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Abstract

We examine the effect of the introduction of information and communication tech-

nologies (ICTs) on the tasks that workers perform in their jobs, workers’ occupational

choices, and the wages that workers of different skill levels earn. Using the text from

help wanted ads published between 1960 and 2000, we construct a data set that mea-

sures the adoption of 40 ICTs. We find that new technologies are associated with an

increase in nonroutine analytic tasks, and a decrease in nonroutine interactive, routine

cognitive, and manual tasks. We embed these interactions in a quantitative model of

worker sorting across occupations and technology adoption, and evaluate the impact

of the arrival of ICTs on the aggregate demand for worker-performed tasks and on

earnings inequality. Through the lens of the model, the arrival of ICTs generates a

large shift away from routine tasks, and, consequently, an increase in inequality since

(i) high wage workers tend to adopt ICTs and (ii) relative to high wage workers, low

wage workers have a comparative advantage in performing routine tasks. JEL Codes:

J24, M51, O33

∗Atalay and Phongthiengtham: Department of Economics, University of Wisconsin-Madison. Sotelo:
Department of Economics, University of Michigan-Ann Arbor. Tannenbaum: Department of Economics,
University of Nebraska-Lincoln. We acknowledge financial support from the Washington Center for Equitable
Growth.

1



1 Introduction

Enabled by increasingly powerful computers and the proliferation of new, ever more capable

software, the fraction of workers’ time spent using information and communication technolo-

gies (ICTs) has increased considerably over the last half century.1 In this project, we quantify

the impact of 40 individual and recognizable ICTs on the aggregate demand for routine and

nonroutine tasks, on the allocation of workers across occupations, and on earnings inequality.

We start by constructing a data set tracking the adoption rates of 40 ICTs across oc-

cupations and years. We assemble this data set through a text analysis of 6.6 million job

vacancy ads appearing in newspapers between 1960 and 2000 in the Boston Globe, New York

Times, and Wall Street Journal.2 We extract information about jobs’ ICT use and task

content, as measured by their appearance in the text of job postings. In addition, we use

the job titles posted in the ads to recover SOC codes, allowing us to link our processed data

to economy-wide occupation data in the U.S. Census.

The technologies we study constitute a wide set, ranging from office software (includ-

ing Lotus 123, Word Perfect, Microsoft Word, Excel, PowerPoint), enterprise programming

languages (Electronic Data Processing, Sybase), general-purpose programming languages

(COBOL, Fortran, Java), and hardware (UNIVAC, IBM 360, IBM 370), among others.

With this data set, we document rich interactions of individual ICTs and the task content

of individual occupations. One of the strengths of the data is being able to measure ICT

adoption separately by technology type, and indeed we find substantial heterogeneity in the

impact of individual ICTs. We show that, for the most part, job ads that mention a new

technology tend to also mention nonroutine analytic tasks more frequently, while mentioning

other tasks less frequently — this provides preliminary evidence that new technologies are

complementary with particular tasks.3 An important exception is office software, which is

more likely to appear alongside words associated with nonroutine interactive tasks.

Since our data set includes a wide range of occupations and technologies, we can speak

1Nordhaus (2007) estimates that, between 1960 and 1999, the total cost of a standardized set of compu-
tations fell by between 30 and 75 percent annually, a rapid rate of change that far outpaced earlier historical
periods.

2We introduced part of this data set in our earlier paper, namely the task measurement and the job
title-to-SOC mapping (Atalay, Phongthiengtham, Sotelo, and Tannenbaum, 2017). Here, we build these
data further by extracting information about job-specific technology adoption. In Atalay, Phongthiengtham,
Sotelo, and Tannenbaum (2017), we use the text of job vacancy ads to explore trends in occupations’ task
content, showing that within-occupation changes in the tasks workers perform are at least as large as the
changes that happen between occupations.

3Building on a mapping between survey question titles and task categories introduced by Spitz-Oener
(2006), we have identified words that represent nonroutine (analytic, interactive, and manual) and routine
(cognitive and manual) tasks.
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directly to the macroeconomic implications of changes in ICT prices while maintaining a

detailed analysis of individual occupations. Informed by our micro estimates on the relation-

ship between the tasks that workers perform and the technologies they use on the job, we

build a quantitative model of occupational sorting and technology adoption. In the model,

workers sort into occupations based on their comparative advantage. They also choose which

ICT to adopt, if any, based on the price of each piece of technology and the technology’s

complementarity with the tasks involved in their occupation. Within the model, the avail-

ability of a new technology — which we model as a decline in the technology’s price — alters

the types of tasks workers perform in their occupation.

To explore the implications of new technologies on the labor market, we consider three

sets of counterfactual exercises. These exercises investigate the effects of three groups of tech-

nologies: i) Fortran, ii) the Microsoft Office suite: Microsoft Excel, Microsoft PowerPoint,

and Microsoft Word, and iii) all 40 of the technologies in our sample. In each of the coun-

terfactual exercises, we quantify the impact of the new technologies on occupations’ overall

task content, workers’ sorting across occupations, and economy-wide income inequality.

One of our main findings is that new technologies result in an increase in occupations’

nonroutine analytic task content (relative to other tasks). As we have documented elsewhere

(Atalay, Phongthiengtham, Sotelo, and Tannenbaum, 2017) and confirm again here, workers

with observable characteristics indicating high skill levels (experienced and highly educated

workers) have a comparative advantage in producing nonroutine analytic tasks. Because new

technologies increase the demand for worker-performed tasks in which high-skilled workers

have a comparative advantage, the introduction of ICTs has (for the most part) led to

an increase in income inequality. Overall, in a counterfactual economy in which our ICT

technologies were never introduced, earnings would have been 9.6 percent lower for the

median worker; the College-High School skill premium would have been 2.3 percentage points

lower.4 Unlike the other technologies in our data, Microsoft Office technologies are only

weakly correlated with nonroutine analytic tasks. Concomitantly, the impact of Microsoft

Office software has been to decrease the skill premium, and income inequality. However, the

effects of these technologies are small. Individual technologies whose use is concentrated in

a few high-earning occupations, such as Fortran, tend to modestly increase inequality.

This paper relates to a rich literature in labor economics exploring the implications of

technological change for skill prices and the wage distribution (Katz and Murphy, 1992; Juhn,

Murphy, and Pierce, 1993; Berman, Bound, and Machin, 1998; Krusell, Ohanian, Rios-Rull,

and Violante, 2000). More recent work has argued that information technology complements

high-skilled workers performing abstract tasks and substitutes for middle-skilled workers

4Between 1960 and 2000, the College-High School skill premium increased by 23 percentage points.
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performing routine tasks (Autor, Levy, and Murnane, 2003; Goos and Manning, 2007; Autor,

Katz, and Kearney, 2005; Acemoglu and Autor, 2011).

Our paper adopts the task approach as well, and examines how new technologies com-

plement (or substitute for) the types of tasks that workers of different skill groups perform,

finding that ICTs tend to substitute for routine tasks (especially routine manual tasks) which

are disproportionately performed by low skill workers. In turn ICTs allow high skill workers

to focus on the activities in which they are the most productive, which in our model is the

essence of the complementarity. One of our contributions to this literature is to measure both

technological change and the task content of occupations directly, over a period of immense

technological change.

Our paper relates to a second literature that measures directly the adoption of specific

technologies and its effect on wages and the demand for skills. These include studies of the

effect of computer adoption (e.g., Krueger, 1993; Entorf and Kramarz, 1998; Haisken-DeNew

and Schmidt, 1999; Autor, Katz, and Krueger, 1998) or the introduction of broadband in-

ternet (e.g., Brynjolfsson and Hitt, 2003; Akerman, Gaarder, and Mogstad, 2015) on worker

productivity and wages.5 Also exploiting text descriptions of occupations, Michaels, Rauch,

and Redding (2016) provide evidence that, since 1880, new technologies that enhance hu-

man interaction have reshaped the spatial distribution of economic activity. Focusing on

a more recent technological revolution, Burstein, Morales, and Vogel (2015) document how

the diffusion of computing technologies has contributed to the rise of inequality in the U.S.

Our paper builds on this literature by introducing a rich data set measuring the adoption of

ICTs at the job vacancy level.

The rest of the paper is organized as follows. Section 2 of the paper introduces our

new data set. Section 3 provides direct evidence on the interaction between individual ICT

adoption and task contents. Section 4 takes our micro estimates and uses a quantitative

model to study the aggregate impact of ICTs. Section 5 concludes.

2 A New Data Set Measuring ICT Adoption

The construction of this new data set builds on our previous work with newspaper help

wanted ads (Atalay, Phongthiengtham, Sotelo, and Tannenbaum, 2017). In that paper, we

showed how to transform the text of help wanted ads into time-varying measures of the task

content of occupations. In this paper, we turn to previously unexamined content of the ad:

5Additional investigations of technology-driven reorganizations within specific firms or industries include
Levy and Murnane (1996)’s study of a U.S. bank and Bartel, Ichniowski, and Shaw (2007)’s study of the
steel valve industry.
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mentions of ICTs.

