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1 Introduction

The recent financial crisis has underscored the importance of financial market frictions for

real activity. In particular, frictions in financial markets may propagate and ampflify shocks

to the economy, and thus may magnify the amplitude and increase the persistence of the

business cycles. In this paper, we focus on one particular friction, asymmetric information,

and analyze its effect on the both the amount and composition of real investment undertaken

by firms. More specifically, we propose a simple model of maturity rationing, which can be

seen as the generalization of credit rationing (e.g., Stiglitz and Weiss, 1981; DeMeza and

Webb, 1987) to the maturity structure: In our model, asymmetric information frictions

lead to credit rationing for longer maturities, while financing may be available for shorter

maturity projects. Starting from this insight, our paper thus generates a theory of maximum

equilibrium debt maturity and the real investment distortions that follow.

The main idea behind our model is that, under fairly general conditions, frictions stem-

ming from asymmetric information are more severe at longer horizons compared to shorter

horizons. As a result, beyond a certain maturity asymmetric information is too severe

for financing to be sustained in equilibrium; credit is rationed beyond that point. More

specifically, in our model there is asymmetric information about the riskiness and default

probabilities of firms. Some firms have “good” projects which are risk-free and have positive

NPV, whereas other firms have “bad” projects which are risky, have negative NPV, and

default over time. Firms seek debt financing from a financial sector that cannot observe the

type of the firms’ projects. Since bad firms can always mimic good firms, the only way for

firms to attract funding is through pooling contracts. Hence, in order for the financier to
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break even, the interest rate on the pooling debt contract has to increase with maturity in

order to reflect higher default risk at long horizons. However, beyond a certain point this

increase in interest rates causes firms with good projects not to seek financing. Good firms

drop out of the market and, with only bad firms left to seek financing, lending breaks down

beyond a certain maturity – maturity rationing.

After establishing our baseline model, we then show that maturity rationing can lead to

important knock-on effects. In particular, to escape rationing, firms whose first-best projects

cannot get financed may react by adopting second-best projects of shorter maturities, for

which financing is available. In fact, even firms with longer maturity projects that can attract

funding may prefer to adopt second-best projects with shorter maturities, because the adverse

selection discount is smaller at shorter maturities. However, the resulting inflow of second-

best projects worsens the pool of funded projects. This leads to a negative externality that

exacerbates rationing by further shortening the maximum maturity that can be funded and

worsening the financing terms for firms that can receive funding. But as financing terms

worsen and more firms are rationed, this again leads to an additional inflow of second-best

projects into the funded region. The process repeats and a rationing spiral emerges. When

the negative externality from the adoption of second-best project in response to rationing is

strong enough, it can lead to a complete breakdown of financing across all maturities.

In general, the adoption of shorter maturity projects by rationed firms can increase or

decrease surplus, depending on the severity of the externality. At one extreme, when second-

best projects are (almost) as good as first-best projects, the privately optimal decision of

rationed firms to seek shorter maturity projects increases surplus. In this case, rationed firms

that adopt shorter maturity projects in order to obtain financing do not impose an externality
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on financed firms, and thus the only consequence from the firms’ maturity adjustement is

an increase in output. On the other hand, when second-best projects are worse than firm’s

initial, first-best projects, the dilution of the financed pool by firms who change their maturity

can lead to a decrease in surplus. While it is privately optimal for each individual firm to

adopt a second-best shorter maturity project, the dilution externality on the pool leads to

an overall reduction in surplus.

Our theory generates a number of empirical predictions. First, the model predicts a link

between maturity rationing and the business cycle. In particular, a decrease in the fraction

of good projects or an increase in the relative default probability of bad projects execarbates

maturity rationing and thus reduces investment. This suggests that maturity rationing is

stronger during recessions. Hence, the worsening of maturity rationing during downturns,

and the related knock-on effects, may amplify the business cycle. Second, through firms’

endogenous adjustment to maturity rationing, our model predicts short-termism as a result

of asymmetric information frictions. Particularly during downturns unattractive funding

terms at longer horizons may force firms to adopt inferior investment projects of shorter

maturity.

Our paper relates to and extends the extensive literature on credit rationing. For a

summary of this literature, a good starting point is the discussion in Bolton and Dewatripont

(2005, Chapter 2) or the survey on financial contracting by Harris and Raviv (1992). The

classic contributions on credit rationing are Jaffee and Modigliani (1969), Jaffee and Russell

(1976), Bester (1985), Stiglitz and Weiss (1981), and DeMeza and Webb (1987). Suarez and

Sussman (1997) develop an overlapping generations model in which credit rationing can lead

to endogenous business cycles. Kurlat (2010) builds a dynamic model in which firms sell
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projects that are subject to adverse selection and shows that the resulting friction responds

to aggregate shocks, thus amplifying the repsonse of prices and investment.

The main innovation of our paper relative to this literature extend the concept of credit

rationing to a framework in which firms have investment projects of differing maturities.

This additional element allows us to investigate the link between credit rationing and the

maturity of a firm’s investment and financing. In addition, the model allows us to analyze

investment distortions and endogenous short-termism that arise from asymmetric informa-

tion frictions and rationing of longer maturities. This endogenous adjustment pushes firms

to shorter maturities, but unlike the papers by Flannery (1986) and Diamond (1991), short-

ening of maturity is not an attempt by a good firm to signal its type. Rather, maturity

shortening stems from a firm’s desire to pool with other firms at maturities where asymmet-

ric information frictions are less severe.

2 Maturity Rationing: Baseline Model

In this section we develop our baseline model of maturity rationing. Consider a competitive,

risk-neutral financial sector that provides debt financing to firms that borrow funds in order

undertake investment projects. There is a continuum of such firms, and each firm is born

with an investment project of a particular maturity. The maturity of a project, which is

drawn uniformly from the interval [0, T ], indicates how long it takes for the project to pay

off. A project of maturity t ∈ [0, T ] generates cash flow only at date t and no cash flows

beforehand. Project maturity is observable to both firms and financiers, such that there is

no asymmetric information about when a particular project pays off. The financial sector
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posts a funding schedule that details the applicable interest rate (or face value) for a project

of maturity t.

While there is symmetric information about project maturity, there is asymmetric infor-

mation about the quality of projects. Some firms, which we will refer to as “good firms”,

have positive NPV projects (“good” projects), while “bad firms” have negative NPV (or

“bad”) projects. Whether a project is good or bad is only observable to the firm (or the

entrepreneur—we will use those terms interchangeably), but not to the financier. All the

financier knows is that a fraction β of firms have good projects, while a fraction 1 − β of

firms have bad projects.

Both good and bad projects cost 1 dollar to set up, but they differ in the payoffs they

generate. Good projects are risk-free and pay off a certain amount ertR at maturity t, where

r denotes the constant, exogenous risk-free rate. The present value of the cash flows from

a good project is thus given by R and is independent of project maturity. We assume that

good projects have positive NPV:

NPVG = R− 1 > 0. (1)

Bad projects, on the other hand, are riskier than good projects and have a constant negative

NPV. In particular, we assume that once off the ground, the payoffs from a bad project

are a mean-preserving spread of the payoffs from a good project: bad projects default with

intensity λ, but when they are successful they pay off e(λ+r)tR. In addition, bad projects

only ‘get off the ground’ with probability ∆ < 1/R, while with probability 1 −∆ they are

worthless from the start. One interpretation of ∆ is to think of it as the part of default risk
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that is independent of the maturity of the project. Together, these assumptions imply that

bad projects have a constant negative of NPV of1

NPVB = ∆R− 1 < 0. (2)

Finally, in line with Stiglitz and Weiss (1981), we assume that in the case of default, the

entrepreneur incurs a private cost of default. We assume that this cost is proportional to

the return generated in the default state. This assumption is a reinterpretation of the cost

of the loss of collateral in Stiglitz and Weiss (1981) which also affects good and bad types

differentially.

Given these assumptions, we can now investigate which projects can receive financing.

To do so, we assume that firms match maturities, i.e., they finance their investments via

debt contracts that match the maturity of their projects.2 In the appendix we show that

this assumption is without loss of generality: When project maturity is observable, a firm

that cannot finance by matching maturities can also not raise financing using rollover debt.

