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Abstract

Asset prices contain information about the probability distribution of future states

and the stochastic discounting of these states. Without additional assumptions, prob-

abilities and stochastic discounting cannot be separately identified. Ross (2013) intro-

duced a set of assumptions that restrict the dynamics of the stochastic discount factor

in a way that allows for the recovery of the underlying probabilities. We use decom-

position results for stochastic discount factors from Hansen and Scheinkman (2009) to

explain when this procedure leads to misspecified recovery. We also argue that the

empirical evidence on asset prices indicates that the recovered measure would differ

substantially from the actual probability distribution and that interpreting this mea-

sure as the true probability distribution may severely bias our inference about risk

premia, investors’ aversion to risk, and the welfare cost of economic fluctuations.

∗We thank Fernando Alvarez, Anmol Bhandari, Kyle Jurado and Stavros Panageas for useful comments.



1 Introduction

It has been known, at least since the path-breaking work of Arrow, that asset prices reflect

a combination of stochastic discounting and probability distributions. In a Markovian envi-

ronment, prices of assets that pay a single dividend next period reflect both how consumers

discount payoffs in the different states and the transition probabilities from the current state.

Data on asset prices alone are not sufficient to identify non-parametrically the stochastic

discount factor and transition probabilities without imposing additional restrictions. For

instance, one may use additional time series evidence on the evolution of the Markov state

which gives a separate way to identify the transition probabilities. The state-specific discount

factors can then be inferred from asset prices.

Hansen and Scheinkman (2009) showed that if the transition probabilities satisfy an

ergodicity property, one may use Perron–Frobenius theory to identify a distorted probabil-

ity measure that reflects the long-term implications for risk pricing. They point out that

this measure is typically distinct from the physical probability measure. In contrast, Ross

(2013) uses Perron–Frobenius theory to claim a recovery result — a full identification of the

transition probabilities from asset prices.

In this paper we connect the two results to make clear the special assumptions that

are needed to guarantee that the distorted transition probabilities recovered using Perron–

Frobenius theory equal the actual transition probabilities. In the general case, the ratio of

the distorted to the true probability measure will be manifested as a non-trivial martingale

component in the stochastic discount factor. Several of the structural models of asset pricing

used in macroeconomics imply a non-trivial martingale component and existing empirical

evidence suggests that this martingale component is quantitatively important.

We start in Section 2 by illustrating the problem of identifying the correct probability

measure in a discrete-state space environment. In continuous-state spaces, additional tech-

nical challenges arise that may lead to multiple solutions of the Perron–Frobenius problem.

The potential for multiplicity leads us in Section 3 to introduce a stochastic stability con-

dition. As we show in Section 4, stochastic stability uniquely picks a particular candidate

solution. We demonstrate in Section 5 that a Perron–Frobenius approach leads naturally

to the construction of a martingale component to the stochastic discount factor process, a

component that must be identically equal to one for Ross (2013)’s analysis to apply. We also

show that this martingale component is not degenerate in several well known models of asset

pricing models. In Section 6, we unify and extend results from a literature that bounds the

magnitude of the martingale component that can be recovered from the asset pricing data.

Section 7 concludes.
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2 Illustrating the identification challenge

Hansen and Scheinkman (2014) gave a counting argument that illustrates the identification

challenge that is present even in the simple setting of a finite state Markov chain. We review

and expand on that discussion in what follows.

Let X be a discrete time, n-state Markov chain with transition matrix P =̇ [pij]. We may

identify state i with a coordinate vector ui with a single one in the i-th entry. Suppose the

analyst can infer the prices of one-period Arrow claims. We represent this input as a matrix

Q = [qij ] that maps a unit payoff tomorrow specified as a function of tomorrow’s state into

a price today. Since there are only a finite number of states, the payoff and price can both

be represented as vectors. In particular, qij is the price in state Xt = ui of a security that

pays one unit of consumption in state Xt+1 = uj.

Notice that Q has n × n entries. P has n × (n − 1) entries because row sums have to

add up to one. The realized one-period stochastic discount factors are entries of a matrix

S =̇ [sij ] where sij discounts one unit of consumption in state uj tomorrow given that the

current state is ui. The discounting is state-dependent to adjust valuation to uncertainty

in the next-period payout. Risk adjustments are encoded by this state dependence because

each future state may be discounted differently. In general the stochastic discount factor

introduces n× n free parameters sij , i, j = 1, . . . , n. The Arrow prices are the products:1

qij = sijpij . (1)

Additional data is needed to non-parametrically identify P = [pij] and S = [sij ] from

asset prices Q = [qij ] without imposing additional restrictions. For instance, one may use

time series evidence on the evolution of the Markov state to infer the transition probabilities.

This gives a separate way to identify P, and then the state-specific discount factors S can

be inferred from the Arrow prices.

What follows are two ways to construct probabilities from the Arrow prices without

appealing to time series data to identify the probabilities.

1The simple counting requires some qualification when Q has zeros. For instance, when qij = 0, then
pij = 0 in order to prevent arbitrage opportunities. In this case the numerical value assigned to sij is
inconsequential.
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2.1 Risk-neutral probabilities

The financial engineering literature extensively uses the concept of risk-neutral probabilities,

which are constructed as:

p∗ij =
qij
q̄i

where q̄i =
∑n

j qij is the price of a one-period discount bond in state i. In order to satisfy

equation (1), we may define

s∗ij = q̄i.

The risk-neutral probabilities p∗ij can always be constructed and used in conjunction with

discount factors [s∗ij]. The discount factors are independent of state j, reflecting the absence

of risk adjustments conditioned on the current state. In contrast, one-period discount bond

prices can still be state-dependent. While [p∗ij ] is a probability matrix, there is no claim

that it represents actual transition probabilities, or that [s∗ij] represents actual valuation of

consumption in states tomorrow by an investor.

2.2 Long-term pricing

We follow Backus et al. (1989) in studying long-term pricing of cash flows associated with

fixed income securities using Perron–Frobenius theory. When there exists a λ > 0 such that

the matrix
∑

∞

t=0 λ
tQt has all entries that are strictly positive, the largest eigenvalue exp(η)

of Q is unique and positive and the associated eigenvector e has strictly positive entries. We

denote the ith entry of e as ei. Typically, η < 0 to reflect time discounting of future payoffs.

