## Tutorial:

## **Causal** Model Search

**Richard Scheines** 

**Carnegie Mellon University** 

Peter Spirtes, Clark Glymour, Joe Ramsey,

others

# Goals

- 1) Convey rudiments of graphical causal models
- 2) Basic working knowledge of Tetrad IV

# **Tetrad: Complete Causal Modeling Tool**



# Tetrad

- 1) Main website: <u>http://www.phil.cmu.edu/projects/tetrad/</u>
- 2) Download: http://www.phil.cmu.edu/projects/tetrad/current.html
- 3) Data files: workshop.new.files.zip in <u>www.phil.cmu.edu/projects/tetrad\_download/download/workshop/Data/</u>
- 4) Download from Data directory:
  - tw.txt
  - Charity.txt
  - Optional:
    - estimation1.tet, estimation2.tet
    - search1.tet, search2.tet, search3.tet

# Outline

- 1) Motivation
- 2) Representing/Modeling Causal Systems
- 3) Estimation and Model fit
- 4) Causal Model Search

# **Statistical Causal Models: Goals**

- 1) Policy, Law, and Science: How can we use data to answer
  - a) subjunctive questions (effects of future policy interventions), or
  - *b) counterfactual* questions (what would have happened had things been done differently (law)?
  - *c) scientific* questions (what mechanisms run the world)

2) Rumsfeld Problem: Do we know what we do and don't know: Can we tell when there is or is not enough information in the data to answer causal questions?

#### **Causal Inference Requires More than Probability**

Prediction from Observation ≠ Prediction from Intervention

P(Lung Cancer 1960 = y | Tar-stained fingers 1950 = no)  $\neq$ P(Lung Cancer 1960 = y | Tar-stained fingers 1950<sub>set</sub> = no)

In general:  $P(Y=y | X=x, Z=z) \neq P(Y=y | X_{set}=x, Z=z)$ 

**Causal** Prediction vs. Statistical Prediction:



#### **Causal Search**

Causal Search:

- 1. Find/compute *all* the causal models that are indistinguishable given background knowledge and data
- 2. Represent features common to all such models

Multiple Regression is often the *wrong* tool for Causal Search:

Example: Foreign Investment & Democracy

## Foreign Investment

Does Foreign Investment in 3<sup>rd</sup> World Countries inhibit Democracy?

Timberlake, M. and Williams, K. (1984). Dependence, political exclusion, and government repression: Some cross-national evidence. American Sociological Review 49, 141-146.

#### N = 72

- PO degree of political exclusivity
- CV lack of civil liberties
- EN energy consumption per capita (economic development)
- FI level of foreign investment

Foreign Investment

### Correlations



Case Study: Foreign Investment

### **Regression Results**

| po = | .227*fi | 176*en + | .880*cv<br>(.060) |
|------|---------|----------|-------------------|
| SE   | (.058)  | (.059)   |                   |
| t    | 3.941   | -2.99    | 14.6              |

Interpretation: foreign investment increases political repression

### Case Study: Foreign Investment

### Alternatives



There is no model with testable constraints (df > 0) that is not rejected by the data, in which FI has a positive effect on PO.

# **Tetrad Demo**

- 1. Load tw.txt data
- 2. Estimate regression
- 3. Search for alternatives
- 4. Estimate alternative

# **Tetrad Hands-On**

- 1. Load tw.txt data
- 2. Estimate regression

# Outline

#### 1) Motivation

- 2) Representing/Modeling Causal Systems
  - 1) Causal Graphs
  - 2) Standard Parametric Models
    - 1) Bayes Nets
    - 2) Structural Equation Models
  - 3) Other Parametric Models
    - 1) Generalized SEMs
    - 2) Time Lag models

# **Causal Graphs**

Causal Graph G = {V,E} Each edge  $X \rightarrow Y$  represents a direct causal claim: X is a direct cause of Y relative to V



# **Causal Graphs**



# Modeling Ideal Interventions

### Interventions on the Effect





# Modeling Ideal Interventions

### **Interventions on the Cause**



# **Interventions & Causal Graphs**

Model an ideal intervention by adding an "intervention" variable outside the original system as a direct cause of its target.



