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Abstract

Dynamic, empirical, consumption-based asset pricing and other areas have been a challenge to

existing inference theories. The main contribution of this dissertation is to define and develop an

inference approach to tackle this challenge. We call it the ESP approach, as it is based on the empirical

saddlepoint (ESP) technique. The idea is to provide a moment-based framework that generates point

estimates, confidence regions and tests that rely more on the information in the sample at hand and less

on asymptotic limits. The result is an inference approach that provides a unique answer to multiple

theoretical and practical concerns faced by existing inference approaches.

Three main steps have been undertaken to reach this objective.

A first step is to put the ESP technique into a general mathematical framework autonomous from

standard classical inference. We prove that there exists an intensity distribution of solutions to the

empirical moments over the parameter space. Then, we use the ESP technique to approximate this

intensity distribution. We call the result the ESP intensity. We prove that it is consistent and asymptoti-

cally normal, that is to say that it converges to a point mass at the population parameter like a Gaussian

distribution with a standard deviation that goes to zero at rate square root of the sample size. These

results are robust to the presence of multiple solutions to the moment conditions (non-identification),

as long as their number is finite.

A second step is the development of a decision-theoretic approach within the ESP inference frame-

work. In other words, we propose to choose a loss function according to an inference purpose, and then

make the inference decision that minimizes the expected loss. Minimization of expected loss is the

optimal answer to the estimated uncertainty that comes from inference, as maximization of expected

utility by a consumer is optimal in microeconomic theory. However, a decision-theoretic approach is

generally impossible or delicate within existing classical inference theory (e.g., p.4-5 in Lehmann and

Casella, 1998), so that only asymptotic optimality results are typically obtained. For a large class of

loss functions, we provide ESP point estimate, confidence region, and prove that they are consistent.

Simulations of a consumption-based asset pricing model suggest that ESP point estimates and confi-

dence regions perform similarly to, or clearly outperform, the best existing moment-based inference

approaches.

A third step develops tests within the ESP framework. In standard classical inference theory, tests

usually correspond to confidence regions. Similar tests can be defined in the ESP framework. As an ex-

ample, we provide a test of over-restricting moment conditions in this spirit. However, we also propose
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straightforward decision-theoretic point-hypothesis and set-hypothesis tests, which does not correspond

to confidence regions. Set-hypothesis tests are typically non-trivial in classical inference theory. Un-

like standard classical tests, we prove that ESP decision-theoretic tests do not lead to any asymptotic

error. We study their robustness to the presence of multiple solutions to the moment conditions. Unlike

standard classical tests, multiple hypothesis testing on the same data set does not undermine the the-

oretical validity of confidence-region based and decision-theoretic ESP tests. Simulations explore the

performance of ESP tests in the context of consumption-based asset pricing.
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1. Introduction

One of the fundamental problems in classical1 inference is the gap between practice which is

necessarily based on bounded sample size, and theory whose main results are about situations where

the sample size can be infinitely increased. This gap has both a qualitative and a quantitative dimension:

it is, respectively, a logical and an accuracy problem. While the qualitative dimension of the problem

is most of the time acute, the quantitative dimension of the problem is more or less acute depending

on the situation. The moment based estimation setting generalized by Hansen (1982) embeds most of

the econometric approaches used; and applications and simulations have revealed that it can often lead

situations where the quantitative gap between standard asymptotic theory and practice in samples of

usual sizes cannot be ignored.

For example, in the original area of application of GMM, consumption-based asset pricing (Hansen

and Singleton, 1982), the literature has found little common ground about the values of the represen-

tative agent’s relative risk aversion (RRA) and elasticity of intertemporal substitution (EIS). Point es-

timates from economically similar moment conditions are generally outside of each other’s confidence

intervals. One possible explanation is the inadequacy of consumption-based asset pricing theories. But

models are not always rejected (e.g., Vissing-Jorgensen and Attanasio, 2003; Savov, 2010), and simu-

lations point to the insufficiency of the standard classical inference theory for consumption-based asset

pricing (e.g., Kocherlakota, 1990a; Hansen, Heaton and Yaron, 1996 and other papers in that issue of

JBES).

There are at least two main ways to try to reduce the gap between econometric asymptotic theory

and practice, which relies on bounded samples. One way, which is often put forward, is to look for

better asymptotic properties with the hope that they will induce a better finite-sample behaviour (e.g.,

Newey and Smith, 2004). Another way is to develop inference procedures that rely more on the in-

formation contained in the sample at hand and less on asymptotic results. For example, generalizing

Anderson and Rubin (1949), Stock and Wright (2000) derive confidence regions that incorporate infor-

mation from the global shape of the empirical objective function instead of relying on the asymptotic

limit of standard statistics. In this dissertation, we go further in this direction. The main contribution

1In this dissertation, the word “classical” is used in opposition to “Bayesian”. We characterize as “classical” an approach
that does not treat the population parameter as a random variable. The difference and similarity between the theoretical
approach here, which is a classical approach, and the Bayesian approach is discussed in section6. The theoretical approach
here is also different from the common interpretation of fiducial statistics (e.g., Seidenfeld, 1992).
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of the paper is to define and develop a moment-based inference framework that yields point estimates,

confidence regions and tests that rely more on the information in the sample at hand and less on asymp-

totic limits. We call the result theESP approach, as it is based on an empirical saddlepoint (ESP)

approximation.

The only difference between the population parameter and other parameter values is that the former

one solves the moment conditions. Although analytically unknown, the empirical moment conditions

are their finite-sample counterpart. Therefore, the idea of the ESP approach is to approximate the

distribution of the solutions to the empirical moment conditions thanks to the saddlepoint technique.

Different samples imply different empirical moments, and, thus, random solutions to empirical moment

conditions. We call the approximation of their distribution theESP intensity. It summarizes in proba-

bilistic terms the uncertainty about the population parameter due to the finiteness of the sample. Thus,

we propose to use it in the same way as a posterior is used in Bayesian inference to derive estimate

and confidence region. We show that the ESP approach satisfies criteria similar to the ones advanced to

justify existing classical inference theories. In particular, we prove that the ESP intensity is consistent

and asymptotic normal. We also show that these results are robust to the presence of multiple solutions

to the moment conditions (non-identification), as long as their number is finite.

The ESP approach leads to contributions in several strands of literature. We distinguish three of

them.

First, the ESP approach contributes to inference decision theory, which considers inference as a

choice of parameter values in the spirit of microeconomic theory under uncertainty. More precisely,

an inference decision-theoretic approach is an approach in which an econometrician chooses a utility

function (or, equivalently, a loss function)2 according to an inference purpose, and then makes the

inference decision that maximizes the expected utility (or, equivalently, minimizes the expected loss).

A decision-theoretic approach does not only provides flexibility through the choice of a utility function,

but also provides strong finite-sample foundations. Maximization of expected utility is theoptimal

answer to the estimated uncertainty that comes from estimation, as maximization of expected utility by

a consumer is optimal in microeconomic theory. However, a decision-theoretic approach is generally

impossible or delicate within existing classical inference theory (e.g., p.4-5 in Lehmann and Casella,

2 We express our decision-theoretic approach in terms of utility functions instead of loss functions because of our em-
phasis on 0-1 utility functions (see section7). To avoid any confusion in this dissertation between the utility function of a
representative agent and the one chosen by an econometrician, we reserve the term preferences for the former and and utility
for the latter.
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1998), so that only asymptotic optimality results are typically obtained. In contrast, the ESP approach

offers a classical inference framework in which the application of decision theory is straightforward.

We prove that for a large class of utility functions the resulting estimates are consistent.

Second, the ESP approach contributes to the saddlepoint literature. The ESP approximation is the

empirical counterpart of the saddlepoint approximation. The ESP approach uses the ESP approxima-

tion technique in a new way that yields novel theoretical results. Following the statistical literature

(e.g., Tingley and Field, 1990; Jensen, 1992; Robinson, Ronchetti and Young, 2003), the saddlepoint

approximation has been used to improve on existing inference approaches in econometrics. Imbens

(1997), Ronchetti and Trojani (2003) and Sowell (2007) propose to derive more accurate confidence

intervals and tests for GMM. Czellar and Ronchetti (2010) propose more accurate tests for indirect

inference. Sowell (2009) proposes an ESP-based estimator to automatically correct the higher-order

bias of generalized empirical likelihood (GEL) estimators. Aı̈t-Sahalia and Yu (2006) propose a sad-

dlepoint approximation of transition density for likelihood-based inference of continuous-time Markov

processes. In this dissertation, we use the ESP approximation to develop an inference framework

autonomous from the existing classical approaches. This change of perspective removes several theo-

retical hurdles to the use of the saddlepoint approximation for inference. In particular, it removes the

dichotomy between the saddlepoint approximation of the distribution of potentiallymultiplesolutions

to empirical moment conditions and theuniquenessof point estimates, which is documented in Skov-

gaard (1985; 1990), Jensen and Wood (1998), and Almudevar, Field and Robinson (2000). Our change

of perspective also opens new areas of application to the saddlepoint approximation. For example, it

suggests ways to incorporate uncertainty from estimation into the calibration of models. Furthermore,

this change of perspective leads to show measure-theoretic, analytical and global asymptotic properties

of ESP approximations.

Third, the ESP approach contributes to the identification and weak-identification literatures. Be-

cause, unlike the existing saddlepoint literature, it does not build on approaches that rely on identifica-

tion, the ESP approach is robust to lack of identification. By lack of identification, we designate both

situations in which the moment conditions have multiple solutions (non-identification), and situations

in which the objective function behaves as if the moment conditions had multiple solutions, although

they have only one (weak identification). Lack of identification is a frequent issue in many areas (e.g.,

Pesaran, 1981; Rust, 1994; Mavroeidis, 2005) such as consumption-based asset pricing (e.g., Smith,

1999; Stock and Wright, 2000; Neely, Roy and Whiteman, 2001). The weak-identification literature
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(e.g., Dufour, 1997; Stock Wright, 2000; Kleibergen, 2005; Guggenberger and Smith, 2005; Otsu,

2006) has developed confidence regions and tests robust to lack of identification for generalized empir-

ical likelihood (GEL). The idea behind them is to deduce probabilistic statements from the asymptotic

limit of objective functions instead of from quantities that rely on the asymptotic limit of point es-

timates. In a similar way, the robustness of the ESP approach to lack of identification derives from

the deduction of probabilistic statements from the ESP objective function. However, in contrast to the

weak identification literature, the ESP objective function is based on an estimated distribution, the ESP

intensity. This difference provides several advantages to the ESP approach, such as much shorter confi-

dence regions and straightforward construction of confidence regions for subvectors of parameters. The

ESP approach also offers a complementary approach to the identification literature, which has focused

mainly on finding general technical conditions (e.g., Rothenberg, 1971; Komunjer, 2011) such as rank

conditions, or model-specific (e.g., Magnac and Thesmar, 2002) conditions to guarantee identification.

Nonetheless, identification remains often difficult to prove. Thus, the robustness of the ESP approach

to multiple solutions to the moment conditions can be useful.

The dissertation is organized as follow. Section 2 analyzes the problem faced by empirical consumption-

based asset pricing, and provides an overview of the ESP approach. Section 3 presents heuristically

the idea behind the ESP approximation. Section 4 presents the ESP estimands and estimators, section

5 the asymptotic behaviour of ESP estimators. Section 6 provides a discussion of the foundation of

the ESP framework with respect to existing inference theories. Section 7 presents a decision-theoretic

approach within the ESP framework. Section 8 derives ESP tests. Section9 extends the ESP frame-

work to deal with over-restricting moment conditions. Section10 presents simulation results from a

consumption-based asset pricing model. Proofs and supplementary results are in the Appendix.

2. Motivation and overview

2.1. Analysis of the question

The key equilibrium implication of standard consumption-based asset pricing models is zero ex-

pected discounted profit for the representative agent. More precisely, there is an equilibrium if$1

invested at datet in any assetj minus its expected gross return for datet + 1 discounted for risk and

10



time equals0 i.e.

∀j ∈ [[1, n]], 1− Et [Mt+1(θ0)Rj,t+1] = 0 (1)

whereEt[.] denotes the expectation operator conditional on the information available att, Rj,t+1 the

gross return of assetj betweent and t + 1, n the number of assets considered andMt+1(θ0) the

stochastic discount factor indexed by the population parameterθ0. Different consumption-based as-

set pricing models correspond to different ways of discounting for time and risk through different

stochastic discount factors,Mt+1(θ0). Typically, no distributions are assumed except for tractability

reasons. Therefore, the standard inference approach in consumption-based asset pricing is the gen-

eralized method of moments (GMM). Unlike most alternatives,3 its main assumptions are moment

conditions like equations (1).

With the GMM approach (Hansen, 1982), the minimization of a norm of the empirical moment

condition first produces a point estimate i.e.θ̂gmm minimizes

∥
∥
∥
∥
∥
1

T

T∑

t=1

ψ(Xt, θ)

∥
∥
∥
∥
∥

(2)

where‖.‖ denotes a norm4 and whereψ(Xt, θ) := [(1 1 ∙ ∙ ∙ 1)′ −Mt+1(θ)(R1,t+1 R2,t+1 ∙ ∙ ∙Rn,t+1)′]~

Yt with Yt an element of the representative agent’s information set at datet, ~ the Kronecker prod-

uct and′ the transpose symbol. Second, considering that thet-statistic based on akth component
√
T
θ̂gmm,k−θ0,k

σ̂k,k
follows a standard normal distribution,N (0, 1),5 a confidence set estimate and the

set of point-hypothesis not rejected,Îα =
[
θ̂gmm,k −

σ̂k,k√
T
u1−α/2, θ̂gmm,k −

σ̂k,k√
T
uα/2

]
, are deduced.

uα/2 denotes theα/2 quantile of aN (0, 1). Figures1 and2 show GMM objective functions multi-

plied byT 3/4 of consumption-based asset pricing models with constant relative risk aversion (CRRA)

and Epstein-Zin-Weil (EZW) preferences, respectively. In Figure1, although multiplying the objective

function byT 3/4 magnifies level differences,6 there is a clear canyon in the risk aversion dimension,γ,

3 Other moment-based inference approaches, such as the generalized empirical likelihood (GEL) approach, have been
introduced in consumption-based asset pricing. However, without loss of generality, the introduction focuses on GMM for
simplicity. With minor modifications, the analysis applies to these more recent approaches as well.

4 The norm often depends on data, as in two-step GMM, but it does not affect our analysis.

5 When the asymptotic distribution of a statistic is chi-square, the reasoning is the same. A chi-square is an inner product
of Gaussian distributions.

6 Multiplying the GMM objective function by T 1−ε is a technique often used in practice to find the
global minimum (e.g., Hall, 2005). Asymptotically, for0 < ε < 1 with WT a positive-definite
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around a time discount factor,β, slightly below 1. For the more general Epstein-Zin-Weil preferences,

there are even more canyons, as shown in Figure2. In both cases, there is no clear global minimum.

Small variations of the objective function caused by slight data modifications often yield very different

point estimates. Reported standard deviations often do not account for such variations. Standard GMM

theory summarizes inference as if the uncertainty about the population parameter corresponded to a rel-

atively peaked Gaussian density centered at the global minimum.7 Paradoxically, the weak statistical

structure required by standard GMM theory often leads in empirical consumption-based asset pricing to

strong statistical restrictions and thus to overestimation of the inference precision.8 Nonetheless, differ-

ent parameter values can have very different theoretical implications. For example, whereas Guvenen

(2009) argues for an EIS smaller than one, Bansal and Yaron (2004) require an EIS higher than one so

that the intertemporal substitution effect dominates the wealth effect. Progress in consumption-based

asset pricing theory will probably exacerbate this problem. As illustrated by Figures1 and2, often, the

more advanced a model, the larger the space in which the data information is projected and the more

convoluted the GMM objective function.

Careful examination of GMM theory explains this unaccounted instability of GMM estimates. Al-

though any sample size is bounded,11 the theoretical justifications put forward for GMM estimates and

tests assume infinitely increasing sample sizes. This is only the global minimum of theasymptotic

objective function that corresponds to the population parameter value. In a finite sample, the global

minimum is not necessarily even the local minimum closest to the population parameter. Similarly,

only theasymptotic limitof
√
T
θ̂gmm,k−θ0,k

σ̂k,k
is distributedN (0, 1). Moreover, there is no means to

compute a bound for the error implied by the use of these asymptotic results.

The GMM objective functions also suggest an additional problem, lack of identification. Multiplic-

ity of local minima is often the symptom of identification failure. Identification means there is only one

solution to the moment conditions (1), i.e., the asset pricing equilibrium cannot correspond to multiple

matrix (p-d.m.) whose limit is also a p-d.m. limT→∞ T 1−ε
[
1
T

∑T
t=1 ψt(θ)

]′
WT

[
1
T

∑T
t=1 ψt(θ)

]
=

{
limT→∞ T−ε

√
T
[
1
T

∑T
t=1 ψt(θ)

]
WT

√
T
[
1
T

∑T
t=1 ψt(θ)

]
= 0 if θ = θ0

∞ if θ 6= θ0
whereψt(θ) := ψ(Xt, θ).

7In this dissertation, we maintain the distinction between “uncertain” and “random.” In particular, given a sample, in
standard classical inference theory, confidence regions summarize an uncertainty without randomness, unlike ESP confidence
regions. See the second paragraph of section9.2.2for more explanations.

8 Sims (p. 3-4, 8, 2007a; section III, 2007b) makes a similar remark to justify the Bayesian approach w.r.t. the classical
approach.

11Although in finance, continuous-time processes are often considered for mathematical tractability, in practice, a sample
size is bounded. A computer memory is bounded.
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Figure 1: GMM objective function multiplied byT 3/4 of the consumption-based asset pricing model
with constant relative risk aversion (CRRA) preferences with fixed weighting matrix. Instruments are:
Ct
Ct−1

andcayt. Values of the objective function superior to 5 are set to 5.

EIS and RRA values. Typically, such an assumption is unverifiable because the moment conditions are

unknown analytically (e.g., section 2.2.3 in Newey and McFadden, 1994). Only with an infinite sample

size would the moment conditions be perfectly revealed.

2.2. Informal presentation of the ESP approach

The dissertation aims at addressing the concerns mentioned above. Although there are no ideal

finite-sample justifications, asymptotic arguments are not the only way to theoretically compare esti-

mates. From a finite-sample point of view, an ideal estimate would solve the moment conditions (1), but

then no estimation would be needed. However, some inference approaches have higher finite-sample

justification than others. For instance, any objective function consisting of the sum of the GMM objec-

tive function and a function vanishing asymptotically enjoys the same asymptotic justifications as the

GMM objective function. More precisely, estimates induced by the following objective function have

the same asymptotic properties as GMM estimates :

∥
∥
∥
∥
∥
1

T

T∑

t=1

ψ(Xt, θ)

∥
∥
∥
∥
∥
+
h(θ)

T k
(3)
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Figure 2: GMM objective function multiplied byT 3/4 of the consumption-based asset pricing model
with Epstein-Zin-Weil preferences forβ = 0.95, and with fixed weighting matrix.10 γ and1/δ are
respectively known as the relative risk aversion (RRA) and as the elasticity of intertemporal substitution
(EIS). Instruments are:CtCt−1

andcayt−1. Values of the objective function superior to 5 are set to 5.

whereh(.) is an arbitrary bounded function andk a large enough constant. However, nobody would

accept the objective function (3). h(.) := c‖. − θ‖ with c a little larger than the largest number that

the computer at use can handle yields a point estimate closeto θ for lot of very different parameter

values,θ, chosen in the parameter space,Θ. The difference between objective function (3) and the

GMM objective function (2) is their finite-sample meaning. The GMM point estimate minimizes the

norm of the empirical moment conditions, whereas the estimates from objective function (3) does not

have a clear finite-sample meaning. More generally, one can use the same device as (3) to create

an infinite number of estimates with the same asymptotic properties of the best asymptotic estimator

available. Therefore, the idea behind the ESP approach is to find an inference approach with the

strongest possible finite-sample justification so that it yields inference procedures that rely more on the

information contained in the sample at hand and less on asymptotic results. Good asymptotic properties

should follow, as an asymptotic performance is the limit of increasing finite-sample performances.

The only difference betweenθ0 and other elements of the parameter space is thatθ0 solves the

moment conditions (1). But the moment conditions (1) are unknown. Nevertheless, because the em-

pirical moment condition approximates the moment conditions (1), we estimate the distribution of the

solutions to the empirical moment conditions. The empirical saddlepoint (ESP) technique allows us to

14



approximate this distribution non-parametrically. Different samples imply different empirical moment

conditions, and thus different solutions.12 We call the ESP approximation theESP intensity. Despite

its regularity properties, it does not suffer from the curse of dimensionality usually faced by smooth

non-parametric estimates of distributions (Ronchetti and Welsh, 1994). We prove that as the sample

size increases it converges to a point mass at the population parameter (or Dirac distribution at the

population parameter). The ESP intensity summarizes in probabilistic terms the uncertainty coming

from the imperfect knowledge of the moment condition. Consequently a decision-theoretic approach

is possible. The econometrician can choose a utility function (or equivalently a loss function),u(., .),

according to an inference purpose. In practice, the utility function may correspond to the opposite of a

financial loss implied by an inference imprecision. Thanks to this utility function, we define anESP

point estimate, θuT , as a maximizer of the ESP expected utility i.e.

θ̂uT := arg max
θe∈Θ

Ẽ [u(θe, θ
∗
T )]

whereẼ [u(θe, θ∗T )] :=
∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθ with f̃θ∗T ,sp(.) the ESP intensity. By definition,̂θuT is

anoptimalpoint estimate for the uncertainty embodied in the ESP intensity. We prove the consistency

of θ̂uT for a large class of utility functions. For researchers, an econometrician utility function corre-

sponding to absolute preference for finite-sample “truth” is pertinent. In this case, after normalization,

utility equals1 if θe is a solution to the empirical moment conditions and0 otherwise. The result-

ing point estimate is the mode of the ESP intensity. In other words, it is a parameter value with the

highest estimated probability weight of being a solution to the empirical moment conditions. Thus,

it is a maximum-probabilityestimate.13 Such an estimate aims at taking into account all the possible

samples. In contrast, the GMM point estimate is the solution to the empirical moment condition in the

comparable just-restricted case (or just-identifying case).14 Thus, GMM point estimates are backward-

looking, while ESP point estimates are not. Since consumption-based asset pricing models are rational

expectation models, the ESP approach is more appropriate for self-consistency of inference.

12To avoid a too cumbersome terminology, we call “empirical moment conditions” both theex anterandom empirical
moment conditions and theex postfixed empirical moment conditions. Context indicates which ones it is about.

13 First, note that it is different from maximum-likelihood estimators (MLE). MLE maximizes the probability weight of
theobserved sample. Loosely speaking, MLE maximizesplausibilitywhile maximum ESP aims at maximizing finite-sample
“ truth”. Second, note also that this is different from the mode of a Bayesian posterior (see section6 p.34).

14In the over-restricted case (or over-identified case), GMM is also backward-looking. But, it is not immediately compa-
rable with the ESP approach, because the GMM objective function is not expressed in terms of the dimension of interest,
parameter values; but in terms of the norm of empirical moment conditions.
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We also define confidence regions to assess the stability of ESP point estimates. AnESP confi-

dence regionof level1− α is a set

S̃u,T :=

{

θe ∈ Θ :
1

KT

∫

Θ
u(θe, θ)f̃θ∗T ,sp(θ)dθ > kα,T

}

wherekα,T is the highest bound satisfying
∫
S̃u,T

1
KT

∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθdθe > 1 − α andKT :=

∫
Θ2 u(θe, θ)f̃θ∗T ,sp(θ)dθdθe. We prove that ESP confidence regions converge to their asymptotic coun-

terpart as the sample size increases. All the parameter values in the confidence region provide a higher

weighted utility for the econometrician than the ones outside. Thus, a small variation of the ESP in-

tensity caused by a slight data modification leads to a new point estimate belonging to the original

ESP confidence . If the ESP intensity is multimodal, the ESP confidence can consist of a union of

disjoint sets. This is not the case with the standard GMM approach because the asymptotic Gaussian

distribution is unimodal.15 Standard confidence intervals often underestimate the uncertainty about

the population parameter. Standard confidence intervals also overestimate the uncertainty in another

dimension. They consider the population parameter to be outside the parameter space with a strictly

positive probability because the support of a Gaussian distribution is the whole real line. For exam-

ple, in consumption-based asset pricing, a time discount factor potentially higher than one is implied,

although a consumption-based asset pricing model is not necessarily defined for such values.16 ESP

confidence regions do not regard values outside the parameter space as possible because the ESP inten-

sity support is included in the parameter space by construction.

In standard classical inference theory, tests usually correspond to confidence intervals, and thus

are subject to the same concerns. Similarly to standard classical inference theory, we define ESP tests

based on confidence regions. However, we also develop ESP decision-theoretic that are not based on

confidence regions. DenotedH anddA, respectively, as acceptance and rejection of a test hypothesis.

We define anESP testas a mapping such that if

Ẽ[u(dH , θ
∗
T )] > Ẽ[u(dA, θ

∗
T )]

15 We write “standardGMM approach” because continuously updated GMM confidence regions for lack of identification
(LCU) share similar advantages with ESP confidence regions (Stock and Wright, 2000). However, LCU confidence regions
do not allow us to handle point estimate instability in terms of decision-making. Moreover, they tend to be huge w.r.t. ESP
confidence regions. See the simulations in section10.3p. 69.

16When the time discount factor is greater than one, the value function of an infinitely-lived representative agent may
explode to infinity. However, Kocherlakota (1990b) provides examples of economy in whichβ > 1 is reasonnable.
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then it maps todH ; and otherwise todA. In other words, a hypothesis is accepted if the ESP expected

utility provided by the acceptance hypothesis is higher than the one of the alternative. ESP hypothe-

sis testing is more flexible than classical testing theory. For instance, testing whether the EIS of the

representative agent is greater than one is straightforward in the ESP approach. In classical inference

theory, set-hypothesis tests are usually a challenge (e.g., section 21.D in Gouriéroux and Monfort,

1989). Point-hypothesis ESP tests are also more satisfactory than classical tests even from an asymp-

totic point of view. By construction, classical tests of levelα lead asymptotically to wrongly rejecting

a right hypothesis with probabilityα. In other words, a perfectly correct consumption-based asset

pricing theory is asymptotically rejected by a classical test with probabilityα. This is unsatisfactory

because asymptotically the model is perfectly known. Such asymptotic error does not occur with the

ESP approach as the ESP intensity converges to a point mass (or Dirac distribution) at the population

parameter.17 In addition, if multiple preference values of the representative agent yield the same asset

pricing equilibrium (non-identification), the standard classical approach is not valid. In contrast, ESP

confidence regions and tests are robust to multiple preference values consistent with the moment con-

ditions (1). We prove that the ESP intensity converges to a sum of point mass (or Dirac distribution),

each centered at a solution to the moment condition.

3. Heuristic derivation of ESP intensity

ESP intensity is the ESP approximation of the distribution of the solutions to empirical moment

conditions. First, we derive heuristically the saddlepoint (SP) intensity under the assumption that the

data follow a distribution from a known parametric family. Second, we plug in the empirical distribution

and deduce the ESP intensity. For clarity, we consider a one dimensional parameter space (i.e.,m = 1)

in this section.

17 In the standard classical approach, a typical acceptance region of a test of levelα is

Îα =
[
θ̂gmm,k −

σ̂k,k√
T
u1−α/2, θ̂gmm,k −

σ̂k,k√
T
uα/2

]
, and the justification for such an accep-

tance region is the following: limT→∞ P
{
θ̂gmm,k −

σ̂k,k√
T
u1−α/2 6 θ0,k 6 θ̂gmm,k −

σ̂k,k√
T
uα/2

}
=

limT→∞ P
{
uα/2 6

√
T
(θ̂gmm,k−θ0,k)

σ̂k,k
6 u1−α/2

}
= 1 − α. In the ESP approach, confidence regions and tests

are disentangled.
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3.1. The saddlepoint intensity

Denoteθ∗T a solution to the empirical moment conditions,1T
∑T

t=1 ψ(Xt, θ) = 0 where{Xt}Tt=1

are univariate i.i.d. data. The probability distribution function (p.d.f.) of data isfX,θ0(.) with θ0 the

population parameter. Denote

ZT :=
√
T (θ∗T − θ0)

The Edgeworth expansion of the finite-sample distribution ofZT is

fZT (z) =
1

σ
n
( z
σ

){

1 +
1
√
T
r1(z) +

1

T
r2(z) + . . .+

1

T j/2
rj(z) + op

(
1

T−j/2

)}

wherefZT (.) denotes the distribution ofZT , n(.) is the standard normal density,σ2 :=
[
E∂ψ(X,θ0)∂θ

]−1

V [ψ(X, θ0)]
[
E∂ψ(X,θ0)∂θ

]−1
, j is the order of the approximation,r1(.) is a polynomial without con-

stant term, andrj(.) are other polynomials. In accordance with the central limit theorem (CLT), the

Edgeworth expansion shows that asT →∞ the distribution ofZT , fZT (.), converges to the Gaussian

density 1σn
(
.
σ

)
.

The quantity of interest is notZT , butθ∗T . By the change of variableθ∗T := T
− 1
2ZT +θ0, we obtain

the Edgeworth expansion of the distribution ofθ∗T ,

fθ∗T (θ) =
√
TfZT

(√
T (θ − θ0)

)

fθ∗T (θ) =

√
T

σ
n

(√
T
θ − θ0
σ

){

1 +
1
√
T
r1

(√
T (θ − θ0)

)
+
1

T
r2

(√
T (θ − θ0)

)
+ . . .

+
1

T j/2
rj

(√
T (θ − θ0)

)
+ op

(
1

T j/2

)}

(4)

Note that for θ = θ0, the first term of the expansion,
√
T
σ n (0) , provides an accurate approxi-

mation of fθ∗T (.), because all non constant monomials equal 0, and even the first polynomial,r1(.),

cancels out. The crux of the SP approximation is to make this be the case for eachθ ∈ Θ. For

eachθ ∈ Θ, fθ∗T (.) is recentered atθ0 in a reversible way, and then only the first term of the ex-

pansion is retained.We recenter via a change of measure in the spirit of the Cameron-Martin-Girsanov

theorem (e.g., Karatzas and Shreve, 1988, p. 191), termed exponential tilting.18 In other words, the

18 In finance, the physical distribution is recentered to obtain the risk-adjusted distribution under which there is null
expected profit. With the SP approximation, the distribution of data is recentered for eachθ ∈ Θ to better approximate the
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SP approximation replaces the standard global Gaussian approximation (i.e., CLT) with a continuum

of point-wise Gaussian approximations. As a consequence, the error is “squeezed.”

Figure 3: Tilting offX(.) := l[−1,1](.) for 1T
∑T

t=1 ψ(Xt, θ) :=
1
T

∑T
t=1 (Xt − θ) andT = 1. Forθ

equals 0, .2, .4, .6, .8 and .95,τ(θ), respectively, equals 0, 1.34, 2.4, 5 and 20.

The result is the SP intensity

fθ∗T ,sp(θ) := exp
{
T ln

[
Eeτ(θ)ψ(X,θ)

]}( T

2π

)1/2 [
σ2(θ)

]− 1
2 (5)

where

σ2(θ) :=

[∫

R

∂ψ(x, θ)

∂θ
fX,τ(θ)(x)dx

]−1 [∫

R
ψ(x, θ)2fX,τ(θ)(x)dx

]

(6)

×

[∫

R

∂ψ(x, θ)

∂θ
fX,τ(θ)(x)dx

]−1

fX,τ(θ)(x) :=
fX,θ(x)

exp
{
T ln

[
Eeτ(θ)ψ(X,θ)

]} (7)

τ(θ) s.t.

∫

R
ψ(x, θ)

fX,θ(x)

exp
{
T ln

[
Eeτ(θ)ψ(X,θ)

]}dx = 0 (8)

The approximation(5) was found by Field (1982), who extended the work of Daniels (1954) for means

to Z-estimators (orM -estimators by an abuse of terminology). The first term of the SP intensity is

the exponential tilting term. It comes from recentering. The two other terms correspond to the first

probability weight ofθ satisfying the moment condition. Exponential tilting corresponds to the Radon-Nikodyn derivative
dPτ(θ)
dP

= eτ(θ)X .
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term of the Edgeworth expansion (4) for θ = θ0. Note thatn(0) = 1√
2π

. The varianceσ2(θ) now

depends onθ because it is computed under the new exponentially tilted distribution,fX,τ(θ)(.), for

eachθ ∈ Θ. Equation (7) defines for eachθ ∈ Θ the exponentially tilted distribution under whichθ is

a solution to the moment condition. The exponentially tilted distribution,fX,τ(θ)(.), is indexed by the

tilting parameter,τ(θ). The line (8) defines the tilting parameter. It indicates how to tilt the physical

p.d.f. fX(.) to obtain the tilted p.d.f.fX,τ(θ)(.). In the case of the estimation of the mean of a uniform

distribution over[−1, 1], tilted distributions are displayed on Figure3 for T = 1. The higher isθ, the

higher isτ(θ), the more tilted is the distribution.