Hence, rollover contracts do not add anything in our framework.

Since firms with bad projects are indistinguishable contractually from firms with good

projects, financing is possible whenever the financier can break even on a debt contract that

pools good and bad firms for a given maturity t. This is an outcome of our assumption that
1Most of our results are robust to variations in these assumptions. For example, it is not necessary to

assume that the drift of bad projects compensates for the default intensity λ. However, this assumption
is convenient because it guarantees that the NPV of bad projects is independent of the project maturity.
Hence, our results are driven by differences in asymmetric information frictions across different maturities
as opposed to differences in NPV across different maturities.

2As in the original models by Stiglitz and Weiss (1981) and DeMeza and Webb (1987) we assume that the
firm uses debt contracts to finance the investment. While debt financing is optimal in DeMeza and Webb
(1987), debt is not the optimal contract in Stiglitz and Weiss (1981). Our models is a hybrid, such that
whether debt is optimal depends on parameter restrictions.
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financiers are competitive, and thus they cannot cross-subsidize accross maturities. Futher,

it should be clear that the financier cannot set the face value of debt D̃ (t) higher than ertR.

If the face value of debt exceeded ertR, good firms would default with probability one, and,

because default is costly for entrepreneurs, they would not participate. Hence, the debt

contract would only attract bad firms. The maximum face value that supports pooling at

any particular maturity t is thus given by given by D̃max (t) = ertR.

Whether projects of maturity t can receive financing thus depends on whether the face

value of debt that the financier requires to break even lies below the maximum face value

that attracts both good and bad firms. Given a pool quality of β, the investor breaks even

by setting the face value of debt to D̃ such that

e−rt
[
βD̃ + (1− β) ∆e−λtD̃

]
= 1. (3)

Defining the present value of the face value of debt as D ≡ e−rtD̃, we can rewrite this

breakeven constraint as

D (t, β) = 1
β + (1− β) ∆e−λt . (4)

Note that the breakeven face value is increasing in time to maturity. This reflects that

the riskiness of bad projects increases with their horizon (even though their NPV remains

fixed).

The maximum funded maturity M is then given by the maximum maturity for which

the breakeven debt contract still attracts both good and bad firms, i.e., characterized by

D̃ (M,β) = D̃max (M). When this maximum maturity lies below the maximum maturity
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Figure 1: The Figure illustrates maturity rationing in our baseline model. For maturities
below 5.5 years, the required face value D(t, β) lies below R, such that a pooling equilibrium
exists. Beyond a maturity of 5.5 years, the required face value exceeds R, such that good
firms drop out and no pooling equilibrium exists. These maturities are not funded.

T , some maturities cannot attract funding, such that there is maturity rationing. This is

illustrated in Figure 1.

Proposition 1 The maximum project maturity that can attract financing is given by

M (β) = 1
λ

log
[

(1− β) ∆R
1− βR

]
. (5)

There is maturity rationing whenever M (β) < T.

By competition, the lending sector will never ration at a lower maturity than M (β), as

each non funded maturity below M (β) is a profit opportunity.

Proposition 1 shows that asymmetric information may lead to credit market breakdown

beyond certain maturities. In particular, whenever M (β) < T , projects with maturities

on the interval (M (β) , T ] cannot receive financing and are rationed. Maturity rationing

thus arises whenever the proportion of good firms lies below a critical quality level β. Using
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M
(
β
)

= T we find that this cutoff is given by

β = 1− e−λT∆R(
1− e−λT∆

)
R
. (6)

Note that limT→∞ β = 1
R
≡ β. Thus, when the pool of firms is of high enough pool

quality, any maturity can attract financing. On the other hand, when β is sufficiently

low, financing can break down across all maturities, leading to extreme maturity rationing.

Solving M
(
β
)

= 0, we find that this is the case whenever

β < β ≡ 1−∆R
(1−∆)R. (7)

When β lies in between β and β there is partial rationing. Projects of maturity t ≤M(β)

can be financed, whereas projects whose maturity exceeds M(β) cannot attract financing

and are rationed. Similar to Stiglitz and Weiss (1981), this rationing arises because of the

additional risk of bad projects at long horizons. This additional risk forces the financier to

raise the face value of debt, but at some point this causes good firms to drop out of the

market, which leads to the market breakdown beyond M(β).

Proposition 1 generates a number of comparative statics. First, we see that the funded

interval is increasing in the proportion of good projects β. Second, the funded interval is

decreasing in the default intensity of bad projects λ. Both of these comparative statics

suggest a link of maturity rationing to the business cycle. In particular, if during downturns

either the proportion of positive NPV project drops, or if downturns are associated with and

increase in asymmetric information about firms’ default risk, our model predicts that the
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maximum funded maturity decreases during recessions. In addition, the funded interval is

increasing the the NPV of the good project R and the NPV of the bad project ∆R.3

By looking at the total surplus that is generated in equilibrium, we can also use Propo-

sition 1 to examine the welfare implications of the model. When β ≥ β, all maturitites 0

to T are funded. This outcome is thus akin to the result on DeMeza and Webb (1987):

asymmetric information leads to overinvestment because both good and bad projects are

funded, while in a first-best equilibrium only good projects would be financed. Hence, even

when β ≥ β , welfare is less than first-best because negative NPV projects are funded.

W = [βNPVG + (1− β)NPVB] < βNPVG = W FB (8)

Once β drops below β, we move from a fully funded equilibrium to a rationing equilibrium

in which not all maturities can attract financing. This leads to an unambiguous welfare loss

relative to the fully funded case: as long as the expected NPV, βNPVG + (1− β)NPVB, is

positive, any rationing reduces welfare. To formalize this, denote the mass of firms on the

interval [0, T ] by m (T ) = T
T
. When β < β firms on the interval (M(β), T ] cannot attract

financing, such that overall surplus drops to

W (β) = m (M (β)) [βNPVG + (1− β)NPVB] = M(β)
T

W < W. (9)

Finally, it is instructive to examine the expected profits of good and bad firms. Because

investors break even in expectation, on average firms receive the entire NPV from their
3Explicit calculations for these comparative statics are in the appendix.
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investment projects. Hence, the unconditional expected profit for a funded firm with project

maturity t is given by

E
[
πi (t, β)

]
= βNPVG + (1− β)NPVB. (10)

However, while the average firm just earns its NPV, this is not true conditional on firm type.

This is the case because in the presence of asymmetric information good firms subsidize bad

firms. The expected discounted profit for a good firm with a project of maturity t given pool

quality β is given by

πG (t, β) = e−rt
[
ertR− D̃ (t, β)

]
= R−D (t, β) . (11)

This is less than the good firm’s NPV, which is equal to R − 1. Moreover, the profits of

firms with good projects are decreasing in project maturity t because the face value of debt,

D (t, β), is increasing in maturity. Essentially, because adverse selection is more severe at

longer horizons, good firms with projects of long maturities are losing more surplus in the

form of a cross-subsidy to bad firms. Note also that, for any maturity, πG is increasing in

the quality of the pool of firms β because D (t, β) is decreasing in β. This is the case because

cross-subsidization become less severe the better the average quality of the pool.

Turn now to the profit of a firm with a bad project. We know that since the total surplus

at every maturity t is fixed at βNPVG + (1− β)NPVB, the expected discounted profit for
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a bad firm is increasing in t. Writing out the profit for a bad firm at maturity t we find that

πB (t, β) = e−rt∆e−λt
[
erteλtR− D̃ (t, β)

]
= ∆

[
R− e−λtD (t, β)

]
= ∆R− ∆

βeλt + (1− β) ∆︸ ︷︷ ︸
<1

, (12)

which is strictly positive and increasing in t. The reason that the bad firm’s profit increases

in t is the increasing volatility of the bad project, which allows bad firms to capture more

surplus at longer project maturities: the volatility raises the value of a bad firm’s equity

claim and more than compensates for the increase in face value. As with good firms, the

profit for a bad firm πB is increasing in pool quality β because D (t, β) is decreasing in the

pool quality β.

Finally, our assumptions on the project characteristics give us the following implications

on variance.

