
Methodologies and Applications for

Scheduling, Routing & Related Problems

by

HAKAN YILDIZ

Submitted to the Tepper School of Business

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

CARNEGIE MELLON UNIVERSITY

August 2008

Advisor: Michael A. Trick





Abstract

Scheduling and routing problems are two similar problem classes and distinction between

them is not exactly clear as variants of them can be shown to be identical or similar. In this

thesis, we develop methodologies, including large neighborhood search, simulated annealing,

genetic algorithms, Bender’s cuts, mixed-integer programming and constraint programming,

to solve scheduling, routing and related problems. The applications we considered include

scheduling of Major League Baseball (MLB) umpires, home-delivered meals provision and

logistics planning at a manufacturer.

The scheduling needs of umpires differ from the needs of sports teams. For some sports,

since umpires travel throughout the season, it is important to balance distance traveled

with a wish to not handle the games of any particular teams too many times. In the first

part of this thesis, we attempt to model these conflicts by introducing the Traveling Umpire

Problem (TUP) as a multi-objective sports scheduling problem and we present results using

several methodologies to solve it.

In the second part, we develop a large neighborhood search heuristic that uses network

heuristics to solve the seemingly unrelated Graph Coloring problem. We provide results on

benchmark instances.

In the third part, we present a Genetic Algorithm to solve the Home Delivered Meals

Location-Routing Problem (HDM-LRP), which addresses facility location and design of

delivery routes, while balancing efficiency and effectiveness considerations. We present

results on benchmark LRP instances and also a case study on HDM data for Allegheny
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County of Pennsylvania.

In the last part, we undertake an integrated study of inbound and outbound logistics at

a leading automotive parts manufacturer. We identify the opportunity for significant cost

savings over the current system by matching opposite flows of material from and to the

customers and suppliers.
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Chapter 1

Introduction

Scheduling, in very general terms, is the process of optimally allocating scarce resources

to activities over time. Routing, on the other hand, is the optimal selection of paths in

a network along which to send physical traffic. The distinction between scheduling and

routing problems is not exactly clear as variants of these problems can be shown to be

identical or similar: a scheduling problem may be represented as a routing problem and

vice versa [8]. In this thesis we present solution methods and applications for different

variants of these two related problem classes. Namely, we solve umpire scheduling, graph

coloring and location-routing problems. This thesis is composed of four chapters and each

of these chapters is self contained.

Scheduling the umpires of Major League Baseball(MLB) is a complex and difficult prob-

lem as it consists of dozens of pages of constraints. Moreover, the schedule aims to optimize

a number of conflicting goals. In Chapter 2 of this thesis, we introduce the Traveling Umpire

Problem (TUP) as a multi-objective sports scheduling problem. Like the Traveling Tourna-

ment Problem for league scheduling, which was introduced by Easton et al. [27], the TUP is

based on the most important features of a real sports scheduling problem, the MLB Umpire

Scheduling Problem. We model this problem both as a mathematical program and as a

constraint program. We then improve these formulations using several techniques. We show

1



2 Chapter 1. Introduction

that exact solution methods are ineffective in solving large instances of TUP. Even finding a

feasible solution is very challenging for many instances. Given the difficulties we face when

trying to find optimal solutions, we explore heuristic approaches to find good solutions in

a reasonable amount of time. We begin with developing a simple Greedy Matching Based

Heuristic (GMH). We, then, introduce the hybrid use of GMH with Bender’s Cuts and

Large Neighborhood Search. Then, we modify the initial GMH to allow backtracking and

improve the solution with a simple local search in a Simulated Annealing framework. And

finally, we develop a Genetic Algorithm that uses a locally optimized crossover operator to

generate offspring from parent solutions.

TUP is much related to the Graph Coloring Problem (GCP) and the Vehicle Routing

Problem (VRP). In fact, we show that the feasibility version of the TUP, after relaxing one

constraint, can be represented as a GCP on a special graph. On that same graph, TUP

is equivalent to solving the Weighted Graph Coloring Problem, where weights are assigned

to edges of the graph and the objective is to minimize to total sum of edges within each

color class. Similarly, it is not hard to see TUP as a VRP with side constraints. With

these observations, we move to the next two chapters of this thesis that investigate solution

methods for the GCP and the variants of the VRP.

GCP is one of the central problems in graph theory. Many scheduling problems can,

either exactly or partially, be represented as a coloring problem on a special graph, where

nodes usually represent the activities and edges between nodes represent problem specific

conflicts. Exam and class scheduling[65], crew scheduling [33], job-shop scheduling[1] are

among the scheduling problems that have been represented and solved as a type of GCP.

In Chapter 3, we develop a large neighborhood search heuristic that uses network heuristics

to solve the seemingly unrelated GCP. This study is one of the first attempts to solve the

GCP using local search in very large neighborhoods.

In Chapters 4 and 5 we look into two problems that both have routing and location

aspects. The Location-Routing Problem(LRP) is a generalization of two well-known difficult
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problems: the Fixed Charge Facility Location Problem and the Multi Depot Vehicle Routing

Problem. The general planning problem that we address in Chapter 4 is the location-routing

problem for home-delivered meals, referred to as HDM-LRP. In this problem, the goal is

to simultaneously choose “facility” (kitchen) locations that provide “products” (meals) to

spatially dispersed customers via routes driven by multiple vehicles. This planning model

addresses facility location, allocation of demand to facilities, and design of delivery routes,

while balancing efficiency and effectiveness considerations. We develop a Genetic Algorithm

to solve this problem.

In Chapter 5, we study the integrated logistics planning at a leading automotive parts

manufacturer. The problem involves selecting a subset of customers and suppliers to con-

solidate their shipments on the same routes. We consider the use of a crossdock located

close to the customer and supplier base to use as a consolidation center. We identify the

opportunity for significant cost savings over the current system by matching opposite flows

of material from & to the customers and suppliers. We consider the problem from a sup-

ply chain coordination perspective, where the automotive parts manufacturer makes all

the transportation arrangements for its customers & suppliers based on the results of the

centralized optimum solution.





Chapter 2

Scheduling Baseball Umpires &

the Traveling Umpire Problem

The Major League Baseball (MLB) is composed of 30 teams who play 780 series of 2-, 3-,

or 4-game series with each other. This adds up to 2430 games in a season. At any given

time, at most 15 series are scheduled and need umpire crews (other sports refer to these

as referees), who go as a group of four, officiate an entire series. The job of an umpire is

not an easy task. Being an umpire is a full time job for six months and a typical umpire

handles about 130 games over a 182 day season (players play 162 games in same time).

Interestingly, an umpire travels from one city to another through out the season instead of

staying in one city. There are two reasons for this: First, we would need to almost double

the number of crews if umpires stayed in one city. Second, it is undesirable to have umpires

handle too many games with one team.

The MLB Umpire Scheduling Problem (MLB-USP) is complex and difficult to solve

as it consists of dozens of pages of constraints, including such idiosyncratic constraints as

an umpire’s preferred vacation dates. Moreover, the schedule must satisfy league-imposed

travel rules and restrictions and it aims to optimize a number of conflicting goals. The

MLB-USP is formally defined in [93]. In this chapter we introduce the Traveling Umpire

5



6 Chapter 2. Scheduling Baseball Umpires & the Traveling Umpire Problem

Problem (TUP), which extracts the most critical aspects of MLB-USP but not the ex-

traneous features, as a multi-objective sports scheduling problem and we develop several

methodologies to solve it.

The literature contains many papers concerned with the scheduling of sports leagues

(see the following surveys and books for more references [28, 76, 13]). However, papers

concerned with the scheduling of sports officials are very few. A general referee assignment

problem is considered in [25]. There are a few studies related to scheduling umpires for

Major League Baseball. These papers are due to Evans et al.[44, 45] and Ordonez and

Knowles [70]. There is another study for scheduling umpires in the US Open, which is

due to Farmer and Smith [29], and there are two papers written by Wright on scheduling

umpires for cricket leagues [89, 90].

The rest of this chapter is organized as follows. In Section 2.1 we describe the TUP.

In Section 2.2 we discuss the initial math programming and constraint programming mod-

els. We present a greedy heuristic and Bender’s Cuts Guided Large Neighborhood Search

in Section 2.3. Section 2.4 revisits the exact solution approached to improve the initial

models. In Section 2.5 we present the Simulated Annealing Algorithm we developed and in

Section 2.6 we present a Genetic Algorithm that uses locally optimized crossover operators.

The summary is given in Section 2.7.

2.1. Problem Description

In MLB each umpire crew consists of four officially trained and licensed major league

umpires. These crews are put together at the beginning of the season and work together all

season long. Thus, we do not worry about forming these crews, but rather assume that they

are already predetermined. Because of that we will consider and refer to “umpire crews”

as a single “umpire” in this chapter.

In contrast to MLB-USP, TUP limits the constraints to the key issues: no umpire should
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be assigned to a team too often in short succession, and every umpire should be assigned

to every team some time in a season. Given these constraints, the primary objective is to

minimize the travel of the umpires.

Given a double round robin tournament, where every team plays against all other teams

twice, on 2n teams (4n− 2 slots), we want to assign one of n umpires to each game.

There are several objectives that need to be minimized:

1) Total umpire travel.

2) Number of teams seen once or twice (home or away).

3) Number of teams seen 5 times or more.

4) Number of teams not seen away.

5) The difference between max travel and min travel.

The main objective is the first one and the rest can be considered as side objectives. The

objectives (2-4) can be aggregated into “Number of defects”. Although TUP is defined as a

multi-objective problem, in the rest of this chapter, we focus on solving the single objective

version of TUP, where the objective is minimizing the total umpire travel. We will use

TUP to represent the single objective version of the Traveling Umpire Problem with only

the first objective and we will use TUP-M for the multi-objective version of the problem

with all five objectives.

The constraints that need to be satisfied are:

1) Every game gets an umpire.

2) Every umpire works exactly one game per slot.

3) Every umpire sees every team at least once at the team’s home.

4) No umpire is in a home site more than once in any n− d1 consecutive slots.
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Table 2.1: Round robin tournament for 4 teams and a feasible schedule for 2 umpires.

Slots 1 2 3 4 5 6
Umpire1 (1,3) (3,4) (1,4) (3,1) (4,3) (2,3)
Umpire2 (2,4) (1,2) (3,2) (4,2) (2,1) (4,1)

5) No umpire sees a team more than once in any bn
2 c − d2 consecutive slots.

We present an example of a round robin tournament for 4 teams and a feasible umpire

schedule for d1 = d2 = 0 in Table 2.1. A game is represented as a pair (i, j) where i is the

home team and j is the away team. Rows correspond to umpire schedules and columns

correspond to games that are played in the corresponding time slots.

The parameters for the objective function and the constraints are not chosen arbitrarily.

These selections are explained next.

Properties of the Parameters in the Objectives

Since there are 4n − 2 time slots and n umpires, an umpire sees a team 4 − 2
n times on

average. So in a balanced umpire schedule, an umpire sees a team 3 or 4 times. Thus we

want minimize the number of teams seen too few (1 or 2) or too many (5 or more) times.

This is the rationale behind objectives 2 and 3.

Properties of the Parameters in the Constraints

Let P represent the TUP and let P(R) be a relaxation of P with constraint set R, where

R ⊂ {1, 2, 3, 4, 5}.

Theorem 1 For P(1,2,4), for any tournament and any game there exists a feasible sched-

ule for a single umpire that covers that game. Moreover, in constraint 4 we have the fol-

lowing two properties: when n is even, n is an upper bound on n − d1 for the existence of
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this feasibility. When n is odd, n + 1 is an upper bound on n− d1 for the existence of this

feasibility.

Theorem 2 For P(1,2,5) and d2 = 0, for any tournament and any game there exists a

feasible schedule for a single umpire that covers that game.

Conjecture 1 For P(1,2,5) and when bn
2 c is replaced with dn

2 e+ 1 in constraint 5 there

exists a tournament and a game such that no umpire schedule can cover that game.

We present the proofs of both theorems and a discussion of Conjecture 1 in Appen-

dix 6.1.1.

Theorem 1 implies that, even though we do not want an umpire to see the same team at

home frequently, there is a limit on the enforcement of this constraint even for the relaxation

P(1,2,4) of TUP. This limit is at most n consecutive games, in which case d1 = 0. Theorem

2, on the other hand, does not imply any restrictions on the number of consecutive slots

during which an umpire can see the same team more than once. It just shows that the

relaxation P(1,2,5) of TUP is always feasible when d2 = 0.

The reason d1 and d2 have been included in the definition is the computational observa-

tion that, given a game schedule, the problem may become infeasible when the constraints

are enforced with d1 = 0 and d2 = 0.

2.1.1 TUP Instances and Implementation of Models & Algorithms

We have tested the solution approaches presented in this chapter on a set of TUP instances.

An instance of the TUP has two matrices: The Distance Matrix, which stores the pairwise

distances between cities and the Opponents Matrix, which stores the tournament informa-

tion. We have used instances with 4 teams to 32 teams. The instances with 14 teams or
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less use the TTP Tournaments as given at [82]. The instances with more than 14 teams use

the distance matrix for the National Football League given at [82], and the game schedule

is generated using a Constraint Program [84] that creates a round robin tournament. All

of the instances used in this study and additional ones are available at [92].

Depending on the choice of d1 and d2, the difficulty of the problem changes. Decreasing

these parameters makes the problem harder to solve. Choosing a d1 = n− 1, which makes

n− d1 = 1, or a d2 = bn
2 c − 1, which makes bn

2 c - d2 = 1, simply means that Constraint 4

or Constraint 5 is not in effect.

All the models and algorithms developed to solve the TUP instances are implemented

using the modelling and script language in ILOG OPL Studio 3.7 [45]. This version of the

software uses ILOG CPLEX 9.0 to solve the math programming models and ILOG Solver

6.0 to solve constraint programming models.

2.2. Exact Solution Approaches: Initial Models and Results

TUP has many characteristics in common with the Vehicle Routing Problem with Time

Windows (VRPTW) due to the emphasis on minimizing total travel cost of multiple routes.

In fact, if we ignore Constraints 3,4 and 5, the problem becomes a special case of VRPTW.

It is well known that VRP and almost all of its variants, including VRPTW, are NP-Hard

[58] and exact solution approaches are ineffective in solving large instances. Since TUP has

side constraints in addition to the routing constraints, it is even a more challenging problem

to solve than the VRP and its variants.

We formulated TUP as an Integer Program (IP) and also as a Constraint Program

(CP). The formulations are given in Appendix 6.1.2 and Appendix 6.1.4, respectively. The

computational results for the IP and CP models are given in Table 2.2 for the smallest four

instances with d1 = d2 = 0, which means Constraints 4 and 5 are most restricting. We

allowed a maximum of 24 CPU hours for both approaches. Both of the approaches were
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Table 2.2: Results of the initial IP and CP models for d1 = d2 = 0.

IP CP
No of Teams Distance Time Distance Time

4 5176 0 5176 0
6 14077 1.5 secs 14077 1.3 secs
8 34311 145 secs 34311 525 secs
10 51128 24 hrs 53599 24 hrs

able to solve the instances with 4,6 and 8 teams to optimality very fast. Both of the models

were able to find a feasible solution for the 10-team instance in the allowed 24 hours time

limit but they could not find the optimum solution. Overall, the IP model performed better

than the CP model for these instances. We present these results to demonstrate that the

problem becomes very difficult to solve as we increase the number of teams. Given the

difficulty of the problem, even finding a feasible solution to the TUP is challenging, making

it difficult to find good solutions in a reasonable amount of time. Because of this we start

exploring heuristic approaches to find good solutions.

2.3. Bender’s Cuts Guided Large Neighborhood Search for

TUP

In this section, we consider the hybrid use of Bender’s Cuts, Large Neighborhood Search

and a Greedy Matching Based Heuristic to find good, feasible solutions to the TUP.

2.3.1 Greedy Matching Heuristic

Greedy Matching Heuristic (GMH) is a constructive heuristic, which builds the umpire

schedules starting from Slot 1 and ending at Slot 4n − 2. For every slot t, the heuristic

assigns umpires to games such that all constraints, except Constraint 3, are satisfied and the

best possible assignment is made to minimize the total umpire travel at Slot t. To do that,
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GMH solves a Perfect Matching Problem on a Bipartite Graph in every slot t by solving an

integer program. The partitions in this Bipartite Matching Problem are the Umpires and

the Games in slot t. An edge is placed between an umpire u and a game (i, j) if Constraints

4&5 are not violated by assigning u to game (i, j) in slot t, given the assignments from

slot 1 to t − 1. Cost of an edge (u, (i, j)) = Distance(k, i) − Incentive(u, i). In this cost

function, k is the venue that u is assigned in slot t − 1 and Distance(k, i) is the distance

between cities k and i. Incentive(u, i) takes a positive value if umpire u has never visited

venue i in the previous slots. This reduction in distance guides the GMH towards assigning

umpires to cities that they have not visited yet, thus reducing the possibility of having a

solution that violates Constraint 3 at the end of the execution of GMH.

2.3.2 A Bender’s Based Modification

In practice, the GMH often gets stuck at some time slot because there may be no feasible

perfect matching. In this case, we can identify a set of previous assignments that are causing

this lack of perfect matching. At least one of those previous assignments must be changed in

order to create a perfect matching. This set of assignments leads to a Logic-Based Bender’s

Cut in the terminology of [44].

While we could add the Bender’s cuts to an integer programming formulation of this

problem, in a standard master/subproblem approach to this problem, instead we use these

cuts to guide a large neighborhood search heuristic. Violation of Bender’s Cuts is penalized

in the objective function with a large cost. Thus, any changes in the schedule that reduces

the the number of violated Bender’s Cuts or reduces total umpire travel is accepted. When

a solution that satisfies all the Bender’s Cuts is found, we stop the neighborhood search

and solve the Perfect Matching Problem for slot t again. If there is no feasible matching,

we repeat the process. A high level pseudo code is presented in Algorithm 1. We explain

the generation of Bender’s Cuts and the Large Neighborhood Search Algorithm in the next

section.
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Algorithm 1 Greedy Matching Heuristic with Bender’s Cuts Guided Neighborhood Search
(GBNS)
1: Arbitrarily assign umpires to games in slot 1
2: for all 1 < t ≤ 4n-2 do
3: Construct a Bipartite Graph G = (V, E) for the Perfect Matching Problem
4: Find a Minimum Cost Perfect Matching on G
5: if there is no feasible perfect matching then
6: Find all Bender’s Cuts
7: Set Objective = (no of violated cuts) ∗ (violation cost) + (total umpire travel)
8: Set improvement = 1
9: while at least one of the cuts is violated & improvement > 0 do

10: Do neighborhood search using 3-Ump and 3-Slot Neighborhoods
11: if Objective is not improved then
12: improvement = 0
13: end if
14: end while
15: end if
16: end for

2.3.3 Bender’s Cuts and Large Neighborhood Search

Generating Bender’s Cuts

Bender’s Cuts are generated when there is no feasible matching at a slot t during the course

of GMH. Such an infeasibility implies that the partial schedule built until slot t can not be

completed to obtain a feasible solution. We, then, examine the reasons for this infeasibility

and this examination leads to constraints that exclude a number of partial solutions. Clearly,

the Bender’s Cuts generated in this method are not classical Bender’s Cuts, which are

obtained from a linear subproblem as in traditional Bender’s Decomposition. Instead these

cuts are Logic-Based Bender’s Cuts as defined by Hooker and Ottosson[44], where the

Bender’s Cuts are obtained from inference duals. The difference between the Logic-Based

Bender’s Cuts and classical Bender’s Cuts is that no standard form exists for the Logic

Based Bender’s Cuts and such cuts are generated by logical inference on the solution of the

subproblem. When the subproblem is a feasibility problem, the inference dual is a condition

which, when satisfied, implies that the master problem is infeasible. This condition can be
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used to obtain a Bender’s Cut for cutting off infeasible solutions. Logic Based Bender’s

Cuts are a special case of “nogoods,” a well-known known idea in constraint programming

literature, but they exploit problem structure in a way that nogoods generally do not[23].

Logic-Based Bender’s Cuts have been successfully used in several studies [43, 41, 39, 75].

In this subsection we describe the way we generate Logic Based Bender’s Cuts and how we

use these cuts.

The Bender’s Cuts are generated for any set of Umpires (or Games) whose adjacency

neighborhood has a cardinality less than the cardinality of the set itself. The adjacency

neighborhood N(A) of a set A is the set of nodes that are adjacent to a node in A. This

condition is known as Hall’s Theorem:

Hall’s Theorem: Let G = (V, E) be a bipartite graph with bipartitions X and Y. Then G

has a perfect matching if and only if |N(A)| ≥ |A| for all A ⊆ X

Because of Hall’s theorem, if there is no perfect matching in a time slot, there is a subset

of umpires A whose neighborhood N(A) has cardinality smaller than |A|. We will generate

a constraint that creates at least one edge between A and Y \N(A) as follows. For each pair

x, y such that x ∈ A and y ∈ Y \N(A) and (x, y) /∈ E, there exists an already made game-

umpire assignment in previous slots that prevents the edge to be in the matching problem.

We find all such game-umpire assignments for all the missing edges between x ∈ A and

y ∈ Y \ N(A). Then the corresponding Bender’s Cut requires that at least one of these

game-umpire assignments should be changed. To obtain all possible Bender’s Cuts, we

identify Hall sets by checking all subsets of Umpires and their neighborhoods. For small

instances, the number of cuts identified when an infeasibility occurs is not too many, though

for larger problems it would be necessary to generate only a limited number of cuts.

We present a partial schedule for an example instance for 8 teams and 4 umpires in Ta-

ble 2.3. For this instance we assume that d1 = d2 = 0. Thus, the fourth constraint imposes
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Table 2.3: Partial schedule for 8 teams and 4 umpires. The first three slots are scheduled
and the games for the fourth slot are in consideration for assignment.

Slots 1 2 3 4
Umpire1 (7,5) (2,4) (5,7) (2,1)
Umpire2 (1,8) (3,6) (4,1) (4,5)
Umpire3 (2,6) (1,7) (6,8) (6,3)
Umpire4 (4,3) (5,8) (3,2) (8,7)

Umpire1

Umpire2

Umpire3

Umpire4

(2,1)

(4,5)

(6,3)

(8,7)

Set A

Set N(A)

Figure 2.1: Bipartite matching problem for slot 4. The partitions are Umpires and the
Games in slot 4.

that an umpire can not visit the same home venue more than once in any 4 consecutive

games. The fifth constraint, on the other hand, imposes that an umpire can not see a team

more than once in any two consecutive games. For this example the games for the first

three slots are scheduled and we are considering the games in the fourth slot.

The matching problem that corresponds to slot 4 is given in Fig. 2.1. In this figure, set A

and N(A), the adjacency neighborhood of A, are circled with dashed lines. The cardinality

of A is 4, whereas the cardinality of N(A) is 3. Thus, there is no feasible perfect matching

for this graph.

The way we obtain the Bender’s Cut from set A is best demonstrated with the help of

Fig. 2.2 and Table 2.4. The Bender’s Cut states that at least one of the edges between the

nodes in A, the umpires, and the complement of N(A), Game (2, 1), has to be in the graph.
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Umpire1

Umpire2

Umpire3

Umpire4

(2,1)

Set A

Figure 2.2: The missing edges between set A and the complement of N(A). Bender’s Cut
requires at least one of these to be present in the bipartite perfect matching problem.

To write this cut in terms of the game-umpire assignments, we identify the game-umpire

assignments in slots 1, 2 and 3, which prevents the edges being in the graph. For Umpire1,

Game (2, 4) in slot 2 is preventing the edge between Umpire1 and Game (2, 1), because

Umpire1 can not visit venue 2 twice in four consecutive games. Similarly, for Umpire2,

Game (4, 1) in slot 3 is preventing the edge between Umpire2 and Game (2, 1); for Umpire

3, Game (2, 6) in slot 1 is preventing the edge between Umpire3 and Game (2, 1); for Um-

pire4, Game (3, 2) in slot 3 is preventing the edge between Umpire4 and Game (2, 1). Thus

the cut generated is

assigned[1, 2, 2] + assigned[2, 4, 3] + assigned[3, 2, 1] + assigned[4, 3, 3] ≤ 3

where, assigned[u, i, t] =





1, if umpire u is at venue i in slot t

0, otherwise.

Very Large Neighborhood Search

A neighborhood of a solution S is a set of solutions that are in some sense close to S, i.e.,

they can be easily computed from S or they share a significant amount of structure with S.
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Table 2.4: Games that are in conflict with game (2,1) in slot 4 are highlighted.

Slots 1 2 3
Umpire1 (7,5) (2,4) (5,7)
Umpire2 (1,8) (3,6) (4,1)
Umpire3 (2,6) (1,7) (6,8)
Umpire4 (4,3) (5,8) (3,2)

An algorithm that starts at some initial solution and iteratively moves to solutions in the

neighborhood of the current solution is called a Neighborhood Search Algorithm or a Local

Search Algorithm

The Very Large Neighborhood Search(VLNS) for the TUP tries to improve the solution

quality at each iteration. It is clear that the larger the neighborhood, the better is the

quality of the solutions that can be reached in one single move. At the same time, the

larger the neighborhood, the longer it takes to search the neighborhood at each iteration.

To make the notion of very large neighborhood clear, we’ll first introduce the well known

2-exchange neighborhood, which is a small polynomially sized neighborhood. Given an

umpire schedule, a 2-exchange move swaps the umpires assigned to two games played in

the same slot t. The neighborhood for this move is the set of schedules that can be obtained

by performing a single move. We introduce two very large neighborhoods in the following

subsections. We use both neighborhoods in our search for a feasible solution with the use of

Bender’s Cuts, when the Greedy Matching Heuristic is unable to assign the games to umpires

at a slot. Once an initial solution is found, we further use the K-Umpire Neighborhood to

improve that solution. We stop this search when we reach a local optimum.