3.2. The ESP intensity

The SP approximation assumes a known parametric family of distribution for the data. But, a finan-

cial economic model typically does not imply a distribution, except for tractability reasons. The ESP

approximation does not need parametric assumptions about the distribution of data.

In the SP intensity (5), substitution offX,θ(.) for the empirical distribution yields the following

ESP intensity

f̂θ∗T ,sp(θ) := exp

{

T ln

[
1

T

T∑

t=1

eτT (θ)ψt(θ)

]}(
T

2π

)1/2 [
σ2T (θ)

]− 1
2 (9)

whereψt(.) := ψ(Xt, .) and

σ2T (θ) :=

[
T∑

t=1

ŵt,θ
∂ψt(θ)

∂θ

]−1 [ T∑

t=1

ŵt,θψt(θ)
2

][
T∑

t=1

ŵt,θ
∂ψt(θ)

∂θ

]−1

,

ŵt,θ :=
exp [τT (θ)ψt(θ)]

1
T

∑T
i=1 exp [τT (θ)ψi(θ)]

×
1

T
,

τT (θ) s.t.

T∑

t=1

ψt(θ)
exp [τT (θ)ψt(θ)]

1
T

∑T
i=1 exp [τT (θ)ψi(θ)]

×
1

T
= 0.

The approximation(9) was first studied by Ronchetti and Welsh (1994), who extended the work of

Feuerverger (1989) for means toZ-estimators.

The SP and ESP approximations have been used to refine existing inference approaches in the same

spirit as bootstrap (more precise confidence intervals and bias corrections). In this dissertation, we use

the ESP approximation to develop a novel theoretical framework for inference.
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4. The ESP estimand and estimator

This section defines the theoretical framework of the ESP approach.

4.1. The ESP estimand

The ESP estimand is the distribution of the solutions to the empirical moment conditions. We require

the following assumptions to define the estimand.

Assumption 1. (a){Xt}∞t=1 is a sequence of random vectors of dimension p on the complete probabil-

ity sample space(Ω, E ,P) ; (b) Let the measurable space(Θ,B(Θ)) such thatΘ ⊂ Rm is compact

and B(Θ) denotes the Borelσ-algebra onΘ ; (c) The moment functionψ : Rp × Θ → Rm is

E ⊗ B(Θ)/B(Rm)-measurable, whereE ⊗ B(Θ) denotes the productσ-algebra; (d) For the sample

size at handT , the expectation of the number of solutions to the empirical moment conditions is finite,

i.e.,
∑∞

n=1 npn,T < ∞ wherepn,T is the probability of havingn solutions to the empirical moment

conditions.

Assumptions1(a)(b) are weak and standard. Completeness of the probability space is essential

to manipulate negligeable sets. Compactness of the parameter space is a convenient mathematical as-

sumption that is relevant in practice. A computer can only handle a bounded parameter space. Assump-

tion 1(c) is the first departure from the GMM literature. It requires equality between the dimension of

the parameter space and number of moment conditions. The reason is simple. In general, if the number

of restrictions (moment conditions) is higher than the degrees of freedom (dimension of the parameter

space), there is no solution to a system of equations, thus, the probability weight thatθ ∈ Θ is a solution

to the empirical moment conditions is zero. Then, an approximation of the finite-sample distribution

of the solutions to over-restricting (or over-identifying) empirical moment conditions is generally not

useful. Section9 shows how one can extend the parameter space to deal with over-restricting moment

conditions and perform tests of over-restricting moment conditions. Assumption1(d), the other de-

partures from the GMM literature, means that the tails of the probability distribution of the number of

solutions to the empirical moment conditions are not too thick. It is a mild departure from the GMM

literature. Under standard assumptions, Corollary1 (p. 91) shows the number of solutions to empirical

moment conditions to be finiteP-a.s. forT big enough. Moreover, Almudevar, Field and Robinson

(2000) prove that Assumption1 (d) is implied by conditions in the spirit of the implicit function theorem

combined with conditions on the distribution of the empirical moment conditions normalized by the
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derivative of the latter ones. From a technical point of view, Assumption1 (d) allows us to use the stan-

dard point random-field theory, which is necessary to handle multiple solutions to non-linear moment

conditions. Skovgaard (1985; 1990) introduces this notion in the SP literature. However, the existing

SP literature has usually attempted narrow multiplicity to unicity, and thus evacuate point random-field

theory at the end. To the knowledge of the author, Sowell (2007) is the only dissertation that considers

the ability of the ESP approximation to account for multiple solutions an advantage, although he does

not formalize it. His reliance on two-step GMM, a framework which requires a unique solution to the

moment conditions, limits the possibility of a such theoretical development. In this dissertation, we

take advantage of point random-field theory to develop an inference framework that allows to exploit

the ability of the ESP approximation to account for multiple solutions to moment conditions.

We specialize the general definition of point random-fields for our purpose.

Definition 4.1 (Point random-field). DenoteNΘ the space of finite simple counting measures onB(Θ),

i.e., the space consisting of integer-valued measures,N , such that for allθ ∈ Θ, N ({θ}) ∈ {0, 1}.

DenoteB(NΘ) the Borelσ-algebra onNΘ generated by the Prohorov metric. A point random-field

(or point process) is a measurable mapping from(Ω, E ,P) to (NΘ,B(NΘ)) .19

In this dissertation, a point random-field is an application that maps each sample{Xt(ω)}
T
t=1 to the

corresponding set of solutions to the empirical moment conditions. More precisely, for a given sample

sizeT , it maps each realizationω ∈ Ω to a counting measure,NT (ω, .). For all subsetsA of Θ,

the counting measureNT (ω, .) indicates the number of solutions to the empirical moment conditions

contained inA. The following proposition proves that it is actually the caseP-a.s. This is the main

result of this section4.1.

Proposition 4.1. Denote#A the number of elements in the setA (or cardinal). Under Assumption 1,

there existsP- a.s. a point random-fieldNT (., .) such that for allω ∈ Ω andA ∈ B(Θ),

NT (ω,A) = #

{

θ ∈ A :
1

T

T∑

t=1

ψ (Xt(ω), θ) = 0

}

.

Proof. See AppendixA.1 (p. 81). �

Hereafter, for simplificity, we drop the dependence of the point random-field onω ∈ Ω.

19 In the mathematical literature, the definition is typically more general. A point random-field is defined as a measurable
mapping to the space of integer-valued measures finite on bounded sets (e.g., Matthes, Kerstan and Mecke, 1974; Kallenberg,
1975; Daley and Vere-Jones 1988).
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The distribution of the solutions to the empirical moment conditions corresponds to the intensity

measure associated with the point random-fieldNT (.). If there can be only one solution to the empirical

moment conditions, the intensity measure is the probability distribution of the solution. But in the case

of multiple solutions, we should generalize probability measures into intensity measures.

Definition 4.2 (Intensity measure). DenoteT := {Tn}n>1 a dissecting system ofΘ, i.e., a nested

sequence of finite partitionsTn := {An,i : i = 1, . . . , kn} of Borel setsAn,i that separate all points of

Θ asn→∞.20 The intensity measure of a finite point random field,NT , is defined for allA ∈ B(Θ)

by

FT (A) := lim
n→∞

∑

i:An,i∈Tn(A)

P{NT (An,i) = 1} , (10)

whereTn(A) := {An,i ∩A : i = 1, . . . , kn andAn,i ∈ Tn} .

The idea behind Definition4.2is the following. A singleton{θ} can only contain a unique solution

to the empirical moment conditions. Thus, an intensity measure of a subset ofA ⊂ Θ can be defined as

the sum of the probability weights that each of its elements contains a solution. There being an infinite

amount of elements, a sequence of increasingly thinner partitions should be introduced to formalize

the idea. Definition4.2of intensity measure is an adaptation of the general mathematical definition of

intensity measures (e.g., Daley and Vere-Jones, 1988) in line with our Definition4.1of point random-

field.

LemmaA.2 in AppendixA.2 (p. 82) collects results from point random-field theory that ensure the

relevance of Definition4.2. Namely, the existence of dissecting systems, stability of dissecting systems

under restriction to subsets, finiteness and countable additivity ofFT , and invariance of the intensity

measure w.r.t. dissecting systems are shown.

The following proposition clarifies the relation between intensity measures and probability mea-

sures. It adapts a result from point random-field theory.

20More precisely, a sequenceT := {Tn}n>1 of setsTn := {An,i : i ∈ [[1, kn]]} consisting of a finite number of Borel
setsAn,i is a dissecting system ofΘ if

i) (partition properties)An,i ∩An,j = ∅ for i 6= j andAn,1 ∪ . . . ∪An,kn = Θ;

ii) (nesting property)An−1,j ∩An,j = An,j or∅; and

iii) (point-separating property)∀(θ1, θ2) ∈ Θ2 s.t.θ1 6= θ2, ∃n ∈ N s.t.θ1 ∈ An,i impliesθ2 /∈ An,i.
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Proposition 4.2. Under Assumptions 1, forθ ∈ Θ,

FT (An(θ)) = P {NT (An(θ)) = 1} (1 + εn) FT -a.e.

whereεn ↓ 0 andAn(θ) denotes the element ofTn := {An,i}16i6kn that containsθ.

Proof. See AppendixA.3 (p. 83). �

In accordance with the idea behind Definition4.2, the intensity measure of a small set is approxi-

matively the probability that it contains one solution.

Proposition4.2 can be regarded as the counterpart of Theorem 1 (iii) from Almudevar, Field and

Robinson (2000) in our setup. Almudevar, Field and Robinson (2000) also formalize the point random-

field introduced by Skovgaard (p.95, 1985), and thus our section4.1 is close to their section 2. The

main differences between their setup and ours are the following. They grant the existence of the point

random-fields that they define, while we prove the existence of the point random-field that we define

(see Proposition4.1). Because they construct a point process that discards continuum or accumulation

of solutions to estimating equations, their setup do not need to forbid them, while we immediately rule

them outP- a.s. thanks to Assumption1(d). They need additional assumptions (Assumption A2 in Al-

mudevar, Field and Robinson, 2000) and results (Theorem 1 in Almudevar, Field and Robinson, 2000)

to define their setup, while we can adapt point random-field theory without additional assumption. For

example, if the support of the distribution of the vector of data,X, is discreet, their setup does not hold

in contrast to ours.

4.2. The ESP estimator

The ESP estimator is the intensity measure induced by the ESP intensity. More precisely, the

estimator of the intensity measure of a subset of the parameter space is the integral of the ESP intensity

over this subset. In this section, we first study the properties of ESP intensity given by the approxima-

tion (9) (p. 20). We call it the rough ESP intensity. Although the rough ESP intensity seems appropriate

in practice, for mathematical reasons we cannot use it directly to develop a theory. Thus, second, we

show how we can define (or smooth) ESP intensity by arbitrarily slightly modifying the rough ESP

intensity. As in the previous subsection,T remains fixed to the size of the sample at hand.

The use of the approximation (9) (p. 20) to define the rough ESP intensity requires the following

assumption.
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Assumption 2. There existsε > 0 such that for allx ∈ Rp, θ 7→ ψ(x, θ) is continuously differentiable

in {θ ∈ Rm : ‖θ −Θ‖ < ε} where‖θ −Θ‖ = inf θ̇∈Θ ‖θ −Θ‖.

Assumption2 means thatψ(., .) is continuously differentiable with respect to its second argument

in anε-neighborhood ofΘ. This is a mild and convenient variant of the more standard assumption that

requires continuous differentiability ofψ(.) in Θ. Assumption2 allows to apply the implicit function

theorem on the boundary ofΘ when necessary.

Simplification and generalization tom dimensions of the approximation (9) (p. 20) yields the

following definition.

Definition 4.3 (Rough ESP intensity). The rough ESP intensity is

f̂θ∗T ,sp(θ) := exp

{

T ln

[
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

]}(
T

2π

)m/2
|ΣT (θ)|

− 1
2

det (11)

where|.|det denotes the determinant function,ψt(.) := ψ(Xt, .) and

ΣT (θ) :=

[
T∑

t=1

ŵt,θ
∂ψt(θ)

′

∂θ

]−1 [ T∑

t=1

ŵt,θψt(θ)ψt(θ)
′

][
T∑

t=1

ŵt,θ
∂ψt(θ)

∂θ′

]−1

,

ŵt,θ :=
exp [τT (θ)

′ψt(θ)]
∑T

i=1 exp [τT (θ)
′ψi(θ)]

,

τT (θ) s.t.
T∑

t=1

ψt(θ) exp
[
τT (θ)

′ψt(θ)
]
= 0m×1 , (12)

wherever it exists.

We call it the rough ESP intensity to distinguish it from the (smooth) ESP intensity below. Despite

its name, the rough ESP intensity is unique and continuous wherever it exists. Moreover, its domain of

definition isB(Θ)-measurable.

Proposition 4.3. Define the set̂ΘT ⊂ Θ where the rough ESP intensity exists

Θ̂T :=

{

θ ∈ Θ : ∃τT (θ) ∈ R
m s.t.

T∑

t=1

ψt(θ)e
τT (θ)

′ψt(θ) = 0m×1 and |ΣT (θ)|det 6= 0

}

.

Under Assumptions 1 and 2,

i) Θ̂T is an open ofΘ;

ii) the rough ESP intensity,̂fθ∗,sp(.), is continuous and unique.
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Proof. See AppendixA.4 (p. 85). �

The continuity of the rough ESP intensity is remarkable for a non-parametric estimate of a distri-

bution obtained without smoothing. Nevertheless, the rough ESP intensity can have two undesirable

properties. First, it is not defined forθ such that|ΣT (θ)|det = 0. Moreover, in the neighborhood of

such points|ΣT (θ)|
− 1
2

det goes to∞, and thus swamps any information contained in the other term of the

ESP intensity. The following assumption rules out such a possibility.

Assumption 3. For any setA ⊂ Θ, denoteA−η := {a ∈ A : ‖a− ∂A ∩ (∂Θ)c‖ > η} with η > 0

whereAc and∂A, respectively, denote the complement ofA inΘ and its boundary. Define the set

Θ̌T :=





θ ∈ Θ :

∣
∣
∣
∣
∣
∣

[
1

T

T∑

t=1

∂ψt(θ)
′

∂θ

]−1 [
1

T

T∑

t=1

ψt(θ)ψt(θ)
′

][
1

T

T∑

t=1

∂ψt(θ)

∂θ′

]−1∣∣
∣
∣
∣
∣
det

= 0






For the sample at hand, for allη > 0 small enough, the setšΘT andΘ̂−ηT do not have any common

elements, i.e.,̌ΘT ∩ Θ̂
−η
T = ∅ where∅ denotes the empty set.

Assumption3 means that|ΣT (θ)|
− 1
2

det cannot go to∞ in an arbitrarily slightly reduced domain of the

rough ESP intensitŷΘ−ηT . Note thatΘ̌T ∩ {θ ∈ Θ : tilting equation (12) has a solution} = {θ ∈ Θ :

|ΣT (θ)|det = 0}, as exponential tilting does not alter the support of the initial distribution. Proposition

A.1 in AppendixA.5 (p. 86) shows the assumption to be satisfied Lebesgue almost everywhere under

reasonnable assumptions. Assumption3 is not, in practice, stronger than assumptions used in the GMM

literature (e.g., Assumption D in Stock and Wright, 2000).

The ignorance of the information provided by the absence of a solution to the tilting equation (12)

is a second undesirable property of the rough ESP intensity, which does not exist when the tilting

equation (12) does not have a solution. Nonetheless, the absence of a solution for a parameterθ ∈ Θ

means that even by reweighting the data, the empirical moment conditions cannot be set to zero for this

parameter value. To put it differently, the sample at hand does not provide support for this parameter

value being a solution to the empirical moment conditions. Thus, we set the ESP intensity to zero for

these parameter values. Nevertheless, we also want the ESP intensity to be continuous. This leads to

the following definition.

Definition 4.4 (ESP intensity and intensity measure). Under Assumptions1-3, for η > 0 small enough,
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i) the ESP intensity (or smooth ESP intensity) is the functionf̃θ∗T ,sp : Θ→ R+ s.t.

f̃θ∗T ,sp(θ) :=






f̂θ∗T ,sp(θ) if θ ∈ Θ̂−ηT

min
[
sup

θ̈∈[∂Θ̂−ηT ∩(∂Θ)c]
f̂θ∗T ,sp(θ̈), f̂θ

∗
T ,sp
(θ)
]
1
η if θ ∈ Θ̂T ∩

(
Θ̂−ηT

)c

×min
[
η, inf θ̇∈Θ̂cT

(θ, θ̇)
]

0 if θ ∈ Θ̂c
T

;

ii) the ESP intensity measure is the set functionF̃T s.t. for allA ∈ B(Θ)

F̃T (A) :=
∫

A

f̃θ∗T ,sp(θ)dθ.

The idea behind the definition of ESP intensity is the following. In the slightly reduced domain of

definition of the rough ESP intensity (i.e., in̂Θ−ηT ), the ESP intensity equals the rough ESP intensity.

Where the tilting equation (12) does not have a solution (i.e., in̂Θc
T ), the ESP intensity equals zero.

In betweenΘ̂c
T andΘ̂−ηT , the values of the ESP intensity are the result of an extension by continuity

of the ESP intensity. We extend by continuity tôΘT ∩
(
Θ̂−ηT

)c
so that extremal values on the latter

set are reached on the common boundary ofΘ̂T ∩
(
Θ̂−ηT

)c
with Θ̂c

T andΘ̂−ηT . Other regularization21

techniques are possible.

Regularization of the rough ESP intensity is questionable. However, first note that it occurs on

an arbitrarily small set. Second, implicit or explicit regularizations are frequent in inference. Even

when observations are drawn from an absolutely continuous distribution, the application of the standard

maximum likelihood approach implicitly requires a smooth version of a likelihood. For example,

different members of an equivalent class of Gaussian densities produces completely different inference

results (e.g., section 7.A.2.a. in Gouriéroux and Monfort, 1989). Finally, regularization has not been

necessary in practice. To the knowledge of the author, the need for regularization has never been

reported in the SP literature. Nor our simulations, in section10, do regularizations appear necessary.

The following properties of the ESP intensity follow immediately Definition4.4.

Proposition 4.4. Under Assumptions1-3,

i) the ESP intensity,̃fθ∗T ,sp(.), is aE ⊗ B(Θ)/B(R)-measurable positive function continuous with

21Note that the term regularization has a different meaning here from the meaning in ill-posed problems.
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respect to (w.r.t.)θ;

ii) the ESP intensity measure is a finite positive measure on the measurable space(Θ,B(Θ)).

Proof. See AppendixA.6 (p.86). �

The value of the ESP intensity indicates the estimated intensity of parameter values. The following

proposition clarifies the relationship between the intensity of a parameter valueθ̇ ∈ Θ and its estimated

probability weight of being a solution to the empirical moment conditions.

Proposition 4.5. Define a point random-field̃N(.) and a probability measurẽP as respective estimates

ofNT (.) andP consistent with̃FT (.) s.t. Ñ(.), P̃ and F̃T (.) satisfy the equation (10) in the Definition

4.2 of intensity measures. Assume thatθ̇ ∈ Θ is a Lebesgue point, i.e., there existsε > 0 such that

for all r > 0 small enough,λ(Br(θ̇)) > ελ(Br(θ̇)) whereBr(θ̇) denotes the closed ball inRm with

radiusr > 0 and centerθ̇,Br(θ̇) := Br(θ̇)∩Θ, and whereλ(.) denotes the Lebesgue measure. Then,

under Assumptions1-3, for all θ̇ ∈ Θ Lebesgue

f̃θ∗T ,sp(θ̇) = limr→0

P̃
{
ÑT (Br(θ̇)) = 1

}

λ(Br(θ̇))

Proof. See AppendixA.7 (p. 86). �

Proposition4.5means that the estimated intensity ofθ ∈ Θ generally corresponds to the estimated

probability weight ofθ of being solution to the empirical moment conditions. Under a mild assump-

tion, LemmaA.6 in AppendixA.7 (p. 86) ensures the existence of a point random-fieldÑ(.) and a

probability measurẽP such thatÑ(.), P̃ andF̃T (.) satisfy the equation (10) in the Definition4.2of in-

tensity measures. Then, Proposition4.5is an immediate consequence of the Lebesgue’s differentiation

theorem and Proposition4.2. Usually, in applications, all points of the parameter space are Lebesgue

points. A point ofΘ is Lebesgue if the volume of the intersection ofΘ with a shrinking ball centered

at the point does not decrease more quickly than proportionally to the volume of the shrinking ball.

Therefore, interior points of the parameter space are necessarily Lebesgue, and points on the boundary

are usually Lebesgue because boundaries are typically defined by linear constraints.

28



5. Asymptotic behavior of the ESP estimator

5.1. Consistency and asymptotic normality

Whereas in the previous sectionsT remains fixed to the size of the sample at hand, in this subsection

T goes to infinity. In this section, we study the asymptotic behaviour of the ESP intensity measure.

More precisely, we establish the consistency and asymptotic normality of the ESP intensity measure.

By consistency, we mean convergence of the ESP intensity measure to a Dirac at the population pa-

rameter. By asymptotic normality, we mean convergence of the standardized ESP intensity measure to

a standard normal distribution. The underlying phenomenon behind these results is the one revealed by

Laplace’s approximation (Laplace, 1774) and revived in inference by Le Cam (1953). For simplicity,

our approach relies on basic assumptions.

To study the asymptotic behaviour of the estimator, the asymptotic behavior of the estimand should

first be fixed. The following assumptions set the asymptotic behavior of the estimand.

Assumption 4. (a){Xt}
∞
t=1 are i.i.d. ; (b) In the parameter spaceΘ, there exists a unique solution

θ0 ∈ int (Θ) to the moment conditionsE [ψ(X, θ)] = 0m×1. ; (c) E [supθ∈Θ ‖ψ(X, θ)‖] < ∞ ; (d)

E
[
supθ∈Θ

∥
∥
∥∂ψ(X,θ)∂θ′

∥
∥
∥
]
<∞ ; (e)

∣
∣
∣E
[
∂ψ(X,θ0)

∂θ′

]∣∣
∣
det
6= 0 .

Assumptions4are basic and standard. Assumption4(a) ensures the basic requirement for inference,

that is, accumulation of different pieces of information (independence) about the same phenomenon

(identically distributed). The conditions “independence and identically distributed” are much stronger

than needed, and can be relaxed to allow time dependence along the lines of Kitamura and Stutzer

(1997). We require such an assumption for simplicity. Assumption4(b) ensures global identification.

It will be relaxed in section5.2. Assumption4(c) ensures convergence of the solution to the empirical

moment conditions to the population parameter. Assumptions4(d) and (e) ensure the existence of

solutions to the empirical moment conditions.

The remaining assumptions of this section set the asymptotic behavior of the estimator. The follow-

ing assumptions ensure the asymptotic existence of ESP intensity in a set that includes a neighborhood

of the population parameter.
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Assumption 5. Define the set

Θ̂∞ :=






θ ∈ Θ : ∃τ∞(θ) ∈ R
m s.t.

∃r > 0, ∀τ ∈ Br(τ∞(θ)), E
[
eτ
′ψ(X,θ)

]
<∞

∥
∥
∥E
[
eτ∞(θ)

′ψ(X,θ) ∂ψ(X,θ)
∂θ

′]∥∥
∥ <∞

|Σ∞(θ)|det 6= 0

E
[
ψ(X, θ)eτ∞(θ)

′ψ(X,θ)
]
= 0m×1






.

whereΣ∞(θ) :=
[
Eeτ∞(θ)

′ψ(X,θ) ∂ψ(X,θ)
∂θ

′]−1
E
[
eτ∞(θ)

′ψ(X,θ)ψ(X, θ)ψ(X, θ)′
] [
Eeτ∞(θ)

′ψ(X,θ) ∂ψ(X,θ)
∂θ′

]−1

(a) There exists̄r > 0 such that there existṡT ∈ N, so that for allT > Ṫ , Br(θ0) ⊂ Θ̂T . Define

a fixedη ∈]0, r̄[ ; (b) For all θ̇ ∈ Θ̂−η∞ , there existsr1, r2 > 0 such that for allτ ∈ Br1(τ∞(θ))

E
[
supθ∈Br2 (θ̇)

‖ψ(X, θ)eτ
′ψ(X,θ)‖

]
<∞.

The setΘ̂∞ corresponds to the parameter values where the limit of rough ESP intensity exists.

In particular, the first two conditions ensure that|Σ∞(θ)|det < ∞ by a standard result on Laplace

transforms. Assumption5(a) ensures that ESP intensity is asymptotically well-defined in a fixed neigh-

borhood of the population parameter. Assumption5(b) allows us to obtain continuity ofθ 7→ τ∞(θ) by

an implicit function theorem.

The following assumptions ensure the validity of the Laplace’s approximation in a fixed neighbor-

hood of the population parameter, and thus in a fixed neighborhood of any solution to the empirical

moment conditions forT big enough by consistency.

Assumption 6. (a)For all x ∈ Rp, the functionθ 7→ ψ(X, θ) is four times continuously differentiable

in a neighborhood ofθ0 P-a.s.; (b) For all k ∈ [[1, 2]], there existsr > 0,E
[
supθ∈Br(θ0) ‖D

kψ(X, θ)‖
]
<

∞ whereDk denotes the differential operator w.r.t.θ of orderk ; (c) For all k ∈ [[1, 4]], there exists

M > 0 such that there exisṫT ∈ N andr > 0, so that for allθ ∈ Br(θ0)

∥
∥
∥
∥D

k

{

|ΣT (θ)|
− 1
2

det

}∥∥
∥
∥ < M ;

(d) For all k ∈ [[1, 4]], there existsM > 0 such that there exisṫT ∈ N and r > 0, so that for

all T > Ṫ and θ ∈ Br(θ0),
∥
∥
∥Dk

{
ln
[
1
T

∑T
i=1 e

τT (θ)
′ψt(θ)

]}∥∥
∥ < M ; (e) There existsr > 0,

∥
∥
∥E
[
supθ∈Br(θ0) ψ(X, θ)ψ(X, θ)

′
]∥∥
∥ <∞.

Assumptions6(a)-(d), adapted from Kass, Tierney and Kadane (1990), essentially ensure the exis-

tence and boundedness of the derivatives of ESP intensity terms up to the 4th order in a neighborhood

of the population parameter. Assumption6(e) ensures the validity of the implicit function theorem for

the tilting parameter,τT (θ), at any solution to the empirical moment conditions forT big enough.
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The following assumptions ensure the convergence of ESP intensity to zero outside a neighborhood

of the population parameter.

Assumption 7. Letη > 0 be defined as in Assumption5(a). (a) For all ε > 0, there existsṪ ∈ N and

M > 0 such thatT > Ṫ implies for allθ ∈ Θ̂−η∞ , e−εT |ΣT (θ)|
− 1
2

det 6 M ; (b) For all θ̇ ∈ Θ̂−η∞ , there

existr1, r2 > 0 such thatE
[
sup(τ,θ)∈Br1 (τ∞(θ̇))×Br2 (θ̇)

eτ
′ψ(X,θ)

]
<∞.

Assumptions7 correspond to assumption (iii) in Kass, Tierney and Kadane (1990). Assumption

7(a) rules out more than exponential divergence of the Jacobian of the ESP intensity. This is a mild

assumption. Assumption7(b) is a convenient variant of Assumption 4 in Kitamura and Stutzer (1997).

This is a common type of assumption in entropy-based inference.

Under the assumptions above, we obtain the main result of the dissertation.

Theorem 5.1(Consistency). Under Assumptions1-7, asT →∞, the ESP smooth intensity,̃fθ∗T ,sp(.),

converges in distribution (or narrowly converges) to the Dirac distributionδθ0(.) P-a.s., i.e.,

∀ϕ ∈ Cb,
∫

Θ
ϕ(θ)f̃θ∗T ,sp(θ)dθ →

∫

Θ
ϕ(θ)δθ0(θ)dθ P-a.s.

whereCb denotes the space of continuous bounded functions.

Proof. See AppendixA.9 (p. 108).�

Theorem5.1means the ESP intensity measure converges to a point mass at the population parame-

ter as the sample size increases. Thus, uncertainty about the solution to the moment conditions vanishes

as accumulation of data makes the empirical moment conditions a more precise approximation of the

moment conditions. Theorem5.1 also means that the estimator, the ESP intensity measure, and the

estimand, the intensity measure, converge towards each other as sample size increases. This theorem

also shows that asymptotically the ESP integrates to one, although ESP intensity does not typically

integrate to one for anyT . All other consistency results of this dissertation follow from this theorem.

The counterpart of Theorem5.1 in Bayesian inference is the consistency of posterior distributions

(or Doob’s theorem). However, despite their similarities, their theoretical foundations are different, as

explained in section6. A second standard convergence result for posterior distributions is asymptotic

normality (or Bernstein-von Mises’ theorem). We also provide its counterpart in our framework.
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Theorem 5.2(Asymptotic Normality). Leta, b ∈ Θ such thata 6 b where “a 6 b” means that every

component ofb− a is non-negative. Then, under Assumptions1-7, asT →∞

∫

DT (a,θ
∗
T ,b)

f̃θ∗T ,sp(θ)dθ →
1

(2π)
m
2

∫

D(a,b)
e−

1
2
z′zds P-a.s.

whereDT (a, θ
∗
T , b) :=

{
θ : θ∗T + T

− 1
2 [ΣT (θ

∗
T )]

1
2 a 6 θ 6 θ∗T + T

− 1
2 [ΣT (θ

∗
T )]

1
2 b
}

with θ∗T any so-

lution to the empirical moment conditions, and[ΣT (θ∗T )]
1
2 s.t. ΣT (θ∗T ) =

(
[ΣT (θ

∗
T )]

1
2

)′
[ΣT (θ

∗
T )]

1
2

and [ΣT (θ∗T )] :=
[
1
T

∑T
t=1

∂ψt(θ∗T )
∂θ′

]−1 [
1
T

∑T
t=1 ψt(θ

∗
T )ψt(θ

∗
T )
′
] [

1
T

∑T
t=1

∂ψt(θ∗T )
′

∂θ

]−1
; and where

D(a, b) := {z : a 6 z 6 b}.

Proof. See AppendixA.9 (p. 108).�

Theorem5.2 indicates that ESP intensity converges asymptotically to a point mass at the popula-

tion parameter like a Gaussian distribution with standard deviation that goes to zero at the rateT−
1
2 .

Theorem5.2 is in line with the well-known asymptotic normality of a solution to empirical moment

conditions. Theorem5.2 is close to Theorem 5 in Sowell (2007), although the latter does not provide

the asymptotic normality of the ESP intensity. Theorem5.2also suggests that confidence regions can

be derived along the line of Chernozhukov and Hong (2003).22 However, we do not follow this way

because we want to preserve robustness to lack of identification.

5.2. Robustness to lack of identification

In moment-based inference, identification characterizes a situation in which if we knew the mo-

ment conditions as a function of the parameter of interest, we could deduce the population parameter

value. In practice, moment conditions as a function of the parameter of interest are unknown. Only

if we could increase the sample size infinitely would we know them. In addition, robustness to mul-

tiple solutions to the moment conditions a fortiori implies robustness to situations where the objective

functions behaves as if the moment conditions had multiple solutions, although they have only one

(weak-identification). Therefore, robustness to multiple solutions to moment conditions is an impor-

tant and desirable property.

In finite sample, our inference framework is robust to multiple solutions to moment conditions by

construction. In this section, we show that it is also true asymptotically. More precisely, we establish

22The author has a work in progress in which he introduces intensity and other ideas presented in this dissertation to the
generalized Bayesian framework provided in Chernozhukov and Hong (2003).
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multi-consistency and multi-asymptotic normality of the ESP intensity measure. By multi-consistency,

we mean convergence of the ESP intensity measure to a sum of Dirac distribution each centered at

one of the solutions to the moment conditions. By multi-asymptotic normality, we mean that the ESP

intensity measure converges to a sum of Dirac like a sum of Gaussian distributions with standard

deviation that goes to zero at the rateT−
1
2 .

We adapt assumptions of the previous section to allow for multiple solutions to the moment condi-

tions. Assumptions4(b) and (e) become the following.

Assumption 8. Denote[[1, n]] the integers in[1, n]. (b’) In the parameter spaceΘ, there exist multiple

solutions,
{
θ
(i)
0

}n

i=1
with n the number of solutions,23 to the moment conditionsE [ψ(X, θ)] = 0m×1

such that for alli ∈ [[1, n]], θ(i)0 ∈ int (Θ) ; (e’) For all i ∈ [[1, n]],

∣
∣
∣
∣E

[
∂ψ(X,θ

(i)
0 )

∂θ′

]∣∣
∣
∣
det

6= 0.

Asumption5(a) becomes the following.

Assumption 9. (a’)For all i ∈ [[1, n]], there exists̄r(i) > 0 such that there existṡT (i) ∈ N, so that for

all T > Ṫ (i),Br̄(i)(θ
(i)
0 ) ⊂ Θ̂T .

Assumption6 becomes the following.

Assumption 10. For all θ(i)0 with i ∈ [[1, n]], Assumptions6(a)-(e) are satisfied withθ0 replaced by

θ
(i)
0 .

