g(X7¢)} = 0,41 and¢ = Ep [9(2) (X, ¢)ef’g(X,¢)} /E [ef’g(X,aﬁ)}_

Proof. i) Differentiate.

i) Denotef := (01xq &'). Then,Vp [¢(X,0)] = Vp [g(X, ®) —§] =Vp [9(X, ¢)].
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iii) Denote := (01x4 ¢&'). Then

Ep [0(X,0)e" X 0| = 0,1,
o o=@ R, { [9(X, ) — €] eT/g(X,¢>)} = 0,1
(E]P [g(l)(X7 ¢)e7’g(X7¢)} = 0yx1
| Ep { [92(X,6) €] 79X | = 0,

P

Ep [gV(X, 9)e7' 9% = 00

¢ =Ep [9(2)()(, ¢)eT’9(X,¢)} /Ep [ef’g(X,qﬁ)}

O

Lemma A.28. Denote

ST g ()em ) = 0,0y

. (1) ’
dr = {pc®:IrcR" st [% f_la—gfa(gﬁ} £0
det
[#Lia@a)]|, #0

Then, under Assumptiotis3 modified according to Assumptioh§-17, &, = &.

Proof. Denoteco(A) the convex hull of a sefl. First prove®r ¢ &7. ¢ € &7 implies0,x; €
int [co ({ggl)(gb)}j:1>] , which in turn impliesp € & by duality argument. Conversel@; c &
because ith € &7, theng € &7 with 7 = (77(¢)  0(n_g)x1)".0

A.21. Proof of Proposition9.3

LemmaA.29-A.31 below provide Assumptions-7. [J
Lemma A.29. Under Assumption$-4 modified according to Assumptioh§-18, Assumptiord holds.

Proof. Prove Assumptiod(b)-(e).

(b) E [g(l) (X, qS)] = 0nx1 iS @ Necessary condition fé [¢(X,0')} = O With 8 = (¢ €)',
Then there exists a unique solutién= (¢y &) t0 E [i)(X,0)] = Opx1 With & = E [¢P (X, ¢9)]
andgy € int(®) by Assumptionl8(b*). Thus it remains to prov& [¢(® (X, ¢y)] € int(E).

Denotey, := E [¢? (X, ¢o)]. By definition of expectation and the one &fin Proposition9.1

on p58, there exis{wy,ws) € Q2 so thaty; := ¢@ (X (w1), ¢o) € Int(E), y2 := g (X (w2), o) €
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Thus there exists;,r7, > 0 s.t

int(Z2), and there isx € [0, 1] such thatyy = ay; + (1 — «)
E andB,, (y1) C E. Therefore, for aly € Byyin(r,,r,)(%0), there existg €]0, min(ry, r2)]

Yo +eu=oay + (1 — )y +eu

B7‘1 (yl) C

Yy
(y1 +eu) + (1 — a)(y2 + eu)

= «
By, (y1) and(y2 + eu) € B,,(y2). Thus, by convexity oE

” Now, (y1 + eu)

whereu := =
y € &, which in turn impliesyg € int(E)
(c) For all§ € E, denotet := (0144 ¢')'. Then
P(X,0) =g(X,0) — €
(X, )11 + [I¢]

@ Jux,0) <
sup [[9(X, ¢)| +sup €]

= sup [[Y(X,0) <
0cO®

= B |sup v,

(0)
+ sup [|¢]| < oo
9¢ (e
(a) Triangle inequality(b) Apply Assumptionl8(c*) and use the definition & in Propositior9.1

sup [lg(X, @)
L

(d) By LemmaA.27i) with IP = §x on pl118
d9(X, ¢)
H ]
+ [ Im—qll < o0

(X, 0) | _
00 || || a¢
“ (X, 0) 99(X, ¢)

T senll 09

0c®

where the strict inequality is implied by Assumptib&d*)

A~

(e) Apply LemmaA.27i).0]
Lemma A.30. Under Assumption$-5 modified according to Assumptiohs-19
) B CEand®o x Eeo = Ono
i) Assumptiorb holds
N x @}) C &, which is the first result

Proof. i) By constructionEe C co ({g®(z,4) : (z,9)

For the second result, it is sufficient to prode, = $., x =
By definition of 2, it is sufficient to prove that the restrictions ¢@rn the definition of® ., are
By the compactness & and Assumption

equivalent to the restriction ofin the definition of®
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19(a*), the first restrictions are equivalent becaﬂﬁs%xaT/w(X’e)} = E [ef'g(Xz‘f’)} e™¢. By Lemma
A.27i) on p.118 the second restrictions are equivalent.

By LemmaA.27i) on p118 the third restriction onp in the definition of®., is equivalent to
'9(X,p) O(X.0)
‘E [ef g( <¢>)T ]

» =# 0 because the determinant of block-triangular matrix equals the product
of the determinant of block matrices on the diagonal. By Len24ii) on p.118, the fourth restriction

on in the definition of.. is equivalent t#E [ef'g(xv‘ﬁ)w(X, P)V(X, ¢)’}

» =% 0. Now, a product of
square matrices is invertible iff each matrix of the product is invertible, and exponential tilting does not
alter the support of a distribution. Thus, the third and fourth restrictions in the definitidn.ofre
equivalent to the third restriction in definition Of .

By LemmaA.27iii) on p.118 the fifth restriction in the definition b is equivalent to the fourth
restriction in definition 0f® ..

i) Prove Assumptiois(a)(b)

(@) Apply i).