K-Umpire Neighborhood: We take the schedules of K ≤ n umpires and allow exchanges

of game assignments within these schedules. The exchanges of game assignments are allowed

only within the same slot, not across slots, as we need to make sure that Constraints 1&2

are always satisfied. In each slot, there are K! different ways of assigning games to umpires.

Since there are 4n − 2 slots, the possible solutions that can be reached by one K-Umpire
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move is (K!)4n−2.

The problem of finding the best move is done using the Restricted IP for K-Umpires(RIP-

U) for the TUP with only the games for the K umpires in consideration. Since this RIP-U

is solved many times during the execution of the algorithm, the solution time should be

very low to have the algorithm terminate in a reasonable amount of time. Since the RIP-U

becomes a very hard problem for K ≥ 4 for even small instances, we take K = 3 and we

look at all possible 3 combinations of the n umpires.

K-Slot Neighborhood: We take the games at K ≤ 4n − 2 slots and allow exchanges of

umpire assignments within these slots. The exchanges of umpire assignments are allowed

only within the same slot, not across slots, as we need to make sure that Constraints 1&2

are always satisfied. In each slot, there are n! different ways of assigning games to umpires.

Since only K slots are considered at a time, the possible solutions that can be reached by

one K-Slot move is (n!)K .

The problem of finding the best move is done using the Restricted IP for K-Slots(RIP-S)

for the TUP with only the games for the K slots in consideration. Since this RIP-S is solved

many times during the execution of the algorithm, the solution time should be very low to

have the algorithm terminate in a reasonable amount of time. Since the RIP-S becomes a

hard problem as K grows we take K = 3 and we look at all possible 3 combinations of the

4n− 2 slots.

2.3.4 Computational Results

We report the computational results in this subsection.

Finding a Feasible Solution

As the problem size increases and as the constraints 4 and 5 become more restricting, even

finding a feasible solution to the TUP becomes difficult. To find a feasible solution we used

the IP and the GMH with the usage of Bender’s Cut’s Guided Large Neighborhood Search,
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which we will refer as GBNS.

Table 2.5 summarizes the results for IP and GBNS for the instances with 12 and 14

teams. The GBNS approach finds much better solutions much faster in both instances

and all the combinations of the parameters for Constraints 4&5. For 12 teams instance

the GBNS obtains improvements ranging from 3.1% to 23.6% and for 14 teams instance

ranging from 4.5% to 38.6% over the IP.

For 14 teams and for the combination of parameters (n − d1, bn
2 c - d2) = (6, 3) and

(n − d1, bn
2 c - d2) = (7, 3) the IP could not find a feasible solution even after more than

30 hours of execution, whereas GBNS found a solution for each case. Notice that it takes

GBNS only 0.7 seconds to solve this instance for (n − d1, bn
2 c - d2) = (6, 3), whereas for

(n− d1, bn
2 c - d2) = (7, 3), it takes GBNS 7322.9 seconds. This drastic difference in time is

due to the fact that the problem becomes extremely difficult to solve when d1 = d2 = 0.

For 12 teams and for the combination of parameters (n − d1, bn
2 c - d2) = (5, 3) and

(n − d1, bn
2 c - d2) = (6, 3) neither the IP nor the GBNS could find a feasible solution

even after several hours of running. Since the IP was terminated before concluding to the

infeasibility of these cases, we do not currently know if these two instances are actually

feasible or not.

Improving the solution with VLNS

We run 3-Umpire Neighborhood Search on the initial solutions obtained by the IP and the

GBNS. While GBNS used this neighborhood in creating the solution, this was done with

costs associated with the Bender’s Cuts. Once a feasible solution is found, those costs are

no longer required. Furthermore, the local search aspect of GBNS is only applied when

there is an infeasibility. So it is entirely possible that further improvements are possible

once GBNS terminates, and our computational tests bear that out.

Table 2.6 summarizes the results for IP and GBNS for the instances with 12 and 14

teams. The quality of the initial solution does not make any significant difference in terms
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Table 2.5: Comparison of the IP and the Greedy Matching Heuristic with Bender’s Cuts
Guided Neighborhood Search (GBNS) in finding feasible solutions for instances with 12
teams and 14 teams. The columns consist of the parameter for Constraint 4 (n − d1), the
parameter for Constraint 5 (bn

2 c - d2), IP solution cost (IP), time in seconds, GBNS solution
cost (GBNS) and time in seconds, and % cost improvement of GBNS over IP (% Impr.).

—————–12 Teams—————–
n− d1 bn

2 c - d2 IP time(sec) GBNS time(sec) % Gap
2 1 95024 7.1 72557 0.1 23.6
3 1 97276 10.4 76407 0.1 21.5
4 1 93762 7.4 76756 0.1 18.1
5 1 93030 19.1 76781 0.0 17.5
6 1 99632 67.3 77818 0.1 21.9
2 2 101055 20.8 88277 0.1 12.6
3 2 102399 46.7 88637 0.1 13.4
4 2 101978 36.8 90231 0.1 11.5
5 2 100641 93.4 91951 0.1 8.6
6 2 100372 134.1 91131 0.1 9.2
2 3 100089 7136.3 95072 359.3 5.0
3 3 100797 1025.3 95072 359.3 5.7
4 3 101063 2194.4 97945 28.6 3.1
5 3 – –
6 3 – –

—————–14 Teams—————–
n− d1 bn

2 c - d2 IP time(sec) GBNS time(sec) % Gap
2 1 182520 56.5 112142 0.1 38.6
3 1 184069 70.0 117618 0.1 36.1
4 1 180170 42.8 118647 0.1 34.1
5 1 184496 46.6 120781 0.1 34.5
6 1 187357 182.9 121998 0.1 34.9
7 1 182435 196.7 126360 0.0 30.7
2 2 196977 88.4 152658 0.1 22.5
3 2 202383 133.9 153536 0.1 24.1
4 2 199001 194.2 155073 0.1 22.1
5 2 201533 198.7 155525 0.1 22.8
6 2 194975 370.6 157761 0.1 19.1
7 2 206335 621.7 161428 0.1 21.8
2 3 196003 401.4 175884 0.1 10.3
3 3 196394 10085.8 175884 0.1 10.4
4 3 190640 1989.1 182054 0.1 4.5
5 3 205230 2442.9 182746 0.1 11.0
6 3 – 183331 0.7
7 3 – 186979 7322.9
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of the quality of the final solution obtained by the neighborhood search. On the other hand,

the total times spent on finding the initial solution and then running the neighborhood

search is significantly less for GBNS, which is due to the very fast execution of GBNS. In

short, the real value of GBNS is the quick generation of a feasible solution.
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Table 2.6: Comparison of the 3-Umpire Neighborhood search when started from the initial
solutions found by IP and GBNS for instances with 12 teams and 14 teams. The columns
consist of the parameter for Constraint 4 (n−d1), the parameter for Constraint 5 (bn

2 c - d2),
solution cost when initial solution is found by IP (IP & 3-Ump), time in seconds, solution
cost when initial solution is found by GBNS (GBNS & 3-Ump) and time in seconds, and %
cost improvement obtained when started with GBNS over when started with IP (% Impr.).

—————–12 Teams—————–
n− d1 bn

2 c - d2 IP & 3-Ump time(sec) GBNS & 3-Ump time(sec) % Gap
2 1 62515 242.2 62374 192.2 0.2
3 1 66159 408.2 66090 325.4 0.1
4 1 66608 352.5 66897 378.5 -0.4
5 1 68312 466.2 69103 351.5 -1.2
6 1 69445 722.2 69775 759.7 -0.5
2 2 82288 256.9 82188 349.0 0.1
3 2 83095 459.3 83504 245.9 -0.5
4 2 83529 407.5 83974 444.5 -0.5
5 2 85192 541.1 85804 495.4 -0.7
6 2 91865 464.2 91018 279.6 0.9
2 3 95924 7367.3 94080 666.7 1.9
3 3 92672 1578.3 94080 666.7 -1.5
4 3 101047 2573.2 97945 288.5 3.1
5 3 – –
6 3 – –

—————–14 Teams—————–
n− d1 bn

2 c - d2 IP & 3-Ump time(sec) GBNS & 3-Ump time(sec) % Gap
2 1 95075 894.6 94748 1053.1 0.3
3 1 103854 1451.3 102021 1427.9 1.8
4 1 106243 1874.4 106751 1508.8 -0.5
5 1 109901 1645.8 110896 1307.5 -0.9
6 1 112385 2920.7 111184 1792.6 1.1
7 1 114077 2283.0 117332 1671.9 -2.9
2 2 140855 1789.8 140570 1221.0 0.2
3 2 142334 1157.1 141936 813.9 0.3
4 2 143746 1435.9 144301 910.9 -0.4
5 2 146129 850.9 146964 1400.2 -0.6
6 2 148860 2122.6 148389 2723.9 0.3
7 2 157402 1969.5 161413 950.8 -2.5
2 3 157444 5678.1 157111 3235.5 0.2
3 3 155776 5793.6 157111 3235.5 -0.9
4 3 166345 4754.3 164263 3625.9 1.3
5 3 177480 5762.4 168995 2469.4 4.8
6 3 – 181052 714.0
7 3 – 186979 8005.6
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2.4. Exact Solution Approaches Revisited

The initial integer and constraint programming formulations discussed in Section 2.2 were

ineffective in solving larger instances. In this section we try different methods of improving

these formulations and present improved results.

2.4.1 Integer Programming

In addition to the five constraints that define TUP, we use some additional valid cuts to

strengthen the initial formulation. We present these next.

Adding Valid Cuts

We strengthened the formulation with the following additional valid inequalities:

• If team i plays away in slot t, no umpire can be assigned to the game at venue i;

• If umpire c moves from venue i to venue j in slot t, it must be assigned to a game at

venue i in t;

• If umpire c moves from venue i to venue j in slot t, it must be assigned to a game at

venue i in t + 1;

• Number of umpires moving to venue j at slot t should be equal to the number of

umpires moving from venue j at t + 1;

• Every umpire must move in every slot.

The computational results before and after adding these cuts to the IP model is given

in Table 2.7, which indicates that adding these cuts improved the IP model significantly.

Symmetry Breaking

Since umpires are essentially identical, this creates symmetry in the formulations of the TUP.

Breaking this symmetry is easy by arbitrarily assigning the games in one time slot. When
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Table 2.7: Results for the IP with and without valid cuts.

IP without cuts IP with cuts
No of Teams OPT Distance Distance Time Distance Time

4 5176 5176 0 5176 0
6 14077 14077 1.5 secs 14077 0.3 secs
8 34311 34311 145 secs 34311 1.6 secs
10 48942 51128 > 24 hrs 48942 > 13 hrs

Table 2.8: Results for the IP (with cuts) and with Symmetry Breaking on the 10 Team
Instance.

Break Assign Games Time to
Symmetry in Slot No prove OPT

No – > 13 hrs
Yes 1 (first) 538 secs
Yes 9 (middle) 72 secs
Yes 18 (last) 1804 secs

we tried this approach, the solution times for the IP model are reduced very significantly.

Regardless of which slot we pick, this reduction is very significant. Interestingly, we see

that the slot that we pick also makes a difference. We compare fixing the games in the first,

middle and last slots and we see that we get a much more reduction in time for the middle

time slot. The results for the 10 team instance is summarized in Table 2.8.

2.4.2 Constraint Programming

We tried several methods to improve the initial formulation and we discuss these next.

atmost vs. alldifferent for Constraint 4

We can formulate Constraint 4 of TUP by using the atmost constraint as shown below:

forall(u in Umps, t in Slots: t<= (4n-2)-n+1 )

atmost(all(i in Teams) 1, all(j in Teams) j, all(r in [0..n-1]) assigned[u,t+r]);
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Table 2.9: Comparison of atmost and alldifferent formulations of Constraint 4 on the In-
stance with 8 Teams.

Time to find Time to prove
Constraint 4 OPT (sec) OPT (sec)

atmost 21 525
alldifferent 15 415

We can also use the alldifferent constraint, which we demonstrate below:

forall(u in Umps, t in Slots: t<= (4n-2)-n+1 )

alldifferent(all(r in [0..n-1]) assigned[u,t+r]);

The comparison of the results for these two formulations is shown in Table 2.9.

Implications vs. alldifferent for Constraint 5

In the initial CP formulation, we modelled Constraint 5 using several implications. We can

replace these implications with an alldifferent constraint if we introduce new variables,

assigned_prime, to the model, where assigned_prime[u,t]= i when umpire u sees team

i away in slot t. We directly link these new variables to the original assigned variables

using the following relationship:

forall(t in Slots)

forall(u in Umps)

opponents[t,assigned[u,t]] = assigned_prime[u,t];

Constraint 5 is now modelled using the alldifferent constraint as follows:

forall(u in Umps, t in Slots: t<= (4n-2)- floor(n/2))+1)

alldifferent(all(r in [0..no_rep/2-1])assigned_prime[u,t+r]);
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Table 2.10: Comparison of Implications and alldifferent formulations of Constraint 5 on 8
Team Instance.

Time to find Time to prove
Constraint 5 OPT (sec) OPT (sec)
Implications 21 525
alldifferent 49 1191

The results with this new formulation is given in Table 2.10. Interestingly, the alldifferent

constraint performs worse than the long implications. One possible explanation for this is

the fact that alldifferent constraints usually works better if the domain size is propor-

tional to the variable set size. But in TUP, this is not the case. In fact, a variable can

potentially take all possible assignments, and this may be preventing the alldifferent

constraint to make more deductions than the implications.

Search Strategy

When we instruct the solver to search for all potential assignments where an umpire is

assigned to one of the home venues, the solution times decrease very significantly, as seen

in Table 2.11. The instruction we used is as follows:

search {

forall(t in Slots)

forall(u in Umps)

tryall (i in Teams: opponents[t,i] > 0)

assigned[u,t] = i; };

Symmetry Breaking

We used the same approach, as we did with the IP formulation, for breaking the symmetry

of umpires: We pick a slot and arbitrarily assign the games in that slot to the umpires.
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Table 2.11: Effect of Search Command on 8 Team Instance.

Search Time to find Time to prove
Command OPT (sec) OPT (sec)

no 21 525
yes 0 2

Table 2.12: Results of Symmetry Breaking in CP for 8 Team Instance.

Break Assign Games Time to find Time to prove
Symmetry in Slot No OPT (secs) OPT(secs)

No – 21 525
Yes 1 (first) 0 2
Yes 7 (middle) 1 2
Yes 14 (last) 8 10

Regardless of which slot we pick there is a significant reduction in the solution time. How-

ever, we do not see a clear difference in solution times between the different slots. The

results for the 8 team and 10 team instances are summarized in Table 2.12 and Table 2.13,

respectively. Based on the results, we pick the first slot to fix the games as it seems to be

slightly superior than fixing the middle slot.

Table 2.13: Results of Symmetry Breaking in CP for 10 Team Instance.

Break Assign Games Time to find Time to prove
Symmetry in Slot No OPT (secs) OPT(secs)

No –
Yes 1 (first) 279 hrs 407 hrs
Yes 9 (middle) 300 hrs 388 hrs
Yes 18 (last) 410 hrs 550 hrs
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Table 2.14: Improved IP and CP results for TUP with d1 = d2 = 0.

BEST Distance Time for OPT or BEST
No of Teams OPT Distance Imp.IP Imp.CP Imp.IP Imp.CP

4 5176 5176 5176 0 0
6 14077 14077 14077 0.3 secs 0.2 secs
8 34311 34311 34311 1.6 secs 2 secs
10 48942 48942 50380 72 secs 24 hrs
12 infeasible – infeasible 24 hrs 25 secs
14 unknown 187374 177684 24 hrs 4568 secs
16 unknown – – 24 hrs 24 hrs

2.4.3 Computational Results Using Best Strategies

In this subsection, we summarize the results using the improved IP and CP models, which

were modified based on the findings presented in the previous two subsections.

The improved IP model is presented in Appendix 6.1.3. It includes the valid cuts derived

and the symmetry breaking strategy by fixing the games in the middle slot is used.

The improved CP model is presented in Appendix 6.1.5. We use the alldifferent

constraint instead of the atmost constraint to model Constraint 4. We also use the search

command as described in Section 2.4.2 and the symmetry breaking strategy by fixing the

games in the first slot.

The results are summarized in Table 2.14.

2.5. Simulated Annealing for TUP

In this section, we present a Simulated Annealing algorithm (SA) to solve the TUP.

2.5.1 Greedy Matching Heuristic with Backtracking

We use a slightly modified version of the Greedy Matching Heuristic (GMH), which we

introduced in Section 2.3.1, to find an initial solution. GMH builds the umpire schedules
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starting from the first slot and ending at the last slot. For every slot t, the best possi-

ble umpire-game assignment is made to minimize the total umpire travel in slot t and to

minimize the constraint violations. If in a slot t, there is no feasible matching available,

we backtrack to the previous slot t − 1 and pick the second best matching and try again.

Backtracking is made at most once at each slot. Thus, this heuristic may end up with an

infeasible solution.

2.5.2 Simulated Annealing

A pure local search algorithm has the main disadvantage that it terminates in the first local

optimum it reaches, which may be far from any global optimum because the algorithm

only executes moves that generate a decrease in cost. SA, a powerful stochastic local

search method, alternatively attempts to avoid becoming trapped in a local optimum by

sometimes (with a non-zero probability that gradually decreases as the algorithm continues

its execution) executing a move that generates an increase in cost. This way it is possible

to “climb out of” the local minimums.

SA has its origins in the fields of materials science and physics [73]. Kirkpatrick et

al. [49] established an analogy between minimizing the cost function of a combinatorial

optimization problem and the slow cooling process of a solid by utilizing an optimization

process. This algorithm has proven to be a good technique for many applications [86].

The pseudo code for the SA we used is presented in Algorithm 2. Our cost function is

total distance traveled by the umpires. We use the simple 2-exchange moves to do a local

search. Given an umpire schedule S, a 2-exchange move swaps the umpires assigned to two

games played in the same slot.

We empirically tested the parameters for the SA and used the values presented in Ta-

ble 2.15 in our tests.
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Algorithm 2 Simulated Annealing Algorithm.
1: while time limit and iteration limit not exceeded do
2: S = initial solution with prob. p or incumbent solution with prob. (1− p)
3: t = t0
4: while t > TEMP LIMIT do
5: for all ITER iterations do
6: Pick one feasible exchange E at random
7: d = impact of E in objective function
8: if d < 0 then
9: Execute E

10: if new solution better than incumbent then
11: Update incumbent
12: end if
13: else
14: x = random number in [0, 1]
15: if x < exp(−d/t) then
16: Execute E
17: end if
18: end if
19: end for
20: t = t ∗ALPHA
21: end while
22: end while

Table 2.15: Parameters for the SA.
Parameter Value

t0 2000
TEMP LIMIT 500

ITER 2500
ALPHA 0.95

p 0.2
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2.5.3 Computational Results

We have tested our solution approach on the TUP instances and also on the 2006 MLB

Schedule. The results are summarized in Section 2.6.2 along with the results of the Genetic

Algorithm presented in the next section.

2.6. Locally Optimized Crossover for TUP

In this section we present a Genetic Algorithm (GA) to solve the TUP. A GA is an adaptive

heuristic search method based on population genetics, and it borrows its vocabulary from

that domain. The basic concepts of a GA were primarily developed in [42] and described

later in [37]. A GA uses a genetic representation for potential solutions. First an initial

population of solutions are created. Then offspring solutions are formed from parent solu-

tions using genetic operators called crossover. Solutions are evaluated using a function that

rates solutions in terms of their “fitness”. Then the population is updated by selecting a

subset of parent and offspring solutions. This is continued until a termination criterion is

met.

The GA we developed uses a special crossover operator that uses local optimization.

Thus, instead of obtaining a random solution from two parent solutions, we obtain a partially

optimized solution. Since the offspring obtained is not necessarily the best possible solution

that can be obtained from the two parents, we refer to this operator as locally-optimized

crossover.

2.6.1 Solution Strategy

A GA consists of a population of chromosomes; in essence, a set of character strings that

are analogous to the base-4 chromosomes that we see in our own DNA. Chromosomes

represent potential solutions to the problem being solved and they evolve over a number

of generations and are subject to genetic operators at each generation. These solutions are
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Table 2.16: Two feasible solutions for 8 teams and 4 umpires.

Parent1
Slots 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Umpire 1 (1,5) (2,8) (5,6) (3,7) (8,1) (4,6) (7,5) (2,4) (6,8) (4,5) (3,1) (8,6) (1,3) (4,2)
Umpire 2 (4,8) (5,3) (1,4) (8,2) (6,5) (2,3) (1,8) (3,6) (5,7) (2,1) (7,6) (3,5) (6,4) (8,3)
Umpire 3 (6,2) (4,7) (3,8) (5,4) (7,2) (8,5) (2,6) (5,8) (4,1) (6,3) (8,4) (1,2) (7,8) (5,1)
Umpire 4 (7,3) (1,6) (2,7) (6,1) (3,4) (7,1) (4,3) (1,7) (3,2) (8,7) (2,5) (7,4) (5,2) (6,7)

Parent2
Slots 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Umpire 1 (1,5) (2,8) (5,6) (8,2) (3,4) (7,1) (4,3) (1,7) (3,2) (8,7) (2,5) (7,4) (5,2) (6,7)
Umpire 2 (4,8) (5,3) (1,4) (3,7) (6,5) (2,3) (1,8) (3,6) (5,7) (2,1) (7,6) (1,2) (6,4) (8,3)
Umpire 3 (6,2) (4,7) (3,8) (5,4) (8,1) (4,6) (7,5) (2,4) (6,8) (4,5) (3,1) (8,6) (1,3) (4,2)
Umpire 4 (7,3) (1,6) (2,7) (6,1) (7,2) (8,5) (2,6) (5,8) (4,1) (6,3) (8,4) (3,5) (7,8) (5,1)

obtained by means of an encoding/decoding mechanism. Most of the developmental work

of GA theory was performed using a binary-coded GA. Historically, it is the most widely

used representation. In a binary coding each chromosome is a vector comprised of zeroes

and ones, where each bit represents a gene. However different encodings, such as the one

used in this GA, are also possible.

Initially, a feasible set of chromosomes are needed, which can be generated randomly or

by using a heuristic. Each chromosome has an associated fitness value; a set of “best fit”

chromosomes from each generation survive into the next generation. The genetic operations

applied to chromosomes are crossover and mutation. Typically, crossover is defined such

that two individuals (the parents) combine to produce one or two individuals (the children).

The primary purpose of the crossover operator is to transmit genetic material from the

previous generation to the subsequent generation. Mutation is a genetic operator that

alters one or more gene values in a chromosome from its initial state. The mutation operator

introduces a certain amount of randomness to the search. It can help identify solutions that

crossover alone might not.
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Table 2.17: New solution is obtained by crossover at slot 11 and optimized by solving a
matching problem at the crossover slot.

Before Crossover
Optimization at slot=11

Slots 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Umpire 1 (1,5) (2,8) (5,6) (3,7) (8,1) (4,6) (7,5) (2,4) (6,8) (4,5) ‖ (2,5) (7,4) (5,2) (6,7)
Umpire 2 (4,8) (5,3) (1,4) (8,2) (6,5) (2,3) (1,8) (3,6) (5,7) (2,1) ‖ (7,6) (1,2) (6,4) (8,3)
Umpire 3 (6,2) (4,7) (3,8) (5,4) (7,2) (8,5) (2,6) (5,8) (4,1) (6,3) ‖ (3,1) (8,6) (1,3) (4,2)
Umpire 4 (7,3) (1,6) (2,7) (6,1) (3,4) (7,1) (4,3) (1,7) (3,2) (8,7) ‖ (8,4) (3,5) (7,8) (5,1)

After
Optimization

Slots 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Umpire 1 (1,5) (2,8) (5,6) (3,7) (8,1) (4,6) (7,5) (2,4) (6,8) (4,5) ‖ (3,1) (8,6) (1,3) (4,2)
Umpire 2 (4,8) (5,3) (1,4) (8,2) (6,5) (2,3) (1,8) (3,6) (5,7) (2,1) ‖ (7,6) (1,2) (6,4) (8,3)
Umpire 3 (6,2) (4,7) (3,8) (5,4) (7,2) (8,5) (2,6) (5,8) (4,1) (6,3) ‖ (8,4) (3,5) (7,8) (5,1)
Umpire 4 (7,3) (1,6) (2,7) (6,1) (3,4) (7,1) (4,3) (1,7) (3,2) (8,7) ‖ (2,5) (7,4) (5,2) (6,7)

Representation and Genetic Operators

A complete schedule of umpires is a natural representation for a solution. We present two

example solutions for the 8 team instance in Table 2.16. A game is represented as a pair

(i, j) where i is the home team and j is the away team. Rows correspond to umpire sched-

ules and columns correspond to games that are played in the corresponding time slots.We

use a crossover operator and a mutation operator to create new offspring solutions, which

we discuss next.

Optimized Crossover: We pick two parent solutions and produce a new solution from

them. We randomly pick a crossover slot t and copy the schedule of Parent1 for slots 1 to t-1

and copy the schedule of Parent2 for slots t to the last slot. Before finalizing the schedule of

the offspring, we do the following: We fix the partial schedules copied from Parent1. Thus,

an umpire i of the offspring has the same exact schedule as the umpire i of Parent1 for

slots 1 through t-1. But, the rest of the schedule segments that are copied from Parent2
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(2,5) (7,4) (5,2) (6,7) 

(7,6) (1,2) (6,4) (8,3)

Umpire 1

…(2,4) (6,8) (4,5)

Umpire 2

…(3,6) (5,7) (2,1)

(3,1) (8,6) (1,3) (4,2)

(8,4) (3,5) (7,8) (5,1)

Umpire 3

…(5,8) (4,1) (6,3)

Umpire 4

…(1,7) (3,2) (8,7)

Figure 2.3: The matching problem that is solved. The solid edges are feasible assignments,
whereas the dashed lines are penalized for their constraint violations.