Our main data set is built from the universe of job vacancies published in three major

metropolitan newspapers — the Boston Globe, New York Times, and Wall Street Journal —

which we purchased from ProQuest. We use the text contained in each vacancy to measure

the tasks that will be performed on the job and the computer and information technologies

that will be used on the job. Our sample period spans 1960 to 2000.

The original newspapers were digitized by ProQuest using an Optical Character Recog-

nition (OCR) technology. We briefly describe the steps we take to transform these digitized

text into a structured database. First, the raw text does not distinguish between job ads and

other types of advertisements. Hence, we apply a machine learning algorithm to determine

which pages of advertisements are job ads. Figure 1 presents a portion of a page of job ads.

This snippet of text refers to three job ads, first for a Software Engineer position, then a

Senior Systems Engineer position, and finally for a Software Engineer position. Within this

page of ads, we first determine the boundaries of each individual advertisement (where, e.g.,

the Software Engineer ad ends and the Senior Systems Engineer ad begins) and the job’s

title. We then extract, from each advertisement, words that refer to skill requirements, tasks

the new hire is expected to perform, and technologies that will be used in the job. So that we

may link our text-based data to occupation-level variables in the Decennial Census, including

wages, education, and demographics, our procedure also finds the SOC code corresponding

to each job title (for example 151132 for the “Software Engineers” job title.)6

We adopt the mapping of words to task categories based on Spitz-Oener (2006). The five

tasks are nonroutine analytic, nonroutine interactive, nonroutine manual, routine cognitive,

and routine analytic.7 Because we do not want our analysis to be sensitive to trends in

language — either word usage or meaning — we adopt a machine-learning algorithm called

the continuous bag of words to define a set of synonyms for each of our task-related words.

The idea is that words that commonly share surrounding words in the text are likely to

6For additional details on the steps mentioned here, see Atalay, Phongthiengtham, Sotelo, and Tannen-
baum (2017). In that paper we also address issues regarding the representativeness of newspaper ads, and
the validity of task measures extracted from the text. Our data set, including information on occupations’
task and technology mentions are available at http://ssc.wisc.edu/˜eatalay/occupation data . In addition,
on that website we list the full list of words and phrases we associate with each task and technology.

7We use the mapping of words to tasks as described in Footnote 15 of Atalay, Phongthiengtham, Sotelo,
and Tannenbaum (2017) and for convenience listed again here: 1) nonroutine analytic: analyze, analyzing,
design, designing, devising rule, evaluate, evaluating, interpreting rule, plan, planning, research, researching,
sketch, sketching; 2) nonroutine interactive: advertise, advertising, advise, advising, buying, coordinate, co-
ordinating, entertain, entertaining, lobby, lobbying, managing, negotiate, negotiating, organize, organizing,
presentation, presentations, presenting, purchase, sell, selling, teaching; 3) nonroutine manual: accommo-
date, accommodating, accommodation, renovate, renovating, repair, repairing, restore, restoring, service,
serving; 4) routine cognitive: bookkeeping, calculate, calculating, correcting, corrections, measurement,
measuring; 5) routine manual: control, controlling, equip, equipment, equipping, operate, operating.
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Figure 1: Unprocessed Text from the New York Times, January 12, 1997, Display Ad #87

SOFiWARE ENGINEERS - Modal Software Develop air-to-surface modal software, including 

design, code, unit test, integration and test, and documentation. Requires 5+ years software 

engineering experience with a BSEE/CS or Computer Engineering. Software development for 

real-time, multi-tasking/multi-processor, embedded systems experience a must. 3+ years C 

programming experience in a Unix environment and familiarity with modern software design 

methodologies essential. Knowledge of radar design principles a plus. Joint STARS The 

premiere ground surveillance system far the U.S. and allied forces. The DoD has authorized the 

full production of Joint STARS. In addition, significant activity on Joint STARS upgrades is 

underway. SENIOR SYSTEMS ENGINEERS Design and develop advanced, high-resolution 

radar imaging systems, including ultra-high resolution SAR and Moving Target Imaging 

Systems in real-time or near real-time environments. Represent the engineering organization ta 

senior technical management, potential partners and customers in industry and government; 

plan/coordinate R&amp;amp;amp;D program activities; lead a team of hardware/soare/systems 

engineers; develop and test complex signal processing modes and algorithms in a workstation 

environment; support development with analyses, reports, documentation and technical 

guidance. Requires an MS or PhD in Engineering, Physics or Mathematics with experience in 

specification, Imaging anss and testing of Advanced Coherent Radar High-Resolution Must have 

strong math, physics and signal processing skills, C/C++ and ,AN programming expertise, plus 

familiarity with workstations and analytical tools such as The following require knowledge oF 

emulators, debuggers, and logic ana/. Knowledge of Ada, Unix, VxWorks, DigitalAlpha 

Processor and assembly language desirable. Radar systems experience plus. SOFTWARE 

ENGINEERS Define requirements and develop software far RCU or Intel microprocessor-based 

RSEs. Help define software requirements far LRU ECPs and the Contractor Logistics software 

program, including design, code, integration and test, and documentation. BSCS/EE preferred 

with 3-5 years real-time software development experience using Ada and/or FORTRAN 

programming languages. U IS- * SOFiWARE 

Notes: The figure presents text from three vacancy postings in a page of display ads in the New
York Times.
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share the same meaning. For example, one of the words corresponding to the nonroutine

analytic task is researching. The continuous bag of words method uses the text itself to find

synonyms of researching ; these synonyms include interpreting, investigating, reviewing, etc.

In our analysis, we include the union of these synonyms as words mapping to the nonroutine

analytic task, which limits the sensitivity of our analysis to variations in diction over time.

In addition to tasks, we extract 40 different pieces of technology based on word appearances

in the text.

Figure 2 presents the output of our text processing algorithm. This algorithm has been

able to correctly identify the boundaries between the three job ads, as well as the positions

of each of the three job titles. However, since the initial text contained, “Sofiware,” a mis-

spelled version of “Software,” we have incorrectly identified the first job ad as referring to an

engineering position. Our algorithm identifies nine mentions of nonroutine analytic tasks:

“design” and “plan” were words in Spitz-Oener (2006)’s definitions of nonroutine task related

words. In addition, our continuous bag of words model identifies “develop” and “define”

as referring to nonroutine analytic tasks. We also identify one mention of a nonroutine

interactive task — based on the word “coordinate” — and three mentions of software: two

mentions of Unix and one of Fortran. While our data set contains some measurement error

in identifying each job ad’s title and task and technology content, there is considerable

information within the text that can be usefully extracted.

Table 1 lists the technologies in our sample together with information on their timing of

adoption, as measured by the number of mentions in job ads, and the year the technology

was introduced.8 The columns titled “First Year” and “Last Year” list the first and last years

within the 1960 to 2000 period in which the frequency of technology mentions is at least one-

third of the mentions in the year when the technology is mentioned most frequently. Using

this one-third cutoff, the lag between technology introduction and technology adoption (i.e.

the difference between the “Introduction” and the “First Year” column) is 8 years on average.

The final column lists the overall frequency of mentions, across the 6.6 million job ads in our

data set, of each piece of technology.

Figure 3 plots the trends in technology mentions in our data set. Over the sample

period, there is a broad increase in the frequency with which employers mention technologies,

from less than 0.02 mentions per ad in the beginning of the sample to 0.20 mentions by

2000. While there is a broad increase in technology adoption rates throughout the sample,

certain technologies have faded from use over time. The right panel of Figure 4 documents

adoption rates for each of the 40 technologies in our sample, with seven of these highlighted.

