All of[©] Causal Discovery

Frederick Eberhardt

(only tiny bits of this are my work)

Copyrighted Maleria

SPRINGER TEXTS IN STATISTICS

All of Statistics

A Concise Course in Statistical Inference

Larry Wasserman

Convention Material

442 pages

Springer

Copyrighted Materia

SPRINGER TEXTS IN STATISTICS

All of Statistics

A Concise Course in Statistical Inference

Larry Wasserman

Comparison Metanal

442 pages

Springer

SPRINGER TEXTS IN STATISTICS

All of Nonparametric Statistics

Springer

Causal Structure Search

true (unknown) model

Causal Structure Search

14

true (unknown) model experimental / observational conditions

Causal Structure Search

111

true experimental / (unknown) model conditions data sample w x y z

data sample

data sample

data sample

Assumptions, e.g.

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity
- linearity
- distribution family

• etc.

inference algorithm

data sample

equivalence classes

data sample

equivalence classes

model specifications

	w	X	y	\mathcal{Z}
w	0	0	?	a
X	0	0	0	0
y	0	0	0	0
\boldsymbol{z}	b	?	?	0
direct edges				

Example

data sample

PC-algorithm

Example

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

data sample

PC-algorithm

Example

• **causal Markov**: permits inference from probabilistic dependence to causal connection

- **causal Markov**: permits inference from probabilistic dependence to causal connection
- **causal faithfulness**: permits inference from probabilistic independence to causal separation

- **causal Markov**: permits inference from probabilistic dependence to causal connection
- **causal faithfulness**: permits inference from probabilistic independence to causal separation
- **causal sufficiency**: there are no unmeasured common causes

- **causal Markov**: permits inference from probabilistic dependence to causal connection
- **causal faithfulness**: permits inference from probabilistic independence to causal separation
- causal sufficiency: there are no unmeasured common causes
- acylicity: no variable is an (indirect) cause of itself

Search for the Markov equivalence class

Search for the Markov equivalence class

Search for the Markov equivalence class

Assumptions

Markov equivalence class

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

reduce

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

Markov equivalence class

weaken

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

Markov equivalence class

reduce

weaken

reduce

experimental / observational conditions

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

Markov equivalence class

generalize

experimental / observational conditions

weaken

reduce

Assumptions

- causal Markov
- causal faithfulness
- causal sufficiency
- acyclicity

Markov equivalence class

Moving forward

I. Weaken the assumptions (and increase the equivalence class)

- a. allow for unmeasured common causes
- b. allow for cycles
- c. all of the above

Moving forward

I. Weaken the assumptions (and increase the equivalence class)

- a. allow for unmeasured common causes
- b. allow for cycles
- c. all of the above
- 2. Exclude the limitations (and reduce the equivalence class)
 - a. restrict to non-Gaussian error distributions
 - b. restrict to non-linear causal relations

Moving forward

I. Weaken the assumptions (and increase the equivalence class)

- a. allow for unmeasured common causes
- b. allow for cycles
- c. all of the above
- 2. **Exclude the limitations** (and reduce the equivalence class)
 - a. restrict to non-Gaussian error distributions
 - b. restrict to non-linear causal relations

3. Include for more general data collection set-ups (and see how assumptions can be adjusted and what equivalence class results)

- a. experimental evidence
- b. multiple (overlapping) data sets

Linear non-Gaussian method (LiNGaM)

(Shimizu et al., 2006)

• Linear causal relations:

$$x_i = \sum_{x_j \in \mathbf{Pa}(x_i)} \beta_{ij} x_j + \epsilon_j$$

- Assumptions:
 - causal Markov
 - causal sufficiency
 - acyclicity

Linear non-Gaussian method (LiNGaM)

(Shimizu et al., 2006)

• Linear causal relations:

$$x_i = \sum_{x_j \in \mathbf{Pa}(x_i)} \beta_{ij} x_j + \epsilon_j$$

- Assumptions:
 - causal Markov
 - causal sufficiency
 - acyclicity

If $\epsilon_j \sim \text{non-Gaussian}$, then the true graph is **uniquely** identifiable from the joint distribution.

