All of ${ }^{\odot}$ Causal Discovery

Frederick Eberhardt
fde@caltech.edu
(only tiny bits of this are my work)

All of Statistics A Concise Course in Statistical Inference
 Larry Wasserman

All of

Statistics

A Concise Course in Statistical Inference

Larry Wasserman
Q) Springer

All of

 Nonparametric StatisticsLarry Wasserman

Springer

Causal Structure Search

true
(unknown)
model

Causal Structure Search

Causal Structure Search

Search
data
sample

Search

data
 sample

inference algorithm

Search

Search

Search

Example

data
sample

PC-algorithm

Example

Example

Assumptions

- causal Markov: permits inference from probabilistic dependence to causal connection

Assumptions

- causal Markov: permits inference from probabilistic dependence to causal connection
- causal faithfulness: permits inference from probabilistic independence to causal separation

Assumptions

- causal Markov: permits inference from probabilistic dependence to causal connection
- causal faithfulness: permits inference from probabilistic independence to causal separation
- causal sufficiency: there are no unmeasured common causes

Assumptions

- causal Markov: permits inference from probabilistic dependence to causal connection
- causal faithfulness: permits inference from probabilistic independence to causal separation
- causal sufficiency: there are no unmeasured common causes
- acylicity: no variable is an (indirect) cause of itself

6

Search for the Markov equivalence class

data	Assumptions - causal Markov - causal faithfulness - causal sufficiency - acyclicity
sample	

Markov equivalence class

- independence based algorithms (e.g. PC and its variants)

Search for the Markov equivalence class

data	Assumptions - causal Markov - causal faithfulness - causal sufficiency - acyclicity
sample	$\overline{\bar{E}}$

Markov equivalence class

- independence based algorithms (e.g. PC and its variants)
- greedy Bayesian algorithms (e.g. GES)

Search for the Markov equivalence class

Markov equivalence class

- independence based algorithms (e.g. PC and its variants)
- greedy Bayesian algorithms (e.g. GES)

- exact Bayesian algorithms

Aim of the game

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

Markov equivalence class

Aim of the game

reduce

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

Markov equivalence class

Aim of the game

weaken

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

reduce

Markov equivalence class

Aim of the game

weaken

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

reduce

Markov equivalence class

(w) \longleftarrow (y)

Aim of the game

generalize

weaken

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

reduce

Markov equivalence class

(w) \longleftarrow (y)

Limitations

For linear Gaussian and for multinomial causal relations, an algorithm that identifies the Markov equivalence class of the true model is complete.
(Pearl \& Geiger 1988, Meek 1995)
observational condition

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

Markov equivalence class

Moving forward

I. Weaken the assumptions (and increase the equivalence class)
a. allow for unmeasured common causes
b. allow for cycles
c. all of the above

Moving forward

I. Weaken the assumptions (and increase the equivalence class)
a. allow for unmeasured common causes
b. allow for cycles
c. all of the above
2. Exclude the limitations (and reduce the equivalence class)
a. restrict to non-Gaussian error distributions
b. restrict to non-linear causal relations

Moving forward

I. Weaken the assumptions (and increase the equivalence class)
a. allow for unmeasured common causes
b. allow for cycles
c. all of the above
2. Exclude the limitations (and reduce the equivalence class)
a. restrict to non-Gaussian error distributions
b. restrict to non-linear causal relations
3. Include for more general data collection set-ups (and see how assumptions can be adjusted and what equivalence class results)
a. experimental evidence
b. multiple (overlapping) data sets

Linear non-Gaussian method (LiNGaM)

- Linear causal relations:

$$
x_{i}=\sum_{x_{j} \in \mathbf{P a}\left(x_{i}\right)} \beta_{i j} x_{j}+\epsilon_{j}
$$

- Assumptions:
- causal Markov
- causal sufficiency
- acyclicity

Linear non-Gaussian method (LiNGaM)

- Linear causal relations:

$$
x_{i}=\sum_{x_{j} \in \mathbf{P a}\left(x_{i}\right)} \beta_{i j} x_{j}+\epsilon_{j}
$$

- Assumptions:
- causal Markov
- causal sufficiency
- acyclicity
- If $\epsilon_{j} \sim$ non-Gaussian, then the true graph is uniquely identifiable from the joint distribution.