Certain technologies which were prevalent in the 1960s and 1970s — including Electronic

8We obtained the year of introduction from the Wikipedia page of each technology.
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Figure 2: Processed Text from the New York Times, January 12, 1997, Display Ad #87

engineers|- modal software develop air-to-surface modal software , including design , code , unit 

test , integration and test , and documentation . requires 5+ years software engineering 

experience with a b see cs or computer engineering . software development for real-time , 

multitasking multiprocessor , embedded systems experience a must . 3+ years c programming 

experience in a UNIX environment and familiarity with modern software design methodologies 

essential . knowledge of radar design principles a plus . joint stars the premiere ground 

surveillance system far the u . s . and allied forces . the DOD has authorized the full production 

of joint stars . in addition , significant activity on joint stars upgrades is underway .

senior system engineer| design and develop advanced , high-resolution radar imaging systems , 

including ultra-high resolution sear and moving target imaging systems in real-time or near real-

time environments . represent the engineering organization ta senior technical management , 

potential partners and customers in industry and government ; plan coordinate r ; d program 

activities ; lead a team of hardware soared systems engineers ; develop and test complex signal 

processing modes and algorithms in a workstation environment ; support development with 

analysis , reports , documentation and technical guidance . requires an ms or PhD in engineering 

, physics or mathematics with experience in specification , imaging ans and testing of advanced 

coherent radar high-resolution must have strong math , physics and signal processing skills , c c 

and , an programming expertise , plus familiarity with workstations and analytical tools such as 

the following require knowledge of emulators , debuggers , and logic Ana . knowledge of Ada , 

UNIX , vxworks , digital alpha processor and assembly language desirable . radar systems 

experience plus.

software engineers|define requirements and develop software far r cu or Intel microprocessor-

based rs es . help define software requirements far lr u e cps and the contractor logistics software 

program , including design , code , integration and test , and documentation . bscs ee preferred 

with 3-5 years real-time software development experience using Ada and or FORTRAN

programming languages . u is- software

  Notes: The figure presents text from three vacancy postings in a page of display ads in the New
York Times. Highlighted text, within a rectangle, refers to a mention of a nonroutine analytic
task. Highlighted text, within an oval, refers to a mention of a nonroutine interactive task. Text
within a rectangle refers to a technology mention. Within these three ads, there are zero mentions
of nonroutine manual, routine cognitive, and routine manual tasks.
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Table 1: Technologies

Technology Introduction First Year Last Year Frequency (%)

APL 1957 1961 1998 0.05

BAL 1964 1968 1983 0.30

CAD 1966 1981 1985 0.04

CICS 1968 1974 1998 0.30

COBOL 1959 1968 1998 0.83

C++ 1983 1993 1999 0.02

DB2 1983 1989 1998 0.08

DOS 1966 1969 1999 0.72

EDP 1960 1963 1986 0.91

Fortran 1957 1965 1992 0.27

Foxpro 1989 1992 1998 0.02

HTML 1993 1996 >2000 0.04

IBM 360 1964 1965 1974 0.18

IBM 370 1970 1972 1982 0.13

IBM RPG 1959 1970 1992 0.04

IMS 1966 1960 >2000 0.26

Java 1995 1996 >2000 0.08

JCL 1964 1969 1998 0.17

LAN 1970 1990 1998 0.19

Lotus 123 1983 1987 1995 0.12

Lotus Notes 1989 1994 1998 0.03

MS Excel 1987 1993 >2000 0.04

MS PowerPoint 1990 1995 >2000 0.05

MS Word 1983 1993 1999 0.16

MVS 1974 1979 1998 0.15

Novell 1983 1994 1998 0.07

Oracle 1977 1995 1999 0.10

Pascal 1970 1982 1990 0.05

Quark 1987 1992 1999 0.07

SQL 1986 1993 1999 0.08

Sybase 1984 1995 1997 0.05

TCP 1974 1994 1999 0.03

TSO 1971 1977 1998 0.06

Univac 1951 1960 1984 0.06

Unix 1971 1992 1999 0.22

Vax 1977 1982 1998 0.11

VisualBasic 1991 1995 1998 0.04

VMS 1977 1985 1996 0.07

VSAM 1970 1982 1998 0.05

Word Perfect 1979 1988 1998 0.15

Notes: This table lists the 40 technologies in our sample. The “First Year” and “Last Year” columns

report the first year and last year at which the frequency of technology mentions was at least one-

third of the frequency of the year with the maximum mention frequency (number of technology

mentions per job ad). The >2000 symbol indicates that the technology was still in broad use at

the end of the sample period.
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Figure 3: Mentions of Technologies
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Notes: This plot gives the smoothed frequency with which job ads mention our set of technologies.
The left panel depicts the sum frequency of all 40 technologies. The right panel depicts the fre-
quencies of each of the 40 technologies separately, seven which are highlighted in thick dark lines
and thirty-three which are depicted by thin, light gray lines.

Data Processing (EDP) and COBOL — have declined in usage. Other technologies — Word

Perfect, Lotus 123, and Lotus Notes — quickly increased and then decreased in newspaper

mentions.

In Figure 4, we examine the heterogeneity across occupations in their adoption rates.

Here, we plot the frequency of job ads which mention each technology, across 4-digit SOC

groups of four different technologies: Fortran, Computer-Aided Design (CAD), Word Perfect,

and Microsoft Word. Each plot indicates with a vertical line the year of release of the tech-

nology to the public. These plots suggest several new facts. First, technological adoption is

uneven across occupations, occurring at different times and to different degrees. For instance

Fortran is quickly adopted by Computer Programmers, while the adoption by Engineers lags

behind and is more limited. Second, for technologies that perform the same function, such as

Word Perfect and MS Word, the figures suggest dramatic substitution between technologies.

Lastly, we see that office software is adopted widely across diverse occupations, whereas other

types of software, such as CAD, are adopted more narrowly. Finally, between the time of

release to the public and the peak of adoption, adoption rates increase first quickly and then

slowly. This pattern is consistent with the S-shaped documented in the diffusion of many

technologies (e.g., Griliches, 1957; Gort and Klepper, 1982). While we do not offer a theory

of the pattern of adoption of new technologies for each occupation, we will exploit the time

variation in adoption rates to gauge their impact on the macroeconomy.
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Figure 4: Mentions of Technologies across Occupations
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(c) Word Perfect
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Notes: This plot gives the smoothed frequency with which job ads in different occupations mention
technologies. Each plot depicts the frequencies of technology mentions for five of the top (largest
and most-intensively adopting of new technologies) Standard Occupation Classification (SOC) oc-
cupations along with the economy-wide average frequency of technology mentions. The red vertical
lines depict the date the technology was introduced. (Fortran was introduced in 1957, right before
the beginning of our sample.)
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3 Task and Technology Complementarity

This section documents empirically how new technologies interact with occupational task

content. We investigate the relationship between mentions of the technologies that employees

use on the job and the tasks that these employees are expected to perform. This estimated

relationship will be a critical input into the equilibrium model in the following section.

As new technologies are introduced and developed, the implicit price of technology adop-

tion falls. As the price falls, in certain jobs employers will find it profitable to have their

employees adopt the new technology. Based on the applicability of the new technology, jobs

will differ, even if the price of adopting the technology is the same across occupations, in the

extent to which adoption occurs. Exploiting this temporal and occupational variation in the

extent to which workers adopt technologies, we estimate the following equation:

taskhajt = βhk · techajkt + fh (wordsajt) + ιjh + ιth + εahjkt (1)

In Equation 1, h refers to one of five potential routine and nonroutine task categories;

techajkt gives the number of mentions of a particular technology k in individual job ad a,

published in year t for an occupation j; ιjh and ιth refer to occupation and year fixed effects,

respectively; and fh (wordsajt) is a quartic polynomial controlling for the number of words

in the ad, since the word count varies across ads. We run the regressions characterized

by Equation 1 separately for each technology k and task h. The occupation fixed effects

and year-fixed effects respectively control for occupation-specific differences in the frequency

of task mentions and economy-wide trends in the tasks that workers perform unrelated to

technology adoption.

In interpreting the regression coefficient, βhk, a key challenge is that technology adoption

may be correlated with unobserved attributes of the job (Athey and Stern, 1998). For

instance, within a particular 4-digit SOC (e.g., SOC 1721–Engineers) certain jobs (e.g.,

Mechanical Engineers relative to Industrial Engineers) potentially could be both more likely

to adopt a new technology and more intensive in nonroutine analytic tasks. In other words,

instead of concluding that ICT adoption and nonroutine analytic tasks are complements,

one may conclude that jobs that are high in nonroutine analytic tasks tend to adopt the

technology. This distinction is important for the interpretation of the empirical results, and

we explore it in Appendix A. There, we re-estimate the regressions specified by Equation 1

with increasingly detailed job-level fixed effects, showing that the relationship between ICT
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adoption and task content does not change with these more detailed controls.9

Figure 5 presents the estimates of βhk for each task-technology pair. Within each panel,

technologies are grouped according to their type, with database management systems first,

then office software, networking software/hardware third, other hardware fourth, and general

purpose software fifth. According to the top-left panel, the relationship between nonrou-

tine analytic task mentions and technology mentions is increasing for database management

systems, networking software/hardware, and general purpose software. Among the 40 tech-

nologies in our sample, the median effect of an additional technology-related mention is an

additional 0.05 nonroutine analytic task mentions per job ad. On the other hand, technology

mentions and task mentions are broadly inversely related for the other four task categories:

An additional mention of a technology is associated (again, according to the median of the 40

coefficient estimates) with 0.137 fewer mentions of nonroutine interactive tasks, 0.018 fewer

mentions of nonroutine manual tasks, 0.011 fewer mentions of routine cognitive tasks, and

0.017 fewer mentions of routine manual tasks.10 But there are important exceptions to these

interactions: Quark XPress, CAD, Microsoft Excel, and PowerPoint are the four technolo-

gies which are associated with an increasing frequency of nonroutine interactive task-related

words. Three of the networking technologies — LAN, Novell, and TCP — are associated

with increased mentions of routine cognitive task mentions.