Thanks to the above modifications of the assumptions, multi-consistency of the ESP intensity mea-

sure follows.

Theorem 5.3(Multi-consistency). Under Assumptions1-7 modified according to Assumptions8-10,

asT → ∞, the ESP smooth intensity,̃fθ∗T ,sp(.), converges in distribution (or narrowly converges) to

the sum of Dirac distributions
∑n

i=1 δθ(i)0
(.) P-a.s., i.e.,

∀ϕ ∈ Cb,
∫

Θ
ϕ(θ)f̃θ∗T ,sp(θ)dθ →

n∑

i=1

∫

Θ
ϕ(θ)δ

θ
(i)
0

(θ)dθ P-a.s.

whereCb denotes the space of continuous bounded functions.

Proof. See AppendixA.9 (p. 108).�

Theorem5.2becomes the following.

23In accordance with Assumption1(d), the number of solutions is unbounded but finite.
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Theorem 5.4 (Multi-asymptotic normality). Let a, b ∈ Θ such thata 6 b where “a 6 b” means

that every component ofb − a is non-negative. Then, under Assumptions1-7 modified according to

Assumptions8-10, asT →∞

n∑

i=1

∫

DT (a,θ
∗(i)
T ,b)

f̃θ∗T ,sp(θ)dθ →
1

(2π)
m
2

n∑

i=1

∫

D(a,b)
e−

1
2
z′zds P-a.s.

whereDT (a, θ
∗(i)
T , b) :=

{

θ : θ
∗(i)
T + T−

1
2

[
ΣT (θ

∗(i)
T )

] 1
2
a 6 θ 6 θ∗(i)T + T−

1
2

[
ΣT (θ

∗(i)
T )

] 1
2
b

}

with
{
θ
∗(i)
T

}

T>1
a sequence of solutions to the empirical moment conditions converging toθ

(i)
0 P-a.s. and

n ∈ [[1, n]].

Proof. See AppendixA.9 (p. 108).�

Theorems5.3and5.4have no counterparts in the standard Bayesian framework because the latter

deals only with probability measures.

6. Discussion

In this section, we discuss differences and similarities between the ESP framework and existing

inference theories.

6.1. Comparison with the Bayesian framework

The main output of both the ESP and Bayesian frameworks is a distribution that summarizes

uncertainty about the population parameter. However, the theoretical foundations of ESP and Bayesian

frameworks are different. In this section, we explain these differences and their practical implications.

Taken literally, Bayesian theory regards inference as a two-stage game between nature and an

econometrician. In the first stage, nature draws the population parameter,θ0, according to a prior

distributionπθ0(.), and then draws a sample{Xt}
T
t=1 in accordance with a conditional probability

distribution (p.d.f.)lX1,...,XT |θ0(.|.). In the second stage, the econometrican tries to infer the population

parameter valueθ0 given the sample at hand. As usual in game theory, the p.d.f.lX1,...,XT |θ0(.|.) and

πθ0(.) are common knowledge. Thus, the econometrician updates this prior information,πθ0(.), thanks
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to data according to Bayes’ formula

πθ0|X1,...,XT (θ|x1, . . . , xT ) =
lX1,...,XT |θ0(x1, . . . , xT |θ)πθ0(θ)∫
Θ lX1,...,XT |θ0(x1, . . . , xT |θ)πθ0(θ)dθ

,

to obtain the posterior distributionπθ0|X1,...,XT (.|.). Therefore, as in our framework, Bayesian inference

summarizes the uncertainty about the population parameter by means of a distribution.

This similarity between Bayesian and ESP inferences should not eclipse their fundamental differ-

ence. Bayesian inference produces a distribution that summarizes uncertainty about the population

parameter because the population parameter,θ0, is treated as a random variable. This randomness is

necessary to use the Bayes’ formula. In other words, Bayesian theory requires an “axiomatic” trans-

formation of the unknown,θ0, into a probabilizable uncertain through a priorπθ0(.) (p. 508 in Robert,

1994). In contrast, in our framework, the randomness that is approximated by ESP intensity comes

from data. Different samples imply different empirical moment conditions, and thus different solutions

to those empirical moment conditions. However, the solution to the moment conditions, the population

parameter, is not regarded as a random variable. In other words, in our framework, randomness comes

from the use of random empirical moment conditions to approximate deterministic moment conditions.

The difference between sources of randomness has practical implications. Typically, the param-

eters of an economic model of interest are not random. For instance, in consumption-based asset

pricing, the RRA and EIS of the representative agent are not random. Bayesian inference transforms

the unknown population parameter into a probabilizable uncertain through two main extra statistical

restrictions. First, it needs to specify a prior distribution. An economic model does not imply a specific

prior distribution, and the use of non-informative prior distributions is not exempt from criticisms (e.g.,

section 3.5 in Robert, 1994). Second, it needs to specify the conditional p.d.f.lXT |θ0
(.|.). Typically an

economic model does not imply a such family of distributions, except for tractability reasons. From a

statistical point of view, these extra-statistical restrictions may not matter, and even have been proved

useful in many practical situations. But from a structural point of view, they make it difficult to dis-

entangle the part of the inference results due to the empirical relevance of the economic model from

the part due to statistical restrictions.24 Non-parametric Bayesian analysis also does not avoid extra

24Assuming a distributions corresponds to imposing an infinite number of extra moment restrictions. A characteristic
function uniquely determines probability distribution; and if the characteristic function of a random variableX is analytic in

the neighborhood of zero, then it can expanded at zero into an infinite Taylor seriesE
(
eiuX

)
=
∑∞
j=0

(iu)j

j!
E
(
Xj
)

wherei
denotes here the imaginary unit.
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statistical assumptions (e.g., Ghosh and Ramamoorthi, 2003). ESP inference does not require such

extra statistical assumptions because source of randomness in the ESP econometric model is the same

as in the corresponding economic model, and the distribution of the solutions to the empirical moment

conditions is estimated non-parametrically.

6.2. ESP and the foundation of probability

In probability,25 there is relative consensus about the rules that should be used to compute new

probabilities from already defined probabilities. Following Kolmogorov (1933), the rules are those

of mathematical measure theory.26 However, there is no consensus about the way to construct prob-

abilities from a practical situation and interpret them. In this section, we explain why our inference

framework is as compatible with the two main conceptions typically advanced to justify existing clas-

sical and Bayesian theory as the latter ones. For brevity, we only focus on these two main conceptions

of probability, although there exist lot of other ones (e.g., de Finetti, 1968).

A frequentist conception of probability is typically advanced to justify existing classical theory. It

defines a probability as a limit of a frequency. The probability of an event is the limit of the ratio of

the number of occurences of the event over the number of experiments (e.g., von Mises, 1928). Ac-

cording to this view, asymptotic classical theory should induce valid probabilistic statements for tests

and confidence intervals because, if the Gaussian approximation is accurate and if we could draw an

infinite number of samples, the limit of the proportion oft-statistics in a set would approximatively

correspond to the standard Gaussian distribution.27 Similarly, if the ESP approximation is accurate and

if we could draw an infinite number of samples, the limit of the proportion of solutions to the empirical

moment conditions in a set would approximatively correspond to the ESP intensity. Therefore, our in-

ference framework appears as compatible with the frequentist conception of probability as the existing

asymptotic classical theory. Note, however, that this type of compatibility is achieved through different

ways. In asymptotic classical theory, the same Gaussian approximation yields probabilistic statements

for all sample sizes. In the ESP framework, an approximation of a finite-sample distribution, which by

25In this section, by probability we mean probability and its derivative including “intensity”.

26There are some variants of the Kolmogorov’s axiomatic (e.g., finite additivity by de Finetti,1970; infinite probability by
Hartigan, 1983).

27Note that standard frequentist conceptions of probability does not justify asymptotic theory. Standard frequentist con-
ceptions of probability involve an infinite number of samples, but they do not necessarily involve samples with an infinite
number of observations.
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construction is different for each sample size, yields probabilistic statements.

A subjective conception of probability is typically advanced to justify Bayesian inference (e.g., p.

74-77 in Berger, 1980). It defines a probability as an individual degree of belief in a proposition. It thus

abolishes the distinction between unknown and random, and it allows us to treat the population parame-

ter as a random variable and then apply Bayes’s theorem. However, this conception does not restrict the

source of the belief. Therefore, a degree of belief can also stem from ESP intensity. As a consequence,

our inference framework does not contradict the typical Bayesian conception of probability.

6.3. An interpretation of the ESP approach

Mathematically, the ESP intensity is an approximation of the distribution of the solutions to the

empirical moment conditions. The ESP intensity summarizes the uncertainty about the population

parameter on condition that the empirical moment conditions are proxies for the moment conditions,

or more precisely, on condition that the solutions to the empirical moment conditions are proxies for

the solution to the moment conditions, the population parameter. From a mathematical point of view,

the ESP intensity is not an approximation of the distribution of the population parameter.

However, one caninterpretthe ESP intensity divided by its integral over the parameter space as the

distribution of the population parameter, if he considers that (i) the distinction between random and un-

known is irrelevant; (ii) probability should express in the language of mathematical measure theory to

which extent a proposition is possible with respect to alternative propositions given the evidence avail-

able; (iii) the evidence available forθ ∈ Θ being the solution to the moment conditions corresponds to

the ESP estimated probability weight thatθ is a solution to the empirical moment conditions.28 From

this point view, the ESP approach offers a way to obtain an output similar to standard Bayesian in-

ference without assuming a prior over the parameter space and a parametric family of distribution for

the data. However, this interpretation does not erase fundamental differences between the ESP and

Bayesian approach. In particular, this interpretation of the ESP approach transforms the unknownθ0

into a probabilizable uncertain through the ESP intensity that is induced by the sample at hand, while

the Bayesian theory transforms the unknown,θ0, into a probabilizable uncertain through anexogenous

prior πθ0(.).

Although the ESP approach would remain coherent if the ESP intensity was regarded as a dis-

28This way of interpreting the ESP intensity was inspired by Maher (2010), who criticises the subjective conception of
probability typically advanced to justify Bayesian inference (See section6.2).
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tribution of the population parameter, we do not follow this interpretation in this dissertation for two

reasons. First, our point of view in this dissertation has the advantage to keep transparent the underlying

mechanism of moment-based inference procedures. Moment-based inference is necessarily based on a

finite-sample counterparts of the population parameter that serves as proxies for the population param-

eter. Thus, the best we can realistically hope for is an accurate knowledge of these proxies. Second,

our point of view does not forbid a user of the ESP approach tosubsequentlyandexplicitly interpret

the normalized ESP intensity as a distribution of the population parameter for the reasons indicated in

the previous paragraph.

7. A decision-theoretic approach

In this section7, we present a decision-theoretic approach within the inference framework of

the previous sections. In other words, we regard inference as a choice of parameter values by an

econometrician in the spirit of microeconomic theory under uncertainty. The econometrician chooses

a utility function (i.e., opposite of a loss function),u : (de, θ∗T ) 7→ u(de, θ) wherede is an inference

decision and whereθ ∈ Θ is a potential value of the solution to the empirical moment conditions.

The inference decision is typically a parameter value (point estimation) or a subset of the parameter

space (hypothesis testing). The utility function indicates the utility provided by decisionde to the

econometrician when a solution to the empirical moment condition isθ. The econometrician makes

an inference decision,de, that maximizes his ESP expected utility function,
∫
Θ u(de, θ)f̃θ∗T ,sp(θ)dθ.

ESP expected utility is a generalization of expected utility defined in microeconomic theory, in the

sense that utility functions are integrated w.r.t. an intensity measure that is not necessarily a probability

measure.29 Without loss of utility, the econometrician does not randomize his inference decision (mixed

strategy). For the same reason as in Bayesian inference (e.g., Theorem 3.12 on p.147 in Schervish,

1995), randomization cannot improve an optimal non-randomized inference decision (pure strategy).

A randomized decision is a weighted average of non-randomized decisions; and the average of elements

of a set cannot be bigger than the maximum of the set.

A decision-theoretic approach provides several advantages. First, it provides flexibility through

the choice of a utility function. Second, it opens a way to move from statistical statements to eco-

29Note that this extension is mathematically straightforward. Normalizing the ESP intensity to make the ESP intensity a

density
f̃θ∗
T
,sp(.)

∫
Θ f̃θ∗

T
,sp(θ)dθ

does not affect the definitions below. However, the sets of decision-theoretic axioms used should be

modified. This is left for future research.
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nomic statement thanks to a utility function that maps inference precision to its economic benefit (e.g.,

Wald, 1939; McCloskey, 1985). Finally, it provides strong finite-sample foundations. Maximization of

expected utility is theoptimalanswer to the estimated uncertainty that comes from inference, as max-

imization of expected utility by a consumer is optimal in microeconomic theory. In standard classical

inference theory, only some asymptotic optimality is typically obtained

A decision theoretic approach is generally delicate within the standard classical inference theory.

Often, it is not possible, as in standard moment-based inference, in which case the objective function

is not expressed in terms of the dimension of interest, the parameter values. For example, the objective

functions of GMM, empirical likelihood (EL) and exponential tilting (ET), are expressed, respectively,

in terms of a norm of the empirical moment conditions, the probability weight of the observed sample,

and the informational content (defined as entropy) of the sample. When a decision-theoretic approach

is possible, it typically does not produce a complete ranking of inference decisions. Given two decision

rulesde1(.) andde2(.), the risk functionsθ 7→ Eθ [u(de(X), θ)] andθ 7→ Eθ [u(de(X), θ)] typically

cross each others (e.g., section 2.D in Gouriéroux and Monfort, 1989). In Bayesian theory, integration

of the classical risk functions w.r.t. the posterior makes a decision-theoretic approach possible. In the

ESP approach integration of the utility function w.r.t. the ESP intensity makes a decision-theoretic

approach possible. The ESP decision-theoretic approach presented in this dissertation is close to the

one for Bayesian inference. However, the fundamental differences analyzed in section6 remain.

In the next section, an inference decision by the econometrician is a subset of the parameter space

(hypothesis-testing). In this section, we focus on the case in which an inference decision by the econo-

metrician is an element of the parameter space (point estimation). In the remaining of the present

section, we treat separately continuous utility functions and 0-1 utility functions for clarity. However,

combination of the two are possible and relevant as shown in the case of over-restricting moment con-

ditions in section9.2.2.

7.1. Continuous utility functions

In this section, we consider the case in which the utility function chosen by the econometrician is

continuous. In this case, we require the following assumptions.

Assumption 11. (a)u(., .) is continuous; (b) For all θ̇ ∈ Θ andθ ∈ Θ \ {θ̇}, u(θ, θ̇) < u(θ̇, θ̇) ; (c)

For all θ, θ̇ ∈ Θ2, u(θ, θ) = u(θ̇, θ̇). ; (d) For all θe, θ ∈ Θ, 0 6 u(θ, θ).
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Assumption11(a) is standard in decision theory (e.g., Definition 3.C.1 and Proposition 3.C.1 on

pp.46-47 in Mas-Collel, Whinston and Green, 1995). See section7.2below for a relevant case where

the utility function is not continuous. Since the parameter spaceΘ is compact, continuity implies

boundedness, and thus rules out Saint-Petersburg type paradoxes (e.g., p.185 in Mas-Collel, Whin-

ston and Green, 1995). Boundedness also ensures that the ESP estimated expected utility is always

well-defined, i.e.,
∫
Θ u(θe, θ)fθ∗T ,sp(θ)dθ < ∞ for all θe ∈ Θ. Assumption11(b) formalizes the

econometrician preference for accuracy. This means the econometrician is strictly better off when his

point estimate equals a solution to the empirical moment conditions than otherwise. Assumption11(c)

means the econometrician’s preference for accuracy is independent of the actual values of the solutions

to the empirical moment conditions. Assumption11(d) is the opposite of the standard convention in

decision theory for inference. Usually decision-theory for inference is expressed in terms of loss func-

tions (i.e., opposite of utility functions) instead of utility functions (e.g., p.52,60 in Robert, 1994). In

this dissertation, we use the latter ones because of our emphasis on 0-1 utility functions. 0-1 utility

functions do not have a formal counterpart in terms of loss functions when integrated with respect to

continuous distributions (e.g., p.166 in Robert, 1994) because 0-1 utility functions are not mathemat-

ical functions in this case (see section7.2). To avoid any confusion in this dissertation between the

utility function of a representative agent and the one chosen by the econometrician, we reserve the term

preferences for the first one and and utility for the second one.

Point estimate

Once we have characterized the utility function, the definition of corresponding point estimates

follows.

Definition 7.1 (ESP point estimate). Given a utility functionu(., .), an ESP point estimate,̂θuT , is a

E/B(Θ)-measurable maximizer of the ESP expected utility, i.e.,

θ̂uT := arg max
θe∈Θ

Ẽ[u(θe, θ
∗
T )]

whereẼ[u(θe, θ∗T )] :=
∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθ.

30

The following proposition presents finite-sample properties of maximization of ESP expected util-

30Note that this notation corresponds the usual notation only if there can be only one solution to the empirical moment
conditions.
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ity.

Proposition 7.1. Under Assumptions1-3;11 ,

i) θe 7→
∫

Θ
u(θe, θ)f̃θ∗T ,sp(θ)dθ is continuous overΘ;

ii) there exists an ESP point estimateθ̂uT .

Proof. See AppendixA.9 (p.108). �

Proposition7.1i) means the preference relation generated by maximization of the ESP expected

utility is continuous31, i.e., if for two converging sequences of parameter values,
{
θ
(1)
n

}

n>1

{
θ
(2)
n

}

n>1
,

θ
(1)
n is always preferred toθ(2)n , then preference cannot be reversed at the limit. (e.g., p.46 in Mas-

Collel, Whinston and Green, 1995). Proposition7.1ii) is a consequence of Proposition7.1i) and of the

compactness of the parameter space.

The following proposition presents asymptotic properties of maximization of ESP expected utility.

Proposition 7.2. Under Assumptions1-7;11, asT →∞,

i) sup
θe∈Θ

∥
∥
∥
∥

∫

Θ
u(θe, θ)f̃θ∗T ,sp(θ)dθ − u(θe, θ0)

∥
∥
∥
∥→ 0 P-a.s.;

ii) an ESP point estimate convergesP-a.s. to the population parameter, i.e.,

lim
T→∞

θ̂uT = θ0 P-a.s.

Proof. See AppendixA.10 (p.109). �

Proposition7.2i) means the preference relation corresponding to the ESP expected utility is consis-

tent, i.e., the preference relation corresponding to the ESP expected utility converges to the preference

relation corresponding to the utility function with knowledge of the population parameter. Proposition

7.2ii) is an immediate consequence of Proposition7.2i).

Confidence regions

Point estimates are not necessarily stable. The typical symptom of instability is the absence of a

unique well separated maximum of the objective function. Confidence regions provide an indication of

the stability of point estimates.

We define ESP confidence region as follows.

31Continuity of the utility function is different from continuity of the expected utility.
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Definition 7.2 (ESP confidence region). Given a utility functionu(., .), an ESP confidence region of

level1− α with α ∈ [0, 1] is aB(Θ)-measurable set

S̃uT :=

{

θe ∈ Θ :
1

Ku
T

∫

Θ
u(θe, θ)f̃θ∗T ,sp(θ)dθ > kα,T

}

wherekα,T is the highest bound satisfying
∫
S̃uT

1
Ku
T

∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθdθe > 1 − α andKu

T :=
∫
Θ2 u(θe, θ)f̃θ∗T ,sp(θ)dθdθe.

By definition, all the elements of the parameter space contained inS̃uT provide a higher ESP ex-

pected utility than any elements of the parameter space outsideS̃uT . In other words, ESP confidence

regions correspond to the parameter values which are the closest to maximize the ESP expected utility.

Thus it is the smallest set satisfying a constraint of ESP expected utility level1−α. A small connected

ESP confidence region indicates well-separated maximizer of the ESP expected utility, and thus a reli-

able ESP point estimate. For the opposite reason, a large ESP confidence region or a ESP confidence

region that consists of the union of disjoint sets indicates an unreliable point estimate. Although Defi-

nition 7.2correspond to joint confidence regions, marginal and conditional ESP confidence regions can

also be defined. Note also that two-sided symmetric confidence regions and two-sided equal-tailed ESP

confidence regions can also be defined. For brevity, we focus only on short ESP confidence region.

In Definition 7.2 of ESP confidence region, we do not require the ESP expected utility level to be

exactly equal1 − α in order to ensure their existence. If the ESP intensity is locally perfectly flat, the

ESP expected utility level over the ESP confidence cannot equal1− α.

To the knowledge of the author, such confidence regions have not been studied in Bayesian theory

except in the case of 0-1 utility function. Usual Bayesian and classical confidence regions consider

parameter values only from a probabilistic point of view. ESP confidence regions takes into account an

additional dimension through the utility function.

Since the integral
∫
Θ2 u(θe, θ)f̃θ∗T ,sp(θ)dθdθe can take an arbitraty positive value, we normalize

the ESP expected utility to define ESP confidence regions. The following assumption ensures the

possibility to normalize, i.e.,Ku
T 6= 0.

Assumption 12. The domain of definition of the rough ESP intensity is not empty, i.e.,Θ̂T 6= ∅ .

Assumption12 is mild. If Θ̂T is empty either there is not support for the model of interest or the

sample size is too small. ForT big enough,Θ̂T is not empty. By Corollary1 on p.91 in appendix, for

T big enough there exists a consistent solution to the empirical moment conditions. Thus, forT big
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enough,Θ̂T contains a neighborhood of a solution to the empirical moment conditions by Assumption

6(e).

To study the consistency of ESP confidence regions, we introduce a notion of convergence.

Definition 7.3 (Convergence of sets). Let int(A) denote the interior of a setA. A sequence of sets

{AT }T>1 converges to a setA if and only if for alla1 ∈ int(A) anda2 ∈ int(Ac) there existsṪ ∈ N

s.t.T > Ṫ impliesa1 ∈ int(AT ) anda2 ∈ int(AcT ). It is denotedAT  A.

Definition 7.3 means that a sequence of sets converges to a limiting sets if the interior of the sets

matches asymptotically. Using this definition, we can prove that ESP confidence regions converge

to their asymptotic counterpart. The following proposition ensures existence and consistency of ESP

confidence regions.

Proposition 7.3. Define an asymptotic ESP confidence region of level1− α as a measurable set

S̃u∞ :=

{

θe ∈ Θ :
1

K∞
u(θe, θ0) > kα,∞

}

wherekα,∞ is the highest bound satisfying1K∞
∫
S̃uT
u(θe, θ0)dθe > 1−α andK∞ :=

∫
Θ u(θe, θ0)dθe.

For all α ∈ [0, 1],

i) under Assumptions1-3;11-12 there exist an ESP confidence region,S̃uT , and an asymptotic ESP

confidence region of level1− α;

ii) under Assumptions1-7;11-12, asT →∞,

S̃uT  S̃u∞ P-a.s.

Proof. See AppendixA.11 (p.110). �

Asymptotic ESP confidence regions correspond to the parameter values that provide the most

weighted utility. Asymptotic ESP confidence does not only include the population parameter with

continuous utility functions. Parameter values different from the population parameter also provide

utility to the econometrician. Proposition7.3 is a consequence of Proposition7.1iii)
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7.2. 0-1 utility functions

A 0-1 utility function equals one by normalization when the inference decision is right (i.e.,when

θe is a solution to the empirical moment conditions) and zero otherwise. In other words, the use of a

0-1 utility function yields maximization of the expected finite-sample “truth.” By finite-sample “truth”

we mean solution to the empirical moment conditions, while in the existing literature the word “truth”

is reserved for solution to the moment condition (i.e., population parameter).

Point estimate

In point inference, the 0-1 utility function is not a usual function. On the one hand, Assumption

1(d) rules out situations with a continuum of solutions to the empirical moment conditions. On the

other hand, by construction, the ESP intensity measure is absolutely continuous w.r.t. the Lebesgue

measure, which ignores points. Therefore, in point inference, the 0-1 utility function is a “generalized”

function which corresponds to a family of Dirac distributions indexed byθe, {δθe(.)}θe∈Θ.32

Definition 7.4 (Maximum ESP point estimate). A maximum ESP point estimate,θ̂T , is an ESP estimate

that maximizes the ESP expected 0-1 utility function, i.e.,

θ̂T := arg max
θe∈Θ

Ẽ[δθe(θ
∗
T )]

whereδθe(.) is the Dirac distribution atθe.

The following immediate proposition clarifies the meaning of Definition7.4.

Proposition 7.4. Under Assumptions1-3, the Definition7.4 is equivalent to each of the following

properties

i) if there exists a uniquêθT ∈ int(Θ), for small enoughr > 0, θ̂T = arg max
θe∈Θ

∫

Θ
lBr(θe)(θ)f̃θ∗T ,sp(θ)dθ;

ii) θ̂T = arg max
θe∈Θ

f̃θ∗T ,sp(θe).

32 See section 1 on pp.13-20 in chap.1 in Schwartz (1950-1951) for a discussion about the differences between a (Schwartz)
distributions and functions. We still use the word function for 0-1 utility function to avoid a too cumbersome terminology.
This misuse of language is already well-spread in the Bayesian decision theory. Note also that the meaning of Dirac distribu-
tions in this section is different from the one in Theorems5.1and5.3. Here Dirac distributions formalize absolute preference
of the econometrician for finite-sample “truth”, while in Theorem 5.1 and 5.2 they formalize probabilistic distributions.
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Proof. See AppendixA.12 (p.116). �

Proposition7.4i) provides an alternative, but equivalent formalization of absolute preference for

finite-sample “truth.” This formalization is adapted from Robert (p.166, 1994). Proposition7.4ii) pro-

vides an alternative interpretation of maximum ESP point estimates. A maximum ESP point estimate

is the parameter value with the highest estimated probability weight of being a solution to the empir-

ical moment conditions. In this sense, it is a maximum-probability estimate. A maximum-probability

estimate is different from a maximum-likelihood estimator. See footnote14 on p. 15. Proposition

7.4ii) also shows that our maximum ESP point estimate corresponds to the point estimate introduced

in Sowell (2009) to correct the higher-order bias of exponential tilting estimates (ET). Sowell (2009)

shows the logarithm of ESP intensity divided by the sample size to correspond to the exponential tilting

objective function plus two terms that vanish asymptotically. He deduces that maximum ESP estimates

share the same first-order asymptotic properties as ET estimates, but are higher-order bias corrected

thanks to the extra two terms of the objective function.

In accordance with Sowell (2009), the following proposition states that maximum ESP estimates

are consistent.

Proposition 7.5. Under Assumptions1-3,

i) there exists a maximum ESP̂θT ;

ii) under additional Assumptions4-7 and12, a maximum ESP point estimates convergesP-a.s. to

the population parameter, i.e.,

lim
T→∞

θ̂T = θ0 P-a.s.

Proof. See AppendixA.13 (p.116) �

Proposition7.5i) follows from Lemma 2 in Jennrich (1969) and the continuity of the ESP intensity.

We deduce Proposition7.5 ii) from the consistency of the ESP intensity, unlike Sowell (2009) who

deduces it from the consistency of ET estimates.

Confidence regions

As for continuous utility functions, we define confidence regions.
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Definition 7.5 (Maximum ESP confidence region). A maximum ESP confidence region of level1 − α

with α ∈ [0, 1] is aB(Θ)-measurable set

S̃T :=

{

θe ∈ Θ :
1

KT
f̃θ∗T ,sp(θe) > kα,T

}

wherekα,T is the highest bound satisfying1KT
∫
S̃T
f̃θ∗T ,sp(θ)dθ > 1− α andKT :=

∫
Θ f̃θ∗T ,sp(θ)dθ.

Since
∫
Θ δθe(θ)f̃θ∗T ,sp(θ)dθ = f̃θ

∗
T ,sp
(θe), Definition7.5 is in line with Definition7.2; and thus the

same interpretation still holds. By Proposition4.5, all elements in the maximum ESP confidence region

have a higher probability weight of being a solution to the empirical moment conditions than the ones

outside. In this sense, they are maximum-probability based. As for continuous utility functions, we do

not require the ESP confidence region level to be exactly equal to1 − α in order to ensure existence.

As for continuous utility functions, marginal, conditional, two-sided symmetric confidence regions and

two-sided equal-tailed ESP confidence regions can also be defined. In particular, Definition9.3 on

p.65 provides an example of marginal ESP confidence region in the case of over-restricting moment

conditions.

To the knowledge of the author, Sowell (2007) is the only one to use this type of confidence region

in the saddlepoint literature. The main differences between the confidence regions in Sowell (2007) and

the ones in Definition7.5are the following. He uses the ESP technique to approximate the distribution

of the local minima of the second step GMM objective function, while we use it approximate the

distribution of the solutions to the empirical moment conditions. He proposes to use the obtained

confidence region for the GMM estimate, while we use it for the maximum-ESP estimate.

The Bayesian counterpart of maximum ESP confidence regions are typically called “highest pos-

terior density” (HPD) regions (e.g., p.327 in Schervish, 1995). However, HPD regions involve the

population parameter unlike maximum ESP confidence region. Because in the ESP approach random-

ness comes from data and not from treating the population parameter as a random variable (see section

6), ESP confidence regions do notformally involves the population parameter,θ0.

The formal absence of the population parameter in Definition7.5is also one of the differences w.r.t.

standard classical confidence regions. By definition, a usual classical confidence region of level1− α

should contain the population parameter with probability1− α before observation of the sample. But,

given a sample at hand, a usual classical confidence region does not provide a probabilistic statement

about the population parameter. Given a sample at hand, a classical confidence region is fixed, and
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thus it has probability one or zero to contain the population parameter. In contrast, ESP confidence re-

gionsformally involve only the finite sample counterpart of population parameter, as the ESP approach

acknowledges that practice relies on finite samples. Moreover, the induced probabilistic statements

about the final counterpart of the population parameter does not disappear once the ESP confidence

region is computed. Another difference between maximum ESP confidence regions and usual classical

confidence regions is that the latter ones only requires to report standard errors. In standard classical

inference, whatever is the sample size, the same Gaussian approximation is used, whereas in the ESP

approach an approximation of a finite-sample distribution, which by construction is different for each

sample size, yields probabilistic statements.

Despite all these differences, under standard assumptions, CLT , Bernstein-von Mises’ theorem and

Theorem5.2 indicate that standard classical confidence regions, Bayesian HPD region and maximum

ESP confidence regions behave similarly asymptotically.

The following proposition ensures existence and consistency of maximum ESP confidence regions.

Proposition 7.6. For all α ∈]0, 1[,

i) under Assumptions1-3,12, there exists a maximum ESP confidence region,S̃T ;

ii) under Assumptions1-7,12, asT →∞,

S̃T  {θ0} P-a.s.

Proof. See AppendixA.14 (p.116). �

Proposition7.6i) follows from the same arguments as Proposition7.3 i).

7.3. Robustness to lack of identification

In this section, we present how the multiplicity of solutions to the moment conditions affects the

decision-theoretic approach of sections7.1 and8. For clarity, the structure of the section is similar to

sections7.1 and8. For brevity, we try to only indicate the necessary changes w.r.t sections7.1 and8.

Proofs are adaptation of the proofs in the case of identification.

By definition, point estimation is not relevant in the case of multiple solutions to the moment

conditions. Therefore, like existing point estimates, in this case, ESP point estimates are only locally

consistent i.e. they are consistent when the parameter space is restricted to a subset containing a unique
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solution. However, ESP confidence sets reflect the lack of reliability of ESP point estimates. We show

that ESP confidence sets are globally consistent in the presence of multiple solutions to the moment

conditions. In contrast, standard classical confidence sets are not consistent. By construction, they

consider the uncertainty about the population parameter corresponds to a Gaussian density centered at

the point estimate. Thus, standard point estimates contaminate standard confidence sets.

7.3.1 Continuous utility functions

Point estimate

Definition7.1becomes.

Definition 7.6. DenoteP(Θ) := {Θi}
n
i=1 a partition ofΘ such that for alli ∈ [[1, n]],Θi contains a

unique solution to the moment conditionsθ(i)0 ∈ int(Θi). Given a utility functionu(., .) and a subset

Θi, a local ESP point estimate,̂θu,(i)T , is aE/B(Θ)-measurable maximizer of the ESP expected utility

overΘi i.e

θ̂
u,(i)
T := arg max

θe∈Θi
Ẽ[u(θe, θ

∗
T )]

whereẼ[u(θe, θ∗T )] :=
∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθ.

Note we still integrate the utility function over the whole parameter space. Proposition7.1remains

valid for local ESP point estimates after obvious change. Proposition7.2becomes the following.

Proposition 7.7. Under Assumptions1-3,8-10,11, for all i ∈ [[1, n]], asT →∞,

i) sup
θe∈Θ

∥
∥
∥
∥
∥

∫

Θ
u(θe, θ)f̃θ∗T ,sp(θ)dθ −

n∑

i=1

u(θe, θ
(i)
0 )

∥
∥
∥
∥
∥
→ 0 P-a.s.;

ii) a local ESP point estimate converges locallyP-a.s. to its corresponding solution to the moment

conditions i.e.

lim
T→∞

θ̂
u,(i)
T = θ

(i)
0 P-a.s..