Lemma 1 The good project’s variance of its discounted cash flows is

V arGt
(
e−rt ·Return

)
= 0, (13)

and the bad project’s variance of its discounted cash flows is

V arBt
(
e−rt ·Returnt

)
= ∆R2

(
eλt −∆

)
(14)

which is increasing in t. Additionally, the average variance of projects at maturity t is given
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by

V arExAntet

(
e−rt ·Returnt

)
= (1− β)R2

[
β (1−∆)2 + ∆

(
eλt −∆

)]
, (15)

which is decreasing in β for ∆ ∈
[

1
2 , 1

]
.

Lemma 1 etablishes that while the variance of the good project is constant at zero, the

variance of the bad project is positive and increasing with maturity. In addition, as long

as ∆ ∈
[

1
2 , 1

]
the average volatility of firms for any maturity t ≥ 0 is decreasing with pool

quality β.

3 Second-best Projects, Dilution and Knock-on Effects

In this setion we extend our baseline model to allow firms to adjust their investment decision

in response to the asymmetric information friction. More specifically, we assume that, while

firms are born with a first-best project with some maturity drawn uniformly from Ω =[
0, T

]
, they can adjust their project maturity in response to asymmetric information frictions.

However, this adjustment in maturity comes at a cost to the firm: when a firm changes

the maturity of its first-best investment opportunity, this reduces the attractiveness of the

investment, such that the resulting project is only second-best. This assumption captures

the intution that it is costly for firms to distort their investments away from the first-best

investment strategy given to them by nature.

To make the analysis tractable, we make the following assumptions: After a firm learns

the maturity of its first-best project, but before the quality of the project is revealed to the

firm, firms can decide to search for a new project with a different and potentially shorter
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maturity. To search for a new project, firms effectively play a bandit: If a firm decides to

redraw its project in order to change its project maturity, the firm receives a new project

drawn from the original maturity distribution (i.e., uniform on [0, T ]). Moreover, when

playing the bandit, the firm loses access to its original project.

Drawing a new project has no direct cost for firms (i.e., the firm can play the bandit for

free). However, changing project maturity comes at an indirect cost because, as mentioned

above, the average quality of newly obtained projects is lower. Specifically, the probability

that a newly obtained project is of high quality drops from β to αβ , where α ∈ [0, 1]. In

this sense, we refer to these projects as second best.

On the credit supply side, we assume that financiers compete by posting schedules of

financing terms. Specifically, financiers are competitive and post schedules, in the form of

face values for every financed maturity, simultaneously. After the schedules of financing

terms have been posted, entrepreneurs fund themselves at the best rate they can find if

funding is available for the maturity of their investment project.

The introduction of investment distortions in response to asymmetric information gives

rise to two feedback mechanisms. The first is a direct externality: firms that adopt second-

best projects in response to asymmetric information frictions dilute the pool of funded

projects. As this pool is diluted, debt becomes more expensive for the firms originally lo-

cated in the funded region, possibly changing their decision between staying at their original

maturity or searching for a new, second-best projects. Second, because of adverse selection

at any maturity the face value of debt can rise up to a certain point before good firms decide

not to seek financing. Hence, at some point the inflow of second-best projects that results

from firms’ redrawing their maturities means that investors will stop financing maturities
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that were funded before. As we will see, this second effect can potentially lead to rapid

changes in equilibrium funding for small changes in parameters, up to complete unraveling

of funding at all maturities.

Once we allow firms to redraw the maturity of their projects, an equlibrium is given by a

a set of project redrawal decisions by firms and offered funding terms by financier that meet

the following conditions:

Definition 1 An equilibrium is given by redrawing decisions by firms and funding conditions

offered by the financier sector such that:

1. Given the funding terms offered, no funded firms have an incentive to redraw the ma-

turity of their projects

2. Investors break even at each funded maturity.

In the next subsection we discuss existence and uniqueness of equilibrium and characterize

the properties of the equilibrium that arises when firms can adjust their investment decisions

in response to asymmetric information. After characterizing the equilibrium, we then first

consider the two extreme cases, (i) α = 1 (no dilution from second-best project) and (ii)

α = 0 (maximum dilution from second-best projects). These two cases are useful to build

intuition about the knock-on effects of maturity rationing when firms can adjust their real

investment decisions in reponse to adverse selection frictions. After covering the two extreme

cases, we treat the general case α ∈ (0, 1).
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3.1 Existence and uniqueness of equilibrium in cutoff strategies

In this section shows that there is a unique equilibrium in cutoff strategies, in which financiers

fund maturities from 0 up to some cutoff T .

Before we derive the equilibrium, let us first introduce some important concepts we will

use repeatedly. First, we define the set of cutoff strategies T that can be funded. For this,

we denote by x (T ) the average pool quality on [0, T ] under the assumption that firms on[
T, T

]
redraw their maturities. If everyone on

[
T, T

]
redraws, the average pool quality x (T )

on [0, T ] is given by

x (T ) = β
T + α

(
T − T

)
2T − T

≤ β, (16)

whereas the average pool quality on
[
T, T

]
is simply given by x̂ = αβ < x (T ) (the only firms

in this interval are ones who after searching for a second-best project ended up on
[
T, T

]
).4

What are the incentives for entrepreneurs to change their maturities? Clearly, an un-

funded firm always has an incentive to draw a new project, since redrawing is costless and

hence a free option. We will thus concentrate on the incentives of funded firms to redraw

their maturities. First, let us establish that given any set of firms that redraw their maturi-

ties R, such that the quality on Ω/R is x (R) (with some slight abuse of notation), and the

the quality on R is αβ, among the entrepreneurs who have not redrawnt their maturity, the

entrepreneur with the highest maturity, i.e. sup Ω/R, has the largest incentive to redraw

his project maturity. Let us further define the term “funded properly” to mean funded at

an average quality x > αβ. We use the term funded properly to distinguish financing at
4The derivative of pool quality is

x′ (T ) = β
T (1− α)(
2T − T

)2 > 0 (17)
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an average quality x > αβ from funding at the worst possible pool quality αβ, which is

sometimes possible when M (αβ) > 0.

Lemma 2 Suppose entrepreneurs on the arbitrary set A ⊂ Ω =
[
0, T

]
redraw maturities.

Then the entrepreneur with the hightest maturity that is still properly funded and has not

redrawn his maturity, i.e. sup {Ω/A ∩ [0,M [x (A)]]}, has the strongest incentive to redraw.

To see this, first note that the payoff from drawing a new project is independent of current

maturity t. Thus, we only have to concentrate on the payoff from staying put. Consider a

firm with a project of maturity t under the conjecture that all firms on A decide to redraw.

What is the firm’s tradeoff between redrawing or keeping its original maturity? The payoff

from staying and its maturity derivative are given by

stay (t, β) = β [R−D (t, x (A))] + (1− β) ∆
[
R− e−λtD (t, x (A))

]
, (18)

∂stay (t, β)
∂t

= −βDt (t, x) + (1− β) ∆
[
λe−λtD (t, x)− e−λtDt (t, x)

]
(19)

= (1− β) ∆λe−λtD (t, x)
[
1−D (t, x)

{
β + (1− β) ∆e−λt

}]
(20)

= (1− β) ∆λe−λtD (t, x)
[
1− D (t, x)

D (t, β)

]
< 0 (21)

where we used the fact that Dt = D2 (1− β) ∆λe−λt, Dβ < 0 and β > x. This immediately

implies that incentives to keep the original project are larger for firms with projects of shorter

maturity. The main mechanism behind this results is that adverse selection increases with

project maturity t. An entrepreneur of quality β will have to pay a rate in excess of the

applicable fair rate (as it is calculated on the basis of x (A) < β) at any t. However, this

gap between the actual rate and the fair rate increases with t, so that the benefits of staying
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put decrease.5

When changing maturity, with a certain probability, the entrepreneur will draw a ma-

turity that is less than max [T,M (αβ)] and thus receive funding under the conjecture that

[0, T ] is funded. We can thus write out the payoff to redrawing maturity as:

redraw (β, T ) = 1
T

� T

0
αβ [R−D (t, x (T ))] + (1− αβ) ∆

[
R− e−λtD (t, x (T ))

]
dt

+1{M(αβ)>T}
min

[
M (αβ) , T

]
− T

T
([αβ + (1− αβ) ∆]R− 1) (22)

Let us define the net value of redrawing as the difference between the payoffs from redrawing

and staying put, NV R (T ) = redraw (x (T ) , T )− stay (x (T ) , T ).