(from slots t through the last slot) are allowed to be exchanged among the umpires. To find

the best assignment of these schedule segments, we solve a bipartite matching problem. In

this matching problem, the partitions are Umpires (with fixed schedules for slots 1 to t-1 )

and partial schedule segments for slots t to the last slot. We place all edges between the

partitions, which means all possible assignments are allowed. Cost of an edge between an

Umpire u and a Segment s is Distance(k, i) + Penalty(u, s). In this cost function, k is the

venue that Umpire u is assigned in slot t − 1 and i is the venue of the game in slot t of

segment s. Thus, Distance(k, i) is the distance between cities k and i. For every constraint

violated by assigning Umpire u to Segment s, the cost of the edge is increased by a high

penalty, which makes up the Penalty(u,s) term in the cost function.

We illustrate how the crossover operator works in Table 2.17. The crossover operator

is applied to the parent solutions in Table 2.16 at slot t = 11 to form this new solution.

We copy Parent1’s schedule for slots 1 to 10 and copy Parent2’s schedule for slots 11 to

14. To finalize the new schedule we solve a matching problem on a bipartite graph as
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(2,5) (7,4) (5,2) (6,7) 

(7,6) (1,2) (6,4) (8,3)

Umpire 1

…(2,4) (6,8) (4,5)

Umpire 2

…(3,6) (5,7) (2,1)

(3,1) (8,6) (1,3) (4,2)

(8,4) (3,5) (7,8) (5,1)

Umpire 3

…(5,8) (4,1) (6,3)

Umpire 4

…(1,7) (3,2) (8,7)

Figure 2.4: The optimum solution to the matching problem.

illustrated in Figure 2.3. For this instance we assume that d1 = d2 = 0. Thus, Constraint

4 imposes that an umpire can not visit the same home venue more than once in any four

consecutive games. Constraint 5, on the other hand, imposes that an umpire can not see

a team more than once in any two consecutive games. In this figure, the solid edges are

feasible assignments, whereas the dashed edges are penalized for their constraint violations.

For instance, the edge between Umpire 1 and the first segment ((2,5),(7,4),(5,2),(6,7)) has

a cost equal to Distance(4, 2) + Penalty(Umpire1, Segment1), where Distance(4, 2) is

the distance between cities 4 and 2, which are the venues Umpire 1 would be visiting in

slots 10 and 11, respectively. There are two constraint violations in this assignment that are

penalized. First, Umpire 1 would visit city 2 in both slots 8 and 11, which violates Constraint

4. Second, Umpire 1 would see team 5 in slots 10 and 11, which violates Constraint 5.

Constraint 3 is not violated as Umpire 1 will be visiting all the cities in the new solution.

The optimum solution to the matching problem is illustrated in Figure 2.4. Fortunately,

we were able obtain a feasible matching that consist of only solid edges. Based on this

matching, the new offspring generated is the one illustrated in the lower part of Table 2.17.
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The total cost of the parent solutions are 34432 and 35097, respectively and the cost of the

new solution after optimization is 34773. Before optimization, the new solution would be

an infeasible solution violating the constraints several times.

Mutation: We randomly select two games in a randomly selected slot t and flip the umpires

assigned to them.

Initial Population of Solutions

The initial set of solutions are formed by using the GMH with Backtracking described

in Section 2.5.1. In each slot, a matching problem is solved and games in that slot are

assigned to umpires using either the best or second best matching with equal probability.

This probabilistic assignment allows us to form a diverse set of quality solutions.

Evaluation Function

We use an evaluation function that consists of two parts. One is the total travel distance

of umpires. The other is the penalties for the constraint violations.

The Algorithm

1. Set time = 0

2. Form Ninitial solutions to form the set CurrentSolutions(time).

3. While the Stopping Criteria is not met do:

(a) Set time = time + 1

(b) Create Ninitial/2 new solutions by:

i. Randomly select two solutions from the current population of solutions.

ii. Randomly select a crossover slot.

iii. Apply the crossover on the two selected solutions to create a new solution.



Chapter 2. Scheduling Baseball Umpires & the Traveling Umpire Problem 37

iv. If the new solution created exists in TempSolutions(time) or

in CurrentSolutions(time − 1), discard it and goto Step 4(b)i. Otherwise

add the new solution into the set TempSolutions(time)

(c) Replace the inferior solutions in CurrentSolutions(time− 1) with the superior

solutions in TempSolutions(time) and create CurrentSolutions(time)

(d) For every solution S in CurrentSolutions(time− 1) apply Mutation to S with

MutationProbability.

The parameters of the GA have been set empirically: We used an initial population size

Ninitial = 100. At each generation we created 50 new solutions by applying the Crossover

Operator to the current solutions. We used MutationProbability = 0.05. We allowed the

algorithm to run for 3 hours.

2.6.2 Computational Results

We now present and discuss computational results for both the Simulated Annealing de-

scribed in Section 2.5 and the GA we presented in this section. We have performed our tests

on a set of TUP instances and also on the 2006 MLB Schedule. We compare these results

with the results obtained by the improved IP and CP models described in Section 2.4.

Table 2.18 summarizes the results on the smallest 7 instances with d1 = d2 = 0, which

means Constraints 4 and 5 are most restricting. Although both the SA and GA ware able

to solve the 4,6 and 8 team instances to optimality fast, neither of them was able to solve

the 10 team instance to optimality. The quality of the solution found by the GA for the

10 team instance is better than the solution found by the SA. The 12 team instance is

already proven to be infeasible. For the 14 instance, the SA was unable to find a feasible

solution whereas the GA was able to find one, but it is not better than the current best

known solution, which we found by using the improved CP model. We were unable to find

a feasible solution for the 16 team instance using any of the methods developed in this

chapter.
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Table 2.18: SA and GA results for TUP with d1 = d2 = 0 and comparison to best known
solution.

Simulated Annealing Genetic Algorithm
Teams OPT Distance Dist. Time (secs) Dist. Time(secs)

4 5176 5176 0 5176 0
6 14077 14077 0.5 14077 1
8 34311 34311 60 34311 5
10 48942 50196 228 49075 25

Best Known Simulated Annealing Genetic Algorithm
Teams Distance Dist. Time Dist. Time

12 infeasible – – – –
14 177684 – – 182578 3 hrs
16 – – – – 3 hrs

Table 2.19: Results for SA and GA on the relaxations of 14 and 16 team instances, where
with d1 + d2 > 0, and comparison to results of improved IP.

Improved IP Simulated Annealing Genetic Algorithm
Teams n - d1 bn

2 c - d2 Dist. Time Dist. Time Dist. Time
14 6 3 182531 24 hrs 180697 3 hrs 174919 3 hrs
14 5 3 169012 24 hrs 169173 3 hrs 161607 3 hrs
16 8 2 – 24 hrs – 3 hrs – 3 hrs
16 7 3 – 24 hrs – 3 hrs 184811 3 hrs
16 7 2 – 24 hrs 176527 3 hrs 166077 3 hrs
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Table 2.20: ]
Improved IP, improved CP, SA and GA results for TUP on the MLB’s 2006 game schedule
with 30 teams.

Imp. IP Imp. CP SA GA
Teams n− d1 bn

2 c - d2 Dist. Time Dist. Time Dist. Time Dist. Time

30 5 5 – out of – 24 hrs 581363 5 hrs 449239 5 hrs
memory

Based on the results we obtained using the different methods presented, it is clear that

the 14 and 16 team instances are very difficult instances to solve when we have d1 = d2 = 0.

To further investigate both the GA’s and SA’s performances on the TUP, we solve the

relaxations of these two instances by increasing the values of d1 and d2. The results for

these relaxations is given in Table 2.19. We also compare the results to the results obtained

by the improved IP. The IPs are run for 24 hours, whereas both of the metaheuristics are

run for only 3 hours. For the 14 team instance, we see that the GA obtains better results

than the IP and SA. For the 16 team instance, neither of the methods were able to find a

feasible solution for the relaxation with n − d1 = 8 and bn
2 c - d2 = 2. For the relaxation

of the 16 team instance with n− d1 = 7 and bn
2 c - d3 = 2, GA is the only method to find

a feasible solution. For the remaining relaxation of 16 team instance with n− d1 = 7 and

bn
2 c - d2 = 2, GA obtained a better solution than SA.

As stated before, TUP is an abstraction of the MLB-USP, which is defined on a 30

team league and a 52 week game schedule. To resonate TUP and MLB-USP, we created an

instance of TUP on this set of teams and the 2006 MLB game schedule. We tried to solve this

instance using the improved IP and CP models and the GA and SA. The results are given

in Table 2.20. We see that GA outperformed all others on this instance. We should note

that the time for the SA and GA do not include the time for obtaining the initial solution.

Interestingly, it takes a lot more time for the GMH with Backtracking to find solutions for

this 30 team instance. For the SA, it took about 1 hour to find the initial solution. For the
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GA, it took about 19 hours to find 10 initial solutions. A possible explanation for the long

running times for the matching heuristic is that we solve the matching problems by solving

an math program. Using network algorithms to solve these matching problems will likely

decrease these solution times significantly.

2.7. Summary and Future Research

Traveling Umpire Problem is a sports scheduling problem inspired by the real-life needs

of the officials of Major League Baseball and it is an abstraction of the real MLB Umpire

Scheduling Problem. In this chapter, we defined and extensively studied TUP. We developed

exact and approximate solution methods and tested these on benchmark instances. TUP

is a highly constrained scheduling problem and we show that even finding feasible solutions

is very difficult.

We formulated TUP using IP and CP techniques and our initial formulations are shown

to be ineffective as the size of the instances grow. We then introduced a new approach

for finding good solutions. We showed how to generate Benders cuts during the execution

of a simple Greedy Heuristic. These cuts enforce feasibility requirements that allow the

Greedy Heuristic to avoid infeasibilities. This method enables the simple Greedy Matching

Heuristic to produce quality feasible solutions very fast. We introduced two Very Large

Neighborhoods, 3-Umpire and 3-Slot Neighborhoods, to search the solution space for the

Traveling Umpire Problem. We showed that by searching these neighborhoods, guided

by the Bender’s cuts, we can obtain an initial feasible solution. Moreover, after finding

an initial feasible solution, we can improve the quality of the solution by searching the

3-Umpire Neighborhood.

We tried different methods to improve the initial IP and CP formulations. Although the

results have been significantly improved by these attempts, we see that both approaches

still become ineffective as we increase the size of the instances.
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We demonstrated that the Simulated Annealing and Genetic Algorithms we developed

are simple to implement and provide very good results much faster than the IP and CP

models for most of the instances. Both SA and GA were able to find a solution for the

largest instance that has 30 teams and based on the 2006 MLB schedule.

We would like to conclude this chapter by pointing out some future research directions:

2.7.1 Strengthening the Bender’s Cuts

The Bender’s cuts presented in Section 2.3 can be further strengthened by the following

observation: suppose GMH is stuck at slot t and variable assigned(u, i, s) is in a cut, where

assigned(u, i, s) equals to 1 if umpire u is at venue i in slot s and equals to zero otherwise.

Let also team j be the opponent of i in slot t. Then all variables corresponding to (u, i)

assignments in slots t−(n−d1)+1 through t can be added to the same cut as well. Similarly,

variables corresponding to all (u, j) assignments in slots t− (bn
2 c - d2) + 1 through t can be

added to the same cut as well. This and similar approaches can strengthen the Bender’s

Cuts we developed and make the GBNS algorithm more effective.

2.7.2 Solving the multi-objective TUP

In this thesis, we only focused on solving the single objective version of the TUP. One

research direction is modifying the current solution methods we presented or develop new

methods to solve the multi-objective version TUP-M. One natural way of handling the

multi-objective version is using the GA developed. The GA uses a population of solutions

in each iteration instead of a single solution. Thus, the outcome of a GA is also a population

of solutions, making GAs suitable for solving multi-objective optimization problems, such as

TUP-M. Since the ideal strategy for multi-objective optimization requires multiple trade-off

solutions to be found, a GA’s population-approach can be suitably utilized so that it finds

multiple solutions in a single simulation run.
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2.7.3 Bridging Local Search and Genetic Algorithms

The crossover operator we used in the GA can also be used as a local search operator on

a single solution. This fact is an interesting resemblance between two different solution

methods and can be further investigated.

2.7.4 Optimized Crossovers

We developed a locally optimized crossover operator that generates good offspring from

two parent solutions by using optimization techniques at each crossover. That operator

used a slot t as a crossover point and we copied parts of schedules before and after that

crossover point. We can utilize a similar approach to develop another optimized crossover

operator that operates in the umpire dimension instead of the slot dimension. That is, a

crossover point will be an umpire u, and full umpire schedules will copied before and after

the crossover point from the two parents.

2.7.5 Graph Coloring and TUP

TUP is an interesting problem as we can find resemblances with other problems including

Graph Coloring Problem(GCP). In fact, we show that the feasibility version of the TUP,

after relaxing Constraint 3, can be represented as a GCP on a special graph G, where each

color corresponds to an umpire. The nodes of G are the games. The edge set is constructed

as follows:

1) For each slot, an edge is placed between every game, forming a clique on n nodes.

2) A game (i,j ) in slot s is connected to a game (i,k) in slot t, where s 6= t, if | t−s |< n−d1.

3) A game (i,j ) in slot s is connected to games (i,k), (k,i), (j,k), (k,j ) in slot t, where s 6= t,

if | t− s |< bn
2 c - d2.

It is not difficult to see that a feasible coloring on G corresponds to a feasible umpire

schedule. In a feasible coloring, every node is colored, so the first constraint is satisfied. First

set of edges ensure that each every umpire works exactly one game per slot, so Constraint
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2 is satisfied. Second set of edges ensure that no umpire is in a home site more than once in

any n− d1 consecutive slots. Finally, third set of edges ensure that no umpire sees a team

more than once in any bn
2 c - d2 games.

In this chapter, we clearly showed that even finding a feasible solution becomes very

difficult as we increase the size of the instances. Because of that, reformulating TUP as a

GCP and using state of the art solution methods developed for GCP might enable us to

find feasible solutions for larger instances.





Chapter 3

A Large Neighborhood Search

Heuristic for Graph Coloring

Graph coloring is one of the central problems in graph theory, has direct applications in

practice [5, 59], and is related to many other problems such as computer register allocation

[2], bandwidth allocation [34] and timetabling [57, 78, 24]. Given an undirected graph

G=(V, E), a coloring f of G is an assignment of a color to each vertex. A proper (or

feasible) coloring is a coloring such that for each edge (i, j) ∈ E, vertices i and j have

different colors. A conflict is the situation when two adjacent vertices have the same color

assigned to them. We say that a coloring is improper (or infeasible) if there exists at least

one conflict. The conflict graph of a graph G is the graph induced by the vertices that are

incident to the conflicts in G.

The decision version of the problem asks whether for a graph G a proper coloring with

K colors can be found, where K is given. A minimum coloring of G is a feasible coloring

with the fewest different colors, which also defines the optimization version of the problem.

One approach to solving the optimization problem, which is also the approach used in this

study, is to treat it as a sequence of decision problems: Start with an initial number of

colors K. If the answer to the decision problem is “no”, increase K by one and repeat the

45
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process until a feasible coloring exists for some K.

It is well known that graph coloring is a hard combinatorial optimization problem [35],

and exact solutions can be obtained for only small instances [64]. Therefore, heuristic

algorithms are used to solve large instances. In this paper we introduce a new local search

algorithm that searches large neighborhoods, based on ideas introduced by Boykov et al.[12].

The rest of the paper is organized as follows. In Section 1 we shortly review the known

neighborhood search methods and introduce our very large neighborhood approach. We

describe our algorithm in Section 2 and present the experimental results in Section 3. The

conclusion is given in Section 4.

3.1. Local Search for Graph Coloring

Local search is based on the concept of a neighborhood. A neighborhood of a solution S is

a set of solutions that are in some sense close to S, i.e., they can be easily computed from

S or they share a significant amount of structure with S.

Local search for the GCP starts at some initial, improper coloring and iteratively moves

to neighboring solutions, trying to reduce the number of conflicts. It is clear that the larger

the neighborhood, the better is the quality of the solutions that can be reached in one

single move. At the same time, the larger the neighborhood, the longer it takes to search

the neighborhood at each iteration.

In this paper, we investigate a new local search method that uses very large scale neigh-

borhoods. This is one of the first attempts to solve the GCP using local search in large

neighborhoods. The only other large neighborhood searches we are aware of are due to

Chiarandini et al.[17] and Avanthay et al.[3]. Interested reader can see a recent survey of

local search methods for graph coloring problem by Galinier and Hertz[31].

To make the notion of large neighborhood clear, we’ll first introduce the well known 1-

exchange and 2-exchange neighborhoods, which are small polynomially sized neighborhoods.
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Given a coloring, a 1-exchange move changes the color of exactly one node and a 2-exchange

move swaps the colors of two vertices. The corresponding neighborhoods for these moves

are the set of colorings that can be obtained by performing a single move.

We consider the neighborhoods proposed by Boykov et al. [12] for energy minimization

problems in computer vision, and use these neighborhoods to solve the GCP. In the following

subsections, we formally describe these neighborhoods and the corresponding moves, which

are explained best in terms of partitions. Then we describe how to find the optimal moves by

using graph cuts. The structures of the graphs, the cuts on these graphs, and the properties

of the cuts are also explained in detail.

3.1.1 Moves and Neighborhoods

The first neighborhood is the α-β-swap: for a pair of colors {α, β}, this move exchanges the

colors between an arbitrary set of vertices colored α and another arbitrary set colored β.

The second neighborhood we consider is α-expansion: for a color α, this move assigns the

color α to an arbitrary set of vertices.

The GCP can be represented as a partitioning problem, in which a feasible coloring f

corresponds to a partition of the set of vertices into K sets such that no edge exists between

two vertices from the same color class. Let V = {Vl|l ∈ L} be such a partition, where L is

the set of colors and Vl = {v ∈ V |f(v) = l} is the subset of vertices assigned color l ∈ L.

Given a pair of colors (α, β), a move from a partition V (coloring f) to a new partition

V
′
(coloring f

′
) is called an α-β-swap if Vl = V

′
l for any color l 6= α, β. This means that

the only difference between V and V
′

is that some vertices that were colored α in V are

now colored β in V
′
, and some vertices that were colored β in V are now colored α in V

′
.

Given a color α, a move from a partition V (coloring f) to a new partition V
′
(coloring

f
′
) is called an α-expansion if Vα ⊂ V

′
α and V

′
l ⊆ Vl for any label l 6= α. In other words, an

α-expansion move allows any set of vertices to change their colors to α.
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3.1.2 Size of the Neighborhoods

For an α-β-swap, each vertex either keeps its current color or switches to the other one.

Since each partition has Ω(n) vertices, the possible solutions that can be reached by one

swap move is 2Ω(n).

For an α-expansion, each vertex that is not colored α either keeps its old color or

acquires the new color α. Since there are Ω(n) such vertices, the possible solutions that can

be reached by one expansion move is 2Ω(n). These imply:

Lemma 1 The size of both neighborhoods is 2Ω(n).

3.1.3 Graph Cuts

The important part of the local search algorithms, which are presented in the following

sections, is efficiently finding the best neighboring solution to the current solution by using

graph cuts. Let G = (V, E) be a connected and undirected edge weighted graph. A cut

C of G is a minimal subset of E, which increases the number of connected components by

exactly one. The weight (or cost) of a cut C is the sum of the weights of edges in the cut

and is represented by w(C). A maximum cut (or a maxcut) is then defined as a cut of

maximum weight.

3.1.4 Finding the Optimal Swap Move

Given a coloring f and a pair of colors {α, β}, we want to find a coloring f̂ that minimizes

the number of conflicts over all colorings within one α-β-swap of f . Our technique is

based on computing a coloring that corresponds to a maximum cut on the subgraph Gαβ =

(V αβ ,Eαβ), which is a clique over the vertices colored with α or β in f . For all (i, j) ∈ Eαβ ,

we assign a weight equal to one if (i, j) ∈ E and a weight equal to zero if (i, j) /∈ E.

The latter ensures that Gαβ is connected. The structure of the graph Gαβ is illustrated in

Fig. 3.1.
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Figure 3.1: An example of Gαβ . The set of vertices are V αβ= Vα ∪ Vβ where Vα = {i, ..., j}
and Vβ = {x, ..., y}. Solid edges are induced edges and have weight 1. Dashed edges are
artificial edges and have weight 0, which ensure that Gαβ is connected.

Every edge, with a weight 1, between the vertices of the same color is a conflict. Every

swap move defines a new bipartition of the vertex set V αβ , possibly with a different number

of conflicts. Notice that every cut in this graph defines a swap move that results a bipartition

of the vertex set, thus a new coloring. In order to obtain the optimal swap move that results

with minimum number of conflicts, we need to minimize the total weight of edges within the

partitions. Notice that this is equivalent to maximizing the total weight of edges between

the two partitions, which is equivalent to solving a maxcut problem on Gαβ . After finding a

maxcut, the vertices in one partition are going to be colored α, and the vertices in the other

partition will be colored β. The selection of which partition will be colored α is arbitrary.

This implies:

Theorem 1 Let Gαβ be constructed as described above for a given f and {α, β} and let

T be the total weight of edges in Gαβ. A coloring fC corresponding to a cut C on Gαβ

is one α-β-swap away from the initial coloring f . Moreover the optimal α-β-swap move

is equivalent to a maxcut C∗ in Gαβ and the number of conflicts within Gαβ for the new

coloring fC∗ is x if w(C∗) = T − x.
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3.1.5 Finding the Optimal Expansion Move

Given an input coloring f and a color α, we want to find a coloring f̂ that minimizes the

number of conflicts over all colorings within one α-expansion of f . Our technique is based

on computing a coloring that corresponds to a maximum cut on the graph Gα = (V α,Eα).

The structure of this graph is determined by the current partition V and by the color α, so

the graph dynamically changes after each iteration.

The structure of the graph is illustrated in Fig. 3.2. The set of vertices include all

vertices v ∈ V . Moreover it includes two terminals α and α, which are auxiliary vertices

representing the color α in consideration and the rest of the colors, respectively. In addition,

we have six types of auxiliary vertices. For each edge that is incident to two vertices with

color α, we create an auxiliary vertex of type A1. For each edge that is incident to exactly

one vertex with color α, we create an auxiliary vertex of type A2. For each adjacent vertex

pair such that neither vertex in the pair is colored with α, we create two auxiliary vertices

of types B1 and B2 if the pair has different colors. If they are colored with the same color,

say γ, we create two vertices of types D1 and D2.

We now explain the way we connect the vertices by edges with different wights. The

weights assigned to these edges are summarized in Table 3.1. The two terminals are con-

nected by an edge with a very high weight M to ensure that the maxcut that is found

separates the two terminals α and α. Each vertex v ∈ V is connected by an edge to the

terminals α and α. Each pair of adjacent vertices {i, j} ∈ V is connected by edges to the

auxiliary vertices corresponding to that pair. Each pair of adjacent vertices such that nei-

ther of them are colored with α are connected by an edge. In addition to these, type A1,

A2, B1, and D1 vertices are connected by an edge to the terminal α, and type B2 and D2

vertices are connected by an edge to the terminal α. As a result, each adjacent vertex pair

and the auxiliary vertices corresponding to the pair and the edges incident to these vertices

form four different structures, which we call as gadgets. The four different gadgets that

correspond to four edge types of the original graph G are illustrated in Fig. 3.2. Formally,
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Figure 3.2: An example of Gα. Dashed edges have weight 0. The type sets for auxiliary
vertices: T={α, α}, A1={ij}, A2={jk}, B1={kl}, B2={lk}, D1={lm}, D2={ml}

for an edge (i, j), there are four possible situations depending on the colors of the vertices

incident to those edges:

1. f(i) = f(j) = α

2. f(i) = α, f(j) 6= α, or f(i) 6= α, f(j) = α

3. f(i) 6= α, f(j) 6= α, f(i) = f(j)

4. f(i) 6= α, f(j) 6= α, f(i) 6= f(j)

Any cut C on Gα, which separates the two terminals α and α, must include exactly

one of the edges that connect v ∈ V to the terminals. This defines a natural coloring fC

corresponding to a cut C on Gα. Formally,

fC(v) =





α, if (v, α) ∈ C

f(v), if (v, α) ∈ C
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Table 3.1: The weights assigned to the edges in the graph presented in Fig. 3.2.

edge weight for example(Fig. 3.2)
(v, α) 0 v ∈ V (i, α),(j, α),(k, α),(l, α),(m,α)
(v, α) −M v ∈ Vα (i, α),(j, α)
(v, α) 0 v ∈ V \Vα (k, α),(l, α),(m,α)
(a, α) −1 a ∈ A1, A2, B1, D1 (ij , α),(jk, α),(kl, α), (lm, α)
(b, α) 0 b ∈ B2 (lk, α)
(c, α) −1 c ∈ D2 (ml, α)
(v, a) −0.5 v ∈ Vα, a ∈ A1 (i, ij), (ij , j)
(v, a) −1 v ∈ V \Vα, a ∈ A2 (jk, k)
(v, a) 0 v ∈ Vα, a ∈ A2 (j, jk)
(v, b) −0.5 v ∈ V \Vα, b ∈ B1, D1, D2 (k, kl),(l, kl),(l, lm),

(l, ml),(m, lm),(m,ml)
(v, b) 0 v ∈ V \Vα, b ∈ B2 (lk, k), (lk, l)
(v, w) 0.5 v, w ∈ V \Vα, f(v) 6= f(w) (k, l)
(v, w) 1 v, w ∈ V \Vα, f(v) = f(w) (l, m)
(α, α) M (α, α) (α, α)

In other words, a vertex v is assigned color α if the cut C separates v from the terminal

α and, v is assigned its old color f(v) if C separates v from α. Clearly this implies:

Lemma 2 A coloring fC corresponding to a cut C on Gα, which separates the two terminals

α and α, is one α-expansion away from the initial coloring f . Also, an α-expansion move

is equivalent to a cut C on Gα, which separates the two terminals α and α.