Recall that we may evaluate t-period claims by applying the matrix Q for t times in

succession. From the Perron–Frobenius theory for positive matrices:

lim
t→∞

exp(−ηt)Qtf = (f · e∗)e

where e∗ is the corresponding positive row eigenvector of Q and e∗ ·e is normalized to be one.

The positive eigenvector e thus provides state-dependent valuations for payoffs maturing in

the distant future. The price in current state ui of an arbitrary payoff f maturing in t→ ∞
periods is, up to a proportionality constant, equal to ei, and the average rate of discount of

this long-horizon cash flow is −η.
The eigenvector e and the associated eigenvalue also provide a way to construct a prob-

ability transition matrix given Q. Form

p̃ij = exp(−η)qij
ej
ei

(2)
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Notice that
n∑

j=1

p̃ij = exp(−η) 1
ei

n∑

j=1

qijej = 1.

Thus P̃ = [p̃ij ] is a transition matrix. Moreover,

qij = exp(η)
ei
ej
p̃ij .

Hansen and Scheinkman (2009) and Ross (2013) both use this approach to construct a

probability distribution, but they interpret it differently. Hansen and Scheinkman (2009)

study multi-period pricing by compounding stochastic discount factors. They use the prob-

ability ratios for p̃ij given by (2) and consider the following decomposition:

qij =

[
exp(η)

ei
ej

p̃ij
pij

]
pij = exp(η)

(
ei
ej

)
hijpij.

Hence,

sij = exp(η)

(
ei
ej

)
hij (3)

where H = [hij] and

hij = p̃ij/pij

provided that pij > 0. When pij = 0 the construction of hij is inconsequential.

Hansen and Scheinkman (2009) interpret the three components of the one-period stochas-

tic discount factor displayed on the right-hand side of (3) and show how this representation

can be used to study long-term valuation. The third term, which is a ratio of probabilities,

is used as a change of probability measure in their analysis. In contrast, Ross (2013) uses

(2) to identify the transition probability used by investors by presuming that hij = 1 for all

(i, j), which implies that the transition probabilities P and P̃ coincide. In the next sections

we address these issues under much more generality by allowing for continuous-state Markov

processes. As we will see, some additional complications emerge.

To anticipate the counterpart to (3) for a more general probability model, consider the

stochastic discount factor process S = {St : t = 0, 1, 2, ...} that is obtained by compounding

the one-period stochastic discount factor. In general, St depends on the history of the state

from 0 to t since the increment between t and t + 1 is given by:

St+1

St

= Xt
′SXt+1.
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Similarly, we define
Ht+1

Ht

= Xt
′HXt+1.

Then
St+1

St

= exp(η)

(
Ht+1

Ht

)(
e ·Xt

e ·Xt+1

)

Compounding the three components in decomposition (3), we obtain:

St = exp(ηt)

(
Ht

H0

)(
e ·X0

e ·Xt

)
(4)

where we initialize S0 = 1 and

Ht

H0

=
t∏

τ=1

Xτ−1
′HXτ .

Because hij is obtained as a ratio of probabilities, H is a positive martingale under P

for any positive specification of H0 as a function of X0. Thus from (4), the eigenvalue

η contributes an exponential function of t and the eigenvector contributes a function of

the Markov state to the stochastic discount factor process. In addition there is martingale

component, whose logarithm has stationary increments. The assumption of Ross (2013) thus

amounts to requiring that Ht/H0 ≡ 1 or equivalently that S has no martingale component.

3 Setup

We start with a set of indices T (either the non-negative integers or the non-negative reals)

and X = {Xt}t∈T a stationary Markov process on a probability space {Ω,F , P}. Write

F =̇ {Ft}t∈T for the (completed) filtration generated by the histories Xu, u ≤ t.

3.1 Constructing other processes

We use X to build other processes. Consider a process M specified in discrete time by

logMt+1 − logMt = g(Xt+1, Xt) (5)

where logM0 = 0. When X is a continuous time diffusion in a space with a Brownian motion

W , suppose that

d logMt = β(Xt)dt+ α(Xt) · dWt, (6)

again with logM0 = 0. In particular, the logM process has stationary increments in both

cases.
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These two specifications are sufficiently general for us to discuss identification and recov-

ery. The resulting constructions of M give rise to special cases of what are called positive

multiplicative functionals.2 In this paper a positive process is one that is strictly greater

than zero almost surely for all t in T .

Definition 3.1. A multiplicative functional is a process M that is adapted to F, M0 = 1,

and

Mt(X) =Mτ (X)Mt−τ (θτ (X)), (7)

where θτ is the shift operator that moves the time subscript of X by τ , that is,

(θτ (X))s = Xτ+s.

We will analyze alternative measures equivalent to P that we build using strictly positive

martingales. Given an F-martingale H that is strictly positive and has unit expectation for

all t, we may define a probability PH such that if A ∈ Fτ for some τ ≥ 0,

PH(A) = E(1AHτ ). (8)

The Law of Iterated Expectations guarantees that these definitions are consistent, that

is, if A ∈ Fτ and t > τ then

PH(A) = E(1AHt) = E(1AHτ ).

3.2 Stochastic stability

For general state spaces, our analysis requires that stability restrictions are imposed when

we change probability measures. We first specify our most general condition, and then we

construct two more easily interpretable sufficient conditions.

Condition 3.2. The process X is stochastically stable in averages under a probability

distribution PH if for any bounded (Borel measurable) function f ,

lim
N→∞

EH

[
1

N

N∑

t=1

f (Xt) |X0 = x

]
= EHf(X0).

2There are two extensions of this setup that are also of substantive interest. In Hansen and Scheinkman
(2014), we have extended this analysis to allow for a richer specification of uncertainty by introducing explicit
additional shocks that do not directly influence the state dynamics, but at the same time have an impact
on valuation. Also, while the Brownian information specification (6) abstracts from jumps, these can be
included without changing the implications of the analysis, see Hansen and Scheinkman (2009).
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when T is the set of nonnegative integers (discrete time), or, when T is the set of nonnegative

real numbers (continuous time),

lim
N→∞

EH

[
1

N

∫ N

0

f (Xt) dt|X0 = x

]
= EHf(X0)

pointwise in x for almost all x.