# Tetrad Demo & Hands-On

Build and Save an acyclic causal graph:

- 1) with 3 measured variables, no latents
- 2) with 5 variables, and at least 1 latent

# **Parametric Models**



# **Instantiated Models**



# **Causal Bayes Networks**



**The Joint Distribution Factors** 

According to the Causal Graph,

$$P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct\_causes(X))$$

P(S,YF, L) = P(S) P(YF | S) P(LC | S)

## **Causal Bayes Networks**



 $P(S) P(YF | S) P(LC | S) = f(\theta)$ 

All variables binary [0,1]:  $\theta = \{\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \}$ 

$$P(S = 0) = \theta_{1}$$

$$P(S = 1) = 1 - \theta_{1}$$

$$P(YF = 0 | S = 0) = \theta_{2}$$

$$P(YF = 1 | S = 0) = 1 - \theta_{2}$$

$$P(YF = 0 | S = 1) = \theta_{3}$$

$$P(YF = 1 | S = 1) = 1 - \theta_{3}$$

 $P(LC = 0 | S = 0) = \theta_4$   $P(LC = 1 | S = 0) = 1 - \theta_4$   $P(LC = 0 | S = 1) = \theta_5$  $P(LC = 1 | S = 1) = 1 - \theta_5$ 

# Tetrad Demo & Hands-On

- 1) Attach a Bayes PM to your 3-variable graph
- Define the Bayes PM (# and values of categories for each variable)
- 3) Attach an IM to the Bayes PM
- 4) Fill in the Conditional Probability Tables.

# **Structural Equation Models**



Structural Equations For each variable X ∈ V, an *assignment* equation:

X :=  $f_{\chi}$ (immediate-causes(X),  $\varepsilon_{\chi}$ )

**Exogenous Distribution:** Joint distribution over the exogenous vars : P(ε)

# **Linear Structural Equation Models**



#### Equations:

Education :=  $\varepsilon_{Education}$ Income :=  $\beta_1$  Education +  $\varepsilon_{income}$ Longevity :=  $\beta_2$  Education +  $\varepsilon_{Longevity}$ 

Structural Equation Model:

 $\mathbf{V} = \mathbf{B}\mathbf{V} + \mathbf{E}$ 

#### **Exogenous Distribution:**

- $\mathsf{P}(\epsilon_{ed},\,\epsilon_{\text{Income}},\epsilon_{\text{Income}}$  )
  - $\forall i \neq j ~ \epsilon_i \perp \epsilon_j ~$  (pairwise independence)
  - no variance is zero

#### E.g.

$$(\varepsilon_{ed}, \varepsilon_{Income}, \varepsilon_{Income}) \sim N(0, \Sigma^2) - \Sigma^2 \text{ diagonal},$$

- no variance is zero

# Simulated Data



# Tetrad Demo & Hands-On

- 1) Attach a SEM PM to your 3-variable graph
- 2) Attach a SEM IM to the SEM PM
- 3) Change the coefficient values.
- 4) Simulate Data from both your SEM IM and your Bayes IM

# Outline

- 1) Motivation
- 2) Representing/Modeling Causal Systems
- 3) Estimation and Model fit
- 4) Model Search

# Estimation

| PUF 🛌                            |                | (1)                 | M - 25 l- |      |                              |  |  |
|----------------------------------|----------------|---------------------|-----------|------|------------------------------|--|--|
| 🛦 untitled1.tet - Tetrad 5.0.0-1 |                |                     |           |      |                              |  |  |
| File Edit Log                    | iging Template | Window              | Help      |      |                              |  |  |
| 🛕 untitled1.te                   | et             |                     |           |      |                              |  |  |
| + <b>↓</b> +{%                   |                |                     |           |      |                              |  |  |
| Graph                            |                | X →<br>Graph<br>DAG | Y<br>1    |      |                              |  |  |
| Graph<br>Manipulat               | ion            |                     |           |      |                              |  |  |
| Comparis                         | on             | ×≞                  | Y         |      |                              |  |  |
| Parametr<br>Model                | ic             | PM1<br>SEM P        | m         |      |                              |  |  |
| Instantiate<br>Model             | ed             |                     |           | ~ ~  |                              |  |  |
| Data                             |                | IM1                 | Y<br>M    | Esti | →⊠ <sup>15</sup>  <br>mator1 |  |  |
| Data<br>Manipulat                | ion            |                     |           |      |                              |  |  |
| Estimato                         | or             | Data                | 1         |      |                              |  |  |
| Update                           | r              | SEM D               | ata       |      |                              |  |  |

# Estimation



# **Tetrad Demo and Hands-on**

- 1) Select Template: "Estimate from Simulated Data"
- Build the SEM shown below all error standard deviations = 1.0 (go into the Tabular Editor)
- 3) Generate simulated data N=1000
- 4) Estimate model.
- 5) Save session
  - as "Estimate1"