Linear non-Gaussian method (LiNGaM)

(Shimizu et al., 2006)

• Linear causal relations:

$$x_i = \sum_{x_j \in \mathbf{Pa}(x_i)} \beta_{ij} x_j + \epsilon_j$$

- Assumptions:
 - causal Markov
 - causal sufficiency
 - acyclicity

If $\epsilon_j \sim \text{non-Gaussian}$, then the true graph is **uniquely** identifiable from the joint distribution.

– (faithfulness not required!)

Two variable case

True model

$$y = \beta x + \epsilon_y$$

Two variable case

True model

$$y = \beta x + \epsilon_y$$

 $x \perp \epsilon_y$

Two variable case

True model

$$y = \beta x + \epsilon_y$$

Backwards model

$$x = \theta y + \tilde{\epsilon}_x$$

 ϵ_y

y

 ϵ_x

(x)

$$x \perp \epsilon_y$$
Two variable case

True model

$$y = \beta x + \epsilon_y$$

Backwards model

$$x = \theta y + \tilde{\epsilon}_x$$

 $x \perp \epsilon_y$

 $y \perp \tilde{\epsilon}_x$

Two variable case

True model

$$y = \beta x + \epsilon_y$$

Backwards model

$$x = \theta y + \tilde{\epsilon}_x$$

 $x \perp \epsilon_y$

 $y \perp \tilde{\epsilon}_x$

$$\widetilde{\epsilon}_x = x - \theta y$$

$$= x - \theta (\beta x + \epsilon_y)$$

$$= (1 - \theta \beta) x - \theta \epsilon_y$$

Two variable case

True model

$$y = \beta x + \epsilon_y$$

Backwards model

$$x = \theta y + \tilde{\epsilon}_x$$

 ϵ_y

y

 ϵ_x

 $\left(x\right)$

 $x \perp \epsilon_y$

 $y \perp \tilde{\epsilon}_x$

Why Normals are unusual

Forwards model $y = \beta x + \epsilon_y$ For backwards model $\tilde{\epsilon}_x = (1 - \theta \beta) x - \theta \epsilon_y$

Why Normals are unusual

Forwards model $y = \beta x + \epsilon_y$ $\downarrow^x \downarrow^y$ For backwards model $\tilde{\epsilon}_x = (1 - \theta \beta)x - \theta \epsilon_y$ $x - \psi$

Theorem 1 (Darmois-Skitovich) Let X_1, \ldots, X_n be independent, non-degenerate random variables. If for two linear combinations

$$l_1 = a_1 X_1 + \ldots + a_n X_n, \quad a_i \neq 0$$

 $l_2 = b_1 X_1 + \ldots + b_n X_n, \quad b_i \neq 0$

are independent, then each X_i is normally distributed.

algorithm/ assumption	PC / GES
Markov	\checkmark
faithfulness	\checkmark
causal sufficiency	\checkmark
acyclicity	\checkmark
parametric assumption	×
output	Markov equivalence

algorithm/ assumption	PC / GES	FCI
Markov	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark
causal sufficiency	√	×
acyclicity	\checkmark	\checkmark
parametric assumption	×	×
output	Markov equivalence	PAG

algorithm/ assumption	PC / GES	FCI	CCD
Markov	\checkmark	\checkmark	√
faithfulness	\checkmark	\checkmark	√
causal sufficiency	√	×	√
acyclicity	\checkmark	\checkmark	×
parametric assumption	×	×	×
output	Markov equivalence	PAG	PAG

algorithm/ assumption	PC / GES	FCI	CCD	LiNGaM
Markov	\checkmark	\checkmark	✓	\checkmark
faithfulness	\checkmark	\checkmark	✓	×
causal sufficiency	\checkmark	×	✓	\checkmark
acyclicity	\checkmark	\checkmark	×	\checkmark
parametric assumption	×	×	×	linear non- Gaussian
output	Markov equivalence	PAG	PAG	unique DAG

algorithm/ assumption	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM
Markov	\checkmark	\checkmark	✓	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	✓	×	\checkmark
causal sufficiency	\checkmark	×	✓	\checkmark	×
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs

algorithm/ assumption	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM
Markov	\checkmark	\checkmark	√	\checkmark	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	√	×	\checkmark	~
causal sufficiency	\checkmark	×	✓	✓	×	\checkmark
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs

Bivariate Linear Gaussian case

True model

 $\epsilon_x, \epsilon_y \sim \text{indep. Gaussian}$

Bivariate Linear Gaussian case

True model

$$x_j = f_j(pa(x_j)) + \epsilon_j$$

$$x_j = f_j(pa(x_j)) + \epsilon_j$$

• If $f_j(.)$ is linear, then non-Gaussian errors are required for identifiability

$$x_j = f_j(pa(x_j)) + \epsilon_j$$

• If $f_j(.)$ is linear, then non-Gaussian errors are required for identifiability

 \blacktriangleright What if the errors are Gaussian, but $f_j(.)$ is non-linear?

$$x_j = f_j(pa(x_j)) + \epsilon_j$$

• If $f_j(.)$ is linear, then non-Gaussian errors are required for identifiability

- \blacksquare What if the errors are Gaussian, but $f_j(.)$ is non-linear?
- More generally, under what circumstances is the graphical structure identifiable?

(graphics from Hoyer et al. 2009)

y -(graphics from Hoyer et al. 2009)

т 3

18

Hoyer et al. condition (HetalC): Technical condition on the relation between the function, the noise distribution and the parent distribution that, if satisfied, permits a backward model.

 If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HetalC, but in general identifiability is guaranteed.

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HetalC, but in general identifiability is guaranteed.
 - this generalizes to multiple variables (assuming minimality*)!

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HetalC, but in general identifiability is guaranteed.
 - this generalizes to multiple variables (assuming minimality*)!
 - extension to discrete additive noise models

- If the error terms are Gaussian, then the only functional form that satisfies HetalC is linearity, otherwise the model is identifiable.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HetalC, but in general identifiability is guaranteed.
 - this generalizes to multiple variables (assuming minimality*)!
 - extension to discrete additive noise models
- If the function is **linear**, but the error terms **non-Gaussian**, then one can't fit a linear backwards model (Lingam), but there are cases where **one can fit a non-linear backwards model**

algorithm/ assumptions	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM
Markov	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	√	×	\checkmark	~
causal sufficiency	\checkmark	×	✓	√	×	\checkmark
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs

algorithm/ assumptions	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM	non-linear additive noise
Markov	\checkmark	\checkmark	<	\checkmark	\checkmark	√	\checkmark
faithfulness	\checkmark	\checkmark	√	×	\checkmark	~	minimality
causal sufficiency	√	×	√	√	×	✓	√
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian	non-linear additive noise
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG

Experiments

Experiments

Experiments

- which experiments to perform?
- how to integrate the results from experimental data?
- what search space assumptions are still required?

SAT-based causal discovery

graphical constraints

SAT-based causal discovery

graphical constraints

• x is a cause of y
graphical constraints

- x is a cause of y
- there is a path from x to
 - y (via z)

graphical constraints

- x is a cause of y
- there is a path from x to
 - y (via z)
- x and y are independent

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on C in an experiment where x was subject to intervention

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on C in an experiment where x was subject to intervention

propositional constraints (in CNF) on true graph

 $(A \lor B \lor C) \land (D \lor E)$

$B \wedge E$

A

•••

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on C in an experiment where x was subject to intervention

propositional constraints (in CNF) on true graph

- $(A \lor B \lor C) \land (D \lor E)$
- $B \wedge E$

A

. . .