Condition 3.2 allows for periodic components to the Markov process. When such com-

ponents are absent, a simpler but stronger version of Condition 3.2 is given by:

Condition 3.3. The process X is stochastically stable under a probability distribution

PH if for any bounded (Borel measurable) function f ,

lim
t→∞

EH [f (Xt) |X0 = x] = EHf(X0).

pointwise in x for almost all x.

This condition was imposed by Hansen and Scheinkman (2009) and Hansen (2012) to select

among Perron–Frobenius eigenfunctions.

Another sufficient condition uses the Law of Large Numbers (LLN) for Markov processes

conditioned on an initial state X0 = x. This version also allows for periodic components.

Condition 3.4. The process X obeys the LLN under a probability distribution PH if for

any bounded (Borel measurable) function f ,

lim
N→∞

EH

[∣∣∣∣∣
1

N

N∑

t=1

f (Xt)− EHf(X0)

∣∣∣∣∣ |X0 = x

]
= 0

when T is the set of nonnegative integers (discrete time), or, when T is the set of nonnegative

real numbers (continuous time),

lim
N→∞

EH

[∣∣∣∣
1

N

∫ N

0

f (Xt) dt−EH [f(X0)]

∣∣∣∣ |X0 = x

]
= 0

pointwise in x for almost all x.

To see that Condition 3.2 is implied by Condition 3.4, notice that

EH

[∣∣∣∣∣
1

N

N∑

t=1

f (Xt)− EHf(X0)

∣∣∣∣∣ |X0 = x

]
≥
∣∣∣∣∣E

H

[
1

N

N∑

t=1

f (Xt) |X0 = x

]
−EHf(X0)

∣∣∣∣∣
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If the left-hand side converges to zero, then so does the right-hand side. An entirely similar

argument applies for the continuous-time case.

Since we condition on X0 in our statement of Conditions 3.2 and 3.3, the conditional

change of measure is represented by H/H0:

EH

[
1

N

N∑

t=1

f (Xt) |X0 = x

]
= E

[(
HN

H0

)
1

N

N∑

t=1

f (Xt) |X0 = x

]
.

The random variable H0 that initializes H defines the limit points for the LLN and makes X

stationary under the probability PH implied by H . The random variable H0 = h(X0) must

satisfy the equation:

E

[
f(Xt)

(
Ht

H0

)
h(X0)

]
= E [f(X0)h(X0)] .

for any bounded (Borel measurable) f .

We have purposely stated these conditions for a probability measure PH associated with

H . We suppose that the stability Condition 3.2 is satisfied for the probability P . As

we change probability measures, stochastic stability will not necessarily be satisfied, but

checking for this stability under the probability PH will be used in our analysis.

4 Stochastic discount factor, probability measure and

recovery

A stochastic discount factor process S is a positive multiplicative functional with finite first

moments (conditioned on X0 = x) such that the date zero price of any claim ψ(Xt) payable

at t is

[Qtψ] (x) =̇ E[Stψ(Xt)|X0 = x]. (9)

The multiplicative property of S allows us to price consistently at intermediate dates. In

discrete time we may build the t-period operator Qt by applying the one-period operator Q1

t times in succession. In continuous time, {Qt : t ∈ T} forms what is called a semigroup

of operators. The counterpart to a one-period operator is a generator of this semigroup

that governs instantaneous valuation and which acts as a time derivative of Qt at t = 0.

Thus in discrete time it suffices to study the one-period operator and in continuous time the

generator of the family of operators {Qt : t ∈ T}.
We are typically interested in pricing a richer collection of cash flows including ones that

8



display stochastic growth and ones that are history-dependent. Given a probability measure

P , the pricing operator in (9) applied to all (bounded, measurable) functions ψ (x) for every

t ≥ 0 is sufficient to determine the stochastic discount factor process S, which can be used

to assign prices to these other cash flows.

Notice that equation (9) involves simultaneously the probability P on F-measurable sets

and the process S. In other words, a stochastic discount factor process is only well-defined

for a given probability measure.

Definition 4.1. The pair (S, P ) explains asset prices if equation (9) gives the date zero price

of any claim ψ(Xt) payable at any time t ∈ T .

Consider now a strictly positive martingale H and the associated probability measure

PH defined through (8). We define:

SH = S
H0

H
.

The following proposition is immediate:

Proposition 4.2. Suppose that E (H0) = 1, H is a positive martingale, and H
H0

is a mul-

tiplicative functional. If the pair (S, P ) explains asset prices then the pair (SH , PH) also

explains asset prices.

This proposition captures the notion that stochastic discount factors are only well-defined

for a given probability distribution. When we change the probability distribution, we must

also change the stochastic discount factor in order to represent the same asset prices. An

analogous observation carries over to so-called risk prices that are assigned by the stochastic

discount factor to alternative risk exposures. In other words we have multiple ways to

represent Q:

[Qtψ](x) = E [Stψ(Xt)|X0 = x] = EH
[
SH
t ψ(Xt)|X0 = x

]
(10)

where EH is the expectation operator associated with PH .

So far we have imposed one probability measure P and shown what happens when we

consider other probability measures. Suppose, however, that this probability distribution

is not known to an external analyst. Given that H can be any positive multiplicative

martingale, we are left with a fundamental identification problem. From the Arrow prices

alone we cannot distinguish (S, P ) from (SH , PH). In particular, we cannot recover P from

the Arrow prices alone. To achieve identification, either we have to restrict the stochastic

discount factor process S or we have to restrict the probability distribution used to represent

the valuation operators Q.
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There are multiple ways we might address this lack of identification. First, we might

impose rational expectations, observe time series data, and let the Law of Large Numbers

for stationary distributions determine the probabilities. Then observations for a complete

set of Arrow securities allows us to identify S. See Hansen and Richard (1987) for an initial

discussion of the stochastic discount factors and the Law of Large Numbers, and see Hansen

and Singleton (1982) for an econometric approach that imposes a parametric structure on

the stochastic discount factor and avoids assuming that the analyst has access to data on

the complete set of Arrow securities.