For each of the four gadgets, a maxcut C on Gα severs some of the edges of the gadgets,

and the sum of the weights of the edges severed is consistent with whether the corresponding

edge (i, j) is a conflict or not in fC .

Property 1 For any maxcut C and for any edge (i, j) ∈ E such that at least one of i and

j is colored with α in f

a) If (α, i), (α, j) ∈ C then either (α, ij) ∈ C or (i, ij), (ij , j) ∈ C

b) If (α, i), (α, j) ∈ C then no other edge from the gadget is in C
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Figure 3.3: Properties of a maxcut C on Gα for two vertices i,j ∈ V such that at least one
of them is colored with α.

c) If (α, i), (α, j) ∈ C then either (i, ij) ∈ C or (α, ij), (ij , j) ∈ C

d) If (α, j), (α, i) ∈ C then either (ij , j) ∈ C or (α, ij), (i, ij) ∈ C

Property 1 follows from the maximality of w(C) and it is illustrated in Fig. 3.3.

In the case that f(i) = f(j) = α , since the weight of the edges that connect i and j to

α has weight −M , the only maxcut possible is one of the cuts described in Property 1(a).

Since both of the cuts separate i and j from α, the colors of i and j stay unchanged: fC(i)

= fC(j) = α. If (α, ij) ∈ C, or if (i, ij), (ij , j) ∈ C then the cost is −1. In both cases, the

cost incurred is truly consistent with the fact that (i, j) is a conflict in fC .

In the case that one of i and j is colored with α in f , assume w.l.o.g. f(i) = α, f(j)

= β, the possible cuts are the ones described in Property 1 (a) or (c). The cuts that sever

(i, α) are not possible since the weight of (i, α) is −M . The cost of the cuts having Property

1(a) is −1, which is consistent with the fact that (i, j) is a conflict in fC . The cost of the

cuts having Property 1(c) is 0, which is consistent with the fact that (i, j) is not a conflict

in fC .

Property 2 For any maxcut C and for any edge (k, l) ∈ E such that f(k) 6= α, f(l) 6= α:
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Figure 3.4: Properties of a maxcut C on Gα for two vertices k,l ∈ V such that none of them
is colored with α.

a) If (α, k), (α, l) ∈ C then either (α, kl) ∈ C or (k, kl), (kl, l) ∈ C

b) If (α, k), (α, l) ∈ C then either (α, lk) ∈ C or (k, lk), (lk, l) ∈ C

c) If (α, k), (α, l) ∈ C then (k, kl), (lk, l) ∈ C

d) If (α, l), (α, k) ∈ C then (k, lk), (kl, l) ∈ C

Property 2 follows from the maximality of w(C) and from the fact that no subset of C

is a cut. Property 2 is illustrated in Fig. 3.4.

In the case that f(k) = f(l) = β, all the cuts described in Property 2 are possible. The

cost of the cuts that have Property 2(a) or (b) is −1, which is consistent with the fact that

(k, l) is a conflict in fC in both cases. The cost of the cuts that have Property 2(c) or (d)

is 0, which is consistent with the fact that (k, l) is not a conflict in fC in either case, since

the color of exactly one of k, l is changed to α.

In the case that f(k) = β, f(l) = γ, all the cuts described in Property 2 are possible.

The cost of the cuts that have Property 2(a) is −1, which is consistent with the fact that

(k, l) is a conflict in fC . The cost of the cuts that have Property 2(b), (c) or (d) is 0, which

is consistent with the fact that (k, l) is not a conflict in fC in those cases, since the color of
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at least one of k, l is not changed to α. Lemma 2, Property 1 and Property 2 implies:

Theorem 2 A coloring fC∗ corresponding to a maxcut C∗ on Gα is one α-expansion away

from the initial coloring f . Moreover the optimal α-expansion move is equivalent to a maxcut

C∗ in Gα and the number of conflicts for the new coloring fC∗ is x if w(C∗) = M − x.

3.2. Algorithms

In this section we first introduce swap-move, check-bipartite and expansion-move algo-

rithms. These three algorithms are used as subroutines in the expansion-swap algorithm,

which is the main algorithm.

3.2.1 Swap-Move Algorithm

Input: A coloring f of G with K colors.

1. Set Success:=0, Any Imp(swap):=0

2. Set Improvement(swap):= 0

3. For each pair of colors {α, β} ⊂ L

3.1 Find f̂ that minimizes the number of conflicts among all possible new colorings

within one α-β-swap of f

3.2 IF the number of conflicts is reduced,

f := f̂ , Improvement(swap):=1, Any Imp(swap):=1

4. IF f has no conflicts, return f with Success := K

5. IF Improvement(swap) = 1, goto 2

6. Return f with Success:= 0 & Any Imp(swap).

3.2.2 Expansion-Move Algorithm

Input: A coloring f of G with K colors.
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1. Success:=0, Any Imp(expansion):=0

2. Set Improvement(expansion):= 0

3. For each color α ∈ L

3.1 Find f̂ that minimizes the number of conflicts among all possible new colorings

within one α-expansion of f

3.2 IF the number of conflicts is reduced,

f := f̂ , Improvement(expansion):=1, Any Imp(expansion):=1

4. IF f has no conflicts, return f with Success:= K & Any Imp(expansion)

5. IF Improvement(expansion)= 1, goto 2

6. Return f with Success:= 0 & Any Imp(expansion).

3.2.3 Check-Bipartite Algorithm

If the conflict graph of an infeasible coloring f of G with K colors is bipartite, one can

remove all conflicts without creating new conflicts and end up with a feasible K +1 coloring

by coloring the vertices of one partition with a new color K + 1. A short algorithm based

on this observation is given below.

Input: A coloring f of G with K colors.

1. If f has conflicts, let G
′
= (V

′
,E

′
) be the subgraph induced by the conflicting vertices

1.1 Starting from an arbitrary source vertex, color the vertices and their neighbors

in alternation with colors α and β.

1.2 If the resulting coloring is proper, then G
′

is bipartite. Introduce a new color

K + 1 to color the vertices in one partition, return f with Success:= K + 1.

3.2.4 Expansion-Swap Algorithm

Expansion-swap is the main algorithm that takes advantage of both neighborhoods intro-

duced and uses the swap-move, check-bipartite and expansion-move algorithms as subrou-
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tines. Namely, when the swap-move no longer improves the current solution, expansion-

move tries to improve the current solution without starting from scratch. When expansion-

move is unable to improve the solution, swap-move starts running again. When neither

algorithm is able to improve the solution, first we check if the conflict graph is bipartite

with the Check-bipartite algorithm. If it is not bipartite, then at Step 8, a new color K + 1

is introduced by finding f̂ that minimizes the number of conflicts among f
′

within one

(K + 1)-expansion of f .

Introducing a new color by an expansion move is a better approach than introducing it

by finding an independent set on the conflict graph, since expansion allows for the creation of

new conflicts in exchange for removing more current conflicts. However in the independent

set case, coloring adjacent vertices with the new color is not permitted. This is easy to

see when we assume that the conflict graph is a dense graph, such as a clique, where the

maximum independent set is only one vertex.

Introducing the new color K + 1 will definitely improve the solution if not actually

remove all the conflicts. After this improvement, the swap-move phase will search for a

better solution, and the whole cycle repeats until a feasible coloring is found.

Input: A graph G and an initial number of colors K.

1. Randomly color G with K colors, resulting in coloring f

2. Swap-move(G, f , K)

3. IF Success = 0, Expansion-move(G, f , K)

4. IF Success > 0 return f

5. IF Any Imp(expansion) = 1, Swap-move(G, f , K); ELSE goto 7

6. IF Success > 0 return f ;

ELSE IF Success = 0 & Any Imp(swap) = 1, goto 3

7. Check-bipartite(G, f , K)
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8. IF Success = 0, find f̂ that minimizes the number of conflicts among all possible new

colorings within one (K + 1)-expansion of f , set f := f̂

9. IF f has no conflicts, return f with Success := K + 1; ELSE set K := K + 1, goto 2.

3.2.5 Finding a Maximum Cut

Given an undirected graph G with edge weights, the MAX-CUT problem consists of finding

a maxcut of G. MAX-CUT is a well-known NP-Hard problem[35]. Since all our algorithms

rely on solving MAX-CUT problems several times, the solution times for our algorithms can

be expected to be out of our limits for a local search heuristic. So rather than determining

the maxcut at each move, we can find a “good” cut, which has a weight that is close to the

weight of a maxcut. This allows us to search the introduced neighborhood approximately

and fast. However, since Theorem 2 is dependent on the cut found being a maxcut, we can

not use the total weight of the cut found to calculate the number of conflicts. But notice

that we can still use any cut to find a new coloring as Lemma 2 holds for any cut. For

this reason, we use the cut obtained to define the new coloring and we calculate the actual

number of conflicts by checking the adjacency matrix and the new coloring.

There are many heuristic and approximation algorithms that have been computationally

tested and/or with theoretical performance guarantee. Goemans and Williamson [36] pro-

posed a randomized algorithm that uses semidefinite programming to achieve a performance

guarantee of 0.87856. More recent algorithms for solving the semidefinite programming re-

laxation are particularly efficient, because they exploit the structure of the MAX-CUT

problem. Burer, Monteiro, and Zhang [16] proposed a rank-2 relaxation heuristic for MAX-

CUT and described a computer code, called Circut [15], that produces better solutions

in practice than the randomized algorithm of Goemans and Williamson. Circut does not

assume the edge weights are positive. This property is necessary for our algorithm as the

graphs created by our algorithm have edges with negative weights. Moreover, since the

performance of Circut on many different problems has been shown to be very good, and the
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code is available for outside use, we decided to use Circut to solve MAX-CUT problems in

our algorithms.

3.3. Experimental Results

We first give the implementation details of our algorithms and describe the instances in this

section. We then present our experimental results.

3.3.1 Implementation Details

Our algorithm is implemented in C. Since the MAX-CUT solver code, Circut, is imple-

mented in Fortran90, the input/output transaction between the main code and Circut is

made through text files. For large size problems, writing into and reading from files takes

very long times. This becomes a serious issue especially for the expansion graphs created

for the expansion move since the size of the expansion graphs are much larger than the

original graph. To overcome this disadvantage, we used the following strategy for large

graphs: Expansion moves were only used for introducing a new color when swap-move is

stuck with the current solution. We introduce the new color by finding the best expansion

move on the conflict graph rather than the original graph, since the color of non-conflicting

vertices do not change during an expansion move. The conflict graph is smaller than the

original graph in almost all cases, and becomes smaller as the number of conflicts is reduced

during the execution of the algorithm. This observation made it possible for us, not fully

but at least partially, to use the expansion move idea for large instances.

In addition to the modification described above, we have made two more changes in

the original expansion-swap algorithm in order to decrease the execution time: First, we

use the simple 1-exchange moves after Step 5 and Step 9 of the expansion-swap algorithm.

Second, after introducing a new color at Step 9, we have looked at the best swap moves

only between the new color and the old ones, but not between all the old colors.
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3.3.2 Instance Description

We tested the algorithms on some of the benchmark instances proposed for COLOR02/03/04

[83]. Here we briefly describe the instance classes.

le: Leighton graphs with guaranteed coloring size. These are structured graphs gener-

ated by a procedure[57].

queen: Given an n by n chessboard, a queen graph is a graph with n2 nodes, each corre-

sponding to a square of the board. Two nodes are connected by an edge if the corresponding

squares are in the same row, column or diagonal.

myciel: Graphs based on the Mycielski transformation. These graphs are difficult to

solve because they are triangle free (clique number 2) but the coloring number increases in

problem size.

k-Insertions and FullIns: These are a generalization of myciel graphs with inserted

nodes to increase graph size but not density.

DSJ: DSJC are standard (n,p) random graphs. DSJR are geometric graphs. These are

instances from Johnson [46].

3.3.3 Summary of Results

We run the expansion-swap algorithm on a 450 MHz Sun UltraSPARC-II workstation with

1024MB of RAM. We tested our algorithms on some of the benchmark instances proposed

for COLOR02/03/04 [83].

Table 3.2 and Table 3.3 compare the results of the Expansion-Swap algorithm(ES) to

the results of some other heuristics. These results are summarized in [83]. Not all heuristics

reported their results for all instances. Thus many cells in the table are empty. The columns

in the table consist of the name of the graph, number of vertices (n), number of edges

(m), density of the graph in percentages (d), optimum solution(OPT), lower bound(LB),

results due to (Croitoru et al.(CL)[22], Galinier et al.(GH)[32], Bui and Patel(BP)[14],

Phan and Skiena(PS)[72], Chiarandini and Stuetzle(CS)[18], results for expansion-swap
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(ES) algorithm, and time in seconds for ES (time).

Of the 68 test instances solved with the Expansion-Swap Algorithm, there are 18 in-

stances with reported chromatic numbers [83]. Of these 18 instances our algorithm found

the optimal solution for 10 of them.

The results of the ES algorithm for 32 instances are either equal to the optimal solution,

or as good as the best result found by other heuristics listed. The results of ES for these

instances are highlighted in bold in Tables 3.2 and 3.3. For 15 instances, ES either could not

find the optimal solution or at least one of the other heuristics obtained a better solution.

For 14 instances, ES obtained the worst results. And for the remaining 7 instances, we

cannot make a comparison as we only have the results of ES but we see that these results

are only one more than the clique number of 4 of these 7 instances.

In terms of instance types, we can say that our algorithm performed very well on myciel

and FullIns instances, and on school1-nsh and mugg100-25. It also has a good performance

on all other graphs except DSJ instances and latin-square-10. For DSJ and latin-square,

the quality of the solutions are not as good, especially for the large and dense instances.

In terms of solution times, 16 instances are solved in less than 1 second, 39 instances

are solved in more than 1 second but in less than 1 minute, 5 instances are solved in more

than 1 minute but less than 4 minutes, 4 instances are solved in more than 4 minutes but

in less than 8 minutes, and the remaining 4 instances are solved in more than 8 minutes

but in less than 16 minutes.

Figure 3.5 presents the relationship of the solution time with the density of the graphs.

The x-axis is the ordered list of 68 instances solved. The instances are ordered in ascending

order of density. Instance number 1 is the least dense and instance number 68 is the most.

The y-axis is the solution time. As one would expect, the hardest instances are those with

high density, though this does not fully explain the heuristic’s running time since some high

density instances can be solved quickly.
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Table 3.2: Comparison of the results of the expansion-swap(ES) algorithm to the results of
other heuristics.

Graph n m d OPT LB CL GH BP PS CS ES time
le450 5a 450 5714 6 5 5 5 14 5 3.6
le450 5b 450 5734 6 5 5 5 13 5 8.6
le450 5c 450 9803 10 5 4.2
le450 5d 450 9757 10 5 5 16 5 4.1
le450 15a 450 8168 8 15 18 15 23 15 18 51.2
le450 15b 450 8169 8 15 15 18 15 23 15 18 46.4
le450 15c 450 16680 17 15 27 15 32 16 25 90.8
le450 15d 450 16750 17 9 15 31 16 26 36.5
le450 25a 450 8260 8 26 21.3
le450 25b 450 8263 8 26 19.8
le450 25c 450 17343 17 25 26 36 26 32 29.3
le450 25d 450 17425 17 13 26 37 26 31 101
queen8 8 64 728 36 9 9 10 7.2
queen8 12 96 1368 30 13 4.5
queen9 9 81 2112 65 10 11 12.2

queen10 10 100 2940 59 13 3.5
queen11 11 121 3960 55 12 14 4.5
queen12 12 144 5192 50 15 12.8
queen13 13 169 6656 47 14 14 16 108
queen14 14 196 8372 44 17 75.9
queen15 15 225 10360 41 17 19 9.9
queen16 16 256 12640 39 21 18 19 30.0

myciel5 47 236 22 6 0.5
myciel6 95 755 17 7 7 0.9
myciel7 191 2360 13 8 8 1.4

1-Insertions 4 67 232 10 4 4 4 5 0.4
1-Insertions 5 202 1227 6 4 6 6 6 0.9
1-Insertions 6 607 6337 3 7 15 7 5.1
2-Insertions 3 37 72 11 4 0.2
2-Insertions 4 149 541 5 4 4 5 4 5 5 5 0.4
2-Insertions 5 597 3936 2 4 6 11 6 4.2
3-Insertions 3 56 110 7 4 0.2
3-Insertions 4 281 1046 3 3 5 5 5 5 1.2
3-Insertions 5 1406 9695 1 6 29 6 6 35.4
4-Insertions 3 79 156 5 3 4 4 0.2
4-Insertions 4 475 1795 2 3 7 5 2.3
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Table 3.3: Continuation of Table 3.2.

Graph n m d OPT LB CL GH BP PS CS ES time
1-FullIns 3 30 100 23 4 4 4 4 0.2
1-FullIns 4 93 593 14 5 5 5 5 0.4
1-FullIns 5 282 3247 8 6 6 6 7 6 1.1
2-FullIns 3 52 201 15 5 5 5 0.3
2-FullIns 4 212 1621 7 5 6 7 6 0.7
2-FullIns 5 852 12201 3 6 7 23 7 9.1
3-FullIns 3 80 346 11 5 5 6 6 0.4
3-FullIns 4 405 3524 4 6 7 11 7 7 4.6
3-FullIns 5 2030 33751 2 6 8 59 8 8 53.7
4-FullIns 3 114 541 8 7 7 7 7 1.0
4-FullIns 4 690 6650 3 7 8 19 8 7.6
4-FullIns 5 4146 77305 1 9 9 11 325
5-FullIns 3 154 792 7 8 8 8 8 2.2
5-FullIns 4 1085 11395 2 27 10 11.8
DSJC125.1 125 736 9 5 5 5 7 6 1.0
DSJC125.5 125 3891 50 12 20 18 21 21 11.8
DSJC125.9 125 6961 90 30 42 46 48 50.2
DSJC250.1 250 3218 10 8 8 9 10 3.3
DSJC250.5 250 15668 50 13 37 22 28 36 46.9
DSJC250.9 250 27897 90 35 72 79 82 230
DSJC500.1 500 12458 10 6 16 12 20 12 15 42.0
DSJC500.5 500 62624 50 16 66 48 51 50 61 257
DSJC500.9 500 112437 90 42 126 127 156 838
DSJR500.1 500 3555 3 12 12 12 12 5.3
DSJR500.1c 500 121275 97 63 63 56 105 94 418.1
DSJR500.5 500 58862 47 26 26 129 155 124 143 474
DSJC1000.1 1000 49629 10 6 20 41 26 50.5
DSJC1000.5 1000 249826 50 17 84 111 793
DSJC1000.9 1000 449449 90 54 224 289 797
latin sq 10 900 307350 76 101 99 123 901
school1 nsh 352 14612 24 14 14 14 33 14 29.3
mugg100 25 100 166 3 4 0.3
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Figure 3.5: Relationship of the solution time with the density of the graphs.

3.4. Summary and Future Research

We studied a new local search algorithm using two very large-scale neighborhoods for the

GCP. The first type of move allows us to swap the colors of sets of vertices. The second

type of move allows any set of vertices to change their colors to a particular color. The

algorithm proposed combines these two types of moves.

The key part of the algorithm is efficiently finding the best neighboring solution to the

current solution by solving a MAX-CUT problem. Since MAX-CUT is a hard problem, we

considered approximate algorithms that are able to find “good” solutions very fast. It is

important to note that the success of the algorithms presented in this paper hinges on fast

algorithms that can solve MAX-CUT problems optimally or approximately.

This study is one of the first attempts to solve the GCP using local search in very large

neighborhoods. Although we could not fully take advantage of the neighborhoods by solving

the MAX-CUT problems optimally, the results we present here are promising. However,

further research efforts are still required to make large scale neighborhood techniques fully
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competitive.

One possible extension is to use exact or better approximate algorithms and to fully

integrate them with the main code to solve the MAX-CUT problems. Another one is to

investigate if a best-improvement variant of the Expansion-Swap algorithm would perform

better than the current first-improvement search approach we use. That is instead of

accepting the first improving move, using the move that gives the best improvement in

conflicts.





Chapter 4

Home-Delivered Meals

Location-Routing Problem

The public, grant-making foundations, and corporate and private donors, fund the non-

profit sector in the United States. With its funding, this sector provides valuable human

services for underprivileged and needy segments of the population.

Facility location planning for non-profit delivery systems is a critical, but difficult prob-

lem. We find that there are three distinct types of human services in regard to facility

location planning: home delivered services (e.g., meals on wheels and home nursing), site

delivered services (e.g., literacy training and youth recreation), and residential programs

(e.g., elderly nursing homes and drug treatment programs). The most difficult of the three,

and one that this chapter addresses, is home-delivered services.

Home-delivered meals (HDM) provision refers to the task of delivering hot meals to the

homebound infirm and elderly to ensure adequate nutrition and independent living. HDM,

often referred to as “meals-on-wheels,” is a service usually provided by volunteers who cook

and deliver meals. This service is inexpensive in terms of direct expenditures by volunteers.

However, coordination is often difficult due to variations in demands or supply of volunteers,

and financial support for purchase of meal ingredients. HDM planning is a topic of interest

67
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to public-sector planning agencies and funding bodies: many regions are experiencing a

shift in demand for HDM service as a result of outmigration from central cities and aging of

suburban populations. Such population shifts result in increased demand for HDM service

in areas that are currently underserved.

This chapter is organized as follows. We define HDM-LRP and summarize the related

literature in Section 4.1. Section 4.2 summarizes the proposed solution method. Next,

computational results on benchmark problems are given in Section 4.3. In Section 4.4, we

present the case study on the Allegheny County, PA data. Section 4.5 summarizes and

identifies a number of research extensions.

4.1. Problem Definition and Related Literature

The general planning problem that this paper addresses is the location-routing problem for

home-delivered meals, referred to as HDM-LRP. In this problem, the goal is to simulta-

neously choose “facility” (kitchen) locations that provide “products” (meals) to spatially

dispersed customers via routes driven by multiple vehicles. Each vehicle leaves a facility,

visits multiple customer locations, and returns to the same facility when customer deliver-

ies are completed. Each customer, if served, must be served on a single route by a single

kitchen. In addition, the duration of each route should not exceed the maximum allowable

duration. Furthermore, the number of routes assigned to each kitchen should not exceed

the maximum allowable number of routes. Finally, a kitchen, if located, cannot serve more

than its maximum capacity of meals.

Traditional LRPs have minimized the sum of fixed facility location costs, vehicle op-

erating costs, and vehicle routing costs, the latter usually approximated by total distance

travelled [71, 56]. If current demand cannot be met by a realistic set of kitchens, an effec-

tiveness measure must be also optimized. Thus, we treat HDM-LRP as, fundamentally, a

multi-objective planning problem: namely, minimizing the total cost, and maximizing the
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total demand served.

For the purposes of model simplicity, a number of assumptions are made. First it is

assumed that the planning horizon is a single period (but see results presented in [51]

for a multi-period LRP). Second, while it is impractical to identify exact locations of all

customers currently receiving HDM services in typical study areas, it is assumed that exact

customer locations are known in the current planning period (but see results presented in

[52] for a stochastic LRP).

LRP is a generalization of two already difficult problems: the Facility Location Problem

(FLP) and the Vehicle Routing Problem (VRP). Locational decisions are usually made on a

strategic level, whereas routing decisions are solved at an operational level. A mathematical

formulation of HDM-LRP is given in Appendix 6.2. This model, in the traditional three-

index row-based style, is based on those presented in [71, 50].

Both FLP and VRP have been shown to be NP-hard [20, 48, 58], so the location routing

problem is NP-hard as well. There are few exact-solution approaches to LRP. One of the

earliest studies was an exact algorithm for the single facility LRP [53]. They formulated the

problem as an integer-linear program and used a constraint relaxation technique to solve it.

Following this study, a similar approach is used to solve both the uncapacitated and capac-

itated multi-facility LRP [55, 54]. A three-layer multi-commodity, capacitated distribution

system is formulated as a nonlinear mixed integer program, and Benders’ decomposition

method is applied [11].

Due to the exponential growth in the problem size, exact methods for LRP have been

limited to small and medium size instances. Indeed, LRPs have been solved to optimality

for at most 80 nodes [56]. In [10], optimal solutions to LRP for 25 facilities and 150

customers, under the assumption that vehicles do not have to return to the facility after

making deliveries, is reported.

The difficulty of LRP in general precludes exact techniques for realistically sized prob-

lems. However, researchers have developed a number of heuristic methods for solving LRP.
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These include location-allocation first, route second [63], improvement/exchange [69], and

a combination of solutions to multiple related combinatorial optimization problems [71, 40].

In recent years metaheuristics are increasingly used to solve LRPs. These include tabu

search [77], nested heuristic methods with tabu search [68], two-phase tabu search [85], sim-

ulated annealing [91], and threshold accepting and simulated annealing [60]. The literature

is inconclusive as to the relative efficacy of these alternative approaches. In this paper,

HDM-LRP is solved using a Genetic Algorithm (GA) and this appears to be the first study

that uses GA to solve LRP.

LRPs are typically solved by decomposing the larger problem into subproblems, and

then solving these subproblems either sequentially or iteratively. We are not aware of any

justification for this method aside from the computational inefficiency of solving LRP as a

whole. We suspect that another reason might be that most of the heuristics proposed for

solving LRP are local search variants. Thus, it is necessary to define a proper representation

of a solution and a neighborhood structure. This is straightforward for the subproblems FLP

and VRP, but finding a neat way of representing solutions and neighborhood structures for

the LRP is less clear. This may be due to the fact that the decisions for the two subproblems

are, by definition, unrelated; the idea of decomposition also seems quite intuitive. Moreover,

a significant amount of literature already exists for the subproblems. In this paper, we use

a holistic approach as opposed to the decomposition approach.

A review of the relevant literature finds scant research on the location-routing model

being applied to the home-delivered meals planning problem.