To sum up, our job ads data set allows us to investigate the degree of complementarity

between tasks and technologies for the adopting occupations. In our data, new technologies

tend to be mentioned jointly with analytic tasks, not with nonroutine interactive, nonroutine

manual, routine cognitive, or nonroutine manual tasks. There are important exceptions,

however, such as the widely adopted office software and interactive tasks.

9If job titles with the highest nonroutine analytic task content were more likely to adopt ICTs, controlling
for job title fixed effects would diminish our main estimates, as they would be partially driven by the
composition of job titles across occupations. As Appendix A shows, this does not appear to happen. Note
that even with job title fixed effects there is still a potential concern of reverse causality: that job-specific
task content may be driving technology adoption. We are working on a further robustness check to bound
the magnitude that reverse causality may have on the main estimates of Equation 1. Note that we model
the endogenous adoption process explicitly in Section 4.

10The frequencies with which employers mention tasks — and with which our text-processing algorithm
detects task-related words — differ across the five task categories. Stating our coefficients in a comparable
scale, the median effect of an individual technology mention is associated with a 0.07 standard deviation
increase in nonroutine analytic task mentions, and a decline in nonroutine interactive, nonroutine manual,
routine cognitive, and routine manual task mentions of (respectively) 0.20, 0.06, 0.05, and 0.11 standard
deviations.
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4 The Macroeconomic Implications of ICTs

In this section, we develop a general equilibrium model, based on the model of Autor, Levy,

and Murnane (2003), Michaels, Rauch, and Redding (2016), Burstein, Morales, and Vogel

(2015), and most directly Atalay, Phongthiengtham, Sotelo, and Tannenbaum (2017). In

our framework, new technologies directly alter the task content of occupations and, through

changes in the value of occupations’ output, indirectly reduce the demand for workers who

were originally producing tasks now substituted by the new technologies. We use our model

to study how new technologies alter the types of tasks that workers perform, and as a

result, reshape their occupational choices and the wages which they earn. We first describe

the model (Section 4.1), explain how we estimate workers’ skills in producing tasks (Section

4.2), delineate our procedure for computing counterfactual changes in equilibrium allocations

and prices in response to changes in the price of ICT capital (Section 4.3) and our calibration

(Section 4.4), and finally present the results from our counterfactual exercises (Section 4.5).

4.1 An Equilibrium Model of Occupation and Technology Choice

Workers belong to one of many groups g = 1, . . . , G, and sort across occupations j = 1, . . . , J .

There are k = 1, . . . , K ICT technologies which workers can use to perform their occupations.

Workers’ observable characteristics, captured by their group g, shape their ability to perform

tasks. In addition, workers have an unobservable comparative advantage across occupation-

ICT pairs. Workers supply one unit of labor inelastically to their jobs.11

Preferences The representative consumer has constant elasticity of substitution prefer-

ences across output of each of the J occupations, given by the following utility function:

U =

(∑
j a

1/ρ
j Y

ρ−1
ρ

j

) ρ
ρ−1

. In this function, Yj equals the sum of the production of individual

workers who work in occupation j, ρ equals the elasticity of substitution, while aj controls

the importance of each occupation in the economy.

Production The focus of our analysis is the technology for producing output in each

occupation. We model an occupation as a combination of labor and capital. Labor is used

to produce tasks h = 1, . . . , H. We model occupations as a bundle of tasks that workers

need to perform. Occupations are different in the intensity with which they require tasks, as

well as their complementarity with each ICT.

11Our model does not capture the decision to leave the labor market. An extension to examine the
employment margin — but one we do not pursue here — would be to include household production as an
additional occupation.
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After choosing an occupation, each worker allocates her labor optimally across these

H tasks. Moreover, workers can adopt an ICT technology k = 1, . . . , K or not adopt a

technology at all, k = 0, according to the returns of doing so. We adopt, in particular,

the following formulation for occupation output of a worker from group g, if working in

occupation j and using κ units of technology k:

Ṽgjk (ε) = εᾱk
H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk
×
(

κgjk
1− ᾱk

)1−ᾱk
,

where ε is the worker’s idiosyncratic efficiency term, which varies across occupations and

ICTs; qhgjk equals the units of task h produced by the worker; and κgjk equals the units of

ICT k used in production. We impose that ᾱk ≡
∑

h αhjk equals 1 if k = 0 (where no a

technology is adopted), and ᾱ < 1 for technologies k ∈ 1, ...K. This formulation allows for

flexible cost shares αhjk, to reflect that at the occupation level some tasks are complementary

with ICT k, while others are substitutable. We assume that ε is drawn i.i.d. from a Fréchet

distribution, such that Pr [ε < x] = exp
(
−x−θ

)
.

A worker decides how to allocate her unit endowment of time to perform the H tasks

that the occupation requires. The worker’s skill to perform each task is determined by the

group g to which she belongs, according to

qhgjk = Shglhgjk,

where lhgjk is the time allocated to task h by the worker.

ICT k = 1, . . . , K is produced with a constant returns to scale technology that employs

only the final good as input, with productivity 1/ck.

Equilibrium We show in the appendix that payments per efficiency unit of labor for group

g workers in occupation j using ICT k is

wgjk = p
1
ᾱk
j (ck)

− 1−ᾱk
ᾱk

H∏
h=1

S

αhjk
ᾱk

gh , (2)

where pk is the price of ICT k. These payments reflect that workers allocate their time to

each task h according to their comparative advantage: that ICTs are used as to maximize

profits in an occupation, and that workers appropriate all of the residual value of their job,
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net of payments to capital.12 The fraction of workers in group g that sorts into occupation

j and technology k is then

λgjk =
wθgjk∑

k′
∑

j′ w
θ
gj′k′

. (3)

Note that our distributional assumptions imply that the average total payment to workers

in group g, which is the same as the average total payments to workers in that group who

select into occupation j using ICT k, is equal to

W̄g = Γ (1− 1/θ) ·

(∑
j

∑
k

wθgjk

)1/θ

, (4)

where Γ(·) is the Gamma function.

We let the final good be the numeraire, so we set P = 1. Given ck, the price of ICTs, an

equilibrium is given by prices of occupational output {pj} and capital uses {κgjk} such that:

(i) occupational-output markets clear,

aj

(pj
P

)1−ρ
E︸ ︷︷ ︸

total spending on j-output

=
G∑
g=1

K∑
k=1

W̄gλgjkLg︸ ︷︷ ︸
wage bill in j

+
G∑
g=1

∑
k

ckκgjkλgjkLg︸ ︷︷ ︸
payments to ICT k in occ. j

∀j, (5)

and (ii) ICT markets clear,13

ckκgjkλgjkLg = (1− ᾱk)︸ ︷︷ ︸
fraction that goes to k

W̄gλgjkLg
ᾱk︸ ︷︷ ︸

total payments in g,j

∀g, j, k, (6)

In expression 5, total expenditure E is given by

E =
G∑
g=1

(
W̄gLg +

J∑
j=1

K∑
k=1

ckκgjk

)
;

the employment shares λgjk are consistent with sorting, as in 3; efficiency wages are consistent

12A way to rationalize this result, as in Burstein, Morales, and Vogel (2015), is to assume that each
occupation’s output is produced by single-worker firms that enter freely into the market, ensuring zero
profits are earned.

13This market clearing condition is equivalent to a condition in terms of capital use per worker

ckκgjk =
(1− ᾱk)

ᾱk
W̄g ∀g, j, k.
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with worker’s optimal time allocation and with free entry, as in 2, and our normalization

relates occupational prices according to

1 =

(
J∑
j=1

aj · p1−ρ
j

) 1
1−ρ

.

This system of equations contains J + G × J ×K × 3 + 1 equations and the same number

of unknowns: {pj},{κgjk, wgjk, λgjk}, and E (together with a normalization).

4.2 Estimating Groups’ Skills

A key input into the calibration of our model and our counterfactual exercises are measures

of comparative advantage of worker groups across occupations and for using ICTs. We

parameterize the skill of worker group g in producing task h, Sgh, as in our earlier paper:

logSgh = ah,gender ·Dgender,g + ah,edu ·Dedu,g + ah,exp ·Dexp,g. (7)

In this equation, Dgender,g, Dedu,g, and Dexp,g are dummies for gender, education and

experience, which define demographic groups, g. In our parameterization, we have two

genders, five education groups, four experience groups. As a result, there are 40 = (2− 1) ·
(5− 1) · (4− 1) · 5 ah parameters which we need to estimate.