Second, as in Ross (2013), we may impose a special structure on S by assuming:

Assumption 4.3. Let

St = exp(−δt)m(Xt)

m(X0)

for some positive function m and some real number δ.

The pair (SH , PH) that explains asset prices and satisfies Assumption 4.3 is unique

provided that stochastic stability is preserved under the measure PH. Formally,

Proposition 4.4. Suppose (S, P ) explain asset prices and S satisfies Assumption 4.3. Let
H
H0

be a positive multiplicative martingale such that (SH , PH) also explain asset prices and

X is stochastically stable in averages (satisfies Condition 3.2) under PH . If SH also satisfies

Assumption 4.3, then H ≡ 1.

The proof of this theorem is similar to the proof of a related uniqueness result in Hansen

and Scheinkman (2009) and is detailed in Appendix A.

Remarkably, Proposition 4.4 gives an identification result, which is a counterpart of the

recovery result in Ross (2013). Under the conditions of this proposition, we may infer both

the stochastic discount factor and a probability distribution associated with that stochastic

discount factor from the pricing operator Qt. In the next section we relax Assumption 4.3,

and we ask “what does this approach actually recover?”

To illustrate the role the stability in selecting a single function that satisfies Assumption

4.3, and thus a single probability distribution, consider the following example.

Example 4.5. Suppose that X is a Feller square root process:

dXt = −κ(Xt − µ̄)dt+ σ̄
√
XtdWt

where κ > 0, µ̄ > 0 and κµ̄ ≥ 1
2
(σ̄)2. With these restrictions, the process X is stochastically

stable and strictly positive.
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Let m(x) = exp (ζx) so that the stochastic discount factor satisfies

St = exp [−δt + ζ(Xt −X0)] , (11)

or, in differential form,

d logSt = [−δ − ζκ(Xt − µ̄)] dt+ ζσ̄
√
XtdWt.

We choose a multiplicative martingale of the form:

Ht

H0

= exp

[
−
∫ t

0

ξ(Xs)dWs −
1

2

∫ t

0

ξ(Xs)
2ds

]
.

and thus

SH
t = St

H0

Ht

must satisfy:

d logSH
t =

(
−δ − ζκ(Xt − µ̄) +

1

2
[ξ(Xt)]

2

)
dt+

[
ζσ̄
√
Xt + ξ(Xt)

]
dWt. (12)

We will show that there is a choice of ξ such that

St 6= SH
t = exp

(
−δ̃t

) exp
(
ζ̃Xt

)

exp
(
ζ̃X0

) ,

or

d logSH
t =

[
−δ̃ − ζ̃κ(Xt − µ̄)

]
dt+ ζ̃ σ̄

√
XtdWt.

Equating coefficients:

ξ(x) =
(
ζ̃ − ζ

)
σ̄
√
x,

and

−ζκx+ 1

2

(
ζ̃ − ζ

)2
σ̄2x = −ζ̃κx.

Consequently, either ζ̃ = ζ or,

ζ̃ = ζ − 2κ

σ̄2
.

In this case,

ξ(x) = −2κ

σ̄

√
x.

For this second solution, under the probability PH the Brownian motion W has a local drift
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−ξ(Xt) and hence the local mean for X is

−κ (x− µ̄) + 2κx = κx+ κµ̄.

Thus the dynamics for X are

dXt = κ(Xt + µ̄)dt+ σ̄
√
XtdW̃t

where W̃t = Wt +
∫ t

0
ξ(Xs)ds is a Brownian motion under PH. Since κ > 0, X is not

stochastically stable when ζ̃ = ζ − 2κ
σ̄2 .

5 What is recovered?

This section reviews results in Hansen and Scheinkman (2009), Hansen (2012) and Hansen

and Scheinkman (2014). These references and Ross (2013) use Perron–Frobenius theory in

their analyses. At this juncture, we adopt a more general starting point and do not impose

Assumption 4.3.

Suppose there exists a function e(x) that solves the following Perron–Frobenius problem:

Problem 5.1 (Perron–Frobenius). Find a scalar η and a function e > 0 such that for every

t ∈ T,

[Qte](x) = exp(ηt)e(x).

When the state space is finite as in Section 2, functions of x can be identified with vectors

in Rn, and the operator Q1 can be identified with a matrix Q. If the matrix
∑

∞

t=0 λ
tQt is

strictly positive for some positive λ, then the Perron–Frobenius Theorem states that there

exists a unique (up to scale) solution to Problem 5.1.

Existence and uniqueness are more complicated in the case of general state spaces.

Hansen and Scheinkman (2009) present sufficient conditions for the existence of a solution,

but even in examples commonly used in applied work, multiple (scaled) positive solutions

are a possibility. See Hansen and Scheinkman (2009), Hansen (2012) and our subsequent

discussion for such examples. When we have a solution of the Perron–Frobenius problem,

we follow Hansen and Scheinkman (2009), and define a process H̃ that satisfies:

H̃t

H̃0

= exp(−ηt)St

e(Xt)

e(X0)
. (13)
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The process H̃ is an F-martingale under the probability measure P . In fact,

E

[
H̃t

H̃0

| Fτ

]
=

exp(−ηt)
e(X0)

Sτe(Xτ )E

[
Ste(Xt)

Sτe(Xτ )
| Fτ

]
=

exp(−ητ)
e(X0)

Sτe(Xτ ) =
H̃τ

H̃0

,

where in the second equality we used the property from equation (7) of the definition of a

multiplicative process.

Note that H̃ inherits much of the mathematical structure of the original process S. For

instance, if S has the form given by equation (5) above, then in discrete time:

log H̃t+1 − log H̃t = g(Xt+1, Xt) + log e(Xt+1)− log e(Xt)− η

= g̃(Xt+1, Xt)

In logarithms, this constructed process has stationary increments.

As we noted, such a construction may not be unique. (For instance, see Example 4.5.) If,

however, we restrict H̃ so that X under the implied probability distribution is stochastically

stable in averages (Condition 3.2), then there is at most one such H̃ . The proof of this

uniqueness result is essentially the same as that of Proposition 4.4, and is a result reported

in Hansen and Scheinkman (2009). While this recovers a single probability, there is no claim

that this constructed probability is the one that generates the data.