A Geographic Information Systems (GIS)-based interactive heuristic is implemented

in [38] to determine locations of HDM kitchens and routes by which volunteer drivers

should deliver meals to cover service gaps at least cost. Model results indicate that seven

additional kitchens could cover about 10 percent of the uncovered demand for HDM service

in Allegheny County.

The work in [38] is extended in [47] by formulating an explicit mathematical model for
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the HDM location-routing problem and by evaluating the GIS-based interactive heuristic

by comparing travel times generated by the heuristic to those imputed to actual HDM data.

There has been limited research in the more general area of HDM planning. Low-

technology approaches to designing HDM delivery routes for individual kitchens are pre-

sented in [7], but the authors did not address the problem of designing an entire network

of HDM kitchens and delivery drivers. A spatial decision support system for HDM-LRP

is developed in [88], but in using an location-allocation-first, route-second approach, this

paper does not address the multi-kitchen planning problem from an LRP perspective.

4.2. Solution Strategy

As discussed in the previous section, exact methods for LRP are computationally impracti-

cal for realistic instances. There remains a need for effective computational approaches to

solve large LRPs. Metaheuristics, such as tabu search, genetic algorithms, simulated an-

nealing, neural networks, and ant colony optimization, are widely used to solve important

practical combinatorial optimization problems. All of these aim to search the solution space

more effectively than conventional approaches. They show great promise in solving difficult

combinatorial problems such as LRP.

Among the metaheuristics mentioned, GA is an adaptive heuristic search method based

on population genetics, and it borrows its vocabulary from that domain. The basic concepts

of a GA were primarily developed in [42] and described later in [37]. The GA consists of

a population of chromosomes; in essence, a set of character strings that are analogous

to the base-4 chromosomes that we see in our own DNA that evolve over a number of

generations and are subject to genetic operators at each generation. Each chromosome

represents a potential solution to the problem being solved. This solution is obtained

by means of a encoding/decoding mechanism. Most of the developmental work of GA

theory was performed using a binary-coded GA, and, historically, is the most widely used
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representation. In a binary coding each chromosome is a vector comprised of zeroes and

ones, where each bit represents a gene. However different encodings are also possible.

Initially, a feasible set of chromosomes are needed, which can be generated randomly or

by using a heuristic. Each chromosome has an associated fitness value; a set of “best fit”

chromosomes from each generation survive into the next generation. The genetic operations

applied to chromosomes are crossover and mutation. Typically, crossover is defined such

that two individuals (the parents) combine to produce two more individuals (the children).

But asexual crossover or single-child crossover are defined as well, which referred to as

“reproduction” in this paper. The primary purpose of the crossover operator is to transmit

genetic material from the previous generation to the subsequent generation. Mutation is a

genetic operator that alters one or more gene values in a chromosome from its initial state.

The mutation operator introduces a certain amount of randomness to the search. It can

help identify solutions that crossover alone might not.

In this study, GAs are chosen to solve HDM-LRP for two reasons. First, as opposed

to the other metaheuristics, GA uses a population of solutions in each iteration, instead

of a single solution. Thus, the outcome of a GA is also a population of solutions, making

GAs suitable for solving multi-objective optimization problems. Since the ideal strategy

for multi-objective optimization requires multiple trade-off solutions to be found, a GA’s

population-approach can be suitably utilized so that it finds multiple solutions in a sin-

gle simulation run. Second, a review of the relevant research does not find any models

where GAs have been applied to LRP, but they have been successfully applied to its two

subproblems, namely Facility Location [21], and Vehicle Routing [81].

A GA for a particular problem must have the following five components [67]:

• a genetic representation for potential solutions to the problem,

• genetic operators that alter the composition of children,

• a way to create an initial population of potential solutions,
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• an evaluation function that plays the role of the environment, rating solutions in terms

of their “fitness”, and

• values for various parameters that the GA uses (population size, probabilities of ap-

plying genetic operators, etc.)

4.2.1 Representation and Genetic Operators

This paper proposes two different representation schemes with corresponding genetic oper-

ators for LRP, namely Facility-Route (F-R) Representation and Binary Representation.

Facility-Route (F-R) Representation

A set of possible facility locations {1, .., N} and a set of customers {N + 1, .., M + N} are

given. If facility i is open, the corresponding entry in the chromosome is 1, otherwise the

entry is 0. In addition, there is a segment in the chromosome for each open facility where

the first entry is the facility number, and the following entries are the customers on a route,

in order, followed by the same facility number at the end. If there is more than one route at

the same facility, each is separated by the facility number. The following example demon-

strates the representation of two solutions:

Example 1: Given four facility locations, {1, 2, 3, 4}, and ten customers, {5, 6, 7, 8, 9,

10, 11, 12, 13, 14}, we present Solution 1 and Solution 2 and their F-R representations.

Network representation of Solution 1 and Solution 2 are given in Fig. 4.1 and Fig. 4.2,

respectively.

Solution 1: F-R representation for Solution 1:

Facility 1: Route 1: 5-6-7; Route 2: 9-11 1 0 1 0
Facility 2: Closed 1 5 6 7 1 9 11 1
Facility 3: Route 1: 8-13-12-14-10 3 8 13 12 14 10 3
Facility 4: Closed
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Figure 4.1: Network representation of Solution 1. Rectangles represent facilities and trian-
gles represent customers. Shaded facilities (1 and 3) are open, others (2 and 4) are closed.
There are three routes: 1-5-6-7-1, 1-9-11-1, and 3-8-13-12-14-10

Solution 2: F-R representation for Solution 2:

Facility 1: Closed 0 1 1 1
Facility 2: Route 1: 12-7-10 Route 2: 13-14 2 12 7 10 2 13 14 2
Facility 3: Route 1: 8-9-6 3 8 9 6 3
Facility 4: Route 1: 5-11 4 5 11 4
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Figure 4.2: Network representation of Solution 2. Rectangles represent facilities and trian-
gles represent customers. Shaded facilities (2,3 and 4) are open, 1 is closed. There are four
routes: 2-12-7-10-2, 2-13-14-2, 3-8-9-6-3, and 4-5-11-4

F-R Genetic Operators

Facility Crossover: Two solutions are taken, and a one-point crossover is applied, where a

crossover point is randomly selected and all the data beyond that point is swapped between

the two parent chromosomes, using the binary genes corresponding to the facilities. Du-



Chapter 4. Home-Delivered Meals Location-Routing Problem 75

plicate customers are eliminated based on a predetermined dominance rule among the two

solutions for a particular offspring. This operator is not guaranteed to generate offspring

that serve all the customers currently served by the parents. This operator is demonstrated

in the following example:

Example 2: Given the two solutions in Example 1, and assuming that the crossover point

is selected after the second facility and that the parent that defines the first facility for

an offspring is the dominant one. So, for Offspring 1 (Offspring 2), all routes for facilities

transmitted from Solution 1 (Solution 2) are retained and duplicate customers in facili-

ties transmitted from Solution 2 (Solution 1) are removed. Facility Crossover is illustrated

below:

Binary Parts:

Solution 1: 1 0 |1 0 Offspring 1: 1 0 1 1
Solution 2: 0 1 |1 1 Offspring 2: 0 1 1 0

Non-Binary Parts Before Repair:

Offspring 1: 1 5 6 7 1 9 11 1 Offspring 2: 2 12 7 10 2 13 14 2
3 8 ¢9 ¢6 3 3 8 ½½13 ½½12 ½½14 ½½10 3
4 ¢5 ½½11 4

Non-Binary Parts After Repair:

Offspring 1: 1 5 6 7 1 9 11 1 Offspring 2: 2 12 7 10 2 13 14 2
3 8 3 3 8 3

Note that Offspring 1’s facility 4 is closed during the repair process, as all the customers

are removed from its routes. Note also that customers 10, 12, 13, and 14 are not served in

the first offspring, and customers 5, 6, and 9 are not served in the second offspring.

It is not hard to see that if the parents are feasible, then the offspring generated with

this operator are also feasible. The reason is as follows. Each facility that is open in an

offspring is also open in the parent that gave the genetic material corresponding to that

facility. Moreover, no extra customers are allocated to the facilities. Thus, the capacity
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constraints for the facilities in the offspring are all satisfied. In addition, the length of all

the routes of an offspring are no longer than the corresponding routes in the parents, since

the customers are either retained in their original routes or removed as duplicates. Finally,

the number of routes for each facility never increases in an offspring since there is no route

exchange between the facilities and also no new route is generated. However, some existing

routes from the non-dominant parent may be removed if all the customers on that route

are already inherited from the dominant parent.

Facility Reproduction: This operator does not promote a mutual exchange of genetic

material between two parents, but it operates in the following way: A parent receives a

fragment of genetic material from another parent, and inserts it as an initial set of open

facilities and routes. The fragment must consist of facilities that are not already open in

the receiving solution. After insertion, a repair process checks the original facilities and

routes of the receiving individual and removes all customers that also appear in the inher-

ited material. The donor is not modified. This operator can be considered as a special case

of facility crossover, except that it maintains coverage of all customers served by either of

the parents. This operator is demonstrated in the following example:

Example 3: Given Solutions 1 and 2 of Example 1, and assuming that Solution 2 donates

its second and fourth facilities. Facility Reproduction is illustrated below:

Binary Parts:

Solution 1: 1 0 1 0 Offspring 3: 1 1 1 1
Solution 2: 0 1 1 1

Non-Binary Parts Before Repair Non-Binary Parts After Repair

Offspring 3: 1 ¢5 6 ¢7 1 9 ½½11 1 Offspring 3: 1 6 1 9 1
2 12 7 10 2 13 14 2 2 12 7 10 2 13 14 2
3 8 ½½13 ½½12 ½½14 ½½10 3 3 8 3
4 5 11 4 4 5 11 4
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This operator also generates a feasible offspring from feasible parents. Every facility

(and the routes of it) that is received from the donor are absolutely untouched, so they re-

main feasible. The facilities from the receiver might loose customers if the same customers

are already inherited from the donor. But this can only decrease the amount of demand

served from those facilities, shorten the routes and decrease the number of routes. Thus,

feasibility is preserved.

Route Crossover: Take two solutions, and swap equal number of routes. Similar to

the Facility Crossover, this operator is not guaranteed to generate offspring that serve all

the customers even if the parents serve all the customers. This operator is demonstrated in

the following example.

Example 4: Swap the route of facility 3 in Solution 2 with the first route of facility 1

in Solution 1, and swap the route of facility 4 in Solution 2 with the second route of facility

1 in Solution 1. Route Crossover is illustrated below:

Binary Parts:

Solution 1: 1 0 1 0 Offspring 4: 1 0 1 0
Solution 2: 0 1 1 1 Offspring 5: 0 1 1 1

Non-Binary Parts Before Repair:

Offspring 4: 1 8 9 6 1 5 11 1 Offspring 5: 2 12 ¢7 10 2 13 14 2
3 ¢8 13 12 14 10 3 3 5 6 7 3

4 9 11 4
Non-Binary Parts After Repair:

Offspring 4: 1 8 9 6 1 5 11 1 Offspring 5: 2 12 10 2 13 14 2
3 13 12 14 10 3 3 5 6 7 3

4 9 11 4

If the parents are feasible, then the offspring generated with this operator might only

violate the capacity constraints of some facilities. However this can be avoided by verifying

that a facility’s capacity is not exceeded before allowing the exchange. The other constraints
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are not violated. The reason is as follows. The length of all the routes of an offspring are no

longer than the corresponding routes in the parents, since the customers are either retained

in their original routes or removed as duplicates. The number of routes for each facility

never increases in an offspring since route exchanges are only allowed between the same set

of facilities.

Route Reproduction: Similar to the Facility Reproduction, this operator also does not

promote a mutual exchange of genetic material between two parents. Instead, a route is

taken from the donor and attached to the closest feasible facility as a new route. Next, a re-

pair process checks the original routes of the receiving individual and removes all customers

that also appear in the inherited material. The donor is not modified. This operator can be

considered as a special case of route crossover, except the fact that it maintains coverage of

all customers served by either of the parents. This operator is demonstrated in the following

example.

Example 5: Take Solutions 1 and 2, and assume that Solution 1 donates the two routes

of its first facility; assume that the first route is attached to facility 3 and second route is

attached to facility 4 of Solution 2. Route Reproduction is illustrated below:

Binary Parts:

Solution 1: 1 0 1 0 Offspring 6: 0 1 1 1
Solution 2: 0 1 1 1

Non-Binary Parts Before Repair Non-Binary Parts After Repair

Offspring 6: 2 12 ¢7 10 2 13 14 2 Offspring 6: 2 12 10 2 13 14 2
3 8 ¢9 ¢6 3 5 6 7 3 3 8 3 5 6 7 3
4 ¢5 ½½11 4 9 11 4 4 9 11 4

If the parents are feasible, then the offspring generated with this operator might violate

the capacity constraints of some facilities. However this can be avoided by verifying that

a facility’s capacity is not exceeded before allowing the exchange. Similarly, the routes are
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5 6 7 8 9

0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1

1 0 1 1 1 2 1 3 1 4

1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1

Figure 4.3: Solution 1 in binary representation. From right to left, the first P=3 bits are
reserved for the facility where the customer is allocated. The next Q=1 bit is reserved for
the route that the customer is on. If it is 0, the customer is on route 1; if it is 1, the customer
is on route 2. Finally the last R=3 bits are reserved for the position of the customer on the
route.

not allowed to be attached to facilities that already has the maximum number of routes

allowed. The route length constraints are not violated since the length of all the routes of

an offspring are no longer than the corresponding routes in the parents.

Mutations

Customer Swap: Select two customers and swap them. Selected customers can belong to

the same route or to different routes.

Displacement: Select a sub-route and insert it into another place.

Clearly these operators might create an infeasible solution when applied to a feasible solu-

tion, so they should be applied with caution.

Binary Representation

In this representation, each customer is represented by a binary string of length P +Q+R.

From right to left, the first P bits are reserved for the facility to which the customer is

allocated. The next Q bits represent the route on which the customer is located. Finally

the last R bits are reserved for the position of the customer on the route. Thus, the total

length of a solution is N(P + Q + R). The binary representation of Solution 1 is given in

Fig. 4.3.
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Binary Genetic Operators

Below are two types of crossovers and a mutation for the Binary Representation.

One Point Crossover: A crossover point is randomly selected. All data beyond that

point is swapped between the two parent chromosomes. The resulting chromosomes are the

children. This operator is demonstrated in the following example. Notice that the exam-

ples provided for the binary genetic operators are distinct from the LRP examples examined

earlier.

Example 6: Parent 1: 11001|010 Offspring 7: 11001111

Parent 2: 00100|111 Offspring 8: 00100010

The offsprings generated by this operator is likely to generate infeasible solutions. The

reason is as follows. If a crossover point is selected such that the customers to the left of

the point from parent 1 and to the right of the point from parent 2 are concentrated on

some subset of facilities and/or routes, then the capacity constraint on those facilities and

route length constraint on the routes might be violated. The remaining constraint, number

of routes at each facility, might be violated only if the crossover point happens to be in the

segment reserved for the route number of a customer. In that case, the number of routes

of the facility that serves that customer might exceed the allowed limit.

Two Point Crossover: Two points are randomly selected. Everything between the two

points is swapped between the parent chromosomes, rendering two child chromosomes. This

operator is demonstrated in the following example.

Example 7: Parent 3: 11|001|010 Offspring 9: 11 |100|010
Parent 4: 00|100|111 Offspring 10: 00|001 |111
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This operator also is likely to generate infeasible offsprings. The reason is very similar

to the reason explained for the one point crossover.

Mutation: This simply inverts the value of a chosen gene (0 becomes 1 and 1 becomes 0).

Comparison of F-R and Binary Representations

One of the most desirable properties of genetic operators is enabling feasible parents to

produce feasible offspring. If the genetic operators do not have this property, then the

infeasible solutions must be addressed by some mechanism, such as penalizing infeasibilities,

removing infeasible solutions from the population.

As discussed in the corresponding sections, the Facility Crossover and Reproduction op-

erators of F-R Representation has this desirable property. Although Route Crossover and

Reproduction operators may create infeasible solutions when applied directly,any resulting

infeasibilities can be checked easily. However, the crossover operators of Binary Represen-

tation do not have this desirable property. This makes F-R Representation more attractive

than the Binary Representation.

F-R operators are harder to implement than the Binary operators. However, since the

feasibility issue is more important when compared to the easiness of implementation, we

choose the F-R representation as the basis for implementation.

4.2.2 Initial Population of Solutions

The initial set of solutions are formed by using two heuristics. The first one is a greedy

heuristic. Starting from a possible facility location, the closest customer is added to the

route until the time limit for that route is exceeded. Then, another route starts from the

same facility. This is repeated until the maximum number of routes allowed for the facility

is reached. After that, the same procedure is repeated for another possible facility location

until all customers are visited. This heuristic is run as many times as needed with a different
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sequence of possible facility considerations.

The second heuristic works as follows: A random set of facility locations is selected to

be open. Then, customers are assigned to the nearest open facility. When all the customers

are assigned, routes are formed at each open facility using the nearest neighbor approach.

4.2.3 Evaluation Function

We consider two objective functions for the HDM-LRP. The first minimizes total cost. The

other maximizes the number of customers served, or equivalently minimizes the number

of customers not served. For the single objective version of the problem we only consider

the first objective. For the bi-objective version of the problem we take both objectives and

combine them to create an evaluation function equal to the total cost divided by the number

of customers served. Thus, the fitness measure is the cost per customer served. A solution

with a low fitness value is considered a better solution.

One might argue that such a fitness value might result in a very low demand satisfaction

in the optimum solution. In fact the best solution is not serving any customers at all, which

results in a cost of zero. To prevent this, we require at least one of the facilities to be open.

Since there is a fixed facility cost associated with each facility, once a facility is opened,

increasing the demand served from that facility would result in a decrease in the cost per

demand since the fixed cost will be shared by more customers. The optimum solution,

therefore, balances the two objectives.

4.2.4 Additional Features

In order to increase the quality of the solutions we have added two more features to the

GA, which we explain in this section.
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Route Improvement:

After generating the initial population, a TSP heuristic is used to improve the vehicle

routes of the solutions. The heuristic algorithm is due to [61] and the C code that uses this

algorithm is due to [26]. This heuristic is also used to improve the routes of the populations

generated later in the execution of the GA. Since applying the improvement heuristic at

each generation will be time consuming, it is only applied to some of the generations.

For instance one option is applying the route improvement to populations at every 50th

generation. The frequency of the improvement is a parameter that can be adjusted by the

user.

Annealing Acceptance for Mutation Operators:

Given that the mutation operators cause random changes in the solutions, these changes

might deter a good solution and create an inferior solution. This is acceptable during

the initial generations but as the GA proceeds and the population evolves, mutations that

increase the cost of a solution may be harmful for the population. This observation lead

us to use an annealing type of approach to control the mutation operators. The increase

in the cost due to a mutation is limited by a parameter called “tolerance”, which decreases

as the number of generations increase. If the increase in the cost exceeds the tolerance,

the new solution obtained after a mutation is rejected and the original solution is restored.

The tolerance parameter is decreased at each iteration using an exponentially decaying

function dependent on the generation number. Thus, after several generations, the tolerance

approaches zero. Very few of the solutions obtained by mutations are accepted since the

probability of mutation is low and tolerance approaches zero. To balance the impact of this

mechanism, the probability of executing a mutation operator is increased exponentially as

the number of generations increase. So, as the number of generations increase the algorithm

tries to mutate more solutions and at the same time the proportion of mutations accepted

decreases as the tolerance approaches zero.
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4.2.5 The Algorithm

1. Set t = 0

2. Form Ninitial solutions to form the set CurrentSolutions(t).

3. Optimize Routes of solutions in CurrentSolutions(t).

4. While the Stopping Criteria is not met do:

(a) Set t = t + 1

(b) Create Ninitial/2 new solutions by:

i. Randomly select two solutions from the current population of solutions and

designate one of them as donor and the other as receiver.

ii. Randomly pick one of the Reproduction (or Crossover) Operators, accord-

ing to their corresponding probabilities, and apply it on the two selected

solutions to create a(two) new solution(s).

iii. If the new solution(s) created exist in TempSolutions(t) or

in CurrentSolutions(t− 1), discard it and goto Step 4(b)i. Otherwise add

new the solution(s) into the set of TempSolutions(t)

(c) For every solution S in TempSolutions(t) and CurrentSolutions(t− 1) do:

i. Apply Displacement(Customer Swap) to S with DisplacementProbability

(CustomerSwapProbability) and create S
′
. If Cost(S

′
) - Cost(S)≤ Tolerance,

replace S with S
′
. Otherwise discard S

′
and restore S.

(d) Replace the inferior solutions in CurrentSolutions(t − 1) with the superior so-

lutions in TempSolutions(t) and create CurrentSolutions(t)

(e) If mod(t, RouteOptFreq) = 0 Optimize Routes of solutions in CurrentSolutions(t).
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4.3. Experimental Results

In this section, we first present implementation details for the new GA. Then, we describe

the test data sets. Last, we present and discuss computational results.

4.3.1 Implementation Details

The implementation and experimentation is divided into two phases. The first phase is the

“LRP Phase”, where the aim is to test the proposed GA on some instances available in the

literature and compare the results with previous works results. After comparing the results

obtained by the GA with the previous works’ results, the next step is the “HDM-LRP

Phase”, where there do not exist any benchmark instances and there exist only one relevant

previous study. The experimental results given here are the results of the LRP Phase. The

results for the HDM-LRP Phase are given in Section 4.4.2.

In order to test our algorithm on benchmark instances and compare our results with

previous results, we modified some of the characteristics of HDM-LRP. The basic charac-

teristics of the problem considered is as follows: The objective is only to minimize the total

cost. Full demand satisfaction is imposed as a constraint. We impose a vehicle capacity

constraint that restricts the length of each route instead of the time limit constraint of

HDM-LRP. Moreover, as opposed to HDM-LRP, there is no limit on the number of the

vehicles available.

The problems considered have a single objective, and full demand satisfaction is a con-

straint. Since the crossover operators described in earlier sections do not guarantee to

generate offspring that serve all customers, they are excluded from the solution process.

Only the reproduction operators are used to solve the LRP instances.

The parameters of the GA have been set empirically: We used an initial population size

Ninitial = 500. At each generation we created 250 new solutions by applying Reproduction

Operators to the current solutions. At iteration t, a new solution is created by using Facility



86 Chapter 4. Home-Delivered Meals Location-Routing Problem

Reproduction with probability 0.5/t0.25 and by using Route Reproduction with probabil-

ity 1 − 0.5/t0.25. Displacement is applied to a solution with DisplacementProbability =

0.1 ∗ t0.33 and Customer Swap is applied with CustomerSwapPropability = 0.2 ∗ t0.33. A

mutation is accepted if the change in the cost of the solution do not exceed Tolerance,

which is initially set equal to 2% of the cost of best solution in the initial population,

CurrentSolutions(0). For t > 0, Tolerance = Tolerance/t0.5. The algorithm is termi-

nated if the best solution cost is not improved in 50 consecutive generations.

4.3.2 Instance Description

The first set of instances that serve as a test bed for the GA is tested are due to [85].

These instances are randomly generated with different characteristics such as problem size,

spatial distribution of customers and route structure. The set is composed of instances with

number of customers equal to 100, 150 or 200 and number of potential facilities equal to 10

or 20.

The second set of instances are obtained from the compilation in [6]. These instances

are derived from various articles in the literature. We tested the GA on the larger instances,

where the number of potential facilities is at least 8 and the number of customers is at least

75.

4.3.3 Summary of Results

In order to demonstrate the difficulty of the problem, we first formulated the LRP as a

mixed-integer-program (MIP) and run it on OPL studio 3.7, where CPLEX MIP solver is

used to solve the problem. We compared the results obtained by the MIP with the results

of the GA. We then tested the GA on benchmark instances described in Section 4.3.2 and

compared the results with the results obtained by other algorithms. We performed our

computational tests an on a PC with 1.6 GHz Pentium M Processor and 1GB of RAM.
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Table 4.1: Results of the MIP Model on small LRP instances. The columns in the table
consist of the name of the instance, number of customers (n) and potential facilities (m),
number of variables (Var.) and the constraints (Const.) of the MIP, cost of the best
feasible solution (Cost) and best lower bound (LB) found by the MIP, time in seconds for
MIP (Time), cost of the solution found by the GA (Cost), and time in seconds for the GA
(Time)

MIP GA
Problem n m Var. Const. Cost LB Time Cost Time

Christofides69-75x10 75 10 86786 68850 – 485.6 44234.5 851.7 59.6
Christofides69-45x6 45 6 23461 18844 964.5 353.7 26378.7 600.5 28.9
Christofides69-30x4 30 4 6971 5691 569.3 296.3 17944.2 459.8 1.6
Christofides69-15x4 15 4 2186 1536 292.9 191.6 13527.9 282.6 0.2
Christofides69-15x3 15 3 991 772 282.2 209.9 12187.5 287.9 0.1
Christofides69-10x3 10 3 351 258 219.5 219.5 109.4 222.0 0.1

Comparison of GA with the Mixed Integer Program

The instance that we solved is one of the smallest instances this paper considers and is due

to [19] with 75 customers and 10 possible facility locations. This instance is also one of

the problems solved by the GA, where the related results are demonstrated in Table 4.1.

The MIP formulation has 68850 constraints and 86786 variables. The computer ran out of

memory after 11 hours of execution without finding a feasible solution. The lower bound it

found (485.7) is far less than the current known best lower bound (744.7).

We then tested the performance of MIP on the subproblems of this instance. Starting

from a subproblem with 10 customers and 3 potential facilities, we increased the number of

customers and facilities to create new instances. The results are demonstrated in Table 4.1.