Our model delivers three aggregate moments that we take to data using a method of

moments estimator. Let Θ denote the vector of parameters we estimate. Let x̃ denote the

value of variable x observed in the data and x (Θ) denote the model-implied dependence of

variable x on the set of parameters. We use the fraction of workers of group g who work in

occupation j:

λ̃gj =
K∑
k=1

[
wθgjk (Θ)∑
j w

θ
gjk′ (Θ)

]
, (8)

where λgj ≡
∑K

k=1 λgjk; the fraction of workers in occupation j which adopt capital k:

π̃jk =
∑
g

λgjk (Θ) L̃gj∑
g′ L̃g′j

, (9)

and the average earnings per group:

˜̄Wg = Γ (1− 1/θ) ·

(∑
j

∑
k

wθgjk (Θ)

)1/θ

. (10)
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Table 2: Estimates of Skills

Nonroutine Nonroutine Nonroutine Routine Routine
Analytic Interactive Manual Cognitive Manual

Gender
Female -1.249 0.416 -2.012 3.254 -9.919
Education
<HS -2.272 -1.089 1.792 -1.210 3.597
High School -1.100 -0.678 1.289 -0.187 2.736
College 1.513 0.549 -0.803 -1.212 -9.616
Post Graduate 2.275 0.773 -1.162 -3.262 -15.639
Experience
0-9 Years -0.553 -0.705 0.273 -0.339 -1.920
10-19 Years -0.048 -0.291 0.432 -0.174 -1.086
30+ Years -0.044 -0.027 0.439 0.070 -1.678

Notes: The table presents the estimates of ah,gender, ah,edu, and ah,exp for the five tasks h in our main

classification of tasks. The omitted demographic groups are males, workers with Some College, and

workers with 20-29 years of potential experience.

This system contains G × J + K × J + G moments each decade, which we use to estimate

40 + 3× (J +K) moments: 40 a parameters, J occupational prices, K ICT prices, the latter

two which we estimate for the decades of 1960, 1980, and 2000.14

To compute the fraction of group g workers who sort into occupation j (the left hand-

side of Equation 8) and the average earnings of group g workers (Equation 10), we draw on

the public use sample of the decennial censuses (Ruggles, Genadek, Goeken, Grover, and

Sobek, 2015).15 We use our new data set to compute the share of workers who adopt various

ICT technologies (the left-hand side of Equation 9): We set this adoption rate equal to the

fraction of ads corresponding to SOC code j which mention ICT technology k.

These data moments allow us to estimate the patterns of comparative advantage of worker

groups across tasks, which Table 2 contains. An additional outcome of our estimation are

the ICT prices, ck, that rationalize the patterns of technology adoption we observe in the

data.

14We do not estimate the model on all five decades’ worth of data because it is computationally infeasible.
15We restrict our sample to full time workers — workers who were are between the age of 16 and 65, who

worked at least 40 weeks in the preceding year, who work for wages, and have non-imputed gender, age,
occupation, and education data.

19



4.3 Computing Counterfactual Equilibria

In this section we use our estimated model to compute the effect of changes to exogenous

variables, {ck}, and {Lg}, exploiting the “exact hat algebra” approach popularized by Dekle,

Eaton, and Kortum (2008) and used in a similar context to ours by Burstein, Morales, and

Vogel (2015). The advantage of this approach is that it does not require us to fully param-

eterize the model, and instead incorporates information about the parameters contained in

employment shares observed directly in the data.

Throughout, for any variable x, we use x′ to refer to the counterfactual value of that

variable in response to either labor supply or ICT prices, and x̂ to refer to x′/x. We start

by rewriting all of our equations in terms of changes. We obtain the following system of

equilibrium conditions which depends on the observed shares of payments to labor and ICT

and exogenous shocks, which act as forcing variables:

(i) occupational-output markets

J∑
j=1

p̂1−σ
j ÊΨj = Ξ

G∑
g=1

K∑
k=1

̂̄W gλ̂gjkL̂gχgjk + (1− Ξ)
G∑
g=1

K∑
k=1

ξgjkĉkκ̂gjkλ̂gjk , (11)

where Ψj is the share of payments to occupation j in total expenditure, Ξ is the share of

labor in aggregate payments, χgjk is the share of group g, occupation j using ICT k in total

labor payments, and ξgjk is the share of ICT k used by group g in occupation j in total

payments to ICT;

(ii) ICT market clearing

κ̂gjk = ̂̄W g/ĉk; (12)

(iii) Changes in aggregate income

Ê = Ξ
G∑
g=1

̂̄W gL̂gζg + (1− Ξ)
G∑
g=1

J∑
j=1

K∑
k=1

ξgjkĉkκ̂gjkλ̂gjk , (13)

where ζg is group g’s share of total payments to labor (i.e., ζg ≡
∑

j,k χgjk);

(iv) changes in employment shares

λ̂gjk =
ŵθgjk∑

j′
∑

k′ ŵ
θ
gj′k′λgj′k′

; (14)

(v) Changes in wages per efficiency unit of labor

ŵgjk = (p̂j)
1
ᾱk (ĉk)

− 1−ᾱk
ᾱk ; and (15)

20



(vi) Changes in average wages per group16

̂̄W g =

(∑
jk

λgjkŵ
θ
gjk

)1/θ

. (16)

We use this system to study the effect of the availability of ICTs on task content, wages,

and inequality, driven in our model by changes in the price of individual ICT pieces, ĉk. Since

we are also interested in changes in aggregate task content for task h produced in occupation

j, we also compute the following changes,17

T̂hj =

∑
g,k

αhjk
ᾱk
· Lgπgjkπ̂gjk∑

g,k
αhjk
ᾱk
· Lgπgjk

, (17)

where πgjk ≡ λgjk/(
∑

k′ λgjk′) equals the fraction of group g, occupation j workers who adopt

capital k.

4.4 Calibration

In this section, we explain how to calibrate the shares required for computing our counter-

factuals. The primitive data for our calibration are: (i) the frequency of task mentions in

each occupation, (ii) our task-technology regression coefficients from Section 3, (iii) average

wages per group W̄g, (iv) employment shares by group and occupation, λgj =
∑

k λgjk, and

(v) the fraction of adopters in occupation j, πgjk.
18

First, our calibrated αhjk emerge from the coefficient estimates from our Section 3 re-

gressions. To compute αhj0 — the parameter which governs the importance of task h in

occupation j when no ICT technology is being used — we take the predicted value for each

occupation-task pair (plugging in the occupation fixed effect, the average of the year fixed

16Our normalization of prices becomes

1 =

 J∑
j=1

Ψj p̂
1−ρ
j

 1
1−ρ

.

17We define the aggregate content of task h as

Thj =
∑
g,k

(αhjk/ᾱk)Lgπgjk.

18Appendix B.5 describes in detail how we use estimates of Sghand αhjk to calculate variation in adoption
rates across groups g, within occupations, on the basis of our observed adoption rates (which do not vary by
group g).
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effects, and the average ad length) when no technologies are mentioned. Since the sum of

the task shares equals 1, we normalize these predicted values to sum to 1. Then, to calibrate

αhjk/
∑

h′ αh′jk for k 6= 0, we take the predicted value when the k technology is mentioned

once.

In addition, in Appendix B.5 we explain how to construct each of the shares we list below.

We start by constructing aggregates, such as the payments to ICT pieces across groups and

occupations, as well as total expenditures in the economy. We then calibrate shares related

to occupations, groups, and ICT use. We calibrate the share of labor in total payments, Ξ,

as:

Ξ =

∑
g W̄gLg

E
.

To match this moment, we use information from the Bureau of Economic Analysis.19 Next

we compute the share of group g, occupation j, using k in total labor payments

χgjk =
W̄gLgλgjπgjk

ΞE
.

Finally we compute the share of ICT k used by group g in occupation j in total payments

to ICT

ξgjk =
(1− ᾱk)
ᾱk

W̄gπgjkLgλgj
(1− Ξ)E

.

Importantly, we do not observe variation across groups of adoption rates of ICT k, so

we use the estimates of group skills, S, together with our estimates of task contents, α, to

impute them. Appendix B.5 explains this imputation in detail.

4.5 Results

We now explore a set of counterfactual scenarios, aimed at understanding how ICTs have

transformed the US labor market. More specifically, we analyze the impact of increasing

the price of different sets of ICTs on inequality, adoption rates, and aggregate task content,

taking as a baseline the economy in the year 2000. Our choice of taking the end of the

19We compute payments to labor using the data series on wage and salary disbursements in private
industries. To compute, payments to ICT capital, we begin by taking the stock of ICT capital — Information
Processing Equipment and Software. From these capital stocks, we compute the value of capital services
by the multiplying each of the stocks with the sum of the real interest rate and depreciation rate. We set
the real interest rate at 0.04, the depreciation rate on Information Processing Equipment at 0.18, and the
depreciation rate on Software at 0.40. The average ratio, over the 1960 to 2000 sample, of payments to ICT
capital to payments to labor equals 0.053. While we use the sample average when calibrating ᾱ, note that
the ratio of payments to ICT capital to payments to labor increases from 0.020 in 1960 to 0.088 in 2000. Our
model will be able to match, at least qualitatively, the increased share of payments to ICT capital through
increased ICT adoption rates (which occur, in the model, as a result of declines in the various ck).
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sample as the baseline reflects the fact that, in that year, the ICTs we study were already

available and widely adopted, which allows us to exploit the method described in Section

4.3 and thus rely on observed adoption shares.20 In all of our counterfactuals, we simulate a

situation where ICTs are less available, by increasing their price (i.e., setting ĉk > 1).