Note that if H̃ ≡ 1 then S necessarily satisfies Assumption 4.3. On the other hand, if S

satisfies Assumption 4.3, then e(x) = 1
m(x)

solves the Perron–Frobenius Problem 5.1 and the

associated H̃ ≡ 1. Thus we obtain:

Proposition 5.2. S satisfies Assumption 4.3 if and only if there exists a solution e > 0 to

the Perron–Frobenius problem and the associated η such that:

H̃t

H̃0

= exp(−ηt)St

e(Xt)

e(X0)
≡ 1.

This proposition reveals the recovery result as a special case of the decomposition (13).

Recall that the primitive of our analysis is the pair (S, P ) where the probability measure

P satisfies the stochastic stability condition. If the Perron–Frobenius Problem 5.1 yields

a solution H̃ ≡ 1, the uniqueness result implies that P is the single stochastically stable

measure that will be recovered. In the general case, the stochastic discount factor S contains

a martingale component H̃ 6= 1 for which the associated measure P̃ satisfies the stability

condition. In this case the recovery procedure will not identify the underlying probability
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measure. Instead, it will recover the measure P̃ implied by H̃.3

5.1 Long-term pricing

The alternative probability associated with H̃ turns out to be useful in representing long-

term values. Consider

[Qtψ] (x) = exp(ηt)e(x)Ẽ

[
ψ(Xt)

e(Xt)
| X0 = x

]

for some positive ψ. We use the notation Ẽ to denote expectations computed with the

probability P̃ implied by H̃ .4 For pricing pure discount bonds we can set ψ(x) ≡ 1. Taking

the negative logarithms and dividing by t gives the yield on the payoff ψ(Xt):

−1

t
log [Qtψ] (x) = −η − 1

t
log e(x)− 1

t
log Ẽ

[
ψ(Xt)

e(Xt)
| X0 = x

]
.

Taking the limit t→ ∞ and using the stochastic stability Condition 3.3 under the probability

P̃ shows that −η is the long term yield on an arbitrary cash flow ψ(x) maturing in the distant

future, provided

Ẽ

[
ψ(Xt)

e(Xt)

]
<∞.

Under the same assumption, the long maturity limit of a holding period return Rτ
t,t+1 between

period t and period t + 1 on bond with maturity τ is

R∞

t,t+1 = lim
τ→∞

Rτ
t,t+1 = lim

τ→∞

[Qτ−1ψ](Xt+1)

[Qτψ](Xt)
= exp(−η)e(Xt+1)

e(Xt)
.

Moreover, the “Euler-equation error” associated with the limit return is

(
St+1

St

)
R∞

t,t+1 =
H̃t+1

H̃t

, (14)

which reveals the martingale increment in the stochastic discount factor. We will use this

formula in Section 6 when we discuss empirical methods and evidence.

3Example 3.1 in Hansen and Scheinkman (2014) points out this connection in a finite-state Markov chain
setting.

4Note that we use P̃ and Ẽ, instead of the more cumbersome P H̃ and EH̃ .
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5.2 Examples

In the previous discussion, we described two issues arising in the recovery procedure. First,

the positive candidate solution for e(x) may not be unique. Our stability criterion allows

us to pick the single solution that preserves stability. Second, and more importantly, even

this unique choice may not uncover the true probability distribution if there is a martingale

component in the stochastic discount factor. We illustrate these challenges using stylized

versions of widely used asset pricing models. The next example shows that in a simplified

version of a stochastic volatility model one always recovers an incorrect probability distribu-

tion that, for certain parameter values, actually coincides with the risk-neutral probability

measure.

Example 5.3. Consider a stochastic discount factor model with state-dependent risk prices.

Suppose that

d logSt = β̄dt− 1

2
Xt (ᾱ)

2 dt+
√
XtᾱdWt

where X has the square root dynamics given in Example 4.5 and β̄ < 0. Guess a solution:

e(x) = exp(υx)

Since {exp(−ηt)Ste(Xt) : t ≥ 0} is a martingale, its local mean should be zero:

β̄ − 1

2
(ᾱ)2 − υκx+ υκµ̄+

1

2
x (υσ̄ + ᾱ)2 = 0.

In particular, the coefficient on x should satisfy

−υ
[
−κ +

1

2
υ (σ̄)2 + σ̄ᾱ

]
= 0.

There are two solutions: υ = 0 and

υ =
2κ− 2ᾱσ̄

(σ̄)2
(15)

For this example, the risk neutral dynamics for X corresponds to the solution υ = 0 and

the instantaneous risk-free rate is constant and equal to −β̄. The resulting X process remains

a square root process, but with κ replaced by

κn = κ− ᾱσ̄.

Although κ is positive, κn could be positive or negative. If κn > 0, then the Perron–Frobenius
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problem that we feature extracts the risk-neutral dynamics, but this is distinct form the actual

probability evolution for X. Suppose instead that κn < 0. This occurs when κ < σ̄ᾱ. In this

case we choose υ according to (15), implying that κ is replaced by

κpf = −κ + σ̄ᾱ = −κn > 0.

The resulting dynamics are distinct from both the risk-neutral dynamics and the original

dynamics for the process X.

This example was designed to keep the algebra simple, but there are straightforward exten-

sions that are described in Hansen (2012). In this example there is a single shock that shifts

both the stochastic discount factor and the state variable X that governs volatility. The

so-called “local risk price” for this shock is given by −
√
Xtσs. There is a straightforward

extension that extends the dimension of the Brownian increment and reproduces analogous

findings. In addition, a predictable component can be included in the local mean for the

log S. Hansen (2012) includes these generalizations using a model with affine dynamics of

the type featured by Duffie and Kan (1994).

The continuous-time model of Campbell and Cochrane (1999) has some implications that

parallel those captured by Example 5.3.

Example 5.4. Suppose that

d logSt = β̄dt+ ᾱdWt + d logZt

where Zt = k(Xt) > 0 and X is a stationary Markov process that captures the contribution

of external or social habits to investor preferences. For the continuous-time Campbell and

Cochrane (1999) model, there are special functional forms for k and the evolution of X.