Linear non-Gaussian method (LiNGaM)

- Linear causal relations:

$$
x_{i}=\sum_{x_{j} \in \mathbf{P a}\left(x_{i}\right)} \beta_{i j} x_{j}+\epsilon_{j}
$$

- Assumptions:
- causal Markov
- causal sufficiency
- acyclicity
- If $\epsilon_{j} \sim$ non-Gaussian, then the true graph is uniquely identifiable from the joint distribution.
- (faithfulness not required!)

Two variable case

True model

$$
y=\beta x+\epsilon_{y}
$$

Two variable case

True model

$$
y=\beta x+\epsilon_{y}
$$

$x \Perp \epsilon_{y}$

Two variable case

True model

$$
y=\beta x+\epsilon_{y}
$$

$$
x \Perp \epsilon_{y}
$$

Backwards model

$$
x=\theta y+\tilde{\epsilon}_{x}
$$

Two variable case

True model

$$
y=\beta x+\epsilon_{y}
$$

$x \Perp \epsilon_{y}$

Backwards model

$$
x=\theta y+\tilde{\epsilon}_{x}
$$

$y \Perp \tilde{\epsilon}_{x}$

Two variable case

True model

$$
y=\beta x+\epsilon_{y}
$$

$x \Perp \epsilon_{y}$

Backwards model

$$
\begin{aligned}
x & =\theta y+\tilde{\epsilon}_{x} \\
\tilde{\epsilon}_{x} & =x-\theta y \\
& =x-\theta\left(\beta x+\epsilon_{y}\right) \\
& =(1-\theta \beta) x-\theta \epsilon_{y}
\end{aligned}
$$

Two variable case

True model

$$
y=\beta x+\epsilon_{y}
$$

$x \Perp \epsilon_{y}$

Backwards model

$$
x=\theta y+\tilde{\epsilon}_{x}
$$

$y \Perp \tilde{\epsilon}_{x}$

Why Normals are unusual

Forwards model

$$
y=\beta x+\epsilon_{y}
$$

For backwards model $\quad \tilde{\epsilon}_{x}=(1-\theta \beta) x-\theta \epsilon_{y}$

Why Normals are unusual

Forwards model

$$
y=\beta x+\epsilon_{y}
$$

For backwards model $\quad \tilde{\epsilon}_{x}=(1-\theta \beta) x-\theta \epsilon_{y}$

Theorem 1 (Darmois-Skitovich) Let X_{1}, \ldots, X_{n} be independent, non-degenerate random variables. If for two linear combinations

$$
\begin{array}{ll}
l_{1}=a_{1} X_{1}+\ldots+a_{n} X_{n}, \quad a_{i} \neq 0 \\
l_{2}=b_{1} X_{1}+\ldots+b_{n} X_{n}, \quad b_{i} \neq 0
\end{array}
$$

are independent, then each X_{i} is normally distributed.

algorithm/ assumption
Markov
faithfulness
causal
sufficiency
acyclicity
parametric
assumption
output

algorithm/ assumption	PC / GES
Markov	\checkmark
faithfulness	\checkmark
causal sufficiency acyclicity	\checkmark
parametric assumption	\checkmark
output	Markov equivalence

algorithm/ assumption	PC / GES	FCl
Markov	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark
causal sufficiency	\checkmark	X
acyclicity parametric assumption	\checkmark	\checkmark
output	Markov equivalence	PAG

algorithm/ assumption	PC / GES	FCI	CCD
Markov	\checkmark	\checkmark	\checkmark
faithfulness			
causal sufficiency	\checkmark	\checkmark	\checkmark
acyclicity			
parametric			
assumption			