# Estimation



# Coefficient inference vs. Model Fit

Coefficient Inference: Null: coefficient = 0 p-value = p(Estimated value  $\widehat{\beta}_{X1 \rightarrow X3} \ge .4788 | \beta_{X1 \rightarrow X3 = 0} \& \text{ rest of model correct}$ ) Reject null (coefficient is "significant") when p-value <  $\alpha$ ,  $\alpha$  usually = .05


### Coefficient inference vs. Model Fit

Coefficient Inference: Null: coefficient = 0 p-value = p(Estimated value  $\widehat{\beta}_{X1 \rightarrow X3} \ge .4788 | \beta_{X1 \rightarrow X3} = 0 \& \text{rest of model correct})$ Reject null (coefficient is "significant") when p-value < <  $\alpha$ ,  $\alpha$  usually = .05,

Model fit: Null: Model is correctly specified (constraints true in population) p-value =  $p(f(Deviation(\Sigma_{ml}, S)) \ge 5.7137 | Model correctly specified)$ 



# Tetrad Demo and Hands-on

- Create two DAGs with the same variables each with one edge flipped, and attach a SEM PM to each new graph (copy and paste by selecting nodes, Ctl-C to copy, and then Ctl-V to paste)
- 2) Estimate each new model on the data produced by original graph
- 3) Check p-values of:
  - a) Edge coefficients
  - b) Model fit
- 4) Save session as:"session2"



#### **Charitable Giving**

#### What influences giving? Sympathy? Impact?

"The Donor is in the Details", Organizational Behavior and Human Decision Processes, Issue 1, 15-23, with G. Loewenstein, R. Scheines.

|                      |       | N - 94                                   |
|----------------------|-------|------------------------------------------|
| TangibilityCondition | [1,0] | Randomly assigned experimental condition |
| Imaginability        | [17]  | How concrete scenario I                  |
| Sympathy             | [17]  | How much sympathy for target             |
| Impact               | [17]  | How much impact will my donation have    |
| AmountDonated        | [05]  | How much actually donated                |

 $N = \Omega I$ 

39

#### **Theoretical Hypothesis**



# **Tetrad Demo and Hands-on**

- 1) Load charity.txt (tabular not covariance data)
- 2) Build graph of theoretical hypothesis
- 3) Build SEM PM from graph
- 4) Estimate PM, check results



10 Minute Break

# Outline

- 1) Motivation
- 2) Representing/Modeling Causal Systems
- 3) Estimation and Model fit
- 4) Model Search
  - 1) Bridge Principles (Causal Graphs ⇔ Probability Constraints):
    - a) Markov assumption
    - b) Faithfulness assumption
    - c) D-separation
  - 2) Equivalence classes
  - 3) Search

#### **Constraint Based Search**



 $X_1 ||_X_2 | X_3$  means:  $P(X_1, X_2 | X_3) = P(X_1 | X_3)P(X_2 | X_3)$ 

#### **Score Based Search**



# Independence Equivalence Classes: Patterns & PAGs

 <u>Patterns</u> (Verma and Pearl, 1990): graphical representation of d-separation equivalence among models with no latent common causes

 <u>PAGs</u>: (Richardson 1994) graphical representation of a d-separation equivalence class that includes models with latent common causes and sample selection bias that are d-separation equivalent over a set of measured variables X

### Patterns



## Patterns: What the Edges Mean





X<sub>1</sub> and X<sub>2</sub> are not adjacent in any member of the equivalence class



 $X_1 \rightarrow X_2 (X_1 \text{ is a cause of } X_2)$ in every member of the equivalence class.

$$X_1 - X_2$$

 $X_1 \rightarrow X_2$  in some members of the equivalence class, and  $X_2 \rightarrow X_1$  in others.

# Patterns



# Tetrad Demo and Hands On



# Tetrad Demo and Hands-on

- 1) Go to "session2"
- 2) Add Search node (from Data1)
  Choose and execute one of the "Pattern searches"
- Add a "Graph Manipulation" node to search result: "choose Dag in Pattern"
- 4) Add a PM to GraphManip
- 5) Estimate the PM on the data
- 6) Compare model-fit to model fit for true mode



# Graphical Characterization of Model Equivalence

Why do some changes to the true model result in an equivalent model, but some do not?