By design, their model has a constant instantaneous interest rate ρ. A candidate for a

Perron–Frobenius eigenvalue is η = −ρ and an associated positive eigenfunction is constant.

This eigenfunction induces unstable state dynamics in their specification. There is a second

eigenfunction log e(x) = − log k(x), and this one induces stable dynamics, but these are

different from the actual evolution of X unless ᾱ = 0. See Borovička et al. (2011) for more

discussion of these issues.

Our next example illustrates that even when the macroeconomy is modeled as stationary,

the stochastic discount factor can still inherit a martingale component.

Example 5.5. Here we illustrate a point made by Alvarez and Jermann (2005) concerning

recursive utility of the type featured by Kreps and Porteus (1978) and Epstein and Zin (1989).
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For an infinite-horizon discrete-time economy, The recursive utility stochastic discount factor

in discrete time obeys:

St+1

St

= exp(−δ)
(
Ct+1

Ct

)
−ρ [

Vt+1

Rt (Vt+1)

]ρ−γ

where ρ > 0 and 1
ρ
is the elasticity of intertemporal substitution, δ > 0 is a subjective rate of

discount and γ adjusts the for the riskiness in the continuation value Vt+1 in the formula:

Rt (Vt+1) =
(
E
[
(Vt+1)

1−γ
∣∣Ft

]) 1

1−γ .

Suppose that C = k(X) > 0 implying a stationary consumption process, that γ > 1 and for

simplicity suppose that ρ = 1.5 Then

[
Vt+1

Rt (Vt+1)

]1−γ

=
(Vt+1)

1−γ

E
[
(Vt+1)

1−γ |Ft

] (16)

which has conditional expectation equal to unity and is the increment to a positive martin-

gale. For this specification Vt+1 can be expressed as a time invariant function of the Markov

state Xt+1 and the risk adjustment term Rt (Vt+1) , a time invariant function of Xt. Thus

the ratio on the right-hand side of (16) is the increment to a positive multiplicative mar-

tingale. Even though C is stationary, the stochastic discount factor process has a positive

martingale component. While we have not shown that this martingale necessarily induces

stable dynamics, this may be checked in actual applications.

Often, logC is modeled as a process with stationary increments. In this case the ratio Vt

Ct

is computed as a time-invariant function of the Markov state Xt. Both consumption growth

and the ratio of the continuation value to its risk-adjusted counterpart contribute to the

increment to a martingale component of S.

5.3 Additional insights about the factorization

One of the aims of Hansen and Scheinkman (2009) was to provide a formal justification for

the factorization of the stochastic discount factor process featured by Alvarez and Jermann

(2005):

St

S0
= exp(ηt)

(
H̃t

H̃0

)(
e(X0)

e(Xt)

)

5See Proposition 9 of Alvarez and Jermann (2005) for a closely related example in which consumption is
independent and identically distributed and ρ 6= γ.
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Sometimes this factorization may be difficult to compute. Nevertheless, there are circum-

stances in which we can still draw conclusions without a full characterization.

5.3.1 Permanent shocks

Alvarez and Jermann (2005) use the martingale component as evidence for the impact of

permanent shocks to the stochastic discount factor process. To understand this link more

fully consider an alternative martingale extraction that is familiar from time series analysis.

Recall that logMt has stationary increments. Often it is most convenient to compute or

model logM as a precursor to the study of M . The martingale component of logM can be

computed from the decomposition

log St = ρt+ log Ĥt − g(Xt) + g(X0)

and reveals a permanent shock log Ĥt up to a scale normalization. When log S − log S0

has a non-degenerate martingale component with stationary increments, then S/S0 has a

multiplicative martingale component and vice versa. When M is globally log-normal, there

are simple links between these martingales; but outside the log-normal environment this link

may cease to be direct. In general, the difference η − ρ between the extracted drift terms is

linked to the average relative entropy of M , which reflects the magnitude of the martingale

component:

η − ρ ≡ lim
t→∞

1

t

[
logE

(
St

S0
| X0 = x

)
− E

(
log

St

S0
| X0 = x

)]

= −E
[
log

H̃t+1

H̃t

]
.

Thus the difference between η and ρ from two different martingale constructions reveal the

average of the one-period log-likelihood ratio between the original probability measure and

the ·̃ probability measure.6

5.3.2 A more general factorization

Bansal and Lehmann (1997) note that in many examples the stochastic discount factor can

be expressed as:
St

S0
=

(
S∗

t

S∗

0

)[
m∗(Xt)

m∗(X0)

]
(17)

6See Hansen (2012) for a further elaboration of this relationship, and see Backus et al. (2014) for discussion
of a term structure counterpart applicable to all investment horizons.

18



where S∗/S∗

0 is a positive multiplicative process with a direct interpretation. Sometimes, it

will be easy to characterize the martingale component of S∗. The stochastic discount factor

process S will have the same martingale component as S∗ with the same Perron–Frobenius

eigenvalue but with a different Perron–Frobenius eigenfunction. This formula gives us a way

to represent implications of a class of models. Suppose that two models share the same

same S∗ but differ in m∗. Both models will inherit the long-horizon pricing properties from

S∗ although risk-return tradeoffs over short investment horizons could be quite different.

Consider two illustrations. The stochastic discount factor for the Campbell–Cochrane model

in Example 5.4 can be written as:

St

S0

= exp

[
β̄t+

∫ t

0

ᾱdWu

] [
k(Xt)

k(X0)

]
,

and thus satisfies (17) with S∗ being a geometric Brownian and m∗ = k. The contribution

of the geometric Brownian motion can be interpreted as a marginal utility process for a

corresponding preference specification that abstracts from the contribution of external habits.

Hansen (2012) uses this approach to compare a model with power utility preferences

with risk-aversion coefficient γ to a more general recursive utility model from Example 5.5

with ρ 6= γ.7 Both preference specifications share the same martingale component holding

fixed the consumption process provided that the subjective rate of discount is pushed to an

appropriately defined limiting value.