algorithm/ assumption	PC / GES	FCI	CCD	LiNGaM
Markov	\checkmark	\checkmark	\checkmark	\checkmark
faithfulness				
causal sufficiency acyclicity	\checkmark	\checkmark	\checkmark	x
parametric assumption	\checkmark	x	\checkmark	\checkmark
output	Markov equivalence	PAG	PAG	unique DAG

algorithm/ assumption	PC / GES	FCl	CCD	LiNGaM	IvLiNGaM
Markov	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	\checkmark	x	\checkmark
causal sufficiency	\checkmark	x	\checkmark	\checkmark	x
acyclicity	\checkmark	\checkmark	x	\checkmark	\checkmark
parametric assumption	x	x	x	linear nonGaussian	linear nonGaussian
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs

algorithm/ assumption	PC / GES	FCl	CCD	LiNGaM	IvLiNGaM	cyclic LiNGaM
Markov	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	\checkmark	x	\checkmark	\sim
causal sufficiency	\checkmark	x	\checkmark	\checkmark	x	\checkmark
acyclicity	\checkmark	\checkmark	x	\checkmark	\checkmark	x
parametric assumption	x	x	x	linear nonGaussian	linear nonGaussian	linear nonGaussian
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs

Limitations

For linear Gaussian and for multinomial causal relations, an algorithm that identifies the Markov equivalence class of the true model is complete.
(Pearl \& Geiger 1988, Meek 1995)
observational condition

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

Markov equivalence class

Bivariate Linear Gaussian case

True model

$$
\begin{aligned}
& x=\epsilon_{x} \\
& y=x+\epsilon_{y}
\end{aligned}
$$

Bivariate Linear Gaussian case

True model

$$
\begin{aligned}
& x=\epsilon_{x} \\
& y=x+\epsilon_{y}
\end{aligned}
$$

$$
\epsilon_{x}, \epsilon_{y} \sim \text { indep. Gaussian }
$$

Forwards
(true) model

Backwards model

Continuous additive noise models

$$
x_{j}=f_{j}\left(p a\left(x_{j}\right)\right)+\epsilon_{j}
$$

Continuous additive noise models

$$
x_{j}=f_{j}\left(p a\left(x_{j}\right)\right)+\epsilon_{j}
$$

- If $f_{j}($.$) is linear, then non-Gaussian errors are required for$ identifiability

Continuous additive noise models

$$
x_{j}=f_{j}\left(p a\left(x_{j}\right)\right)+\epsilon_{j}
$$

- If $f_{j}($.$) is linear, then non-Gaussian errors are required for$ identifiability
\Rightarrow What if the errors are Gaussian, but $f_{j}($.$) is non-linear?$

Continuous additive noise models

$$
x_{j}=f_{j}\left(p a\left(x_{j}\right)\right)+\epsilon_{j}
$$

- If $f_{j}($.$) is linear, then non-Gaussian errors are required for$ identifiability
\Rightarrow What if the errors are Gaussian, but $f_{j}($.$) is non-linear?$
\Rightarrow More generally, under what circumstances is the graphical structure identifiable?

Bivariate non-linear Gaussian additive noise model

$$
\begin{array}{ll}
\text { True model } \quad x=\epsilon_{x} \\
y & =x+x^{3}+\epsilon_{y}
\end{array} \quad \epsilon_{x}, \epsilon_{y} \sim \text { indep. Gaussian }
$$

Bivariate non-linear Gaussian additive noise model

$$
\begin{array}{ll}
\text { True model } & x=\epsilon_{x} \\
y & =x+x^{3}+\epsilon_{y}
\end{array} \quad \epsilon_{x}, \epsilon_{y} \sim \text { indep. Gaussian }
$$

Forwards
(true) model

Bivariate non-linear Gaussian additive noise model

$$
\begin{aligned}
& \text { True model } \quad \begin{array}{l}
x \\
y \\
\\
\\
y
\end{array}=x+\epsilon_{x}+\epsilon_{y} \epsilon_{x}, \epsilon_{y} \sim \text { indep. Gaussian } \\
&
\end{aligned}
$$

Forwards
(true) model

Backwards model

Bivariate non-linear Gaussian additive noise model

$$
\text { True model } \quad x=\epsilon_{x} \quad \epsilon_{x}, \epsilon_{y} \sim \text { indep. Gaussian }
$$

Forwards (true) model

Backwards model

$$
x=g(y)+\tilde{\epsilon}_{x}
$$

$$
y \notin \tilde{\epsilon}_{x}
$$

General non-linear additive noise models

Hoyer et al. condition (HetalC): Technical condition on the relation between the function, the noise distribution and the parent distribution that, if satisfied, permits a backward model.