### d-separation/Independence Equivalence

D-separation Equivalence Theorem (Verma and Pearl, 1988)

Two acyclic graphs over the same set of variables are d-separation equivalent iff they have:

- the same adjacencies
- the same unshielded colliders

# Colliders



Shielded

Unshielded



#### **Constraint Based Search**



 $X_1 ||_X_2 | X_3 \text{ means: } P(X_1, X_2 | X_3) = P(X_1 | X_3)P(X_2 | X_3)$ 

#### Backround Knowledge Tetrad Demo and Hands-on

- 1) Create new session
- 2) Select "Search from Simulated Data" from Template menu
- 3) Build graph below, PM, IM, and generate sample data N=1,000.
- 4) Execute PC search,  $\alpha$  = .05



#### Backround Knowledge Tetrad Demo and Hands-on

- 1) Add "Knowledge" node as below
- 2) Create "Tiers" as shown below.
- 3) Execute PC search again,  $\alpha$  = .05
- 4) Compare results (Search2) to previous search (Search1)



#### Backround Knowledge Direct and Indirect Consequences



#### Backround Knowledge Direct and Indirect Consequences



# Independence Equivalence Classes: Patterns & PAGs

 <u>Patterns</u> (Verma and Pearl, 1990): graphical representation of d-separation equivalence among models with no latent common causes

 <u>PAGs</u>: (Richardson 1994) graphical representation of a d-separation equivalence class that includes models with latent common causes and sample selection bias that are d-separation equivalent over a set of measured variables X

# **Interesting Cases**





### **PAGs: Partial Ancestral Graphs**



### **PAGs: Partial Ancestral Graphs**



## **PAGs: Partial Ancestral Graphs**

What PAG edges mean.

 $X_1$  $X_2$  $X_1$  and  $X_2$  are not adjacent $X_1$  $\bullet$  $X_2$  $X_2$  is not an ancestor of  $X_1$  $X_1$  $\bullet$  $X_2$ No set d-separates  $X_2$  and  $X_1$  $X_1$  $\bullet$  $X_2$  $X_1$  is a cause of  $X_2$ 



There is a latent common cause of  $X_1$  and  $X_2$ 

#### Tetrad Demo and Hands-on

- 1) Create new session
- 2) Select "Search from Simulated Data" from Template menu
- 3) Build graph below, SEM PM, IM, and generate sample data N=1,000.
- 4) Execute PC search,  $\alpha$  = .05
- 5) Execute FCI search,  $\alpha$  = .05
- 6) Estimate multiple regression,Y as response,
  - Z1, X, Z2 as Predictors



# Search Methods

- Constraint Based Searches
  - PC, FCI
  - Very fast capable of handling >5,000 variables
  - Pointwise, but not uniformly consistent
- Scoring Searches
  - Scores: BIC, AIC, etc.
  - Search: Hill Climb, Genetic Alg., Simulated Annealing
  - Difficult to extend to latent variable models
  - Meek and Chickering Greedy Equivalence Class (GES)
  - Slower than constraint based searches but now capable of 1,000 vars
  - Pointwise, but not uniformly consistent
- Latent Variable Psychometric Model Search
  - BPC, MIMbuild, etc.
- Linear non-Gaussian models (Lingam)
- Models with cycles
- And more!!!

# **Tetrad Demo and Hands-on**

- 1) Load charity.txt (tabular not covariance data)
- 2) Build graph of theoretical hypothesis
- 3) Build SEM PM from graph
- 4) Estimate PM, check results



# Tetrad Demo and Hands-on

- 1) Create background knowledge: Tangibility exogenous (uncaused)
- 2) Search for models
- 3) Estimate one model from the output of search
- 4) Check model fit, check parameter estimates, esp. their sign



### Thank You!

Additional Slides

### **Constraint-based Search**

Adjacency
 Orientation

# Constraint-based Search: Adjacency

1. X and Y are <u>adjacent</u> if they are dependent conditional on all subsets that don't include them

2. X and Y are <u>not adjacent if</u> they are independent conditional on <u>any</u> subset that doesn't include them




### Search: Orientation

Away from Collider





### Search: Orientation



#### Bridge Principles: Acyclic Causal Graph over $V \Rightarrow$ Constraints on P(V)

Weak Causal Markov Assumption

 $V_1, V_2$  causally disconnected  $\Rightarrow V_1 \parallel V_2$ 

 $V_1, V_2$  causally disconnected  $\Leftrightarrow$ 

i.  $V_1$  not a cause of  $V_2$ , and

ii.  $V_2$  not a cause of  $V_1$ , and

iii. No common cause Z of  $V_1$  and  $V_2$ 

$$V_1 \parallel V_2 \iff P(V_1, V_2) = P(V_1)P(V_2)$$

#### Bridge Principles: Acyclic Causal Graph over $V \Rightarrow$ Constraints on P(V)



**Causal Markov Axiom** 

If G is a causal graph, and P a probability distribution over the variables in

G, then in <G,P> satisfy the Markov Axiom iff:

every variable V is independent of its non-effects,

conditional on its immediate causes.