Except for the smallest instance, MIP could not obtain an optimal solution before exhaust-

ing the computer’s memory. The gap between the best feasible solution found and the best

lower bound increases as the instance size increases. The GA found better solutions than

the MIP for all the subproblems except the smallest two. In those two smallest subprob-

lems, the difference between the costs is very small. For the smallest size subproblem, the

solution found by the GA has a cost almost equal to the optimal cost. Solution times for
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the GA are multiple orders of magnitude better than those of the MIP.

Comparison of the GA with Other Algorithms

Table 4.2 presents the results of the GA and two other heuristics, SAV1 and Tabu Search,

on the first problem set. The results for the SAV1 and Tabu Search (TS) are presented

in [85]. In that study, they implemented the SAV1 heuristic, which was initially proposed

in [79], to compare their Two-Phase TS Algorithm. The SAV1 heuristic, also known as

savings heuristic, assumes all potential facilities to be open initially, and uses approximate

routing costs for open facilities to determine the facility to be closed. The TS algorithm,

on the other hand, coordinates two tabu search mechanisms. The first seeks a good facility

configuration, the second seeks good routes that corresponds to this configuration.

The GA found better solutions than the SAV1 for all but one of the instances. The

average improvement of GA over the SAV1 is 3.2%. The GA obtained better solutions

than the Tabu Search for 28 instances and obtained a solution with the same cost for one

instance and worse solutions for the remaining 7 instances. The average improvement of

GA over the Tabu Search is 0.9%.

The GA is a slower algorithm than the SAV1 and the Tabu Search Algorithms. This

is expected because the GA generates a population of solutions. In addition we note that

no particular effort has been made to speed-up the GA. Nevertheless, the range of solution

times for GA have a mean of 9 minutes.

Table 4.3 presents the results of the GA on the second problem set. The GA obtained

solutions that have lower costs than the current best upper bounds for all six instances.

The average improvement of GA over the upper bounds is 3.5%.
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Table 4.2: Results of the GA on the first set. The columns in the table consist of the name
of the instance, number of customers (n), number of potential facilities (m), cost found and
time in seconds for SAV1, Tabu Search (TS) and Genetic Algorithm (GA), % improvement
obtained by the GA over SAV1 and TS.

SAV1 SAV1 TS TS GA GA % Impr % Impr.
Problem n m cost time cost time cost time Over SAV1 Over TS
P111112 100 10 1596.0 1.0 1556.6 5.0 1498.7 179.8 6.1 3.7
P111212 100 10 1457.0 1.0 1443.4 3.0 1428.8 167.3 1.9 1.0
P112112 100 10 1245.8 1.0 1231.1 4.0 1206.5 62.6 3.2 2.0
P112212 100 10 830.5 1.0 825.1 3.0 787.3 44.4 5.2 4.6
P113112 100 10 1326.1 1.0 1317.0 3.0 1278.4 139.0 3.6 2.9
P113212 100 10 927.2 1.0 920.8 4.0 917.2 368.4 1.1 0.4
P111122 100 20 1557.1 3.0 1531.9 3.0 1480.5 83.9 4.9 3.4
P111222 100 20 1555.9 3.0 1511.4 4.0 1481.3 200.8 4.8 2.0
P112122 100 20 1140.1 3.0 1132.0 2.0 1127.1 351.0 1.1 0.4
P112222 100 20 744.7 3.0 740.6 3.0 781.3 189.9 -4.9 -5.5
P113122 100 20 1316.5 3.0 1274.5 4.0 1259.1 248.2 4.4 1.2
P113222 100 20 1109.3 3.0 1042.2 3.0 1038.1 128.2 6.4 0.4
P131112 150 10 2066.2 3.0 2001.0 12.0 1986.2 429.7 3.9 0.7
P131212 150 10 2113.6 2.0 2022.1 14.0 2037.7 435.0 3.6 -0.8
P132112 150 10 1653.4 4.0 1555.8 9.0 1479.4 865.1 10.5 4.9
P132212 150 10 1238.0 2.0 1231.3 9.0 1230.7 1037.6 0.6 0.1
P133112 150 10 1848.4 3.0 1762.5 9.0 1755.3 618.5 5.0 0.4
P133212 150 10 1247.3 3.0 1264.6 10.0 1243.4 263.5 0.3 1.7
P131122 150 20 1977.4 8.0 1892.8 12.0 1887.5 293.3 4.5 0.3
P131222 150 20 1931.6 8.0 1855.0 13.0 1856.2 145.5 3.9 -0.1
P132122 150 20 1554.5 9.0 1478.8 12.0 1498.8 380.3 3.6 -1.4
P132222 150 20 953.3 9.0 948.3 9.0 945.5 648.9 0.8 0.3
P133122 150 20 1496.4 7.0 1488.3 9.0 1442.0 366.6 3.6 3.1
P133222 150 20 1192.6 8.0 1182.3 9.0 1182.4 652.9 0.9 0.0
P121112 200 10 2463.2 5.0 2379.5 22.0 2349.9 162.9 4.6 1.2
P121212 200 10 2395.9 4.0 2288.2 23.0 2292.8 425.1 4.3 -0.2
P122112 200 10 2203.4 9.0 2158.6 20.0 2130.6 1092.0 3.3 1.3
P122212 200 10 1560.8 8.0 1549.8 18.0 1504.9 1508.6 3.6 2.9
P123112 200 10 2312.8 5.0 2056.1 23.0 2010.5 2370.3 13.1 2.2
P123212 200 10 1849.8 6.0 1877.3 20.0 1833.1 1640.3 0.9 2.4
P121122 200 20 2289.4 15.0 2211.7 22.0 2254.6 373.9 1.5 -1.9
P121222 200 20 2417.3 19.0 2355.8 26.0 2320.0 448.3 4.0 1.5
P122122 200 20 1805.9 20.0 1787.0 18.0 1775.0 1033.6 1.7 0.7
P122222 200 20 1122.9 19.0 1113.0 18.0 1110.8 980.1 1.1 0.2
P123122 200 20 2046.5 15.0 2002.4 20.0 1999.3 783.3 2.3 0.2
P123222 200 20 1423.8 15.0 1414.8 17.0 1469.0 184.0 -3.2 -3.8
Average 1610.3 6.4 1566.8 11.5 1552.2 536.2 3.2 0.9
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Table 4.3: Results of the GA on the second set. The columns in the table consist of the
name of the instance, number of customers(n), number of potential facilities(m), currently
known lower(LB) and upper bounds(UB), cost found by the GA,% improvement obtained
by the GA over the UB, and the time in seconds(time) for the GA.

Problem n m vc LB UB GA % Imp. time
Christofides69-75x10 75 10 140 744.7 886.3 851.7 3.9 59.6

Daskin95-88x8 88 8 9000000 356.4 384.9 375.7 2.4 64.3
Christofides69-100x10 100 10 200 788.6 889.4 868.2 2.4 69.1

Or76-117x14 117 14 150 12048.4 12474.2 12071.9 3.2 451.0
Min92-134x8 134 8 850 – 6238.0 6040.5 3.2 34.0

Daskin95-150x10 150 10 8000000 43406.0 46642.7 44011.3 5.6 129.6
Average 3.5 134.6
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Figure 4.4: The trade-off curve for instance P122112, with n=200 and m=10.

The Bi-Objective LRP

Although the focus of the experimental results in this section is for the single objective ver-

sion of the LRP, we briefly discuss the bi-objective version of the problem as well. As stated

before, the GA has the advantage of generating a population solutions after a single run.

Thus, for a multi-objective problem, a decision maker may choose from a set of solutions

with different objective values. This is especially important for public sector problems, such
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as the HDM problem considered in this study, where a decision maker has to consider bud-

get restrictions as well as customer service levels. In order to demonstrate this advantage of

the GA, we run it using the Facility Crossover operator along with the Reproduction and

Mutation operators, on one instance from the first set of instances, namely the P122112.

The tradeoff curve for this instance is illustrated in Fig. 4.4. To obtain this curve, the GA

kept only the non-dominated solutions at each generation. A solution S1 is called dominated

if there exists a solution S2 that has a lower cost than or serves more customers than S1.

This trade-off curve illustrates the following points:

• the overall shape of the curve resembles a hyperbola, where the rate of decrease in

total cost decreases as the number of unserved customers increase,

• the graph itself consists of several small curves that have a similar shape with the

graph. Moreover, there is significant cost change at the end of these segments, which

is most likely due to a difference in the number of open facilities at the two neighboring

end-of-segment solutions.

• the total cost for the solution that serves all customers is 2179.54. The costs found

by the SAV1, TS and the GA by solving the single objective version of LRP are

2203.4, 2158.6, and 2130.6, respectively. So the solution found by the bi-objective

GA is better than the cost of SAV1 and has a cost close to the costs of the TS and

single-objective GA.

4.4. Case Study: HDM-LRP in Allegheny County, PA

Allegheny County, Pennsylvania has a total population of 1.29 million, and 0.23 million

of these are 64 or older. The county has 63 HDM distribution centers (kitchens), which

are primarily pre-existing facilities such as churches and schools, delivering daily hot meals

to slightly over 4,000 home-bound elders. It is estimated that a little over 80 percent of

the demand is met by current facilities, with a net benefit, in avoiding costs of residential
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nursing homes, to be in excess of $100 million annually [38]. The typical facility has four

to six routes driven by volunteers with a dozen stops and one or two clients per stop. The

major fixed costs of a new facility are organizational: gaining commitment from a facility,

securing funding for operations, recruiting and organizing networks of drivers, and designing

routes. Federal subsidies have the provision that recipients be home-bound persons aged 64

or older and that delivered meals be at least 140 F. With insulated carriers, the temperature

requirement translates into a 45 minute time limit for delivery of the last meal on a driver’s

route.

4.4.1 Data

Implementing HDM-LRP for policy analysis requires a variety of data elements. However,

for many volunteer public-sector services, reliable data for planning purposes are difficult

to acquire. We present approximate methods to estimate the following data: customer

demands, kitchen locations, point-to-point distances, vehicle travel costs, and kitchen fixed

costs for our study area of Allegheny County, PA. Note initially that our focus is limited to

a portion of Allegheny County consisting of the land area east of the confluence of the Ohio,

Allegheny and Monongahela Rivers, and bounded to the north and south, respectively, by

the latter two rivers. Note that our dollar-valued costs are rarely paid in actual transactions

between HDM operators and agencies that support them. Thus, these costs should be

interpreted as social ”opportunity costs” that represent the value of the labor or materials

in their best alternative use. In Allegheny County, we are able to acquire accurate records of

customer locations for only 10% of the 63 known home-delivered meals kitchens. The agency

that manages HDM services, the Area Agency on Aging, has no methodology for estimating

the larger population that contains HDM-eligible clients. Finally, this population, even if

recorded, would change over time based on secular demographic trends. For this reason,

we use a GIS-based demand forecasting method [38]. This method uses the following data:

forecasts of the elderly population at the block level, estimates of the percentage of elderly
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Figure 4.5: Client and Kitchen Locations for Allegheny County, PA

who use HDM, and estimates of the number of clients per HDM customer location. With

these data, we sample a number of points within each Census block groups consistent with

the data elements listed above, and reverse-geocode these sample points to a street address.

The resulting demand sample for Allegheny County consists of 4379 stops and 5069 total

clients. The clients are generated using a conservative demand estimate of 2% of the elderly

population.

The demand sample for the Allegheny County subset examined in this case study consists

of 1003 stops and 1135 total clients. HDM kitchen locations and service capacities were

provided to us by Area Agency on Aging. There are 25 kitchens within the Allegheny

County subset examined by this paper. Figure 4.6 illustrates the locations of HDM clients

generated for the Allegheny County subset examined in this paper as well as the existing

kitchen locations.

Travel costs between customer locations are based on travel distances. We compute

distances between simulated potential customers and existing and potential HDM kitchens
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Figure 4.6: Client and Kitchen Locations for the portion of Allegheny County, PA studied
in the case study.

using a street network for Allegheny County and a customized script created in the ArcView

language Avenue. To convert these distances to dollars, we assume an average travel speed

of 25 miles per hour and a standard mileage reimbursement rate for vehicle travel accounting

for fuel costs and wear-and-tear provided by the U.S. Internal Revenue Service for September

2005 through December 2005 of $0.485/mile. We also assume a meal preparation cost of $3

per delivered meal. Fixed costs for locating an HDM kitchen are assumed to be classified

as facility acquisition, services planning or facility maintenance costs. Facility acquisition

costs are based on the time, in hours, spent to gain commitment from a facility such as

a school or church to serve as an HDM kitchen, and the time, in hours, spent to secure

funding for operations. We assume that each facility acquisition cost component requires

20 hours and 10 hours, respectively, and, like all labor inputs identified here, are valued

at a wage rate of $8 per hour. Service planning costs are based on the time required to

recruit and organize a network of drivers and to design routes. We assume that each service
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planning cost component requires 8 hours per driver and 5 hours, respectively.

We assume that these costs are $250 per month and $320 per month, respectively. For

a 5-year planning horizon, the present values of these costs are $13,743 and $17,591, re-

spectively. Finally, we assume that kitchens can be acquired and designed to serve small,

medium and large client populations. Due to a lack of management expertise and resources

at typical HDM kitchens and funding agencies, we assume that HDM kitchens face decreas-

ing scale economies, i.e. that, as compared with a medium-size facility serving 30 - 60 meals

daily, a smaller facility has total fixed costs that are 80% of the medium facility’s costs

while a larger facility has total fixed costs that are 50% higher.

4.4.2 Computational Results

After running the GA on the sample data, we realized the cost is dominated by the total

meal cost. 75% of the cost is the meal cost, 12% is the fixed facility costs and the remaining

13% is the variable costs.

The estimated costs for fixed facility and variable routing costs are much lower than

the private sector costs, as they are basically opportunity costs. Thus, the fact that meal

costs dominates the total cost should not imply that they are unimportant. Even though

the meal costs is the major component, our understanding is that the reason that all the

customers are not being able to be served is the lack of proper allocation of resources to

demands. The budget is not restricting the Area Agency of Aging to serve all the customers.

So, if we were to improve on facility and routing costs, more customers can be served.

Figure 4.7 shows the trade off between the total cost and the total number of customers

served. The relationship is almost linear because of the dominance of meal costs within the

total cost.

Figure 4.8 shows the tradeoff between the total cost without the meal cost and the total

number of customers served. The rate of increase in the cost increases as the number of

customers served increases.
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Figure 4.7: Tradeoff curve for HDM-LRP on the Allegheny County Data: Total Cost vs.
Total Number of Customers Served.
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Figure 4.8: Tradeoff curve for HDM-LRP on the Allegheny County Data: Total
Cost(excluding the meal costs) vs. Total Number of Customers Served.
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Comparison with the status quo

A natural comparison that is needed to be made is the comparison of the new solution

with the current practice. However this is not possible as we do not have actual routes

for the kitchens. To be able to have a rough estimate we used a nearest neighbor heuristic

to generate routes and run a TSP heuristic to improve these routes. This solution has a

cost $1,625,064. Since there is no computerized planning is made for the used routes and

kitchens, we can assume that the actual costs should be no better than what is obtained by

this estimate. The new solution has a cost of $1,333,235. The reduction in cost is almost

$300,000, which corresponds to an 18% decrease.

These results imply that closing unused kitchens and opening new ones (or increasing

capacities of existing ones) closer to suburbs will be cost efficient at the same level of

customer service, namely 100%.

Spatial Properties

By looking at the depictions of the routes for the two extreme point solutions on the tradeoff

curve, we can note some spatial properties. The cost-minimizing solution, which has the

lowest customer service has routes that are more compact and serving more customers.

Namely, the average number of customers per route is 21. On the other hand this figure

is 17 for the service maximizing solution, which has the highest cost with full demand

satisfaction.

4.5. Summary and Future Research

In this paper we have attempted to extend the research literature on optimization-based

planning models for home-delivered meals (HDM) service provision. We have motivated

the problem by noting that in Allegheny County, PA, there is significant unmet demand for

HDM service.
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This study proposes a Genetic Algorithm for the Home-Delivered Meals Location-

Routing Problem and tests this algorithm on benchmark LRP instances. We also used

the algorithm in a case study on the large HDM data for Allegheny County, PA.

We tested our algorithm on two sets of single objective LRP problems and presented

the computational results. We have shown that the GA performs better than the SAV1

and Tabu Search methods for most of the instances in the first set and it finds solution that

have a cost lower than the current best upper bound for the instance in the second set.

We also demonstrated a trade-off curve for one instance for the bi-objective version of the

problem.

Trade-off curves are very useful for decision makers who has to plan for HDM or similar

services that can be formulated as a LRP. Such graphs help them to see the trade-off between

the level of demand satisfaction and the total cost and gives them the opportunity to pick

a solution they think more appropriate. We generated two such graphs in the case study

where we solved the HDM-LRP problem defined on a portion of Allegheny County.

There are a number of features of the most general description of the HDM planning

problem that have not yet been incorporated into HDM-LRP but, if so addressed, could

increase the utility of the model for planners. Given that demands for HDM services vary

over space and over time, it is appropriate to examine extensions to HDM-LRP that address

multi-period planning strategies with explicit forecast horizons.

Sensitivity analysis will be a natural addition to the current work to see how the results

change when of the components of the model, such as the cost structure changes. This work

can also be extended by adding equity or fairness as a third objective into the problem.



Chapter 5

Optimization of Customer and

Supplier Logistics at a Large

Automotive Parts Manufacturer

In the automotive industry, traditionally each company in the supply chain plans and pays

for the shipments from its suppliers. For instance, automotive manufacturers pick up and

pay for the cost of shipments from the first tier suppliers; first tier suppliers do the same

for the supplies they get from second tier suppliers and so on and so forth. The nature of

these supplies is interesting in the sense that while there is material flow from lower tier to

higher tier suppliers, there is also significant flow of empty containers (return dunnage) in

the other direction as shown in Figure 5.1.

There are two main types of transportation offered by carriers: truck-load (TL) and less

than truck-load (LTL). TL carriers are dedicated trucks carrying a single customer’s load

directly from origin to a destination potentially stopping along the way to fill the truck.

The final destination can be different than the origin, which makes the route a one-way

route; or it can be the same, which then makes the route a round-trip route (also referred

99
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Figure 5.1: Logistics in the auto industry involve transfer of materials and dunnage in
opposite directions.

to as a “milkrun”). In either case, there may be intermediate stops between the origin and

destination. LTL carriers, on the other hand, provide a shared service on the same truck and

use an airline-type hub-and-spoke system with shipments. An LTL carrier usually assumes

the responsibility for routing each shipment from the origin to the destination.

The cost structures of these two types of carriers are very different and it may be more

advantageous to use one or the other depending on the destination(s), the amount, and the

density of the shipment. Since the unit cost (i.e. cost per pound per mile) of round-trip

TL carriers is significantly less than the unit cost of one way TL carriers or LTL carriers,

companies try to utilize round trip TL trucks that carry supplies from their suppliers and

carry empty containers in the rest of the round trip.

Notably, the amount of space occupied by empty containers is significantly less than the

space they occupy when they are full. This is due to the fact that some of the containers are

designed to collapse when they are empty and thus occupy less volume. Moreover, not all

shipments are made with returnable containers but rather with materials such as cardboard,

which are disposed after they are used. Because of this, the ratio of the volume of returned

empty containers to the volume of products shipped range from 0 to 1. Furthermore, the

weight of the empty containers is also significantly less than their weight when they are

full. Interestingly, the relatively low weight of the containers also allows higher stacking

of containers, which may not be possible when the containers are full due to total weight
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Figure 5.2: Uneven flows from and to the suppliers and customers, represented by squares
and circles, respectively, in both directions going over long distances can be matched for
better coordinated utilization.

restrictions on trucks. Thus, the amount of reverse flow of empty containers do not match

the amount of product flow. This leaves plenty of unused capacity on the return segment

of a round trip route. With this observation, we realize the following opportunity for a first

tier supplier.

5.1. Matching Opposite Flows: A Unique Opportunity

A company that has customers and suppliers located in the same region, which is far away

from the manufacturing plant, can combine the flow of inbound supplies and empty supplier

containers with the flow of outbound finished products and empty customer containers.

This is illustrated in Figure 5.2, where customers, represented by circles, and suppliers,

represented by squares, are located in Texas and they are far away from the manufacturing

plant, represented by a rectangle, located in Michigan. The product flows are represented
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Figure 5.3: Using a crossdock close to the customers and suppliers to better match the
uneven flows.

by solid lines whereas the empty container flows are represented with dashed lines, which

are drawn thinner than the solid lines to represent the imbalance mentioned earlier.

This opportunity is not possible for automotive manufacturers since trailers that can

carry automobiles are very different than the trailers that carry their supplies stored in

containers. This is also a less potential for a second tier supplier who may not have as much

volume in both directions. But a first tier supplier can utilize this opportunity by taking

over the delivery of its products to its automotive manufacturer customers.

5.1.1 Crossdocking

A crossdock is a facility where materials are unloaded from incoming trucks and loaded into

outbound trucks with little or no storage in between. Such a facility located close to the

customers and suppliers can also be used as a consolidation point to be able to match the

two opposite flows better, as depicted in Figure 5.3. Locational decisions, such as locating
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a crossdock, are usually made on a strategic level as they have long term effects. In the case

of using a crossdock facility, one alternative is owning the facility by making an investment.

Another alternative is renting the facility, which may require less capital investment than

the first one, but still require a commitment for a period of time. A third alternative is

using an existing facility operated by a 3rd Party Logistics Firm (3PL) and paying a fee

on a per container basis. This last alternative might be desirable if the total volume that

will be going through the crossdock is not very large and if the company does not desire to

make an investment or a long term rental contract.

5.2. Motivation

The Auto Parts Manufacturer, which we do this project for and to whom we refer as the

Client in this paper due to confidentiality reasons, applies lean manufacturing practices in

its production system for the last few years. Lean manufacturing is the production of goods

using less of everything compared to traditional mass production. Lean manufacturing is

a generic process management philosophy inspired by the Toyota Production System(TPS)

[87] and implemented in the Client’s plant. Our study was motivated by the Client’s desire

to improve its logistics operations by removing some of the inefficiencies and waste in the

supply chain as explained in previous sections. In addition to direct transportation cost

savings, attaining additional benefits, such as reducing inventories, is also desired since one

of the principals of lean is evening out the production flow by reducing batch sizes and

increasing delivery frequencies internally and, if possible, externally.

5.3. Problem Description

In this project, we look into selecting a subset of customers and suppliers of the Client and

combining their shipments on the same routes. We also consider the use of a crossdock

located close to the customer and supplier base to use as a consolidation center. We in-
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vestigate whether such changes bring net savings to the system, where the system consists

of a single plant of an automotive parts manufacturer (the Client), customers (automotive

manufacturers) and suppliers (second tier suppliers). Every node in the system may have

both pick ups and deliveries: Each customer has a demand from the Client and it may also

have a supply if the containers used are returnable. Similarly each supplier has a supply to

the Client and it may also have a demand if the containers used are returnable. The supply

and demand at each node has to be served simultaneously by the same vehicle.

In addition to the vehicle routing aspect of the problem, we also have to decide on

whether to use a crossdock as a transshipment node. The crossdock cost is a variable cost

that is charged on a per container basis, so there is no fixed rental or investment cost. The

location of the potential crossdock is predetermined.

We look at the problem from a supply chain coordination perspective. In the new

system, the Client will make all the transportation arrangements including shipments for

its customers. To implement this change, materials supplied to customers will have to

be re-priced to factor in shipping costs to the Client, which is currently incurred by the

customers.

5.4. Literature Review

At the core of this problem is vehicle routing, which is defined as the process of selecting

paths in a transportation network along which to send physical traffic. The goal is to

provide services to spatially dispersed customers via delivery routes that have one or more

customers on them.

There are variants of the Vehicle Routing Problem(VRP) based on different aspects, such

as the number of depots (one/multiple), cost structure(fixed/variable/both), time to ser-

vice a particular node(specified/time windows/unspecified), size of fleet(one/multiple), type

of fleet(identical/non-identical), nature of demands(deterministic/stochastic), existence of
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pickups along with demands at each node and vehicle capacity(imposed/non-imposed).

The basic version of the problem is defined as follows: There is only one depot where the

vehicles begin their routes and we are given its location. We also know the locations and

demands of customers. We have a number of available vehicles that have a finite capacity.

This can be a physical capacity, such as the weight or volume, or it can be a restriction

imposed due to the nature of the system, such as the total distance or total time of the

route. The goal is to find a set of routes that minimize the total distance the vehicles travel.

VRP is a very difficult problem to solve. In fact, even with the very recent developments,

the size of the problems that can be solved by exact solution approaches are in the order

of a hundred customers. Among the most effective exact methods are the branch and cut

method in [62], the branch & cut & price method in [30] and the set partitioning approach

with cuts in [4].

Due to the difficulty of VRP, most of the techniques developed are heuristics, includ-

ing local search methods, population based algorithms and learning mechanisms. These

methods generate quality solutions very fast but do not guarantee optimality. The best

performers, in terms of accuracy and computing time seems to be the hybrid methods

presented in [66], [80] and [74] that combine population search and local search.

In the version of the VRP that we are considering in this paper, every node may have

both pick ups and deliveries. The general class of such problems is referred to as Pickup

and Delivery Problems (PDPs) in the literature. To the best of our knowledge and based

on the examination of a very recent survey on PDPs [9], the version of the VRP consid-

ered in this paper has not been studied before. The closest versions are the VRP with

Simultaneous Pickups and Deliveries(VRPSPD), and VRP with Pickups, Deliveries and

Transshipments(VRPPDT), as defined in [9]. If one has to decide on where and how many

facilities to locate, along with the vehicle routing decisions of how to serve customers, and

if locating a facility require a fixed cost, then the problem is referred to as the Location

Routing Problem, which is a more difficult problem than the VRP and its variants.
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5.5. Modeling Assumptions

Cost Linearity: In order to compare the cost of the new system with the existing one, we

need to know the cost of customers’ pickups from the Client. To estimate those costs, we

assume that the cost of a truck is linear in the percentage fill rate: Once the shipment from

the Client to a customer is removed from customer’s current route, the customer can, and

will, fill in the free space with other suppliers’ material, which are already on the existing

route of the customer, by decreasing the frequency of that route.