General non-linear additive noise models

Hoyer et al. condition (HetalC): Technical condition on the relation between the function, the noise distribution and the parent distribution that, if satisfied, permits a backward model.

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.

General non-linear additive noise models

Hoyer et al. condition (HetalC): Technical condition on the relation between the function, the noise distribution and the parent distribution that, if satisfied, permits a backward model.

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HetalC, but in general identifiability is guaranteed.

General non-linear additive noise models

Hoyer et al. condition (HetalC): Technical condition on the relation between the function, the noise distribution and the parent distribution that, if satisfied, permits a backward model.

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HetalC, but in general identifiability is guaranteed.
- this generalizes to multiple variables (assuming minimality*)!

General non-linear additive noise models

Hoyer et al. condition (HetalC): Technical condition on the relation between the function, the noise distribution and the parent distribution that, if satisfied, permits a backward model.

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HetalC, but in general identifiability is guaranteed.
- this generalizes to multiple variables (assuming minimality*)!
- extension to discrete additive noise models

General non-linear additive noise models

Hoyer et al. condition (HetalC): Technical condition on the relation between the function, the noise distribution and the parent distribution that, if satisfied, permits a backward model.

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HetalC, but in general identifiability is guaranteed.
- this generalizes to multiple variables (assuming minimality*)!
- extension to discrete additive noise models
- If the function is linear, but the error terms non-Gaussian, then one can't fit a linear backwards model (Lingam), but there are cases where one can fit a non-linear backwards model

algorithm/ assumptions	PC / GES	FCI	CCD	LiNGaM	IvLiNGaM	cyclic LiNGaM
Markov	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	\checkmark	x	\checkmark	\sim
causal sufficiency	\checkmark	x	\checkmark	\checkmark	x	\checkmark
acyclicity	\checkmark	\checkmark	x	\checkmark	\checkmark	x
parametric assumption	x	x	x	linear nonGaussian	linear nonGaussian	linear nonGaussian
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs

algorithm/ assumptions	PC / GES	FCI	CCD	LiNGaM	IvLiNGaM	cyclic LiNGaM	non-linear additive noise
Markov	\checkmark						
faithfulness	\checkmark	\checkmark	\checkmark	x	\checkmark	\sim	minimality
causal sufficiency	\checkmark	x	\checkmark	\checkmark	x	\checkmark	\checkmark
acyclicity	\checkmark	\checkmark	x	\checkmark	\checkmark	x	\checkmark
parametric assumption	x	x	x	linear nonGaussian	linear nonGaussian	linear nonGaussian	non-linear additive noise
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG

Experiments

Experiments

Experiments

- which experiments to perform?
- how to integrate the results from experimental data?
- what search space assumptions are still required?

SAT-based causal discovery

graphical constraints

SAT-based causal discovery

graphical constraints
- x is a cause of y

SAT-based causal discovery

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)

SAT-based causal discovery

graphical constraints

- x is a cause of y
- there is a path from x to
y (via z)
- x and y are independent

SAT-based causal discovery

graphical constraints

- x is a cause of y
- there is a path from x to
y (via z)
- x and y are independent
- x and y are correlated conditional on \mathbf{C} in an experiment where x was subject to intervention

SAT-based causal discovery

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on \mathbf{C} in an experiment where x was subject to intervention
propositional constraints (in CNF) on true graph
$(A \vee B \vee C) \wedge(D \vee E)$
A
$B \wedge E$