SAT-solver

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on C in an experiment where x was subject to intervention

propositional constraints (in CNF) on true graph

- $(A \lor B \lor C) \land (D \lor E)$
- $B \wedge E$

A

. . .

SAT-solver

w

 ${\mathcal X}$

y

 \boldsymbol{z}

confounders

graphical constraints

- x is a cause of y
- there is a path from x to y (via z)
- x and y are independent
- x and y are correlated conditional on C in an experiment where x was subject to intervention

propositional constraints (in CNF) on true graph

 $(A \lor B \lor C) \land (D \lor E)$

 \boldsymbol{y}

0

0

 \boldsymbol{z}

 $B \wedge E$

w

w

 \mathcal{X}

 \boldsymbol{y}

 \boldsymbol{z}

 ${\mathcal X}$

0

0

direct edges

A

. . .

SAT-solver

SATisfiability solver

• finds a truth value assignment for a Boolean formula in Conjunctive Normal Form (CNF)

SATisfiability solver

- finds a truth value assignment for a Boolean formula in Conjunctive Normal Form (CNF)
- a Boolean term X is a backbone variable if X takes the same value (T or F) in all satisfying truth value assignments of a given formula

Encoding a dependence: track the endpoints of paths $[x \not\perp y \mid {\bf C} \mid \mid {\bf J}]$

 \Leftrightarrow

Encoding a dependence: track the endpoints of paths $\begin{bmatrix} x \not\perp y \mid \mathbf{C} \mid \mid \mathbf{J} \end{bmatrix}$ \Leftrightarrow $(x) \xrightarrow{l} (y) \lor (x) \xrightarrow{l} (y) \lor (x) \xrightarrow{l} (y) \lor (x) \xrightarrow{l} (y)$

Encoding a dependence: track the endpoints of paths $\begin{bmatrix} x \not\perp y \mid \mathbf{C} \mid \mid \mathbf{J} \end{bmatrix}$ \Leftrightarrow l_{\max}

 $\bigvee_{l=1}^{l} \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) \vee \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ x & y \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ x & l \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ x & l \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ x & l \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ x & l \\ \end{array} \right) = \left(\begin{array}{ccc} x & l \\ \end{array}$

Encoding a dependence: track the endpoints of paths $[x \not\perp y \mid \mathbf{C} \mid \mid \mathbf{J}]$ \Leftrightarrow l_{\max}

l=1

Encoding a dependence: track the endpoints of paths $\begin{bmatrix} x \not\perp y \mid \mathbf{C} \mid \mid \mathbf{J} \end{bmatrix}$ \Leftrightarrow $\overset{l_{\max}}{\bigvee} \left(\underbrace{x \cdot l_{y}}_{l \to y} \lor \underbrace{x \cdot l_{y}} \lor \underbrace{x \cdot l_{y}}_{l \to y} \lor \underbrace{x \cdot l_{y}} \lor \underbrace{x$

l=1

Encoding a dependence: track the endpoints of paths $\begin{bmatrix} x \not\perp y \mid \mathbf{C} \mid \mid \mathbf{J} \end{bmatrix}$ \Leftrightarrow l_{\max}

 $\bigvee_{l} \left(x \xrightarrow{l} y \lor x \xrightarrow{l} y \xrightarrow{l}$

 $(x) \xrightarrow{l} (y) \Leftrightarrow \bigvee_{z \notin \mathbf{C}} (x) \xrightarrow{1} (z) \xrightarrow{l-1} (y) \vee \bigvee_{z \in \mathbf{C}} (x) \xrightarrow{1} (z) \xrightarrow{l-1} (y)$

Encoding a dependence: track the endpoints of paths $[x \not\perp y \mid \mathbf{C} \mid \mid \mathbf{J}]$ \Leftrightarrow

 l_{\max}

 $(x) \xrightarrow{l} (y) \Leftrightarrow \bigvee_{z \notin \mathbf{C}} (x) \xrightarrow{1} (z) \xrightarrow{l-1} (y) \vee \bigvee_{z \in \mathbf{C}} (x) \xrightarrow{1} (z) \xrightarrow{l-1} (y)$