We study three sets of shocks. First, exploiting the granularity of our ICT data, we study

the impact of Fortran, which was disproportionately adopted in computer programming

and engineering occupations. Second, we study the impact of the Microsoft Office suite

(consisting of Excel, Word, and PowerPoint), a set of office technologies widely adopted

across occupations. Finally, we study the impact of all 40 of the ICTs in our data set.

A common theme in our applications is a tension of two forces that shape the effect of

ICTs on inequality. On the one hand, adoption of ICTs is not homogeneous across groups

of workers which we estimate to have different skills for performing tasks. Consider, for

example, a worker who has relatively high productivity in nonroutine tasks. When an ICT

arrives that changes the task composition of her occupation towards more nonroutine tasks,

the worker benefits because the ICT frees up her time to be allocated to more productive

activities.

On the other hand, the arrival of an ICT acts as a supply shock to the occupations that

adopt the technology most intensively, decreasing the price of this occupation’s output, and

thus lowering the wage of the workers who specialize disproportionately in this occupation.

The following example with (i) two occupations (j, j′), (ii) two ICTs, and (iii) two types of

workers (with Lg = L/2 for each group) clarifies the intuition. Workers sort according to

λgjk =

(
p

1/ᾱ
j c

(ᾱ−1)/ᾱ
k

∏H
h=1 S

(αhjk/ᾱ)

gh

)θ
W̄ θ
g

,

In a symmetric equilibrium, where W̄g = W̄ , the relative price pj/pj′ reflects the relative

supplies of both occupations’ outputs:

pj
pj′

=


∑

g

∑
k

(
c

(ᾱ−1)/ᾱ
k

∏H
h=1 S

(αhjk/ᾱ)

gh

)θ
∑

g

∑
k′

(
c

(ᾱ−1)/ᾱ
k′

∏H
h=1 S

(αhj′k′/ᾱ)

gh

)θ


ᾱ
ᾱ(1−σ)−θ

.

The exponent is negative for θ > ᾱ (which we have assumed throughout), meaning that a

relative increase in output reduces relative prices unambiguously. Furthermore, this elasticity

will be larger the more complementary are the occupations, attaining its maximum at σ = 0.

20The opposite exercise, namely, starting the economy in the year 1960, is difficult since most technologies
had not yet been introduced, and thus their impact through the lens of the model would be negligible.
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Thus, when occupations are substitutable in consumption, there are larger movements of

workers across occupations, which limits the effect on relative prices.

A decrease in the price of one of the ICTs, ck, will have a disproportionate effect on the

occupation-group pair which uses the ICT more intensively, as measured by
∏H

h=1 S
(αhjk/ᾱ)

gh .

In turn, the effect of this decrease in the relative price will disproportionately affect workers

which specialize in that occupation, as shown in Equation 16. The availability of the new

ICT increases inequality if workers in occupations whose relative prices decrease had a low

wage before the shock.

4.5.1 The impact of Fortran

In this counterfactual, we increase the price of Fortran, cFortran, as to decrease the adoption

rates, on average, to 1 percent of what we observe in the year 2000. Again, the spirit of the

exercise is to get close to what the economy would look like if this ICT were not available.

Although this is a large shock, the aggregate effect is somewhat muted, as it is concentrated

on a small fraction of the population. The top left panel of Figure 6 shows that, making

Fortran unavailable in this fashion tends to reduce inequality, which we interpret as saying

that the arrival of Fortran increased inequality. However, the effect is quite small. The

biggest winners in this counterfactual are workers with less than high school education who

have essentially no change in their real wages, while the biggest losers (male workers with less

than 10 years of experience and college education) lose about 0.03 percent of their baseline

real wage.

4.5.2 The impact of the Microsoft Office Suite

In this counterfactual, we increase the price of three technologies – Excel, Word, and Pow-

erPoint– as to decrease their adoption rates, on average, to 1 percent of what we observe

in the year 2000. The impact of increasing their price is larger and contrary to that of

Fortran. To begin, these ICTs are used by many occupations and groups, and thus are

more widespread than Fortran (or other specialty ICTs). Also unlike in the previous Fortran

exercise, a counterfactual drastic increase in the price of Microsoft Office software would

lead to an increase in the economy-wide nonroutine analytic task content and a reduction in

nonroutine interactive task content, by 0.9 percent and 0.6 percent, respectively.

The top right panel of Figure 6 shows that reducing the availability of the Microsoft

Office Suite decreases average wages, but increases inequality modestly: male workers with

less than a high school education have their earnings decline by 1.63 percent, while post-

graduate educated males’ earnings decline by 1.45 percent. We interpret these patterns as
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Figure 6: The Impact of Decreasing ICT Availability on Earnings
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(c) All Observed ICT
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Notes: Within each panel, each point gives the growth in earnings for one of the 40 g groups. The
first character — “M” or “F” — describes the gender; the second set of characters — “<HS,”“HS,”
“Some C,”“C,” or “>C” — the educational attainment; and the third set of characters the number
of years of potential experience for the demographic group. The correlation is weighted by the
number of people in each demographic group.
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suggesting that the arrival of these set of Microsoft Office has increased wages and slightly

reduced inequality. The reason for the disparate impact across demographic groups is that

the Microsoft Office products tend to increase aggregate (manual and cognitive) routine

and nonroutine manual content, benefiting low education workers relative to high education

workers.

4.5.3 The impact of all observed ICTs

In this counterfactual, we increase the price of all ICT technologies, as to reduce average

adoption rates to essentially zero. Such a large shock has important macroeconomic impli-

cations.

The most important effect of this shock is to reduce earnings across the board. The

bottom panel of Figure 6 shows that earnings drop by 10 percent, on average, in a coun-

terfactual without ICTs. However, the reduction is unevenly distributed across workers of

different demographic groups. In the counterfactual equilibrium, the ratio of nonroutine an-

alytic to routine manual aggregate task content is approximately 12 log points lower. As a

result of these economy-wide task changes, counterfactual earnings declines are concentrated

on workers at the top and very bottom of the initial earnings distribution. Moreover, the

removal of ICTs is associated with a 2.3 percentage point decline in the earnings of College

graduates, relative to High School graduates. This counterfactual reduction in the college

premium is 3.2 percentage points for males, and 1.3 percentage points for females. In this

way, the introduction of ICTs account for approximately 10 percent of the 23 percentage

point increase the the College-to-High School premium observed from 1960 to 2000.21

This 10 percent figure is substantially smaller than in Burstein, Morales, and Vogel (2015).

There, the authors report that computerization accounts for 60 percent of the increase in the

skill premium that occurred from 1984 to 2003. There are two key differences between their

setup and ours. First, while we study the effect of a particular set of ICTs, Burstein, Morales,

and Vogel (2015) consider the effect of computer use as a whole. Second, while our model

features comparative advantage of worker groups based on how ICTs change occupational

tasks, in Burstein, Morales, and Vogel (2015), worker groups’ comparative advantage in using

computers is based on idiosyncratic shocks. But regardless of these differences, in applying

the hat algebra approach, we both condition on observed shares of workers across occupations

and technologies. Therefore, our different modeling approaches only yield different results

21To compute this 23 percentage point figure, we draw on our sample of full time workers in the public use
sample of the decennial census. We compute the College-High School premium by regressing log earnings
against education, potential experience, and gender dummies, then comparing the coefficient estimates on
the College and High School category dummies.
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because of the different shares of computing and ICT in payments, as well as how we use

present model to impute the baseline observed shares of workers.

Also responsible for the relatively low figure in this section’s counterfactual exercise is

measurement error in ads’ reporting of technologies, which will tend to attenuate the co-

efficient estimates presented in Section 3. Attenuated coefficient estimates in our ad-level

regressions lead to calibrated αhjk coefficients which vary less across k, within h, j pairs,

and in turn a smaller role that lower capital prices can play in shaping occupations’ task

content and workers’ earnings.22

5 Conclusion

This paper contributes to the literature on the labor market effects of the computer revolution

of the second half of the 20th century, a transformative period of technological change. In

particular, we study the effect of ICT adoption on the task content of occupations, the sorting

of workers across occupations, and earnings inequality.