SAT-based causal discovery

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on \mathbf{C} in an experiment where x was subject to intervention
propositional constraints (in CNF) on true graph
$(A \vee B \vee C) \wedge(D \vee E)$
A
$B \wedge E$
SAT-solver

SAT-based causal discovery

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on \mathbf{C} in an experiment where x was subject to intervention
propositional constraints (in CNF) on true graph

```
(A\veeB\veeC)\wedge( D\veeE)
A
B\wedgeE
```

SAT-solver

	$w x y z$			
w	0	0	?	1
x	0	0	0	0
y	0	0	0	0
z	?	?	?	0

w				x
y		z		
w	0	0	$?$	$?$
x	0	0	0	$?$
y	$?$	0	0	0
z	$?$	$?$	0	0
confounders				

SAT-based causal discovery

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on \mathbf{C} in an experiment where x was subject to intervention
propositional constraints (in CNF) on true graph

```
(A\veeB\veeC)\wedge( D\veeE)
A
B\wedgeE
```

SAT-solver

$w x y$				
w	0	0	?	1
x	0	0	0	0
y	0	0	0	0
z	?	?	?	0

w				x
y		z		
w	0	0	$?$	$?$
x	0	0	0	$?$
y	$?$	0	0	0
z	$?$	$?$	0	0
confounders				

SATisfiability solver

- finds a truth value assignment for a Boolean formula in Conjunctive Normal Form (CNF)

SATisfiability solver

- finds a truth value assignment for a Boolean formula in Conjunctive Normal Form (CNF)
- a Boolean term X is a backbone variable if X takes the same value (T or F) in all satisfying truth value assignments of a given formula

Encoding a dependence: track the endpoints of paths
$[x \not \& y \mid \mathbf{C} \| \mathbf{J}]$
\Leftrightarrow

Encoding a dependence: track the endpoints of paths

$$
\begin{aligned}
& {[x \not \perp y|\mathbf{C}| \mid \mathbf{J}]} \\
& \Leftrightarrow
\end{aligned}
$$

Encoding a dependence: track the endpoints of paths

$$
\begin{gathered}
{[x \not \subset y \mid \mathbf{C} \| \mathbf{J}]} \\
\Leftrightarrow \\
\bigvee_{l=1}^{l_{\max }}(x \cdots \cdots(y \vee \cdots \cdots(y) \vee(x) \cdots \cdots \cdots \cdots)
\end{gathered}
$$

Encoding a dependence: track the endpoints of paths

$$
\begin{aligned}
& {[x \not \& y|\mathbf{C}| \mid \mathbf{J}]} \\
& l_{\text {max }}
\end{aligned}
$$

Encoding a dependence: track the endpoints of paths

$$
[x \not \& y \mid \mathbf{C} \| \mathbf{J}]
$$

Encoding a dependence: track the endpoints of paths

$$
\begin{aligned}
& {[x \not 2 y \mid \mathbf{C} \| \mathbf{J}]}
\end{aligned}
$$

Encoding a dependence: track the endpoints of paths

$$
\begin{aligned}
& {[x \not 2 y \mid \mathbf{C} \| \mathbf{J}]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (x) }{ }^{l}{ }^{-}(4)
\end{aligned}
$$

Encoding a dependence: track the endpoints of paths

$$
\begin{aligned}
& {[x \not 2 y \mid \mathbf{C} \| \mathbf{J}]} \\
& \Leftrightarrow \\
& \bigvee_{l=1}^{l_{\text {max }}}\left(\times \cdots^{l} \rightarrow(4) \vee\left(x + \cdots \text { (4) } \vee \left(x+l^{l} \rightarrow(4) \vee\left(x \cdots^{l}(4)\right)\right.\right.\right.
\end{aligned}
$$

Encoding continued

(x) $\rightarrow \stackrel{l}{-(4)}$

Encoding continued

Encoding continued

(x) $\cdots \gg(y)$
(x) $\rightarrow \cdots$ (y)
(x) $-\cdots$ (y)