Proof. Adapt proof of Proposition7.2. �

Proposition7.7shows that multiplicity of solutions to moment conditions implies multimodal ESP

intensity. Similarly, multiplicity of local minima in a GMM objective function may be a symptom of
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multiple solution to the moment conditions. Theorem 4.1.2 in Amemiya (1985) has a spirit similar to

Proposition7.7.

Confidence region

Definitions7.2, 7.3and Proposition7.3i) remain valid. Proposition7.3ii) becomes the following.

Proposition 7.8. Define an asymptotic ESP confidence set of level1− α as a measurable set

S̃u∞ :=

{

θe ∈ Θ :
1

K∞

n∑

i=1

u(θe, θ
(i)
0 ) > kα,∞

}

wherekα,∞ is the highest bound satisfying1K∞
∑n

i=1

∫
S̃uT
u(θe, θ

(i)
0 )dθe > 1−α andK∞ :=

∑n
i=1

∫
Θ u(θe, θ

(i)
0 )dθe.

For all α ∈ [0, 1], under Assumptions1-3,8-10 ,11-12, asT →∞,

S̃uT  S̃u∞ P-a.s.

Proof. Adapt proof of Proposition7.3. �

The definition of an asymptotic ESP confidence set is in line with the definition in Proposition7.3

by Proposition7.7i).

7.3.2 0-1 utility functions

Point estimate

Definition7.4becomes the following.

Definition 7.7. A local maximum ESP point estimate ,θ̂T , is an ESP estimate that maximizes the ESP

expected 0-1 utility function overΘi i.e.

θ̂T := arg max
θe∈Θi

Ẽ[δθe(θ
∗
T )]

whereδθe(.) is the Dirac distribution atθe.

After obvious modifications, Propositions7.4and7.5i) remain valid for local maximum ESP point

estimate. Proposition7.5ii) becomes the following.
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Proposition 7.9. Under Assumptions1-3,8-10, a local maximum ESP point estimates converges locally

P-a.s. to its corresponding solution to the moment conditions i.e. for alli ∈ [[1, n]]

lim
T→∞

θ̂
(i)
T = θ

(i)
0 P-a.s..

Proof. Adapt proof of Proposition7.5. �

Confidence region

Definition 7.2 and Proposition7.6i) remain valid for the same reason, but Proposition7.6ii) be-

comes the following.

Proposition 7.10. Under Assumptions1-3,8-10 ,11-12, for all α ∈]0, 1[, asT →∞,

S̃T  
n⊔

i=1

{
θ
(i)
0

}
P-a.s.

where
⊔

denotes a union of disjoint sets.

Proof. Adapt proof of Proposition7.5. �

8. ESP hypothesis testing

In classical inference theory, there is usually a duality between tests and confidence regions, in the

sense that, the set of point-hypothesis that would not be rejected corresponds to a confidence region.

We can also define ESP tests that are based on this duality. For brevity, we do not present them formally

in this section. We only present two examples of them, later, in the section9.2.2, in the case of over-

restricting moment conditions.

In this section, we present formally a decision-theoretic approach to derive ESP tests, which are

not based on confidence regions. A such approach is not possible in standard classical inference frame-

works.

8.1. Notations and definitions

The following definition sets the notations for tests.
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Definition 8.1 (Test). Define the subsetsΘH ⊂ Θ andΘA ⊂ Θ such thatΘH ∩ΘA = ∅ . Define the

measurable decision space(D,D) whereD := {dH , dA}, with dH anddA and whereD is the power

set ofD. The decisionsdH anddA respectively correspond to acceptance ofΘH and rejection ofΘH .

Given a sample sizeT , a test is aE/D-measurable functiondT (.) .

As in point estimation, the decision which maximizes the ESP expected utility is retained. Thus,

we define an ESP test as follows.

Definition 8.2 (ESP decision-theoretic test). Given a utility functionu(., .), an ESP hypothesis test is

a E/D-measurable function,dT , such that for allω ∈ Ω if

Ẽ[u(dH , θ
∗
T )] > Ẽ[u(dA, θ

∗
T )]

thendT (ω) = dH ; and otherwisedT (ω) = dA.

ESP tests solve two problems faced by classical tests. First, standard classical tests often imply

that the population parameter can be outside the parameter space with a strictly positive probability,

although the economic model is typically not defined for these parameter values. For example, in

consumption-based asset pricing, standard confidence intervals and tests for the time discount factor

consider it can take values higher than one. The support of the Gaussian distribution is the whole real

line. However, for values higher than one, the consumption-based asset pricing is typically not defined.

The value function of a dynastic representative agent explodes to infinity for time discount factor higher

than one. In contrast, like ESP confidence regions, ESP tests do not regard values outside the parameter

space as possible because the ESP intensity is not defined outside the parameter space by construction.

The second problem is about the asymptotic properties of standard classical tests. In the standard

classical theory, a test is consistent if the probability of rejection of the alternative goes to one whenθ0 ∈

ΘA as the sample size increases to infinity (e.g., p.553 in Gouriéroux and Monfort, 1989). However,

a consistent test typically leads to asymptotically reject the hypothesis of the test whenθ0 ∈ ΘH with

a probability equal to the level of the test, although asymptotically a model is perfectly known. As

shown below, such asymptotic mistake does not occur with decision-theoretic ESP tests. We introduce

the notion of double-consistency to characterize this property.
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Definition 8.3 (Double consistency). A testdT (.) is doubly-consistentP-a.s. if and only if

lim
T→∞

dT =






dH if θ0 ∈ ΘH

dA if θ0 ∈ ΘA

P-a.s.

In a test, there are two possible inference decisions (acceptance and rejection of the test hypothesis)

and two possible right propositions (the hypothesis is correct and the alternative is correct). Therefore,

in hypothesis testing, a utility function takes at most four different values. Consequently, instead of

distinguishing between continuous and 0-1 utility functions as for point estimation, we distinguish

between set and point hypothesis for purpose of clarity. However, combinations of the two are possible

as shown, later, in section9.2.1in the case of the test of over-restricting conditions.

8.2. Set hypothesis

The following assumption sets notations for the utility function.

Assumption 13. For all (d, θ) ∈ D × Θ, u : (d, θ) 7→ cdlΘH (θ) + bdlΘA(θ) with cdH > cdA and

bdA > bdH .

The strict inequality conditions on the values of the utility function ensure that a right inference

decision provide a strictly higher expected utility to the econometrician strictly than the wrong ones.

The maximum ESP (or maximum expected “truth”) approach corresponds tocdH = bdA = 1 and

cdA = bdH = 0.

The following proposition reformulates conveniently ESP tests in the case of set hypothesis.

Proposition 8.1. Under Assumptions1-3 and13, the ESP hypothesis test in Definition8.2is equivalent

to the testdT , such that for allω ∈ Ω if

cF̃T (ΘH) > F̃T (ΘA) (13)

with c :=
cdH−cdA
bdA−bdH

, thendT (ω) = dH ; and otherwisedT (ω) = dA.

Proof. See AppendixA.15 (p.117). �

Proposition8.1is the immediate counterpart of standard result in Bayesian inference (e.g., p.218 in

Schervish, 1995). In the case of a maximum ESP approach (i.e.,c = 1), the meaning is clear. We accept
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the hypothesis if the estimated intensity measure that solutions to the empirical moment conditions are

inΘH is higher than it is inΘA. If there can only be one solution to the empirical moment conditions,

we accept the most probable hypothesis. Despite this appealing meaning, Proposition8.1 also shows

that the hypothesis with the biggest volume is favoured.

The following proposition ensures the existence and the double-consistency of an ESP set-hypothesis

test.

Proposition 8.2. Given a utility functionu(., .),

i) under Assumptions1-3 and13, there exists an ESP set-hypothesis test;

ii) under Assumptions1-7 and13, an ESP set-hypothesis is doubly consistentP-a.s.

Proof. See AppendixA.16 (p.117). �

Proposition8.2i) is immediate. Proposition8.2ii) is a consequence of the convergence of the ESP

intensity measure to a Dirac distribution centered at the population parameter. Unlike in the standard

classical approach, there is no uncertainty asymptotically; and thus no mistake occurs.

8.3. Point hypothesis

In the case of point-hypothesis (i.e.,ΘH := {θH}), we derive results similar to set-hypothesis

tests. The counterpart of Assumption13 is the following assumption.

Assumption 14. For all (d, θ) ∈ D × Θ, u : (d, θ) 7→ cdδθH (θ) + bdlΘA(θ) with cdH > cdA and

bdA > bdH .

SinceΘH is a parameter value, the utility function is expressed in terms of Dirac distribution for

same reason as in section7.2. A maximum ESP approach also corresponds tocdH = bdA = 1 and

cdA = bdH = 0.

The counterpart of Proposition8.1 is the following proposition.

Proposition 8.3. Under Assumptions1-3 and14, the ESP hypothesis test in Definition8.2is equivalent

to the testdT , such that for allω ∈ Ω if

cf̃θ∗T ,sp(θH) > F̃T (ΘA) (14)

with c :=
cdH−cdA
bdA−bdH

, thendT (ω) = dH ; and otherwisedT (ω) = dA.
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Proof. See AppendixA.17 (p.117). �

In the case of a maximum ESP approach (i.e.,c = 1), an ESP test does not have the same straight-

forward meaning as in Proposition8.1. The LHS of equation (14) is in terms of intensity weight, while

the RHS is in terms of intensity measure. The test hypothesis is accepted when the estimated intensity

(or probability by Proposition 4.5) weight ofθH being a solution to the empirical moment conditions

is higher than the intensity measure ofΘA. In a maximum ESP approach, Proposition8.3also shows

some similarity with Jeffreys’ Bayes factors (e.g., section 4.2.2 in Schervish, 1995). However, Jeffrey’s

approach requires to choose a prior overΘA given thatθ0 6= θH .

The following proposition is the point-hypothesis counterpart of Proposition8.2.

Proposition 8.4. Given a utility functionu(., .),

i) under Assumptions1-3 and14, there exists an ESP point-hypothesis test;

ii) under Assumptions1-7 and14, an ESP point-hypothesis is doubly-consistentP-a.s.

Proof. See AppendixA.18 (p.117). �

8.4. Robustness to lack of identification

Standard classical tests correspond to standard classical confidence intervals. Thus they are not

robust to the presence of multiple solutions the moment conditions. ESP tests presents some robustness

to this situation. They take into account the uncertainty due to the multiplicity of solutions.

Definitions8.1and8.2remain relevant unlike Definition8.3.

8.4.1 Set hypothesis

Proposition8.1 and8.2i) remain valid for the same reasons, but Proposition8.2ii) becomes the

following.

Proposition 8.5. Given a utility functionu(., .), under Assumptions1-3,8-10and13, asT →∞, P-a.s.

lim
T→∞

dT =






dH if c#
{
θ
(i)
0 : i ∈ [[1, n]] andθ(i)0 ∈ ΘH

}
> #

{
θ
(i)
0 : i ∈ [[1, n]] andθ(i)0 ∈ ΘA

}

dA otherwise
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Proof. Adapt proof of Proposition8.2ii) . �

In other words, if the number of solutions to the moment conditions inΘH weighted byc is higher

that the one inΘA, the hypothesis is accepted. In the case of a maximum ESP approach,c = 1.

8.4.2 Point hypothesis

Propositions8.3and8.4i) remain valid for the same reasons, but Proposition8.4ii) becomes

Proposition 8.6. Given a utility functionu(., .), under Assumptions1-3,8-10and13, asT →∞, P-a.s.

lim
T→∞

dT =






dH if θH ∈
{
θ
(i)
0

}n

i=1

dA otherwise

Proof. Adapt proof of Proposition8.4ii) . �

According to Proposition8.6, if the hypothesis corresponds to a solution to the moment conditions,

the hypothesis is accepted. Thus, the solution to the moment conditions which corresponds to the

point-hypothesis is favoured.

9. Over-restricting moment conditions

In previous sections, we assume that the number of moment conditions equals the dimension of

the parameter space (just-restricting moment conditions). See Assumption1(c) on p.21. In this section,

we consider the case in which the number of moment conditions is strictly greater than the dimension

of the parameter space (over-restricting moment conditions). Then, thanks to the additional moment

conditions, we propose tests of goodness-of-fit or, more precisely, tests of over-restricting moment

conditions.

For at least three reasons, the case with over-restricting moment conditions is an important case

to deal with. First, an economic model often implies a number of moment conditions greater than the

dimension of the parameter space (e.g., Carrasco and Florens, 2000). In rational expectation models,

one can derive as many moment conditions as he wants from the orthogonality between the error of

prediction concerning the next period and the present information. For example, in the general asset

pricing framework of section2.1, under the assumption thatE
{
[1−Mt+1(θ0)Rj,t+1]

2
}
< ∞, if we

denoteYt an element of the information set at datet, the asset pricing equation (1) on p.11 implies
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E {[1−Mt+1(θ0)Rj,t+1]h(Yt)} = 0 for all functionsh(.) measurable such thatE
[
h(Yt)

2
]
< ∞.

Second, the more moment conditions, the more information from economic theory is incorporated

into inference so that its results are typically sharper. In inference, information comes either from the

structure imposed by the econometric model or from data. Third, over-restricting moment conditions

allow the derivation of tests of goodness-of-fit, which aim at assessing the agreement between an whole

econometric model and data. Tests previously presented in section8 aim at assessing the agreement

between a restriction on the parameter space and data.

In standard classical theory, tests of goodness-of-fit, such as the so-called test of over-identifying

restrictions (Hansen, 1982), are widely developed and used. In contrast, testing goodness-of-fit is

theoretically delicate in Bayesian inference (e.g., Robert, 1994, p.374), although successful practice

of Bayesian inference often resorts to indirect measures of goodness-of-fit (e.g., Rubin, 1984; Gelman

and Shalizi, 2011). As explained in section6.1, takenliterally, Bayesian theory regards inference as a

game between nature and an econometrician, in which the prior over the parameter space,πθ0(.), and

the probability distribution of data conditional on population parameter,lX1,...,XT |θ0(.|.), are common

knowledge. In other words, Bayesian theory considers that the econometrician knows the true prior and

the true conditional p.d.f. according to which data are generated. Therefore, from a literal Bayesian

perspective, the econometric model fits the data by construction so that an econometrician can only

learn about parameter values. This is one of the consequences of the fundamental differences between

Bayesian and ESP inference.

9.1. From over-restricting to just-restricting moment conditions

On the one hand, identification requires that the number of moment conditions is greater than, or

equal to, the dimension of the parameter space. On the other hand, as explained in the justification

of Assumption1(c) on p.21, if the number of moment conditions is greater than the dimension of the

parameter space, there is generically no solution to empirical moment conditions, so that the intensity

distribution is zero. Therefore, the idea of this section is to reduce the over-restricted case to the

just-restricted case of the previous sections by increasing the dimension of the parameter space. We

simultaneously undertake two tasks to implement this idea. We adapt the setup of sections4.1, 4.2and

5.1 to the case with over-restricting moment conditions, and we show that this modified setup satisfies

the assumptions of sections4.1, 4.2 and5.1 so that their results still hold. For clarity, the structure of
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this section is similar to the one of sections4.1, 4.2and5.1.

9.1.1 ESP estimand

In the setup with over-restricting moment conditions, Assumption1(a) remains unchanged, while

Assumptions1(b)(c) and (d) become Assumption15(b*)(c*) and (d*).

Assumption 15. (b*)Let the measurable space(Φ,B(Φ)) such thatΦ ⊂ Rq is compact andB(Φ)

denotes the Borelσ-algebra onΦ (c*) The moment functiong : Rp×Φ→ Rm is E ⊗B(Φ)/B(Rm)-

measurable, whereE ⊗ B(Θ) denotes the productσ-algebra andq < m ; (d*) For the sample size

at handT , there existsg(1) : Rp × Φ → Rq and g(2) : Rp × Φ → Rm−q such thatg(.) =:

(g(1)(.) g(2)(.))′ and the expectation of the number of solutions to the empirical moment conditions

based ong(1)(.), is finite, i.e.,
∑∞

n=1 npn,T <∞ wherepn,T is the probability of havingn solutions to

the empirical moment conditions; (e*) sup(x,φ)∈ℵ×Φ ‖g
(2)(x, φ)‖ < ∞ whereℵ denotes the support

of the distribution of the data,X.

Assumption15(e*) is the only completely new assumption. It guarantees the parameter space to

remain compact, while we expand it to obtain just-restricting moment conditions. From a mathematical

point of view, Assumption15(e*) is strong, but it is innocuous in practice because a computer can only

handle bounded quantities.

Thanks to the notations introduced in Assumption15, we transform the over-restricting moment

function,g : Rp × Φ → Rm, into the just-restricting moment function,ψ : Rp × Θ → Rm with

Θ := Φ×Ξ, such that

ψ(X, θ) :=






g(1)(X,φ)

g(2)(X,φ)− ξ




 (15)

whereθ := (φ′ ξ′)′. Our transformation is the same as the one used by Newey and McFadden

(p.2232, 1994) for a different purpose. Other transformations of over-restricting moment conditions

into just-restricting systems have been introduced to the GMM and saddlepoint literature. Newey and

McFadden (1994), Imbens (1997), and Ronchetti and Trojani (2003) use a transformation based on an

extended FOC of the GMM objective function. Following Sowell (1996), Sowell (2007, 2009) pro-

poses a transformation based on an orthonormalized extended FOC of the second-step GMM objective

function. Czellar and Ronchetti (2010) and Holcblat (2009) use Sowell’s transformation respectively to
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apply saddlepoint approximation to indirect inference tests and to apply bootstrap to GMM. The three

main differences between these transformations and ours are the following. First, our transformation

requires the econometrician to split the moment conditions into two groups, while the other transfor-

mations automatically selectq dimensions of the empirical moment conditions through the derivatives

of the latter ones. Second, the asymptotic variance of the square root of the sample size multiplied

by the difference between a solution to the empirical moment conditions and the population parameter

will be greater with our transformation than with the alternatives. This asymptotic advantage of the

alternative transformation has been shown to be often a disadvantage in finite sample. One of the main

conclusions of the July 1996 issue of the Journal of Business and Economic Statistics is that the iden-

tity weighting matrix generally outperforms the optimal weighting matrix for GMM in finite samples.

Third, our transformation captures the solutions to empirical moment conditions that correspond to

g(1)(., .), while the existing transformations capture all the local extrema of the GMM objective func-

tion so that, in the presence of non-linear moment conditions, indicator functions should be added to

discard local maxima (e.g., Sowell, 2007). However, the inclusion of indicator functions breaks the

regularity properties of the moment function that we require to define the ESP approximation.33 More-

over, it does not also discard local minima that do not converge to a global minimum so that conditions

for identification are difficult to characterize.

Our transformation (15) combined with Assumption15yield Assumption1 to hold.

Proposition 9.1. Under Assumption1 modified according to Assumption15, Assumption1 is satisfied

for the just-restricting moment function defined in equation (15). In particular, there exists a convex

compact set,Ξ, that includes
{
g(2)(x, φ) : (x, φ) ∈ ℵ ×Φ

}
so that for allt ∈ N, φ ∈ Φ, andω ∈ Ω,

we can findξ̇ ∈ int(Ξ) such that1T
∑T

t=1 g
(2)(Xt(ω), φ)− ξ̇ = 0(m−q)×1.

Proof. See AppendixA.19 (p. 117). �

Proposition9.1 mainly means that all the results of section4.1 hold for over-restricting moment

conditions after transformation (15). In particular, the ESP estimand is well-defined. Without loss of

generality, we require a large enough compact setΞ for mathematical convenience.

Hereafter, for simplicity,we drop reference to transformation (15). The context indicates whether

we refer to an original just-restricting moment functionψ(., .), or to a just-restricting moment function

ψ(., .) built from an over-restricting moment function,g(., .), according to transformation (15).

33A solution to maintain regularity properties would be to introduce mollifiers, but it would create theoretical and practical
complications.
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9.1.2 ESP estimator

To have the results of section4.2 to hold, we modify its assumption as follow. Assumption2

becomes

Assumption 16. There existsε > 0 such that for allx ∈ ℵ, θ 7→ g(x, φ) is continuously differentiable

in {φ ∈ Rq : ‖φ−Φ‖ < ε}.

Assumption3 becomes the following.

Assumption 17. Define the sets

Φ̂T :=






φ ∈ Φ : ∃τT (φ) ∈ R
q s.t.

∑T
t=1 g

(1)
t (φ)e

τT (φ)
′g
(1)
t (φ) = 0q×1∣

∣
∣
∣

[
1
T

∑T
t=1

∂g
(1)
t (φ)

′

∂φ

]∣∣
∣
∣
det

6= 0
∣
∣
∣
[
1
T

∑T
t=1 gt(φ)gt(φ)

′
]∣∣
∣
det
6= 0






Φ̌T :=

{

φ ∈ Φ :

∣
∣
∣
∣
∣

[
1

T

T∑

t=1

∂g
(1)
t (φ)

′

∂φ

]∣∣
∣
∣
∣
det

= 0 and

∣
∣
∣
∣
∣

[
1

T

T∑

t=1

gt(φ)gt(φ)
′

]∣∣
∣
∣
∣
det

= 0

}

For the sample at hand, for allη > 0 small enough, the setšΦg,T andΦ̂−ηg,T do not have any common

elements, i.e.,̌ΦT ∩ Φ̂
−η
T = ∅.

The second and third restriction onφ ∈ Φ in the definition ofΦ̂T corresponds to the restriction

|ΣT (θ)|det 6= 0 in the definition ofΘ̂T in Proposition4.3 on p.25. Similarly, the two restrictions on

φ ∈ Φ in the definition ofΦ̌T correspond to the restriction|ΣT (θ)|det = 0 in the definition ofΘ̌T in

Assumption3 on p.26.

Under the above adapted assumptions we obtain the following.

Proposition 9.2. LetΞ be the compact set introduced in Proposition9.1. Define the set̂ΞT ⊂ Rm−q

such that

Ξ̂T :=

{∑T
t=1 g

(2)
t (φ)e

τ ′gt(φ)

∑T
t=1 e

τ ′gt(φ)
: (φ, τ) ∈ Φ̂T ×R

m s.t.
T∑

t=1

g
(1)
t (φ)e

τ ′gt(φ) = 0q×1

}

.

Under Assumptions1-3 modified according to Assumptions15-17,

i) there existsε > 0 such that for allx ∈ Rp, θ 7→ ψ(x, θ) is continuously differentiable in

{θ ∈ Rm : inf(θ,Θ) < ε};
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i) Ξ̂T ⊂ Ξ andΦ̂T × Ξ̂T = Θ̂T ;

ii) Φ̌T ×Ξ = Θ̌T .

Then, under the latter assumptions, Assumptions2-3 hold.

Proof. See AppendixA.20 (p.118). �

Proposition9.2 means that all the results of section4.2 hold for over-restricting moment condi-

tions after transformation (15). In particular, the ESP estimator is well-defined. Now, we turn to its

asymptotic behaviour.

9.1.3 Asymptotic behavior

Assumption4(b)-(e) becomes the following.

Assumption 18. (b*)In the parameter spaceΦ, there exists a unique solutionφ0 ∈ int (Φ) to the mo-

ment conditionsE
[
g(1)(X,φ)

]
= 0q×1 ; (c*) E

[
supφ∈Φ ‖g(X,φ)‖

]
<∞ ; (d*) E

[
supφ∈Φ

∥
∥
∥∂g(X,φ)∂φ′

∥
∥
∥
]
<

∞ ; (e*)
∣
∣
∣E
[
∂g(1)(X,φ)

∂φ′

]∣∣
∣
det
6= 0 .

Assumption18means that in terms of identification the assumption is the same as the one to apply

the ESP approach to the firstq moment conditions. In terms of boundedness, the assumption is the

same as the one for a just-restricting moment function.

Assumption5 becomes the following.

Assumption 19. Define the set

Φ̂∞ :=






φ ∈ Φ : ∃τ̇ ∈ Rm s.t.

∃r > 0, ∀τ ∈ Br(τ̇), E
[
eτ
′g(X,φ)

]
<∞

∥
∥
∥E
[
eτ̇
′g(X,φ) ∂g(X,φ)

∂φ

′]∥∥
∥ <∞

∣
∣
∣
∣E

[

eτ̇
′g(X,φ) ∂g

(1)(X,φ)
∂φ

′
]∣∣
∣
∣
det

6= 0
∣
∣
∣E
[
eτ̇
′g(X,φ)g(X,φ)g(X,φ)′

]∣∣
∣
det
6= 0

E
[
g(1)(X,φ)eτ̇

′g(1)(X,φ)
]
= 0q×1






.

Ξ̂∞ :=






E
[
g(2)(X,φ)eτ

′g(X,φ)
]

E
[
eτ ′g(X,φ)

] : (φ, τ) ∈ Φ̂∞ ×R
m s.t.E

[
g(1)(X,φ)eτ

′g(X,φ)
]
= 0q×1





.

(a*) There exists̄r > 0 such that there existṡT ∈ N, so that for allT > Ṫ , Br(φ0) ⊂ Φ̂T ,

andBr (ξ0) ⊂ Ξ̂T whereξ0 := E
[
g(2)(X,φ0)

]
. Define a fixedη ∈]0, r̄[ ; (b*) For all φ̇ ∈ Φ̂−η∞ , for
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τ̇ ∈ Rm andξ̇ ∈ Rm−q s.t. ξ̇ = E
[
g(2)(X, φ̇)eτ̇

′g(X,φ̇)
]
/E
[
eτ̇
′g(X,φ̇)

]
andE

[
g(1)(X, φ̇)eτ̇

′g(X,φ̇)
]
=

0q×1, there existsr1, r2 > 0 so that for allτ ∈ Br1(τ̇), E
[
supφ∈Br2 (φ̇)

‖g(X,φ)eτ
′g(X,φ)‖

]
<∞.

Assumption6(a)(b) becomes the following.

Assumption 20. (a*) For all x ∈ Rp, the functionφ 7→ g(X,φ) is four times continuously dif-

ferentiable in a neighborhood ofφ0 P-a.s. ; (b*) For all k ∈ [[1, 2]], there existsr > 0, such that

E
[
supφ∈Br(φ0) ‖D

kg(X,φ)‖
]
< ∞ whereDk denotes the differential operator w.r.t.φ of orderk ;

(e*) There existsr > 0 such that
∥
∥
∥E
[
supφ∈Br(φ0) g(X,φ)g(X,φ)

′
]∥∥
∥ <∞.

Assumption7 becomes the following.

Assumption 21. Let η > 0 be defined as in Assumption19(a*). (b*) For all φ̇ ∈ Φ̂−η∞ , for τ̇ ∈ Rm

and ξ̇ ∈ Rm−q s.t. ξ̇ = E
[
g(2)(X, φ̇)eτ̇

′g(X,φ̇)
]
/E
[
eτ̇
′g(X,φ̇)

]
andE

[
g(1)(X, φ̇)eτ̇

′g(X,φ̇)
]
= 0q×1,

there existr1, r2 > 0 so thatE
[
sup(τ,φ)∈Br1 (τ̇)×Br2 (φ̇)

eτ
′g(X,φ)

]
<∞.

Under the modified assumptions, the original assumptions still hold.

Proposition 9.3. Under Assumptions1-7 modified according to Assumptions15-21, Assumptions5-7

hold.

Proof. See AppendixA.21 (p. 119). �

Proposition9.3 means that consistency and asymptotic normality of the ESP intensity (i.e., Theo-

rems5.1 and5.2) hold for over-restricting moment conditions after extension of the parameter space.

Robustness to lack of identification can also be derived along the lines of section5.2.

9.2. Tests of over-restricting moment conditions

In this section, we presents test of over-restricting moment conditions. The idea is to reduce

tests of over-restricting moment conditions to tests of a restriction on the parameter space, which are

introduced in section8. More precisely, the idea is to define a test of over-restricting moment conditions

as a test of the hypothesisξ0 = 0(m−q)×1, whereξ0 := E
[
g(2)(X,φ0)

]
. First, we implement the idea

in the case of decision-theoretic tests . Second, we implement the idea in the case of confidence-region

based tests. In this section, we follow the notations and definitions of section8.1.

We want to define tests of over-restricting moment conditions as tests of the hypothesisξ0 =

0(m−q)×1. But, if the moment conditions are not consistent with data, the auxiliary parameter space,Ξ,
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which is defined in Proposition9.1, may not contain0(m−q)×1 so that the hypothesis is not well-defined.

Thus the following assumption is needed.

Assumption 22. There existsr > 0 such thatBr(0(m−q)×1) ⊂ Ξ.

Assumption22 does not entail any loss of generality because we can always expandΞ so that the

assumption is satisfied.

9.2.1 Decision-theoretic tests

In this section, we derive tests of over-restricting moment conditions following the ESP testing

decision-theoretic framework of section8. The test of over-restricting moment conditions corresponds

toΘH = Φ×
{
0(m−q)×1

}
andΘA = Φ×

{
Ξ \

{
0(m−q)×1

}}
. Thus, a utility functions for a test of

over-restricting moment conditions has the following form.

Assumption 23. For all (d, ξ) ∈ D × Ξ, u : (d, θ) 7→
[
cdδ{0(m−q)×1}(ξ) + bdlΞA(ξ)

]
lΦ(φ) with

cdH > cdA , bdA > bdH , andΞA :=
{
Ξ \

{
0(m−q)×1

}}
.

Assumption23 is the adaptation of Assumption14 to tests of over-restricting moment conditions.

In Assumption23, a utility function does not depend onφ because the test hypothesis put a constraint

only onξ.

Under Assumption23, the following proposition reformulates conveniently decision-theoretic ESP

tests of over-restricting moment conditions.

Proposition 9.4(Decision-theoretic ESP test of over-restricting moment conditions). Denotef̃ξ∗T ,sp(ξ) :=
∫
Φ f̃θ∗T ,sp(θ)dφ. Under Assumptions1-3 modified according to Assumptions15-17 and Assumptions

22-23, the ESP hypothesis test in Definition8.2 is equivalent to the test

cf̃ξ∗T ,sp(01×(m−q)) >
∫

Φ×ΞA

f̃θ∗T ,sp(θ)dθ (16)

with c :=
cdH−cdA
bdA−bdH

, thendT (ω) = dH ; and otherwisedT (ω) = dA.

Proof. See AppendixA.22 (p.122).�

The meaning of Proposition9.4is similar to the one of Propositions8.3in section8. The maximum-

ESP approach corresponds toc = 1.
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The following proposition ensures the existence and the double-consistency of decision-theoretic

ESP test of over-restricting moment conditions.

Proposition 9.5. Given a utility functionu(., .),

i) under Assumptions1-3 modified according to Assumptions15-17 and Assumptions22-23, there

exists a decision-theoretic ESP test of over-restricting moment conditions;

ii) under Assumptions1-7 modified according to Assumptions15-21 and Assumptions22-23, a

decision-theoretic ESP test of over-restricting moment conditions is doubly-consistentP-a.s.

Proof. See AppendixA.23 (p.122). �

Proposition9.5is the counterpart of Proposition8.4for the marginal ESP intensity ofξ∗T , f̃ξ∗T ,sp(.).

Following the arguments of Proposition8.6, robustness of decision-theoretic ESP tests of over-restricting

moment conditions to lack of identification can be established.

9.2.2 Confidence-region based tests

For ESP decision-theoretic tests, each hypothesis requires a specific utility function, which is

different from the one used for point estimation. In contrast, ESP confidence-region based tests relies

on a unique utility function that correspond to the one used for point estimation. In a ESP confidence-

region based test, a point-hypothesis is rejected, if it is far from being the econometrician optimal

point estimate. More precisely, in a ESP confidence-region based tests, a point-hypothesis is rejected,

if it is outside the corresponding confidence region. In the case of tests of over-restricting moment

conditions, which is presented in this section, the hypothesisξ0 = 0(m−q)×1 is rejected, if the marginal

ESP confidence region ofξ∗T does not contain0(m−1)×1.

In basic standard classical inference, the point-hypotheses outside a confidence region are also the

ones rejected. However, standard classical tests are fundamentally different from ESP confidence-

region based tests. First, unlike with ESP, the relation between tests and confidence regions is es-

sentially a mathematical coincidence in standard classical inference. The rationale behind standard

classical confidence region and tests are different. An ideal standard classical confidence region is a

random set that has approximatively a probability1 − α to contain the population parameter before

collection of the sample, while the hypothesis of a standard classical test is accepted if its fixed region

of acceptance contains the corresponding random statistic. Second, in standard classical inference,
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tests rely on probabilistic statements that hold only before collection of the sample, while ESP tests

rely on probabilistic statements that hold before and after collection of a sample. In particular, unlike

in standard classical inference, multiple hypothesis testing on the same date set does not undermine the

theoretical validity of ESP tests.

For clarity, the structure of this section is similar to the one of section7, which considers separately

continuous utility functions and 0-1 utility function.