Encoding a dependence: track the endpoints of paths $\begin{bmatrix} x \not\perp y \mid \mathbf{C} \mid \mid \mathbf{J} \end{bmatrix}$ \Leftrightarrow l_{\max}

 $(x) \xrightarrow{l} (y) \Leftrightarrow \bigvee_{z \notin \mathbf{C}} (x) \xrightarrow{1} (z) \xrightarrow{l-1} (y) \vee \bigvee_{z \in \mathbf{C}} (x) \xrightarrow{1} (z) \xrightarrow{l-1} (y)$

 $\underbrace{x}_{z\notin\mathbf{C}}^{l}(y) \Leftrightarrow \bigvee_{z\notin\mathbf{C}} \underbrace{x}_{z}^{l}(x) \xrightarrow{z}_{z\in\mathbf{C}}^{l-1}(y) \vee \bigvee_{z\in\mathbf{C}} \underbrace{x}_{z\in\mathbf{C}}^{l}(x) \xrightarrow{z}_{z\in\mathbf{C}}^{l-1}(y)$

 $(x) \leftrightarrow y \Leftrightarrow \bigvee_{z \notin \mathbf{C}} (x) \leftrightarrow (z) \leftrightarrow (z) \leftrightarrow (y) \lor \bigvee_{z \notin \mathbf{C}} (x) \leftrightarrow (z) \leftrightarrow (y)$ $\bigvee \bigvee_{z \notin \mathbf{C}} \underbrace{x}_{\bullet} \xrightarrow{1} \underbrace{z}_{t-1} \underbrace{y}_{t-1} \underbrace{y}_{z \in \mathbf{C}} \bigvee \underbrace{x}_{\bullet} \xrightarrow{1} \underbrace{z}_{\bullet} \xrightarrow{l-1} \underbrace{y}_{t-1} \underbrace{y}_{t-1} \underbrace{z}_{\bullet} \xrightarrow{l-1} \underbrace{y}_{t-1} \underbrace{y}_{t-1} \underbrace{z}_{\bullet} \xrightarrow{l-1} \underbrace{z}_{\bullet} \xrightarrow{z}_{\bullet} \xrightarrow{l-1} \underbrace{z}_{\bullet} \xrightarrow{z}_{\bullet} \xrightarrow{z}$

$$(x) \xrightarrow{l} (y) \Leftrightarrow \bigvee_{z \notin \mathbf{C}} (x) \xrightarrow{l-1} (y) \lor \bigvee_{z \notin \mathbf{C}} (x) \xrightarrow{l-1} (y) \Leftrightarrow \begin{cases} (x) \xrightarrow{\psi} (y) & \text{if } y \notin \mathbf{J} \\ 0 & \text{otherwise} \end{cases}$$
$$(x) \xrightarrow{l} (y) \Leftrightarrow \begin{cases} (x) \xrightarrow{\psi} (y) & \text{if } x, y \notin \mathbf{J} \\ 0 & \text{otherwise} \end{cases}$$

