Brain Connectivity Analysis: from Unimodal to Multimodal

Sergey M. Plis

joint work with Rene Huster, Terran Lane, Vince Clark, Michael Weisend and Vince D. Calhoun

Contents

- 1 Definitions and Tools
- 2 Unimodal Connectivity Analysis: EEG
- 3 Contrasting modalities
- 4 Data Sharing Fusion
- 5 Validation through Interventions

Outline

1 Definitions and Tools

- 2 Unimodal Connectivity Analysis: EEG
- 3 Contrasting modalities
- 4 Data Sharing Fusion
- 5 Validation through Interventions

Introduction

- Neuroimaging studies brain function
- Advanced techniques produce immense amounts of data
- Each with their strength and weaknesses
- Our goal: causal relations among brain networks

Functional Neuroimaging (fMRI)

- functional Magnetic Resonance Imaging (fMRI)
- Blood Oxygenation Level Dependent (BOLD) response
- 4D data (3D volumes evolving in time)

Advantage: Relatively well localized
 Disadvantage: Slow sampling rate

Functional Neuroimaging (MEG)

- Magneto-EncephaloGraphy (MEG)
- Electromagnetic phenomenon
 - Advantage: Instant reflection of the underlying activity (ms resolution)
 - Disadvantage: Uncertain spatial localization

Common Underlying Phenomenon

- Inverse problem
- Functional connectivity

Data Fusion: Source Analysis

Definitions and Tools

Single modality: Connectivity Analysis

MEG

Definitions and Tools

Connectivity Inference: Bayesian Networks

parents

Comparing the Results: Graph Characterization¹

- in-degree
- out-degree
- degree centrality
- maximum degree
- diameter
- density
- average path length

¹ Rubinov, M. et al. Neuroimage 52, 1059–1069 (2010).

Outline

1 Definitions and Tools

2 Unimodal Connectivity Analysis: EEG

- 3 Contrasting modalities
- 4 Data Sharing Fusion
- 5 Validation through Interventions

Stop-Go task

What are the nodes?

Contrasted sliding graphs metrics²

- Higher clustering coefficient for the stop task: network consolidates for processing?
- Shorter characteristic path-length for the stop task: network becomes more efficient?

²Grzegorczyk, M. et al. Machine Learning 71, 265-305 (2008).

Outline

1 Definitions and Tools

2 Unimodal Connectivity Analysis: EEG

3 Contrasting modalities

- 4 Data Sharing Fusion
- 5 Validation through Interventions

collect modalities: same subjects same paradigm

- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

³Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

collect modalities: same subjects same paradigm

- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

³Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

- collect modalities: same subjects same paradigm
- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

³Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

- collect modalities: same subjects same paradigm
- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets

compare results: aggregate metric

³Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

- collect modalities: same subjects same paradigm
- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

³Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

fMRI

Processing

novel

Contrasting modalities

target

Neuroimaging

Resulting Connectivity

marginal distributions of edges

highest scoring networks in transverse view

Comparing the Results Graph Metrics Distributions

node-degree distribution

Comparing the Results Graph Metrics Distributions

Outline

1 Definitions and Tools

- 2 Unimodal Connectivity Analysis: EEG
- 3 Contrasting modalities
- 4 Data Sharing Fusion
- 5 Validation through Interventions

Data Sharing Fusion

Why do fusion in dynamical settings?

temporal resolution affects causality⁴

fusion helps to avoid temporal inverse problem⁵

⁵Riera, J. J. *et al. Neuroimage* **21**, 547–567 (Feb. 2004).

⁴Daunizeau, J. et al. Neuroimage 36, 69-87 (May 2007).

Data Sharing Fusion

Why do fusion in dynamical settings?

temporal resolution affects causality⁴

fusion helps to avoid temporal inverse problem⁵

⁴Daunizeau, J. et al. Neuroimage 36, 69-87 (May 2007).

⁵Riera, J. J. et al. Neuroimage 21, 547–567 (Feb. 2004).

Dynamic Bayesian Networks⁶

$$\mathsf{P}\big(\mathcal{R}_{t_0:t_{TR}},\mathcal{M}_{t_0:t_{TR}},\mathcal{B}_{t_0,t_{TR}}\big) = \mathsf{P}\big(\mathcal{R}_{t_0}\big)\mathsf{P}\big(\mathcal{B}_{t_0}|\mathcal{R}_{t_0}\big)\mathsf{P}\big(\mathcal{B}_{t_{TR}}|\mathcal{R}_{t_{TR}}\big)\prod_{i=1}^{TR}\mathsf{P}\big(\mathcal{R}_{t_i}|\mathcal{R}_{t_{i-1}}\big)\prod_{i=0}^{TR}\mathsf{P}\big(\mathcal{M}_{t_i}|\mathcal{R}_{t_i}\big)$$

circles - hiddensquares - observed

⁶Murphy, K. PhD thesis (UC Berkeley, 2002).