Continuous utility functions

By definition confidence-region based tests of over-restricting moment conditions rely on con-

fidence regions, which in turn rely the utility function used used for point estimation. If the utility

function is continuous with respect to both the parameter of interest ,φ, and the auxiliary parameter,

ξ, then the ESP confidence region for test of over-restricting moment conditions is the marginal of the

confidence region in Definition7.2 on p.42. However, the choice of a continuous utility function for

the inference precision ofξ can be delicate.ξ measures the goodness-of-fit of the model, but it does

not come from the economic model under study. Thus, we focus on a utility function that is continuous

w.r.t the parameter of interest,φ, and 0-1 w.r.t. the auxiliary parameterξ. In other words, we consider

in this section the composite utility functionuc (θe, θ) := u(φe, φ)δξe(ξ) for all (θe, θ) ∈ Θ2. Based

on this utility function, we define the following marginal confidence region.

Definition 9.1 (ESP confidence-region for test of over-restricting moment conditions). Given a utility

functionu(., .), define an ESP confidence region of level1− α for over-restricting moment conditions

with α ∈ [0, 1] as aB(Θ)-measurable set

S̃ucT,ξ :=

{

ξe ∈ Ξ :
1

Kuc
T,ξ

fucξ∗T ,sp
(ξe) > kα,T,ξ

}

wherekα,T,ξ is the highest bound satisfying1
Kuc
T

∫
S̃ucT,ξ

fucξ∗T ,sp
(ξe)dξe > 1−α,Kuc

T,ξ :=
∫
Ξ f

uc
ξ∗T ,sp
(ξe)dξe,

andfucξ∗T ,sp
(.) :=

∫
Φ2 u(φe, φ)f̃θ∗T ,sp(φ, .)dφdφe.

fucξ∗T ,sp
(.) corresponds to the the utility-weighted marginal ESP intensity ofξ∗T . Definition of ESP

confidence regions for over-restricting moment conditions is in line with Definition7.2and Definition

7.5of ESP confidence regions for continuous and 0-1 utility functions because
∫
Θ u(φe, φ)δξe(ξ)f̃θ∗T ,sp(θ)dθ =

∫
Φ u(φe, φ)f̃θ∗T ,sp(φ, ξe)dφ.
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Proposition 9.6. For all α ∈]0, 1[,

i) under Assumptions1-3 modified according to Assumptions15-17, and Assumptions11- 12,22,

there exists an ESP confidence region for over-restricting moment conditions,S̃ucT,ξ;

ii) under Assumptions1-7 modified according to Assumptions15-21, and Assumptions11- 12,22,

asT →∞,

S̃ucT,ξ  {ξ0} P-a.s.

Proof. See AppendixA.24 (p.122). �

Proposition9.6 is the counterpart of Proposition7.6.

Definition 9.2 (Confidence-region based test of over-restricting moment conditions). Under Assump-

tions1-3 modified according to Assumptions15-17and Assumptions11- 12, a confidence-region based

ESP test of over-restricting moment conditions is the testdT (.) such that for allω ∈ Ω if

0(m−q)×1 ∈ S̃
uc
T,ξ

thendT (ω) = dH , and otherwisedT (ω) = dA.

Definition means that, given a utility function, that a model is rejected at levelα, if the marginal

ESP confidence region ofξ of level α does not contain0(m−1)×1. In other words, there is rejection,

if considering that the over-restricting moment conditions are satisfied is far from being an optimal

answer to the uncertainty summarized by the ESP intensity.

0-1 utility functions

Confidence-based ESP tests of over-restricting moment conditions are simpler when the utility

function for the parameter of interest is a 0-1 utility function. The counterpart of Definition9.1 is the

following.

Definition 9.3 (Maximum ESP confidence region for test of over-restricting moment conditions). A

maximum ESP confidence region of level1− α with α ∈ [0, 1] is aB(Θ)-measurable set

S̃T,ξ :=

{

ξe ∈ Ξ :
1

KT,ξ
f̃ξ∗T ,sp(ξe) > kα,T

}

65



wherekα,T is the highest bound satisfying1KT,ξ
∫
S̃T,ξ

f̃ξ∗T ,sp(ξ)dξ > 1 − α, KT,ξ :=
∫
Ξ f̃ξ∗T ,sp(ξ)dξ,

and f̃ξ∗T ,sp(ξe) :=
∫
Φ f̃θ∗T ,sp(φ, ξe)dφ.

The counterpart of Proposition9.6 is the following.

Proposition 9.7. For all α ∈]0, 1[,

i) under Assumptions1-3 modified according to Assumptions15-17, and Assumptions11- 12,22,

there exists an ESP confidence region for over-restricting moment conditions,S̃T,ξ;

ii) under Assumptions1-7 modified according to Assumptions15-21, and Assumptions11- 12,22,,

asT →∞,

S̃T,ξ  {ξ0} P-a.s.

Proof. See AppendixA.25 (p.123). �

The counterpart of Definition9.2for 0-1 utility function is the following.

Definition 9.4 (Maximum ESP confidence-region based test of over-restricting moment conditions).

Under Assumptions1-3modified according to Assumptions15-17and Assumptions11- 12, a confidence-

region based ESP test of over-restricting moment conditions is the testdT (.) such that for allω ∈ Ω

if

0(m−q)×1 ∈ S̃T,ξ

thendT (ω) = dH , and otherwisedT (ω) = dA.

Definition 9.4 means that there is rejection if the ESP probability weight that over-restricting mo-

ment conditions are satisfied is low.

10. Simulation and inference of a consumption-based asset pricing model

In this section, we illustrate the benefits provided by the ESP approach with respect to existing

inference approaches in the case of a stylized consumption-based asset pricing model.

As explained in section2, the classical inference theory used in consumption-based asset pricing

is logically irrelevant in practice. Asymptotic classical inference theory is about situations in which
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the sample size can be infinitely increased, although practice relies on bounded samples.34 The ESP

approach is alsologically irrelevant in practice. An approximation of the distribution of the solutions to

the empirical moment conditions islogically irrelevant for an actual solution to the moment conditions,

the population parameter.

However, asymptotic classical inference theory has been proved helpful in many practical situa-

tions. The previous sections suggest that we can expect the same from the ESP approach. Consequently,

the appropriate question is to determine whether the ESP approach ispractically more relevant than

the classical inference theory. The simulations in this section suggest that it is the case, although the

comparison is based on the criteria of standard classical inference theory.

10.1. Model

We consider a standard consumption-based asset pricing model. An infinitely-lived agent represents

the economy. He is endowed with CRRA preferences. Thus, he maximizes

max
{Ct}

E

[
∞∑

t=0

βt
C1−θt

1− θ

]

(17)

whereβ ∈]0, 1[ denotes in this section his time discount factor,θ is his RRA andCt is his consumption

in period t. At each period, the representative agent can consume and invest inn different assets

according to his wealth. More precisely, he faces the following budget constraint

Ct +
n∑

j=1

Pj,tQj,t 6
n∑

j=1

(Pj,t +Dt,j)Qj,t−1 (18)

whereQj,t is the quantity of assetj held at the end of datet, andPj,t andDj,t are, respectively,

the price and dividend of assetj at datet. Under the usual technical conditions (e.g., Radner, 1972;

Lucas, 1978), the solution to the maximization program of the representative agent (17)-(18) satisfies

the following Euler equations

∀j ∈ [[1, n]], Et

[

β

(
Ct+1

Ct

)−θ
Rj,t+1 − 1

]

= 0 (19)

34van der Vaart (p. 3, 1998) makes a similar remark. He writes “In fact, strictly speaking, most asymptotic results that are
currently available are logically useless. This is because most asymptotic results are limit results, rather than approximations
consisting of an approximating formula plus an accurate error bound.”
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whereRj,t+1 :=
Pj,t+1
Pj,t

is the gross return of assetj between datet andt + 1. Euler equations (19)

mean that the expected gross return of every asset discounted for time and risk equals$1. This relation

corresponds to the moment conditions (1) (p. 11) with Mt+1(θ) = β
(
Ct+1
Ct

)−θ
. This model has been

used extensively in the empirical consumption-based asset pricing literature since the seminal paper by

Hansen and Singleton (1982).

10.2. Specifications

We want to simulate simple specifications of the model (17)-(18) so that the moment conditions

(19) can be solved in closed-form. This is necessary in order to know whether the model is identified.

We also want our moment conditions to correspond to moment conditions already used in the literature

to assess inference approaches. The resulting specifications, albeit not necessarily realistic, allow a

transparent illustration of the abilities of the ESP approach.

We assume the logarithm of gross growth consumption to be independent and identically distributed

(i.i.d.) according to a centered Gaussian distribution with varianceσ2, i.e., ln
(
Ct+1
Ct

)
↪→ N (0, σ2).

We assume the gross return of only one asset (asset 1) to be observed. We assume the logarithm of

the gross return of the asset to be i.i.d. according to a centered Gaussian distribution with variance

9σ2, i.e., ln (R1,t+1) ↪→ N (0, 9σ2). Gross growth consumption and the gross return of the asset are

independent. We setσ2 = .2. We also set the RRA and time discount factor of the representative agent,

respectively, to3 ande−
θ20σ

2

2 , i.e.,θ0 = 3 andβ = e−
(3×.2)2

2 ' .83.

We assume the econometrician knows the value of the time discount factor. The econometrician

wants to estimate the RRA of the representative agent. We distinguish two cases, a case with lack of

identification, and a well-identified case.

Well-identified case

We assume that the econometrician only observes the logarithm of gross growth consumption

with a noise equal to the logarithm of the gross return of the asset divided by3. We also assume that

the econometrician uses, as an instrument, a variable equal to the noise. In other words, although the
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econometrician thinks his moment condition is (19) with j = 1, his actual moment condition is

E








β0

(
Ĉt+1

Ct

)−θ

Rt+1 − 1



Yt





= 0

where
̂

log
(
Ct+1
Ct

)
:= log

(
Ct+1
Ct

)
+ 1
3 log (Rt+1) andYt :=

[
1
3 log (Rt+1)

]
. Despite the noise, the

population parameter (i.e., the RRA of the representative agent) is the only solution to the moment

condition.35 This moment condition has also been used extensively in the econometric literature (e.g.,

Hall and Horowitz, 1996; Gregory, Lamarche and Smith, 2002).

Case with lack of identification

We keep the same specification as in the case with identification, except there is no instrument. In

other words, although the econometrician thinks his moment condition is (19) with j = 1, his actual

moment condition is

E



β0

(
Ĉt+1

Ct

)−θ

Rt+1 − 1



 = 0 (20)

with
̂

log
(
Ct+1
Ct

)
:= log

(
Ct+1
Ct

)
+ 13 log (R1,t+1). The population parameter is a solution to the moment

condition (20); however, there is another solutionθ = 0.36 The existence of two solutions to the

moment conditions is necessary to produce a GMM objective function with multiple local minima in

a simple model. The moment condition (20) has been used extensively in the econometric literature

(e.g., Hall and Horowitz, 1996; Gregory, Lamarche and Smith, 2002).

10.3. Simulations results

In each case, we draw1, 000 samples. For each sample, we apply standard GMM (see Hansen,

1982), standard continuously updated GMM (see Hansen, Heaton and Yaron, 1996), which we denote

CU, continuously updated GMM for lack of identification (see Stock and Wright, 2000), which we

denote LCU (low continuously updated), and ESP. The regularization of the ESP intensity forθ ∈

35 This can be shown thanks to Laplace transforms of Gaussian distributions.

36See footnote36on p.69.
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Θ̂T ∩
(
Θ̂−ηT

)c
does not appear necessary (see Definition4.4on p.26). We use the same fixed grid for

each approach with increment.01. The bounds of the grid are determined such that ESP intensity is

negligeable beyond.

Well-identified case

The grid goes from -15 to 20. We report the average of the biasθ̂ − θ0 and the average of

the square error(θ̂ − θ0)
2. We also consider confidence intervals of level 10% and 5%. We report

their average length and the proportion of those that do not contain the population parameter. These

are standard criteria of assessment of classical inference approaches (e.g., Hall and Horowitz, 1996;

Gregory, Lamarche and Smith, 2002). For LCU, we can only report a lower bound of the average

length because, by construction, the maximum length is the distance between the two bounds of the

grid.

The results are reported in Table1. The different approaches perform similarly, except for LCU.

The average length of LCU is significantly larger than that of any other approaches for a comparable

empirical level. As documented in the literature (e.g., Hansen, Heaton and Yaron, 1996), CU objective

functions tend to be flat and low in the tail. The LCU confidence intervals are

{θ ∈ Θ : TQT,CU (θ) < cα}

wherecα is theα quantile of a chi-square of degree1 andQT,CU (.) is the continuously updated GMM

objective function, i.e.,QT,CU (θ) :=
[
1
T

∑T
t=1 ψt(θ)

]′ [
1
T

∑T
t=1 ψt(θ)ψt(θ)

′
]−1 [

1
T

∑T
t=1 ψt(θ)

]
.

Therefore, the LCU confidence intervals are usually huge.

α=10 α=5
T Method Bias MSE Level Length Level Length
50 GMM 0.089 0.303 12.2 1.618 7.5 1.928‡

CU 0.111 0.620 12.2 1.711 7.5 2.039
LCU - - 9.2‡ 16.562 4.2‡ 22.123
ESP -0.060‡ 0.189‡ 11.7 1.603‡ 6.2 2.008

100 GMM 0.038‡ 0.127 10.4 1.095‡ 6.2 1.305‡

CU 0.046 0.701 10.5 1.212 6.3 1.444
LCU - - 9.3 11.928 3.4 17.064
ESP -0.042 0.097‡ 10.1‡ 1.100 5.2‡ 1.348

Table 1: Monte Carlo evaluation in the well-identified case. The symbol‡ highlights the best perform-
ing method. Lengths in italics are lower bounds. Levels are in percentage.
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Case with lack of identification

α=10 α=5
T Method Level Length Level Length
50 GMM 51.1 141.309 48.1 168.380

CU 52.7 29.391 49.7 35.022
LCU 11.5 20.026 5.9 27.183
ESP 9.2‡ 4.932‡ 5.2‡ 5.993‡

100 GMM 53.25 17.686 51.25 21.074
CU 52.95 9.453 51.15 11.263
LCU 9.25‡ 11.993 5.65 17.009
ESP 8.4 3.567‡ 4.85‡ 4.292‡

Table 2: Monte Carlo evaluation in the case with lack of identification. The symbol‡ highlights the
best performing method. Lengths in italics are lower bounds. Levels are in percentage.

The grid goes from -17 to 22. Given the presence of two solutions to the moment conditions,

we do not report performance criteria for point estimates. We report confidence intervals of level5%

and10%.

The large average lengths reported for GMM confidence intervals are due to infrequent draws with

large estimated variance. The estimated variance is large when the objective function is locally almost

flat. This phenomenon also occurs with CU confidence intervals to a lesser extent. Even if we ignore

these problems, standard GMM and CU confidence intervals perform poorly. They do not contain

the population RRA with a much higher probability than the nominal level. In contrast, the empirical

levels of LCU and ESP confidence intervals remain close to the nominal levels. However, as in the

well-identified case, the ESP confidence intervals clearly outperform the LCU confidence intervals in

terms of length.

11. Conclusion

Several areas such as empirical consumption-based asset pricing have been a challenge to stan-

dard moment-based inference approaches. This dissertation proposes the ESP approach to tackle this

challenge.

The starting point of the ESP framework is the acknowledgement that inference practice relies on

samples with bounded size. More precisely, the starting point is the acknowledgement that moment-

based inference is based on the use of a finite-sample counterpart of the population parameter as a proxy

for the latter one. Then, the idea of the ESP approach is to approximate the distribution of the finite
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sample counterpart of the population parameter thanks to the saddlepoint technique. The result of this

approximation, the ESP intensity, summarizes in probabilistic terms the estimated uncertainty about the

population parameter due to the finiteness of the sample. Thus, an econometrician can choose a utility

function (or, equivalently, a loss function) according to the inference purpose, and make inference

decisions that maximize the ESP expected utility.

The ESP approach combines strengths of the Bayesian and standard classical approaches. The ESP

framework is the result of a search for stronger finite-sample foundations for inference. Nevertheless,

we prove that the ESP framework enjoys good asymptotic properties. In addition, we prove the inher-

ent robustness of the ESP approach to lack of identification. We also explain why the ESP approach

provides a unique answer to multiple theoretical concerns, such as asymptotic testing error, and practi-

cal concerns, such as confidence region outside the domain of definition of a model, that are faced by

standard classical inference. Simulations confirm the practical relevance of the theoretical properties

of the ESP approach. All this contributes to the literature in several directions.

Nevertheless, more can be achieved. From an empirical point of view, it would be interesting to

apply the ESP approach to real data in consumption-based asset pricing and other areas. There is a

work in progress in which consumption-based asset pricing models are estimated. From a theoretical

point of view, the flexibility of the ESP framework opens several possibilities. In particular, the author

has a work in progress in which he shows how to introduce exogenous information and robustness

considerations into inference with a view to portfolio choice. The ESP framework and the ideas behind

it seem to be promising avenues for further research.
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Schwartz, L.: (1950-1951) 2010,Théorie des distributions, third edn, Hermann.
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A. Supplementary results and proofs

A.1. Proof of Proposition4.1

Denoteν(.) the counting measure,XT := {Xt}
T
t=1 andΨT (XT (ω), θ) :=

1
T

∑T
t=1 ψ(Xt(ω), θ).

By a standard result about random measures (e.g. Proposition 9.1.VIII in Daley and Vere-Jones, 2008)

it is sufficient to prove that there exists a functionω 7→ NT (ω, .) such that for any givenA ∈ B(Θ),

ω 7→ NT (ω,A) is E/B(N)-measurable andNT (ω,A) = ν {θ ∈ A : ΨT (XT (ω), θ) = 0} P-a.s. Fix

A ∈ B(Θ).

By the LemmaA.1 below, if a setP ∈ B(RpT )⊗B(Θ) , thenxT 7→ ν(PxT∩A) isB
(
(Rp)T

)
/B(N)-

measurable,PxT := {θ ∈ Θ : (xT , θ) ∈ P} andN := N ∪ {∞}. Then, puttingP := Ψ−1T ({0}) we

haveω 7→ ν ({θ ∈ A : ΨT (XT (ω), θ) = 0}) E/B(N)-measurable, since the composition of measur-

able functions is a measurable function. Now Assumption1(d) implies that the number of solutions

to the empirical moment conditions is finiteP-a.e. and Assumption1(a) presents that(Ω, E ,P) is

complete. Thus, there exists aE/B(N)-measurable functionω 7→ NT (ω,A) such that

NT (ω,A) :=






ν ({θ ∈ A : ΨT (XT (ω), θ) = 0}) if ω ∈ Ω\E

0 if ω ∈ E

whereE := {ω ∈ Ω : ν ({θ ∈ A : ΨT (XT (ω), θ) = 0}) =∞} andP {E} = 0 (e.g. Kallenberg,

2002, Lemma 1.25).

Lemma A.1. For all A ∈ B(Θ), ∀P ∈ B(RpT ) ⊗ B(Θ) , xT 7→ ν(PxT ∩ A) is B
(
(Rp)T

)
/B(N)-

measurable.

Proof . LetA ∈ B(Θ). Define

HA :=






h(.) :

h(.) is bounded

h(.) isB(RpT )⊗ B(Θ)/B(R)-measurable

xT 7→
∫
A h(xT , θ)ν(dθ) isB(RpT )/B(R)-measurable






Obviously,HA is aR-vector space, and it contains the constant function1. Moreover,{hn(.)}n>1 is a

sequence of non-negative functions inHA such thathn(.) ↑ h(.) whereh(.) is a bounded function on

RpT ×Θ, thenh(.) ∈ HA by the preservation of measurability under limit and the Lebesgue monotone

convergence Theorem. In addition,HA contains the indicator function of every set in theπ-system con-
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sisting of measurable rectangles,I :=
{
R : R := RRpT ×RΘ with RRpT ∈ B(R

pT ) ∧RΘ ∈ B(Θ)
}

(an intersection of two measurable rectangles is a measurable rectangle) ; because

lR(xT , θ) = lR
RpT
(xT )lRΘ(θ)

∫

A

lR(xT , θ)ν(dθ) = lR
RpT
(xT )

∫

A

lRΘ(θ)ν(dθ)

ν(RxT ) = lR
RpT
(xT )ν(RΘ ∩A)

and becauseσ(I) = B(RpT ) ⊗ B(Θ) (e.g., paragraph II.11 in Rogers and Williams, 2000) . Conse-

quently, by the monotone class Theorem 3.1 from Rogers and Williams (2000),∀P ∈ B(RpT )⊗B(Θ),

lP (.) ∈ HA, which in turn implies thatxT 7→ ν(PxT ∩A) isB
(
(Rp)T

)
/B(N)-measurable.�

A.2. LemmaA.2

Lemma A.2. Under Assumptions 1,

i) there exists a dissecting systems of(Θ,B(Θ)) ;

ii) if T := {Tn}n>1 a dissecting system ofΘ, then, for any bounded Borel setsA, T (A) :=

{Tn(A)}n>1 with Tn(A) := {An,i ∩A : i = 1, . . . , kn andAn,i ∈ Tn} is a dissecting system;

iii) FT (.) is P-a.s. a finite measure on(Θ,B(Θ)) that does not depend on the dissecting system.

Proof. i) Take partitions consisting of hypercubes whose corners or faces have been removed when

necessary to make intersections empty.

ii) It is definition-chasing.

iii) It is a consequence of Assumption1(d) and Khinchin’s existence Theorem (e.g. Proposition

9.3.IX in Daley and Vere-Jones, 2008). For completeness, we provide a proof adapted to our frame-

work.

By Definition8.3of an intensity measure,

FT (A) = lim
n→∞

∑

i:An,i∈Tn(A)

P{NT (An,i) = 1} = lim
n→∞

∑

i:An,i∈Tn(A)

E
[
l{NT (An,i)=1}

]

= lim
n→∞

E




∑

i:An,i∈Tn(A)

l{NT (An,i)=1}



 .
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where the last equality comes from Fubini-Tonelli theorem. Now, for allA andB in B(Θ),

l{NT (A∪B)=1} 6 l{NT (A)=1} + l{NT (B)=1}. (21)

Thus, apply Lebesgue monotone convergence theorem to deduce

FT (A) = E



 lim
n→∞

∑

i:An,i∈Tn(A)

l{NT (An,i)=1}



 = E [NT (A)] , (22)

where the last equality comes from LemmaA.3 below. Obviously,FT (.) does not depend on the

dissecting system chosen. SinceNT (.) is a measure,FT (∅) = E0 = 0. Moreover, by theσ-additivity

of NT (.), and Fubini-Tonelli theorem,FT (.) is σ-additive. Thus,FT (.) is a measure. By Assumption

1(d),FT (.) is also finitePa.s.�

Lemma A.3. Under Assumptions 1,∀A ∈ B(Θ), limn→∞
∑

i:An,i∈Tn(A) l{NT (An,i)=1} = NT (A)

P-a.s.

Proof . W.l.o.g., for alln > 1, change the numbering ofAn,i w.r.t. i so that






∑
i:An,i∈Tn(A) l{NT (An,i)=1} =

∑NT (A)
i=1 l{NT (An,i)=1} , ∀n > 1;

An+1,i ⊂ An,i , ∀i ∈ [[1, NT (A)]], ∀n > 1.

Thus,∀i ∈ [[1, NT (A)]], An,i ↓ {θi} whereθi ∈ A and 1T
∑T

t=1 ψt(θi) = 0. Then, by the separating

property of dissecting systems,∀i ∈ [[1, NT (A)]], ∃ni ∈ N such that∀n > ni, l{NT (An,i)=1} = 1 =

NT (θi). It means that∀i ∈ [[1, NT (A)]], l{NT (An,i)=1} → l{NT (θi)=1} = NT (θi) asn → ∞. Now, by

Assumption1(d),NT (A) is finiteP-a.s. The result follows immediately.�

A.3. Proof of Proposition4.2

It is a consequence of equation (9.3.24) p.48 in Daley and Vere-Jones (2008). For completeness, a

similar proof is given. IfFT (Θ) = 0, the result is immediate by LemmaA.4 below. IfFT (Θ) > 0, the

idea is to prove the existence of the limit ofP {NT (An(θ)) = 1} /FT (An(θ)) asn → ∞ by Doob’s

martingale convergence theorem, and then to show the limit can only equal1.

Define for this proof the probability space(Θ,B(Θ), IP) with IP := FT (.)/FT (Θ) and the follow-
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ing sequence of random variables on it

Yn(θ) :=
∑

i∈In

lAn,i(θ)
P {N(An,i) = 1}

FT (Ani)

whereIn := {j ∈ [[1, kn]] : FT (An,i) > 0}. Denote{Fn}n>1 the filtrationFn := σ{Yk : k ∈ [[1, n]]}.

Next show that({Yn}n>1, {Fn}n>1, IP) is anL1-bounded submartingale. By construction{Yn}

is {Fn}-adapted. It remains to show thatE[Yn+1|Fn] > Yn IP-a.s.. For alli ∈ In, denoteyn,i :=

P{N(An,i) = 1}/FT (An,i) . For allθ ∈ Θ

E[Yn+1|Yn](θ) =
∑

i∈In

∑

j∈In+1:An+1,j⊂An,i

yn+1,jIP{Yn+1,j = yn+1,j |Yn = yn,j}lAn,i(θ)

=
∑

i∈In

∑

j∈In+1:An+1,j⊂An,i

yn+1,j
FT (An+1,j)
FT (An,i)

lAn,i(θ)

because forj ∈ In+1 s.t.An+1,j ⊂ An,i, IP{Yn+1,j = yn+1,j |Yn = yn,j} =
IP{Yn+1,j=yn+1,j∩Yn=yn,j}

IP{Yn=yn,j}
=

IP{Yn+1,j=yn+1,j}
IP{Yn=yn,j}

=
FT (An+1,j)
FT (An,i)

. Now, for all i ∈ In,

∑

j∈In+1:An+1,j⊂An,i

yn+1,j
FT (An+1,j)
FT (An,i)

=
∑

j∈In+1:An+1,j⊂An,i

P{N(An+1,j) = 1}
FT (An+1,j)

FT (An+1,j)
FT (An,i)

>
P{N(An,i) = 1}

FT (An,i)
by LemmaA.4 below.

Sum overi ∈ In to deduceE[Yn+1|Fn] > Yn . Now, by LemmaA.4 below, for alln > 1, |Yn| 6 1.

Therefore,{Yn} is anL1-bounded submartingale.

Apply Doob’s martingale convergence theorem (e.g. Theorem 7.18 in Kallenberg, 2001) to deduce

limn→∞ Yn existsIP-a.s., and thusFT -a.e. Since for alln > 1, |Yn| 6 1, by Lebesgue dominated

convergence theorem

FT (Θ) = lim
n→∞

∫

Θ
YnFT (dθ) =

∫

Θ
lim
n→∞

YnFT (dθ) 6
∫

Θ
1FT (dθ) = FT (Θ)

where the first equality comes from the Definition8.3of the intensity measure. It follows thatYn → 1

FT a.e. asn→∞, which in turn implies the result by LemmaA.4 below.�

Lemma A.4. LetF(.) an intensity measure associated with the point random-fieldN(.) overΘ. Then

∀A ∈ B(Θ), FT (A) > P {N(A) = 1}.
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Proof . Use equation (21) and Definition8.3of an intensity measure.�

A.4. Proof of Proposition4.3

i) Note
∂
[
1
T

∑T
t=1 ψt(θ)e

τ ′ψt(θ)
]

∂τ = 1
T

∑T
t=1 ψt(θ)ψt(θ)

′eτ
′ψt(θ). Thus by Assumption2, the implicit

function theorem is valid in̂ΘT . Let θ̇ ∈ Θ̂T . By the implicit function theorem, there existsr1 > 0 so

thatτT : Br1(θ̇) 7→ R
m is aC1 mapping s.t.

∑T
i=1 ψi(θ)e

τT (θ)ψi(θ) = 0m×1, whereBr1(θ̇) denotes

an open ball of radiusr1 centered aṫθ in Θ. Now, by the stability of continuity under composition,

there also existsBr2(θ̇) with r2 > 0 s.t. ∀θ ∈ Br2(θ̇)
∣
∣
∣
∑T

t=1 ψt(θ)ψi(θ)
′eτT (θ)ψt(θ)

∣
∣
∣
det
6= 0. Thus

Bmin(r1,r2)(θ̇) ⊂ Θ̂T , which in turn implies that that̂ΘT is open inΘ.

ii) First, anyτT (.) is aC1 function, by the implicit function theorem and Assumption2. Thus,

f̂θ∗T ,sp(.) is continuous.

Second, prove uniqueness by contradiction. Assume there existsθ ∈ Θ̂T with τ (1), τ (2) ∈ Rm

such thatτ (1) 6= τ (2) and forj = 1, 2






∑T
t=1 ψt(θ)e

τ (j)′ψt(θ) = 0m×1
∣
∣
∣
∑T

t=1 ψt(θ)ψt(θ)
′eτ

(j)′ψt(θ)
∣
∣
∣
det
6= 0.

Then, by LemmaA.5 below,τ (1) andτ (2) are two strict local minima of the convex function ofτ 7→
∑T

t=1 exp [τ
′ψt(θ)]. Now, there is contradiction since a convex function cannot have two distinct strict

local minima (e.g. Theorem A p.123 in Roberts and Varberg, 1973) .�

Lemma A.5. Under Assumptions1-2, τT (θ) is a minimum of the convex functionτ 7→
∑T

t=1 exp [τ
′ψt(θ)].

Proof. By Assumption2, it is sufficient to show that
∂{
∑T
t=1 exp[τ

′ψt(θ)]}
∂τ∂τ ′ =

∑T
t=1 ψt(θ)ψt(θ)

′eτ
′ψt(θ)

is a positive semi-definite symmetric matrix (p.s.m).

For all t ∈ [[1, T ]], for all y ∈ Rm, y′ψt(θ)ψt(θ)′y is a scalar squared. Thus,ψt(θ)ψt(θ)′ is a p.s.m.

Now a weighted sum of p.s.m with positive weight is a p.s.m. Thus,
∑T

t=1 ψt(θ)ψt(θ)
′eτ

′ψt(θ) are also

p.s.m.�
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A.5. PropositionA.1

Proposition A.1. Define respectively the set where the rough ESP intensity,fθ∗T ,sp(.), exists, and the

set where the empirical moment conditions can be recentered

ΘT :=

{

θ ∈ Θ : ∃τT,θ ∈ R
m s.t.

T∑

t=1

ψt(θ)e
τT (θ)

′ψt(θ) = 0

}

.

Under Assumptions 1 and 2, if for allθ̇ ∈ ΘT the rank of them× 2m matrix

∂
[∑T

t=1 ψt(θ)e
τψt(θ)

]

∂(θ, τ)′

∣
∣
∣
∣
∣
∣τ=τT (θ̇)
θ=θ̇

(23)

equalsm , thenλ(ΘT \ Θ̂T ) = 0, whereλ(.) denotes the Lebesgue measure.

Proof. Apply transversality theorem (e.g. Theorem 26 p.151 in Villanacci, Carosi, Benevieri and

Battinelli, 2002).�

A square matrix is generically non-singular. Here the additionalm columns, makes the singularity

of the matrix (23) even more difficult.

A.6. Proof of Proposition4.4

i) To prove measurability writẽfθ∗T ,sp(.) with the help of indicator functions. Continuity is ob-

tained by construction.

ii) Continuity off̃θ∗T ,sp(.) over the compact spaceΘ implies finiteness of the set functioñFT (.) :=
∫
. f̃θ∗T ,sp(θ)dθ. Fubini-Tonelli theorem impliesσ-additivity of F̃T (.).

A.7. Proof of Proposition4.5and LemmaA.6

Lemma A.6. DenoteT := {Tn}n>1 a dissecting system ofΘ. Let F̃T (.) be a finite positive measure.

Under Assumptions1-3, if there exists a random variable,Y , from the probability space(Ω, E ,P) to

(N,B(N)) with expectationE(Y ) = F̃T (Θ), then there exists a point random-field,̃NT (.), and a

probability measure,̃P, such that for allA ∈ B(Θ)

F̃T (A) := lim
n→∞

∑

i:An,i∈Tn(A)

P{ÑT (An,i) = 1} , (24)
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whereTn(A) := {An,i ∩A : i = 1, . . . , kn andAn,i ∈ Tn} .

Proof. Follow the idea of the proof of Theorem 4.2 in Itô (1970). For allω ∈ Ω, for allA ∈ B(Ω),

ÑT (A) :=
F̃T (A)

F̃T (Θ)
Y

is a point random-field that satisfies equation (24) by equality (22) p.83.�

The existence of a random variable,Y on the probability space(Ω, E ,P) with expectationE(Y ) =

F̃T (Θ) is a reasonable assumption. For example, the existence of a random variable distributed accord-

ing to a uniform distribution on the unit interval[0, 1] is a sufficient condition for this assumption (e.g.

Lemma 3.22 p.56 in Kallenberg, 1997).