 $x^{1} \oplus y \Leftrightarrow 0$

$$\begin{split} \left[x \not \perp y \left| \mathbf{C} \right| \left| \mathbf{J} \right] & \Leftrightarrow \quad \bigvee_{l=1}^{l_{\max}} \left(\left[x - \frac{l}{\mathbf{C}, \mathbf{J}} y \right] \lor \left[y - \frac{l}{\mathbf{C}, \mathbf{J}} x \right] \lor \left[x < \frac{l}{\mathbf{C}, \mathbf{J}} > y \right] \lor \left[x - \frac{l}{\mathbf{C}, \mathbf{J}} y \right] \right) \\ \left[x - \frac{l}{\mathbf{C}, \mathbf{J}} y \right] & \Leftrightarrow \quad \bigvee_{z \notin \mathbf{C}} \left(\left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z - \frac{l-1}{\mathbf{C}, \mathbf{J}} y \right] \right) \lor \bigvee_{z \in \mathbf{C}} \left(\left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z < \frac{l-1}{\mathbf{C}, \mathbf{J}} y \right] \right) \\ \left[x < \frac{l}{\mathbf{C}, \mathbf{J}} y \right] & \Leftrightarrow \quad \bigvee_{z \notin \mathbf{C}} \left(\left[z - \frac{1}{\mathbf{C}, \mathbf{J}} x \right] \land \left[z - \frac{l-1}{\mathbf{C}, \mathbf{J}} y \right] \right) \lor \bigvee_{z \notin \mathbf{C}} \left(\left[z - \frac{1}{\mathbf{C}, \mathbf{J}} x \right] \land \left[z < \frac{l-1}{\mathbf{C}, \mathbf{J}} y \right] \right) \lor \\ \left[x < \frac{l}{\mathbf{C}, \mathbf{J}} y \right] & \Leftrightarrow \quad \bigvee_{z \notin \mathbf{C}} \left(\left[z - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z - \frac{l-1}{\mathbf{C}, \mathbf{J}} y \right] \right) \lor \bigvee_{z \in \mathbf{C}} \left(\left[z - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z < \frac{l-1}{\mathbf{C}, \mathbf{J}} y \right] \right) \lor \\ \left[x - \frac{l}{\mathbf{C}, \mathbf{J}} y \right] & \Leftrightarrow \quad \bigvee_{z \notin \mathbf{C}} \left(\left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z - \frac{l-1}{\mathbf{C}, \mathbf{J}} y \right] \right) \lor \bigvee_{z \in \mathbf{C}} \left(\left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z < \frac{l-1}{\mathbf{C}, \mathbf{J}} y \right] \right) \\ \left[x - \frac{l}{\mathbf{C}, \mathbf{J}} y \right] & \Leftrightarrow \quad \bigvee_{z \notin \mathbf{C}} \left(\left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z - \frac{l-1}{\mathbf{C}, \mathbf{J}} z \right] \right) \lor \bigvee_{z \in \mathbf{C}} \left(\left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[y - \frac{l-1}{\mathbf{C}, \mathbf{J}} z \right] \right) \\ \left[x - \frac{l}{\mathbf{C}, \mathbf{J}} y \right] & \Leftrightarrow \quad \bigvee_{z \notin \mathbf{C}} \left(\left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z - \frac{l-1}{\mathbf{C}, \mathbf{J}} z \right] \right) \lor \bigvee_{z \in \mathbf{C}} \left(\left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[y - \frac{l-1}{\mathbf{C}, \mathbf{J}} z \right] \right) \\ \left[x - \frac{l}{\mathbf{C}, \mathbf{J}} y \right] & \Leftrightarrow \quad \begin{cases} \left[x - \frac{1}{\mathbf{C}, \mathbf{J}} z \right] \land \left[z - \frac{l-1}{\mathbf{C}, \mathbf{J}} z \right] \\ 0 & \text{otherwise} \\ \left[x - \frac{1}{\mathbf{C}, \mathbf{J}} y \right] & \Leftrightarrow \quad 0 \end{cases}$$