Second, let us now look at the additional adverse selection dimension of the problem:

the possibility that the price mechanism is not flexible enough to accomodate the change in

pool quality at a given maturity. To this end, we define the set of cutoff strategies T that

are funded under the conjecture that everyone on
[
T, T

]
decides to draw a new project as

F = {T : T ≤M (x (T ))} ∩
[
0, T

]
(23)

T ∈ F means that a conjectured cutoff T implies a pool quality x (T ) that leads to a

maximum funded maturity M (x (T )) that is weakly larger than this cutoff. The set F is

thus determined by the investors’ break-even condition.
5Note that the payoff from staying is less than [β + (1− β) ∆]R− 1 because β > x (T ) so that

[
β + (1− β) ∆e−λT

]
D (T, x (T )) = D (T, x (T ))

D (T, β) > 1

18



M(x(T))

Unfunded CutoffsFunded Cutoffs Funded Cutoffs
Funded set F

2 4 6 8 10
Cutoff T

2

4

6

8

10
Value

Figure 2: The funded set F . The funded set indicates whether a given maturity cutoff can
be financed, given that all firms beyond that cutoff redraw their maturity. For example, in
the graph 4 ∈ F , this means that zero to four years can be an equilibrium funding interval.
The same is true for the interval zero to nine years , as 9 ∈ F . However, note that 6 /∈ F ,
which means that zero to six years cannot be an equilibrium funding interval.

The funded set F is is illustrated in Figure 2. The boundaries of the set F are fixed

points defined by T = M (x (T )). Hence, F maps into a set of monotone sets, in that for

each T ∈ F we know that [0, T ] can be funded in equilibrium. However, F itself need not

be monotone and can have holes, as discussed in Section 3.3.

The reader can visualize the set F in the following manner. Suppose that initially some

firms are rationed: M (β) < T . Then we know that, even though [0,M (β)] would be funded

in the baseline model in which firms cannot redraw maturities, [0,M (β)] cannot be funded

in a setting that allows redrawing if α < 1. This is because all unfunded firms (i.e., those

with maturities on
[
M (β) , T

]
) will redraw their maturity for sure. But these firms lower

19



the pool quality on [0,M (β)] to x (M (β)) < β, which implies that the firms that were just

getting funding in the baseline model are now rationed out of the market. To be exact,

the originally funded maturities [M (x (M (β))) ,M (β)] become unfunded, and firms on this

interval will look for second best projects with lower maturities. This process repeats itself

until we arrive at a fixed point T = M (x (T )). This fixed point says that if everyone on[
T, T

]
redraws all projects on [0, T ] can (just) receive proper funding.

When financiers compete by posting funding schedules, we make the following two ob-

servations that will guarantee uniqueness. First, we note that a lower cutoff T leads to lower

quality on the set [0, T ], that is x′ (T ) < 0, as was already noted in footnote 4. Second, we

note that the posted interest rate (or face value), if everyone offers a lower cutoff T and thus

expects a lower pool quality x (T ), is higher for each funded t. This is because ∂D(β,t)
∂β

< 0.

Thus, for any T < T ∗ a single firm, by posting funding up to T ′ with T < T ′ ≤ T ∗, can

capture the whole market [0, T ′] even when charging an ε amount more than the break-even

face value D (x (T ′) , t). What remains to be established is a sufficient condition for the

indifference or weak preference of firms to stay put instead of redrawing their maturity. We

state this condition in the following proposition:

Proposition 2 Assume parameters such that NV R (0) < 0 < NV R
(
T
)
. Further, let n be

the number of roots of NV R (T ) on
[
0, T

]
, such that root i is denoted by Ti. Then these

roots induces an entrepreneur no-redrawing set E = [0, T1]∪ [T2, T3]∪ ...∪ [Tn−1, Tn] ⊂
[
0, T

]
.

Then the unique equilibrium cutoff is given by

T ∗ = max {F ∩ E} (24)
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when we restrict the analysis to cutoff equilibria.

Proof. By assumption, we have NV R (0) < 0 < NV R
(
T
)

so that by continuity of

NV R (T ) we know that it crosses from negative into positive territory at least once. Sup-

pose for generality that NRV (T ) crosses zero multiple times. It turns out that competition

among investors will still guarantee uniqueness. To see this, suppose that wlog NV R (T )

crosses zero 3 times, at T1, T2, T3. First it is easy to establish that investors would not all

offer financing schedules with a maximum maturity of t2 ∈ [T1, T2]. If an investor offered

such a schedule, he would surely make losses for some small set [t2 − ε, t2] if he offerd the

highest maturity funding amongst all investors, because it is optimal for entprepreneurs on

this set to redraw their maturities. Hence, all entrepreneurs in this region are of low quality

αβ but funding is based on x (t2) > αβ. Next, suppose that an investor offers a competitive

schedule [0, t1] with t1 ∈ [0, T1]. This schedule is internally consistent in the sense that if

no one else posts schedules the investor will not make losses. But when an investor posts a

schedule on [0, t1], a competing investor can offer a schedule [0, T1]. In doing so, this com-

petitor will be able to offer better rates on [0, t1] while not making losses on [t1, T1] due to

the fact that the newly funded entrepreneurs on [t1, T1] will not redraw. This makes sure

that funding will be provided at least up to T1. But by a similar reasoning, funding will be

offered up to the highest root of NV R (T ) still on
[
0, T

]
. The reason is that if financing is

offered up to T1, there is again a profitable deviation to the funding schedule: a competitor

could post a schedule [0, t3] with t3 ∈ [T2, T3]. This way, the competitor still offers a schedule

that does not lead to redrawing of maturities (since we know from the Lemma above that

incentives to redraw are strongest for the highest funded type), and again is able to capture
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Figure 3: The Figure illustrates the case in which Te cannot be sustained as an equilibrium.
The maturity cutoff Te is not part of the funded set, which means that if all firms with
maturities beyond Te redraw their maturities, the interval [0, Te] cannot be financed. Firms
that cannot receive funding redraw their maturities, meaning that now the originally funded
maturities [M (x (M (β))) ,M (β)] become unfunded, such firms on this interval will look for
second best projects with lower maturities. This process repeats itself until we arrive at a
fixed point T∗ = M (x (T∗)), as indicated in the Figure.

the whole market. Competition thus drives the equilibrium posted funding schedules all the

way to T3, or in general to the highest root of NV R (T ).

The parameter restrictions needed for the proof are simply derived by plugging in 0 and

T as funding cutoffs:

NV R (0) = − [β + (1− β) ∆] [R−D (0, x (0))] + M (αβ)
T

{[αβ + (1− αβ) ∆]R− 1} < 0

where we note that x (0) = β 1+α
2 < β. If M (αβ) = 0, this condition always holds as
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R−D (0, x (0)) ≥ 0. Further, we have at T :

NV R
(
T
)

= [αβ + (1− αβ) ∆]R− 1
T

� T

0

D (t, β)
D (t, αβ)dt− {[β + (1− β) ∆]R− 1}

= −β (1− α) (1−∆)R + 1− 1
T

� T

0

D (t, β)
D (t, αβ)dt

= −β (1− α) (1−∆)R + 1− 1− αβ
1− β + 1− α

λT (1− β)
log

eλTβ + (1− β) ∆
β + (1− β) ∆

 > 0

Note that limT→∞
1−α

λT (1−β) log
[
eλT β+(1−β)∆
β+(1−β)∆

]
= 1−α

1−β > 0, which reduces the above condition

to 1 + α− β (1− α) (1−∆)R > 0.

Thus, if T ∗ coincides with one of the roots of E then we call the equilibrium entrepreneur

driven. If T ∗ coincides with a subset edge in F , then we call the equilibrium investor driven.

For the rest of paper, if not explicitly mentioned otherwise, we assume that we NV R (T )

only has one root on
[
0, T

]
, which we denote by Te.