Encoding continued

(x) ${ }^{1} \rightarrow$ (4) $\Leftrightarrow\left\{\begin{array}{l}\begin{array}{l}\text { (x)(4) if } y \notin \mathbf{J} \\ 0 \text { otherwise }\end{array}\end{array}\right.$
$(x) \stackrel{1}{\leftrightarrow},(4) \Leftrightarrow\left\{\begin{array}{l}\times \longleftrightarrow(y) \text { if } x, y \notin \mathbf{J} \\ 0 \text { otherwise }\end{array}\right.$
(x) ${ }^{1} \cdots(4) \Leftrightarrow 0$

$$
\begin{aligned}
& \underset{\mathbf{C}, \mathbf{J}}{[x-\cdots}] \Leftrightarrow \begin{cases}{[x \rightarrow y]} & \text { if } y \notin \mathbf{J} \\
0 & \text { otherwise }\end{cases} \\
& {[x \underset{\mathbf{C}, \mathbf{J}}{1}>y] \Leftrightarrow \begin{cases}{[x \leftrightarrow y]} & \text { if } x \notin \mathbf{J} \text { and } y \notin \mathbf{J} \\
0 & \text { otherwise }\end{cases} } \\
& {[\underset{\mathbf{C}, \mathbf{J}}{x-\cdots-1} y] \Leftrightarrow 0}
\end{aligned}
$$

$$
\underset{\mathbf{C}, \mathbf{J}}{[x-\cdots]} \stackrel{1}{x} y= \begin{cases}{[x \rightarrow y]} & \text { if } y \notin \mathbf{J} \\ 0 & \text { otherwise }\end{cases}
$$

$$
[x<\underset{\mathbf{C}, \mathbf{J}}{1}>y] \quad \Leftrightarrow \quad \begin{cases}{[x \leftrightarrow y]} & \text { if } x \notin \mathbf{J} \text { and } y \notin \mathbf{J} \\ 0 & \text { otherwise }\end{cases}
$$

longest path that needs to be considered: I_max = 2n-4
where $\mathrm{n}=|\mathbf{V}|$

$$
[\underset{\mathbf{C}, \mathbf{J}}{1}-\boldsymbol{J}] \quad \Leftrightarrow 0
$$

Algorithm

Proceed in order of conditioning set size

- heuristically find unknown independence / dependence relations and determine them.
- Encode the relations into the working formula F, including definitions as needed.
- Determine the "backbone" of F using the SAT-solver, i.e. for each pair of variables (x, y) in \mathbf{V} and for each edge type determine whether it is
- present in all causal structures consistent with the input.
- absent in all causal structures consistent with the input.
- unknown, i.e. present in some, and absent in other causal structures consistent with the input.

Algorithm

Proceed in order of conditioning set size

- heuristically find unknown independence / dependence relations and determine them.
- Encode the relations into the working formula F, including definitions as needed.
- Determine the "backbone" of F using the SAT-solver, i.e. for each pair of variables (x, y) in \mathbf{V} and for each edge type determine whether it is
- present in all causal structures consistent with the input.
- absent in all causal structures consistent with the input.
- unknown, i.e. present in some, and absent in other causal structures consistent with the input.

Algorithm

Proceed in order of conditioning set size

- heuristically find unknown independence / dependence relations and determine them.
- Encode the relations into the working formula F, including definitions as needed.
- Determine the "backbone" of F using the SAT-solver, i.e. for each pair of variables (x, y) in \mathbf{V}
 and for each edge type determine whether it is
- present in all causal structures consistent with the input.
- absent in all causal structures consistent with the input.
- unknown, i.e. present in some, and absent in other causal structures consistent with the input.