$$\begin{split} \left[x \not \perp y \ |\mathbf{C}| |\mathbf{J} \right] &\Leftrightarrow \bigvee_{l=1}^{l_{\max}} \left(\left[x \xrightarrow{l}{-1} > y \right] \lor \left[y \xrightarrow{l}{-1} > x \right] \lor \left[x < \xrightarrow{l}{-1} > y \right] \lor \left[x \xrightarrow{l}{-1} - y \right] \right) \right) \\ \left[x \xrightarrow{l}{-1} > y \right] &\Leftrightarrow \bigvee_{z \notin \mathbf{C}} \left(\left[x \xrightarrow{1}{-1} > z \right] \land \left[z \xrightarrow{l-1}{-1} y \right] \right) \lor \bigvee_{z \in \mathbf{C}} \left(\left[x \xrightarrow{1}{-1} > z \right] \land \left[z < \xrightarrow{l-1}{-1} > y \right] \right) \right) \\ \left[x < \xrightarrow{l}{-1} > y \right] &\Leftrightarrow \bigvee_{z \notin \mathbf{C}} \left(\left[z \xrightarrow{1}{-1} > z \right] \land \left[z \xrightarrow{l-1}{-1} > y \right] \right) \lor \bigvee_{z \notin \mathbf{C}} \left(\left[z \xrightarrow{1}{-1} > z \right] \land \left[z < \xrightarrow{l-1}{-1} > y \right] \right) \lor \bigvee_{z \notin \mathbf{C}} \left(\left[z \xrightarrow{1}{-1} > z \right] \land \left[z < \xrightarrow{l-1}{-1} > y \right] \right) \lor \bigvee_{z \notin \mathbf{C}} \left(\left[x \xrightarrow{1}{-1} > z \right] \land \left[z \xrightarrow{l-1}{-1} > y \right] \right) \lor \left[x \xrightarrow{l}{-1} > y \right] \right) \lor \left[x \xrightarrow{l}{-1} > z \xrightarrow{l}{-1} \land \left[z \xrightarrow{l-1}{-1} > y \xrightarrow{l}{-1} \right] \right) \\ \left[x \xrightarrow{l}{-1} > y \xrightarrow{l}{-1} \Leftrightarrow \bigvee_{z \notin \mathbf{C}} \left(\left[x \xrightarrow{1}{-1} > z \right] \land \left[z \xrightarrow{l-1}{-1} > y \xrightarrow{l}{-1} \right] \right) \lor \bigvee_{z \in \mathbf{C}} \left(\left[x \xrightarrow{1}{-1} > z \xrightarrow{l}{-1} \land \left[z \xrightarrow{l-1}{-1} > z \xrightarrow{l}{-1} \right] \right) \\ \left[x \xrightarrow{l}{-1} > y \xrightarrow{l}{-1} \Leftrightarrow \left\{ \begin{array}{l}{-1} & y \xrightarrow{l}{-1} & z \xrightarrow{l}{-1} \land \left[z \xrightarrow{l-1}{-1} & y \xrightarrow{l}{-1} \right] \right\} \lor \bigvee_{z \notin \mathbf{C}} \left(\left[x \xrightarrow{1}{-1} > z \xrightarrow{l}{-1} \land \left[z \xrightarrow{l-1}{-1} > z \xrightarrow{l}{-1} \right] \right) \\ \left[x \xrightarrow{l}{-1} > y \xrightarrow{l}{-1} \Leftrightarrow \left\{ \begin{array}{l}{-1} & y \xrightarrow{l}{-1} & z \xrightarrow{l}{-1} &$$

Proceed in order of conditioning set size

- heuristically find unknown independence / dependence relations and determine them.
- Encode the relations into the working formula F, including definitions as needed.
- Determine the "backbone" of F using the SAT-solver, i.e. for each pair of variables (x,y) in V and for each edge type determine whether it is
 - present in all causal structures consistent with the input.
 - absent in all causal structures consistent with the input.
 - **unknown**, i.e. present in some, and absent in other causal structures consistent with the input.