This assumption can be justified by noticing the fact that customers will re-optimize

their routes after removing the Client’s plant from their list of stops. We can not know

the effect of not having the Client on any of their routes as this requires the knowledge of

all of their suppliers and their pickup schedules from them. This effect can be positive or

negative, so our best guess is that, customer’s networks are large enough that removing the

Client from their system will have a neutral effect.

A Closed System for Empty Containers: We assume that the returnable container

flow is a closed loop and whatever returnable container is sent (received) to (from) customers

(suppliers) comes (send) back to the Client (suppliers).

5.6. Problem Formulation

We developed a network flow model combined with vehicle routing from the crossdock and

the plant. The formal formulation is given in the Appendix. In this model, we allow two

different means of transportation for each customer and supplier. One is being on a milkrun

starting and ending either at the plant or the crossdock. In the other alternative, a customer

(supplier) can receive (send) products from (to) and send (receive) empty containers to

(from) the crossdock using LTL carriers. The consolidated shipments at the crossdock are

shipped either with round trip (or one-way) TL carriers between the crossdock and the

plant or the crossdock may be on milkruns that have some other intermediate stops.
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In this model, in addition to the transportation cost, we also have a crossdock cost. The

goal is to minimize the total cost in the new system.

The constraints that we need to satisfy are similar to the basic VRP: We need to pick

up all supplies and empty customer containers. We need to deliver all customer products

and supplier empty containers. Each customer and supplier can use only one mode of

transportation and the demands and supplies can not be split into more than one mode and

even into more than one truck (This constraint, of course, implicitly assumes that none of

the demand or supply values exceed the capacity of a truck. In this project, this assumption

holds for the customers and suppliers of our Client). There is also a limit on the total weight

and total volume of the trucks. As for the volume, at most 70% of the total volume should

be utilized while planning for the shipments. This is the current practice of the Client

to ensure that there will be enough space left for unexpected demand fluctuations, which

may not be captured during the planning phase. In addition to these constraints, there are

additional constraints imposed by the Client to ensure the quality of customer service and

have easy-to-coordinate routes.

5.6.1 Customer Sensitive Constraints

• There can be at most one customer per new milkrun. This ensures that we will not

have to coordinate shipments for two customers.

• If a customer is on a new milkrun, then it should be the first stop on the milkrun.

This ensures that the promised delivery times can be met by the Client.

• Customers should not see degradation in mode of shipment (LTL carriers are consid-

ered less reliable than TL carriers).

In addition, the Client also wants the following constraints to be satisfied:

• The maximum number of stops on a route to be at most 4 (excluding the origin). This

is the current practice the Client has with its suppliers and it is thought that a higher
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number of stops on a route may be difficult to coordinate and schedule.

• If the crossdock is on a new milkrun, then it should be the last stop. This gives the

Client more accurate information and also more control on the arrival time of trucks

to its Plant, as there will be no intermediate stops between the crossdock and the

Plant.

In the next section, we discuss the data collection and preprocessing phases of this

project.

5.7. Data & Preprocessing

We collected customer and supplier data for a quarter of a year. We also collected detailed

packaging information, such as volume and weight when full and empty and when collapsed

if collapsible. After that, we computed necessary statistics such as average demand, supply,

weights, space utilization for all customers and suppliers. Each customer has an average

demand that needs to satisfied, but it also has an average supply, which is the average

amount of empty returnable containers. This supply value is calculated separately for

each customer, based on the type of containers used for the shipments of that customer.

Similarly, every supplier has a supply that needs to be delivered to the Client, but it also

has a demand value, which is the average amount of empty returnable containers that needs

to be delivered back to the supplier.

Moreover, we identified current customer and supplier routes. The supplier routes were

easy to obtain as they are being formed by the 3PL that our Client works with. But

the customer routes were completely unknown. So, to obtain the route information and the

demand load on these routes, we interviewed truck drivers to piece together this information

when they come to our Clients plant for pickups.
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No of No of Constraint
Scenarios Customers Suppliers Set Savings
Scenario 1 5 8 Basic 26%
Scenario 2 5 8 All 14%
Scenario 3 5 18 All 25%

Table 5.1: Results for different scenarios.

5.7.1 Cost Structure

We estimated the TL costs based on the expertise of the traffic engineers and studies

conducted by the 3PL that the Client works with. We used a single fixed per mile cost for

TL carriers irrespective of the routes as we see that on average the costs of routes do not

differ significantly based on the endpoints of the route. The LTL costs are estimated using

the rate software of USF-Holland, an LTL carrier. We tuned these costs by comparing with

actual LTL shipment data. The crossdock cost is also a variable cost that is charged on a

per container basis for which there is no fixed rental cost or investment.

5.7.2 Initial Analysis

For each potential customer, we computed the savings for the case where the customer do not

pick up from the plant and the Client delivers it from its crossdock instead. We considered

several cases depending on customer pickup type (TL/Oneway TL/LTL) and identified

most promising customers based on volume and total potential savings and included these

promising customers in the optimization model.

5.8. Solution & Results

Our results are obtained by using the average demand data and supply data over a quarter

of a year for the customers and suppliers, respectively. Using this average data, we solved

increasingly complex scenarios and the results are summarized in Table 5.1. In this and

later tables, the savings percentage reflect the reduction in cost as a percent of the current
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Figure 5.4: Illustration of current and future states for Scenario2.

costs. In the first scenario, we have 5 customers and 8 suppliers and we do not impose the

additional customer sensitive constraints. In the second scenario, we have the same set of

5 customers and 8 suppliers, as we have in the first scenario, but now we also impose the

customer sensitive constraints. In the third scenario we have the same set of 5 customers

but a larger set of 18 suppliers and we impose the customer sensitive constraints.

When we compare the percentage savings among Scenario 1 and 2, we see that the extra

customer sensitivity constraints reduce these savings, which is not surprising and reflects

the general trade-offs seen in business. Moreover, when we compare Scenario 2 and 3, we see

that including more suppliers in the model increased the savings significantly as it allowed

more options and better matching of the flows from and to the plant.

To illustrate how a solution looks like, we depict the current and future states for

Scenario 2 in Figure 5.4, where customers and suppliers are represented by circles and

squares, respectively. The future state is significantly different than the current state. In

the future state, C1 and C2 continue using their old milkruns. C3, S6, S7 and S8 use

LTL service from and to the crossdock. There are two milkruns starting and ending at the

crossdock. The remaining two suppliers (S4 and S5) use LTL service from and to the plant.



Chapter 5. Optimization of Customer and Supplier Logistics at a Large Automotive Parts
Manufacturer 111� � �

� � � � �
� � �

� � � � � �
� �� �� � �� � �� � �� � �� � �

	 
 � � 
 � � � � � � 
 � � � � � � � � 
 � � � � � � � 
 � � � � � 
 � � � 
 � � �� 
 � � � �� � � �  ! " #
$% &'( )*+

Figure 5.5: Flexibility analysis over the weekdays. The savings fluctuate significantly as
different days have different demand structures.

There is also a dedicated round-trip TL truck between the crossdock and the plant.

5.8.1 Flexibility Analysis

We investigate the flexibility of the savings based on the demand variability over the week-

days. For this we compute the average data for each weekday and separately solve the

optimization model over these average daily data. To keep the consistency in the trans-

portation modes across the days, we fix the customer transportation modes in the model

based on the solution we previously obtained on the overall average data in Scenario 3.

Thus, if a customer uses its old milkrun in the solution of Scenario 3, then that customer

will be forced to use its old milkrun on each of the week days. Similarly of a customer uses

a new milkrun in the solution of Scenario 3, then that customer will be forced to use a

new milkrun on each of the days, but in that case we will allow the model to pick different

routes on the different days of the week as long as it is a new milkrun. For each week day,

the average savings for the week day are shown in Figure 5.5, where we see that the savings

fluctuate significantly across the days. The savings are highest on Monday and Thursday,
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Figure 5.6: Flexibility analysis over the weeks of the quarter. The savings fluctuate signifi-
cantly as different weeks have different demand structures.

because one of the customers, which is placed on a new milkrun based on the result of

Scenario 3, has demands on these two days only. The overall average savings is 18%.

We also solve the model simultaneously on the average data of Mondays and Tuesdays,

which have significantly different demand patterns. In that case, we force customers and

suppliers to have the exact same routes, which we refer to as stable routes, on both days.

Interestingly forcing to have the same routes on both days reduce the savings by only 1%

(from 18% to 17%). We should note that this difference might have been different if were

able to solve the model simultaneously over the average data of five days, instead of just

two. But we were unable to do that as that model becomes very large and difficult to solve

with the current computational capabilities we have.

We do a similar flexibility analysis for the weeks of the quarter. To find stable routes

over the different weeks, we solve the model simultaneously over the 1st and 12th weeks of

the quarter, which are far away from each other and have significantly different demand

patterns. The results are illustrated in Figure 5.6. The overall average savings is 23%. We

see that the savings across the weeks fluctuates but the intensity of the fluctuation is less
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% Savings
Truck Fill Rate Average Data 90th Percentile

70% 25% 14%
80% 27% 16%
90% 29% 20%
100% 32% 21%

Table 5.2: Max truck volume utilization on average and 90th percentile data.

than the fluctuation we have seen across the days of the week in Figure 5.5. Interestingly

forcing to have the same routes on both days reduce the savings by only 9% (from 23% to

14%).

We also do a “worst-case” scenario analysis in the following way: We take the 90th

percentile of the demand and supply requirements of every customer and supplier and solve

the model over that data. Obviously we should note such a demand and supply pattern

is extremely unlikely. Nevertheless, the results will be useful to see the robustness of the

model. Since we are feeding the model with very high demand and supply data, we test

the model with different maximum volume utilization values. As noted in the problem

formulation, the current value required is 70%. The results are illustrated in Table 5.2. In

each of maximum volume utilization rates, the savings with the high demand supply rate

are significantly (∼ 10%) less than the savings with the average data. We also see that as

we increase the max truck fill rate, the savings increase in both cases.

5.8.2 Utilizing the Crossdock

One alternative setting that extensively utilizes the crossdock may be appealing to the

Client, because in such a system, there will be dedicated trucks between the crossdock

and the plant and all the routing will be made at the crossdock and this will be an easy-

to-manage system. As clearly indicated in Figure 5.7, forcing the flow of customers and

suppliers, which do not use their old routes in the new solution, to go through the crossdock

reduces the savings we obtained before as this restricts the solution space. When we solve
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Figure 5.7: Forcing the flow of customers and suppliers, which do not use their old routes,
to go through the crossdock reduces the savings at both truck fill rate limits.

the model with this restriction, we see that the savings is actually reduced to 21%, as

opposed to the 25% we had before. These savings are at the 70% max truck fill rate. If we

allow 100% truck fill rate, the savings goes up by only 3% (to 24%), whereas without the

restriction, the savings were much higher (32%).

5.8.3 Inventory Considerations

In addition to the savings in transportation costs, this new system will result in reduced

inventories for some of the customers, suppliers and also for the Client because the new

system assumes that deliveries and pickups will be made every day. This means an increase

in the frequency of deliveries and pickups for some customers and suppliers, which results

in reduced inventories since shipments will be made in smaller batches. This is illustrated

in Figure 5.8, where the graph on the top is for the case where a customer’s demand occurs

only twice a week, namely on Mondays and Thursdays, the graph below is for the case

where the same customer’s demand, which is equal to 2 trucks per week, is spread to five
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Figure 5.8: Inventory reduction when the frequency of shipments is increased from twice a
week (graph on the left) to five times a week (graph on the right).

weekdays. In the first case, the inventory is built from Thursday to Monday to meet the

demand on Monday and from Monday to Thursday to meet the demand on Thursday. In the

second case, Monday’s demand is built from Friday to Monday and every other weekday’s

demand is built during the previous day. Clearly the inventory amount in the second case is

significantly lower (60%) than the first case, not only for the Client but also for the customer.

Thus, our solution methodology is aligned with the philosophy and current implementation

of the Client’s lean production system and represents a win for all involved parties.

5.8.4 Other Considerations

There are some other potential side benefits of this planning model and the new solution

it generates. With this tool, the Client will be able to offer different service options to

its customers, such as delivering to their location, or allowing them to pickup from the

crossdock instead of the plant. The frequency of the shipments can also be adjusted based on

customers needs. In addition, the Client thinks that this kind of system-wide improvement

will potentially increase their chances to have more demand from auto manufacturers that

value continuous improvement and lean practices.

A key challenge in implementing the proposed solution is the perceived lack of control

the customers feel over their inbound shipments, which they rightly view as being crucial

to their operations. Another business consideration is how the delivery contracts should

be re-priced to add the increased delivery costs for the Client, and how this will impact

negotiating for customer contracts.
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5.9. Summary and Future Research

We studied the customer and supplier logistics planning at a leading automotive parts

manufacturer. In this project, we selected a subset of customers and suppliers to consol-

idate their shipments on the same routes. We also considered the use of a crossdock as

a consolidation point. We developed a network flow model combined with vehicle routing

from the crossdock and the plant to minimize the system-wise logistics costs. We identi-

fied the potential for significant cost savings over the current system based on our model

assumptions.

We presented our findings to a wide range of audience at the Client. These include

the plant managers and directors and managers of Customer Service, Logistics & Planning

departments of two plants. Moreover, we have presented it to the CEO and also to the

Logistics Director of the Client. They were happy with the overall outcome, the tangible

results that showed real potential for cost savings and with the different design alternatives

that we presented. The systematic analysis of the logistics processes that we performed was

also highly appreciated.

The challenges mentioned above have prevented the immediate implementation of our

proposed solution since it involves renegotiation of customer contracts. However, our analy-

sis of the matching opposite and complementary flows has triggered an ongoing discussion

on similar issues in our Client’s overall logistics operations, where both flows are within the

purview of (different) locations of the Client. The benefits of supply chain coordination,

which our study clearly revealed, has provided them with strong evidence for significant

savings by overall coordination of logistics operations within the Client’s network.

5.9.1 Methodological Extensions

An alternative to the IP model we used in this study is a route-based restricted model.

In that, we would consider only a set of routes instead of all possible ones in solving the
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problem. For that model, we need to generate a set of good routes using heuristics. We

certainly want routes to have low costs. But also we want to generate routes that have daily

stable loads as we will run the model every day. For this, one can build routes that have

suppliers with negatively correlated shipments on the same routes. So, when the shipment

of a supplier is high in one day then it is likely that the other suppliers supply will be low

and the load on this route will be stable.
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6.1. Appendix for Chapter 2

6.1.1 Structural Properties of TUP

Let P represent the TUP and let P(R) be a relaxation of P with constraint set R, where

R ⊂ {1, 2, 3, 4, 5}. Let G(s, u) = (Hs, As) be the game assigned to umpire u in slot s and

let Hs be the home team and As be the away team for that game. Let C(s,u) represent the

constraint which says that Umpire u cannot visit a city more than once in slots s to s+n-1.

Lemma 1 For P(1,2,4), for d1 = 0, for any tournament, for any game there exists a

feasible schedule for a single umpire that covers that game.

Proof: In a given tournament let G(k, 1) = (H1, A1) be the game assigned to umpire 1

in slot k and let H1 be the home team and A1 be the away team for that game. We will

show that we can assign games to Umpire1 in slots {k1, ..., k2}, where k1 = max(k−n+1, 1)

and k2 = min(k + n− 1, 4n− 2), without violating any C(s,1) for k1 ≤ s ≤ k2 (Notice that

these constraints are the only constraints of type 4 including slot k).

Umpire1 can be assigned to one of at least n − 1 games in slot k1 since C(k1,1) is the

only constraint that includes both k1 and k. Since only G(k,1) and G(k1,1) are scheduled,

Umpire1 can be assigned to one of at least n−2 games in slot k1 +1, and by using a similar

argument we can say that Umpire1 can be assigned to one of at least n − 3 games in slot

k1 + 2, ..., and to one of at least n-(n-1) = 1 games in slot k − 1 without violating C(k1,1).

Notice that once G(k1,1) is scheduled, the critical constraint for slots {k1 + 1, ..., k − 1}
became C(k1,1). All the other constraints including slot s, where s 6= k1, will include

a smaller subset of already scheduled games, thus will not be violated by the new game

assignment.

Now we will consider slots k+1 through k2. Umpire1 can be assigned to at least one of

the games in slot k+1 without violating C(k1 + 1,1), to at least one of the games in slot
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k+2 without violating C(k1 + 2,1), ..., and to at least one of the games in slot k2 without

violating C(k,1). For each slot s ∈ {k + 1, ..., k2}, C(s-n+1,1) includes the most already

scheduled games for Umpire1, thus it is the most restricting constraint. All the other con-

straints including slot s will include a smaller subset of already scheduled games, thus will

not be violated by the new game assignment. ¤

Lemma 2 For P(1,2,4) and when n−d1 = n+1 in constraint 4: If n is even, there exists

a tournament and a game such that no umpire schedule can cover that game.

Proof: We will show that we can construct such a tournament. Let H1 be the venue

for a game in slot one that is assigned to Umpire1 and let Hn = {H2, ..., Hn} be a set of

distinct venues assignable to Umpire1 in slots 2 through n, respectively. This means that

the set of venues in slot n+1 has to be set to Hn∪{H1} to ensure infeasibility of Umpire1’s

schedule. If we allow a game with a venue Hp be in the tournament in slot s such that

Hp /∈ {H1, ..., Hn} and 2 ≤ s ≤ n, then we can switch the current game assigned to Umpire1

in slot s with Hp and satisfy constraint 4. Thus, no such game should be allowed to be in

the tournament. This means that each of the sets of venues in slots 2 to n+1 has to be

Hn ∪ {H1}.

To complete the tournament, we need to build the rest of the games for slot 1. We can

do that by pairing the teams in Hn ∪ {H1}. Thus rest of the teams will be paired as well.

Notice that we can do this if n is even. In this tournament, each team Hi, 1 ≤ i ≤ n, plays

home in only n consecutive games (in slots 2 to n+1) against the same set of n teams ({Hj |
j /∈ {1, .., n}}), which poses no problem in terms of tournament feasibility.

In this tournament, given that we assign Umpire1 to H1 in slot 1, we can not extend

the schedule for Umpire1 for n more slots without violating constraint 4.¤
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Lemma 3 For P(1,2,4) and when n − d1 = n + 1 in constraint 4: If n is odd, for any

tournament, for any game there exists a feasible schedule for a single umpire that covers

that game.

Proof: Let’s assume that this claim is incorrect, which means that there exists a tour-

nament and a game such that no umpire schedule can cover that game.

Let H1 be the venue for a game in slot one that is assigned to Umpire1 and let

Hn = {H2, ..., Hn} be a set of distinct venues assignable to Umpire1 in slots 2 through

n, respectively. This means that the set of venues in slot n+1 has to be Hn ∪ {H1} to

ensure infeasibility of Umpire1’s schedule. If we allow a game with a venue Hp be in the

tournament in slot s such that Hp /∈ {H1, ..., Hn} and 2 ≤ s ≤ n, then we can switch the

current game assigned to Umpire1 in slot s with Hp and satisfy constraint 4. Thus, no such

game should be allowed to be in the tournament. This means that each of the sets of venues

in slots 2 to n+1 has to be Hn ∪ {H1}.

To complete the tournament for the first n+1 slots, we need to build the rest of the games

for slot 1. In slot 1, a team Hi ∈ Hn ∪ {H1} can not play against a team Hj /∈ Hn ∪ {H1}.
Because Hi is already scheduled to play home in n consecutive games against the same set

of n teams in slots 2 to n+1. Thus, every team in Hn ∪ {H1} has to play against a team in

Hn ∪ {H1}. But since we assumed that n is odd, at least one team in Hn ∪ {H1} has to be

paired with a team not in Hn ∪ {H1}. This contradicts with our initial assumption, thus

the claim is proved.¤

Lemma 4 For P(1,2,4) and when n− d1 = n+2 in constraint 4: If n is odd, there exists

a tournament and a game such that no umpire schedule can cover that game.
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Proof: We will show that we can construct such a tournament. Let H1 be the venue

for a game in slot one that is assigned to Umpire1 and let Hn+1 = {H2, ..., Hn+1} be a set

of distinct venues assignable to Umpire1 in slots 2 through n+1, respectively. This means

that the set of venues in slot n+2 has to be a subset of Hn+1 ∪ {H1} to ensure infeasibility

of Umpire1’s schedule. If we allow a game with a venue Hp be in the tournament in slot

s such that Hp /∈ {H1, ..., Hn+1} and 2 ≤ s ≤ n + 1, then we can switch the current game

assigned to Umpire1 in slot s with Hp and satisfy constraint 4. Thus, no such game should

be allowed to be in the tournament. This means that each of the sets of venues in slots 2

to n+2 has to be a subset of Hn+1 ∪ {H1}.

To complete the tournament, we need to build the rest games for slot 1. We can do that

by pairing the teams in Hn+1 ∪{H1}. Thus rest of the teams will be paired as well. Notice

that we can do this if n is odd. In this tournament, each team Hi, 1 ≤ i ≤ n + 1, plays

home in only n games against the same set of n+1 teams, which poses no problem in terms

of tournament feasibility.

In this tournament, given that we assign Umpire1 to H1 in slot 1, we can not extend

the schedule for Umpire1 for n+1 more slots without violating constraint 4.¤

Theorem 1 For P(1,2,4), for any tournament, for any game there exists a feasible sched-

ule for a single umpire that covers that game. Moreover, in constraint 4 we have the follow-

ing two properties: When n is even, n is an upper bound for the existence of this feasibility.

When n is odd, n+1 is an upper bound for the existence of the feasibility.

Proof: Lemmas 1, 2, 3 and 4 collectively prove theorem 1.

Theorem 2 For P(1,2,5), for d2 = 0, for any tournament, for any game there exists a
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feasible schedule for a single umpire that covers that game.

Proof: We will prove a stronger statement, which implies Theorem 2. That is, if we

replace bn
2 c with dn

2 e, the claim still holds. The reason we use bn
2 c in the definition of

Constraint 5 instead of dn
2 e is that, once we consider the complete set of constraints, we

observe that P becomes infeasible for many instances.

In a given tournament let G(k,1) be the game in consideration. We will show that we

can assign games to Umpire1 in slots {k1, ..., k2}, where k1 = max(k − dn
2 e + 1, 1) and

k2 = min(k + dn
2 e − 1, 4n − 2), without violating any C(s,1) for k1 ≤ s ≤ k2 (Notice that

these constraints are the only constraints of type 5 including slot k).

Umpire1 can be assigned to one of at least n − 2 games in slot k1 since C(k1,1) is the

only constraint that includes both k1 and k. Since only G(k,1) and G(k1,1) are scheduled,

Umpire1 can be assigned to one of at least n − 4 games in slot k1 + 1, and by using a

similar argument we can say that Umpire1 can be assigned to one of at least n − 6 games

in slot k1 + 2, ..., and to one of at least n − 2(dn
2 e − 1) ≥ 1 games in slot k − 1 without

violating C(k1,1). Notice that once G(k1,1) is scheduled, the critical constraint for slots

{k1 + 1, ..., k− 1} became C(k1,1). All the other constraints including slot s, where s 6= k1,

will include a smaller subset of already scheduled games, thus will not be violated by the

new game assignment.

Now we will consider slots k+1 through k2. Umpire1 can be assigned to at least one of

the games in slot k+1 without violating C(k1 + 1,1), to at least one of the games in slot

k+2 without violating C(k1 + 2,1), ..., and to at least one of the games in slot k2 without

violating C(k,1). For each slot s ∈ {k + 1, ..., k2}, C(s − dn
2 e + 1, 1) includes the most al-

ready scheduled games for Umpire1, thus it is the most restricting constraint. All the other

constraints including slot s will include a smaller subset of already scheduled games, thus
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Table 6.1: Partial tournament for 12 teams.
Slot Numbers

1 2 3 4
(1,2) (1,6) (1,10) (6,1)
(3,11) (2,10) (2,6) (10,2)
(4,5) (3,12) (3,8) (3,11)
(6,10) (4,9) (4,5) (4,7)
(7,9) (5,7) (9,7) (5,9)
(8,12) (8,11) (11,12) (12,8)

will not be violated by the new game assignment.¤

Conjecture 1 For P(1,2,5) and when bn
2 c is replaced with dn

2 e+1 in constraint 5: There

exists a tournament and a game such that no umpire schedule can cover that game.