3.2 No dilution – α = 1

First, let us analyze the case in which there is no dilution from firms’ changing their ma-

turities, which is the case second best projects are of the same quality as first best projects

(α = 1). In this case, when firms redraw maturities, there is no dilution of the pool – irre-

spective of how many entrepreneurs change their maturity, the pool quality stays constant at

β. We thus conclude that the funding horizon M (β) stays constant as well, i.e., the funded

set is always given by F =
[
0,min

[
M (β) , T

]]
. Thus, the only effect from firms’ changing

their maturities is that the mass of firms at each t changes.
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The expected payoff from changing maturity is given by

redraw (T, β) = 1
T

� min[M(β),T ]

0
β
[
R− D̃ (t, β)

]
+ (1− β) ∆

[
R− e−λtD̃ (t, β)

]
dt

= min
[
M (β)
T

, 1
]

([β + (1− β) ∆]R− 1) . (25)

Thus, ifM (β) ≥ T the firm is indifferent between redrawing and staying as the entrepreneur

always receives the expected NPV of the project regardless of maturity. If, on the other hand,

there is some rationing to start with, i.e., M (β) < T , no one in the funded area will want

to change their maturities for fear of losing funding, since the probability of finding a new

project in the funded range is strictly less than one, M(β)
T

< 1, and the payoff to funding is

again just the average NPV of the project. What does this impy for the funded set and the

entrepreneur driven cutoff? It is clear that Te is a corner solution Te = min
[
T ,M (β)

]
. The

equilibrium for M (β) < T is given by T ∗ = maxF ∩ [0,M (β)] = M (β), so that even after

redrawing maturities [0,M (β)] are funded in equilibrium.

This leads to straightforward welfare implications for this special case. As some previously

rationed firms will find projects in the funded maturity range, the redrawing of maturities

leads to an unambiguous welfare improvement. To quantify this gain, it is easy to show

that everyone on
[
M (β) , T

]
redraws, and thus a mass T−M(β)

T

M(β)
T

of firms that didn’t have

funding before successfully finds financing with their second best projects, increasing surplus.

Proposition 3 If α = 1, there is an unambiguous welfare gain from redrawing. The matu-

rities that are funded in equilibrium are simply
[
0,min

[
M (β) , T

]]
. For M (β) < T , it is a

dominant strategy for unfunded firms to redraw, and also for funded firms to stay.
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3.3 Maximal dilution – α = 0

Consider now the case in which second best projects are always of the bad type, that is

α = 0. In this case we will be able to prove results simply based on the funded set F and

thus can sidestep the possible messy analysis of the set in which firms do not redraw their

maturities, E .

Let us first consider M (β) < T , i.e., even before potential redrawing of maturities some

firms are rationed out of the market. The average pool quality x (T ) with α = 0 then

becomes

x (T ) = β
T

2T − T
(26)

We can now establish that the externality of firms that adopt second-best projects can be

sufficiently strong to unravel funding at all maturities irrespective of the entrepreneur cutoff

Te, i.e. the set of fundable cutoffs F is empty.

Proposition 4 The set of fundable cutoffs F is empty for β < 2β and M (β) < T . Funding

completely unravels because rationed firms adopt second-best projects.

Second, let us consider the case where β ≥ β so that M (β) > T . We will now derive

a sufficient condition for a no-redrawing equilibrium to exist. Let us start by conjecturing

that everyone decides not to redraw. In this case, is there an individual incentive for any

entrepreneur to redraw? We know from above that the entrepreneur’s incentives are sum-

marized by NV R
(
T
)
. If NV R

(
T
)
< 0, then indeed we have a no-redrawing equilibrium.

If however, we have NV R
(
T
)
> 0, we have some redrawing at T , and combining it with

the result in the preceding proposition we know that then if the set F is empty after this
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cycle of redrawings is over, such that financing becomes impossible across all maturities.

3.4 Intermediate dilution – α ∈ (0, 1)

Finally, let us now look at the general case where α ∈ (0, 1). Our first step is to investigate

set of funded cutoffs F . We first establish the following Lemma.

Lemma 3 Suppose β ≤ 1+R
2R so that the function defining F , M (x (T )), is increasing and

convex in T . Then the set F contains an interval starting at 0 iff β > 2
1+αβ so that

1. if M (β) < T we have F = [0, T1] for some T1, and

2. if M (β) > T we have F = [0, T1]∪
[
T2, T

]
for some T1 ≤ T2 (i.e. there is at most one

hole).

If β < 2
1+αβ we have 0 /∈ F so that

1. if M (β) < T we have F = ∅ (i.e. complete unraveling), and

2. if M (β) > T we have that F =
[
T1, T

]
for some T1 > 0.

Suppose β ≤ 1+R
2R and β < 2

1+αβ. Suppose T is such that M (β) < T . Then we know

that the funded set is empty – funding is just possible up toM (β) without redrawing, which

implies that T = M (x (T )) has a unique solution greater than T . Again, there is complete

unraveling of all funding solely due to redrawing.6

Second, suppose β ∈
(

2
1+αβ,

1+R
2R

)
so we know that the funded set F includes some

interval that starts at 0. A sufficient condition for the funded set F to be equal to
[
0, T

]
is

6Note that β < 2
1+αβ implies αβ < 2α

1+αβ < β which in turn implies that M (αβ) = 0.
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that M ′ (x (0))x′ (0) > 1 and that M (β) > T . It is also intuitive that if M (β) < T that the

interval
[
M (β) , T

]
/∈ F – if a project is not funded in the absence of redrawing, then surely

an inferior second best project of the same maturity will not be funded either.

3.5 Implications

We will now numerically investigate the properties of the equilibrium when we allow firms

to change their investment behavior in response to adverse selection. As we will see, the

endogenous response of firms to the adverse selection can create additional amplification

relative to the analysis in our baseline model.

Recall that by assumption there is a unique equilibrium if the net value to redrawing,

i.e. NV R (T ), cuts 0 uniquely from below at Te. Hence the equilibrium maximum funded

maturity is given by T ∗ = maxF ∩ [0, Te].

The maximum funded maturity T ∗ has interesting dynamics. In particular, because of

the endogenous adjustment of firms’ investment decisions to adverse selection, the maximum

funded maturity displays “falling of the cliff” dynamics: a small change in fundamentals can

lead to a large change in funded maturities.

This is illustrated in Figure 4, which summarizes both the model without redrawing of

maturities and the additional effects that result from the endogenous adjustment in firms’

investment decisions. The black dashed line is the equilibrium maximum maturity absent

redrawing of maturities. This line shows that already absent knock-on effects from the

distortion of firms investment decisions, a deterioration in the average quality β leads to a

non-linear decrease in the maximum funded maturity. Now consider, in addition, the effects

27



resulting from fims’ privately optimal decision to change their maturities. To do this, for

simplicity we consider the case in which α = .7, which means that original projects have

an average quality of β, whereas second-best projects have a qualtiy of .7 × β < β. The

red line shows Te, the cutoff that results from firms’ privately optimal redrawing behavior.

Firms located at maturities beyond Te would decide to change their project maturity, even if

funded. We find that in equilibrium no firm outside of this cutoff is funded (i.e. T ∗ > M (αβ)

for all β we consider). However, to determine whether a candidate redrawing cutoff Te is

actually funded by investors, we need to check whether it is part of the funded set, i.e.,

Te ∈ F .

The blue line in Figure 4 illustrates the equilibrium T ∗. If this line does not coincide

with the red line Te, then the funding cutoff imposed by the investors is strictly tighter than

the entrepreneur-driven cutoff Te. In particular, the Figure illustrates that as the economy

deteriorates and the average project quality β declines, the entrepreneur-driven maximum

maturity Te declines. For high β we see that T ∗ = Te. Over that region, a deterioration in

β leads to a moderate decline in the maximum funded maturity. This effect is driven by the

pure pecuniary externality as entrepreneurs that redraw impose higher average debt financing

costs on entrerpeneurs that were already being funded and did not redraw. Entrepreneurs

redraw in the hope of getting better funding terms, even if the absence of redrawing would

result in funding for everyone, i.e., M (β) ≥ 10.