Proceed in order of conditioning set size

- heuristically find unknown independence / dependence relations and determine them.
- Encode the relations into the working formula F, including definitions as needed.
- Determine the "backbone" of F using the SAT-solver, i.e. for each pair of variables (x,y) in V and for each edge type determine whether it is
 - present in all causal structures consistent with the input.
 - absent in all causal structures consistent with the input.
 - unknown, i.e. present in some, and absent in other causal structures consistent with the input.

any background knowledge representable using encoding can be included

Proceed in order of conditioning set size

- heuristically find unknown independence / dependence relations and determine them.
- Encode the relations into the working formula F, including definitions as needed.
- **Determine the "backbone"** of F using the SAT-solver, i.e. for each pair of variables (x,y) in **V** and for each edge type determine whether it is
 - present in all causal structures consistent with the input.
 - absent in all causal structures consistent with the input.
 - unknown, i.e. present in some, and absent in other causal structures consistent with the input.

any background knowledge representable using encoding can be included

> independence constraints can be treated separately from dependence constraints

Proceed in order of conditioning set size

- heuristically find unknown independence / dependence relations and determine them.
- Encode the relations into the working formula F, including definitions as needed.
- Determine the "backbone" of F using the SAT-solver, i.e. for each pair of variables (x,y) in V and for each edge type determine whether it is
 - present in all causal structures consistent with the input.
 - **absent** in all causal structures consistent with the input.
 - **unknown**, i.e. present in some, and absent in other causal structures consistent with the input.

any background knowledge representable using encoding can be included

> independence constraints can be treated separately from dependence constraints

you can compute the backbone over any graphical feature that you are interested in

assumption/ algorithm	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM	non-linear additive noise
Markov	\checkmark	\checkmark	<	\checkmark	\checkmark	√	\checkmark
faithfulness	\checkmark	\checkmark	\checkmark	×	\checkmark	~	minimality
causal sufficiency	\checkmark	×	√	√	×	√	\checkmark
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian	non-linear additive noise
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG

assumption/ algorithm	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM	non-linear additive noise	SAT
Markov	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	√
faithfulness	\checkmark	\checkmark	\checkmark	×	\checkmark	~	minimality	\checkmark
causal sufficiency	\checkmark	×	√	√	×	√	√	×
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark	X *
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian	non-linear additive noise	×
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG	query based

assumption/ algorithm	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM	non-linear additive noise	SAT
Markov	\checkmark	\checkmark	√	\checkmark	\checkmark	√	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	\checkmark	×	\checkmark	~	minimality	\checkmark
causal sufficiency	\checkmark	×	√	\checkmark	×	√	\checkmark	×
acyclicity	\checkmark	\checkmark	X	\checkmark	\checkmark	×	\checkmark	X *
parametric assumption	X	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian	non-linear additive noise	×
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG	query based

assumption/ algorithm	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM	non-linear additive noise	SAT
Markov	\checkmark	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	\checkmark	×	\checkmark	~	minimality	\checkmark
causal sufficiency	\checkmark	×	√	\checkmark	×	\checkmark	\checkmark	×
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark	X *
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian	non-linear additive noise	×
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG	query based
application	wide use	some?	none	fMRI	requires too much data	fMRI	starting	in development

References

- Limitations
 - Geiger & Pearl, On the logic of influence diagrams, UAI 1988.
 - Meek, Strong completeness and faithfulness in Bayesian networks, UAI 1995.
- LiNGaM
 - Shimizu et al, A linear non-Gaussian acyclic model for causal discovery, JMLR, 2006.
 - Hoyer et al., Estimation of causal effects using linear non-Gaussian causal models with hidden variables, IJAR 2008.
 - Lacerda et al., Discoverying cyclic causal models by Independent Component Ananlysis, UAI 2008.
- additive noise models
 - Hoyer et al., Nonlinear causal discovery with additive noise models, NIPS 2009.
 - Mooij et al., Regression by dependence minimization and its application to causal inference, ICML 2009.
 - Peters et al., Causal inference on discrete data using additive noise models, IEEE..., 2011.
 - Peters et al., Identifiability of causal graphs using functional models, UAI 2011.
- SAT-based approaches
 - Triantafillou et al., Learning causal structure from overlapping variable sets, AISTATS 2010.
 - Claassen & Heskes, A logical characterization of constraint-based causal discovery, UAI 2011.
 - Hyttinen et al., Discovering cyclic causal models with latent variables: A SAT-based approach, UAI 2013.

Thank you!