Proof of Proposition4.5. By Lebesgue’s differentiation theorem (e.g., Theorem 3.21 in Folland, 1984),

f̃θ∗T ,sp(θ) = lim
r→0

F̃T (Br(θ))

λ(Br(θ))

= lim
r→0

P̃
{
ÑT (Br(θ)) = 1

}
[1 + ε(r)]

λ(Br(θ))

= lim
r→0

P̃
{
ÑT (Br(θ)) = 1

}

λ(Br(θ))

whereε(.) is a positive function such thatlimr→0 ε(r) = 0 by Proposition4.2p.23. �

A.8. Proof of Theorems

A.8.1 Preliminary results

This subsection contains some results needed for Theorems5.1and5.2. Most of them are variants

of results already known, but not necessarily easy to find in the literature.

Measurability and convergence results

Lemma A.7. Let{AT }T>1 a sequence of square matrices converging toA asT →∞. Then

i) if A is an invertible matrix, then there existṡT ∈ N such thatT > Ṫ impliesAT is invertible;

ii) if {AT }T>1 is a sequence of symmetric matrices andA is a negative-definite matrix (n-d.m),
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then there existṡT ∈ N such thatT > Ṫ impliesAT is n-d.m.

Proof . i) By Assumption|A|det > 0. The determinant function|.|det is a multilinear function, and

thus a continuous function. Thus,limT→∞AT = A implies the result.

ii) On the one hand,AT is a n-d.m. if and only if all its eigenvalues are strictly negative. On the

other hand,max spAT = maxz:‖z‖=1 z
′AT z wherespAT denotes the set of eigenvalues ofA. Thus, it

is sufficient to prove thatlimT→∞maxz:‖z‖=1 z
′AT z = maxz:‖z‖=1 z

′Az, which in turn implies that

it is sufficient to prove thatsupz:‖z‖=1 |z
′AT z − z′Az| → 0 , asT → ∞. We prove this last result by

contradiction.

Assume thatsupz:‖z‖=1 |z
′AT z−z′Az| does not converge to0 asT →∞. Then, there existsε > 0

and an increasing functionα1 : N 7→ N defining a subsequence of vectors of norm1,
{
zα1(T )

}
T>1

,

and a subsequence of matrices,
{
Aα1(T )

}
T>1

, such that

ε <
∣
∣
∣z′α1(T )Aα1(T )zα1(T ) − z

′
α1(T )

Azα1(T )

∣
∣
∣

=
∣
∣
∣z′α1(T )

(
Aα1(T ) −A

)
zα1(T )

∣
∣
∣ 6

∑

(k,l)∈[[1,m]]2

∣
∣
∣
[
a
(k,l)
α1(T )

− a(k,l)
]
z
(k)
α1(T )

z
(l)
α1(T )

∣
∣
∣

6 m2 × max
(k,l)∈[[1,m]]2

∣
∣
∣a
(k,l)
α1(T )

− a(k,l)
∣
∣
∣

wherem is the size of the matrixA anda(k,l) denotes the component of the matrixA in thekth row

andlth column. Now, by Assumption,max(k,l)∈[[1,m]]2
∣
∣
∣a
(k,l)
α1(T )

− a(k,l)
∣
∣
∣ → 0 asT → ∞. Thus, there

is a contradiction.�

We introduce a set of assumptions and new notations to derive generic results which are used several

times.

Assumption 24. (a)X∞ := {Xt}∞t=1 is a sequence of i.i.d. random vectors of dimension p on the

complete probability sample space(Ω, E ,P) ; (b) Let the measurable space(B,B(B)) such thatB ⊂

Rm is compact andB(B) is the Borelσ-algebra. ; (c) Let h : Rp × B 7→ Rq with q ∈ N be a

function such that∀x ∈ Rp, β 7→ h(x, β) is continuous, and∀β ∈ B, x 7→ h(x, β) is B(Rp)/B(Rq)-

measurable.; (d) E
[
supβ∈B ‖h(X,β)‖

]
< ∞. ; (e) In the parameter spaceB, there exists a unique

β0 ∈ int(B) such thatE [h(X,β0)] = 0m×1; (f) For all x ∈ Rp, β 7→ h(x, β) is continuously

differentiable; (g)
∣
∣
∣E
[
∂h(X,β0)
∂β′

]∣∣
∣
det
6= 0.

Proposition A.2 (Uniform-strong LLN). Under Assumptions24(a)-(d) , 1T
∑T

t=1 h(Xt, β) converges
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P-a.s. toE [h(X,β)] uniformly w.r.t .β asT →∞ i.e. there existsE ∈ E such thatP {E} = 0 and

∀ω ∈ Ω \ E, sup
β∈B

∥
∥
∥
∥
∥
1

T

T∑

t=1

h(Xt, β)− E [h(X,β)]

∥
∥
∥
∥
∥
→ 0 asT →∞. (25)

Proof . This is a standard result (e.g., Theorem 1.3.3 pp. 24-25 in Ghosh and Ramamoorthi, 2003).�

Hereafter, we do not mention negligeable sets associated with properties that holds a.s., because

they result from the application of a countable number of properties that hold a.s.

Proposition A.3 (Existence of solutions to empirical moment conditions). Under the Assumptions

24(a)-(c)(e)-(g), if

(a) asT →∞, sup
β∈B

∥
∥
∥
∥
∥
1

T

T∑

t=1

h(Xt, β)− E [h(X,β)]

∥
∥
∥
∥
∥
→ 0 P-a.s.

(b) asT →∞, sup
β∈B

∥
∥
∥
∥
∥
1

T

T∑

t=1

∂h(Xt, β)

∂β′
− E

[
∂h(X,β)

∂β′

]∥∥
∥
∥
∥
→ 0 P-a.s.

then for allr > 0 there existsṪ ∈ N so thatT > Ṫ implies

i) there existsP-a.s. a solution to the empirical moment conditions i.e. there existsβ∗T such that

1

T

T∑

t=1

h(Xt, β
∗
T ) = 0m×1;

ii) all solutions to the empirical moment conditions are inBr(β0).

Proof . i) By Assumption24(e) and the continuity of uniform limits of continuous functions forε > 0

small enough there existsr > 0 such that∀β ∈ B \Br(β0),

⇔ 2ε < ‖E [h(X,β)] ‖

⇔ 2ε <

∥
∥
∥
∥
∥
E[h(X,β)]−

1

T

T∑

t=1

h(Xt, β)

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
1

T

T∑

t=1

h(Xt, β)

∥
∥
∥
∥
∥

⇔ 2ε−

∥
∥
∥
∥
∥
E[h(X,β)]−

1

T

T∑

t=1

h(Xt, β)

∥
∥
∥
∥
∥
<

∥
∥
∥
∥
∥
1

T

T∑

t=1

h(Xt, β)

∥
∥
∥
∥
∥

where the second inequality comes from the triangle inequality. Now, by Assumption (a), there ex-

ists Ṫ ∈ N such thatT > Ṫ implies that∀β ∈ B ‖E [h(X,β)] − 1
T

∑T
t=1 h(Xt, β)‖ < ε P-

a.s. which implies−ε < −‖E [h(X,β)] − 1
T

∑T
t=1 h(Xt, β)‖. Therefore, on the one hand,∀β ∈

B \ Br(β0), ε < ‖ 1T
∑T

t=1 h(Xt, β)]‖ P-a.s.; and on the other hand, by Assumption (a) forT1
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∀β ∈ Br(β0), ‖ 1T
∑T

t=1 h(Xt, β)‖ < ε . Now, the functionβ 7→ ‖ 1T
∑T

t=1 h(Xt, β)‖ has a mini-

mum, since it is continuous over a compact setB by Assumption24(b)(c). Thus, forT big enough,

β̇T := argminβ∈B ‖ 1T
∑T

t=1 h(Xt, β)‖ ∈ Br(β0) P-a.s. Now, the smaller isε, the smaller isr,

since by the continuity of uniform limits of continuous functions, Assumption (b) and LemmaA.7

1
T

∑T
t=1

∂h(Xt,β)′

∂β is invertible in a neighborhood ofβ0 P-a.s. Thus forε small enough,P-a.s. that for

T > Ṫ , 2
[
1
T

∑T
t=1

∂h(Xt,β̇T )
′

∂β

] [
1
T

∑T
t=1 h(Xt, β̇T )

]
= 0m×1 with

[
1
T

∑T
t=1

∂h(Xt,β̇T )
′

∂β

]
invertible.

Thus 1T
∑T

t=1 h(Xt, β̇T ) = 0m×1 P-a.s. which implies the result by puttingβ∗T := β̇T .

ii) Immediate from the proof ofi). �

The next Proposition ensuresP-a.s. the measurability of all the solutions to the empirical mo-

ment conditions. By regarding solutions to the empirical moment conditions as minima ofβ 7→

‖ 1T
∑T

t=1 h(Xt, β)‖, the Jennrich’s measurability result (Lemma 2 in Jennrich, 1969) ensures the mea-

surability of only one of them.

Proposition A.4 (Measurability of solutions to empirical moment conditions). Under the assumptions

of PropositionA.3, there existsṪ ∈ N so thatT > Ṫ implies

i) the number of solutions to the empirical moment conditions is finite;

ii) all solutions to the empirical moment conditions are measurableP-a.s. i.e. ifβ∗T is such that

1
T

∑T
t=1 h(Xt, β

∗
T ) = 0, thenβ∗T (.) is E/B(B)-measurableP-a.s.

Proof . i) According to the proof of PropositionA.3, for r > 0 small enough there existṡT ∈ N so

that for allT > Ṫ all solutions to the empirical moment conditions,
{
β̇
(v)
T

}

v∈V
, lies in Br(β0) with

1
T

∑T
t=1

∂h(X,β)′

∂β invertible∀β ∈ Br(β0) P-a.s. Thus by the inverse function theorem applied for all

v ∈ V to 1T
∑T

t=1 h(Xt, β̇
(v)
T ) = 0m×1 by Assumption24c), there existsεv > 0 such thatβ̇(v)T is the

unique solution to the empirical moment conditions inBεv(β̇
(v)
T ). Thus,

⋃
v∈V Bεv(β̇

(v)
T ) is an open

covering of the compactsetBr(β0). Now, any open cover of a compact set contains a finite open cover.

Thus, there exists
{
β̇
(k)
T

}K

k=1
∈ Br(β0)K and{εk}

K
k=1 positive suchthatBr(β0) ⊂

⋃K
k=1Bεk(β̇

(k)
T ),

whereβ̇(k)T is the unique solution to the empirical moment conditions inBεk(β̇
(k)
T ). Therefore, the

number of solutions to the empirical moment conditions is finite.

ii) Assumptions24(a)-(c),(h) correspond to Assumption1. Thus by Proposition4.1, there ex-

ists a finite (simple) point random-fieldNT (., .) such that∀ω ∈ Ω \ E, NT (ω, .) = #{β ∈ . :

1
T

∑T
t=1 h(Xt, β) = 0} whereP {E} = 0. Now, for any point random-fieldN(., .) on a complete
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separable metric spaceY , there exists a sequence of measurable random elements,{Yk}
∞
k=1,

37 such

that

∀B ∈ B(Y), N(ω,B) =
∑

k

δYk(ω)(B)

(e.g. Lemma 9.1.XIII p.16 in Daley and Vere-Jones, 2008). The result follows.�

The following proposition is a standard result.

Proposition A.5 (Consistency of solutions to empirical moment conditions). Under the assumptions of

PropositionsA.3, every sequence of solutions to the empirical moment conditions,{β∗T }T>1 , converges

P-a.s. to the population parameter,β0, i.e.

lim
T→∞

β∗T = β0 P-a.s.

Proof . PropositionA.4 ensures theE/B(B)-measurability ofβ∗T for T big enough. For allr > 0, we

can chooseε small enough in the proof of PropositionA.3i) to make solutions to empirical moment

conditions inBr(β0) P-a.s. forT big enough.�

Corollary 1. Under the Assumptions1(a)-(c) and5(a)-(b),(e), PropositionsA.3, A.4andA.5apply to

solutions to the empirical moment conditions

1

T

T∑

t=1

ψ(Xt, θ) = 0m×1.

Proof . Check the assumptions of PropositionA.3 are satisfied. Assumptions1(a) and4(a) pro-

vide Assumption24(a). Assumption1(b)(c),4(b), 2 and4(e) respectively provide Assumptions24(b)

(c)(e)(f)(g).

Application of PropositionA.2 to 1
T

∑T
t=1 ψ(Xt, θ) and 1T

∑T
t=1

∂ψ(Xt,θ)
∂θ′ provides respectively

assumptions (a) and (b) of PropositionA.3. In both cases, Assumptions1(a) and4(a) provide Assump-

tion 24(a);and Assumptions1(b)(c),4(c) respectively provide Assumptions24(b)(c)(d). In the case

of 1T
∑T

t=1 ψ(Xt, θ), Assumption4(c) provides Assumption24(d). In the case of1T
∑T

t=1
∂ψ(Xt,θ)

∂θ′ ,

Assumption4(d) provides Assumption24(d).�

37Since the number of solutions to the empirical moment conditions is finiteP-a.s. (Assumption1(d)), there existsk0 such
thatk > k0 ∀ω ∈ Ω \ E, Yk(ω) = ∅ with P {E} = 0.
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Lemma A.8. Under Assumptions1(a)-(c),2,5(a)(b),

i) for all θ ∈ int(Θ̂−η∞ ), there exists a uniquẽτ∞(θ) such thatE
[
ψ(X, θ)eτ̃∞(θ)

′ψ(X,θ)
]
= 0

ii) τ̃∞ : Θ̂
−η
∞ → Rm is continuous.

Proof . i) By definition of Θ̂−η∞ and a standard result on Laplace’s transform (e.g. Theorem 3 p183

in Monfort, 1996)E
[
ψ(X, θ)eτ

′ψ(X,θ)
]
= 0 is the FOC of the convex functionτ 7→ E

[
eτψ(X,θ)

]
.

In addition, for allθ ∈ Θ̂−η∞ , E
[
ψ(X, θ)ψ(X, θ)′eτ

′ψ(X,θ)
]

is a symmetric p-d.m by the definition of

Θ̂−η∞ . Thus,τ̃∞(θ) is unique as the solution to the FOC of a strictly convex function.

ii) By the Assumptions2,5(b) and the Lebesgue dominated convergence theoremθ 7→ E
[
ψ(X, θ)eτ

′ψ(X,θ)
]

is continuous. As a convex functionτ 7→ E
[
ψ(X, θ)eτ

′ψ(X,θ)
]

is continuous (e.g., Theorem 3.1.2

p.174 in Hiriart-Urruty and Lemaréchal, 1996). Thus, byi) and a version of the implicit function

theorem (Kumagai, 1980) ,τ∞(.) is continuous.�

Lemma A.9. Under the assumptions of LemmaA.8, define the compact set

Ĉ−η∞ := τ∞

(
Θ̂−η∞

)
.

Under the assumptions of LemmaA.8and Assumption4(a), for all θ ∈ Θ̂−η∞ , asT →∞

sup
τ∈Ĉ−η∞

∥
∥
∥
∥
∥
1

T

T∑

t=1

eτ
′ψ(Xt,θ) − E

[
eτ
′ψ(X,θ)

]
∥
∥
∥
∥
∥
→ 0 P-a.s.

sup
τ∈Ĉ−η∞

∥
∥
∥
∥
∥
1

T

T∑

t=1

ψ(Xt, θ)e
τ ′ψ(Xt,θ) − E

[
ψ(X, θ)eτ

′ψ(X,θ)
]
∥
∥
∥
∥
∥
→ 0 P-a.s.

sup
τ∈Ĉ−η∞

∥
∥
∥
∥
∥
1

T

T∑

t=1

ψ(Xt, θ)ψ(Xt, θ)
′eτ

′ψ(Xt,θ) − E
[
ψ(X, θ)ψ(X, θ)′eτ

′ψ(X,θ)
]
∥
∥
∥
∥
∥
→ 0 P-a.s.

Proof . First, noteĈ−η∞ is well-defined.τ∞(.) can be extended by continuity tôΘ−η∞ ; and the image

of a compact by a continuous function is compact. Second, prove the claims. By definition ofΘ̂−η∞

and a standard result about Laplace transforms (e.g. Theorem 3 p183 in Monfort, 1996), the expec-

tations thereE
[
eτ
′ψ(X,θ)

]
, E
[
ψ(X, θ)eτ

′ψ(X,θ)
]

andE
[
ψ(X, θ)ψ(X, θ)′eτ

′ψ(X,θ)
]

are finite. Thus,

by Assumption4(a) and the LLN, there is point-wise convergence. Sinceτ 7→ 1
T

∑T
t=1 e

τψ(Xt,θ),

τ 7→ 1
T

∑T
t=1 ψ(Xt, θ)e

τ ′ψ(Xt,θ) andτ 7→ 1
T

∑T
t=1 ψ(Xt, θ)ψ(Xt, θ)

′eτ
′ψ(Xt,θ) are convex, the result

follows (e.g., Theorem 3.1.5. p.177 in Hiriart-Urruty and Lemaréchal, 1996).�
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Lemma A.10. Under the assumptions of LemmaA.9 , for all θ ∈ int
(
Θ̂−η∞

)
, asT → ∞, τT (θ) →

τ∞(θ) P-a.s.

Proof . Check the assumptions of PropositionA.3 are satisfied. Assumptions1(a) and4(a) provide

to Assumption24(a). Assumption1(b)(c) respectively provide Assumption24(b)(c). LemmaA.8i),

whose assumptions are the same as LemmaA.9, provides Assumption24(e). Assumption24(f) is

immediate. Definition of̂Θ−η∞ ensures Assumption24(g). The second and third results of LemmaA.9

corresponds to assumptions (a)(b) of PropositionA.3. Then, apply PropositionA.3 to the empirical

moment conditions
∑T

t=1 ψ(Xt, θ)e
τ ′ψ(Xt,θ) = 0m×1 to ensure the existence ofτT (θ) for T big enough

for all θ ∈ Θ̂−η∞ . PropositionA.4, whose assumptions are the same as PropositionA.3 , ensures the

E/B(Rm)-measurability ofτT (θ).38 Then, the result follows from PropositionA.5, whose assumptions

are the same as PropositionA.3.�

Laplace’s approximation

Laplace’s approximation is a well-known method originally presented by Laplace (Laplace, 1774).

Here, we adapt the version presented in Chen (1985) and Kass, Tierney and Kadane (1990) for our

purpose.39

Assumption 25(Laplace’s regularity). (a) Let
{
θ̇T

}∞

T=1
with θ̇T ∈ Θ ∀T > 1 a sequence converging

in the interior ofΘ. (b) Let{hT (.)}T>1 a sequence of real-valued functions. There existsrh > 0 and

Th ∈ N such that

i) ∀T > Th, hT (.) ∈ C4
(
Brh(θ̇T )

)
;

ii) there existsMh > 0 so that∀T > Th, ∀k ∈ [[1, 4]], ∀θ ∈ Brh(θ̇T ),
∥
∥DkhT (θ)

∥
∥ < Mh, where

Dk denotes the differential operator of orderk;

iii) ∀T > Th, hT (θ̇T ) = 0 and ∂hT (θ̇T )
∂θ′ = 01×m;

(c) The sequence of symmetric matrices
{
∂2hT (θ̇T )
∂θ∂θ′

}

T>Th
converges to a negative-definite matrix.(d)

38Here, we can also use Lemma 2 from Jennrich (1969).

39Kass, Tierney and Kadane (1990) explicit the Laplace’s approximation used in Chen (1985). The differences between
Kass, Tierney and Kadane’s theorem and our propostion are the following. In our case,bT (.) depends onT . Their assump-

tions do not seem to ensure the convergence of the Hessian∂2hT (θ̇T )
∂θ∂θ′

. Their assumptions are stronger, because they provide
a higher order expansion.
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Let{bT (.)}T>1 a sequence of real-valued functions such that there existsrb > 0,Mb > 0 andTb ∈ N

so that

i) ∀T > Tb, bT (.) ∈ C3
(
Brb(θ̇T )

)
;

ii) ∀T > Tb, ∀k ∈ [[1, 3]], ∀θ ∈ Brb(θ̇T ),
∥
∥DkbT (θ)

∥
∥ < Mb.

Proposition A.6. Under Assumptions1(b) and25, there existsr > 0 so that for any neighborhood of

θ̇T , Vr(θ̇T ), included inBr(θ̇T ), we have

∫

Vr(θ̇T )
bT (θ)e

[ThT (θ)]dθ =

∫

Vr(θ̇T )
exp

{
T

2
(θ − θ̇T )

′∂
2hT (θ̇T )

∂θ∂θ′
(θ − θ̇T )

}

dθ

[

bT (θ̇T ) +O

(
1

T

)]

Proof . In the proof, we implicitly always assume thatT ∈ N is big enough andε > 0 small enough

so that all written quantities are well-defined by the Assumptions. For clarity, all Taylor expansions are

written form = 1.

By Assumption25(b)i), using obvious notations, a Taylor with a mean-value form of the remainder

of hT (.) at θ̇T yields

hT (θ)

= hT (θ̇T ) + h
(1)
T (θ̇T )(θ − θ̇T ) +

1

2
h
(2)
T (θ̇T )(θ − θ̇T )

2 +
1

6
h
(3)
T (θ̇T )(θ − θ̇T )

3 + h1,T (θ)(θ − θ̇T )
4

=
1

2
h
(2)
T (θ̇T )(θ − θ̇T )

2 +
1

6
h
(3)
T (θ̇T )(θ − θ̇T )

3 + h1,T (θ)(θ − θ̇T )
4.

whereh(k)T (.) denotes thekth derivative, h1,T (.) is a continuous function and where Assumption

25(b)iii) is used. Plugging the expansion into the exponential function, we obtain

exp [ThT (θ)]

= exp

{
T

2
h
(2)
T (θ̇T )(θ − θ̇T )

2

}

exp

{
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3 + Th1,T (θ)(θ − θ̇T )
4

}

. (26)

Now, we compute in detailsexp
{
T
6 h
(3)
T (θ̇T )(θ − θ̇T )

3 + Th1,T (θ)(θ − θ̇T )4
}
bT (θ). A Taylor
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with a mean-value form of the remainder expansion ofx 7→ ex yields

exp

{
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3 + Th1,T (θ)(θ − θ̇T )
4

}

= 1 +
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3 + Th1,T (θ)(θ − θ̇T )
4 + h2,T (θ)

[
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3 + Th1,T (θ)(θ − θ̇T )
4

]2

= 1 +
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3 + Th1,T (θ)(θ − θ̇T )
4 + h2,T (θ)

T 2

36
h
(3)
T (θ̇T )

2(θ − θ̇T )
6

+h2,T (θ)2
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3h1,T (θ)(θ − θ̇T )
4 + h2,T (θ)T

2h1,T (θ)
2(θ − θ̇T )

8.

Moreover, by Assumption25(c)i), a Taylor with a mean-value form of the remainder ofbT (.) yields

bT (θ) = bT (θ̇T ) + b
(1)
T (θ̇T )(θ − θ̇) + bT (θ)(θ − θ̇T )

2.

Therefore, multiplying the two expansions we get

exp

{
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3 + Th1,T (θ)(θ − θ̇T )
4

}

bT (θ)

= bT (θ̇T ) + b
(1)
T (θ̇T )(θ − θ̇T ) + bT (θ)(θ − θ̇T )

2

+
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3bT (θ̇T ) +
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3b
(1)
T (θ̇T )(θ − θ̇T )

+
T

6
h
(3)
T (θ̇T )(θ − θ̇T )

3bT (θ)(θ − θ̇T )
2

+Th1,T (θ)(θ − θ̇T )
4bT (θ̇T ) + Th1,T (θ)(θ − θ̇T )

4b(1)(θ̇T )(θ − θ̇T )

+Th1,T (θ)(θ − θ̇T )
4bT (θ)(θ − θ̇T )

2

+
T 2

36
h2,T (θ)h

(3)
T (θ̇T )

2(θ − θ̇T )
6bT (θ̇T ) +

T 2

36
h2,T (θ)h

(3)
T (θ̇T )

2(θ − θ̇T )
6b
(1)
T (θ̇T )(θ − θ̇T )

+
T 2

36
h2,T (θ)h

(3)
T (θ̇T )

2(θ − θ̇T )
6bT (θ)(θ − θ̇T )

2

+2
T

6
h2,T (θ)h

(3)
T (θ̇T )(θ − θ̇T )

3h1,T (θ)(θ − θ̇T )
4bT (θ̇T )

+2
T

6
h2,T (θ)h

(3)
T (θ̇T )(θ − θ̇T )

3h1,T (θ)(θ − θ̇T )
4b(1)(θ̇T )(θ − θ̇T )

+2
T

6
h2,T (θ)h

(3)
T (θ̇T )(θ − θ̇T )

3h1,T (θ)(θ − θ̇T )
4bT (θ)(θ − θ̇T )

2

+T 2h2,T (θ)h1,T (θ)
2(θ − θ̇T )

8bT (θ̇T ) + T
2h2,T (θ)h1,T (θ)

2(θ − θ̇T )
8b
(1)
T (θ̇T )(θ − θ̇T )

+h2,T (θ)T
2h1,T (θ)

2(θ − θ̇T )
8bT (θ)(θ − θ̇T )

2

:= bT (θ̇T ) + IT (θ, θ̇T ) +RT (θ, θ̇T )

whereIT (θ, θ̇T ) := b
(1)
T (θ̇T )(θ − θ̇T ) +

T
6 h
(3)
T (θ̇T )bT (θ̇T )(θ − θ̇T )

3 + T
6 h
(3)
T (θ̇T )b

(1)
T (θ̇T )(θ − θ̇T )

4.
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Now, by equation (26),

∫

Vr(θ̇T )
bT (θ)e

[ThT (θ)]dθ =

∫

Vr(θ̇T )
exp

{
T

2
h
(2)
T (θ̇T )(θ − θ̇T )

2

}{
bT (θ̇T ) + IT (θ, θ̇T ) +RT (θ, θ̇T )

}
dθ

where the integral is well-defined as an integral of continuous functions (Assumption25(a)i) and (b)i))

over a compact set. In addition, by LemmaA.11 below, we have

∫

Vr(θ̇T )
exp

{
1

2
h
(2)
T (θ̇T )

[√
T (θ − θ̇T )

]2}

dθ ∼
∞

(
2π

T

)m/2
∣
∣
∣
∣
∣

(

−
∂2hT (θ̇T )

∂θ∂θ′

)∣∣
∣
∣
∣

−1/2

det

where given two functionsf(.) andg(.) whose domain isD, f(z) ∼
a
g(z) with a ∈ D means that

there exists a functionϕ(.) defined onD such thatf(.) = g(.)ϕ(.) andlimz→a ϕ(z) = 1. Thus, by

Assumption25(c), it is sufficient to show that

∫

Vr(θ̇T )
exp

{
T

2
h
(2)
T (θ̇T )(θ − θ̇T )

2

}{
IT (θ, θ̇T ) +RT (θ, θ̇T )

}
dθ ∼
∞

O(T−1)

T
m
2

.

Deal with the integrals ofIT (θ, θ̇T ) andRT (θ, θ̇T ) separately. The integral ofIT (θ, θ̇T ) yields

∫

Vr(θ̇T )
exp

{
1

2
h
(2)
T (θ̇T )

[√
T (θ − θ̇T )

]2}

IT (θ, θ̇T )dθ

=

∫

Vr(θ̇T )
exp

{
1

2
h
(2)
T (θ̇T )

[√
T (θ − θ̇T )

]2}{
T−

1
2 b
(1)
T (θ̇T )

[√
T (θ − θ̇T )

]

+
T−

1
2

6
h
(3)
T (θ̇T )bT (θ̇T )

[√
T (θ − θ̇T )

]3
+
T−1

6
h
(3)
T (θ̇T )b

(1)
T (θ̇T )

[√
T (θ − θ̇T )

]4
}

dθ

(a)
=

∫

V√
Tr
(0)
exp

{
1

2
h
(2)
T (θ̇T )u

2

}[

T−
1
2 b
(1)
T (θ̇T )u+

T−
1
2

6
h
(3)
T (θ̇T )bT (θ̇T )u

3 +
T−1

6
h
(3)
T (θ̇T )b

(1)
T (θ̇T )u

4

]
du

T
m
2

(b)
∼
∞

∫

Rm
exp

{
1

2
h
(2)
T (θ̇T )u

2

}[

T−
1
2 b
(1)
T (θ̇T )u+

T−
1
2

6
h
(3)
T (θ̇T )bT (θ̇T )u

3 +
T−1

6
h
(3)
T (θ̇T )b

(1)
T (θ̇T )u

4

]
du

T
m
2

(c)
∼
∞

O(T−1)

T
m
2

.

(a) Apply change of variableθ 7→
√
T (θ−θ̇T ) := u ; and denoteV√Tr(0) :=

{
u ∈ Rm : T−

1
2u+ θ̇T ∈ Vr(θ̇T )

}
.

(b) Assumption25(b)ii); (c)ii) allows to dominate by absolute moment of Gaussian distribution scaled

by a constant and then to apply the Lebesgue dominated convergence theorem. (c) The odd moments

of a normal distribution are zero.
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The integral ofRT (θ, θ̇T ) yields

∣
∣
∣
∣
∣

∫

Vr(θ̇T )
exp

{
1

2
h
(2)
T (θ̇T )

[√
T (θ − θ̇T )

]2}

RT (θ, θ̇T )dθ

∣
∣
∣
∣
∣

6
∫

Vr(θ̇T )

∣
∣
∣
∣exp

{
1

2
h
(2)
T (θ̇T )

[√
T (θ − θ̇T )

]2}{

T−1
[√

T (θ − θ̇T )
]2

+
T−

3
2

6
h
(3)
T (θ̇T )bT (θ)

[√
T (θ − θ̇T )

]5

+T−1h1,T (θ)bT (θ̇T )
[√

T (θ − θ̇T )
]4
+ T−

3
2h1,T (θ)b

(1)
T (θ̇T )

[√
T (θ − θ̇T )

]5

+T−2h1,T (θ)bT (θ)
[√

T (θ − θ̇T )
]6

+
T−1

36
h2,T (θ)h

(3)
T (θ̇T )

2bT (θ̇T )
[√

T (θ − θ̇T )
]6
+
T−

3
2

36
h2,T (θ)h

(3)
T (θ̇T )

2b
(1)
T (θ̇T )

[√
T (θ − θ̇T )

]7

+h2,T (θ)
T−2

36
h
(3)
T (θ̇T )

2bT (θ)
[√

T (θ − θ̇T )
]8

+2
T−

5
2

6
h2,T (θ)h

(3)
T (θ̇T )h1,T (θ)bT (θ̇T )

[√
T (θ − θ̇T )

]7

+2
T−3

6
h2,T (θ)h

(3)
T (θ̇T )h1,T (θ)b

(1)
T (θ̇T )

[√
T (θ − θ̇T )

]8

+2
T−

7
2

6
h2,T (θ)h

(3)
T (θ̇T )h1,T (θ)bT (θ)

[√
T (θ − θ̇T )

]9

+T−2h2,T (θ)h1,T (θ)
2bT (θ̇T )

[√
T (θ − θ̇T )

]8
+ T−

5
2h2,T (θ)h1,T (θ)

2b
(1)
T (θ̇T )

[√
T (θ − θ̇T )

]9

+T−3h2,T (θ)h1,T (θ)
2bT (θ)

[√
T (θ − θ̇T )

]10}
∣
∣
∣
∣ dθ

(a)

6 M

∫

V√
Tr
(0)
exp

{
1

2
h
(2)
T (θ̇T )u

2

}{
T−1u2 + T−1u4 + T−

3
2 |u|5 + T−1u4 + T−

3
2 |u|5

+T−2u6 + T−
5
2 |u|7 + T−3u8 + T−

7
2 |u|9 + T−2u8 + T−

5
2 |u|9 + T−3u10

} du

T
m
2

(b)
∼
∞

M

∫

Rm
exp

{
1

2
h
(2)
T (θ̇T )u

2

}{
T−1u2 + T−1u4 + T−

3
2 |u|5 + T−1u4 + T−

3
2 |u|5

+T−2u6 + T−
5
2 |u|7 + T−3u8 + T−

7
2u9 + T−2u8 + T−

5
2 |u|9 + T−3u10

} du

T
m
2

(c)
=

O(T−1)

T
m
2

.