However, as β drops below .75 we see the second effect kick in. As more and more firms

redraw, funding terms become sufficiently unattractive for firms with good projects. Since

investors can no longer raise the face value of debt in order to break even, they start pulling

the funding even from those entrepreneurs that were just indifferent between redrawing and

28



0.60 0.65 0.70 0.75 0.80 0.85 0.90
Β

2

4

6

8

10
Cutoff

D=0.6, Λ=0.1, Α=0.7, R=1.25, Tbar=10

Figure 4: Static vs redrawing equilibrium. The black dashed line is the equilibrium maximum
maturity in the static model. The red line shows Te, the cutoff that results from firms’
privately optimal redrawing behavior. The blue line illustrates the region for which the
funding cutoff imposed by the investors is strictly tighter than the entrepreneur-driven cutoff
Te.

staying. As these firms lose their funding, they search for shorter maturity projects by

redrawing. Through this feedback loop the maximum funded maturity deteriorates. In the

figure, this is the case when the red line lies above the blue line – although entrepreneurs

are willing to stop redrawing their maturities at the red line, investors are unwilling to fund

up to this threshold. This additional effect leads to a downward spiral all the way down to

the blue line.

Figure 4 allows us to make two observations about the effects of firm’s endogenous re-

sponse to adverse selection. First, the maximum funded maturity when firms can change the

maturity of their projects is lower than in the case in which they do not have this option.

Second, in comparison to the baseline case, the equilibrium in which firms can redraw their

projects is fragile, in the sense that a switch from an entrepreneur-driven equilibrium to an
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investor-driven equilibrium can lead to ‘falling off the cliff’ dynamics.

3.6 Welfare in the general case

We are now in a position the discuss the additional welfare effects that result from firms’

adjusting their maturities in response to adverse selection frictions. The two extreme case

α = 1 and α = 0 demonstrated that there are two counteracting forces to consider. On one

hand, as firms change their maturities, they shift project mass to lower maturities, which

results in an inflow of new projects into the funded region. In isolation, as is the case for

α = 1, this will lead to a welfare improvement.

On the other hand, as firms distort their investment policy, they dilute the pool in the

funded region whenever their second-best projects have lower net present value. This effect

was at work in isolation for α = 0: all additional firms that receive funding via maturity

adjustment are negative NPV firms, thus reducing surplus. Even worse, the presence of these

additional negative NPV firms will reduce the mass of good firms that can receive funding.

This is because the dilution of pool quality leads to a shortening of the maximal funding

horizon. Thus, the dilution will lead to welfare losses via a direct channel – individual firm

quality drops – and via an indirect channel – pool quality drops that leads to less firms being

funded.

For intermediate values of α, these two effects will both be present and thus have to be

traded off against each other. The overall welfare effect of maturity adjustment is thus a

combination of the welfare gains from a possible increase in the mass of funded firms and

the welfare losses from funding worse projects and restricting funding to good projects at
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some maturities.

To compare overall welfare before and after redrawing, let us first establish the mass of

people on [0, T ] when everyone on
[
T, T

]
redraws. Before redrawing, this mass is simply

given by m (T ) = T
T
. After everyone on

[
T, T

]
redraws, this mass is given by

ms (T ) = T

T

2T − T
T

+ 1{T<M(αβ)}
M (αβ)− T

T

T − T
T

. (27)

This means that we can decompose the welfare after redrawing, W s (α, β) into its separate

effects:

W s (α, β) = ms (T ) [x (T )NPVG + (1− x (T ))NPVB] (28)

= m0 (M (β)) [βNPVG + (1− β)NPVB]

+
[
ms (T )−m0 (M (β))

]
[βNPVG + (1− β)NPVB]

−ms (T ) [β − x (T )] [NPVG −NPVB] (29)

= W (β) + Add.Funding × Avg.Initial.NPV

−New.Mass×Quality.Diff ×NPV.Diff (30)

where we know that Avg.Initial.NPV > 0 and also that NPV.Diff > 0. This decompo-

sition states that welfare after firms adjust their maturities is the sum of the welfare before

maturity adjustments, plus the additional mass of funded entrerpreneurs each contributing

their initial average NPV, less the new total mass overall multiplied by the deterioration of

the NPV brought about by the usage of second best project. Recall the two extreme cases dis-

cussed above. When α = 1 we have Quality.Diff = 0 and T = M (β), so Add.Funding > 0.
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Thus, there is an unambiguous welfare gain. For α = 0, on the other hand, we know from

the above arguments that there is either a total welfare loss or at least a partial one –

each project that arises out of redrawing is negative NPV, and some good projects will be

squeezed out of the market by the investor’s zero profit condition. While the two extreme

cases show that the welfare difference relative to the static case can go either way, we can

derive the following sufficient condition under which firms’ privately optimal response to

maturity rationing leads to additional welfare losses:

Proposition 5 A sufficient condition for an equilibrium with redrawing to lead to a welfare

loss relative to the static case is that T < T0 where T0 is given by

T0 =


T
(

1−
√

1− M(β)
T

)
if T0 < M (αβ)

T
(
M(β)−M(αβ)
T−M(αβ)

)
if T0 > M (αβ)

(31)

T0 > M (αβ) only holds iff α and β are such that

(
2− M (αβ)

T

)
M (αβ)
T

≥ M (β)
T

(32)

Proposition 5 states that there is an unambigous welfare loss if less people are funded after

redrawing than in the static equilibrium, i.e. wheneverAdd.Funding = [ms (T )−m0 (M (β))] <

0. This is inuitive: When after maturity adjustments fewer firms are financed overall, and if

the average quality of those firms is lower than before firms adjust their maturities, a fortiori

surplus must decrease.

Figure 5 depicts the total welfare, i.e. the total funded NPV, in the benchmark case
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Figure 5: Total funded NPV in benchmark case (black dashed) and in case with redrawing
(blue solid) for α = .7, λ = .1, ∆ = .6 and R = 1.25.

without redrawing (black dashed line) and in the case in which redrawing is allowed (blue

solid line). We see that the enodgenous maturity choices of the agent can substantially

reduce overall welfare by distorting market rates and funding cutoffs. The kink in the black

curve occurs at M (β) = 10, at which point the expansion of funding ceases, and further

increases in β simply lead to an increase in the average quality of funded projects. The kink

in the blue curve occurs at the point at which the Te starts coinciding with T ∗ in Figure

4. For higher α, the welfare in the redrawing case can lie above the no redrawing case, as

discussed in Section 3.2.

4 Conclusion

This paper proposes a model of maturity rationing. We build on the credit rationing litera-

ture to illustrate how asymmetric information frictions lead to a theory of maximum funded
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maturities and the distortions that follow from it. In our model, firms may be unable to

obtain financing for long-term projects because asymmetric information worsens with the

maturity of the project. Beyond some maturity the lending market can break down (matu-

rity rationing). Firms whose first-best projects cannot get financed may react by adopting

second-best projects of shorter maturities. This generates enodgenous adverse selection in

this model. Redrawing worsens the pool of financed projects, further amplifying rationing.

Hence, a rationing spiral emerges. Our model suggests that maturity rationing is stronger

during recessions and, through its knock-on effects, may amplify the business cycle. In ad-

dition, the model shows how asymmetric information frictions generate short-termism in

investment decisions.
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A Appendix
A.1 Comparative statics of D (t, β) and M (β)
The derivatives of D (t, β) are

∂D (t, β)
∂t

= D (t, β)2 (1− β) ∆λe−λt > 0 (A.1)

∂D (t, β)
∂β

= −D (t, β)2 (1−∆e−λt
)
< 0 (A.2)

The derivatives of M (β) are

∂M (β)
∂β

= R− 1
(1− β) (1− βR)λ > 0 (A.3)

∂M (β)
∂λ

= − 1
λ
T (β) < 0 (A.4)

∂M (β)
∂R

= 1
λR (1− βR) > 0 (A.5)

∂M (β)
∂∆ = 1

λ∆ > 0 (A.6)

A.2 Unobservable maturity
Suppose maturity is unobservable, so that the financiers offer a maturity un-contingent contract D (β) ≤ R.
The maximum value that financiers can possibly recoup per investment then is D = R which gives

er
(
T
)

= 1
T

� T

0
βR+ (1− β) ∆e−λtRdt = R

[
β + (1− β) ∆ 1

λT

(
1− e−λT

)]
We can now show that there is a unique T beyond which this expected return per project falls below the
initial investment of 1. To this end, let us investigate the function

f (x) = 1
x

(
1− e−x

)
f ′ (x) = e−x (1 + x− ex)

x2

First, by L’Hopital we know that limx→0 f (x) = 1 and limx→0 f
′ (x) = − 1

2 . Also, since 1 + x < ex for all
x > 0 we have f ′ (x) < 0 for all x ≥ 0. Further, note that limx→∞ f (x) = 0. We thus know that

lim
T→∞

er
(
T
)

= Rβ.