Dynamic Bayesian Networks transition model

$$\mathsf{P}\big(\mathcal{R}_{t_0:t_{TR}}, \mathcal{M}_{t_0:t_{TR}}, \mathcal{B}_{t_0,t_{TR}}\big) = \mathsf{P}\big(\mathcal{R}_{t_0}\big)\mathsf{P}\big(\mathcal{B}_{t_0}|\mathcal{R}_{t_0}\big)\mathsf{P}\big(\mathcal{B}_{t_{TR}}|\mathcal{R}_{t_{TR}}\big)\prod_{i=1}^{TR}\mathsf{P}\Big(\mathcal{R}_{t_i}|\mathcal{R}_{t_{i-1}}\Big)\prod_{i=0}^{TR}\mathsf{P}\big(\mathcal{M}_{t_i}|\mathcal{R}_{t_i}\big)$$

circles - hiddensquares - observed

$$\mathcal{R}_t = k\mathcal{R}_{t-1} + \sigma_{\mathcal{R}}\eta_t$$

Dynamic Bayesian Networks MEG forward model⁶

$$\mathsf{P}(\mathcal{R}_{t_0:t_{TR}},\mathcal{M}_{t_0:t_{TR}},\mathcal{B}_{t_0,t_{TR}}) = \mathsf{P}(\mathcal{R}_{t_0})\mathsf{P}(\mathcal{B}_{t_0}|\mathcal{R}_{t_0})\mathsf{P}(\mathcal{B}_{t_{TR}}|\mathcal{R}_{t_{TR}})\prod_{i=1}^{TR}\mathsf{P}(\mathcal{R}_{t_i}|\mathcal{R}_{t_{i-1}})\prod_{i=0}^{TR}\mathsf{P}(\mathcal{M}_{t_i}|\mathcal{R}_{t_i})$$

circles - hidden
 squares - observed

$$\mathcal{M}_t = \mathsf{MFM}(\mathcal{R}_t) + \sigma_{\mathcal{M}}\eta_t,$$

⁶Sarvas, J. eng. Phys Med Biol 32, 11-22 (1987).

Dynamic Bayesian Networks fMRI forward model⁶

$$\mathsf{P}(\mathcal{R}_{t_0:t_{TR}}, \mathcal{M}_{t_0:t_{TR}}, \mathcal{B}_{t_0, t_{TR}}) = \mathsf{P}(\mathcal{R}_{t_0})\mathsf{P}(\mathcal{B}_{t_0}|\mathcal{R}_{t_0})\mathsf{P}(\mathcal{B}_{t_{TR}}|\mathcal{R}_{t_{TR}})\prod_{i=1}^{TR}\mathsf{P}(\mathcal{R}_{t_i}|\mathcal{R}_{t_{i-1}})\prod_{i=0}^{TR}\mathsf{P}(\mathcal{M}_{t_i}|\mathcal{R}_{t_i})$$

circles - hidden

squares - observed

$$\mathcal{B}_t = \mathsf{HFM}(\mathcal{R}_t) + \sigma_{\mathcal{B}}\eta_t$$

⁶Friston, K. J. et al. Neuroimage 12, 466–477 (2000).

Dynamic Bayesian Networks inference⁶

$$\mathsf{P}\big(\mathcal{R}_{t_0:t_{TR}}, \mathcal{M}_{t_0:t_{TR}}, \mathcal{B}_{t_0,t_{TR}}\big) = \mathsf{P}\big(\mathcal{R}_{t_0}\big)\mathsf{P}\big(\mathcal{B}_{t_0}|\mathcal{R}_{t_0}\big)\mathsf{P}\big(\mathcal{B}_{t_{TR}}|\mathcal{R}_{t_{TR}}\big)\prod_{i=1}^{TR}\mathsf{P}\big(\mathcal{R}_{t_i}|\mathcal{R}_{t_{i-1}}\big)\prod_{i=0}^{TR}\mathsf{P}\big(\mathcal{M}_{t_i}|\mathcal{R}_{t_i}\big)$$

Particle Filtering

⁶(eds Doucet, A. et al.) (Springer-Verlag, Berlin, 2001).