(a) By Assumption25(b)ii);(c)ii), h1,T (.), h2,T (.) andbT (.) are bounded onVr(θ̇T ). (b) All the mo-

ments of a Gaussian distribution are finite, thus we can apply the Lebesgue dominated convergence

Theorem.(c) Finiteness of the moments of a Gaussian distribution.�
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Lemma A.11. Under Assumptions1(b) and25,

∫

Vr(θ̇T )
exp

{
T

2
(θ − θ̇T )

′∂
2hT (θ̇T )

∂θ∂θ′
(θ − θ̇T )

}

dθ ∼
∞

(
2π

T

)m/2
∣
∣
∣
∣
∣

(

−
∂2hT (θ̇T )

∂θ∂θ′

)∣∣
∣
∣
∣

−1/2

det

Proof . We have

∫

Vr(θ̇T )
exp

{
T

2
(θ − θ̇T )

′∂
2hT (θ̇T )

∂θ∂θ′
(θ − θ̇T )

}

dθ

(a)
=

1

T
m
2

(2π)
m
2

∣
∣
∣
∣

(
−∂2hT (θ̇T )

∂θ∂θ′

)−1
∣
∣
∣
∣

1
2

det

(2π)
m
2

∣
∣
∣
∣

(
−∂2hT (θ̇T )

∂θ∂θ′

)−1
∣
∣
∣
∣

1
2

det

∫

V√
Tr
(0)
exp

{
1

2
u′
∂2hT (θ̇T )

∂θ∂θ′
u

}

du

(b)
∼
∞

(
2π

T

)m
2

∣
∣
∣
∣
∣

(

−
∂2hT (θ̇T )

∂θ∂θ′

)∣∣
∣
∣
∣

− 1
2

det

(a)Change of variableθ 7→
√
T (θ−θ̇T ) := u, and denoteV√Tr(0) :=

{
u ∈ Rm : T−

1
2u+ θ̇T ∈ Vε(θ̇T )

}

(b) By Assumption25(c), recognising the density of a normal distribution, we can apply the Lebesgue

dominated convergence theorem

lim
T→∞

1

(2π)
m
2

∣
∣
∣
∣

(
−∂2hT (θ̇T )

∂θ∂θ′

)−1
∣
∣
∣
∣

1
2

det

∫

V√
Tr
(0)
exp





−
1

2
u′





(

−
∂2hT (θ̇T )

∂θ∂θ′

)−1



−1

u





du = 1 (27)

�

Proposition A.7. Under Assumptions1(b) and25, there existsT1 andr > 0 such that for allT > T1

∫

Vr(θ̇T )
bT (θ) exp [ThT (θ)] dθ =

(
2π

T

)m/2
∣
∣
∣
∣
∣

(

−
∂2hT (θ̇T )

∂θ∂θ′

)∣∣
∣
∣
∣

−1/2

det

[

bT (θ̇T ) +O

(
1

T

)]

and the RHS and the LHS are well-defined.

Proof . Combine PropositionA.6 and LemmaA.11. �
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A.8.2 Proof of Theorems5.1and5.2

Aroundθ∗T : application of Laplace’s approximation

Proposition A.8. Under Assumptions1-6, Laplace’s approximations corresponding to Propositions

A.6andA.7can be appliedP-a.s. to
∫
Br(θ∗T )

f̃θ∗T ,sp(θ)dθ with r > 0 small enough by putting

θ̇T := θ∗T

hT (θ) := ln

[
1

T

T∑

t=1

eτT (θ)
′ψi(θ)

]

bT (θ) := |ΣT (θ)|
− 1
2

det

where the RHS are well-defined forT big enough.

Proof . First, noteP-a.s. forT big enough the RHS exist inBr(θ∗T ) by Assumption5(a) and Corollary1.

Second, check the assumptions of Laplace’s approximation. Lemma 3 in Jennrich (1969) ensures that

the Taylor expansions with a mean-value form of the remainder used to prove Laplace’s approximation

applies to random functions. Thus, it is now sufficient to show the above quantities satisfy Assumption

25. Corollary1 and Assumption3(b) provide Assumption25(a). Assumption6(a) with Corollary1

provideψ(.) ∈ C4 (Br(θ
∗
T )) with r > 0 for T big enough. By the implicit function theorem and

Assumption5(a),τT (.) ∈ C4 (Br(θ∗T )) for T big enough. Thus, Assumption25(b)i) (d)i) are satisfied.

Assumption6(c)(d) provide that Assumptions25(b)ii) (d)ii). By LemmaA.13 and the definition ofθ∗T ,

Assumption25(b)iii) is satisfied. By LemmaA.14, the Assumption25(c) is also satisfied.�

Lemma A.12. Under Assumptions1(a)-(c),2, 5 and6(e), forT big enoughP-a.s.

∂τT (θ)

∂θ′

∣
∣
∣
∣
θ=θ∗T

= −

[
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

]−1 [
1

T

T∑

t=1

∂ψi(θ
∗
T )

∂θ′

]

where the LHS and RHS are well-defined.

Proof . To apply the implicit function theorem to the tilting equation definingτT (.), first show that the
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derivative w.r.t.τ is full rank.

lim
T→∞

∣
∣
∣
∣
∣
∣
∣
∣

∂
[
1
T

∑T
t=1 e

τ ′ψt(θ)ψt(θ)
]

∂τ ′

∣
∣
∣
∣
∣
∣τ=τT (θ∗T )
θ=θ∗T

∣
∣
∣
∣
∣
∣
∣
∣
det

(a)
= lim

T→∞

∣
∣
∣
∣
∣
1

T

T∑

t=1

eτT (θ
∗
T )
′ψt(θ∗T )ψt(θ

∗
T )ψt(θ

∗
T )
′

∣
∣
∣
∣
∣
det

(b)
= lim

T→∞

∣
∣
∣
∣
∣
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

∣
∣
∣
∣
∣
det

(c)
=

∣
∣E
[
ψ(X, θ0)ψ(X, θ0)

′]∣∣
det

> 0

(a) By Assumption2, differentiate. (b) By definition of τT (.), τT (θ∗T ) = 0, sinceθ∗T denotes a so-

lution to the empirical moment conditions.(c) By Assumption1-2, 5(b),6(e) and Corollary1, apply

PropositionA.2 with B a closed ball centered atθ0. Then use Assumption5(a) and the definition of

Θ̂−η∞ .

Therefore, by LemmaA.7i) for T big enough

∣
∣
∣
∣
∣
∣
∣
∣

∂
[
1
T

∑T
t=1 e

τ ′ψt(θ)ψt(θ)
]

∂τ ′

∣
∣
∣
∣
∣
∣τ=τT (θ∗T )
θ=θ∗T

∣
∣
∣
∣
∣
∣
∣
∣
det

> 0

Consequently, by Assumption2 and the implicit function theorem in a neighborhood ofθ0 for T

big enough

∂τT (θ)

∂θ′

= −




∂
[
1
T

∑T
t=1 e

τ ′ψt(θ)ψt(θ)
]

∂τ ′





−1 


∂
[
1
T

∑T
t=1 e

τ ′ψt(θ)ψt(θ)
]

∂θ′





∣
∣
∣
∣
∣
∣
∣
τ=τT (θ)

= −

[
1

T

T∑

t=1

eτ
′ψt(θ)ψt(θ)ψt(θ)

′

]−1 [
1

T

T∑

t=1

eτ
′ψt(θ)

(
∂ψi(θ)

∂θ′
+ ψi(θ)τ

′∂ψi(θ)

∂θ′

)]
∣
∣
∣
∣
∣
∣
τ=τT (θ)

= −

[
1

T

T∑

t=1

eτT (θ)
′ψt(θ)ψt(θ)ψt(θ)

′

]−1 [
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

(
∂ψi(θ)

∂θ′
+ ψi(θ)τT (θ)

′∂ψi(θ)

∂θ′

)]

.

Putθ = θ∗T and note thatτT (θ∗T ) = 0m×1,

∂τT (θ)

∂θ′

∣
∣
∣
∣
θ=θ∗T

= −

[
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

]−1 [
1

T

T∑

t=1

∂ψi(θ
∗
T )

∂θ′

]

.�
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Lemma A.13. Under the assumptions of LemmaA.12, for T big enoughP-a.s.

∂ ln
[
1
T

∑T
t=1 e

τT (θ)
′ψt(θ)

]

∂θ

∣
∣
∣
∣
∣
∣
θ=θ∗T

= 0m×1

where the LHS is well-defined.

Proof . Differentiate w.r.t. thekth component

∂ ln
[
1
T

∑T
t=1 e

τT (θ)
′ψt(θ)

]

∂θk
=

1
T

∑T
t=1 e

τT (θ)
′ψt(θ)

[
∂τT (θ)

′

∂θk
ψt(θ) +

∂ψt(θ)′

∂θk
τT (θ)

]

1
T

∑T
t=1 e

τT (θ)′ψt(θ)
. (28)

Thus, forθ = θ∗T ,

∂ ln
[
1
T

∑T
t=1 e

τT (θ)ψt(θ)
]

∂θk

∣
∣
∣
∣
∣
∣
θ=θ∗T

=
∂τT (θ

∗
T )
′

∂θk

[
1

T

T∑

t=1

ψt(θ
∗
T )

]

=
∂τT (θ

∗
T )
′

∂θk
× 0m×1

= 0.

Stack rows to obtain the result.�

Lemma A.14. Under the assumptions of LemmaA.12and Assumption6(a), forT big enoughP-a.s.

∂2 ln
[
1
T

∑T
t=1 e

τT (θ)
′ψt(θ)

]

∂θ∂θ′

∣
∣
∣
∣
∣
∣
θ=θ∗T

= −

[
1

T

T∑

t=1

∂ψi(θ
∗
T )
′

∂θ

][
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

]−1 [
1

T

T∑

t=1

∂ψi(θ
∗
T )

∂θ′

]

where the RHS and the LHS are well-defined. Thus, the RHS converges to a n-d.m.
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Proof . From equation (28),

∂2 ln
[
1
T

∑T
t=1 e

τT (θ)
′ψt(θ)

]

∂θk∂θl

=
1

[
1
T

∑T
t=1 e

τT (θ)′ψt(θ)
]2

{{
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

[
∂τT (θ)

′

∂θl
ψt(θ) +

∂ψt(θ)
′

∂θl
τT (θ)

] [
∂τT (θ)

′

∂θk
ψt(θ)

+
∂ψt(θ)

′

∂θk
τT (θ)

]

+

[
∂2τT (θ)

′

∂θk∂θl
ψt(θ) +

∂ψt(θ)
′

∂θl

∂τT (θ)

∂θk

]

+

[
∂2ψt(θ)

′

∂θkθl
τT (θ) +

∂τT (θ)
′

∂θl

∂ψt(θ)

∂θk

]}

×

{
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

}

−

{
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

[
∂τT (θ)

′

∂θk
ψt(θ) +

∂ψt(θ)
′

∂θk
τT (θ)

]}

×

{
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

[
∂τT (θ)

′

∂θl
ψt(θ) +

∂ψt(θ)
′

∂θl
τT (θ)

]}}

=
1

[
1
T

∑T
t=1 e

τT (θ)′ψt(θ)
]

{
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

[
∂τT (θ)

′

∂θl
ψt(θ) +

∂ψt(θ)
′

∂θl
τT (θ)

] [
∂τT (θ)

′

∂θk
ψt(θ)

+
∂ψt(θ)

′

∂θk
τT (θ)

]

+

[
∂2τT (θ)

′

∂θk∂θl
ψt(θ) +

∂ψt(θ)
′

∂θl

∂τT (θ)

∂θk

]

+

[
∂2ψt(θ)

′

∂θkθl
τT (θ) +

∂τT (θ)
′

∂θl

∂ψt(θ)

∂θk

]}

−
1

[
1
T

∑T
t=1 e

τT (θ)′ψt(θ)
]2

{
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

[
∂τT (θ)

′

∂θk
ψt(θ) +

∂ψt(θ)
′

∂θk
τT (θ)

]}

×

{
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

[
∂τT (θ)

′

∂θl
ψt(θ) +

∂ψt(θ)
′

∂θl
τT (θ)

]}

.

Thus,forθ = θ∗T andτ = τT (θ∗T ) = 0m×1

∂2 ln
[
1
T

∑T
t=1 e

τT (θ)
′ψt(θ)

]

∂θk∂θl

∣
∣
∣
∣
∣
∣
θ=θ∗T

=

{
1

T

T∑

t=1

[
∂τT (θ

∗
T )
′

∂θl
ψt(θ

∗
T )

] [
∂τT (θ

∗
T )
′

∂θk
ψt(θ

∗
T )

]

+

[
∂2τT (θ

∗
T )
′

∂θk∂θl
ψt(θ

∗
T ) +

∂ψt(θ
∗
T )
′

∂θl

∂τT (θ
∗
T )

∂θk

]

+

[
∂τT (θ

∗
T )
′

∂θl

∂ψt(θ
∗
T )

∂θk

]}

−

{
1

T

T∑

t=1

[
∂τT (θ

∗
T )
′

∂θk
ψt(θ

∗
T )

]}{
1

T

T∑

t=1

[
∂τT (θ

∗
T )
′

∂θl
ψt(θ

∗
T )

]}

=
1

T

T∑

t=1

[
∂τT (θ

∗
T )
′

∂θl
ψt(θ

∗
T )

] [
∂τT (θ

∗
T )
′

∂θk
ψt(θ

∗
T )

]

+

[
∂ψt(θ

∗
T )
′

∂θl

∂τT (θ
∗
T )

∂θk

]

+

[
∂τT (θ

∗
T )
′

∂θl

∂ψt(θ
∗
T )

∂θk

]
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Stack rows and columns and use the LemmaA.12. The first term becomes

(
1

T

T∑

t=1

[
∂τT (θ

∗
T )
′

∂θl
ψt(θ

∗
T )

] [
∂τT (θ

∗
T )
′

∂θk
ψt(θ

∗
T )

])

(k,l)∈[[1,m]]2

=
1

T

T∑

t=1

(
∂τT (θ

∗
T )
′

∂θ
ψt(θ

∗
T )

)(

ψt(θ
∗
T )
′∂τT (θ

∗
T )

∂θ′

)

=
∂τT (θ

∗
T )
′

∂θ

[
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

]
∂τT (θ

∗
T )

∂θ′

=

[
1

T

T∑

t=1

∂ψi(θ
∗
T )

∂θ′

]′ [
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

]−1 [
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

][
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

]−1

×

[
1

T

T∑

t=1

∂ψi(θ
∗
T )

∂θ′

]

=

[
1

T

T∑

t=1

∂ψi(θ
∗
T )
′

∂θ

][
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

]−1 [
1

T

T∑

t=1

∂ψi(θ
∗
T )

∂θ′

]

.

Similarly, the sum of the two other terms becomes

(
1

T

T∑

t=1

∂ψt(θ
∗
T )
′

∂θl

∂τT (θ
∗
T )

∂θk

)

(k,l)∈[[1,m]]2

+

(
1

T

T∑

t=1

∂τT (θ
∗
T )
′

∂θl

∂ψt(θ
∗
T )

∂θk

)

(k,l)∈[[1,m]]2

=

[
1

T

T∑

t=1

∂ψi(θ
∗
T )

∂θ

′
]
∂τT (θ

∗
T )

∂θ′
+

{[
1

T

T∑

t=1

∂ψi(θ
∗
T )
′

∂θ

]
∂τT (θ

∗
T )

∂θ′

}′

= −2

[
1

T

T∑

t=1

∂ψi(θ
∗
T )
′

∂θ

][
1

T

T∑

t=1

ψt(θ
∗
T )ψt(θ

∗
T )
′

]−1 [
1

T

T∑

t=1

∂ψi(θ
∗
T )

∂θ′

]

.

where the last equality comes from the symmetry of each term. Add all the terms to obtain the result.�

Outside a neighborhood ofθ∗T

Proposition A.9. Under the assumptions of LemmaA.8andA.15and Assumptions1(a)-(c),2, 4(a),7(b)

for all r > 0 small enough there existsε > 0 andṪ ∈ N such that

∀T > Ṫ , ∀θ ∈ Θ̂−ηT \Br(θ0),
1

T

T∑

t=1

eτT (θ)ψt(θ) < 1− ε P-a.s.

Proof. Check assumptions of PropositionA.2 for application to 1T
∑T

t=1 e
τ∞(θ)′ψt(θ) in Br1(θ̇) with

r1 > 0 and θ̇ ∈ Θ̂−η∞ . Assumptions1(a)4(a) provide Assumption24(a). Assumptions1(b) provides
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Assumption24(b). By Assumptions2 and LemmaA.8ii), for all θ ∈ Θ̂−η∞ θ 7→ 1
T

∑T
t=1 e

τ∞(θ)′ψt(θ)

is continuous. Then combined with Assumption1(c) it provides Assumption24(c). Assumptions7(b)

provides Assumption24(d). Thus, by PropositionA.2 there existsr1 > 0 such that for allθ̇ ∈ Θ̂−η∞ , as

T →∞,

sup
θ∈Br1 (θ̇)

∥
∥
∥
∥
∥
1

T

T∑

t=1

eτ∞(θ)
′ψt(θ) − E

[
eτ∞(θ)

′ψ(X,θ)
]
∥
∥
∥
∥
∥
→ 0.

Now, sinceΘ̂−η∞ is compact, there exists{θk}
K
k=1 such thatΘ̂−η∞ =

⋃K
k=1Br2(θk) andr2 < r1. Thus,

asT →∞,

sup
θ∈Θ̂−η∞

∥
∥
∥
∥
∥
1

T

T∑

t=1

eτ∞(θ)
′ψt(θ) − E

[
eτ∞(θ)

′ψ(X,θ)
]
∥
∥
∥
∥
∥
→ 0

Thus, forε > 0 small enough, there existṡT such that for allT > Ṫ

sup
θ∈Θ̂−η∞

∥
∥
∥
∥
∥
1

T

T∑

t=1

eτ∞(θ)
′ψt(θ) − E

[
eτ∞(θ)

′ψ(X,θ)
]
∥
∥
∥
∥
∥
< ε3.

Moreover, by LemmaA.15, for ε > 0 small enough, there exists,r3 > 0 such that∀θ ∈ Θ̂−η∞ \Br3(θ0),

E
[
eτ∞(θ)

′ψ(X,θ)
]
< 1 − 2ε, sinceθ 7→ E

[
eτ∞(θ)

′ψ(X,θ)
]

is continuous by as a uniform limit of

continuous functionsθ 7→ 1
T

∑T
t=1 e

τ∞(θ)′ψt(θ) . Consequently, for allT > Ṫ ∀θ ∈ Θ̂−η∞ \Br3(θ0)

1

T

T∑

t=1

eτ∞(θ)
′ψt(θ) − E

[
eτ∞(θ)

′ψ(X,θ)
]
+ E

[
eτ∞(θ)

′ψ(X,θ)
]
=
1

T

T∑

t=1

eτ∞(θ)
′ψt(θ)

1− ε >
1

T

T∑

t=1

eτ∞(θ)
′ψt(θ)

>
1

T

T∑

t=1

eτT (θ)
′ψt(θ)

since 1T
∑T

t=1 e
τT (θ)

′ψt(θ) = minτ∈Rm
1
T

∑T
t=1 e

τ ′ψt(θ). �

Lemma A.15. Under Assumptions1(a)-(c),4(b) and5, for all θ ∈ Θ̂−η∞ \ {θ0}

E
[
eτ∞(θ)

′ψ(X,θ)
]
< 1.

Proof. By definition of Θ̂−η∞ and a standard result on Laplace’s transform (e.g. Theorem 3 p.183

103



Monfort, 1980),τ∞(θ) is the minimum of a strictly convex functioni.e. for all θ ∈ Θ̂−η∞ , for all

τ 6= τ∞(θ), E
[
eτ∞(θ)

′ψ(x,θ)
]
< E

[
eτ
′ψ(X,θ)

]
. Thus, for allτ∞(θ) 6= 0m×1, E

[
eτ∞(θ)ψ(X,θ)

]
<

E
[
e0
′
m×1ψ(X,θ)

]
= 1. Now, by Assumption4(b), for all θ ∈ Θ̂−η∞ \ {θ0}, τ∞(θ) 6= 0m×1. Therefore,

the result follows.�

Conclusion of the proofs

Corollary 2. Under Assumptions1-5, for all r > 0 small enough,

i) asT →∞,
∫

Br(θ∗T )
f̃θ∗T ,sp(θ)dθ → 1 P-a.s.;

ii) for T big enough, there existsM > 0 andε > 0 s.t. for all θ ∈ Θ \Br(θ∗T ),

f̃θ∗T ,sp(θ) < exp {−Tε}M P-a.s.

Proof. i) By PropositionA.8, apply PropositionA.7 with LemmaA.14 so thatP-a.s.

∫

Br(θ∗T )
f̃θ∗T ,sp(θ)dθ =

∫

Br(θ∗T )
exp

{

T ln

[
1

T

T∑

t=1

eτT (θ)
′ψt(θ)]

}(
T

2π

)m/2
|ΣT (θ)|

− 1
2

det dθ

∼
∞

(
2π

T

)m
2 ∣
∣ΣT (θ

∗
T )
−1
∣
∣−
1
2

det

(
T

2π

)m
2

|ΣT (θ
∗
T )|
− 1
2

det

∼
∞
1

whereΣT (θ∗T ) :=
[
1
T

∑T
t=1

∂ψt(θ∗T )
∂θ′

]−1 [
1
T

∑T
t=1 ψt(θ

∗
T )ψt(θ

∗
T )
′
] [
1
T

∑T
t=1

∂ψt(θ∗T )
′

∂θ

]−1
.

ii) By PropositionA.9 and Assumptions7(a) for allr > 0 small enough there existsε > 0 Ṁ > 0

andṪ ∈ N such that∀T > Ṫ we have for allθ ∈ Θ̂−ηT \Br(θ0)

f̃θ∗T ,sp(θ) 6 exp {−Tε}

(
T

2π

)m
2

Ṁ P-a.s. (29)

By Definition4.4of the ESP intensity, it also holds for allθ ∈ Θ \Br(θ0). �
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Conclusion of the proof of Theorem5.1. For allϕ ∈ Cb and for allr > 0,

∣
∣
∣
∣

∫

Θ
ϕ(θ)f̃θ∗T ,sp(θ)dθ − ϕ(θ0)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

Br(θ∗T )
ϕ(θ0)f̃θ∗T ,sp(θ)dθ − ϕ(θ0) +

∫

Br(θ∗T )
[ϕ(θ)− ϕ(θ0)] f̃θ∗T ,sp(θ)dθ

+

∫

Θ\Br(θ∗T )
ϕ(θ)f̃θ∗T ,sp(θ)dθ

∣
∣
∣
∣
∣

6

∣
∣
∣
∣
∣

∫

Br(θ∗T )
ϕ(θ0)f̃θ∗T ,sp(θ)dθ − ϕ(θ0)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

Br(θ∗T )
[ϕ(θ)− ϕ(θ0)] f̃θ∗T ,sp(θ)dθ

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

Θ\Br(θ∗T )
ϕ(θ)f̃θ∗T ,sp(θ)dθ

∣
∣
∣
∣
∣

Therefore, by the lemmas below forr > 0 small enough, for allε > 0, ∀T > max(T1, T2, T3),

∣
∣
∣
∣

∫

Θ
ϕ(θ)f̃θ∗T ,sp(θ)dθ − ϕ(θ0)

∣
∣
∣
∣ 6 ε P-a.s.

which is the result needed.�

Lemma A.16. For all ε > 0, there existsT1 ∈ N such that forr > 0 small enough

∀T > T1,

∣
∣
∣
∣
∣

∫

Br(θ∗T )
[ϕ(θ)− ϕ(θ0)] f̃θ∗T ,sp(θ)dθ

∣
∣
∣
∣
∣
6
ε

3
P-a.s..

Proof .

∣
∣
∣
∣
∣

∫

Br(θ∗T )
[ϕ(θ)− ϕ(θ0)] f̃θ∗T ,sp(θ)dθ

∣
∣
∣
∣
∣
6

∫

Br(θ∗T )
|ϕ(θ)− ϕ(θ0)| f̃θ∗T ,sp(θ)dθ

6 sup
θ∈Br(θ∗T )

|ϕ(θ)− ϕ(θ0)|
∫

Br(θ∗T )
f̃θ∗T ,sp(θ)dθ

6 sup
θ∈Br(θ∗T )

|ϕ(θ)− ϕ(θ0)|M

whereM is a constant which bounds the integral by Corollary2i).

By continuity ofϕ(.), there existsε3 > 0 such that∀θ ∈ Bε3(θ0), |ϕ(θ)− ϕ(θ0)| <
ε
3M . More-

over, sinceθ∗T → θ0 by Corollary1, ∀ε4 > 0 there existsT4 ∈ N s.t. T > T4 ‖θ∗T − θ0‖ 6 ε4. Thus,
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if r andε4 are such that0 < r < ε3 − ε4, for all T > T4, θ ∈ Br(θ∗T ) implies

‖θ − θ0‖ = ‖θ − θ∗T + θ
∗
T − θ0‖

6 ‖θ − θ∗T ‖+ ‖θ
∗
T − θ0‖

6 r + ε4 < ε;

which in turn implies the result by puttingT1 := T4 �

Lemma A.17. For all ε > 0, there existsT2 > 0 such that

∀T > T2,

∣
∣
∣
∣
∣

∫

Θ\Br(θ∗T )
ϕ(θ)f̃θ∗T ,sp(θ)dθ

∣
∣
∣
∣
∣
6
ε

3
P-a.s..

Proof. Sinceϕ(.) is bounded, there existṡM > 0 such that

∣
∣
∣
∣
∣

∫

Θ\Br(θ∗T )
ϕ(θ)f̃θ∗T ,sp(θ)dθ

∣
∣
∣
∣
∣
6 Ṁ

∫

Θ\Br(θ∗T )
f̃θ∗T ,sp(θ)dθ

Thus, the result follows by Corollary2ii). �

Lemma A.18. For all ε > 0, there existsT3 > 0 such that

∀T > T3,

∣
∣
∣
∣
∣

∫

Br(θ∗T )
ϕ(θ0)f̃θ∗T ,sp(θ)dθ − ϕ(θ0)

∣
∣
∣
∣
∣
6
ε

3
P-a.s..

Proof.

∣
∣
∣
∣
∣

∫

Br(θ∗T )
ϕ(θ0)f̃θ∗T ,sp(θ)dθ − ϕ(θ0)

∣
∣
∣
∣
∣
= |ϕ(θ0)| ×

∣
∣
∣
∣
∣

∫

Br(θ∗T )
f̃θ∗T ,sp(θ)dθ − 1

∣
∣
∣
∣
∣

Thus the result follows by Corollary2i). �
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Conclusion of the proof of Theorem 2.By PropositionA.6,

∫

DT (a,θ
∗
T ,b)

f̃θ∗T ,sp(θ)dθ

∼
∞

∫

DT (a,θ
∗
T ,b)
exp

{

−
T

2
(θ − θ∗T )

′ΣT (θ
∗
T )
−1(θ − θ∗T )

}(
T

2π

)m
2

|ΣT (θ
∗
T )|
− 1
2

det dθ

(a)
∼
∞

∫

D(a,b)
e−

1
2
z′z

(
T

2π

)m
2

|ΣT (θ
∗
T )|
− 1
2

det

∣
∣
∣T−1/2ΣT (θ

∗
T )

1
2

∣
∣
∣
det
ds

∼
∞

1

(2π)
m
2

∫

D(a,b)
e−

1
2

′
sds

(a) z :=
√
TΣT (θ

∗
T )
− 1
2 (θ − θ∗T ) �

A.8.3 Proof of Theorems5.3and5.4

It follows immediately from the proof of Theorem5.1and5.2. Choose a partition of the parameter

space such that each element of the partition contains only one solution to the moment conditions. Then,

apply Theorem5.1and5.2to each element of the partition.

A.9. Proof of Proposition7.1

i) By Proposition4.4and Assumption11(a) respectively,̃fθ∗T ,sp(.) andu(., .) are continuous over

the compact setsΘ andΘ2. Thus, for all(θe, θ) ∈ Θ2, ‖u(θe, θ)f̃θ∗T ,sp(θ)‖ 6 supθ̇∈Θ ‖u(θ̇, θ)f̃θ∗T ,sp(θ)‖

with
∫
Θ supθ̇∈Θ ‖u(θ̇, θ)f̃θ∗T ,sp(θ)‖dθ < ∞. Thus, by the Lebesgue dominated convergence theorem,

θe 7→
∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθ is continuous overΘ.

ii) By i) and LemmaA.19, apply Lemma 2 from Jennrich (1969).

Lemma A.19. Under Assumption3;11(a), (ω, θ) 7→
∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθ is E ⊗ B(Θ)/B(R)-

measurable.

Proof. By Assumption3, f̃θ∗T ,sp(.) is E ⊗ B(Θ)/B(R+)-measurable. By Assumption11(a), u(., .)

is continuous. Thus,u(., .)f̃θ∗T ,sp(.) is E ⊗ B(Θ) ⊗ B(Θ)/B(R+) . Thus apply a standard pre-

liminary result to the Fubini theorem (e.g. Lemma 1.26 p.14 in Kallenberg, 2001) to deduce that
∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθ is E ⊗ B(Θ)/B(R)-measurable.�
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A.10. Proof of Proposition7.2

i) By the LemmaA.20 below, for allε > 0 there exists an open cover ofΘ,
⋃
θ̇∈ΘBεθ̇(θ̇), such

that






rθ̇ > 0

supθe∈Br
θ̇
(θ̇)

∥
∥
∥
∫
Θ u(θe, θ)fθ∗T ,sp(θ)dθ − u(θe, θ0)

∥
∥
∥ < ε for T big enough.

Now, any open cover of a compact set contains a finite open cover. Therefore, by Assumption1(b),

there exists
{
θ̇k

}K

k=1
∈ ΘK , {Tk}

K
k=1 ∈ N

K and{rk}
K
k=1 ∈]0,∞[

K such that






Θ =
⋃K
k=1Brk(θ̇k)

supθe∈B
k
(θ̇k)

∥
∥
∥
∫
Θ u(θe, θ)fθ∗T ,sp(θ)dθ − u(θe, θ0)

∥
∥
∥ < ε for T > Tk .

Thus forT > maxk∈[[1,K]] Tk, supθe∈Θ
∥
∥
∥
∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθ − u(θe, θ0)

∥
∥
∥ < ε.

ii) Since by Assumptions11(b)(c)u(θ0, θ0) > u(θe, θ0) for all θe ∈ Θ, it follows from iii). �

Lemma A.20. Under Assumptions1-7,11(a), for all θ̇e ∈ Θ and for all ε > 0, there existr > 0 and

Ṫ ∈ N such that for allθe ∈ Br(θ̇e) and for allT > Ṫ ,

∥
∥
∥
∥

∫

Θ
u(θe, θ)fθ∗T ,sp(θ)dθ − u(θe, θ0)

∥
∥
∥
∥ 6 ε.

Proof. For a fixedθ̇e ∈ Θ, by the triangle inequality,∀r > 0, ∀θe ∈ Br(θ̇e)

∥
∥
∥
∥

∫

Θ
u(θe, θ)fθ∗T ,sp(θ)dθ − u(θe, θ0)

∥
∥
∥
∥

6

∥
∥
∥
∥

∫

Θ
u(θe, θ)fθ∗T ,sp(θ)dθ −

∫

Θ
u(θ̇e, θ)fθ∗T ,sp(θ)dθ

∥
∥
∥
∥+

∥
∥
∥
∥

∫

Θ
u(θ̇e, θ)fθ∗T ,sp(θ)dθ − u(θ̇e, θ0)

∥
∥
∥
∥

+
∥
∥
∥u(θ̇e, θ0)− u(θe, θ0)

∥
∥
∥

It remains to prove that for allε > 0, by choosingr small enough andT big enough each of the three
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terms can made smaller thanε3 . For all ε̇ > 0, for r small enough

∥
∥
∥
∥

∫

Θ
u(θe, θ)fθ∗T ,sp(θ)dθ −

∫

Θ
u(θ̇e, θ)fθ∗T ,sp(θ)dθ

∥
∥
∥
∥ =

∥
∥
∥
∥

∫

Θ

[
u(θe, θ)− u(θ̇e, θ)

]
fθ∗T ,sp(θ)dθ

∥
∥
∥
∥

(a)

6 ε̇

∫

Θ
fθ∗T ,sp(θ)dθ

(b)

6 ε̇M with M ∈ R

where(a) comes from the uniform continuity ofu(., .) implied by Assumption11(a) and the Heine-

Cantor Theorem; and(b) comes from Theorem5.1. Thus, forε̇ = ε
3M , the first term is smaller than

ε
3 . ForT big enough the second term is smaller thanε

3 by Theorem5.1. Forr small enough, the third

term is smaller thanε3 . �

A.11. Proof of Proposition7.3

Notations for this proof.

∀θe ∈ Θ, hT (θe) :=
1

KT

∫

Θ
u(θe, θ)f̃θ∗T ,sp(θ)dθ (30)

h(θe) := u(θe, θ0)

i) Existence ofkα,T follows from LemmaA.21 andA.23iii) . Measurability of the ESP confidence

set,{θe : hT (θe) > kα,T }, follows from theE⊗B(Θ)/B(R)-measurability ofhT (.)−kα,T by Lemma

A.23iv) and LemmaA.19. Thus there exists an ESP confidence set. Existence of an asymptotic ESP

confidence set follows from the same arguments as in LemmaA.23iii).

ii) Proof by contradiction. Assume thatkα,T does not converge tokα,∞ asT → ∞. Then there

existsε > 0 and a subsequence
{
kα,β1(T )

}
T>1

such that
∣
∣kα,β1(T ) − kα,∞

∣
∣ > ε. By LemmaA.22

and the Bolzano-Weierstrass theorem, there exists a converging subsequence
{
kα,β2◦β1(T )

}
T>1

of the

sequence
{
kα,β1(T )

}
T>1

. Distinguish two cases.
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First caselimT→∞ kα,β2◦β1(T ) > kα,∞. Let ε > 0 s.t. limT→∞ kα,β2◦β1(T ) > kα,∞ + ε. Then,

1− α
(a)

6 lim
T→∞

sup

∫
l{θe∈Θ:hβ2◦β1(T )(θe)>kα,β2◦β1(T )}

(θe)hβ2◦β1(T )(θe)dθe

(b)

6 lim
T→∞

sup

∫
l{θe∈Θ:hβ2◦β1(T )(θe)>kα,∞}

(θe)hβ2◦β1(T )(θe)dθe

(c)

6
∫
lim
T→∞

sup l{θe∈Θ:hβ2◦β1(T )(θe)>kα,∞}
(θe)hβ2◦β1(T )(θe)dθe

(d)

6
∫

Θ
l{θe∈Θ:h(θe)>kα,∞+ε}h(θe)dθe. (31)

(a)Definition ofkα,T . (b)By assumption,limT→∞ kα,β2◦β1(T ) > kα,∞. Thus,l{θe∈Θ:hβ2◦β1(T )(θe)>kα,β2◦β1(T )}
(.) 6

l{θe∈Θ:hβ2◦β1(T )(θe)>kα,∞}
(.). (c) Fatou’s lemma.(d) LemmaA.26 and for any positive sequences

{uT }T>1 and{vT }T>1 limT→∞ supuT vT 6 limT→∞ supuT × limT→∞ sup vT . Lebesgue domi-

nated convergence theorem.