Thus, only if β > 1
R will there be funding without observable maturity in the limit. For any β < 1

R there is
a unique finite T ∗ (β) so that if the distribution extends beyond this value that the unobservable maturity
market (without redrawing) completely collapses. However, for β < 1

R we note that there exists a finite
T
∗ such that the whole market breaks down. Funding, however, would still be available in the observable

maturity case for low levels of t < M (β).
The actual closed form solution for T ∗ involves a Lambert-W function, and is given by

T
∗ (β) =

W

[
− (1−β)∆

1
R−β

e
− (1−β)∆

1
R

−β

]
+ (1−β)∆

1
R−β

λ
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for β < β < 1
R . It is easy to check that T ∗ (β) > M (β). We additionally have T ∗

(
β
)

= 0 and T ∗
( 1
R

)
=∞.

A.3 Rollover Contracts
In this section we show that the assumption that firms match maturities is without loss of generality. The
reason is that when project maturity is observable, a firm that cannot raise financing by matching maturities
can also not raise financing through a rollover debt contract.

To see this, assume that some maturity T firm drawn out of a pool of quality β (not necessarily the static
β) is rationed and that the longest available maturity is M (β) = t < T . We know show that a firm with
a project of maturity T cannot finance via rollover if (i) project maturity is observed and (ii) the financier
learns at rollover whether project has defaulted on [0, t].

Proof: At the rollover date, the financier updates his belief on whether the financed firm is good or
bad. Conditional on a firm having survived until the rollover date t, the probability that the firm is good is
given by

β̂ (t) = β

β + ∆ (1− β) e−λt , (A.7)

and the probability that the firm is bad is

1− β̂ (t) = ∆ (1− β) e−λt

β + ∆ (1− β) e−λt . (A.8)

This implies that when rolling over its debt from t to T , the maximum a firm can credibly promise to repay
is

X = e−r(T−t)
[
β̂ (t) erTR+

(
1− β̂ (t)

)
e−λ(T−t)erTR

]
(A.9)

e−rtX = β̂ (t)R+
(

1− β̂ (t)
)
e−λ(T−t)R (A.10)

= β

β + ∆ (1− β) e−λtR+ ∆ (1− β) e−λt

β + ∆ (1− β) e−λt e
−λ(T−t)R (A.11)

= R

β + ∆ (1− β) e−λt
[
β + ∆ (1− β) e−λT

]
(A.12)

where we used the fact that the maximum discounted face-value that a firm can credibly commit to is R.
From 0 to t then the firm will be able to promise a maximal repayment of X if it stays alive until t, which
gives the maximimum a firm can promise to repay at 0 as

e−rt
[
βX + ∆ (1− β) e−λtX

]
(A.13)

We can rewrite this as

e−rtX
[
β + ∆ (1− β) e−λt

]
= R

β + ∆ (1− β) e−λt
[
β + ∆ (1− β) e−λT

] [
β + ∆ (1− β) e−λt

]
(A.14)

= R
[
β + ∆ (1− β) e−λT

]
(A.15)

But this is the same amount the firm can raise by financing directly up to date T. Hence, if maturity T is
rationed, a firm with a project of maturity T can also not obtain financing by using rollover finance.
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A.4 Benefit of redrawing
Note the following integral that we will evaluate numerous times. If an agent redraws onto [0, T ], he expects
to repay on average the following discounted face value for x > αβ:

− 1
T

� T

0
D (t, x)

(
αβ + (1− αβ) ∆e−λt

)
dt = − 1

T

� T

0

αβ + (1− αβ) ∆e−λt

x+ (1− x) ∆e−λt dt (A.16)

= −T
T

(1− αβ)
(1− x) + x− αβ

λT (1− x)x
log
[
eλTx+ (1− x) ∆
x+ (1− x) ∆

]
(A.17)

It is clear that for α = 0 and for α = 1 (and thus x = β) we have considerable simplifications. We can now
write

switch (T, β) = 1
T

� T

0
αβ [R−D (t, x (T ))] + (1− αβ) ∆

[
R− e−λtD (t, x (T ))

]
dt

+1{M(αβ)>T}
1
T

� min[M(αβ),T ]

T

αβ [R−D (t, αβ)] + (1− αβ) ∆
[
R− e−λtD (t, αβ)

]
dt(A.18)

= 1
T

� T

0
αβ [R−D (t, x (T ))] + (1− αβ) ∆

[
R− e−λtD (t, x (T ))

]
dt

+1{M(αβ)>T}
min

[
M (αβ) , T

]
− T

T
([αβ + (1− αβ) ∆]R− 1) (A.19)

A.5 Uniform as limit of truncated exponential
All of the results of the paper go through under a truncated exponential. A uniform distribution on

[
0, T

]
is the limit of a truncated exponential distribution with intensity γ on

[
0, T

]
as the intensity γ → 0. The

pdf of a truncated exponential on
[
0, T

]
is simply pdfγ,T (t) = γe−γt

1−e−γT
. As γ → 0, we see that we have a

situation ”0”
”0” and we have to use L’Hopital’s rule:

lim
γ→0

pdfγ,T (t) = lim
γ→0

γe−γt

1− e−γT
= lim
γ→0

e−γt − γte−γt

Te−γT
= 1
T

which is just the pdf of a uniform distribution on
[
0, T

]
. Thus, as the intensity shrinks to zero a truncated

exponential distribution becomes a uniform distribution. Thus, we have

pdfγ,T (t) =
{ 1
T

γ = 0
γe−γt

1−e−γT
γ > 0

A.6 Omitted proofs in the main text
Proof of Lemma 1.

First, a good project has uniformly zero variance in its discounted cash flows as Returnt = ertR, that is

V arGt
(
e−rt ·Returnt

)
= V arGt (R) = 0 (A.20)

On the other hand, the bad project will have a positive variance – it returns e(r+λ)tR with probability
p = ∆e−λt and 0 with probability (1− p) =

(
1−∆e−λt

)
. Via the Bernoulli distribution variance formula

V arBernoulli = p (1− p) we have the variance of the discounted cash flows

V arBt
(
e−rt ·Returnt

)
=
(
eλtR

)2 ∆e−λt
(
1−∆e−λt

)
= ∆R2 (eλt −∆

)
(A.21)

and we can see that V arBt is increasing in t.
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Ex-ante, that is before the project is revealed to be good or bad, the variance can be easily determined
via the variance decomposition V ar (X) = V ar (E [X|Y ]) + E [V ar (X|Y )] where we identify X with the
outcome, i.e. Returnt, and Y with the project being good with probability β and bad with probability
(1− β). Thus, the ex-ante variance for a project of maturity t is

V arExAntet

(
e−rt ·Returnt

)
= V art

(
PV it

)
+ E

[
V arit

]
(A.22)

= β
(
R− E

[
PV it

])
+ (1− β)

(
∆R− E

[
NPV it

])
+ E

[
V arit

]
(A.23)

= R2β (1− β) (1−∆)2 + β · 0 + (1− β)V arBt (A.24)

= (1− β)R2
[
β (1−∆)2 + ∆

(
eλt −∆

)]
(A.25)

where we used PV it as the present value of project of quality i so that E
[
PV it

]
= βR + (1− β) ∆R, and

V arBt = ∆R2 (eλt −∆
)
. Again, the ex-ante variance is increasing in maturity t. How does this variance

change with a shift in pool quality β?

∂V arExAntet

∂β
= −R2

[
β (1−∆)2 + ∆

(
eλt −∆

)]
+ (1− β)R2 (1−∆)2 (A.26)

= R2
[
(1− 2β) (1−∆)2 −∆

(
eλt −∆

)]
(A.27)

We see that this derivative is clearly smaller the larger β, and is unambiguously negative for β ≥ 1
2 . Thus,

let us assume β = 0. For what values of ∆ is this derivative non-positive?