Algorithm

Proceed in order of conditioning set size

- heuristically find unknown independence / dependence relations and determine them.
- Encode the relations into the working formula F, including definitions as needed.
- Determine the "backbone" of F using the SAT-solver, i.e. for each pair of variables (x, y) in \mathbf{V}
independence constraints can be treated separately from dependence constraints and for each edge type determine whether it is
- present in all causal structures consistent with the input.
- absent in all causal structures consistent with the input.
- unknown, i.e. present in some, and absent in other causal structures consistent with the input.

assumption/ algorithm	PC / GES	FCI	CCD	LiNGaM	IvLiNGaM	cyclic LiNGaM	non-linear additive noise
Markov	\checkmark						
faithfulness	\checkmark	\checkmark	\checkmark	x	\checkmark	\sim	minimality
causal sufficiency	\checkmark	x	\checkmark	\checkmark	x	\checkmark	\checkmark
acyclicity	\checkmark	\checkmark	x	\checkmark	\checkmark	x	\checkmark
parametric assumption	x	x	x	linear nonGaussian	linear nonGaussian	linear nonGaussian	non-linear additive noise
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG

assumption/ algorithm	PC / GES	FCl	CCD	LiNGaM	IvLiNGaM	cyclic LiNGaM	non-linear additive noise	SAT
Markov	\checkmark							
faithfulness	\checkmark	\checkmark	\checkmark	x	\checkmark	\sim	minimality	\checkmark
causal sufficiency	\checkmark	x	\checkmark		x	\checkmark	\checkmark	x
acyclicity	\checkmark	\checkmark	x	\checkmark	\checkmark	x	\checkmark	χ^{*}
parametric assumption	x	x	x	linear nonGaussian	linear nonGaussian	linear nonGaussian	non-linear additive noise	x
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG	query based

assumption/ algorithm	PC / GES	FCl	CCD	LiNGaM	IvLiNGaM	cyclic LiNGaM	non-linear additive noise	SAT
Markov	\checkmark							
faithfulness	\checkmark	\checkmark	\checkmark	x	\checkmark	\sim	minimality	\checkmark
causal sufficiency	\checkmark	x	\checkmark	\checkmark	x	\checkmark	\checkmark	x
acyclicity	\checkmark	\checkmark	x	\checkmark	\checkmark	x	\checkmark	χ^{*}
parametric assumption	x	x	x	linear nonGaussian	linear nonGaussian	linear nonGaussian	non-linear additive noise	x
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG	query based

assumption/ algorithm	PC / GES	FCI	CCD	LiNGaM	IvLiNGaM	cyclic LiNGaM	non-linear additive noise	SAT
Markov	\checkmark							
faithfulness	\checkmark	\checkmark	\checkmark	x	\checkmark	\sim	minimality	\checkmark
causal sufficiency		x	\checkmark	\checkmark	x	\checkmark	\checkmark	x
acyclicity	\checkmark	\checkmark	x	\checkmark	\checkmark	x	\checkmark	χ^{*}
parametric assumption			x	linear nonGaussian	linear nonGaussian	linear nonGaussian	non-linear additive noise	x
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG	query based
application	wide use	some?	none	fMRI	requires too much data	fMRI	starting	in development

References

- Limitations
- Geiger \& Pearl, On the logic of influence diagrams, UAI 1988.
- Meek, Strong completeness and faithfulness in Bayesian networks, UAI 1995.
- LiNGaM
- Shimizu et al, A linear non-Gaussian acyclic model for causal discovery, JMLR, 2006.
- Hoyer et al., Estimation of causal effects using linear non-Gaussian causal models with hidden variables, IJAR 2008.
- Lacerda et al., Discoverying cyclic causal models by Independent Component Ananlysis, UAI 2008.
- additive noise models
- Hoyer et al., Nonlinear causal discovery with additive noise models, NIPS 2009.
- Mooij et al., Regression by dependence minimization and its application to causal inference, ICML 2009.
- Peters et al., Causal inference on discrete data using additive noise models, IEEE..., 201 I .
- Peters et al., Identifiability of causal graphs using functional models, UAI 201 I.
- SAT-based approaches
- Triantafillou et al., Learning causal structure from overlapping variable sets,AISTATS 2010.
- Claassen \& Heskes, A logical characterization of constraint-based causal discovery, UAI 20 II .
- Hyttinen et al., Discovering cyclic causal models with latent variables: A SAT-based approach, UAI 2013.