#### Bridge Principles: Acyclic Causal Graph over $V \Rightarrow$ Constraints on P(V)



# Faithfulness

Constraints on a probability distribution P generated by a causal structure G hold for all parameterizations of G.



*Revenues :=*  $\beta_1 Rate + \beta_2 Economy + \varepsilon_{Rev}$ 

Economy := 
$$\beta_3$$
Rate +  $\varepsilon_{Econ}$ 

Faithfulness:  $\beta_1 \neq -\beta_3\beta_2$ 

$$\beta_2 \neq -\beta_3 \beta_1$$

## Colliders



Shielded

Unshielded





Gas \_||\_ Battery

Gas  $\underline{N}$  Battery | Car starts = no

Exp Symptoms

Exp \_||\_ Symptoms | Infection

## **D**-separation

X is *d-separated* from Y by **Z** in **G** iff

Every undirected path between X and Y in G is *inactive* relative to Z

An undirected path is *inactive* relative to Z iff *any* node on the path is *inactive* relative to Z

A node N (on a path) is *inactive* relative to **Z** iff a) N is a non-collider in Z, or b) N is a collider that is not in Z, and has no descendant in Z

A node N (on a path) is *active* relative to **Z** iff a) N is a non-collider not in Z, or b) N is a collider that is in Z, or has a descendant in Z



Undirected Paths between X , Y:

## **D**-separation

X is *d-separated* from Y by Z in G iff

Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff any node on the path is inactive relative to Z

A node N is inactive relative to Z iff
a) N is a non-collider in Z, or
b) N is a collider that is not in Z, and has no descendant in Z



Undirected Paths between X , Y: 1) X --> Z<sub>1</sub> <--- W --> Y 2) X <--- V --> Y

X d-sep Y relative to  $Z = \emptyset$ ?NoX d-sep Y relative to  $Z = \{V\}$ ?YesX d-sep Y relative to  $Z = \{V, Z_1\}$ ?NoX d-sep Y relative to  $Z = \{W, Z_2\}$ ?Yes

## **D**-separation



 $X_3$  and  $X_1$  d-sep by  $X_2$ ? Yes:  $X_3 \parallel X_1 \mid X_2$ 



 $X_3$  and  $X_1$  d-sep by  $X_2$ ? No:  $X_3 \searrow X_1 | X_2$ 

### **Statistical Control** $\neq$ **Experimental Control**



Statistically control for X<sub>2</sub>

 $X_3 \searrow X_1 \mid X_2$ 



Experimentally control for X<sub>2</sub>

 $X_3 \parallel X_1 \mid X_2$ (set)

Statistical Control *≠* Experimental Control



Exp. Cond <u></u>Learning Gain

 $Exp \rightarrow Learning$ 

Exp. Cond \_||\_ Learning Gain | Behavior, Disposition

Exp  $\rightarrow$  Learning is Mediated by Behavior

Exp. Cond || Learning Gain | Behavior set

Exp  $\rightarrow$  Learning is Mediated by Behavior

Exp → Learning is *not* Mediated by Behavior *or* Unmeasured Confounder

Exp. Cond K Learning Gain | Behavior observed

Regression & Causal Inference

#### **Regression & Causal Inference**

Typical (non-experimental) strategy:

1. Establish a prima facie case (X associated with Y)

But, omitted variable bias



- 2. So, identifiy and measure potential confounders Z:
  - a) prior to X,
  - b) associated with X,
  - c) associated with Y

3. Statistically adjust for **Z** (multiple regression)

#### **Regression & Causal Inference**

Strategy threatened by measurement error – ignore this for now

Multiple regression is provably unreliable for causal inference unless:

- X prior to Y
- X, Z, and Y are causally sufficient (no confounding)





$$\beta_X \neq 0$$
$$\beta_Z \neq 0$$



#### **Better Methods Exist**

Causal Model Search (since 1988):

- Provably Reliable
- Provably Rumsfeld

**Tetrad Demo**