5.3.3 Risk-return tradeoff and welfare consequences

Since the prices of all Arrow claims are taken as given, the recovery of an incorrect probability

does not affect the pricing of any derivative security. The recovery of an incorrect probability

measure does lead to incorrect inference about expected returns and as a consequence to a

misspecification of the risk-return tradeoff faced by investors. Incorrect inference about

expected cash flows affect the calculation of the welfare cost of economic fluctuations, since

Hansen et al. (1999) and Alvarez and Jermann (2004) showed a link between local measures

of welfare cost of uncertainty and prices and expectations of the appropriately constructed

cash flows.

7See Theorem 9.1 of Hansen (2012).
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6 Measuring the martingale component

We next consider methods for extracting evidence from asset market data that supports the

existence of a non-trivial martingale component in stochastic discount factors. We build

on the approach initiated by Hansen and Jagannathan (1991) aimed at non-parametric

characterizations of stochastic discount factors without using a full set of Arrow prices. In

such circumstances, full identification is not possible; but nevertheless the data from financial

markets can be informative. For this discussion we use pedagogically useful characterization

of Almeida and Garcia (2013) and Hansen (2014), but adapted to misspecified beliefs along

the lines suggested in Gosh et al. (2012) and Hansen (2014). In so doing we build on a key

insight of Alvarez and Jermann (2005).

Consider strictly convex functions φθ defined on the positive real numbers such as:

φθ(r) =
1

θ(1 + θ)

[
(r)1+θ − 1

]
(18)

for alternative choices of the parameter θ. By design φθ(1) = 0 and φ′′

θ(1) = 1. The function

φθ remains well defined for θ = 0 and θ = −1 by taking pointwise limits in r as θ approaches

these two values. Thus φ0(r) = r log r and φ−1(r) = − log r. The functions φθ are used

to construct discrepancy measures between probability densities as in the work of Cressie

and Read (1984). We are interested in such measures as a way to quantify the martingale

component to stochastic discount factors. Recall that

E

[
H̃t+1

H̃t

|Xt = x

]
= 1

and that H̃t+1/H̃t defines a conditional density of the P̃ distribution relative to the P dis-

tribution. This leads us to apply the discreprancy measures to H̃t+1/H̃t.

Since φθ is strictly convex and φθ(1) = 0, from Jensen’s inequality:

E

[
φθ

(
H̃t+1

H̃t

)
|Xt = x

]
≥ 0,

with equality only when H̃t+1/H̃t is identically one. There are three special cases that receive

particular attention.

i) θ = 1 in which case the implied measure of discrepancy is equal to one-half times the

conditional variance of H̃t+1/H̃t;

ii) θ = 0 in which case the implied measure of discrepancy is based on conditional relative

20



entropy:

E
[(
H̃t+1/H̃t

)(
log H̃t+1 − log H̃t

)
|Xt = x

]

which is the expected log-likelihood under the P̃ probability measure.

iii) θ = −1 in which case the discrepancy measure is:

−E
[
log H̃t+1 − log H̃t|Xt = x

]

which the negative of the expected log-likelihood under the original probability measure.

We describe how to compute lower bounds for these discrepancy measures. We are led

to the study lower bounds because we prefer not to compel an econometrician to use a full

array of Arrow prices. Let Yt+1 be a vector of asset payoffs and Qt the corresponding vector

of prices. Recall the formula

R∞

t,t+1 = exp(−η)e(Xt+1)

e(Xt)
.

and thus
St+1

St

=

(
H̃t+1

H̃t

)(
1

R∞

t,t+1

)
. (19)

As in Alvarez and Jermann (2005), suppose that the limiting holding-period return R∞

t,t+1 can

be well approximated. In this case, one could test directly for the absence of the martingale

component by assessing whether

E

[(
1

R∞

t,t+1

)
(Yt+1)|Xt = x

]
= (Qt)

′ .

since in this case:
St+1

St

=

(
1

R∞

t,t+1

)

prices assets correctly.

More generally, we express the pricing restrictions as

E

[(
H̃t+1

H̃t

)(
1

R∞

t,t+1

)
(Yt+1)

′|Xt = x

]
= (Qt)

′ ,

where H̃ is now treated as unobservable to an econometrician. To bound a discrepancy
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measure, let a random variable Jt+1 be a potential specification for the martingale increment:

Jt+1 =
H̃t+1

H̃t

.

Solve

λθ(x) = inf
Jt+1>0

E [φθ (Jt+1) |Xt = x]

subject to the linear constraints:

E [Jt+1|Xt = x]− 1 = 0

E

[
Jt+1

(
1

R∞

t,t+1

)
(Yt+1)

′|Xt = x

]
− (Qt)

′ = 0

A strictly positive λθ(x) implies a nontrivial martingale component to the stochastic discount

factor.

For the limiting continuous-time diffusion case, the choice of θ is irrelevant. Suppose that

d log H̃t = −1

2
|α̃(Xt)|2 dt+ α̃(Xt) · dWt.

As a consequence,

dH̃t

H̃t

= α̃(Xt) · dWt

Thus the local mean of
(
H̃
)θ+1

is

θ(θ + 1)

2

(
H̃t

)θ+1

|α̃(Xt)|2

and the discrepancy measure is 1
2
|α̃(Xt)|2 independent of θ. The discrepancies for all values of

θ are equal to one-half times the local variance of log H̃ . This equivalence of the discrepancy

measures is special to the continuous-time diffusion model, however.

To compute λθ in practice requires that we estimate conditional distributions. There is

an unconditional counterpart to these calculations obtained by solving:

λ̄θ = inf
Jt+1>0

Eφθ(Jt+1) (20)
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subject to:

E [Jt+1]− 1 = 0

E

[
Jt+1

(
1

R∞

t,t+1

)
(Yt+1)

′ − (Qt)
′

]
= 0 (21)

This bound, while more tractable, is weaker in the sense that λ̄θ ≤ Eλθ(Xt). To guarantee

a solution to optimization problem (20) it is sometimes convenient to include random vari-

ables Jt+1 that are zero with positive probability. Since the aim is to produce bounds, this

augmentation can be justified for mathematical and computational convenience. Although

this problem optimizes over an infinite-dimensional family of random variables Jt+1, the dual

problem that optimizes over the Lagrange multipliers associated with the pricing constraint

(21) is often quite tractable. See Hansen et al. (1995) and the literature on implementing

generalized empirical likelihood methods for further discussion.