The inequality (31) is in contradiction with the definition ofkα,∞ sincelimT→∞ kα,β2◦β1(T ) > kα,∞+

ε.

Second casekα,∞ > limT→∞ kα,β2◦β1(T ). Let ε > 0 s.t.kα,∞ − ε > limT→∞ kα,β2◦β1(T ). Then,

1− α
(a)

6
∫

Θ
l{θe:h(θe)>kα,∞}h(θe)dθe

(b)

6
∫

Θ
lim
T→∞

inf l{θe:hβ2◦β1(T )(θe)>kα,∞−ε}
hβ2◦β1(T )(θe)dθe

(c)

6 lim
T→∞

inf

∫

Θ
l{θe:hβ2◦β1(T )(θe)>kα,∞−ε}

hβ2◦β1(T )(θe)dθe. (32)

(a) Definition of kα,∞ . (b) LemmaA.26 and for any positive sequences{uT }T>1 and{vT }T>1

limT→∞ inf uT × limT→∞ inf vT 6 limT→∞ inf uT vT . Lebesgue dominated convergence theorem.

(c) Fatou’s lemma.

The inequality (32) is in contradiction with the definition ofkα,β2◦β1(T ), sincekα,∞−ε > limT→∞ kα,β2◦β1(T ).

�

Lemma A.21. Under Assumptions1-3;11- 12, for η > 0 small enough,

KT :=

∫

Θ2
u(θe, θ)f̃θ∗T ,sp(θ)dθdθe 6= 0.

Proof. By Assumption11, for all θ̇ ∈ Θ, there existsrθ̇ > 0 such that for allθ1, θ2 ∈ Brθ̇(θ̇)u(θ1, θ2) >

0. Moreover, by Proposition4.3i), Θ̂ is an open such that̂fθ∗T ,sp(.) > 0. Therefore there exists an open
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in Θ2 such thatu(., .)f(.) > 0. Since by Proposition4.4i) u(., .)f̃θ∗T ,sp(.) > 0 onΘ2, the result

follows.�

Lemma A.22. Under Assumptions1-3;11-12, P-a.s.

i) hT (.) > 0;

ii) θe 7→ hT (θe) is continuous;

iii)
∫
Θ hT (θe)dθe = 1.

Proof. i) By Assumption11(d) and Assumption3 u(., ) andf̃θ∗T ,sp(.) are respectively positives.

ii) u(., ) and f̃θ∗T ,sp(.) are bounded as continuous functions over a compact set. Apply Lebesgue

dominated convergence theorem.

iii) NoteKT :=
∫
Θ2 u(θe, θ)f̃θ∗T ,sp(θ)dθdθe. �

Lemma A.23. For a fixedT ∈ N, defineIP on the probabilizable space(Θ,B(Θ)) such that

∀B ∈ B(Θ), IP(B) :=

∫

B

hT (θe)dθe.

Under Assumptions1-3;11-12, P-a.s.

i) IP is a probability measure;

ii) ∀k > 0, k 7→ IP ({θe ∈ Θ : hT (θe) > k}) is left-continuous decreasing function;

iii) kα,T exists;

iv) ω 7→ kα,T (ω) is E/B(R)-measurable.

Proof. i) By LemmaA.22 i) and ii), IP(.) > 0 andIP(Θ) = 1 respectively. By Fubini-Tonelli theorem,

IP(.) is countably additive.

ii) Let {kn}n>1 be an increasing sequence convergingto k Thus,

IP
({
θe ∈ Θ : hT (θe) > k

})
= IP




⋂

n>1

{θe ∈ Θ : hT (θe) > kn}





(a)
= lim

n→∞
IP ({θe ∈ Θ : hT (θe) > kn})
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where (a) comes from a standard continuity property of measures (e.g. Lemma 1.14 p.8 in Kallenberg,

2001).

iii) Define

k̇ := sup
k∈R
{k : IP ({θe ∈ Θ : hT (θ3) > k}) > 1− α}

By LemmaA.22ii) hT (.) is bounded, thus by LemmaA.22iii) k̇ < ∞ exists. Therefore, by defini-

tion of a supremum, there exists an increasing sequence{kn}n>1 converging tok̇ such that∀n > 1,

IP ({θe : hT (θ3) > kn}) > 1− α. Thus, by ii)

IP
({
θe ∈ Θ : hT (θe) > k̇

})
= lim

n→∞
IP ({θe ∈ Θ : hT (θe) > kn})

> 1− α.

iv) For the same fixedT used to defineIP, define for this proof

∀ω ∈ Ω, ∀k > 0, g(ω, k) := IP ({θe ∈ Θ : hT (θe) > k})

By LemmaA.19 and a standard preliminary result to the Fubini theorem (e.g. Lemma 1.26 p.14 in

Kallenberg, 2001)∀k > 0. g(., k) is E/B([0, 1])-measurable.

Follow the same idea as in Lemma 2 in Jennrich (1969) to finish the proof.R+ is separable. Thus,

there exists an increasing sequence of finite subsets ofR+, {R+,n}n>1, whose limit,R+,∞, is dense

in R+. W.lo.g. defineR+,n such that for all∀n > 1, 0 ∈ R+,n. Denote{k1, k2, . . . , kn} := R+,n
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with k1 := 0. For alln > 1, define the functionkn,T (.) such that for allω ∈ Ω,

kn,T (ω) :=






k1 if 1− α > g(ω, kj), ∀j ∈ [[2, n]]

k2 if






g(ω, k2) > 1− α

g(ω, k2) > g(ω, kj), ∀j ∈ [[3, n]]

k3 if






g(ω, k3) > 1− α

g(ω, k3) > g(ω, kj), ∀j ∈ [[4, n]]

g(ω, k3) > g(ω, kt), ∀i ∈ [[1, 2]]

...

kq if






g(ω, kq) > 1− α

g(ω, kq) > g(ω, kj), ∀j ∈ [[q + 1, n]]

g(ω, kq) > g(ω, kt), ∀i ∈ [[1, q − 1]]

...

kn if






g(ω, kn) > 1− α

g(ω, kn) > g(ω, kt), ∀i ∈ [[1, n− 1]]

By construction ofkn,T (.),

g(ω, kn,T (ω)) = max
k∈R+,n

g(ω, k).

LetB ∈ B(R+). Then

k−1n,T (B) = {ω ∈ Ω : kn,T (ω) ∈ B}

=
⋃

q∈[[1,n]]:kq∈B

{ω ∈ Ω : kn,T (ω) = kq}
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Now,∀q ∈ [[1, n]], {ω ∈ Ω : kn,T (ω) = kq} ∈ E , since

{ω ∈ Ω : kn,T (ω) = kq}

=






⋂
j∈[[2,n]] {ω ∈ Ω : 1− α > g(ω, kj)} if q = 1

{ω ∈ Ω : g(ω, k2) > 1− α}
⋂[⋂

j∈[[3,n]] {ω ∈ Ω : g(ω, k2) > g(ω, kj)}] if q = 2

{ω ∈ Ω : g(ω, kq) > 1− α}
⋂[⋂

j∈[[q+1,n]] {ω ∈ Ω : g(ω, kq) > g(ω, kj)}]

⋂[⋂
i∈[[1,q−1]] {ω ∈ Ω : g(ω, kq) > g(ω, kt)}] if q ∈ [[3, n− 1]]

{ω ∈ Ω : g(ω, kq) > 1− α}
[⋂

i∈[[1,n−1]] {ω ∈ Ω : g(ω, kn) > g(ω, kt)}
]

if q = n

Thus,k−1n,T (B) ∈ E , which means thatkn,T (.) is E/B(R+)-measurable.

By the Bolzano-Weierstrass theorem, there exists a converging subsequence
{
kβ(n),T (ω)

}
n>1

. As-

sume thatlimn→∞ kβ(n),T (ω) 6= kα,T (ω). Then, by the left-continuity ofg(ω, .) there existsε > 0

s.t. ∀k ∈ [kα,T (ω) − ε, kα,T (ω)] ∀n ∈ N ∀q ∈ [[1, n]] g(ω, kq) 6 g(ω, k), which means thatR+,∞ is

not dense inR+. Therefore, by contradictionlimn→∞ kβ(n),T (ω) = kα,T (ω). Consequently,kα,T (.)

is E/B(R+)-measurable, as a limit ofE/B(R+)-measurable functions.�

Lemma A.24. Under Assumptions1-7;11-12, asT →∞

sup
θe∈Θ

‖hT (θe)− h(θe)‖ → 0 P-a.s.

Proof . Denote for this proofgT (θe) :=
∫
Θ u(θe, θ)f̃θ∗T ,sp(θ)dθ andg(θe) := u(θe, θ0). By the triangle

inequality and then the subadditivity of supremum,

sup
θe∈Θ

∥
∥
∥
∥
1

KT
gT (θe)−

1

K∞
g(θe)

∥
∥
∥
∥

6 sup
θe∈Θ

∥
∥
∥
∥
1

KT
gT (θe)−

1

K∞
gT (θe)

∥
∥
∥
∥+ sup

θe∈Θ

∥
∥
∥
∥
1

K∞
gT (θe)−

1

K∞
g(θe)

∥
∥
∥
∥

= sup
θe∈Θ

∥
∥
∥
∥

[
1

KT
−
1

K∞

]

gT (θ)

∥
∥
∥
∥+ sup

θe∈Θ

∥
∥
∥
∥
1

K∞
[gT (θe)− g(θe)]

∥
∥
∥
∥ .

The first term of the last line can be made arbitrary small asT → ∞ P-a.s., sinceKT → K∞ by

Proposition7.1iii) and gT (.) is uniformly bounded w.r.t.T also by Proposition7.1iii). The second

term of the last line can be made arbitrary small asT →∞ P-a.s. by Proposition7.1iii). �

Lemma A.25. Under Assumptions1-7;11-12, {kα,T }T>1 is boundedP-a.s.
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Proof. Proof by contradiction. Assume that{kα,t}T>1 is unbounded. Now, any real-valued sequence

has a monotone subsequence.40 Then there exists a subsequencekα,β(T ) → ±∞. If kα,β(T ) → ∞,

then forT big enough
∫
Θ l{θe∈Θ:hT (θ)>kα,T}hT (θe)dθe = 0 < 1− α, sincehT (.) is bounded over the

compact setΘ by LemmaA.22ii). If kα,β(T ) → −∞, then forT big enoughkα,β(T ) is not the highest

bound s.t.
∫
Θ l{θe∈Θ:hT (θ)>kα,T}hT (θe)dθe > 1− α. �

Lemma A.26. Under Assumptions1-7;11-12, for all a > 0, for all ε > 0, for T big enough, for all

θ̇e ∈ Θ,

l{θe∈Θ:hT (θe)>a+ε}(θ̇e) 6 l{θe∈Θ:h(θe)>a}(θ̇e)

Proof. Let θ̇e ∈ {θe ∈ Θ : hT (θe) > a+ ε} i.e. a + ε < hT (θ̇e). Now, by LemmaA.24, there

exists Ṫ ∈ N such thatT > Ṫ implies ∀θe ∈ Θ, ‖hT (θe) − h(θe)‖ < ε which in turn implies

−h(θe) < ε − hT (θe). Thus,a < h(θ̇e) i.e. θ̇e ∈ {θe ∈ Θ : h(θe) > a}. In other words, forT > Ṫ ,

{θe ∈ Θ : hT (θe) > a+ ε} ⊂ {θe ∈ Θ : h(θe) > a}.�

A.12. Proof of Proposition7.4

i) Proof by contradiction immediate.

ii) Apply the definition of Dirac distributions.

A.13. Proof of Proposition7.5

i) By Proposition4.4i), apply Lemma 2 from Jennrich (1969).

ii) It follows from Corollary2.

A.14. Proof of Proposition7.6

i) Adapt proof of Proposition7.3i).

ii) By Corollary2, a proof by contradiction is immediate.

40Let {un}n>1 be a real-valued sequence. DefineE := {n ∈ N : ∀q > n, uq > un}. If #E =∞, any infinite subset of
E corresponds to an increasing subsequence. If#E < ∞, ∃n1 ∈ N s.t. ∀n > n1, ∃q > n with uq < un. Thus, we can
recursively define a strictly decreasing subsequence. Consequently, in both cases the result holds.
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A.15. Proof of Proposition8.1

It is definition-chasing. By Assumption13,

Ẽ[u(dH , θ
∗
T )] > Ẽ[u(dA, θ

∗
T )]

⇔ cdH F̃T (ΘH) + bdH F̃T (ΘA) > cdA F̃T (ΘH) + bdA F̃T (ΘA)

⇔
cdH − cdA
bdA − bdH

F̃T (ΘH) > F̃T (ΘA).

A.16. Proof of Proposition8.2

i) Write dT (.) with the help of indicator functions.

ii) By Corollary2, a proof by contradiction is immediate.

A.17. Proof of Proposition8.3

Adapt proof of Proposition8.1.

A.18. Proof of Proposition8.4

Adapt proof of Proposition8.2.

A.19. Proof of Proposition9.1

Prove the existence ofΞ. DenotecoA the convex hull of a setA. By Assumptions15(e*) and tri-

angle inequality,sup(xT ,φ)∈ℵT×Φ
∥
∥
∥ 1T
∑T

t=1 g
(2)(xt, φ)

∥
∥
∥ 6 sup(x,φ)∈ℵ×Φ ‖g

(2)(x, φ)‖ <∞. Thus, for

ε > 0, the set,
{
ξ ∈ Rm−q : ‖ξ −G(2)‖ 6 ε

}
withG(2) :=

{
1
T

∑T
t=1 g

(2)(xt, φ) : x ∈ ℵ andφ ∈ Φ
}

,

is closed by continuity of the function‖.−G(2)‖ and bounded by triangle inequality. Now, the convex

hull of a compact is compact (e.g., Theorem 1.4.3 on p.100 in Hiriart-Urruty and Lemaréchal, 1993).

Thus,co
{
ξ ∈ Rm−q : ‖ξ −G(2)‖ 6 ε

}
is a convex compact set,Ξ, that includes

{
g(2)(x, φ) : (x, φ) ∈ ℵ ×Φ

}

so that for allt ∈ N, φ ∈ Φ, andω ∈ Ω, we can findξ̇ ∈ int(Ξ) such that1T
∑T

t=1 g
(2)(Xt(ω), φ) −

ξ̇ = 0(m−q)×1.

It remains to prove Assumption1(b)-(d)

(b) By Assumption15(b*), Φ is compact. Thus, by the previous paragraph,Φ×Ξ is compact.
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(c) Use Assumptions15(c*)(d*) and note that a function is measurable if and only if each of its

component is measurable (e.g., Lemma 1.8 in Kallenberg, 1997).

(d) Use Assumptions15(d*) and note thatφ is solution to1T
∑T

t=1 g
(1)(xt, φ) = 0q×1 is a necessary

condition forθ := (φ′ ξ′)′ is solution to1T
∑T

t=1 ψ(xt, θ) = 0m×1. �

A.20. Proof of Proposition9.2

i) For all (x, θ) ∈ ℵ×Θ, ψ(x, θ) = g(x, φ)+ (01×q ξ′)′ with θ := (φ′ ξ′)′. Thus Assumption

16 implies the result because the sum of continuously differentiable functions is continuously differen-

tiable.

ii) By construction,̂ΞT ⊂ co

({
g
(2)
t (φ)

}T

t=1

)

⊂ Ξ, which is the first result. For the second result,

it is sufficient to proveΘ̂T = Φ̇T × Ξ̂T by LemmaA.28.

By definition ofΞ̂T , the first restriction onφ in the definition ofΦ̇T and LemmaA.27iii) is equiv-

alent to the first restriction onθ in the definition ofΘ̂T . Because a product of square matrices is

invertible iff each matrix of the product is invertible, and because exponential tilting does not alter the

support of the initial distribution, the second and third restriction onφ in the definition ofΦ̇T with

LemmaA.27i) is equivalent to the first restriction onθ in the definition ofΘ̂T .

iii) Because a product of square matrices is invertible iff each matrix of the product is invertible,

the first restriction onφ ∈ Φ in Φ̌T combined with LemmaA.27i) and second restriction onφ ∈ Φ in

the definition ofΦ̌T are equivalent to the restriction onθ ∈ Θ in the definition ofΘ̌T . �

Lemma A.27. Under Assumptions1-2 modified according to Assumptions15-16, for all θ ∈ Θ, for

all probability measureIP,

i) EIP

[
∂ψ(X, θ)

∂θ′

]

= EIP











∂g(1)(X,φ)
∂φ′ 0q×(m−q)

∂g(2)(X,φ)
∂φ′ Im−q









;

ii) VIP [ψ(X, θ)] full rank iff VIP [g(X,φ)] full rank;

iii) for a fixedτ ∈ Rm, θ := (φ′ ξ′)′ is solution toEIP
[
ψ(X, θ)eτ

′ψ(X,θ)
]
= 0m×1 iff φ is solution

toE
[
g(1)(X,φ)eτ

′g(X,φ)
]
= 0q×1 andξ = EIP

[
g(2)(X,φ)eτ

′g(X,φ)
]
/E
[
eτ
′g(X,φ)

]
.

Proof. i) Differentiate.

ii) Denoteξ := (01×q ξ′)′. Then,VIP [ψ(X, θ)] = VIP
[
g(X,φ)− ξ

]
= VIP [g(X,φ)].
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iii) Denoteξ := (01×q ξ′)′. Then

EIP
[
ψ(X, θ)eτ

′ψ(X,θ)
]
= 0m×1

⇔ e−τ∞(φ)
′ξEIP

{[
g(X,φ)− ξ

]
eτ
′g(X,φ)

}
= 0m×1

⇔






EIP
[
g(1)(X,φ)eτ

′g(X,φ)
]
= 0q×1

EIP
{[
g(2)(X,φ)− ξ

]
eτ
′g(X,φ)

}
= 0q×1

⇔






EIP
[
g(1)(X,φ)eτ

′g(X,φ)
]
= 0q×1

ξ = EIP
[
g(2)(X,φ)eτ

′g(X,φ)
]
/EIP

[
eτ
′g(X,φ)

]

�

Lemma A.28. Denote

Φ̇T :=






φ ∈ Φ : ∃τ ∈ Rm s.t.

∑T
t=1 g

(1)
t (φ)e

τ ′gt(φ) = 0q×1∣
∣
∣
∣

[
1
T

∑T
t=1

∂g
(1)
t (φ)

′

∂φ

]∣∣
∣
∣
det

6= 0
∣
∣
∣
[
1
T

∑T
t=1 gt(φ)gt(φ)

′
]∣∣
∣
det
6= 0






.

Then, under Assumptions1-3 modified according to Assumptions15-17, Φ̇T = Φ̂T .

Proof. Denoteco(A) the convex hull of a setA. First proveΦ̇T ⊂ Φ̂T . φ ∈ Φ̇T implies 0q×1 ∈

int

[

co

({
g
(1)
t (φ)

}T

t=1

)]

, which in turn impliesφ ∈ Φ̂T by duality argument. Conversely,̂ΦT ⊂ Φ̇T

because ifφ ∈ Φ̂T , thenφ ∈ Φ̇T with τ = (τT (φ)′ 0(m−q)×1)
′.�

A.21. Proof of Proposition9.3

LemmaA.29-A.31 below provide Assumptions5-7. �

Lemma A.29. Under Assumptions1-4 modified according to Assumptions15-18, Assumption4 holds.

Proof. Prove Assumption4(b)-(e).

(b) E
[
g(1)(X, φ̇)

]
= 0m×1 is a necessary condition forE

[
ψ(X, θ̇)

]
= 0m×1 with θ̇ = (φ̇ ξ̇)′.

Then there exists a unique solutionθ0 = (φ0 ξ0) to E [ψ(X, θ)] = 0m×1 with ξ0 = E
[
g(2)(X,φ0)

]

andφ0 ∈ int(Φ) by Assumption18(b*). Thus it remains to proveE
[
g(2)(X,φ0)

]
∈ int(Ξ).

Denotey0 := E
[
g(2)(X,φ0)

]
. By definition of expectation and the one ofΞ in Proposition9.1

on p.58, there exist(ω1, ω2) ∈ Ω2 so thaty1 := g(2)(X(ω1), φ0) ∈ int(Ξ), y2 := g(2)(X(ω2), φ0) ∈
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int(Ξ), and there isα ∈ [0, 1] such thaty0 = αy1 + (1 − α)y2. Thus there existsr1, r2 > 0 s.t.

Br1(y1) ⊂ Ξ andBr1(y1) ⊂ Ξ. Therefore, for ally ∈ Bmin(r1,r2)(y0), there existsε ∈]0,min(r1, r2)]

y = y0 + εu = αy1 + (1− α)y2 + εu

= α(y1 + εu) + (1− α)(y2 + εu)

whereu := y−y0
‖y−y0‖

. Now, (y1 + εu) ∈ Br1(y1) and(y2 + εu) ∈ Br2(y2). Thus, by convexity ofΞ,

y ∈ Ξ, which in turn impliesy0 ∈ int(Ξ).

(c) For allξ ∈ Ξ, denoteξ := (01×q ξ′)′. Then

ψ(X, θ) = g(X,φ)− ξ

(a)
⇒ ‖ψ(X, θ)‖ 6 ‖g(X,φ)‖+

∥
∥ξ
∥
∥

⇒ sup
θ∈Θ
‖ψ(X, θ)‖ 6 sup

φ∈Φ
‖g(X,φ)‖+ sup

ξ∈Ξ

∥
∥ξ
∥
∥

⇒ E

[

sup
θ∈Θ
‖ψ(X, θ)‖

]

6 E

[

sup
φ∈Φ
‖g(X,φ)‖

]

+ sup
ξ∈Ξ
‖ξ‖

(b)
< ∞

(a) Triangle inequality.(b) Apply Assumption18(c*) and use the definition ofΞ in Proposition9.1.

(d) By LemmaA.27i) with IP = δX on p.118

∥
∥
∥
∥
∂ψ(X, θ)

∂θ′

∥
∥
∥
∥ 6

∥
∥
∥
∥
∂g(X,φ)

∂φ′

∥
∥
∥
∥+ ‖Im−q‖

⇒ E

[

sup
θ∈Θ

∥
∥
∥
∥
∂ψ(X, θ)

∂θ′

∥
∥
∥
∥

]

6 E

[

sup
φ∈Φ

∥
∥
∥
∥
∂g(X,φ)

∂φ′

∥
∥
∥
∥

]

+ ‖Im−q‖ <∞

where the strict inequality is implied by Assumption18(d*).

(e) Apply LemmaA.27i).�

Lemma A.30. Under Assumptions1-5 modified according to Assumptions15-19,

i) Ξ̂∞ ⊂ Ξ andΦ̂∞ × Ξ̂∞ = Θ̂∞

ii) Assumption5 holds.

Proof. i) By construction,Ξ̂∞ ⊂ co
({
g(2)(x, φ) : (x, φ) ∈ ℵ ×Φ

})
⊂ Ξ, which is the first result.

For the second result, it is sufficient to proveΘ̂∞ = Φ̂∞ × Ξ̂∞.

By definition of Ξ̂∞, it is sufficient to prove that the restrictions onφ in the definition ofΦ̂∞ are

equivalent to the restriction onθ in the definition ofΘ̂∞. By the compactness ofΞ and Assumption
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19(a*), the first restrictions are equivalent becauseE
[
eτ
′ψ(X,θ)

]
= E

[
eτ
′g(X,φ)

]
eτ
′ξ. By Lemma

A.27i) on p.118, the second restrictions are equivalent.

By LemmaA.27i) on p.118 the third restriction onφ in the definition ofΦ̂∞ is equivalent to
∣
∣
∣E
[
eτ
′g(X,φ) ∂ψ(X,θ)

∂θ

′]∣∣
∣
det
6= 0 because the determinant of block-triangular matrix equals the product

of the determinant of block matrices on the diagonal. By LemmaA.27ii) on p.118, the fourth restriction

on in the definition ofΦ̂∞ is equivalent to
∣
∣
∣E
[
eτ
′g(X,φ)ψ(X,φ)ψ(X,φ)′

]∣∣
∣
det
6= 0. Now, a product of

square matrices is invertible iff each matrix of the product is invertible, and exponential tilting does not

alter the support of a distribution. Thus, the third and fourth restrictions in the definition ofΦ̂∞ are

equivalent to the third restriction in definition of̂Θ∞.

By LemmaA.27iii) on p.118, the fifth restriction in the definition of̂Φ∞ is equivalent to the fourth

restriction in definition ofΘ̂∞.

ii) Prove Assumption5(a)(b)

(a) Apply i).

(b) For allξ ∈ Ξ, denoteξ := (01×q ξ′)′. Then

sup
θ∈Br2 (θ̇)

‖ψ(X, θ)eτ
′ψ(X,θ)‖ = sup

(φ,ξ)∈Φ×Ξ

∥
∥
∥
[
g(X,φ)− ξ

]
eτ
′g(X,φ)

∥
∥
∥ eτ

′ξ

6 K

[

sup
φ∈Φ

∥
∥
∥g(X,φ)eτ

′g(X,φ)
∥
∥
∥+ sup

(φ,ξ)∈Φ×Ξ

∥
∥
∥ξeτ

′g(X,φ)
∥
∥
∥

]

whereK := supξ∈Ξ e
τ ′ξ <∞ becauseΞ is compact. Now, by compactness ofΞ and Assumption21

E

[

sup
(φ,ξ)∈Φ×Ξ

∥
∥
∥ξeτ

′g(X,φ)
∥
∥
∥

]

= sup
ξ∈Ξ
‖ξ‖ sup

φ∈Φ
E
[
eτ
′g(X,φ)

]
<∞.

Therefore, by Assumption19(b*), Assumption5(b) holds.�

Lemma A.31. Under Assumptions1-6 modified according to Assumptions15-20 , Assumptions6-7

hold.

Proof. Prove Assumption6(a)-(b) and (e).

6(a) Note that a sum ofC4 functions isC4.

6(b) By LemmaA.27i), for k > 1 Dkψ(X,φ) is not a function ofξ.

6(e) For allξ ∈ Ξ, denoteξ := (01×q ξ′)′. Then
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sup
θ∈Θ

ψ(X, θ)ψ(X, θ)′ = sup
(φ,ξ)∈Φ×Ξ

[g(X,φ)− ξ][g(X,φ)− ξ]′

= sup
(φ,ξ)∈Φ×Ξ

g(X,φ)g(X,φ)′ − g(X,φ)ξ′ − ξg(X,φ) + ξξ′

(a)

6 sup
φ∈Φ

g(X,φ)g(X,φ)′ + 2

[

sup
ξ∈Ξ
‖ξ‖

][

sup
φ∈Φ
‖g(X,φ)‖

]

ιm×m

+sup
ξ∈Ξ
‖ξ‖ ιm×m

whereιm×m denotes a square matrix of1. (a) Apply triangle inequality, use subadditivity of supremum,

and note that for any matrixA := {ai,j}(i,j)∈[[1,k]]×[[1,l]],max(i,j)∈[[1,k]]×[[1,l]] {ai,j} 6 ‖A‖ with ‖.‖ the

Euclidean norm.

Now, by Assumption20(e*) and18(c*), we have the result.

7(b) By compactness ofΞ, Assumption21(b*) implies Assumption7 because

E

[

sup
(τ,φ,)∈Br1 (τ∞(φ̇))×Br2 (φ̇)

eτ
′[g(X,φ)−ξ]

]

6

[

sup
(τ,ξ)∈Br1 (τ∞(φ̇))×Ξ

eτ
′ξ

]

E

[

sup
(τ,φ)∈Br1 (τ∞(φ̇))×Br2 (φ̇)

eτ
′g(X,φ)

]

.

�

A.22. Proof of Proposition9.4

Adapt proof of Proposition8.3

A.23. Proof of Proposition9.5

i) Adapt proof of Proposition8.4.

ii ) Convergence of a joint distribution implies convergence in distribution of marginal distributions

(e.g., Theorem 4.29 in Kallenberg, 1997 after normalization of the ESP intensity). Then, adapt the

proof of Proposition8.4to the marginal ESP intensitỹfξ∗T ,sp(ξ) :=
∫
Φ f̃θ∗T ,sp(θ)dφ.

A.24. Proof of Proposition9.6

Convergence of a joint distribution implies convergence in distribution of marginal distributions

(e.g., Theorem 4.29 in Kallenberg, 1997 after normalization of the ESP intensity). Then, adapt the
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proof of Proposition7.6 (Appendix A.14 on p.116) to the utility-weighted marginal ESP intensity

fucξ∗T ,sp
(ξ) := 1

Ku
T,ξ

∫
Φ2 u(φe, φ)f̃θ∗T ,sp(φ, ξe)dφdφe.

A.25. Proof of Proposition9.7

Adapt proof of Proposition9.6.

A.26. LemmaA.32

Lemma A.32. Assume

{(
ln
(
Ct+1
Ct

)
ln (R1,t+1)

)′}

t>1
is a sequence of random vectors i.i.d. s.t.





ln
(
Ct+1
Ct

)

ln (R1,t+1)




 ↪→ N










0

0




 ,





σ2 0

0 9σ2









 .

If σ = .2, θ0 = 3, β = e−
(θ0σ)

2

2 anfd
̂

log
(
Ct+1
Ct

)
:= log

(
Ct+1
Ct

)
+ 13 log (R1,t+1), then the moment

condition

i) E

[

β exp

(

−θ
̂

log

(
Ct+1

Ct

))

R1,t+1 − 1

]

= 0 has only two solutionsθ = 3 andθ = 0;

ii) E

{[

β exp

(

−θ
̂

log

(
Ct+1
Ct

))

R1,t+1 − 1

](
1

3
log (R1,t+1)

)}

= 0 has a unique solutionθ =

3.

Proof. The result follows from the value of the Laplace transform for a Gaussian distribution.

i) PutU := log
(
Ct+1
Ct

)
andV := 1

3 log (R1,t+1); and then rewrite the moment condition

E

[

β exp

(

−θ
̂

log

(
Ct+1

Ct

))

R1,t+1 − 1

]

= 0
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with
̂

log
(
Ct+1
Ct

)
:= log

(
Ct+1
Ct

)
+ 13 log (R1,t+1), as

e−
θ20σ

2

2 E
[
e−θ(U+V )+3V

]
= 1

(a)
⇔ e−

θ20σ
2

2 E
[
e−θU

]
E
[
e(3−θ)V

]
= 1

(b)
⇔ e−

θ20σ
2

2 e
θ2σ2

2 e
(3−θ)2σ2

2 = 1

(c)
⇔ −

θ20σ
2

2
+
θ2σ2

2
+
(3− θ)2σ2

2
= 0

(a) Independance ofU andV . (b) Laplace transform of a Gaussian distribution. IfY ↪→ N (mY , σY ),

then for allt ∈ R E
[
etY
]
= exp

(
tmY +

t2σ2Y
2

)
. (c) Take logarithm.

Now, a second order polynomial can at most have two roots; and forθ0 = 3, θ = 3 andθ = 0 are

two roots of the last equation. Thus, these are the only two solutions to the moment condition.

ii)Use the same notations as in i); and then rewrite the moment condition

E

{[

β exp

(

−θ
̂

log

(
Ct+1

Ct

))

R1,t+1 − 1

](
1

3
log (R1,t+1)

)}

= 0

as

e−
θ20σ

2

2 E
[
V e−θ(U+V )+3V − V

]
= 0

(a)
⇔ e−

θ20σ
2

2 E
[
e−θU

]
E
[
V e(3−θ)V

]
= 0

(b)
⇔ e−

θ20σ
2

2 e
θ2σ2

2 σ2(3− θ)e
(3−θ)2σ2

2 = 0

(a) Independance ofU andV andE(V ) = 0. (b) Laplace transform of a Gaussian distribution and

E
[
Y etY

]
=

∂E[etY ]
∂t =

∂

[
exp

(
t2σ2Y
2

)]

∂t = σ2

2 2te
t2σ2

2 .

Since all the terms in the last equation are striclty positive except(3−θ), the only solution isθ = 3.
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