Our first contribution is to measure technological adoption at the job ad level. We extract

these data from the job descriptions of 6.6 million ads appearing between 1960 and 2000 in

the Boston Globe, New York Times, and Wall Street Journal. This data set, as far as we are

aware, is the most comprehensive available that includes time-varying information on tasks

and technologies at the job level. We use the job title as recorded in the text, and associate

it with an SOC code, to aggregate and produce a publicly available occupation-year data

set.

With this new and rich source of data, we have several main findings. First, we show

that technology adoption is associated with an increase in nonroutine analytic tasks. This

represents an important piece of evidence that the development of computer technologies has

reshaped occupational tasks (Acemoglu and Autor, 2011). Second, through the lens of the

model estimation and counterfactual analysis, we are able to show that the introduction of

ICTs has increased welfare but also earnings inequality, although the overall magnitude of

the effects are somewhat small. Overall, our paper provides evidence that the introduction of

new computer technologies has played a key role in the occupational changes of the 20th cen-

tury (Autor, Levy, and Murnane, 2003; Atalay, Phongthiengtham, Sotelo, and Tannenbaum,

2017).

22Also important, Burstein, Morales, and Vogel calibrate a ᾱ by targeting the capital share of value added,
whereas we target payments of ICT relative to labor. A higher ᾱ would yield a larger counterfactual impact
of ICT on labor income inequality.
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Table 3: Technologies and Tasks: Sensitivity Analysis

(1) (2) (3)
Nonroutine Analytic 0.052 0.058 0.073
Nonroutine Interactive -0.137 -0.110 -0.078
Nonroutine Manual -0.018 -0.014 -0.012
Routine Cognitive -0.011 -0.010 -0.007
Routine Manual -0.017 -0.014 -0.013
Occupation Fixed Effects 4-Digit SOC 6-Digit SOC Job Title

Notes: This table summarizes the coefficient estimates given in Figures 5, 7, and 8. Each cell gives

the median coefficient estimate, across the 40 technologies.

Spitz-Oener, A. (2006): “Technical Change, Job Tasks, and Rising Educational Demands:

Looking Outside the Wage Structure,” Journal of Labor Economics, 24(2), 235–270.

A Robustness Checks Related to Section 3

In this appendix, we consider two additional exercises related to our Section (3) investigation

of the relationship between ads’ task and technology mentions. In Section (3), we in interpret

our βhk coefficients as evidence for complementarity between tasks and technologies. The

main concern for this interpretation is the endogeneity of technology adoption at the ad-level.

In this of exercises, we adopt specifications which include increasingly detailed occupation-

level fixed effects: first, at the 6-digit SOC level (Figure 7) and second at the job title level

(Figure 8). The coefficient estimates given in these two figures are similar to those given

in Figure 5. Whereas the median estimate (across the 40 technologies) of the relationship

between technology mentions and nonroutine analytic task mentions is 0.052 when using

4-digit SOC fixed effects, the analogous coefficient is 0.058 when using 6-digit SOC fixed

effects and 0.073 when using fixed effects for each job title. (See Table 3 for comparisons

for the other four task measures). That the estimates are not diminished by adding job title

fixed affects suggests that the estimates are not driven by endogenous adoption.

B Model Derivations

B.1 Payments to workers

We adopt the following formulation for occupation output of a worker from group g, if

working in occupation j and using κ units of technology k:
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Ṽgjk (ε) = εᾱk
H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk
×
(

κgjk
1− ᾱjk

)1−ᾱk
,

where ε is an efficiency which allows for flexible cost shares, as well as productivity augment-

ing effects, and ᾱk ≡
∑

h αhjk.

We solve the problem in stages. First, the firm takes pj as given and chooses the amount

of capital optimally. That is, κgjk solves the following first order conditions

pj (1− ᾱk) Ṽgjk (ε) = ckκgjk.

Plugging this back in the expression above, we obtain the optimized value function Vgjk (ε)

that only depends on the worker’s time allocations:

Vgjk (ε) = εᾱk
H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk (pjVgjk (ε)

ck

)1−ᾱk

⇒

Vgjk (ε) =

[
εᾱk

H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk (pj
ck

)1−ᾱjk
] 1
ᾱk

= ε
H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk
ᾱk

(
pj
ck

) 1−ᾱk
ᾱk

Taking the function Vgjk as given, the worker chooses his time allocation as to maximize

his payoff:

max
lhgjk

ᾱkpjVgjk (ε)

subject to his unit time endowment ∑
h

lhgjk = 1.

This means that, in equilibrium, the worker allocates her time according to

lhgjk =
αhjk
ᾱk

.

Plugging this back, we get that the worker’s payment per efficiency unit of labor, conditional
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on working in occupation j, is

wgjk = ᾱkpjε

H∏
h=1

[
Sgh
ᾱk

]αhjk
ᾱk

(
pj
ck

) 1−ᾱk
ᾱk

= p
1
ᾱk
j (ck)

− 1−ᾱk
ᾱk

H∏
h=1

S

αhjk
ᾱk

gh .

B.2 Labor supply

Using the assumption that idiosyncratic shocks are drawn from a Fréchet distribution, i.i.d

across occupations and ICTs, the fraction of workers in group g that work in occupation j

using ICT k is

λgjk =
wθgjk∑

k′
∑

j′ w
θ
gj′k′

.

We aggregate this labor supply at different levels, as to match what we observe in the

data. The fraction of g workers who work in occupation j is given by the aggregation of such

workers across all ICT uses:

λgj =
∑
k

λgjk

=
∑
k

wθgjk∑
k′
∑

j′ w
θ
gj′k′

=

∑
k p

1
ᾱk
θ

j (ck)
−θ 1−ᾱk

ᾱk

∏H
h=1 S

θ
αhjk
ᾱk

gh∑
k′
∑

j′ p
θ 1
ᾱk′
j′ (ck′)

−θ
1−ᾱk′
ᾱk′

∏H
h=1 S

θ
αhj′k′
ᾱk′

gh

.

B.3 ICT market clearing

The use of a worker from group g, in occupation j using ICT k is κgjk. We want to calculate

aggregate ICT use over the fraction of workers who select into j, from g, which we denote

Ωgjk. Since all workers in g, j use the same amount of ICT, we can just multiply κgjk by the

34



amount of workers, κgjkλgjkLg. With that, ICT markets clearing states

ckΩgjk ≡ ckκgjkλgjkLg

= (1− ᾱk)
W̄gλgjkLg

ᾱk

⇔

ckκgjk = (1− ᾱk)
W̄g

ᾱk
.

where the second line follows from the fact that ᾱk is the fraction of total payments to factors

that goes to workers.

B.4 Derivations of hat algebra

1. Occupational-output markets clear

S∑
s=1

(
p̂j

P̂s

)1−σ

P̂ 1−ρ
s Êbsj

(
pj
Ps

)1−σ

asP
1−ρ
s E =

G∑
g=1

̂̄W gW̄g

K∑
k=1

λgjkλ̂gjkL̂gLg +
G∑
g=1

∑
k

ĉkΩ̂jkckΩgjk

S∑
s=1

(
p̂j

P̂s

)1−σ

P̂ 1−ρ
s ÊΨsjΓs =

1

E

G∑
g=1

K∑
k=1

̂̄W gλ̂gjkL̂gW̄gλgjkLg

+
1

E

G∑
g=1

∑
k

ĉkκ̂jkλ̂gjkckΩgjk

S∑
s=1

(
p̂j

P̂s

)1−σ

P̂ 1−ρ
s ÊΨsjΓs = Ξ

G∑
g=1

K∑
k=1

̂̄W gλ̂gjkL̂gχgjk

+ (1− Ξ)
G∑
g=1

∑
k

ξgjkĉkκ̂gjkλ̂gjk

where Ψsj is the share of occupation j in sector s expenditure, Γs is sector s share

in total spending, Ξ is the share of labor in aggregate payments, χgjk is the share of

group g, occupation j using ICT k in total labor payments, and ξgjk is the share of

ICT k used by group g in occupation j in total payments to ICT. The first line uses

the definition x̂ ≡ x′/x where x′ is the counterfactual value of variable x. The second

line forms expenditure shares, and the third line collects shares.
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2. ICT markets clear

ckκgjk = (1− ᾱk)
W̄g

ᾱk

ĉkκ̂gjk = ̂̄W g

which implies

κ̂gjk = κ̂gk =
̂̄W g

ĉk

3. Income

E =
G∑
g=1

(
W̄gLg +

J∑
j=1

K∑
k=1

ckΩgjk

)

EÊ =
G∑
g=1

(̂̄W gL̂gW̄gLg +
J∑
j=1

K∑
k=1

ĉkκ̂gjkckΩgjk

)

Ê = Ξ
G∑
g=1

̂̄W gL̂gζg + (1− Ξ)
G∑
g=1

J∑
j=1

K∑
k=1

ĉkκ̂gjkλ̂gjkξgjk

where ζg is the share of group g in total payments to labor (i.e., ζg ≡
∑

j,k χgjk). That

is, changes in income reflect changes in all factor payments.