0 ≥ (1−∆)2 −∆
(
eλt −∆

)
(A.28)

⇐⇒ eλt ≥ (1−∆)2 + ∆2

∆ (A.29)

⇐⇒ eλt − 1 ≥ 1− 3∆ + 2∆2

∆ (A.30)

The left hand side is always non-negative for t ≥ 0, and the right hand side is unambiguously non-positive
for ∆ ∈

[ 1
2 , 1
]
– the quadratic expression 2∆2 − 3∆ + 1 has roots 1

2 and 1 and is increasing and positive as
|∆| becomes large.

Proof of Proposition 3.
First, let us investigate if a conjectured cutoff T = 0 leaves any funding at t = 0. Noting that x (0) = β

2 ,
we have the following conditions for a positive funding maturity

log [...] > 0 (A.31)

⇐⇒

(
1− β

2

)
R∆

1− β
2R

> 1 (A.32)

⇐⇒ β > 2 (1−∆R)
(1−∆)R = 2β (A.33)
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Thus, if β < 2β the cutoff T = 0 is not in the funded set. Second, we know that

dM (x (Ti))
dTi

= ∂M (x)
∂x

dx

dTi
= R− 1

(1− x) (1− xR)λ
dx

dTi
(A.34)

= R− 1
(1− x) (1− xR)λ

β(
2− T

T

)2
T

(A.35)

= R− 1
(1− x) (1− xR)λ

x2

βT
(A.36)

= R− 1( 1
x − 1

) ( 1
x −R

)
λ

1
βT

> 0 (A.37)

as (1− x) and (1− xR) are both positive by assumption. Furthermore, we see that as x increases the
denominator shrinks, and thus the derivative increases – the function M (x (T )) is convex in T . We conclude
that in the case of β < 2β and T (β) < T the funded set F is empty. In other words, the market completely
unravels.

Proof of Lemma 2. We will start at checking if 0 ∈ F – under what conditions will a project of maturity
t = 0 still get funding even if everyone else, i.e.

(
0, T

]
, redraws? Plugging in x (0) = β 1+α

2 > αβ, we see
that

M (x (0)) > 0 (A.38)

⇐⇒ 1
λ

log
[(

1− β 1+α
2
)

∆R
1− β 1+α

2 R

]
> 0 (A.39)

⇐⇒
(
1− β 1+α

2
)

∆R
1− β 1+α

2 R
> 1 (A.40)

⇐⇒ β >
2

1 + α

1−∆R
(1−∆)R = 2

1 + α
β (A.41)

We see that this condition trivially holds for α = 1 by assumption β > β. If we do not have β > 2
1+αβ we

know that 0 /∈ F .
Next, let us look at the derivative of M (x (T )) w.r.t. T . Writing it out, we have

dM (x (T ))
dT

= M ′ (x)x′ (T ) > 0 (A.42)

d2M (x (T ))
dT 2 = M ′ (x)x′′ (T ) +M ′′ (x)x′ (T )2 (A.43)

Taking derivatives, we know that M ′ (x) = R−1
(1−x)(1−xR)λ > 0, x′ (T ) = β T (1−α)

(2T−T)2 ≥ 0 and x′′ (T ) =

β 2T (1−α)
(2T−T)3 ≥ 0 (where the inequalities are strict for α < 1). The second derivative of the maturity cut-

off function is
M ′′ (x) = (R− 1) 1 +R− 2Rx

(1− x)2 (1−Rx)2
λ

(A.44)

which is positive for

1 +R− 2Rx > 0 (A.45)

⇐⇒ 1 +R

2R > x (A.46)

We know that αβ < x ≤ β, so any β ≤ 1+R
2R will lead to a positive second derivative M (x (T )) or convexity

of the function M (x (T )) for all cutoffs T .
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We can now state our first result for α ∈ (0, 1). The function M (x (T )) is increasing, it is convex if
β < 1+R

2R and it is smaller than 0 at T = 0 if β < 2
1+αβ. Suppose T is such that M (β) < T . Then we

konw that the funded set is empty – funding is just possible up to M (β) without redrawing, which implies
that T = M (x (T )) has a unique solution greater than T . Again, there is complete unraveling of all funding
solely due to redrawing.7

Secondly, the function M (x (T )) is increasing, convex if β < 1+R
2R and greater than 0 at T = 0 if

β > 2
1+αβ. Thus, for β ∈

(
2

1+αβ,
1+R
2R

)
we know that the funded set F includes some interval that starts at

0. As we know that M (x (T )) is convex and increasing, we know that F consists either of one interval [0, T1]
where T1 ≤ T or two disjoint intervals [0, T1] and

[
T2, T

]
with T1 < T2 < T . Two intervals or full funding

can only exists in the case of M (β) > T , whereas one interval exists for the case of M (β) < T . A sufficient
condition for the funded set F to be equal to

[
0, T

]
is if M ′ (x (0))x′ (0) > 1 and that M (β) > T . It is also

intuitive that if M (β) < T that the interval
[
M (β) , T

]
/∈ F – if a project is not funded in the absence of

redrawing, then surely an inferior second best project of the same maturity will not be funded either.

Proof of Proposition 5.
What cutoff level T0 would give the same mass of funded entrepreneurs as the static model? Let y ≡ T

T

for ease of notation. Then, for M (β) < T , we have

ms (T0) = m0 (β) (A.47)

⇐⇒ y (2− y) + 1{M(αβ)
T

>y
} (M (αβ)

T
− y
)

(1− y) = M (β)
T

(A.48)

⇐⇒ y (2− y) + 1{M(αβ)
T

>y
} (M (αβ)

T
− y
)

(1− y)− M (β)
T

= 0 (A.49)

Let us investigate the roots of F (y) = y (2− y) + 1{M(αβ)
T

>y
} (M(αβ)

T
− y
)

(1− y) − M(β)
T

. Suppose now

that y > M(αβ)
T

so we have a simple quadratic equation. Note that both roots of F (y) = −y2 + 2y − M(β)
T

are of positive sign, and by F (0) < 0 and F (1) = −1 + 2− M(β)
T

> 0 we know that only one root is in (0, 1).
We conclude that the threshold we are looking for is

T0 = T

(
1−

√
1− M (β)

T

)
∈
(
0, T

)
(A.50)

Suppose on the other hand that y < M(αβ)
T

, so that we have F (y) = y + M(αβ)
T

(1− y)− M(β)
T

which has a
unique root

T0 = T

(
M (β)−M (αβ)
T −M (αβ)

)
∈
(
0, T

)
(A.51)

We are left with checking for what parameters α and β does the different conditions apply. The roots are
continuous during the switch from quadratic to the linear root for small changes in α and β by the definition
of ms (T ). Setting the equations equal, we see that the T0 > M (αβ) only applies iff there is α and β such
that (

2− M (αβ)
T

)
M (αβ)
T

≥ M (β)
T

(A.52)

7Note that β < 2
1+αβ implies αβ < 2α

1+αβ < β which in turn implies that M (αβ) < 0.
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B Notation[
0, T

]
range of initial project maturities

t maturity of specific project
β initial population share of good projects

D (t, β) = 1
β+(1−β)∆e−λt Discounted face value at maturity t and pool quality β

M (β) = 1
λ log

[
(1−β)∆R

1−βR

]
max financed maturity for pool quality β

x (T ) = β
T+α(T−T)

2T−T
share of good projects on no redrawing interval [0, T ]

x̂ = αβ share of good projects on redrawing interval
[
T, T

]
β = 1−e−λT∆R(

1−e−λT∆
)
R

min share of good projects that leads to no rationing on
[
0, T

]
β = 1

R min share of good projects that leads to no rationing at any maturity
β = 1−∆R

(1−∆)R min share of good projects to avoid market breakdown
α decrease in probability of good project if switching

R ∈ (1, 2) discounted payoff of good projects
NPVG = R− 1 NPV good project
NPVB = ∆R− 1 NPV bad project

λ default intensity of bad projects
∆ ∈

( 1
2 ,

1
R

)
probability that bad project gets off the ground

F = {T : T ≤M (x (T ))} ∩
[
0, T

]
set of funded cutoffs strategies T : T ∈ F means [0, T ] funded

m (T ) funding in static model if cutoff is T
ms (T ) funding in switching model if cutoff is T
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