Although we do not have a proof for this claim, we can find such a tournament for

2n=10 and 2n=12 by formulating an integer program. The model results in partial tourna-

ments for slots 1,2,3, and dn
2 e+1 = 4 such that no single umpire can cover a specific game

in slot 1 without violating Constraint 5. The partial tournament for 12 teams is given in

Table 6.1.1. A pair (i,j) means that team i plays team j at team i’s home in the slot the pair

is placed. In this tournament the game is that can not be officiated by any umpire is (1,2). ¤
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6.1.2 Initial IP Formulation for the TUP

Problem Data

• S, T , U = sets of all slots, teams and umpires, respectively;

• OPP[t,i] =





j, if team i plays against team j at venue i in slot t

−j, if team i plays against team j at venue j in slot t

• dij = travel miles between venues i and j ;

The following constants are defined to have a more readable model:

• n1 = n− d1 − 1

• n2 = bn
2 c − d2 − 1 ;

• N1 = {0, .., n1};

• N2 = {0, .., n2};

Variables

• xisu = 1 if game played at venue i ∈ T in slot s ∈ S is assigned to umpire u ∈ U

(binary);

• zijsu = 1 if umpire u referees game played at venue i in slot t, then referees game

played at venue j in slot t + 1 (binary);

The Initial IP Model

minimize
∑

i∈T

∑

j∈T

∑

u∈U

∑

s∈S:s<|S|
dijzijsu
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subject to

∑

u∈U

xisu = 1, ∀ i ∈ T, s ∈ S : OPP [s, i] > 0 (6.1)

∑

i∈T :OPP [s,i]>0

xisu = 1, ∀ s ∈ S, u ∈ U (6.2)

∑

s∈S:OPP [s,i]>0

xisu ≥ 1, ∀ i ∈ T, u ∈ U (6.3)

∑

s1∈N1

xi(s+s1)u ≤ 1, ∀ i ∈ T, u ∈ U, s ∈ S : s ≤ |S| − n1

(6.4)
∑

s2∈N2

(xi(s+s2)u +
∑

k∈T :OPP [s+s2,k]>0

xk(s+s2)u) ≤ 1, ∀ i ∈ T, u ∈ U, s ∈ S : s ≤ |S| − n2

(6.5)

xisu + xj(s+1)u − zijsu ≤ 1, ∀ i, j ∈ T, u ∈ U, s ∈ S : s ≤ |S| (6.6)

Here is a short description of the constraints. (6.1): every game must be assigned to

a single umpire; (6.2): every umpire is assigned to exactly one game per slot; (6.3): every

umpire sees every team at least once at the team’s home; (6.4): no umpire should visit a

venue more than once in any n − d1 consecutive slots; (6.5): no umpire should see a team

twice in any bn
2 c − d2 consecutive slots; (6.6): if umpire u is assigned to a game at venue i

in slot s and to a game at venue j in slot s + 1, then the umpire should move from i to j

in slot s.
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6.1.3 Improved IP Formulation for the TUP

Problem Data

• S, T , U = sets of all slots, teams and umpires, respectively;

• OPP[t,i] =





j, if team i plays against team j at venue i in slot t

−j, if team i plays against team j at venue j in slot t

• dij = travel miles between venues i and j ;

The following constants are defined to have a more readable model:

• n1 = n− d1 − 1

• n2 = bn
2 c − d2 − 1 ;

• N1 = {0, .., n1};

• N2 = {0, .., n2};

Variables

• xisu = 1 if game played at venue i ∈ T in slot s ∈ S is assigned to umpire u ∈ U

(binary);

• zijsu = 1 if umpire u referees game played at venue i in slot t, then referees game

played at venue j in slot t + 1 (binary);

The Improved IP Model

minimize
∑

i∈T

∑

j∈T

∑

u∈U

∑

s∈S:s<|S|
dijzijsu
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subject to

∑

u∈U

xisu = 1, ∀ i ∈ T, s ∈ S : OPP [s, i] > 0 (6.7)

∑

i∈T :OPP [s,i]>0

xisu = 1, ∀ s ∈ S, u ∈ U (6.8)

∑

s∈S:OPP [s,i]>0

xisu ≥ 1, ∀ i ∈ T, u ∈ U (6.9)

∑

s1∈N1

xi(s+s1)u ≤ 1, ∀ i ∈ T, u ∈ U, s ∈ S : s ≤ |S| − n1

(6.10)
∑

s2∈N2

(xi(s+s2)u +
∑

k∈T :OPP [s+s2,k]>0

xk(s+s2)u) ≤ 1, ∀ i ∈ T, u ∈ U, s ∈ S : s ≤ |S| − n2

(6.11)

xisu + xj(s+1)u − zijsu ≤ 1, ∀ i, j ∈ T, u ∈ U, s ∈ S : s ≤ |S|
(6.12)

We strengthened the formulation with the following additional valid inequalities:

xisu = 0, ∀ i ∈ T, u ∈ U, s ∈ S : OPP [s, i] < 0 (6.13)

zijsu − xisu ≤ 0, ∀ i, j ∈ T, u ∈ U, s ∈ S : s < |S| (6.14)

zijsu − xj(s+1)u ≤ 0, ∀ i, j ∈ T, u ∈ U, s ∈ S : s < |S| (6.15)
∑

i∈T

zijsu −
∑

i∈T

zji(s+1)u = 0, ∀ j ∈ T, u ∈ U, s ∈ S : s < |S| − 1 (6.16)

∑

i∈T

∑

j∈T

zijsu = 1, ∀ u ∈ U, s ∈ S : s < |S| (6.17)
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6.1.4 Initial CP Model for the TUP in OPL

Model Parameters:

T = {1,..,2n} is the set of teams

S = {1,..,4n-2} is the set of slots

U = {1,..,n} is the set of umpires

opponents[t,i] =





j, if team i plays against team j at venue i in slot t

−j, if team i plays against team j at venue j in slot t

dist[i,j] = distance between venues i and j

Decision Variables:

assigned[u,t]= the venue that umpire u is assigned in slot t.

The formulation in the OPL language[45] is as follows:

minimize with linear relaxation

sum (u in U, t in S: t < 4*n-2) dist[assigned[u,t],assigned[u,t+1]]

subject to {

//Constraints (1)&(2)

forall(t in S) {

distribute( all(i in G) 1,

all(j in T: opponents[t,j] < 0) -1*opponents[t,j],

all(u in U) assigned[u,t]); };

//Constraint (3)

forall(u in U)

atleast(all(i in T) 1, all(i in T) i, all(t in S)assigned[u,t]);
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//Constraint (4)

forall(u in U, t in S: t<= (4*n-2)-(n-d1-1) ){

atmost(all(i in T) 1, all(j in T) j,

all(r in [0..n-d1-1]) assigned[u,t+r]);

};

//Constraint (5)********************************************************

forall(u in U, t in S: t<= (4*n-2)-(n/2-d2-1), j in T,

r in [1..n/2-d2-1], k in T: opponents[t,k] = j ) {

(assigned[u,t] = k) => ((assigned[u,t+r]<>j)&(assigned[u,t+r]<>k));};

forall(u in U, t in S: t>= n/2-d2, j in T, r in [1..n/2-d2-1],

k in T: opponents[t,k] = j ) {

(assigned[u,t] = k) => ((assigned[u,t-r]<>j)&(assigned[u,t-r]<>k));};

forall(u in U, t in S: t<= (4*n-2)-(n/2-d2-1), j in T,

r in [1..n/2-d2-1], k in T: opponents[t,k] = j,

i in T: opponents[t+r,i] = j ) {

(assigned[u,t] = k) => (assigned[u,t+r] <> i); };

forall(u in U, t in S: t>= n/2-d2, j in T, r in [1..n/2-d2-1],

k in T: opponents[t,k] = j, i in T: opponents[t-r,i] = j ) {

(assigned[u,t] = k) => (assigned[u,t-r] <> i); };

//**********************************************************************

};
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6.1.5 Improved CP Model for TUP in OPL

Model Parameters:

T = {1,..,2n} is the set of teams

S = {1,..,4n-2} is the set of slots

U = {1,..,n} is the set of umpires

opponents[t,i] =





j, if team i plays against team j at venue i in slot t

−j, if team i plays against team j at venue j in slot t

dist[i,j] = distance between venues i and j

Decision Variables:

assigned[u,t]= the venue that umpire u is assigned in slot t.

The formulation in the OPL language[45] is as follows:

minimize with linear relaxation

sum (u in U, t in S: t < 4*n-2) dist[assigned[u,t],assigned[u,t+1]]

subject to {

//Constraints (1)&(2)

forall(t in S) {

distribute( all(i in G) 1,

all(j in T: opponents[t,j] < 0) -1*opponents[t,j],

all(u in U) assigned[u,t]); };

//Constraint (3)

forall(u in U)

atleast(all(i in T) 1, all(i in T) i, all(t in S)assigned[u,t]);

//Constraint (4)

forall(u in U, t in S: t<= (4*n-2)-(n-d1-1) ){

alldifferent(all(r in [0..n-1]) assigned[u,t+r]);};
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//Constraint (5)********************************************************

forall(u in U, t in S: t<= (4*n-2)-(n/2-d2-1), j in T,

r in [1..n/2-d2-1], k in T: opponents[t,k] = j ) {

(assigned[u,t] = k) => ((assigned[u,t+r]<>j)&(assigned[u,t+r]<>k));};

forall(u in U, t in S: t>= n/2-d2, j in T, r in [1..n/2-d2-1],

k in T: opponents[t,k] = j ) {

(assigned[u,t] = k) => ((assigned[u,t-r]<>j)&(assigned[u,t-r]<>k));};

forall(u in U, t in S: t<= (4*n-2)-(n/2-d2-1), j in T,

r in [1..n/2-d2-1], k in T: opponents[t,k] = j,

i in T: opponents[t+r,i] = j ) {

(assigned[u,t] = k) => (assigned[u,t+r] <> i); };

forall(u in U, t in S: t>= n/2-d2, j in T, r in [1..n/2-d2-1],

k in T: opponents[t,k] = j, i in T: opponents[t-r,i] = j ) {

(assigned[u,t] = k) => (assigned[u,t-r] <> i); };

//**********************************************************************

};

search {

forall(t in Slots)

forall(u in Umps)

tryall (i in Teams: opponents[t,i] > 0)

assigned[u,t] = i; };
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6.2. Appendix for Chapter 4

Mathematical Programming Formulation for HDM-LRP

Model Parameters:

J = {j | j = 1,...,M} is the set of potential kitchen locations

I = {i | i = M+1,..., N+M} is the set of customers

K = {k | k = 1,...,P} is the set of vehicle routes

cij = distance from point i to point j; i, j ∈ I ∪ J

tij = travel time from point i to point j; i, j ∈ I ∪ J

τi = maximum time to unload meals for customer i ∈ I

di = number of meals required by customer i ∈ I

fi = fixed cost of establishing a kitchen at site j ∈ J

vj = variable cost per meal produced at kitchen j ∈ J

gij = cost per mile of travel from points i to j; i, j ∈ I ∪ J

Tk = maximum allowable duration of route k ∈ K

Wj = number of vehicles available at kitchen j ∈ J

Mj = number of meals that can be served by kitchen k ∈ K

D =
∑

i∈I di = total demand throughout service area

Decision Variables:

xijk =





1, if point i immediately precedes point j on route k, i, j ∈ I ∪ J , k ∈ K ;

0, otherwise.

yj =





1, if a kitchen is located at site j, j ∈ J ;

0, otherwise.
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zij =





1, if customer i ∈ I is served from kitchen j ∈ J ;

0, otherwise.

Uik are auxiliary variables used in subtour elimination constraints.

Model HDM-LRP:

optimize{
∑

j∈J

fjyj +
∑

i∈I

∑

j∈J

vjdizij +
∑

k∈K

∑

i∈I∪J

∑

j∈I∪J

gijcijxijk,
∑

i∈I

∑

j∈J

dizij} (1)

s.t.

∑

k∈K

∑

j∈I∪J

xijk = 1 ∀i ∈ I (2)

∑

i∈I

∑

j∈J

dizij ≤ Mjyj ∀j ∈ J (3)

∑

i∈I

τi

∑

j∈I∪J

xijk +
∑

i∈I∪J

∑

j∈I∪J

tijxijk ≤ Tk ∀k ∈ K (4)

Uik − Ujk + Nxijk ≤ N − 1 ∀i, j ∈ I, k ∈ K (5)

∑

i∈I∪J

xijk −
∑

i∈I∪J

xjik = 0 ∀j ∈ I, k ∈ K (6)

∑

j∈J

∑

j∈I∪J

xijk ≤ 1 ∀k ∈ K (7)

∑

h∈I∪J

xihk +
∑

h∈I∪J

xjhk − zij ≤ 1 ∀i ∈ I, j ∈ J, k ∈ K (8)

∑

i∈I

∑

k∈K

xijk ≤ Wj ∀j ∈ J (9)

xijk ∈ {0, 1} ∀i ∈ I ∪ J, j ∈ I ∪ J, k ∈ K (10)
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yj ∈ {0, 1} ∀j ∈ J (11)

zij ∈ {0, 1} ∀i ∈ I, j ∈ J (12)

Uik ≥ 0 and integer ∀i ∈ I, k ∈ K (13)

Objective (1) is composed of two competing measures. The first, a measure of efficiency, is a

total cost term equal to the sum of fixed kitchen location costs, variable kitchen throughput

costs and variable delivery costs. This objective is minimized. (Note that by varying the

variable costs vj and gij , more or less weight is placed on these volunteer-donated activities.)

The second objective, an effectiveness measure, represents the total demand served, which

is to be maximized.

Constraints (2) ensure that each customer is served on a single route by a single kitchen.

Constraints (3) ensure that a kitchen, if located, cannot serve more than its maximum

capacity of meals. Constraints (4) ensure that the duration of each route does not exceed

the maximum allowable duration. Constraints (5) require that every delivery route be

connected to a kitchen. They also act as subtour elimination constraints. Constraints (6)

ensure that a vehicle leaves every node that it enters. Constraints (7) ensure that a route is

assigned to at most one kitchen. Constraints (8) are linking constraints that ensure that a

customer may be allocated to a kitchen only if there is a route assigned to that kitchen that

serves that customer. Constraints (9) ensure that the number of routes assigned to each

kitchen does not exceed the maximum allowable number of routes. Constraints (11), (12),

and (13) ensure that the routing variables, location variables, and allocation variables can

take on values 0 or 1. Constrains (14) ensure that the auxiliary variables are nonnegative

integers.
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6.3. Appendix for Chapter 5

Optimization Model

Data and Parameters

pl = the plant.

xd = the crossdock.

C = set of all customers.

S = set of all suppliers.

N =set of all customers and suppliers: N = C ∪ S.

N
′
= set of all nodes including the crossdock and the plant: N

′
= N ∪ { pl, xd }.

CLTL = set of customers currently on LTL routes.

STL = set of suppliers currently on milkruns.

RS = set of current supplier milkruns.

STL
j = set of suppliers currently on milkrun j ∈ RS .

disti,j = distance between nodes i, j ∈ N
′
.

di = average demand for node i ∈ N in units of a truck load.

si = average supply for node i ∈ N in units of a truck load.

dNPack
i = average demand for node i ∈ N in units of packages.

sNPack
i = average supply for node i ∈ N in units of packages.

dweight
i = average weight of node i ∈ N ’s demand in pounds.

sweight
i = average weight of node i ∈ N ’s supply in pounds.

maxstops = maximum number of stops allowed on a route excluding the origin (pl or xd).

maxvol = maximum percentage volume capacity allowed on a TL in units of a truck.

maxweight = maximum weight capacity of a truck in pounds.

m = an arbitrary large number.
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Costs

pTL = per mile cost for round trip TL trucks.

pOneWay = per mile cost for oneway TL trucks.

pTL−Stop = per stop charge for a TL truck.

pLTL
i,pl = LTL cost between i ∈ S and the Plant.

pLTL
i,xd = LTL cost between i ∈ N and the crossdock.

ph
xd = per container handling cost at the crossdock.

pTL
i (C) = current milkrun cost for i ∈ C.

pTL
j (S) = current milkrun cost for current supplier route j ∈ RS .

Decision Variables

We used three types of variables in this model: Binary, General Integer and Continuous.

Binary Variables

Zr = 1 if the current supplier milkrun r ∈ RS is used, 0 otherwise.

Vi = 1 if node i uses its current milkrun, 0 otherwise, ∀i ∈ N .

Yi = 1 if node i uses LTL to and from the Plant, 0 otherwise, ∀i ∈ N .

Wi = 1 if node i is on a new milkrun, 0 otherwise, ∀i ∈ N .

Xi = 1 if node i uses LTL to&from the crossdock, 0 otherwise,∀i ∈ N .

Dockd
i = 1 if node i’s demand goes through the crossdock and 0 otherwise,∀i ∈ N .

Docks
i = 1 if node i’s supply goes through the crossdock and 0 otherwise,∀i ∈ N .

V isitij = 1 if i’s demand or supply goes through node j,and 0 otherwise ∀i ∈ N,∀j ∈ N
′
.

General Integer Variables

RT = number of round trip trucks between the crossdock and the Plant.

Au,v = number of times the milkrun arc (u, v) is used, ∀u, v ∈ N
′
.

OWpl,xd = Number of times the one way arc from the Plant to the crossdock is used.

OWxd,pl = Number of times the one way arc from the crossdock to the Plant is used.
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Continuous (Flow) Variables

F TL
u,v (i) = flow of node i’s demand flowing on milkrun arc (u, v), ∀u, v ∈ N

′
, ∀i ∈ N .

GTL
u,v(i) = flow of node i’s supply flowing on milkrun arc (u, v), ∀u, v ∈ N

′
, ∀i ∈ N .

FRT
pl,xd(i) = flow of i’s demand flowing from the Plant to the crossdock on RT trucks, ∀i ∈ N .

GRT
xd,pl(i) = flow of i’s supply flowing from xd to pl on RT trucks, ∀i ∈ N .

FOW
pl,xd(i) = flow of i’s demand flowing from pl to xd on one way trucks, ∀i ∈ N .

GOW
xd,pl(i) = flow of node i’s supply from xd to pl on one way trucks, ∀i ∈ N .

Objective Function

minimize(MilkrunCostnew + StopCostnew + MilkrunCostold
customer + MilkrunCostold

supplier

+LTLcostxd + LTLcostpl + RTcost + OneWayCost + CrossdockCost)

where,

MilkrunCostnew = pTL ∗ (
∑

u,v∈N
′ distu,v ∗Au,v) : the total cost of all new milkruns.

StopCostnew = pTL−Stop ∗ (
∑

i∈N Wi + Axd,pl + Apl,xd + RT ) : the total stopping cost in-

curred in the new milkruns.

MilkrunCostold
customer =

∑
i∈C Vi ∗ pTL

i (C) : the total cost of current milkruns used by the

customers in the new solution.

MilkrunCostold
supplier =

∑
i∈RS Zi ∗ pTL

i (S) : the total cost of current milkruns used by the

suppliers in the new solution.

LTLcostxd =
∑

i∈N Xi ∗ pLTL
i,xd : the total cost of LTL trucks between nodes and crossdock.

LTLcostpl =
∑

i∈S Yi∗pLTL
i,pl : the total cost of LTL trucks between the nodes and the plant.

RTcost = RT ∗ pTL ∗ (distpl,xd + distxd,pl) : the total cost of round trip TL trucks between

the plant and the crossdock.

OneWayCost = pOneWay ∗ (OWpl,xd ∗ distpl,xd + OWxd,pl ∗ distxd,pl) : the total cost of one

way TL trucks between the plant and the crossdock.

CrossdockCost = ph
xd∗

∑
i∈N (Dockd

i ∗dNPack
i +Docks

i ∗sNPack
i ) : total crossdock usage cost.
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Constraints

For ease of reading, we grouped similar constraints below.

Yi + Vi + Wi + Xi = 1, ∀i ∈ N (6.18)

Vi = 0, ∀i ∈ S\STL. (6.19)

Yi = 0, ∀i ∈ N ∪ STL. (6.20)

|STL
i | ∗ Zi ≥

∑

j∈STL
i

Vj , ∀i ∈ RS . (6.21)

∑

u∈N
′
F TL

u,i (i) = di ∗Wi, ∀i ∈ N. (6.22)

∑

u∈N ′
GTL

i,u (i) = si ∗Wi, ∀i ∈ N. (6.23)

∑

u∈N∪{pl}
(F TL

u,xd(i) + F TL
xd,u(i)) + FRT

pl,xd(i) + FOW
pl,xd(i) ≤ m ∗Dockd

i , ∀i ∈ N (6.24)

∑

u∈N∪{pl}
(GTL

u,xd(i) + GTL
xd,u(i)) + GRT

xd,pl(i) + GOW
xd,pl(i) ≤ m ∗Docks

i , ∀i ∈ N (6.25)

F TL
i,u (i) + GTL

u,i (i) + F TL
u,u (i) + GTL

u,u(i) + GTL
pl,u(i) + F TL

u,pl(i) = 0 ∀i ∈ N,∀u ∈ N
′

(6.26)

Short Description: (6.18): only one mode of transportation must be used by each customer

and supplier; (6.19): suppliers that currently use LTL service, naturally, do not have old

milkruns to be assigned in the new solution; (6.20): only the suppliers that currently use

LTL service can use an LTL service to and from the plant; (6.21): if a supplier j that is

on the current milkrun i uses that new milkrun in the new solution, Zi becomes 1; (6.22 &

6.23): if node i is on a new milkrun, than the amount of i’s demand flow into node i should

be equal to its demand and the amount of i’s supply flow out of node i should be equal to

its supply; (6.24 & 6.25): If node i’s flow passes through the crossdock, then the crossdock

is used by node i; (6.26): unallowed flows are set to zero;
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∑

v∈N
′
Au,v ≤ 1 ∀u ∈ N (6.27)

Au,v + Av,u ≤ 1 ∀u, v ∈ N
′\{pl} (6.28)

∑

v∈N ′
Av,u =

∑

v∈N ′
Au,v ∀u ∈ N (6.29)

∑

u∈N

Axd,u =
∑

u∈N

Au,xd (6.30)

Short Description: (6.27): at most one milkrun truck should enter each customer or supplier;

(6.28): only one of the two arcs between two nodes can be used;(6.29, 6.30): number of

milkrun trucks entering and leaving a node should be equal;

Flow Balance Type Constraints:

Vi ∗ di + Yi ∗ di + FRT
pl,xd(i) + FOW

pl,xd(i) +
∑

u∈N ′
F TL

pl,u(i) = di, ∀i ∈ N (6.31)

Vi ∗ si + Yi ∗ si + GRT
xd,pl(i) + GOW

xd,pl(i) +
∑

u∈N ′
GTL

u,pl(i) = si, ∀i ∈ N (6.32)

∑

u∈N ′
F TL

u,j (i)−
∑

u∈N ′
F TL

j,u (i) = 0, ∀i, j ∈ N : i 6= j (6.33)

∑

u∈N ′
GTL

u,j (i)−
∑

u∈N ′
GTL

j,u (i) = 0, ∀i, j ∈ N : i 6= j (6.34)

∑

u∈N
′
F TL

u,xd(i) + FRT
pl,xd(i) + FOW

pl,xd(i)−
∑

u∈N
′
F TL

xd,u(i)−Xi ∗ di = 0, ∀i ∈ N. (6.35)

∑

u∈N
′
GTL

xd,u(i) + GRT
xd,pl(i) + GOW

xd,pl(i)−
∑

u∈N
′
GTL

u,xd(i)−Xi ∗ si = 0, ∀i ∈ N. (6.36)

Short Description: (6.31 & 6.32): supply and demand satisfaction at the plant; (6.33 &

6.34): flow balance at nodes except the crossdock and the plant; (6.35 & 6.36) demand and

supply flow balance at the crossdock;
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Volume and Weight Capacity Constraints:

∑

i∈N

(F TL
u,v (i) + GTL

u,v(i)) ≤ Au,v ∗maxvol ∀u, v ∈ N
′
. (6.37)

∑

i∈N

FRT
pl,xd(i) ≤ RT ∗maxvol (6.38)

∑

i∈N

GRT
xd,pl(i) ≤ RT ∗maxvol (6.39)

∑

i∈N

FOW
pl,xd(i) ≤ OWpl,xd ∗maxvol (6.40)

∑

i∈N

GOW
xd,pl(i) ≤ OWxd,pl ∗maxvol (6.41)

∑

i∈N

(dweight
i ∗ F TL

u,v (i) + sweight
i ∗GTL

u,v(i)) ≤ maxweight ∗Au,v, ∀u, v ∈ N
′

(6.42)

∑

i∈N

dweight
i ∗ FRT

pl,xd(i) ≤ maxweight ∗RT (6.43)

∑

i∈N

sweight
i ∗GRT

xd,pl(i) ≤ maxweight ∗RT (6.44)

∑

i∈N

dweight
i ∗ FOW

pl,xd(i) ≤ maxweight ∗OWpl,xd (6.45)

∑

i∈N

sweight
i ∗GOW

xd,pl(i) ≤ maxweight ∗OWxd,pl (6.46)

Short Description: (6.37, 6.38, 6.39, 6.40, 6.41): the total flow between two nodes can not

exceed the total volume capacity on the TL trucks operating between those two nodes;

(6.42, 6.43, 6.44, 6.45, 6.46): the total flow between two nodes can not exceed the total

weight capacity on the TL trucks operating between those two nodes;
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Customer Sensitive Constraints:

∑

k∈N
′
GTL

k,j (i) ≤ V isitij ∀i ∈ N, ∀j ∈ S ∪ {pl, xd} : i 6= j (6.47)

∑

k∈N
′
F TL

j,k (i) ≤ V isitij ∀i ∈ N, j ∈ N
′
: i 6= j (6.48)

∑

j∈N ′ :i6=j

V isitij ≤ maxstops ∀i ∈ N. (6.49)

Xi = 0 ∀i ∈ C\CLTL (6.50)

Ai,j = 0 ∀i, j ∈ C (6.51)

F TL
v,i (i) + GTL

i,v (i) = 0 ∀v ∈ N
′
,∀i ∈ C,∀j ∈ C\CLTL : i 6= j (6.52)

Ai,j = 0 ∀i ∈ S,∀j ∈ C (6.53)
∑

k∈N
′
,j∈N :j 6=i

GTL
i,k (j) ≤ 0 ∀i ∈ C (6.54)

∑

k∈N ′ ,j∈C

F TL
i,k (j) ≤ 0 ∀i ∈ S (6.55)

∑

k∈N,j∈N

GTL
xd,k(j) ≤ 0 (6.56)

Short Description: (6.47, 6.48): if node i’s supply or demand flows through a node j, then

node i’s flow visits node j; (6.49): the number of nodes that node i’s flow goes through is at

most maxstops;(6.50): customers should not ship with LTL unless they currently use LTL;

(6.51): no arc between two customers can be used;(6.52): no customer’s demand or supply

should go through another customer; (6.53): no arc from a supplier to a customer can be

used;(6.54): no supply flow should go through a customer; (6.55): no customer demand

flow should go through a supplier;(6.56): the crossdock should only be the last stop on a

milkrun (no supply flow should flow from crossdock to other customers or suppliers).
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