4. Employment shares

λ̂gjkλgjk =
ŵθgjkw

θ
gjk∑

j′
∑

k′ ŵ
θ
gj′k′ŵ

θ
gj′k′
⇒

λ̂gjk =
ŵθgjk∑

j′
∑

k′ ŵ
θ
gj′k′λgj′k′

5. Wages per efficiency unit of labor

wgjk = p
1
ᾱk
j (ck)

− 1−ᾱk
ᾱk

H∏
h=1

S

αhjk
ᾱk

gh

ŵgjk = (p̂j)
1
ᾱk (ĉk)

− 1−ᾱk
ᾱk
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6. Sectoral prices

Ps =

(
J∑
j=1

bsjp
1−σ
j

) 1
1−σ

P̂s =

(
J∑
j=1

Ψsj p̂
1−σ
j

) 1
1−σ

7. Normalization

1 =

(
S∑
s=1

ΓsP̂
1−ρ
s

) 1
1−ρ

8. Changes in aggregate task content

Thj ≡
∑
g,k

αjhk
ᾱk
· Lgπgjk

T̂hj =

∑
g,k

αjhk
ᾱk
· Lgπgjkπ̂gjk∑

g,k
αjhk
ᾱk
· Lgπgjk

B.5 Calibration of shares according to the model

The primitive data for our calibration are: (i) average wages per group W̄g, (ii) employment

shares by group and occupation, λgj =
∑

k λgjk, (iii) the fraction of adopters in occupation

j, πjk, and (iv) the estimated cost shares αhjk. We observe (i) and (ii) from the decennial

census for various decades; we observe (iii) in our newspaper data, measured as the number

of ads for occupation j that mention ICT k, relative to the total number of ads for occupation

j (both in a given year); finally, (iv) we estimate using the newspaper data, as explained in

Section 3.

In this appendix, our notation allows for heterogeneity across sectors, which we index by

s = 1, ..., S. In this extension, sectors differ according to their weight in the representative

consumer’s utility function. The output of each sector is a constant elasticity of substitution

composite of the production in different occupations of employees working in the sector.

While the main analysis in the paper considers only a single-sector economy, in future drafts

we plan on analyzing how technological change affects workers who do not themselves adopt

a new technology but are exposed through sectoral links. Towards this goal, it will be

necessary to analyze a multi-sector economy.
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ICT use by group of worker. We start by producing figures for adoption rates that

depend on the worker group. Since we do not observe these directly in the data, we rely on

the model to fill in the gaps. Consider the fraction of group g, occupation j workers who

adopt capital k (
λgjkt
λgj0t

)1/θ

=

(
ck,t
pj,t

)1− 1
αk ∏

h

(Sgh)
αhjk
αk
−αhj0 .

And consider the ratio of this fraction for two different demographic groups, g and g′,

which will depend exclusively on groups characteristics and task shares:(
λgjkt
λgj0t

)1/θ

(
λg′jkt
λg′j0t

)1/θ
=

∏
h

(
Sgh
Sg′h

)αhjk
αk
−αhj0

(
λgjkt
λgj0t

)
(
λg′jkt
λg′j0t

) =
∏
h

(
Sgh
Sg′h

)θαhjk
αk
−θαhj0

.

Because that λgjkt = Pr (j, k|g, t) = Pr (j|g, t) · Pr (k|j, g, t) = λgjt · πgjkt, we can take logs

and re-arrange to write an expression for log
(
πgjkt
π•jkt

)
:

log

(
πgjkt
πgj0t

)
−
(
πg′jkt
πg′j0t

)
= θ

∑
h

[
αhjk
αk
− αhj0

]
[logSgh − logSg′h]

log

(
πgjkt
πgj0t

)
−
(
πjkt
πj0t

)
= θ

∑
h

[
αhjk
αk
− αhj0

][
logSgh −

∑
g′

Lg′λg′jt∑
g′′ Lg′′λg′′jt

logSg′h

]

log

(
πgjkt
πgj0t

)
= log

(
πjkt
πj0t

)
+ θ

∑
h

[
αhjk
αk
− αhj0

] [
logSgh −

∑
g′

Lg′λg′jt∑
g′′ Lg′′λg′′jt

logSg′h

]
πgjkt
πgj0t

=
πjkt
πj0t
· exp

[
θ
∑
h

[
αhjk
αk
− αhj0

][
logSgh −

∑
g′

Lg′λg′jt∑
g′′ Lg′′λg′′jt

logSg′h

]]

The terms on the right hand side are directly observable or estimated. The
Lg′λg′jt∑
g′′ Lg′′λg′′jt

come from the decennial census, the
αhjk
αk

from our micro regressions, and the logSgh come

from our model estimation. We use these expressions to impute πgjk, on the basis of πjk,

which we actually observe.
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Expenditure in ICT k. Next we build from these data total expenditure in ICT k, using

the market clearing equation:

ckΩgjk = (1− ᾱjk)
W̄gλgjkLg

ᾱjk
.

Manipulating the right-hand side, we get

ckΩgjk = (1− ᾱk)
W̄g

ᾱjk
× λgjkLg

= (1− ᾱk)
W̄g

ᾱk
× λgjk∑

k′ λgjk′︸ ︷︷ ︸
=πgjk

(∑
k

λgjk

)
Lg

= (1− ᾱk)
W̄g

ᾱk
πgjkLgλgj,

where we remove λgjk and instead we use πgjk, which we observe.

Aggregate expenditure. We now compute aggregate expenditure in the economy, in a

manner consistent with our framework. Our definition states that expenditure comes from

the income of worker and ICTs:

E =
∑
g

{
W̄gLg +

∑
j

∑
k

ckΩgjk

}
=
∑
g

W̄gLg +
∑
j

∑
k

∑
g

ckΩgjk

=
∑
g

W̄gLg +
∑
j

∑
k

(1− ᾱk)
ᾱk

∑
g

πgjkW̄gLgj,

where the last expression is observable.

The share of labor in total payments, which we denote Ξ, is:

Ξ =

∑
g W̄gLg

E
,

which implies the value of 1− Ξ.
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Group g’s share in labor payments. Next we need to compute χgjk, the share of group

g, occupation j, using k in total labor payments

χgjk =
W̄gLgλgjk∑

g W̄gLg
=

1

ΞE
W̄gLgλgjk ×

∑
l λgjl∑
k′ λgjk′

=
1

ΞE
W̄gLg

(∑
l

λgjl

)
πgjk

=
1

ΞE
W̄gLgλgjπgjk.

Finally we compute the share of ICT k used by group g in occupation j in total payments

to ICT

ξgjk =
ckΩgjk

(1− Ξ)E

=
(1− ᾱk) W̄gλgjkLg

ᾱk

(1− Ξ)E

=
(1− ᾱk) W̄g

ᾱk
πgjkLgλgj

(1− Ξ)E
.

Sectoral shares Now we compute shares related to the importance of each sector. The

only additional information we need is the total payments to all workers who work in sector

s, occupation j.

We start by computing Ψsj is the share of occupation j in sector s expenditure. Recall

that the total payment to occupation j firms that employ group g workers is∑
k

W̄gλgjkLg +
∑
k

ckκgjkλgjkLg.

The average payment per firm (since the number of workers equals the number of firms) is

∑
k W̄gλgjkLg∑
k λgjkLg

+

∑
k ckκgjkλgjkLg∑

k λgjkLg
= W̄g +

∑
k (1− ᾱk) W̄g

ᾱk
πgjkLgλgj∑

k λgjkLg

= W̄g + W̄g

∑
k

(1− ᾱk)
ᾱk

πgjk.

Since there is no selection of workers across sectors, total payments to occupation j (both

workers and ICT) in sector s is given by the following expression, where we denote by Λgjs
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the number of workers from group g, who work in sector s and occupation j23

ψsj =
∑
g

Λgjs × average payment to occ j, group g

=
∑
g

Λgjs

{
W̄g + W̄g

∑
k

(1− ᾱk)
ᾱk

πgjk

}

=
∑
g

ΛgjsW̄g

{
1 +

∑
k

(1− ᾱk)
ᾱk

πgjk

}

=

{
1 +

∑
k

(1− ᾱk)
ᾱk

πgjk

} ∑
g

ΛgjsW̄g︸ ︷︷ ︸
=total payments to all workers in s, j

.

The share we are looking for is

Ψsj = ψsj/
∑
j′

ψsj′ .

Finally, we compute Γs, sector s share in total spending,

Γs =

∑
j ψsj∑

s′,j′ ψs′,j′
.

23The model does not make a prediction for these quantities, but note that we will never need them
separately for the calibration; we just need them insofar as we need data on total payments to all workers
in sector s, occupation j. Note that

∑
s Λgjs = Lgj .
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