(b) For all§ € E, denote := (01x, ¢')". Then

swp[$(X,007 O = sup S

€ B, (0) ($,6)EBXE

o(5,9) 75159

N

K [sup Hg(X, ¢)eT/g(X’¢)H +( sup

geT'9(X:9) H
ped ) EPXE

whereK := supgcg "€ < 0o becaus& is compact. Now, by compactness®fand Assumptior21

E sup
(¢.8)e®xE

§eT'g(X’¢)H] — zup €] ZugE [eT'g(X@)} < 00.
€E €

Therefore, by Assumptioh9(b*), Assumption5(b) holds.[

Lemma A.31. Under Assumption$-6 modified according to Assumptiots-20 , Assumption$-7
hold.

Proof. Prove Assumptio®(a)-(b) and (e).
6(a) Note that a sum af** functions isC*.
6(b) By LemmaA.27i), for k > 1 D*w(X, ¢) is not a function of.
6(e) For all§ € 2, denotet := (01x, ¢&')". Then
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sup (X, 0)(X,0) = sup  [g(X,¢) - E][9(X, ¢) — &

0e® (p,8)ePxE
= sup g(X7¢)g(X7¢)/_g(Xa¢)§,_ég(X7¢)+€§/
($,6)e@xE
(@)
< sup g(X, $)g(X, )" +2 [sup |§||] lsup 19(X D) | trmxm
PP ¢eE I

+sup ||| trmxm
c=

wherer,, «., denotes a square matrix bf(a) Apply triangle inequality, use subadditivity of supremum,
and note that for any matrid := {ai,j}(i’j)eﬂmﬂxwﬂ, max; jye[,k]x[1,] 1%} < [[A[ with [|.|| the
Euclidean norm.

Now, by Assumptior20(e*) and18(c*), we have the result.

7(b) By compactness &, Assumptior21(b*) implies Assumptior? because

E sup eT’[g(X@)—ﬂ] < [ sup 67/1 E[ sup eT9(X9) |
))XE (Tv¢)eBT1(

(7'1¢7)€BT1 (TOO (‘?B))XBTQ (¢) (T,ﬁ)EBrl (Too (¢ Tw(é))XBrz (¢)

O

A.22. Proof of Proposition9.4

Adapt proof of Propositiod.3

A.23. Proof of Proposition9.5

i) Adapt proof of Propositiod.4.
ii) Convergence of a joint distribution implies convergence in distribution of marginal distributions
(e.g., Theorem 4.29 in Kallenberg, 1997 after normalization of the ESP intensity). Then, adapt the
proof of Propositior8.4to the marginal ESP intensitfe: o,(&) = [ foz.sp(0)do.

A.24. Proof of Proposition9.6

Convergence of a joint distribution implies convergence in distribution of marginal distributions

(e.g., Theorem 4.29 in Kallenberg, 1997 after normalization of the ESP intensity). Then, adapt the
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proof of Proposition7.6 (Appendix A.14 on pl116) to the utility-weighted marginal ESP intensity
g;cysp(g) = ﬁg fqﬂ u(¢e7 d))fe},sp((bv ge)d¢d¢e-
A.25. Proof of Proposition9.7

Adapt proof of Propositiod.6.

A.26. LemmaA.32

/
Lemma A.32. Assume{ <ln (Cé—tl> In (R17t+1)> } is a sequence of random vectors i.i.d. s.t.
t>1

C,
In (%ﬁl) N 0 a2 0
In (R17t+1) 0 0 90'2

o 2 —
fo=.260=30= e*LOz) anfd log (thjl) := log (ng) + %log (R1,+1), then the moment

condition
i) E [ﬂ exp <—010g <Cé'+1)) Rit11 — 1] = 0 has only two solutiong = 3 andf = 0;
t

.. 1 . .
ii) IE{ [ﬂ exp (—Hlog (Cgl)> Rit1 — 1] <§ log (RMH)) } = 0 has a unique solutioft =
t
3.

Proof. The result follows from the value of the Laplace transform for a Gaussian distribution.

i) PutU :=log (%) andV := %log (R1,+1); and then rewrite the moment condition

t
Bexp <010g <Cg1>> Rigy1 — 1] —0
t

E

122



—

with log ( “’1) = log (Ct“) + %log (R1,+1), @s

2 2
5

efe(U+V)+3V} -1

]
o2 42,2 2,2
2:2 e 902 e 2 e(3 92) =1

© _000 N 620> n (3 —0)%0?
2 2 2

e;]E
20‘

=0

(a) Independance df andV. (b) Laplace transform of a Gaussian distributionY1f— N (my, oy),
thenforallt € R E [eY] = exp (tmy + ) (c) Take logarithm.

Now, a second order polynomial can at most have two roots; angyfer3, 6 = 3 andf = 0 are
two roots of the last equation. Thus, these are the only two solutions to the moment condition.

i) Use the same notations as in i); and then rewrite the moment condition

IE{ [ﬂ exp <—elog</%1)> Ryl — 1] (% log (Rl,m))} =0

as

080’2

K [Ve—o(UJrVHSV _ V} —0

@ e_e?); 21@ [e—HU} E [Ve(?)—")‘/} -0

(3—0)202
U o oc“‘(3—0e 2 =0
(a) Independance dff andV andE(V) = 0. (b) Laplace transform of a Gaussian distribution and
2 2
etY 0 €xp ! Y 20_2
E [Yety] = B]E([% ] = [ (8t2 )} = %22tet2 .

Since all the terms in the last equation are striclty positive ex@p?), the only solution i9 = 3.
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