For the case in which θ = 1, Hansen and Jagannathan (1991) study a mathematically

equivalent problem by constructing volatility bounds for stochastic discount factors and

deduce quasi-analytical formulas for the solution obtained when ignoring the restriction that

stochastic discount factors should be nonnegative. Bakshi and Chabi-Yo (2012) apply the

latter methods to obtain θ = 1 bounds (volatility bounds) for the martingale component

to the stochastic discount factor process. Similarly, Bansal and Lehmann (1997) study

bounds on the stochastic discount factor process for the case in which θ = −1 and show

the connection with a maximum growth rate portfolio. Alvarez and Jermann (2005) apply

these methods to produce the corresponding bounds for the martingale component to the

stochastic discount factor process. Both Alvarez and Jermann (2005) and Bakshi and Chabi-

Yo (2012) exploit equation (19) and approximate the return R∞

t,t+1 in order to target their

analysis to the martingale component. These papers provide empirical evidence in support

of a substantial martingale component to the stochastic discount factor process. Bakshi and

Chabi-Yo (2012) summarize results from both papers in their Table 1 and contrast differences

in the θ = 1 and θ = −1 discrepancy measures. To our knowledge, the θ = 0 discrepancy

measure has not been used to quantify the magnitude of the martingale component to the

stochastic discount factor processes.

7 Conclusion

Perron–Frobenius theory applies to an operator used to represent Arrow prices. Recent

research uses this insight in varied ways. As we have argued, when the state-space is contin-
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uous, the positive eigenfunction of the pricing operator may not be unique (up to scale), and

further assumptions are needed to determine a unique decomposition. In our previous work,

Hansen and Scheinkman (2009), we were interested in long-run risk and for this reason we

emphasized a stochastic stability condition. In this paper we gave a generalization of that

stability condition to establish uniqueness by replacing the convergence of a sequence of

conditional expectations by the convergence of partial averages of that sequence. We show

that this more general condition is implied by an ergodicity assumption commonly used in

the study of rational expectations models of financial markets.

Other researchers have taken different approaches to the uniqueness. In a continuous-

time Brownian information setup, alternative conditions on the boundary behavior of the

underlying Markov process also uniquely identify a probability measure. These conditions

often utilize linkages of the Perron–Frobenius theorem to the Sturm–Liouville problem in

the theory of second-order differential equations. Carr and Yu (2012) and Dubynskiy and

Goldstein (2013) impose conditions on reflecting boundaries, while Walden (2013) analyzes

natural boundaries. A recent working paper by Qin and Linetsky (2014) provides a more

comprehensive treatment of the continuous state space environment, connections to our own

previous results in Hansen and Scheinkman (2009) and Hansen and Scheinkman (2014), and

an extensive range of examples utilizing models in mathematical finance.

While these technical conditions deliver uniqueness, we argue that there is a more fun-

damental identification problem. If the stochastic discount factor includes a martingale

component, then use of the Perron–Frobenius eigenvalue and function recovers a distorted

probability measure that provides insights into the pricing of long-term bonds and other cash

flows that do not grow stochastically over time. Many structural models of asset pricing

that are motivated by empirical evidence have martingale components in stochastic discount

factor processes. These martingales characterize what probability is actually recovered by

application of Perron-Frobenius theory.

While fixed income security valuation is of interest in its own right, Hansen and Scheinkman

(2009) and Hansen (2012) use Perron–Frobenius methods to study more general valuation

problems in which cash flows can grow stochastically over time. These extensions are critical

for many macro-finance applications because, empirically, many macro time series display

stochastic growth. Long-term valuation is only a component to a more systematic study of

pricing implications over alternative investment horizons. Recent work by Borovička et al.

(2011) and Borovička et al. (2014) deduces methods that extend impulse response functions

to characterize the pricing of exposures to shocks to stochastically growing cash flows over

alternative investment horizons.
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Appendix

A Perron–Frobenius theory

Proof of Proposition 4.4. Write

SH = exp
(
−δ̂t

) m̂(Xt)

m̂(X0)
,

for a positive function m̂. Thus

Ht

H0
= exp

[
−
(
δ − δ̂

)
t
] m(Xt)

m̂(Xt)

m(X0)
m̂(X0)

:= exp (ηt)
k(Xt)

k(X0)
,

where η = δ − δ̂ and k = m
m̂
. In what follows we consider the discrete time case. The continuous

time case uses an identical approach, with the obvious changes.

Consider three cases. First suppose that η > 0. Since Ht

H0
is a martingale,

E [k(Xt)|X0 = x] = exp(−ηt)k(x) (22)

Form

k̂(x) = min {1, k(x)} > 0, for all x.

Since η > 0, the right-hand side of (22) converges to zero for each x as t → ∞. Thus,

0 = lim
N→∞

1

N

N∑

t=1

E [k(Xt)|X0 = x] ≥ lim
N→∞

1

N

N∑

t=1

E
[
k̂(Xt)|X0 = x

]
= E

[
k̂(X0)

]
> 0.

Thus we have established a contradiction.

Next suppose that η < 0. Note that

EH

[
1

k(Xt)
|X0 = x

]
= exp(ηt)

1

k(x)
. (23)

Form

k̃(x) = min

{
1,

1

k(x)

}
> 0, for all x.

Since η < 0, the right-hand side of (23) converges to zero for each x as t → ∞. Thus,

0 = lim
N→∞

1

N

N∑

t=1

EH

[
1

k(Xt)
|X0 = x

]
≥ lim

N→∞

1

N

N∑

t=1

EH
[
k̃(Xt)|X0 = x

]
= EH

[
k̃(X0)

]
> 0.

We have again established a contradiction.
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Finally, suppose η = 0. Then

EH

[
1

k(Xt)
|X0 = x

]
=

1

k(x)

for all x. Since X is stochastically stable in averages:

lim
N→∞

1

N

N∑

t=1

EH [kn(Xt)|X0 = x] = EHkn(X0).

for kn = min{1/k, n}. The same equality applies to the limit as n → ∞ whereby kn is replaced by

1/k. Consequently, EH
[

1
k(X0)

]
= 1

k(x) for almost all x. Thus k(x) is a constant, and Ht/H0 ≡ 1

with probability one.
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