Demonstration⁷

fMRI only

MEG only

fMRI+MEG

⁷Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

Comparison: fMRI vs. fMRI+MEG

from sparse to constant activity 1000 runs per point

$$\mathcal{E} = \sum_{i=1}^{1000} \frac{\|T_i - M_i\|_2}{\|T_i\|_2}$$

Event Related studies

fusion yields:

- Iower errors
- stabler estimates

Comparison: fMRI vs. fMRI+MEG

from sparse to constant activity

1000 runs per point

$$\mathcal{E} = \sum_{i=1}^{1000} \frac{\|T_i - M_i\|_2}{\|T_i\|_2}$$

Event Related studies

fusion yields:

- Iower errors
- stabler estimates

Comparison: fMRI vs. fMRI+MEG

from sparse to constant activity
1000 runs per point

 $\mathcal{E} = \sum_{i=1}^{1000} \frac{\|T_i - M_i\|_2}{\|T_i\|_2}$

Event Related studies

fusion yields:

Iower errors

stabler estimates

Comparison: fMRI vs. fMRI+MEG

from sparse to constant activity
1000 runs per point

$$\mathcal{E} = \sum_{i=1}^{1000} \frac{\|T_i - M_i\|_2}{\|T_i\|_2}$$

Event Related studies

fusion yields:

- lower errors
- stabler estimates

Speed up and stability

BOLD (% of change)

Speed up and stability

BOLD (% of change)

neural activity (a.u.)

fusion yields:
o lower variance and o faster computation

Real data

- same paradigm for fMRI and MEG
- 120 trials of an 8 Hz checkerboard reversal

Real data results

fMRI only

Real data results

MEG only

Real data results

Outline

- 1 Definitions and Tools
- 2 Unimodal Connectivity Analysis: EEG
- 3 Contrasting modalities
- 4 Data Sharing Fusion
- 5 Validation through Interventions

Does inferred connectivity reflect brain function?

Manipulation principle: learn by breaking parts of the system!

How to alter brain function without subjects complaining too loud?
 Transcranial Direct Current Stimulation (tDCS): a noninvasive low current technique affecting firing thresholds of cortical neurons.

Does inferred connectivity reflect brain function?

- Manipulation principle: learn by breaking parts of the system!
- How to alter brain function without subjects complaining too loud?
- Transcranial Direct Current Stimulation (tDCS): a noninvasive low current technique affecting firing thresholds of cortical neurons.

Does inferred connectivity reflect brain function?

- Manipulation principle: learn by breaking parts of the system!
- How to alter brain function without subjects complaining too loud?
- Transcranial Direct Current Stimulation (tDCS): a noninvasive low current technique affecting firing thresholds of cortical neurons.

Preliminary Results

Preliminary Results

25/27

Goal: Combine modalities to infer function-induced networks

Results so far:

Demonstrated useful results of sliding window treatment

- Demonstrated pitfalls of single-modality connectivity estimation⁸
- Demonstrated fMRI+MEG fusion in the DBN framework

Future work:

- Causal structure fusion
- Whole brain DBN fusion framework
- tDCS-based analysis framework for validation

⁸Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011)

⁹Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

Goal: Combine modalities to infer function-induced networks Results so far:

- Demonstrated useful results of sliding window treatment
- Demonstrated pitfalls of single-modality connectivity estimation⁸
- Demonstrated fMRI+MEG fusion in the DBN framework

- Causal structure fusion
- Whole brain DBN fusion framework
- tDCS-based analysis framework for validation

⁸Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

⁹Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

Goal: Combine modalities to infer function-induced networksResults so far:

- Demonstrated useful results of sliding window treatment
- Demonstrated pitfalls of single-modality connectivity estimation⁸
- Demonstrated fMRI+MEG fusion in the DBN framework

- Causal structure fusion
- Whole brain DBN fusion framework
- tDCS-based analysis framework for validation

⁸Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

⁹Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

- Goal: Combine modalities to infer function-induced networks
 Results so far:
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation⁸
 - Demonstrated fMRI+MEG fusion in the DBN framework

- Causal structure fusion
- Whole brain DBN fusion framework
- tDCS-based analysis framework for validation

⁸ Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

- Goal: Combine modalities to infer function-induced networksResults so far:
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation⁸
 - Demonstrated fMRI+MEG fusion in the DBN framework⁹

- Causal structure fusion
- Whole brain DBN fusion framework
- tDCS-based analysis framework for validation

⁸Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

⁹Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

- Goal: Combine modalities to infer function-induced networks
 Results so far:
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation⁸
 - Demonstrated fMRI+MEG fusion in the DBN framework⁹

- Causal structure fusion
- Whole brain DBN fusion framework
- tDCS-based analysis framework for validation

⁸ Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

⁹Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

- Goal: Combine modalities to infer function-induced networks
 Results so far:
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation⁸
 - Demonstrated fMRI+MEG fusion in the DBN framework⁹
- Future work:
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

⁸ Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

⁹Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

- Goal: Combine modalities to infer function-induced networks
 Results so far:
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation⁸
 - Demonstrated fMRI+MEG fusion in the DBN framework⁹
- Future work:
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

⁸ Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

⁹Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

- Goal: Combine modalities to infer function-induced networks
 Results so far:
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation⁸
 - Demonstrated fMRI+MEG fusion in the DBN framework⁹
- Future work:
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

⁸ Plis, S. M. et al. Computers in Biology and Medicine 41, 1156–1165 (2011).

⁹Plis, S. M. et al. Frontiers in Neuroinformatics 4, 12 (2010).

Thank you!